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Abstract

This thesis is concerned with the matrix representation of a free non-
abelian group by matrices of size ≥ 3. We proceed from defining an
equivalence class and then transitioning to free groups.We discuss in
details the group Gn(k) which is the group generated by the matrices
filled with first, (second, etc.) column, except for the intersection
with the diagonal, and we have ones on the diagonal and zeros at
the other places. The filled places are occupied by the same parameter
k. An alternative proof for the known fact that Gn(3) is not free is
provided . The main objective of this thesis is to find a lower bound
for the parameter. An explicit value of the lower bound is found which
is a refinement of a previous lower bound.

Keywords: Free group, Equivalence classes, Mennicke subgroup,
Congruence subgroup, Principal congruence subgroup.
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Chapter 1: Outline

1.1 Overview

In this thesis, we investigate various representation of free

groups by matrices. The second chapter begins with an introductory

definitions about groups, examples of groups and definition of

subgroup. We define a binary operation and equivalence class of

words. The set of all equivalence class under a binary operation

forms a group is proved which lays the foundation for the definition

of a free group.

In the third chapter, the universal definition of a free group is

introduced. Free groups are a key concept in group theory, a field of

abstract algebra. Jakob Nielsen introduced them in 1924, building on

the earlier ideas of Walther von Dyck from the late 19th century. The

emergence of free groups originated from examining geometric

transformations and their algebraic properties. Walther von Dyck, a

German mathematician, proposed generators and relations for groups

in 1882, setting the groundwork for the future advancement of free

groups. Jakob Nielsen, a Danish mathematician, further developed

the theory of free groups in the 1920s. He introduced the notion of a

free group on a set, which is the group generated by the elements of

that set subject only to the requirement that no non-trivial product of

these elements equals the identity element. Free groups are used in

different mathematical fields like geometric group theory, topology,

and algebraic geometry. They act as basic components for more
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advanced groups and help in comprehending the organization of

groups overall. In general, the progression of free groups has been

motivated by the curiosity to comprehend the fundamental makeup

of groups and their connections to other mathematical

entities. Informally, a group is free on a set of generators if no

relation holds among these generators except the trivial relations that

hold among any set of elements in any group. Definitions about

generators and relations are defined and the Ping Pong lemma is

proved which is used to prove that the matrices

1 2

0 1

 and1 0

2 1

 generate a free group of rank 2. [8]

In the fourth chapter, linear representations are defined. The

group Gn(k) is treated in detailed and the results related to the group

Gn(k) is discussed, namely

• G3(2)≥ MΓ3(32).

• Any group Gn(2) is not free, provided n ≥ 3.

The faithfulness of the representation Xi 7→Ui3(2), 1 ≤ i ≤ 3

is discussed and an explicit lower bound for the parameter k is found

compared to the previous work [1].

1.1.1 Thesis Objective

This work investigates the matrix representation of a free

group.

222



Chapter 2: Groups

2.1 Introduction

In this section, we discuss basic definition about groups and

provide some examples about groups. The main objective of this

chapter is to define the equivalence classes of words and the fact that

equivalence classes define a free group. Examples used in this

section are well-known and can be found in [5].

2.1.1 Binary Operation

A binary operation on a set S is a rule which combines the

elements of an ordered pair from S to form an element of S. The most

common binary operations are addition, subtraction, and

multiplication of integers. Division of integers is not a binary

operation on integers, because an integer divided by an integer may

no longer be an integer.

Definition 2.1.1. Let U be an arbitrary set. A binary operation on U is

a function that assigns every ordered pair of elements of U an element

in U .

The binary operator takes inputs from U , say, a, b ∈ U and

produces a single output ab ∈U.

Definition 2.1.2. Let S be a non-empty set together with a binary

operation that assigns to each ordered pair (a,b) of elements of S an
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element in S denoted by ab. We say S is a group under this binary

operation if the following properties are satisfied :

1. Associativity: The operation is associative ; that

is, (ab)c = a(bc) for all a, b ,c in S.

2. Identity: There exists an element e in S, such that ae = ea = a

for all a ∈ S.

3. Inverses: For every element a ∈ S, there exists an element b ∈ S

such that ab = ba = e.

In other words, a group is a set together with an associative

operation such that there is an identity, all elements have an inverse,

and different pair of elements can be combined without exiting the

set known as the property of closure. If a group has the property that

ab = ba for every pair of elements a and b, the group is said to be

Abelian. A group is non-Abelian if there exists some pair of elements

a and b for which ab ̸= ba.

Example 2.1.1. The set of integers Z, Q, R form a group under

addition. In each case the identity is 0 and the inverse of the element

s is − s.

Example 2.1.2. A rectangular array of form

p q

r s

 is called a 2×2

matrix. The set of all 2×2 matrices with real entries is a group under
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component-wise addition.

p1 q1

r1 s1

 +

p2 q2

r2 s2

 =

p1 + p2 q1 +q2

r1 + r2 s1 + s2



The identity is 0 0

0 0


The inverse of p q

r r

 is

−p −q

−r −s

 .

The determinant of a 2×2 matrix

p q

r s

 is the number ps−qr. If

A is a 2×2 matrix, det(A) denotes the determinant of A.

The set

GL(2, R) =
{ e f

g h

 ∣∣∣ e, f , g, h, ∈ R, eh − f g ̸= 0
}

of 2×2 matrices with real entries and non-zero determinant is a non-
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Abelian group under the operation

a1 b1

c1 d1


a2 b2

c2 d2

=

a1a2 +b1c2 a1b2 +b1d2

c1a2 +d1c2 c1b2 +d1d2

 .

