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Abstract 

In a data-driven era, achieving a balance between privacy and utility is crucial. 

Organizations often utilize data for research, analysis, and enhancement of services, which 

emphasizes the significance of effective privacy-preserving techniques to protect 

individuals' privacy and comply with regulations. This equilibrium is vital in data 

visualization to derive insightful decisions from data representations. The goal is to 

evaluate the trade-off between privacy preservation and data utility, understanding how 

differentially private parameters impact effective visualizations. Valuable insights will 

guide strategies for achieving optimal privacy-preserving visualization techniques. The 

study aims to investigate the effects on privacy and data utility in different privacy settings 

and identify the ideal trade-off between privacy protection and data usability. Differential 

privacy techniques are used to obfuscate sensitive data, relying on data sensitivity and 

varied epsilon values to achieve different privacy levels. The impact on data utility is 

analyzed using histograms, which show data frequency and distribution. These graphic 

aids visualized  the compromises that must be made between protecting privacy and 

guaranteeing data usability. Our analysis highlights the vital role of visual analytics in 

balancing privacy protection and data utility. We present a hybrid multi-objective metric 

in our study that comprehensively assesses the trade-offs between privacy and utility. This 

novel contribution helps to develop strategies that maximize data utility and privacy 

protection by offering a more nuanced understanding of how privacy-preserving 

techniques affect data visualization. Additionally, we design an evaluation model using 

both empirical and estimated experiments that provide practical privacy parameters 

adapted for real-world scenarios. This dual-method approach offers useful techniques for 

protecting privacy in data visualization and determining the best trade-off, which fills a 

void in the existing literature. This contribution to the field delivers valuable insights to 

best optimize privacy-preserving techniques for data visualization. 

 

Keywords: Data privacy, data visualization, differential privacy, privacy parameters, data 

utility, visual analytics, hybrid multi-objective metric, privacy-utility trade-off, 

histograms, evaluation model. 
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Title and Abstract (in Arabic) 

 ةتصور البيانات المحمية بشكل خاص: استكشاف تضارب الخصوصية والفائد

 صالملخ  

تحقيق   يعد  بالبيانات،  مدفوع  عصر  تستخدم  في  ما  غالبًا  حاسمًا.  أمرًا  والفائدة  الخصوصية  بين  التوازن 

المؤسسات البيانات للبحث والتحليل وتحسين الخدمات، مما يؤكد أهمية تقنيات الحفاظ على الخصوصية الفعالة لحماية  

مستني قرارات  لاستخلاص  البيانات  تصور  في  ضروري  التوازن  هذا  للوائح.  والامتثال  الأفراد  من  خصوصية  رة 

تمثيلات البيانات. الهدف هو تقييم الموازنة بين الحفاظ على الخصوصية وفائدة البيانات، وفهم كيفية تأثير المعلمات  

تقنيات تصور  لتحقيق  استراتيجيات  القيمة  الأفكار  ستوفر  الفعالة.  التصورات  التفاضلية على  بالخصوصية  الخاصة 

تهدف الدراسة إلى التحقيق في تأثيرات إعدادات الخصوصية المختلفة    .البيانات المثلى مع الحفاظ على الخصوصية

على الخصوصية وفائدة البيانات وتحديد التوازن المثالي بين حماية الخصوصية واستخدامية البيانات. تسُتخدم تقنيات  

لمختلفة لتحقيق مستويات الخصوصية التفاضلية لتعتيم البيانات الحساسة، اعتماداً على حساسية البيانات وقيم إبسيلون ا

الرسوم  البيانات من خلال استخدام  فائدة  الحفاظ على الخصوصية على  تقنيات  تأثير  يتم تحليل  خصوصية متنوعة. 

البيانية الشريطية. بشكل خاص، تعتبر الرسوم البيانية الشريطية أدوات حيوية في التحليلات البصرية لأنها تساعد في  

البيانات وتوزيع  تكرار  الخصوصية  فهم  بين حماية  بها  القيام  التي يجب  التوازنات  الرسومية توضح  . هذه الأدوات 

البيانات استخدامية  حماية    .وضمان  موازنة  في  البصرية  للتحليلات  الحيوي  الدور  على  الضوء  تحليلاتنا  تسلط 

الخصوصية وفائدة البيانات. نقدم في دراستنا مقياسًا هجينًا متعدد الأهداف يوفر تقييمًا شاملاً للتوازنات بين الخصوصية  

البيانات وحماية الخصوصية من خلال تقديم  والفائدة. تسهم هذه الإضافة الجديدة في تطوير استراتيجيات تزيد من فائدة  

فهم أكثر تفصيلاً لكيفية تأثير تقنيات الحفاظ على الخصوصية على تصور البيانات. بالإضافة إلى ذلك، نصمم نموذج 

تخدام تجارب يدوية وآلية توفر معلمات خصوصية عملية مكيّفة للسيناريوهات الواقعية. يقدم هذا النهج الثنائي  تقييم باس 

طرقًا فعالة لحماية الخصوصية في تصور البيانات وتحديد أفضل توازن، مما يملأ فجوة في الأدبيات الحالية. تسهم  

 .ت الحفاظ على الخصوصية في تصور البياناتهذه الإضافة في المجال بتقديم رؤى قيمة لتحسين تقنيا

 

فائدة  :  مفاهيم البحث الرئيسية التفاضلية، معلمات الخصوصية،  البيانات، الخصوصية  البيانات، تصور  خصوصية 

البيانات، التحليلات البصرية، مقياس هجين متعدد الأهداف، توازن الخصوصية والفائدة، الرسوم البيانية الشريطية،  

 .نموذج التقييم
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Chapter 1: Introduction 

1.1 Overview 

The study explores the complexity of striking a balance between privacy 

preservation and data utility in the visualization frameworks. An in-depth exploration of 

the main concepts of privacy preservation, data utility, and differential privacy must be 

conducted to ensure a comprehensive understanding. The principal issue discussed is 

bringing together the double consideration of the importance of prioritizing privacy as well 

as efficient data visualization. With the use of a case study, the research offers an insightful 

example of these ideas, showing the feasibility of the suggested techniques. 

This study is significant because it can help close the gap between data utility and 

privacy preservation, which is a problem that is becoming more and more relevant in 

today's data-driven society. This research addresses the crucial need to preserve individual 

privacy while preserving the analytical value of datasets by concentrating on differential 

privacy. Maintaining this equilibrium is crucial for facilitating reliable and efficient data-

driven decision-making in a variety of fields, such as the social sciences, finance, and 

healthcare. 

There will be a variety of approaches employed to address the problem of striking 

a balance between data utility and privacy protection in visualization. Maintaining privacy 

is crucial to safeguarding private data and facilitating insightful data analysis. Differential 

Privacy is a strategy that adds randomness to the data to make it difficult to identify 

individual data points. The epsilon parameter, which quantifies the privacy guarantee, is a 

crucial element of differential privacy. It regulates the trade-off between privacy and data 

utility, with a larger epsilon providing better data utility at the expense of privacy and a 

smaller epsilon providing stronger privacy but less accuracy. Laplace noise perturbation 

is one of these methods that is particularly well-known and can provide practical solutions 

by varying the epsilon parameters. By carefully calibrating noise from a Laplace 

distribution and adding it to each value in the dataset, this method distorts important 

information while maintaining overall utility (Zhou et al., 2023). The level of privacy 

protection can be tailored the level of privacy protection to different requirements. In the 
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context of data visualization, histograms are essential tools for comprehending the 

frequency and distribution of data. Laplace noise is applied to histograms to illustrate the 

trade-offs between preserving data utility—that is, keeping the data accurate and useful—

and guaranteeing privacy protection. This method emphasizes how crucial it is to identify 

effective privacy-preserving data visualization strategies to strike the ideal compromise 

between privacy and usefulness. 

