Date of Award

4-2025

Document Type

Thesis

Degree Name

Doctor of Philosophy in Mathematics

Department

Mathematical Sciences

First Advisor

Farrukh Mukhamedov

Abstract

This research focuses on the algebraic structures of the Quadratic Stochastic Processes (๐‘„๐‘†๐‘ƒ๐‘ ). In this work, we first study ๐œ‰๐‘Ž- Quadratic Stochastic Operators (๐‘„๐‘†๐‘‚๐‘ ) linked to the partition P3. We simultaneously discuss the dynamics of the obtained ๐‘„๐‘†๐‘‚๐‘ . Moreover, algebraic structure of the associated genetic algebra is studied. Further, we build Quadratic Stochastic Processes (๐‘„๐‘†๐‘ƒ๐‘ ) using the given Markov processes. Consequently, we obtain an ordinary differential equation for the resultant Quadratic Stochastic Processes (๐‘„๐‘†๐‘ƒ๐‘ ). Besides, we apply the solution of this ordinary differential equation for the option pricing problem. Thereafter, we construct Quadratic Stochastic Processes (๐‘„๐‘†๐‘ƒ๐‘ ) in three-dimensional space by utilizing the parameters of the Susceptible-Infected-Recovered (๐‘†๐ผ๐‘…) model. In addition, we investigate the algebraic properties for the limiting genetic algebras. Rota-Baxter operators are also analyzed for different weights for these algebras. In the application part of this analysis, we propose an option pricing under Quadratic Stochastic Process (๐‘„๐‘†๐‘ƒ) modulated Geometric Brownian Motion (GBM) model. We also analyze the Radon-Nikodym derivative of the Equivalent Martingale Measure (๐ธ๐‘€๐‘€) ๐‘„ with respect to the historic probability ๐‘ƒ. Ultimately, we obtain an infinitesimal generator which facilitates numerical simulations of the non-Markovian and stock price processes.

Arabic Abstract


ุงู„ู…ุคุดุฑุงุช ุงู„ุทูˆุจูˆู„ูˆุฌูŠุฉ ูˆุชุทุจูŠู‚ุงุชู‡ุง ููŠ ุชุตู…ูŠู… ุงู„ุฃุฏูˆูŠุฉ