The product of non-singular matrices is also a non-singular

matrix. Since, for any pair of 2 × 2 matrices A and

B, det(AB) = (detA) (detB).

Associativity follows from associativity of matrix operations.

The identity element is 1 0

0 1

 ;

The inverse of

p q

r s

= 1
ps−qr

 s −q

−r p

 .

The above non- commutative group is called the general

linear group of 2×2 matrices over R.

Example 2.1.3. The set of 2×2 matrices with real number entries is

not a group under the operation defined above.
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The reason being, inverses do not exist when the determinant

of a matrix is 0.

Example 2.1.4. Consider D4, the dihedral group. The notation R =

R90 for 90◦ around the center of square and H, a reflection across a

horizontal axis, generate the group.

R and H are related in the following ways:

R4 = H2 = (RH)2 = R0 (the identity).

Other relations between R and H, such as HR = R3H and RHR =

H, also exist, but they are derived from the above equations. For

instance:

(RH)2 = R0

implies

HR = R−1H−1,

and

R4 = H2 = R0

implies

R−1 = R3 and H−1 = H,
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hence

HR = R3H.

Thus, D4 is a group that is generated by a pair of elements

a and b subject to the relations a4 = b2 = (ab)2 = e and such that

all other relations between a and b can be derived from these. Any

group generated by 2 elements a and b fulfilling the relations a4 =

b2 = (ab)2 = e is isomorphic to D4.

Definition 2.1.3. If a subset H of a group S is itself a group under

the operation of S, we say that H is a subgroup of S. It is denoted by

H ⩽ S.

Definition 2.1.4. A subgroup H of a group G is called a normal

subgroup of G if aH = Ha for all a ∈ G. It is denoted by H ◁G.
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2.1.2 Equivalence Classes of Words

For any set S =
{

c1, c2, c3, · · ·
}

of distinct symbols, we

form a new set S−1 =
{

c−1
1 , c−1

2 , c−1
3 , · · ·

}
by replacing each

element x in S by x−1. Define the set W (S) to be the collection of all

formal finite strings of the form x1x2 · · ·xk, where each

xi ∈ S ∪ S−1. The elements of W (S) are called words from S. We

introduce the string with no elements to be in W (S). This word is

called as empty word and is denoted by e. Define multiplication as an

operation on the words, such that

w1 ∗w2 = concatenation o f w1w2

= write w1 then write w2.

Consider w1 = aba and w2 = bbaa.. Define

w1 ∗ w2 = ababbaa and also , w2 ∗ w1 = bbaaaba. The above

operation ∗ is not commutative, but it is associative.

Consider w1 = aba and w2 = bbaa and w3 = aab, then

(w1 ∗w2)∗w3 = (ababbaa)∗aab

= ababbaaaab

and

w1 ∗ (w2 ∗w3) = aba∗ (bbaaaab)
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= ababbaaaab.

there f ore , (w1 ∗ w2) ∗ w3 = w1 ∗ (w2 ∗ w3), so ∗ is associative.

Identity: Let e = identity, be a special word which when

concatenated with any word produces w,

i.e.,

e∗w = w = w∗ e, ∀ w ∈W (S).

Thus, it follows that e = is just empty word.

Inverse: Given any element w, there exist w−1 such that w∗w−1 = e.

In general, inverses do not exist.

Definition 2.1.5. Given 2 words w1 and w2 ∈ W (S) we say that

w1 ∼ w2, if w1 = w2 or w2 can be obtained from w1 by a sequence of

basic rewriting rule. These rules are as follows : If w = Laa−1R ,

where L = le f t subword and R = right subword of w, then w → LR .

Similarly , if w = La−1aR, then w → LR as well.

The reverse operation also holds, we can replace a word w =

LR by the new words :

w = LR → Laa−1R

w = LR → La−1aR
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for arbitrary letter a ∈ S.

If w1 ∼ w2 , then w1 can be transformed by the opposite

sequence of rewriting rules to obtain w2.

Proposition 2.1.1. We have that ′ ∼ ′ is an equivalence relation.

Proof. Reflexive : w ∼ w

Clearly, it is reflexive as we do not add or delete any subword

aa−1 or a−1a.

Symmetry : w1 ∼ w2 then w2 ∼ w2

If w1 is transformed to w2 by the basic rewriting rules, then

the reverse rules can be applied to obtain w1 from w2, that is

there f ore, w1 ∼ w2 ⇒ w2 ∼ w1

Transitive: w1 ∼ w2 and w2 ∼ w3 ⇒ w1 ∼ w3

By the rewriting rules, if w1 can be transformed to w2 and then

w2 is transformed to w3. Then combining all already preformed rules

we can transform w1 to w3.
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Example 2.1.5. Let ab−1baa−1a−1abbb−1a−1a be a word, by the

associativity property we have :

a(b−1b)(aa−1)(a−1a)bbb−1a−1a

→ a(aa−1)(a−1a)bbb−1a−1a

→ a(a−1a)bbb−1a−1a

→ ab(bb−1)a−1a

→ ab(a−1a)

→ ab

is the equivalent reduced word of smallest length.

Any equivalence relation partitions the set into a collection of

disjoint equivalence classes. In the next section we show that the set

of equivalence classes of words form a group.
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2.1.2.1 Equivalence Classes Form a Group

Let S be a set of distinct symbols. For any word w1 ∈W (S) ,

let [w] denote the set of all words in W (S) equivalent to w. Then the

set of all equivalence classes of elements of W (S) is a group under the

operation ∗.

