Date of Award

4-2023

Document Type

Thesis

Degree Name

Master of Science in Mathematics

Department

Mathematical Sciences

First Advisor

Salem Ben Said

Abstract

It is well known that the fundamental solution to the classical wave equation ฮ”๐‘ข (๐‘ฅ, ๐‘ก) โˆ’ โˆ‚๐‘ก๐‘ก๐‘ข(๐‘ฅ,๐‘ก) = 0 is supported on the light cone {(๐‘ฅ, ๐‘ก) โˆˆ โ„๐‘›ร— โ„ : ||๐‘ฅ|| = |๐‘ก|} if and only if the dimension ๐‘› is odd and โ‰ฅ 3. Because we are living in a 3-dimensional world we can hear each other clearly; One has a pure propagator without residual waves. In this thesis we consider the wave equation

2||๐‘ฅ||ฮ”๐‘˜๐‘ข๐‘˜(๐‘ฅ, ๐‘ก) โˆ’ โˆ‚๐‘ก๐‘ก๐‘ข(๐‘ฅ,๐‘ก) = 0, (๐‘ฅ, ๐‘ก) โˆˆ โ„๐‘› ร— โ„

where ฮ”๐‘˜is a second order differential and difference operator. First, we prove the existenceand the uniqueness of the solution ๐‘ข๐‘˜(๐‘ฅ, ๐‘ก). Second, we search for the condition on the parameter ๐‘˜ and the dimension ๐‘› for the fundamental solution to be supported on the lightcone {(๐‘ฅ, ๐‘ก) โˆˆ โ„๐‘›ร— โ„ : sqrt(2||๐‘ฅ||) = |๐‘ก|}. Our approach is based heavily on the representation theory of the Lie algebra ๐–˜๐”ฉ(2, โ„), where we construct a new representation ฯ‰๐‘˜ of ๐–˜๐”ฉ(2,โ„) acting on the Schwartz space ๐‘บ(โ„๐‘›). Finally, we prove that ฯ‰๐‘˜ lifts to give raise to a unitary representation of a simply connected Lie group with Lie algebra ๐–˜๐”ฉ(2,โ„).

Arabic Abstract

ู…ู† ุงู„ุนุฑูˆู ุฃู† ุงู„ุญู„ ุงู„ุฃุณุงุณูŠ ู„ู…ุนุงุฏู„ุฉ ุงู„ู…ูˆุฌุฉ ุงู„ูƒู„ุงุณูŠูƒูŠุฉ ฮ”๐‘ข (๐‘ฅ, ๐‘ก) โˆ’ โˆ‚๐‘ก๐‘ก๐‘ข(๐‘ฅ,๐‘ก) = 0 ูŠุชู… ุฏุนู…ู‡ ุนู„ู‰ ุงู„ู…ุฎุฑูˆุท ุงู„ุถูˆุฆูŠ {(๐‘ฅ, ๐‘ก) โˆˆ โ„๐‘›ร— โ„ : ||๐‘ฅ|| = |๐‘ก|} ุฅุฐุง ูˆูู‚ุท ุฅุฐุง ูƒุงู†ุช ุงู„ุฃุจุนุงุฏ โ€Ž ๐‘› ูุฑุฏูŠุฉ ูˆุฃูƒุจุฑ ุฃูˆ ุชุณุงูˆูŠ 3. ู„ุฃู†ู†ุง ู†ุนูŠุด ููŠ ุนุงู„ู… ุซู„ุงุซูŠ ุงู„ุฃุจุนุงุฏุŒ ูŠู…ูƒู†ู†ุง ุณู…ุงุน ุจุนุถู†ุง ุงู„ุจุนุถ ุจูˆุถูˆุญ. ูˆุจุฐู„ูƒ ูŠูƒูˆู† ู„ุฏูŠู†ุง ู†ุงู‚ู„ ู†ู‚ูŠ ุจุฏูˆู† ู…ูˆุฌุงุช ุจุงู‚ูŠุฉ. ูู‰ ู‡ุฐู‡ ุงู„ุฃุทุฑูˆุญุฉ ู†ุฏุฑุณ ู…ุนุงุฏู„ุฉ ุงู„ู…ูˆุฌุฉ:

2||๐‘ฅ||ฮ”๐‘˜๐‘ข๐‘˜(๐‘ฅ, ๐‘ก) โˆ’ โˆ‚๐‘ก๐‘ก๐‘ข(๐‘ฅ,๐‘ก) = 0, (๐‘ฅ, ๐‘ก) โˆˆ โ„๐‘› ร— โ„

ุญูŠุซ ฮ”๐‘˜ โ€ู‡ูˆ ุนุงู…ู„ ุชูุงุถู„ูŠ ูˆูุฑู‚ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ. ุฃูˆู„ุฃุŒ ู†ุซุจุช ูˆุฌูˆุฏ ูˆูุฑุฏูŠุฉ ุงู„ุญู„โ€Ž ๐‘ข๐‘˜(๐‘ฅ, ๐‘ก). โ€ุซุงู†ูŠุงู‹โ€Ž ู†ุจุญุซ ุนู† ุงู„ุดุฑุท ุนู„ู‰ ุงู„ู…ุนุงู…ู„ ๐‘˜ ูˆุงู„ุฃุจุนุงุฏ ๐‘› ู„ุฏุนู… ุงู„ุญู„ ุงู„ุฃุณุงุณูŠ ุนู„ู‰ ุงู„ู…ุฎุฑูˆุท ุงู„ุถูˆุฆูŠโ€Ž {(๐‘ฅ, ๐‘ก) โˆˆ โ„๐‘›ร— โ„ : sqrt(2||๐‘ฅ||) = |๐‘ก|}. โ€ูŠุนุชู…ุฏ ู†ู‡ุฌู†ุง ุจุดูƒู„ ูƒุจูŠุฑ ุนู„ู‰ ู†ุธุฑูŠุฉ ุงู„ุชู…ุซูŠู„ ู„ุฌุจุฑ ู„ูŠโ€Žู‘๐–˜๐”ฉ(2,โ„) ุญูŠุซ ู†ู‚ูˆู… ุจุจู†ุงุก ุชู…ุซูŠู„ุง ุฌุฏูŠุฏุงโ€Ž ฯ‰๐‘˜ ู„ู€ ๐–˜๐”ฉ(2,โ„) โ€ูŠุนู…ู„ ุนู„ู‰ ุงู„ูุถุงุก ุงู„ุดูˆุงุฑุฒูŠ ๐‘บ(โ„๐‘›) ุฃุฎูŠุฑุงุŒ ู†ุซุจุช ุฃู† ฯ‰๐‘˜ โ€ุชุชูƒุงู…ู„ ู„ุชุนุทูŠ ุชู…ุซูŠู„ุงู‹ ู…ูˆุญุฏุงู‹ ู„ู…ุฌู…ูˆุนุฉ ู„ูŠ ุจุณูŠุทุฉ ุฐุงุช ุฌุจุฑ ู„ูŠ ๐–˜๐”ฉ(2,โ„).

Included in

Mathematics Commons

COinS