 

 

 

 

 

 

 

 

 

Figure 1: Effect of Differential Privacy on Evaluation Metrics. 

 

Orthogonally, in the field of visual analytics, which is the focus of this work, noise-

induced data perturbations in differentially private visualizations can alter visual patterns 

and impact the utility of the visualization (Zhang et al., 2021). On the other hand, lacking 

privacy protections increases the risk of disclosing private personal data. To visualize data 

with confidence regarding its privacy and utility, it is necessary to investigate and find a 

balanced approach. A real-world dataset of income levels in various regions is shown with 

bar charts in Figure 1. Changes that impact evaluation metrics are shown visually in the 

representation before and after differential privacy. The investigation of the privacy-utility 

trade-offs and effects of the differential privacy mechanism on data visualization will be 

based on this example. 

Private Histogram  

Non-Private Histogram  

User 
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In this work, we focus on studying the impact of data privacy on downstream data 

analytics, particularly histogram visualizations. We seek to provide insights that facilitate 

informed decision-making and raise the general efficacy of data visualization techniques 

by examining the ways in which privacy-preserving techniques impact the precision and 

utility of histograms. It's a crucial tool to comprehend the frequency and variability of 

numerical data and to visualize its distribution. The study also employs visualization 

strategies, like bar charts, to enhance comprehension and analysis. Bar charts allow 

analysts to easily compare the values of various subcategories within each main category, 

facilitating the detection of similarities and differences within and between groups (Diaz 

et al., 2018). This helps with informed decision-making during the visualization process. 

Additionally, the study uses novel metrics to define privacy-utility trade-offs and 

data variety, integrating privacy gain, Normalized Mutual Information (NMI), and Sum 

Squared Error (SSE). To allow users to indicate which level of privacy they prefer over 

utility, we propose a hybrid multi-objective metric that combines these three metrics. This 

innovative technique offers a fresh perspective on optimization and a deeper 

comprehension of the intricate relationships that exist between data utility and privacy 

protection during the visualization process. Our method improves the adaptability and 

efficiency of privacy-preserving data visualization techniques by enabling customized 

preferences. 

1.2 Problem Statement 

This study aims to investigate the difficult trade-off between demonstrating the 

value of data visualization techniques and protecting individuals' privacy. The strict 

regulations enforced by the General Data Protection Regulation (GDPR) in the European 

Union (European Parliament and Council, 2016), the Health Insurance Portability and 

Accountability Act (HIPAA) in the United States (U.S. Department of Health and Human 

Services, 1996), and the UAE Federal Data Protection Law No. 45 of 2021 (UAE 

Government, 2021) have made strong privacy protection mandatory. This raises a 

fundamental question: Is it possible to maintain the confidentiality of sensitive data and 

still obtain valuable insights for research and decision-making? 
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The growing popularity of data-driven approaches in many different industries 

requires the development of practical solutions for safeguarding personal information. 

Therefore, by introducing noise, which can make an impact on the visualizations' 

accuracy, privacy techniques like differential privacy provide a way to safeguard 

individuals' sensitive data. Nonetheless, navigating this obstacle is still a challenging 

endeavor.  

1.2.1 Research Questions 

Based on previous motivation and concerns, we must discover solutions to the 

following research questions: 

o RQ1: How do differential privacy frameworks impact individual privacy in data 

visualizations? 

o RQ2: What are the trade-offs between preserving privacy and the accuracy of the 

visual representation in data visualization techniques? 

o RQ3: How much do privacy-enhancing techniques affect the utility and precision 

of visualizations? 

o RQ4: How can metrics be used to evaluate the trade-off between visualization 

quality and strong data privacy safeguards efficiently? 

1.3 Research Objectives and Contributions 

1. RQ1: Investigate the effectiveness of tuning Laplace noise parameters to 

accommodate different privacy requirements.  

2. RQ1: Study the impact of various privacy parameter settings on data usability and 

privacy assurance, focusing on sensitive attributes.  

3. RQ2: Analyze the impact of different privacy parameter settings that affect the 

utility of data visualization. Compare original and perturbed data visualizations to 

find the optimal balance between privacy and data utility.  

4. RQ3: Assess the impact of the hybrid multi-objective metric on privacy protection 

and data utility trade-offs.  
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5. RQ4: Conduct a comprehensive analysis and mapping of the relationship between 

privacy settings and data utility, using empirical and estimated methods to 

determine the optimal privacy settings and ensure robust privacy protection.  

The following summarizes the contributions considering the provided research 

questions: 

o Examine the effectiveness of tuning Laplace noise parameters to meet 

different privacy requirements. 

o Examine the effects of various privacy parameter settings on data usability 

and privacy protection and the utility of data visualization. 

o Evaluate the impact of the hybrid multi-objective metric on balancing 

privacy protection and data utility. 

o Conduct a comprehensive analysis of the relationship between privacy 

settings and data utility, identifying the optimal settings to ensure robust 

privacy protection and utility. 
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Chapter 2: Related Work 

There has been a notable increase in interest and research in the field of privacy-

preserving data analytics, especially in differential privacy, in recent years. This review 

explores both classic literature and recent scientific works with historical and modern 

viewpoints. Examining these sources, the review aims to clarify the development of 

differential privacy, evaluate the scope of current privacy-preserving methods, and 

identify new issues and trends that will influence the field's future developments. 

A key idea in mitigating the possibility of unintentional disclosure of personal data 

when paired with other data is differential privacy. Many data privacy laws have been 

developed in response to growing concerns about data sharing to reduce the associated 

risks. An approach to measuring the degree of privacy protection provided by privacy-

preserving data analysis techniques is provided by Differential Privacy. It aims to prevent 

the release of private data about specific individuals from a dataset (Bhattacharjee, 2020). 

The differential privacy approach has been extensively researched and used in a variety of 

fields, such as the social sciences, finance, and healthcare. 

2.1 Foundations and Practical Applications of Differential Privacy 

The idea explained in 'The Algorithmic Foundations of Differential Privacy' by 

Dwork and Roth (2014) emphasizes the creation of algorithms that can identify individual 

records in a dataset without making any specific inferences from this data. The theory of 

differential privacy, algorithmic implementation techniques, and practical applications are 

all thoroughly explored in this significant work, which is a cornerstone in the field of 

privacy-preserving data analysis. The contributions of Dwork and Roth have made it 

possible for researchers to study privacy-preserving algorithms from both theoretical and 

practical angles, which has aided in the development of new methods for addressing 

privacy concerns as well as advancements in privacy protection (Lindell, Y. and Pinkas, 

B., 2000). 

Xiao and Tao investigated tailored approaches to privacy preservation in their 2015 

paper "Personalized Privacy Preservation Techniques" (Xiao & Tao, 2006). They support 

the development of privacy-preserving methods that are tailored to the preferences and 
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privacy policies of everyone. The authors provide insights into the creation of privacy-

conscious systems that can satisfy a range of user needs by integrating differential privacy 

with the specifications of recommendation systems for personalized data analysis. 

The field of differential privacy has progressed, resulting in the creation of models 

and algorithms that analyze private data while maintaining data utility. These efforts 

encompass a range of strategies, including the Laplace mechanism (which focuses on 

controlled noise addition while maintaining established privacy guarantees) and Warner's 

Randomized Response (1965), as well as randomized mechanisms developed by 

McSherry and Talwar (2007). 

The trade-offs between data utility and privacy have been examined in a number of 

studies. Federated Learning is a method that was presented by McMahan et al. (2017) and 

is intended to train machine learning models on decentralized data while maintaining 

privacy. They draw attention to the harmony that exists between privacy guarantees and 

model performance. The trade-offs between data utility and privacy in differentially 

private algorithms were also measured and optimized in a different study by Thakkar et 

al. (2021). The aforementioned studies highlight the significance of devising techniques 

that preserve data utility while guaranteeing confidentiality. 