Proposition 2.1.2. W (S)/ ∼ has a well-defined binary operation

given by [w1] · [w2] = [w1 ∗w2].

Proof. Let x1 ∈ [w1] and x2 ∈ [w2] i.e. [w1] = [x1] and [w2] = [x2].

We show : [x1 ∗ x2] = [w1 ∗w2].

Given : x1 ∼ w1 and x2 ∼ w2.

To show : x1 ∗ x2 ∼ w1 ∗w2.

Consider w1 and apply the rewriting rules to transform w1 to a

new word z1 and then keep applying the rules to obtain x1. Similarly,

on w2 applying the rewriting rules to transform w2 to a new word z1
′

and then keep applying the rules to obtain x2.

⇒ w1 ∗w2 → z1 ∗w2 → z2 ∗w2 → ··· → x1 ∗w2.

Similarly , from left concatenation,

x1 ∗w2 → x1 ∗ z1
′ → x1 ∗ z2

′ → ··· → x1 ∗ x2

⇒ w1 ∗w2 ∼ x1 ∗ x2,

whence the binary operation is well-defined.
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Theorem 2.1.3. W (S) is a group under operation ∗.

Proof. For arbitrary w1,w2,w3 ∈W (S) we have

([w1] · [w2]) · [w3] = [w1 ∗w2] · [w3]

= [(w1 ∗w2)∗w3].

= [w1 ∗ (w2 ∗w3)].

= [w1] · ([w2] · [w3]),

hence the operation · is associative.

The identity element of W (S)/ ∼ : Consider e = [φ ] as the

empty word to be the identity element.

[w] · [φ ] = [w∗φ ] = [w] and

[φ ] · [w] = [φ ∗w] = [w].

•• Inverse element of W (S)/∼ .

For any given element [w] in G we need to find another

element such that [w][?] = [φ ],the empty word.

Consider [w] · [w−1] = [w ∗ w−1] = [ww−1] = [φ ] = e.

Similarly, [w−1] · [w] = [w−1 ∗w] = [w−1w] = [φ ] = e.
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Combining all together we conclude that (W (S)/ ∼, ·) is a

group.

In what follows (W (S)/ ∼ , ∗) is called the free group on S

and it is denoted by F(S).
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Chapter 3: Universality of Free Groups

3.1 Introduction

In this section, we define a free group as an universal object in

the category of groups and formulate some standard results in the free

group theory. The Ping pong lemma [9] is proved and its applications

are given. Standard definitions about generators and relations can be

found in this chapter, which are available in [5], [2].

Definition 3.1.1. Given a non-empty set S, and a map θ : S → F , a

group F , the pair (F,θ) is said to be a free group on S, if for any

function α : S → G to any group G, there is a unique homomorphism

α̃ : F → G such that α = α̃ ◦θ

Theorem 3.1.1. The group F(S) is a free group in the sense of the

above definition.

Proof. Let T be a group and α : S → T be a function.

We extend this map to α̃ : F(S)→ T by the rule

[w] 7→ α(x1) . . .α(xk),

provided w = x1 . . .xk, x1, . . . ,xk ∈ S ∪ S−1. Besides,

α(a−1) = α(a)−1 for any a ∈ S.
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Clearly, α̃ is well- defined, for inserting and deleting

expression of the form aa−1 or a−1a in elements of W (S)

corresponds to inserting or deleting the identity in T .

To prove α̃ is operation - preserving :

In fact, we have

α̃([x1x2 · · ·xn] · [y1y2 · · ·ym]) = α̃([x1x2 · · ·xny1y2 · · ·ym]))

= α(x1)α(x2) · · ·α(xn)α(y1)α(y2) · · ·α(ym)

= α̃([x1x2 · · ·xn])α̃([y1y2 · · ·ym]).

3.1.1 Universal Factor Group

Theorem 3.1.2. An arbitrary group is a factor group of some free

group.

Proof. Let H be any group and let S be a subset that generates H.

Let Y be any set that is in one-to-one correspondence with S.

Let F(Y) be a free group on set of generators Y.

If α : Y → S is a bijection , then by the universal property of F(Y)

171717



gives a surjective homomorphism from F(Y) to H.

Theorem 3.1.3. Let K be any group. Then K is a free group on the

generating set X if and only if no reduced word in X ∪X−1 of positive

length is the identity.

Proof. Consider the unique homomorphism θ : F(X) → K that

extends the inclusion map X into K. The conditions of theorem are

equivalent to bijectivity of θ , since each class [w] contains the unique

reduced word of minimal length. Thus θ is an isomorphism and K is

a free group.

Conversely, If K is free on X , then the unique

homomorphism φ : K → F(X) extending the inclusion of X into F(X)

( which exists because K is free on X) is the inverse of θ since X

generates K. Thus, φ is an isomorphism which means it is a bijection

and the condition holds.

Example 3.1.1. Let S = {a} be a f ree group on one element

denoted by F(S). The set F(S) is isomorphic to (Z, +).

Solution: Consider S
′
= {a,a−1} Any word in alphabet S′ is a finite

product of letters a and a−1.
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To prove : F(S)∼= Z

One can define a surjective homomorphism φ : F(S) → Z,

induced by the function S → Z,a 7→ 1. Let w be any word in S
′
. Let n

and m denote the number of a in w and the number of a−1 in w,

respectively. By the induction on the length one can show that any

word w can be transformed to the equivalent word w′ = ak, where

ak = a · · ·a︸ ︷︷ ︸
k

provided k ≥ 0, otherwise ak = a−1 · · ·a−1︸ ︷︷ ︸
|k|

. Moreover,

φ([w]) = φ([w′]) = k.