ู‡ุฐุง ุงู„ุจุญุซ ููŠ ุงุณุชุฎุฏุงู… ุงู„ู…ุคุดุฑุงุช ููŠ ู…ุฌุงู„ ุชุตู…ูŠู… ุงู„ุฃุฏูˆูŠุฉ ู…ุน ุงู„ุชุฑูƒูŠุฒ ุจุดูƒู„ ุฎุงุต ุนู„ู‰ ุงู„ุฃุฏูˆูŠุฉ ุงู„ู…ุถุงุฏุฉ ู„ู„ุณุฑุทุงู† ุงู„ู…ุคุดุฑุงุช ุงู„ุทูˆุจูˆู„ูˆุฌูŠุฉุŒ ูˆู‡ูŠ ู‚ูŠู… ู…ุณุชู…ุฏุฉ ู…ู† ุชู…ุซูŠู„ุงุช ุงู„ู‡ูŠุงูƒู„ ุงู„ูƒูŠู…ูŠุงุฆูŠุฉุŒ ุชูˆูุฑ ุฑูˆุงุจุท ุฐุงุช ู…ุบุฒู‰ ู„ู„ุฎุตุงุฆุต ุงู„ููŠุฒูŠุงุฆูŠุฉ ูˆุงู„ูƒูŠู…ูŠุงุฆูŠุฉ ู„ู„ุฌุฒูŠุฆุงุช. ุชุนู…ู„ ู‡ุฐู‡ ุงู„ู…ุคุดุฑุงุช ูƒุฃุฏูˆุงุช ู„ุชูˆู‚ุน ุงู„ุณู„ูˆูƒุŒ ูˆุชู„ุนุจ ุฏูˆุฑุง ุญูŠูˆูŠู‹ุง ููŠ ุตูŠุงุบุฉ ุงู„ุฃุฏูˆูŠุฉ ุงู„ุนู„ุงุฌูŠุฉ. ุชุชู†ุงูˆู„ ุงู„ุฏุฑุงุณุฉ ุจุดูƒู„ ุฃุณุงุณูŠ ุงู„ู…ุคุดุฑุงุช ุงู„ุทูˆุจูˆู„ูˆุฌูŠุฉ ู…ุซู„ ู…ุคุดุฑ ุณูˆู…ุจูˆุฑุŒ ู…ุคุดุฑ ุฑุงู†ุฏูŠูƒุŒ ูˆู…ุคุดุฑ ุงุชุตุงู„ ุงู„ุฐุฑุฉ ูˆุงู„ุฑุงุจุทุฉ. ูŠุชู… ุญุณุงุจ ู‡ุฐู‡ ุงู„ู…ุคุดุฑุงุช ู„ู„ู‡ูŠุงูƒู„ ูˆูŠุชู… ุงุณุชูƒุดุงู ุนู„ุงู‚ุงุชู‡ุง ู…ุน ุงู„ุฎุตุงุฆุต ุงู„ููŠุฒูŠุงุฆูŠุฉ ู…ุซู„ ุงู„ุญุฌู… ุงู„ุฌุฒูŠุฆูŠ ู…ุนุงู…ู„ ุงู„ุงู†ูƒุณุงุฑ ูˆู†ู‚ุทุฉ ุงู„ูˆู…ูŠุถ ุจุงุณุชุฎุฏุงู… ุทุฑู‚ ุฅุญุตุงุฆูŠุฉ ู…ุซู„ ุงู„ุงู†ุญุฏุงุฑ ุงู„ุฎุทูŠ ูˆุชุญู„ูŠู„ ุงู„ุงุฑุชุจุงุท. ุชูƒุดู ุงู„ุงูƒุชุดุงูุงุช ุงู„ุจุงุฑุฒุฉ ู…ู† ู‡ุฐุง ุงู„ุชุญู‚ูŠู‚ ุฃู† ุงู„ู…ุคุดุฑุงุช ุงู„ุทูˆุจูˆู„ูˆุฌูŠุฉ ูŠู…ูƒู†ู‡ุง ุงู„ุชู†ุจุค ุจุฏู‚ุฉ ุจุฎุตุงุฆุต ุงู„ุฃุฏูˆูŠุฉ ุงู„ู…ุถุงุฏุฉ ู„ู„ุณุฑุทุงู†ุŒ ู…ู…ุง ูŠุณุงุนุฏ ููŠ ุชุญุณูŠู† ู‡ูŠุงูƒู„ู‡ุง ู„ุฒูŠุงุฏุฉ ุงู„ูุนุงู„ูŠุฉ ุงู„ุนู„ุงุฌูŠุฉ. ู„ุง ุชุคูƒุฏ ู‡ุฐู‡ ุงู„ุฑุณุงู„ุฉ ูู‚ุท ุนู„ู‰ ุฌูˆุงู†ุจ ู‡ุฐู‡ ุงู„ู…ุคุดุฑุงุชุŒ ุจู„ ุชุนุฑุถ ุฃูŠุถู‹ุง ูุงุฆุฏุชู‡ุง ุงู„ุนู…ู„ูŠุฉ ููŠ ุงู„ุนู„ูˆู… ุงู„ุตูŠุฏู„ุงู†ูŠุฉ ู…ู† ุฎู„ุงู„ ุชู‚ุฏูŠู… ุฑุคู‰ ุฌุฏูŠุฏุฉ ููŠ ุชุตู…ูŠู… ูˆุชุญู„ูŠู„ ุฌุฒูŠุฆุงุช ุงู„ุฃุฏูˆูŠุฉ. ุจุงุฎุชุตุงุฑุŒ ูŠุถูŠู ู‡ุฐุง ุงู„ุจุญุซ ุฅู„ู‰ ู…ุฌุงู„ ุงู„ูƒูŠู…ูŠุงุก ู…ู† ุฎู„ุงู„ ุชู‚ุฏูŠู… ุฏุฑุงุณุฉ ู…ุชุนู…ู‚ุฉ ู„ูƒูŠููŠุฉ ุงุณุชุฎุฏุงู… ุงู„ู…ุคุดุฑุงุช ุงู„ุทูˆุจูˆู„ูˆุฌูŠุฉ ู„ู„ุชู†ุจุค ูˆุงู„ุชุญูƒู… ููŠ ุงู„ุตูุงุช ุงู„ููŠุฒูŠุงุฆูŠุฉ ูˆุงู„ูƒูŠู…ูŠุงุฆูŠุฉ ู„ู„ู…ุฑูƒุจุงุช ุงู„ูƒูŠู…ูŠุงุฆูŠุฉ ู„ุชุทูˆูŠุฑ ุงู„ุฃุฏูˆูŠุฉ ุงู„ู…ุณุชู‡ุฏูุฉ.

Included in

Mathematics Commons

Share

COinS