The Laplace mechanism is one method for differential privacy that is frequently 

employed. The Laplace process entails incorporating noise into the data from a Laplace 

distribution, which is defined by its scale parameter, which is based on the data's sensitivity 

and privacy parameter, ε (epsilon). A single data point's ability to affect the result is 

measured by sensitivity. The Laplace distribution's scale parameter is computed by 

dividing the sensitivity by ε. This method preserves the anonymity of the dataset's 

participants while enabling insightful statistical analysis (Dwork et al., 2006). 

Using metrics to measure the trade-offs is a crucial part of striking a balance 

between privacy and utility. In this context, privacy gain and Normalized Mutual 

Information (NMI) metrics are important. The original and perturbed datasets are 

compared using the Normalized Difference Index (NMI), which gives information about 

how much of the original data structure remains after perturbation (Vinh, Epps, & Bailey, 

2010). It is especially helpful for evaluating tasks involving clustering and classification, 
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where the data's structure is essential. NMI is a normalized metric with a range of 0 to 1, 

where 1 means that the original data's exact structure has been preserved in the perturbed 

data. Instead, privacy gain measures how much privacy protection has improved because 

of disturbance, indicating a lower chance of re-identification (Dwork et al., 2006). 

Comparing the privacy risks before and after applying the noise allows one to calculate 

the privacy gain. This metric helps to balance the trade-off between data utility and privacy 

protection by offering a quantitative assessment of the improvement in privacy (Dwork et 

al., 2006). These metrics assess the efficacy of privacy-preserving methods and their 

influence on data utility, allowing researchers to make well-informed decisions. 

Researchers can achieve a balanced approach to data privacy and utility by utilizing NMI 

and privacy gain. This ensures that data is protected from prying eyes while still being 

useful for analysis. 

 

Table 1: Differentially Private Ages - Before and After Noise 

Before After 

63 61.2 

68 70.1 

70 69.5 

65 66.3 

72 69.0 

 

 

One of the core ideas of differential privacy is to provide a measurable indicator of 

privacy protection. By ensuring that a single data point cannot materially change the 

results of an analysis, this method helps to prevent the identification of individuals within 

a dataset (Dwork, 2006). Table 1 provides an example dataset with ages before and after 

the application of 2.5-parameter Laplace noise to demonstrate this idea. The following is 

the presentation of the resulting Laplace noise values for each age: 3.0, -0.5, 1.3, 2.1, and 

-1.8. After noise was applied, the ages measured were 61.2, 70.1, 69.5, 66.3, and 69.0. 

Privacy measures in the form of differentials are added to the dataset to ensure the 

confidentiality of individuals is maintained uncompromised while the overall utility of the 

data remains highly intact (Johnson, 2013). 
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2.2 Visualization Challenges in Privacy-Preserving Data Analysis 

It isn't easy to comprehend data and share its insights without visualization tools. 

Plotting raw data or combined statistical measures is the standard method used to find 

patterns and correlations. However, visualizing data in the context of privacy presents 

different challenges. Methods like aggregation, generalization, and imputation are 

frequently employed to preserve insights while sanitizing and safeguarding sensitive data. 

To safeguard sensitive data while still offering practical visual representations of 

the data, privacy-preserving data visualizations employ a variety of strategies. These 

methods include adding random stochastic noise, substituting centroids for individual-

level observations, and performing anonymization procedures like k-anonymization (Zhou 

et al., 2023). Understanding the relationship between data-sharing policies and privacy 

parameters, striking a balance between privacy and utility, and spreading privacy-aware 

information all depend heavily on visualization (Dasgupta et al., 2013). 

Histograms are essential tools for displaying data distributions but using them in 

situations where privacy is a concern calls for extra care. The requirement to protect 

individual data points must be balanced with the need to accurately represent the 

underlying data distribution in privacy-preserving histograms. To create privacy-

preserving histograms, it is common practice to first add noise to the original data before 

visualizing it. For this, the Laplace mechanism is frequently employed, in which noise 

from a Laplace distribution is added to the data values prior to binning. The privacy 

parameter, ε, and the sensitivity of the query control the amount of noise (Dwork et al., 

2006). This method protects people's privacy while enabling the histogram to offer 

insightful information about the distribution of the data. 

In the context of a histogram, the sensitivity of a query is usually defined as the 

maximum amount that the data of a single individual can change the count in any bin. To 

ensure that the noise is enough to mask individual contributions without unduly distorting 

the overall data distribution, the scale of the noise added is proportional to this sensitivity 

divided by ε (Dwork et al., 2006). 
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Histograms that protect privacy make it possible to share data visualizations 

securely without disclosing private information. This is especially helpful in industries like 

healthcare, where sharing data can improve treatment and research without jeopardizing 

patient privacy. Histograms that adhere to strict privacy standards can yield actionable 

insights by adding controlled noise (Cormode et al., 2018). 

2.3 Evaluation Metrics and Methodologies 

There have been notable developments in privacy-preserving data analysis in 

addition to the previously mentioned contributions, particularly about visualization 

methods. In a comprehensive study, Zhang et al. investigated how participants' 

performance in visual data analysis was affected by different privacy levels, tasks, and 

types of visualization within the framework of differential privacy. They discovered that 

summary tasks were more resilient to higher noise levels when they conducted a 

comparison between summary tasks and value tasks. In addition, they presented a 

collection of measures for assessing data distribution before noise injection, which allowed 

analysts to manage their privacy budgets more effectively by reducing perceptual errors 

and enhancing the differential privacy model (Zhang et al., 2021). 

In the context of digital privacy, assessing privacy metrics is essential to 

comprehending the trade-offs between NMI and privacy gain. Careful consideration of 

these metrics is necessary in a variety of scenarios, such as data sharing and information 

transfer, to guarantee that privacy is preserved without sacrificing the value of the data. 

New evaluation metrics grounded in information theory have been introduced in recent 

advances. These metrics offer a more nuanced understanding of how various factors, 

including the type of data being shared and the level of trust between parties, impact 

privacy. Metrics that consider the dynamic nature of trust variations, for instance, can offer 

insights into how privacy changes over time and enable more flexible privacy-preserving 

strategies (Wagner & Eckhoff, 2019).  

Evaluating the degree to which privacy metrics safeguard user profiles is a further 

field of focus for privacy-improving technologies, especially in personalized information 

systems. Through the development of metrics that can measure the effect of privacy-

preserving measures on the relevance and accuracy of personalized services, these 
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technologies seek to address the natural conflict between privacy and customization. All 

things considered, developing and improving privacy metrics is crucial to tackling the 

complex issues related to digital privacy. Researchers as well as developers can create 

more efficient and privacy-aware information systems by assessing privacy gain, NMI and 

trust dynamics (Wagner & Eckhoff, 2019).  

Normalization is an important preprocessing step in the analysis of data and 

machine learning that unifies the range of different variables. It guarantees that every 

feature makes an equal contribution to the analysis and keeps features with bigger scales 

from taking priority over smaller-scale features. Scaling by the sum is a popular 

normalization method that uses the following formula to scale the data to a fixed range, 

typically between 0 and 1 (Majeed & Lee, 2021).  Nevertheless, the normalization 

discussion is not a direct metric for evaluating privacy-preserving data analysis and will 

be covered in detail in the methodology section. 