Thus, it follows immediately that φ has trivial kernel, hence it

is an isomorphism.
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3.1.2 Free Subgroups

Let G be a group and let F(X) → G be a surjective

homomorphism as in Theorem 3.3.

The elements of the kernel R of the epimorphism F(X)→ G,

are called the relators of the group G, in terms of the alphabet X . If a

subset R1 of these relators is such that the smallest normal subgroup

containing R1 is R itself, then we call R1 a set of defining relators in

the alphabet X . Since, G ≃ F(X)/R, the alphabet X and the set R1 of

words completely determines G up to isomorphism. [10]

Definition 3.1.2. The pair ⟨X |R1⟩, is called a presentation of the

group G in terms of generators and relations, or, more precisely, a

presentation of G and expressed as G ≃ ⟨X |R1⟩. Groups that can be

defined by a finite set of generators and relations are referred to as

finitely presented groups. [9]

Definition 3.1.3. Let G1 and G2 be groups and ⟨X1|R1⟩ and ⟨X2|R2⟩

be their presentations in terms of generators and relations. Then the

group ⟨X1 ⊔X2|R1 ⊔R2⟩ is said to be a free product of the groups G1

and G2. It is denoted by G1 ∗G2.

Observe that the natural functions X1 →G1∗G2 and X2 →G1∗

G2 are uniquely extended to the homomorphisms j1 : F(X1)→G1∗G2

and j2 : F(X2)→ G1 ∗G2. Since j1(R1) = e = j2(R2), they induce the
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unique homomorphsims i1 : G1 → G1 ∗G2 and i1 : G2 → G1 ∗G2.

Theorem 3.1.4. The free product is universal in the following sense :

Any couple of homomorphisms f1 : G1 → H and f2 : G2 → H

can be uniquely extended to the homomorphism f : G1 ∗G2 → H such

that f i1 = f1 and f i2 = f2.

Proof. Note that the homomorphisms f1 and f2 are in one-to-one

correspondence with the homomorphisms h1 : F(X1) → H and

h2 : F(X2) → H, such that h1(R1) = e = h2(R2). By the universal

property of a free group, there is the unique homomorphism

h : F(X1 ⊔ X2) → H such that h|X1 = h1|X1 and h|X2 = h1|X2 . Thus

h(R1 ⊔R2) = h1(R1)∪h2(R2) = e and therefore, h induces the unique

homomorphism f : G1 ∗G2 → H. Moreover, it is clear that f i1 = f1

and f i2 = f2.
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The group G1 ∗G2 can be explicitly constructed in the way

similar to the above for F(S).

Consider the elements of G1 and G2 as the formal letters (g)

and (h),g ∈ G1,h ∈ G2. As above, we can define the set of all words

W ((G1)⊔ (G2) in the alphabet (G1)⊔ (G2) = {(g),(h) |,g ∈ G1,h ∈

G2} with the associative operation ∗ (concatenation).

Rewriting rules are :

L(g)(g′)R → L(gg′)R,

L(h)(h′)R → L(hh′)R,

L(e)R → LR

and their reverses as well, where L and R are left and right subwords

of the word w = (x1) · · ·(xk),(x1), . . . ,(xk) ∈ (G1)⊔ (G2).

Theorem 3.1.5. A subgroup of a free group is free again.

The proof of the above theorem can be found in [8].

3.1.2.1 Construction

If G1 and G2 are groups, a word in G1 and G2 is a product of

the form

g1g2 · · ·gn

where each gi is either an element of G1 or an element of G2. Such a

word may be reduced using the operations:
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• remove the identity element from either in G1 or G2.

• replace a pair of the form g1g2 by its product in G1, or a pair

h1h2 by its product in G2.

3.1.2.2 Ping Pong Lemma

Lemma 3.1.6. Suppose G is a group acting on a set S. Suppose there

are two non-empty subsets S1,S2 of S with S2 not included in S1 and

subgroups G1 and G2 of G such that G1 has at least 3 elements and

satisfy g(S2) ⊂ S1,h(S1) ⊂ S2, ∀g ∈ G1 \ 1,h ∈ G2 \ 1. Then, the

subgroup G0 of G generated by G1 and G2 is isomorphic to the free

product of G1 and G2.

Proof. Assume G1 ∩G2 ̸= {1} . For , if 1 ̸= g1 = g2 ∈ G1 ∩G2, then

look at some s2 ∈ S2 \S1. Then, for x1 ∈ G1,x1 ̸= 1,g−1
1 ,

s2 = x1g1g−1
2 x−1

1 (s2) ∈ S1

since x−1
1 carries s2 into an element of S1 which is, in turn, taken by

g−1
2 into an element of S2 which is finally taken by x1g1 to an element

of S1.Thus, s2 ∈ S1, a contradiction. Therefore, G1 ∩G2 = {1}.

Consider any reduced word of the form w = g1h1g2h2 · · ·gr
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where gi ∈ G1 \ 1 and hi ∈ G2 \ 1. Note that w(S2) ⊆ S1. If w =

1, then for each s2 ∈ S2, we have s2 = w(s2) ∈ S1. thus S2 ⊆ S1, a

contradiction. So w ̸= 1.

