Date of Award
1-2020
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Materials Science
First Advisor
Dr. Mahmoud F. Al Ahmad
Second Advisor
Dr. Mohammad Shakeel Laghari
Abstract
The development of label-free methods for cell classifications has been driven by the importance of early detection and identification of cancer disease. The future point-of-care (POC) treatment methods require rapid and real-time cancer screening techniques. As the labelled methods of cell classification are time-consuming processes and require a large amount of sample preparation along with skilled persons, they do not appear to be suitable for POC treatment methods. This necessitates the importance of such development. The label-free methods incorporate the biophysical properties of cells instead of biomarkers. The optical properties of cells have been frequently utilized for cell classification. This is due to their capability to interact with light. This interaction depends strongly on the intrinsic properties and composition of cells.
Cells from different tissues as well as normal and cancerous of the same tissue exhibit different optical profiles. Therefore, the objective of this work is to combine optical techniques with numerical methods to enhance the accuracy in classifying the different types of cells. The variation in light interactions with a different types of cells is studied and the observations are further analyzed using numerical methods. Prony and autoregressive (AR) techniques are used to extract a set of parameters such as poles and coefficients, to enable cell classifications.
For demonstration, six types of cells: lung normal, lung cancer, liver normal, liver cancer, kidney normal, and cervical cancer cells are considered in this work. Their corresponding optical signals have been measured. The measured signals are then estimated and approximated using Prony and AR models. It is shown that the variation in the extracted poles and coefficients for a different types of cells form a vital tool in cell classification enhancement. A statistical tool such as the analysis of variance (ANOVA) helps in determining the significant AR coefficients.
The results revealed that the poles obtained through the Prony method for different cells differ in their magnitude and location. A figure of merit (FOM) is developed and adapted here which correlates the magnitude and location of poles. It is found that the distribution of FOM in complex z-plane is closer to the centre of the unit circle for normal cell lines than for cancer cell lines taken from the same tissue. Furthermore, the AR model of the same order for different types of cells exhibits different coefficient viii
and pole values. To reduce redundancy and to arrive at a concise AR model (order optimization), ANOVA analysis has been used to determine the significance of the AR coefficients. After that, the dominant poles have been determined. With optimizing the order, the differences in the pole values of normal and cancer cell increases, enabling cell classification enhancement. This shows the role of statistical tools as a further enhancement for better accuracy of classification. The findings of this work form the foundation stage in the domain of cell classification for the early detection of diseases like cancer.
Recommended Citation
Gani, Ayshathul Fouzia Abdul, "ENHANCED LABEL FREE NORMAL AND CANCER CELLS CLASSIFICATION USING COMBINED PARAMETRIC MODELING AND OPTICAL TECHNIQUES" (2020). Dissertations. 134.
https://scholarworks.uaeu.ac.ae/all_dissertations/134
Comments
لقد كان الدافع وراء تطوير أساليب خالية من الملصقات لتصنيف الخلايا هو الاكتشاف المبكر وتحديد مرض السرطان. تتطلب طرق علاج نقطة الرعاية المستقبلية POC أساليب الفحص السريع في الوقت الحقيقي. نظرًا لأن الأساليب المحددة لتصنيف الخلايا تستغرق وقتًا طويلاً وتتطلب قدراً كبيراً من تحضير العينة إلى جانب الأشخاص المهرة، فإنها لا تبدو مناسبة لطرق علاج POC تعتمد الطرق الخالية من الملصقات على الخصائص الفيزيائية الحيوية للخلايا بدلا من العلاقات الحيوية وكثيرا ما تستخدم لتصنيف الخلايا بسبب قدرتها على التفاعل مع الضوء حيث يعتمد هذا التفاعل على الخصائص الجوهرية لتكوين الخلايا.
تحمل الأنسجة المختلفة للخلايا الطبيعية والسرطانية ملامح بصرية مختلفة. لذلك فإن الهدف من هذا العمل هو الجمع بين التقنيات البصرية والطرق العددية لتعزيز الدقة في تصنيف الأنواع المختلفة من الخلايا. حيث تم دراسة التباين في تفاعلات الضوء من أنواع مختلفة من الخلايا وتحليل الملاحظات بشكل أكبر باستخدام الطرق العددية. تم سيتم استخدام تقنيات Prony وautoregressive لاستخراج مجموعة من المعاملات التي تمكننا من تصنيف الخلايا.
هنالك ستة أنواع من الخلايا تم دراستها في هذا العمل وهي: خلايا الرئة الطبيعية، خلايا سرطان الرئة، خلايا الكبد الطبيعي، خلايا سرطان الكبد، خلايا الكلى الطبيعية وخلايا سرطان عنق الرحم. ثم يتم تقدير الإشارات المقاسة وتقريبها باستخدام نموذج Prony و .AR يتبين أن التباين في الأعمدة المستخرجة ومعاملات الأنواع المختلفة من الخلايا يشكل أداة حيوية في تعزيز تصنيف الخلية. تساعد الأداة الإحصائية مثل تحليل التباين ANOVA في تحديد معاملات AR الهامة.
أظهرت النتائج أن الأقطاب التي تم الحصول عليها من خلال طريقة Prony للخلايا المختلفة تختلف في حجمها وموقعها. تم تطوير وتعيين رقم الجدارة FOM هنا والذي يرتبط بحجم الأقطاب وموقعها. لقد وجد أن توزيع FOM في z-plane أقرب إلى مركز دائرة الوحدة لخطوط الخلايا الطبيعية منه لخطوط الخلايا السرطانية المأخوذة من نفس الأنسجة إن نموذجAR من نفس الترتيب لأنواع مختلفة من الخلايا يحمل قيم معامل وقطب مختلفة. لتقليل التكرار والوصول إلى نموذج AR موجز، تم استخدام تحليل ANOVA لتحديد الأهمية في معاملات .AR
إن تحسين الترتيب يؤدي إلى زيادة الاختلافات في القيم القطبية للخلية السرطانية مما ينتج تحسين تصنيف الخلايا. تشكل نتائج هذا العمل مرحلة الأساس في مجال تصنيف الخلايا للكشف المبكر عن أمراض مثل السرطان.