Normalized Mutual Information (NMI) and Privacy Gain: In privacy-preserving 

data analysis, NMI and Privacy Gain are essential evaluation metrics. According to Dwork 

et al. (2006), privacy gain quantifies the enhancement in privacy protection brought about 

by the disturbance and shows a decreased likelihood of re-identification. This measure 

ensures that the risk of exposing individual data points is kept to a minimum by evaluating 

how much privacy has been improved through techniques. However, NMI provides 

information about the percentage of the original data structure that remains after 

perturbation by comparing the perturbed and original datasets. According to Vinh, Epps, 

and Bailey (2010), NMI is especially helpful for evaluating tasks involving clustering and 

classification, where the data's structure is essential. Researchers can assess the 

effectiveness of privacy-preserving techniques and their impact on data utility by using 

NMI and privacy gain. This enables a balanced approach to data privacy and utility. 

In the article "MuVE: Efficient Multi-Objective View Recommendation for Visual 

Data Exploration," the authors talk about how data reduction affects how original non-

binned aggregate values are estimated. They observe that approximation errors in 

estimating the original values rise with a decrease in the number of bins. They use the Sum 

Squared Error (SSE), a commonly used metric for assessing accuracy in such 
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approximations, to quantify this error (Ehsan, Sharaf, & Chrysanthis, 2016). Also, In the 

paper "Histograms and Wavelets on Probabilistic Data," the authors talk about how to 

create wavelet and histogram synopses of probabilistic data using the Sum Squared Error 

(SSE) metric. SSE is a basic metric that's used to measure how accurate an approximation 

or estimation is, especially when it comes to data summarization methods like wavelets 

and histograms. By minimizing the squared differences between estimated and actual 

values, the SSE objective seeks to provide a numerical indicator of the approximation's 

quality (Cormode & Garofalakis, 2010). The quality of selectivity estimates in histograms 

is assessed by the authors of the paper "Optimal Histograms with Quality Guarantee" using 

the Sum Squared Error (SSE) as a crucial metric. Selectivity estimates depend on SSE to 

detect outliers and mark them as inappropriate for further processing. Therefore, SSE is 

used in selectivity estimation. To increase the precision of each query estimate, the authors 

suggest improving histograms to offer quality guarantees on selectivity estimates for 

equality and range queries (Jagadish et al., 1998). 

Two other metrics, Average SSE and Root Sum of Squares (RSS) are frequently 

used in addition to the Sum Squared Error (SSE) to evaluate the accuracy and quality of 

data approximate values and summaries. The average SSE, which produces a mean error 

measure by normalizing the SSE by the number of observations, is especially helpful when 

comparing the precision of various models or summaries over datasets of various sizes. It 

is used in situations where averaging the total error is necessary to determine the error per 

data point, providing a more comprehensive view of the quality of the approximation per 

unit (Zhou & Troyanskaya, 2007). 

Root Sum of Squares (RSS), on the other hand, is the square root of SSE and 

provides a more comprehensible metric by returning the error measure to the original data 

units. This makes it easier to relate errors to the actual data values by helping to visualize 

and comprehend the magnitude of errors. When utilizing probabilistic data summarization 

and approximation techniques, the RSS is frequently combined with other statistical 

measures to offer a comprehensive understanding of the error distribution (Tukey, 1977). 

These metrics are essential for guaranteeing the accuracy and consistency of data 

approximations and summaries, which facilitates efficient data exploration and decision-

making procedures. 
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To address privacy concerns, other strategies such as k-anonymity, l-diversity, and 

t-closeness have also been proposed in addition to the methods mentioned above. K-

anonymity makes re-identification more difficult by ensuring that everyone in a dataset 

cannot be distinguished from at least k-1 other individuals based on certain attributes. By 

guaranteeing that sensitive attributes have at least l "well-represented" values, L-diversity 

extends k-anonymity and thwarts homogeneity attacks. By guaranteeing that the 

distribution of a sensitive attribute in any equivalency class is close to its distribution in 

the entire dataset, T-closeness improves upon these ideas and prevents attribute disclosure 

(Machanavajjhala et al., 2007). 

Differential privacy has been introduced in federated learning scenarios in more 

recent works. Federated learning improves privacy by enabling several parties to work 

together to jointly train machine learning models without exchanging raw data. To provide 

an extra degree of privacy protection, this technique has been combined with differential 

privacy, guaranteeing that individual participant contributions remain hidden even when 

the model is updated. Particularly in applications like medical data analysis, where data 

sharing is frequently restricted owing to privacy concerns, these methods have 

demonstrated promise in striking a balance between privacy and utility (McMahan et al., 

2017). 

2.4 Navigating the Conflict: Privacy Needs vs. Utility 

Many studies have investigated topics like data sharing's usefulness and privacy 

over time. The difficulty is in implementing the right modifications into place to protect 

privacy rights without sacrificing the dataset's analytical utility. Differential privacy is one 

privacy-preserving technique, but it may introduce noise and distortion, which could affect 

the accuracy and usefulness of downstream analysis. 

There is often a lack of research on evaluating the trade-offs between privacy and 

utility and creating metrics to measure these trade-offs. Although differential privacy 

provides a common mechanism for formal privacy guarantees, there is still work to be 

done in creating thorough assessment metrics that consider a system's utility and privacy 

aspects (Ivanova, 2022). Similarly, research questions for a particular subject universe 

may be addressed when respondents are excluded, and researchers concentrate only on 
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domains or data types. However, it becomes difficult to apply these findings to a different 

universe with different conditions. 

Several methods are used to assess how well privacy and utility are balanced in data 

perturbation. A possible approach is to evaluate the effectiveness of different perturbation 

techniques in terms of attaining the required privacy and utility levels by comparing them 

(Roman, 2023). An alternative approach for attaining differential privacy (DP) involves 

adjusting the random noise incorporated into data values while considering the 

consequences for dataset availability (Ma et al., 2023). Furthermore, by obtaining 

perturbation from other samples in the dataset, stochastic perturbation techniques can 

sanitize datasets. These techniques provide a sophisticated understanding of how to 

balance privacy and utility when dealing with data perturbation. 

In conclusion, managing the balance between the need for privacy and the 

usefulness of data needs a thorough comprehension of the many perturbation methods, 

thorough assessment metrics, and effective visualization techniques. Researchers and 

practitioners can make sure that data is still useful for analysis while protecting individual 

privacy by carefully balancing these elements. Table 2 highlights the main contributions 

made in privacy-preserving data analysis and compares them, emphasizing their respective 

areas of focus and conclusions. 
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Table 2: Summary Table of Existing Work and Their Comparison. 

Author(s) Year Contribution Key Findings 

Dwork & 

Roth 

2014 Algorithmic 

Foundations of 

Differential Privacy 

Established theoretical and 

practical aspects of differential 

privacy 

Xiao & Tao 2006 Personalized Privacy 

Preservation 

Techniques 

Advocated for privacy-preserving 

methods tailored to individual 

preferences 

McSherry & 

Talwar 

2007 Randomized 

Mechanisms 

Developed randomized 

mechanisms for differential 

privacy 

Vinh, Epps, 

& Bailey 

2010 Normalized Mutual 

Information (NMI) 

Introduced NMI for assessing the 

preservation of data structure after 

perturbation 

Zhang et al. 2021 Impact of Privacy 

Levels on Visual Data 

Analysis 

Found summary tasks more 

resilient to higher noise levels 

Wagner & 

Eckhoff 

2019 Information Theory-

Based Privacy Metrics 

Offered nuanced insights into the 

impact of data sharing and trust 

dynamics on privacy 

Ehsan, 

Sharaf, & 

Chrysanthis 

2016 Data Reduction and 

Sum Squared Error 

(SSE) 

Quantified errors in estimating 

original values due to data 

reduction using SSE 

Cormode & 

Garofalakis 

2010 Histograms and 

Wavelets on 

Probabilistic Data 

Discussed creating wavelet and 

histogram synopses of 

probabilistic data using SSE 

Jagadish et al. 1998 Optimal Histograms 

with Quality Guarantee 

Improved histograms to offer 

quality guarantees on selectivity 

estimates using SSE 

Tukey 1977 Exploratory Data 

Analysis 

Introduced Root Sum of Squares 

(RSS) for better understanding of 

error magnitudes 

Ivanova 2022 Evaluation of Trade-

offs Between Privacy 

and Utility 

Highlighted the need for 

comprehensive assessment 

metrics that consider both privacy 

and utility 

Roman 2023 Effectiveness of 

Different Perturbation 

Techniques 

Evaluated perturbation techniques 

in terms of privacy and utility 

balance 

Ma et al. 2023 Stochastic Perturbation 

Techniques 

Proposed methods for balancing 

privacy and utility using 

stochastic perturbation 
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Chapter 3: Methods 

This chapter describes the research methodology for analyzing the trade-offs 

between data utility and privacy protections in visualization techniques. To safeguard 

critical information, a descriptive strategy was used along with differential privacy 

strategies, particularly the Laplace mechanism. Our methodology seeks to close gaps in 

the literature and capture the subtleties of privacy-preserving techniques while offering a 

thorough understanding of how differential privacy impacts data visualization. 