Now, if w = h1g1 · · ·hr is a reduced word, we get x1 ∈ G1 such

that x1 ̸= 1. Then the reduced word x1h1g1 · · ·hrx−1
1 ̸= 1 by the above

argument. So, w ̸= 1.

If w = g1h1 · · ·grhr is a reduced word , then get x1 ∈ G1, x1 ̸=

1, g−1
1 . So, x1wx−1

1 ̸= 1 follows from the previous argument. Hence ,

w ̸= 1.

Similarly, if w = h1g1 · · ·hrgr is a reduced word , then grwg−1
r

is a nontrivial word by the last statement. Hence w ̸= 1.

Example 3.1.2. The two matrices

1 2

0 1

 and

1 0

2 1

 generate a

subgroup of SL(2, Z) which is isomorphic to free group of rank 2. [6]

Proof. Let G1 = {

1 2n

0 1

 ∈ SL(2,Z)|n ∈ Z}

and G2 = {

 1 0

2n 1

 ∈ SL(2,Z)|n ∈ Z} be the infinite cyclic groups
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of SL(2,Z) generated respectively by the matrices

1 2

0 1

 and

1 0

2 1

 respectively.

The group SL(2,Z) acts linearly on R2 in the usual way. Let

S1 = {

p

q

 ∈ R2 | |p|> |q|}

and

S2 = {

p

q

 ∈ R2 | |p|< |q|}.

It is easy to check that the subgroups G1,G2 and the sets

S1,S2 satisfy the conditions of ping-pong lemma, hence they generate

a subgroups of SL(2, Z) that is isomorphic to Z∗Z.

Observe that the two matrices

1 m

0 1

 and

1 0

m 1


generate a free subgroup of rank 2 in SL(2, Z) for any m ≥ 2, for the

same reasons , but not for m = 1. In fact, we have

1 −1

0 1


1 0

1 1


1 −1

0 1

=

 0 1

−1 0


is of finite order.
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Note SL(2, Z) is generated by the matrices

1 1

0 1

 and

1 0

1 1

.
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Chapter 4: Representation

4.1 Introduction

In this chapter, we state the results related to the group Gn(k),

which is generated by the matrices

Uin(k) = En + ∑
1≤ j ̸=i≤n

ke ji,1 ≤ i ≤ n,

where En is the identity n× n matrix, and ei j is the matrix whose all

entries are zero except the entry in i-th row and j-th column, is equal

to 1, 1 ≤ i, j ≤ n. Besides, k is an real number. Results obtained in

this chapter are derived from [1], [3].

These matrices determine a linear representation of the free

group F(X) of rank n, as

Xi 7→Uin(k),1 ≤ i ≤ n,F(X)→ SL(n).

Note that if n = 2 and k ≥ 2, then this is well known Sanov’s faithful

representation of the free group of rank 2 (see Example 3.10 above).

These representations are investigated in [1]. More precisely, it was

proved that they are faithful for any n ≥ 3 and k ≥ 5. Using the same

method as in [1], we improve the lower bound for k. Also, we give

another proof of the fact that Gn(2) is not free, whenever n ≥ 3.

Definitions of representation and examples related to

representation are stated can be also found [7, 10].
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Given a vector space V , let GL(V ) denote the group of

invertible linear transformations from V to itself. This group is

naturally isomorphic to the group of all invertible n × n matrices

GL(n), where n = dimV . The subgroup of GL(n) consisting of all

matrices with determinant 1 is said to be special linear group. It is

denoted by SL(n).

Definition 4.1.1. A representation of a group G is group

homomorphism φ : G → GL(V ) where V is a vector space.

If the homomorphism is injective, then the representation is

said to be faithful. The image of a faithful representation is

isomorphic to the original group.

Example 4.1.1. The function

X1 7→U12(2),X2 7→U22(2)

determines the linear representation of the free group of rank two,

F(X)→ SL(2).

4.1.1 The Group Gn(2), n ≥ 3

Lemma 4.1.1. Assume that 2 ≤ r ≤ n. In this case, the

correspondence Uir(k) ↔ Uin(k), 1 ≤ i ≤ r, can be extended to an

embedding of Gr(k) in Gn(k).
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Proof. In the ring of matrices Mn(R), we generate a subring K by the

elements (s1n, s2n, · · · , srn). where

s1n = Σ1≤i,̸= j≤re j1, s2n = Σ1≤i,̸= j≤re j2, · · · , srn = Σ1≤i,̸= j≤re jr

It is clear that K is the homomorphic image of the absolutely

free associative ring Z(x1, x2, · · · , xr) with respect to the

homomorphism xi 7→ sin.

Denote by I the kernel of the corresponding homomorphism.

Elementary calculations show that x2
i , xix jxi − xi, and

xix jxl − xixl ∈ I ,∀ i ̸= j, i ̸= l j ̸= l. Moreover, the ideal I is

generated by these elements.

Indeed, modulo these relations, each element of the ring

Z(x1, x2, · · · , , xr) can be transformed to an expression of the from

u ·1+Σ1≤i,̸= j≤rvi jxix j,u,vi j ∈ R.

If this element belongs to the ideal I, then, writing this
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expression in Mn(R), we obtain the relation

0 = uEn +Σ1≤i̸= j≤rvi jsins jn.

