Date of Award
4-2021
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Mathematical Sciences
First Advisor
Dr. Mohamed El Bachraoui
Second Advisor
Dr. Kanat Abdukhalikov
Abstract
This report is concerned about q-series and some of their applications. Firstly, Jacobi’s q-series proof for Legendre’s theorem on sums of four squares will be presented. By way of comparison, the classical approach of this result will be also discussed. Secondly, Gosper’s q-trigonometry will be introduced using Jacobi’s theta functions and the theory of elliptic functions shall be employed to confirm one of Gosper’s conjectures. As an application, a proof for Fermat’s theorem on the sums of squares will be provided. Thirdly, an extended version of Bailey’s transform will be established and as a consequence, a variety of new q-series identities will be proved. In some of these identities, the q-binomial coefficients will be involved.
Recommended Citation
Houchan, Zina Al, "SUM OF SQUARES WITH Q-SERIES, GOSPER’S Q- TRIGONOMETRY, AN NEW IDENTITIES VIA AN EXTENDED BAILEY TRANSFORM" (2021). Theses. 798.
https://scholarworks.uaeu.ac.ae/all_theses/798
Comments
في هذه الأطروحة ستركز على سلاسل q وبعض تطبيقاتها. أو لاَ سيم عرض اثبات سلسلة الخاصة بياكوبي لنظريةليحاندر المعنية. بمجموع المربعات الأربعة، وكنوع من المقارنة سيم عرض النحهج الكلاسيكي لهذه النتيجة. ثانياً سيم عرض حساب مثلثات q التابعة لغوسبر عن طريق دوال ثيتا الخاصة بياكوبي ونظرية الدوال الإهليلجية من جل توظيفها في اثبات واحدة من تخمينات غوسبر. سيتم أيضا عرض اثبات مبرهنة فيرما الخاصة بمجموع المربعات . ثالثاً سيم نشر النسخة الموسعة من تحويلات بيلي ونتيجة لذلك يستم اثبات مجموعةمتنوعة من هويات سلاسل q الجديدة . بعض هذه الهويات تتضمن معاملات q ذو الحدين.