3.1 Overview 

To examine the trade-offs between privacy protections and data utility in 

visualization techniques, the dissertation research methodology used a descriptive 

approach and included a differentially private special technique (Erlingsson, Pihur, & 

Korolova, 2014). The descriptive design was selected in order to offer an extensive 

understanding of differential privacy strategies and how they affect data visualization. This 

methodology makes sure that the study fully characterizes and examines the phenomenon 

of privacy-preserving data visualization, filling in the knowledge gaps in the literature and 

capturing the nuanced aspects of how differentiating privacy techniques affect the results 

of visualization (Zhang et al., 2021).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Overview of the Research. 
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In this study, as illustrated in Figure 2, the dataset was chosen and cleansed; 

differential privacy was applied by incorporating Laplace noise into the data with different 

epsilon values before producing visualizations. This strategy aimed to protect private or 

sensitive data from unintentional exposure using visualizations. Aggregated bar charts 

were used for data visualization, which is a useful way to show summary statistics or 

combined values from several attributes. These graphs facilitated the understanding of 

patterns across a variety of variables and allowed for simple comparisons. Furthermore, 

histograms were used to group numerical data into bins and display the frequency or count 

of data points within particular intervals. In addition, the data's usefulness and privacy 

were evaluated by different metrics. By calculating the squared differences between the 

original and estimated values, the Sum Squared Error (SSE) was used to quantify the 

accuracy of data approximations and provide a numerical indicator of the caliber of data 

summarization techniques. The improvement in privacy protection brought about by 

disturbance was measured as privacy gain, which reflected the lower risk of re-

identification. To determine how much of the original data structure remained after 

perturbation, the similarity between the original and perturbed datasets was measured 

using Normalized Mutual Information (NMI). After comparing the results of these 

metrics, a hybrid method that integrated both was developed to gauge the overall privacy 

and usefulness of the data. 

3.2 Applying Data Privacy 

To address our research questions, we experimented on a dataset. We started by 

using a popular differential privacy algorithm called the Laplace Mechanism. It’s a 

standard method for achieving differential privacy by adding carefully calibrated noise to 

data values, thereby altering the original data. Specifically, the noise is generated from a 

Laplace distribution with a mean of zero and a scale factor determined by the epsilon 

parameter and sensitivity of the data. This process results in a noise value being added to 

each data point. The Laplace Mechanism, where ϵ is the privacy parameter, adds noise 

Lap (Δf/ϵ) to the result of f, given a sensitivity Δf. The differential privacy of f’s output is 

ensured by this addition of noise. Here’s a formula to indicate how Laplace noise can be 

added to each value in a dataset X: 
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The Laplace distribution is mathematically formulated as: 

 
𝐿𝑎𝑝(𝑥 |𝜇, 𝑏) =  

1

2𝑏
 exp (− 

|𝑥 − 𝜇|

𝑏
) 

(1) 

 

Where 𝜇 is the mean and 𝑏 is the scale parameter. 

 

Given a dataset X = {x1, x2…, xn} with a sensitivity parameter ΔX, the Laplace 

noise η for each value xi can be generated as follows: 

 

 𝜂𝑖 = Lap(0,
∆X

𝜖
) (2) 

 

The perturbed dataset X′ is then obtained by adding the noise to the original dataset: 

 X′ = xi + ηi (3) 

 

Where ϵ is the privacy parameter, and ΔX/ϵ is the scale parameter of the Laplace 

distribution. 

 

In our study, we applied Laplace noise to all values in dataset X. We can now better 

examine the trade-offs between privacy and utility in real-world datasets and understand 

the impact of privacy-preserving mechanisms on data analysis due to this procedure. When 

adding Laplace noise to dataset attributes, it is important to remain careful and 

professional. Usually, the sensitivity of the data determines the scale parameter of a 

Laplace distribution with a mean of 0. As the maximum possible change in output that 

could arise from adding or subtracting a single value, we choose a sensitivity value of 1 in 

our situation. 

Laplace noise incorporation into dataset attributes requires a careful and expert 

approach. Usually, this noise applies from a Laplace distribution with a mean of 0 and a 

scale parameter that depends on how sensitive the data are. We use a sensitivity value of 

1 in our scenario, which represents the maximum possible change in output that could 

arise from adding or subtracting a single value. 
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To demonstrate, let's consider a dataset that includes individuals' ages that we 

would like to visualize using a bar chart. The sensitivity of this operation is set to 1, 

meaning that the addition or removal of a single individual from the dataset will identically 

impact the counts in one of the histogram bins by a factor of 1. Consequently, each 

histogram bin receives random noise samples from Laplace(1/ϵ) using the Laplace 

mechanism, producing a noisy histogram. 

This technique ensures insightful analysis and visualization of the dataset while 

maintaining the privacy of the data. By following these steps, we can implement Laplace 

noise to our data effectively and achieve the desired privacy and utility balance by 

following these procedures (Zhang et al., 2021). 

To promise the reproducibility of our findings, we set a seed value of 42 for the 

random number generator used in producing the Laplace noise. This indicates that the 

same set of randomly selected numbers is generated each time the Laplace Mechanism is 

applied, enabling precise reproduction of the results we obtained.  

One challenge that we faced was handling noise, that might trigger the perturbed 

data values to fall outside the original data's valid range. For example, if the original 

dataset contains ages ranging from 17 to 99 years, adding noise could produce values that 

are negative or exceed 99. To tackle this problem, we implemented a method to check the 

range of the perturbed values. If a perturbed value falls outside the valid range, we discard 

it and reproduce new noise values until we find a valid value within the range. This 

guarantees the perturbed data's authenticity and consistency with the original dataset. We 

seek to balance privacy and data utility in our study by employing the Laplace Mechanism 

with careful consideration of the noise parameters and handling of out-of-range values. 
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Figure 3: Handling Out-of-Range Noise Values in Laplace Perturbation. 

 

Figure 3 illustrates the procedure for managing noise values that are outside of the 

acceptable range when applying Laplace noise to a dataset. It starts by producing Laplace 

noise and then determines whether the perturbed value is inside the acceptable range. The 

procedure moves on to the next step if the value is within the range. If not, new Laplace 

noise is produced, and the out-of-range value is discarded. Until a valid number within the 

range is found, this cycle of creating noise, examining the range, and then discarding or 

regenerating noise is repeated. Using this method preserves the integrity and authenticity 

of the perturbed data by making sure that its values fall within the valid range of the 

original dataset. 

3.3 Privacy Metrics 

Evaluation of privacy mechanisms' effectiveness in protecting sensitive data while 

preserving data utility is crucial for privacy-preserving data analysis. Normalized Mutual 

Information (NMI) and Privacy Gain are two important metrics used in this assessment. 