After a simple recalculation we obtain,

0 = uEn +Σ1≤i̸= j≤rvi j(Σk ̸=i,1≤k≤nek j)

Changing the addition once more, we arrive at the expression

uEn +Σ1≤k≤n,1≤ j≤r(ek j)(Σi̸=k, j,1≤i≤rvi j) = 0

The case r = n = 2 can be treated directly, so that u = v12 =

v21 = 0. Assume that n ≥ 3 and r = 2. In this case, the coefficient of

e31 is v21 and that of e32 is v12.

It remains to treat the case in which n ≥ 3 and r ≥ 3. Let

1 ≤ j, k1, k2 ≤ r, where j ̸= k1, j ̸= k2, and k1 ̸= k2. We obtain

Σi ̸= j, k1,1≤i≤rvi j = Σi̸= j, k2,1≤i≤rvi j = 0.

In particular, vk1 j = vk2 j. Since, j, k1, k2 is arbitrary, it
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follows that all vi j are pairwise equal, and hence they are zero. This

implies, u = 0. The dimension n of the matrices play no role in the

argument. Hence, K ∼= Z(x1, x2, · · · , xr)/I ∼= Z[s1r, s2r, · · · , srr].

Specifically, the correspondence sin ↔ sir, 1 ≤ i ≤ r, can be

extended to an isomorphism of Z[s1r,s2r, · · · , srr] onto

Z[s1n, s2n, · · · , srn]. Clearly, under this isomorphism, each Uir is

mapped into Uin.

Lemma 4.1.2. An arbitrary permutation of the generators Uin(k) can

be extended to an automorphism of the group Gn(k).

Proof. As usual, it suffices to prove the lemma for the transpostions.

Let Uin(k) 7→ U jn(k), U jn(k) 7→ Uin(k), and Uln(k) 7→ Uln(k) for

l ̸= i, j. The ring Z[s1n, · · · , snn] is isomorphic to the quotient ring

Z(x1, · · · , xr)/I. The substitution xi 7→ x j, x j 7→ xi, xl 7→ xl, l ̸= i, j

rearranges the generators of the ideal I only. Clearly, this

susbtitution induces an automorphism Z(x1, x2, · · · , xr)/I, i.e., a

ring automorphism of Z[s1n, · · · , snn]. This automorphism induces

the desired automorphism of the group Gn(k).

313131



Let A1 =


1 −1 −1

0 1 0

0 0 1

.

Consider the products

B1 =A1U33(2)A−1
1 =


1 0 0

0 1 2

0 0 1

 , C1 =A1U23(2)A−1
1 =


1 0 0

0 1 0

0 2 1

 .

By Sanov’s result, the group G2(2) consists of all matrices of

the form α β

γ δ

 ∈ SL2(Z)

for which α ≡ δ ≡ 1(mod4) and β ≡ γ ≡ 0(mod2). Therefore, this

means that the group ⟨B1, C1⟩ consists of all matrices of the form
1 0 0

0 α β

0 γ δ

 where,

α β

γ δ

 ∈ G2(2).

Also, the following holds

Dk =


1−4k −4k −4k

2k 1+2k 2k

2k 2k 1+2k


where
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D = A1U13(2)A−1
1 =


−3 −4 −4

2 3 2

2 2 3

=


1−4 −4 −4

2 1+2 2

2 2 1+2


For any matrix define

u(B1,C1) =


1 0 0

0 α β

0 γ δ


and for any k ∈ Z we have,

D−ku(B1, C1)Xk =


1+ x 4k f + x 4kt + x

p+(4k2 − p)r−4k2z α +2kg− x/2 β +2kh− x/2

p+(4k2 − p)z−4k2r γ −2kh− x/2 δ +2ky− x/2


(4.1)

where

f = α + γ −1, t = β +δ −1, r = α +β , y = γ −δ ,

g= t−z+1, h= f −z+1, x= 8k2(s−2), p=−2k(1−4k), z=α+β +γ+δ .

Let MΓn(k) denote the subgroup of SL(n) consisting of all matrices

(ai j) such that

aii ≡ 1 (mod k2), ai j ≡ 0 (mod k),1 ≤ i ̸= j ≤ n.
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We call it Mennicke congruent subgroup (cf. [4]). The

following theorem is the corrected version of the theorem

G3(2)≥ Γ3(32) as proved in [1].

Theorem 4.1.3. G3(2) ≥ MΓ3(32).

Proof. Let α = 1+ 4m, δ = 1− 4m, β = 4m, γ = −4m and find a

matrix of the form 
1 0 0

16km @ @

−16km @ @

 ,

where the corner 
1 0 0

0 @ @

0 @ @


is an element in the group ⟨B1, C1⟩. Using the cancellation property

with an appropriate element of this group, we have, the matrix

N =


1 0 0

16 1 0

−16 0 1

 .

The subgroup genereated by U32(2) and U33(2) consists of all
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matrices of the form


1 α + γ −1 β +δ −1

0 α β

0 γ δ

 , where

α β

γ δ

 ∈ G2(2),

therefore, we have

P =


1 0 0

0 1−16 −16

−16 16 1+16

 ∈ G3(2)

and

R = D−1ND = P =


1 0 0

16 1−16 −16

−16 16 1+16

 ∈ G3(2)

and,

RN−1 =


1 0 0

16 1 0

−16 0 1

 ∈ G3(2).
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Multiply by U13(2)8, we have the transvection

t21(32) =


1 0 0

32 1 0

0 0 1

 ∈ G3(2).

Also,

NP−1U8
13 = t31(32) =


1 0 0

0 1 0

32 0 1

 ∈ G3(2).