Privacy Gain measures the enhancement of privacy protection generated by data 

disturbance, indicating the decreased probability of re-identifying individuals within a 
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dataset. This measure is essential for determining how well sensitive information is 

protected by privacy-preserving measures. Based on differential privacy principles, the 

idea of Privacy Gain makes sure that no single person's data has a substantial impact on 

the results of any analysis, which keeps private information from being revealed (Dwork 

et al., 2006). The formula for Privacy Gain (PG) is: 

 

 𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐺𝑎𝑖𝑛 =  𝑚𝑎𝑥𝑖|𝑥𝑖 − 𝑥𝑖| 

 

(4) 

Where 𝑥𝑖 is the original value of data point 𝒾, and 𝑥𝑖 is the perturbed value of 

data point 𝒾, and 𝑚𝑎𝑥𝑖 denotes taking the maximum absolute difference over all data 

points. 

Let's consider a simple dataset of annual incomes (in thousands of dirhams), the 

data will be perturbed using the Laplace noise mechanism. We'll then calculate the Privacy 

Gain to determine the extent to which privacy protection has improved. Let’s consider that 

the original dataset is [50, 60, 75, 90, 110], and the perturbed dataset after applying the 

Laplace Noise becomes [55, 56.5, 77.3, 85.3, 116.1]. We compute the Privacy Gain by 

determining the differences for every pair: |50 - 55| = 5.0, |60 - 56.5| = 3.5, |75 - 77.3| = 

2.3, |90 - 85.3| = 4.7, and |110 - 116.1| = 6.1. 

The Privacy Gain is represented by the maximum difference of 6.1. The degree to 

which individual values have been modified to preserve privacy is reflected in this value, 

which represents the highest degree of deviation added to the data points. The Privacy 

Gain metric measures the amount to which the dataset's privacy has improved, 

guaranteeing that each individual data point is substantially altered to avoid re-

identification while maintaining the data's overall analytical value. 

The mutual dependence between the original and perturbed datasets is measured 

using the normalized mean value (NMI). It measures the degree to which the data structure 

is maintained following disturbance, which is significant for jobs requiring data integrity 

(Vinh, Epps, & Bailey, 2010). NMI values vary from 0 to 1, where a value of 1 guarantees 

high utility since the perturbed data maintains the exact structure of the original data. 
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Given two datasets XX (original data) and YY (perturbed data), the Mutual Information 

I(X;Y)I(X;Y) is defined as: 

 

 
𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log (

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 
(5) 

 

Where p(x, y) is the joint probability distribution of XX and YY, which measures 

the probability that a particular pair of values (x,y)(x,y) occurs together, p(x)p(x) is the 

marginal probability distribution of XX (original data), and p(y)p(y) is the marginal 

probability distribution of YY (perturbed data). The interpretation where 𝑥 ∈ 𝑋 is the 

values from the original dataset, 𝑦 ∈ 𝑌 is the values from the perturbed dataset, 𝑝(𝑥, 𝑦) is 

the probability that the pair (𝑥, 𝑦) appears together, i.e., both the original value 𝑥 and the 

perturbed value 𝑦, and log (
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
) measures how much knowing 𝑥 reduces the 

uncertainty about 𝑦 and vice versa. 

Normalized Mutual Information (NMI) adjusts the MI to scale between 0 and 1, 

providing a normalized measure of mutual dependence. It is defined as: 

 

 
NMI(𝑋; 𝑌) =

2 ∙ 𝐼(𝑋; 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
 

 

(6) 

Where 𝐼(𝑋; 𝑌)is the Mutual Information between 𝑋 (original data) and 𝑌 (perturbed 

data) and 𝐻(𝑋) is the entropy of the original data: 

 

 𝐻(𝑋) = − ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝑋

 (7) 

 

𝐻(𝑌) is the entropy of the perturbed data: 

 𝐻(𝑌) = − ∑ 𝑝(𝑦) log 𝑝(𝑦)

𝑦∈𝑌

 
(8) 
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Let's look at a small dataset of values to demonstrate how to calculate Normalized 

Mutual Information (NMI) between original and perturbed datasets. Let's say we have a 

dataset consisting of numbers [25, 30, 35, 40, 45]. After applying Laplace noise for privacy 

preservation, we obtain a perturbed dataset [26, 29, 37, 38, 44]. Initially, we separate the 

original and perturbed datasets into distinct bins using discretization. Assume that for this 

procedure, ten bins are used. The original dataset's discretized values could be [0, 1, 2, 3, 

4], and for the perturbed dataset, they might be [0, 0, 2, 2, 4]. 

We then compute the discretized values' marginal probabilities for the original and 

perturbed datasets. For the original dataset, the probabilities are: P(X = 0) = 1/5, P(X = 1) 

= 1/5, P(X = 2) = 1/5, P(X = 3) = 1/5, and P(X = 4) = 1/5. For the perturbed dataset, the 

probabilities are: P(Y = 0) = 2/5, P(Y = 2) = 2/5, and P(Y = 4) = 1/5. 

Next, we calculate the pairs of discretized values' joint probabilities. For our 

example, the joint probabilities are: P(X = 0, Y= 0) = 1/5, P(X = 1, Y = 0) = 1/5, P(X = 2, 

Y = 2) = 1/5, P(X = 3, Y= 2) = 1/5, and P(X = 4, Y = 4) = 1/5. 

We apply the entropy formula to determine the entropies of the original and 

perturbed datasets: 

 

 𝐻(𝑋) = − ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥∈𝑋

 (9) 

 

 

For the original dataset, the entropy is calculated as follows: 

 

𝐻(𝑋) = −5 ×
1

5
log

1

5
= log 5 ≈ 1.60944  

For the perturbed dataset, the entropy is: 

𝐻(𝑌) =  −(
2

5
log

2

5
+

2

5
log

2

5
+

1

5
log

1

5
) ≈ 1.05492 

 

Next, we calculate the mutual information (MI) between the original and perturbed 

datasets using the formula:  
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𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑦∈𝑌𝑥∈𝑋

 

For each pair (𝑋, 𝑌): 

𝐼(0; 0) =
1

5
log (

1
5

1
5 ×

2
5

) = 0.13863 

𝐼(1; 0) =
1

5
log (

1
5

1
5

×
2
5

) = 0.13863 

𝐼(2; 2) =
1

5
log (

1
5

1
5 ×

2
5

) = 0.13863 

𝐼(3; 2) =
1

5
log (

1
5

1
5 ×

2
5

) = 0.13863 

 

𝐼(4; 4) =
1

5
log (

1
5

1
5 ×

1
5

) = 0.32189 

Summing these values: 

I(X;Y) = 0.13863 + 0.13863 + 0.13863 + 0.13863 + 0.32189 = 0.87641 

Normalized Mutual Information (NMI): 

NMI(𝑋; 𝑌) =
2 ∙ 𝐼(𝑋; 𝑌)

𝐻(𝑋) + 𝐻(𝑌)
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NMI(𝑋; 𝑌) =
2 ∙ 0.87641

1.60944 + 1.05492
≈ 0.658 

Thus, the NMI for this example is approximately 0.658, indicating a moderate 

preservation of the original data structure after perturbation. 

Therefore, in this example, an NMI value of roughly 0.658 indicates that 65.8% of 

the original data structure is retained in the perturbed data. This indicates a moderate utility 

level, indicating that a substantial portion of the original structure is retained in the 

perturbed data, which is important for tasks that depend on data integrity. 

3.4 Generating Visualizations/Histograms 

Visualizations are invaluable tools for data analysis, given their ability to shed light 

on data distributions and patterns. Accurately and meaningfully visualizing sensitive data 

while maintaining privacy is a major challenge in privacy-preserving settings. Bar charts 

and histograms were the main visualization tools used in this study. 

Numerical data can be effectively displayed as a frequency distribution using 

histograms, which count the number of data points within each bin and divide the data into 

bins. To ensure privacy, we first applied Laplace noise to the original data values in our 

study before creating histograms. Individual data points are protected by the Laplace 

mechanism, which introduces noise based on the sensitivity of the data and the selected 

epsilon value. To create the histogram, this process entails perturbing each data point with 

noise and then binning the resulting data. We can visualize data distributions using this 

method without losing personal privacy. 

Histogram bin width selection is important since it has a big impact on the accuracy 

and readability of the visualization. The shape and meaning of the histogram are 

influenced by the bin width, which also determines how the  data is grouped. Overly broad 

bins may oversimplify the data, hiding significant patterns and details, while overly narrow 

bins may overcomplicate it, adding noise and making it challenging to identify significant 

trends.  

In this study, the bin width selection procedure was automated using Sturges' rule. 

The number of bins in a histogram can be found using the widely used Sturges' rule 
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method. By determining the bin width using the sample size's logarithm, it offers a 

methodical and theoretically supported approach. The definition of the rule is: 

 

 𝑘 = 1 + log2(𝑛) (10) 

 

where 𝑛 is the total number of observations in the dataset and 𝑘 is the number of 

bins. Sturges' rule is used to calculate the number of bins, guaranteeing that the bin width 

is suitable for the dataset size and standardizing the assessment of trade-offs between 

privacy and utility across different data attributes and epsilon values. 

Choosing a suitable bin width becomes even more important in privacy-preserving 

histograms. A well-selected bin width maintains a balance between privacy and utility by 

ensuring that the additional Laplace noise does not significantly alter the data distribution. 

The efficacy of privacy-preserving visualizations depends on the careful selection of bin 

widths appropriate for the size and distribution properties of the data. By striking a balance 

between maintaining the overall data utility and safeguarding individual privacy, this 

deliberate selection makes it possible to conduct accurate and insightful data analysis. 

For this study, histograms were selected as the main visual tool for many reasons. 

They offer a simple method for visualizing the distribution of numerical data, exposing 

central patterns, variability, and outliers that are crucial for comprehending the data as 

well as underlying data distributions. The histogram visualization method works well with 

the addition of Laplace noise to individual data points because it accommodates noise 

introduced for privacy preservation while still giving insightful results. Histograms can 

also be used to analyze a variety of datasets with varying properties because they can be 

adjusted to different levels of granularity through bin width changes. 

High-dimensional data is better represented by other visualization tools, although 

histograms are useful for representing one-dimensional data distributions. Heatmaps use 

color intensity to display data patterns and correlations in matrices, while scatter plots can 

be used to show relationships between several variables. Simpler visualization is made 

possible by dimensionality reduction techniques like PCA, which lower data dimensions 

while maintaining structure. Therefore, high-dimensional data requires more complex 
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visualization techniques, even though histograms are an effective tool for visualizing one-

dimensional data distributions. The features of the data and the insights that are required 

will determine which visualization tools are best. While preserving privacy, combining 

various visualization techniques can offer a thorough understanding of high-dimensional 

datasets. 

3.5 Accuracy/SSE Metrics 

We employed several metrics, such as the Root Sum of Squares (RSS), Average 

SSE, and Sum Squared Error (SSE), to assess the precision and caliber of data 

approximations in privacy-preserving scenarios. These measures offer a thorough grasp of 

how well data utility is maintained by the privacy-preserving methods. 

An extensively used metric for evaluating approximation accuracy is the Sum 

Squared Error (SSE). By calculating the squared differences between the estimated and 

actual values, it quantifies the total error and offers a numerical indication of how good 

the approximation is. SSE is especially helpful for assessing data summarization 

techniques such as wavelets and histograms. More accurate approximations are indicated 

by lower SSE values, which aid in our comprehension of how privacy-preserving methods 

affect data utility. The formula for SSE is: 

 
𝑆𝑆𝐸 = ∑ (𝑦̂𝑖 − 𝑦𝑖)

2
𝑛

𝑖=1
 

(11) 

 

Where 𝑛 is the total number of bins, 𝑦𝑖 is the observed frequency of data points in 

the 𝑖th bin and 𝑦̂ is the expected frequency of data points in the 𝑖th bin based on the 

perturbed data. 

The mean error measure that results from normalizing the SSE by the quantity of 

observations is called the average SSE. This measure is helpful for evaluating the accuracy 

of various models or summaries over a range of dataset sizes. A balanced evaluation of 

privacy and utility is made possible by the average SSE, which contributes to a more 

thorough picture of the approximation quality per data point. 
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The square root of SSE is called Root Sum of Squares (RSS), and it returns the 

error measure to the original data units. The visualization and understanding of error 

magnitudes are facilitated by this metric, which makes it simpler to relate errors to the 

actual data values. A comprehensive grasp of error distribution in probabilistic data 

summarization and approximation techniques can be obtained by combining RSS with 

other statistical measures. 

Normalization is an important preprocessing step in the analysis of data and 

machine learning that unifies the range of different variables. It guarantees that every 

feature makes an equal contribution to the analysis and keeps features with bigger scales 

from taking priority over smaller-scale features (Majeed & Lee, 2021). Scaling by the sum 

is a popular normalization method that uses the following formula to scale the data to a 

fixed range, typically between 0 and 1: 

 Normalized value = 
Original value

Sum of all values
 (12) 

 

where Original value is the value of the variable before normalization, and Sum of 

all values is the sum of all values of the variable in the dataset. This equation ensures 

that the normalized values fall within the specified range. By removing the impact of 

scale changes, normalization confirms an equal range of comparisons. This is needed 

when comparing variables with different scales or units as we did in this research. 

The original and perturbed data values were normalized in our analysis before 

being plotted in histograms and the frequencies (or "counts") in each bin were 

determined. By using this method, we could be sure that our SSE and other accuracy 

metrics were calculated on a similar scale, which allowed us to draw useful conclusions 

about the trade-offs between privacy and data utility. 

Think about a dataset, for instance, that compares ages before and after Laplace 

noise was added to protect privacy. The perturbed ages following the addition of Laplace 

noise with ε = 1.0 could be [22, 24, 32, 34, 38], while the original ages could be [20, 25, 

30, 35, 40]. 

Sum of original values=20+25+30+35+40=150 

Sum of perturbed values=22+24+32+34+38=150 



29 

 

Normalized original ages: 

[ 
20

150
 +

25

150
 +

30

150
 +

35

150
 +

40

150
]= [0.1333,0.1667,0.2000,0.2333,0.2667] 

 

Normalized perturbed ages: 

[ 
22

150
 +

24

150
 +

32

150
 +

34

150
 +

38

150
]= [0.1467,0.1600,0.2133,0.2267,0.2533] 

The Sum Squared Error (SSE) between the normalized original and perturbed 

ages is then computed: 

𝑆𝑆𝐸 = ∑ (𝑦̂𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1
 

 

SSE= (0.1467 − 0.1333 )2 +  (0.1600 − 0.1667)2 +  (0.2133 − 0.2000)2 +

 (0.2267 − 0.2333)2 +  (0.2533 − 0.2667)2 = 0.00062446 

 

Next, we calculate the Average SSE, which is the SSE divided by the number of 

observations: 

 
𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑆𝑆𝐸 =  

𝑆𝑆𝐸

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

 

(13) 

𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑆𝑆𝐸 =  
0.00062446

5
=  0.00012489 

 

The Root Sum of Squares (RSS), or square root of the SSE, is then computed: 

𝑅𝑆𝑆 =  √𝑆𝑆𝐸 =  √ 0.00012489 =  0.0250 

 

To evaluate the precision and consistency of data approximations and summaries, 

these metrics and normalization techniques are essential. By guaranteeing that the data 

stays valuable while safeguarding individual privacy, they enable effective data 

exploration and decision-making processes. We can assess privacy-preserving techniques' 

efficacy and make informed decisions about how to balance privacy and utility in data 

analysis by carefully implementing these metrics. 
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3.6 Hybrid Metric 

We developed two hybrid metrics that combine privacy and utility measures to 

achieve a balanced assessment of both. To ensure that privacy protection and data utility 

are sufficiently addressed, these composite metrics combine the strengths of individual 

metrics to provide a comprehensive evaluation. 