Let σ ∈ Sn be an arbitrary permutation on n symbols. The

mapping Uin(k) 7→Uσ(i),n(k) is an automorphism of the group Gn(k).

Also, by induction on the length of the element u ∈ Gn(k), we can

prove that uσ bt = (u(bσ )t)σ , where b ∈ Rn and

(bσ )i = bσ−1(i), 1 ≤ i ≤ n. Consider the permutation

κ : U13(2) 7→U23(2), U23(2) 7→U13(2).

Let the standard basis of the space R3, be as,

e1 = (1,0,0), e2 = (0,1,0), e3 = (0, 0, 1). Using this fact we
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derive,

t21(32)κet
1 = (t21(32)et

2)
κ = (eκ

2 )
t = et

1.

Also,

t21(32)κet
2 = (32,1,0)t , t21(32)κet

3 = et
3

Therefore, t21(32)κ = t12(32) ∈ G3(2). Similarly, the other

transvections ti j(32), 1 ≤ i ̸= j ≤ 3 can be generated. By the main

result of this [4] , our statement immediately follows.

Theorem 4.1.4. Any group Gn(2) is not free, provided n ≥ 3.

Proof. Since G3(2) is embedded to Gn(2), all we need is to prove that

G3(2) is not free.Assume the opposite. By Theorem 4.5 the group

G3(2) contains matrices t12(32) and t13(32). It is easy to see that these

two matrices are commuting. Moreover, they generate a subgroup of

G3(2) that is isomorphic to Z×Z. The latter is obviously not free, a

contradiction.

Remark 4.1.1. In [1] many nontrivial relations between the

generators of G3(2) are found. But in the strict sense of the word,

this does not mean the lack of freeness of this group. Of course, the
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representation Xi 7→ Ui3(2),1 ≤ i ≤ 3, is not faithful, but it is still

possible that there is another set of generators which freely generate

G3(2). This gap in the original proof is amended here.

4.1.2 The Faithfulness of the Representation

Theorem 4.1.5. For all n ≥ 3 and

k ≥ 8×2
2
3

3 3
√

3
√

273+59
+

3
√

2(3
√

273+59)
3 + 4

3 , the group Gn(k) is free, and

Uin(k), 1 ≤ i ≤ n are its free generators.

Proof. Without loss of generality, we may assume that k ≥ 0.

Let v = vs =Ursn(k)
ls · · ·Ur1n(k)l1 be an arbitrary reduced word in the

alphabet formed by the generators Uin(k). In other words,

ri ̸= ri+1,1 ≤ i ≤ s− 1 and l1, l2, · · · ls ∈ Z \ 0. As usual, denote by

e1 . . .en the standard basis of Rn.

Our objective is to show that vet
r1

= bt and that all

coordinates of the vectors b are nonzero. Moreover, all these

coordinates, possibly except for brs , are of the same sign. In

particular, vet
r1
̸= et

r1
, and hence v ̸= En.

We say that a vector b satisfies the condition (l) with

parameters a,d > 0 if all coordinates of b are nonzero, all bi with
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i ̸= l are of the same sign and satisfy the relation

0 < a ≤ | bi

bl
|

and, for any i, j ̸= j, we have either

1 ≤ | bi

bl
| ≤ d

or
1
d
≤|

b j

bi
|≤ 1.

Let us show by induction on the length of v that vet
r1

satisfies

condition (rs) with parameters a and d that depend on k only. As we

progress, some inequalities for a and d arise which we justify by the

induction step.

Base of Induction :

Take a and d such that 1
k < a < k and 1 ≤ d < k. In this case,

the vector

Ur1n(k)l1et
r1
= (kl1, . . . ,1, . . . , r1︸︷︷︸,1, . . . ,kl1)t

obviously satisfies condition (r1) with parameters a and d.

Inductive step : Simplifying the notation , we set i = rs and

j = rs+1, i ̸= j.Assume that the vector vset
r1
= bt satisfies the condition

(i) with parameters a and d.
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Let U jn(k)lbt = (b ′)t = (b ′
1, . . . ,b

′
n)

t , where b j = b ′
j and

b ′
m = bm + klb j for all m ̸= j. By assumption , b j = b ′

j ̸= 0. Hence,

| b ′
m

b ′
j
|=| bm

b j
+ lk |≥ k− | bm

b j
|≥ a

for any m ̸= j.

If m = i, then | bi
b j

|≤ 1
a , and for the inductive step we must

have k− 1
a ≥ a. If m ̸= i, then | bm

b j
|≤ d, and hence k−d ≥ a. The first

inequality is equivalently to the inequalities

k−
√

k2 −4
2

≤ a ≤ k+
√

k2 −4
2

Since,

k−d ≤ k−1 <
k+

√
k2 −4
2

we finally obtain two inequalities,

k−
√

k2 −4
2

≤ a ≤ k−d and 1 ≤ d < k

. Let m ̸= s,m ̸= j,and s ̸= j. Denote by x the absolute value

| b ′
m

b ′
s
|=|

kl + bm
b j

kl + bs
b j

|

Our subsequent argument depends on the sign of l.
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1. Let l > 0. If m,s ̸= i, then, by assumption, the coefficients

b j,bm,bs are of the same sign, i.e. bm
b j

> 0 and bs
b j

> 0.

Depending on which number is larger, bm
b j

or bs
b j

, we have

either 1 ≤ x ≤ k+d
k+ 1

d
or k+ 1

d
k+d ≤ x ≤ 1. Thus, we must have

k+d
k+ 1

d

≤ d and
1
d
≤

k+ 1
d

k+d

However, these inequalities are equivalent and follow from the

condition d ≥ 1.

We assume now that m = i. By the induction assumption we

have bi
b j

≤ 1
a and bs

b j
> 0. If bi

b j
≥ bs

b j
> 0, then

1 ≤ x ≤
k+ 1

a

k+ 1
d

≤ d, i.e ka+1 ≤ a(kd +1)

. Otherwise,

1 ≥ x ≥
k− 1

a
k+d

≥ 1
d

The case s = i can be treated similarly.

2. Let l < 0. In this case we must estimate the expression

y = |
kl − bm

b j

kl − bs
b j

|

As above, we first assume that m,s ̸= i. Repeating the argument
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of part 1, we obtain a pair of inequalities of the form

1 ≤ y ≤
k− 1

d
k−d

≤ d and
1
d
≤ k−d

k− 1
d

≤ y ≤ 1

This pair can be reduced to a single inequality , kd−1 ≤ d2(k−

d). If m = i (or s = i), then in case of bi
b j
≥ bs

b j
> 0 we obtain the

inequality

1 ≥ y ≥
k− 1

a

k− 1
d

≥ 1
d
.

Otherwise, we have 1 ≤ y ≤ k+ 1
a

k−d ≤ d. Simplifying we obtain

a(kd −1)≤ d2(ka−1) and ka+1 ≤ ad(k−d).

Thus, for the inductive step to be realizable, the parameters a

and d must satisfy the system of inequalities

k−
√

k2 −4
2

≤ a ≤ k−d, 1 ≤ d < k, (4.2)

ka+1 ≤ a(kd −1), (4.3)

a(k+d)≤ d(ka−1), (4.4)

kd −1 ≤ d2(k−d), (4.5)

a(kd −1)≤ d2(ka−1), (4.6)

ka+1 ≤ ad(k−d). (4.7)
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We observe that some of the inequalities mentioned above are

unnecessary. Inequality (7) is better than inequality (3) and (5) as d

is positive. Inequality (4) is much stronger than (6). The above

inequalities can be reduced to just 3 inequalities, namely,

(2), (4), (7).

Let φ(k) be the set of solutions of the reduced system of

inequalities.

4.1.2.1 Inequality Solution

Consider,

ka+1 ≤ adk−ad2.

Rearranging the above inequality we have :

a(dk−d2 − k)≥ 0

−d2+dk−k > 0, because a > 0 and the inequality is greater than 1

−d2 +dk− k > 0

The above inequality in d has a real solution only if the

discriminant is greater than 0. Solving the above quadratic inequality

using the quadratic formula in d, leads to

−k±
√

k2 −4k
−2
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which has a real solution only if

k ≥ 0 or k ≥ 4

By the inequality 4.7, one can also derive that

ka+1 ≤ ad(k−d)

k+
1
a
≤ dk− k2

1
a
≤ dk−d2 − k

1
a
≤−d2 +dk− k

Also, we know 0 < 1
k < 1

a < k

1
k
<−d2 +dk− k

cross-multiplying k, it simplifies to

dk2 − kd2 − k2 > 1

rearranging the above inequality and dividing by the negative sign

yields

d2k− k2d + k2 +1 < 0
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Again, solving the above quadratic inequality in d ,we have

k2 −
√

k4 −4(k2 +1)k
4k

which simplifies as
k2 −

√
k4 −4k3 −4k

4k

We observe that it has a real solution only if the discriminant

≥ 0.

k4 −4k3 −4k ≥ 0

i.e.

k4 ≥ 4(k2 +1)k

k3 ≥ 4(k2 +1) , since k > 0

k3 −4k2 −4 ≥ 0

The inequality represents a cubic equation of the form ax3 +

bx2 + cx+ d = 0. The above inequality can be solved by substituting

k = x− 4
3 . This transforms it as

(
x− 4

3

)3
−4

(
x− 4

3

)2
−4 ≥ 0

on expanding which simplies as,

x3 − 16
3

x− 236
27

≥ 0
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Now, let x = y+ λ

y , then the above inequality gets transformed

as (
y+

λ

y

)3
− 16

3

(
y+

λ

y

)
− 236

27
≥ 0

let λ = 16
9 ; z = y3

⇒ z2 − 236
27

z+
4096
729

≥ 0

Solving the inequality in z, we have

z ≥ 2
27

(59+3
√

273)

We consider only the positive root of z. Substitute z = y3

⇒ y3 =
2
27

(59+3
√

273)

⇒ y =
3
√

2
3

(
3
√

59+3
√

273)

but x = y+
16
9y

⇒ x =
8×2

2
3

3 3
√

3
√

273+59
+

3
√

2(3
√

273+59)

3
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Finally, substitute k = x+ 4
3

⇒ k =
8×2

2
3

3 3
√

3
√

273+59
+

3
√

2(3
√

273+59)

3
+

4
3

The above inequality has a minimum value solution for this

root k. Theorem is completely proved.
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Chapter 5: Conclusion

In [1] it was observed that the above system of inequalities has

a solution for all k ≥ 5. But the system has never been solved therein.

Here this system is solved and the lower bound for k is improved. In

fact, the above mention root of quibic equation has an approximation

(up to first three digits) 4.224.
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This work investigates the matrix representation of a free group. The group 

𝐺𝑛(𝑘) is discussed. An alternative proof for the known fact that 𝐺𝑛(3) is not free

is provided. The main objective of the thesis is to find a lower bound for the 

parameter k. 
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