The first hybrid metric aims to strike a balance between accuracy and privacy gain. 

This metric's objective is to maximize it because higher values indicate improved data 

utility and privacy protection. The following is how this hybrid metric is generated: 

𝐻𝑀𝑃𝐺−𝐴𝑐𝑐 =  𝑤𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ×  (1 − 𝑆𝑆𝐸) +  𝑤𝑝𝑟𝑖𝑣𝑎𝑐𝑦  ×  𝑃𝑟𝑖𝑣𝑎𝑐𝑦 𝐺𝑎𝑖𝑛 

Where  𝑤𝑢𝑡𝑖𝑙𝑖𝑡𝑦is the weight assigned to the accuracy measure, 𝑤𝑝𝑟𝑖𝑣𝑎𝑐𝑦  represents 

the weight assigned to privacy gain, 𝑆𝑆𝐸 is Sum Squared Error, PG is Privacy Gain and 

Acc is the accuracy from 1-𝑆𝐸𝐸. 

By changing the weights 𝑤𝑢𝑡𝑖𝑙𝑖𝑡𝑦 and 𝑤𝑝𝑟𝑖𝑣𝑎𝑐𝑦  , researchers can give priority to 

either accuracy or privacy, giving a flexible and nuanced evaluation of the associated 

trade-offs.  

The second hybrid metric seeks to achieve balance between SSE and NMI 

(Normalized Mutual Information). This metric's objective is to minimize it because lower 

values indicate better privacy-preserving data utility preservation. The following is how 

this hybrid metric is produced: 

 𝐻𝑀𝑁𝑀𝐼−𝑆𝑆𝐸 =  𝑤𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ×  𝑆𝑆𝐸 +  𝑤𝑝𝑟𝑖𝑣𝑎𝑐𝑦  ×  𝑁𝑀𝐼  (14) 

Where  𝑤𝑢𝑡𝑖𝑙𝑖𝑡𝑦is the weight assigned to the SSE measure, 𝑤𝑝𝑟𝑖𝑣𝑎𝑐𝑦  represents the 

weight assigned to 𝑁𝑀𝐼, 𝑆𝑆𝐸 is Sum Squared Error, 𝑁𝑀𝐼 is the Normalized Mutual 

Information. 

Consider the following example for clarification. Let us examine a dataset with the 

following values: 0.7 for Normalized Mutual Information (NMI), 0.02 for Sum Squared 

Error (SSE), and 0.8 for Privacy Gain (PG). The hybrid metrics can be computed as 

follows if the weights for privacy gain 𝑤𝑝𝑟𝑖𝑣𝑎𝑐𝑦  = 0.5 and the weight of the Accuracy 

𝑤𝑢𝑡𝑖𝑙𝑖𝑡𝑦= 0.5. The hybrid metric for the Privacy Gain and Accuracy:  
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𝐻𝑀𝑃𝐺−𝐴𝑐𝑐 = 0.5 ×  (1 − 0.02) +  0.5 ×  0.8 = 0.89 

 

The hybrid metric for the Privacy Gain and Accuracy:  

 

𝐻𝑀𝑁𝑀𝐼−𝑆𝑆𝐸 = 0.5 ×  0.02 +  0.5 ×  0.7 = 0.36  

 

The outcomes of these hybrid metrics show how successful the privacy-preserving 

methods are. For instance, a high score of 0.89 for the Hybrid Metric with Privacy Gain 

and Accuracy indicates that preserving privacy and obtaining high data utility have been 

well-balanced. This indicates that the perturbation applied to the data successfully 

maintains accuracy and privacy. 

In the second scenario, a lower Hybrid Metric with NMI and SSE value of 0.36 

indicates that the perturbation preserves the data utility while still maintaining the data's 

structure and obtaining a low SSE. This balance is critical for tasks that need to minimize 

approximation errors while preserving the data's privacy. 

The total of the hybrid metric formulas' weights for utility 𝑤𝑢𝑡𝑖𝑙𝑖𝑡𝑦 and 𝑤𝑝𝑟𝑖𝑣𝑎𝑐𝑦  

must equal 1. This guarantees that utility and privacy are fairly considered in the combined 

metric, which is represented by the equation 𝑤𝑢𝑡𝑖𝑙𝑖𝑡𝑦+ 𝑤𝑝𝑟𝑖𝑣𝑎𝑐𝑦= 1. Also, it is necessary to 

normalize the Sum Squared Error (SSE) to a value between 0 and 1 to meaningfully 

combine it with other metrics. For Privacy Gain to be consistent with the term (1 − SSE), 

it needs to be scaled appropriately. This guarantees a comparable contribution from each 

component to the hybrid metric. However, NMI is directly comparable to the normalized 

SSE because it naturally ranges from 0 to 1. 

We can evaluate the trade-offs between privacy and utility because of these hybrid 

metrics. We can ensure that data analysis strikes a balance between privacy and utility by 

carefully applying these metrics, which will allow us to preserve individual privacy while 

maintaining the data's utility. 
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3.7 Optimizing Privacy Setting  

Achieving privacy and utility balance requires optimizing the privacy parameter 

epsilon (ε). Epsilon regulates the amount of noise added to the data; higher utility but lower 

privacy is offered by smaller values of ε, while larger values offer both higher privacy and 

lower utility. The challenging aspect is figuring out the ideal ε value that best balances 

data utility preservation and sensitive information protection. 

We tested various epsilon values and assessed the resulting privacy and utility 

metrics to identify the ideal epsilon value. Our goal was to determine the optimal value 

for privacy protection and data utility by examining the trade-offs between privacy gain, 

Normalized Mutual Information (NMI), and Sum Squared Error (SSE) for various epsilon 

settings. 

There were several important steps in the optimization process. Initially, for every 

epsilon value, we calculated the hybrid metric. This hybrid metric provided a thorough 

analysis of every epsilon setting by integrating privacy and utility measures. Higher values 

denote better privacy protection and data utility, so the hybrid metric for privacy gain and 

accuracy (PG-Acc) was developed to maximize. Lower values indicate better preservation 

of data utility while maintaining privacy, so the hybrid metric for NMI and SSE was 

designed to minimize. 

We used a quadratic curve fitting procedure to determine the ideal epsilon value. 

For every epsilon setting, this required fitting a quadratic curve to the total metric values 

and figuring out which epsilon value minimized the quadratic curve. The following steps 

can be used to explain the quadratic fitting process: 

Initially, for every epsilon value, we calculated the hybrid metric. The 

hybrid metric values were then fitted with a quadratic curve. Ultimately, the epsilon value 

that minimized the quadratic curve was found. The relationship between epsilon and the 

hybrid metric could be precisely modeled by fitting a quadratic curve, which would enable 

us to determine the ideal epsilon value. This method makes sure that the epsilon value 

selected offers the best trade-off between safeguarding sensitive data and maintaining the 

data's usefulness. 
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We computed the optimal epsilon value automatically for each combination of 

privacy and utility weights. We systematically found the epsilon value that minimized or 

maximized the hybrid metric, depending on the objective, by fitting a quadratic curve to 

the hybrid metric values for each weight combination. Through this process, we were able 

to determine the ideal epsilon value for every unique weight combination, guaranteeing a 

customized trade-off between privacy and usefulness for various analytical purposes. 

We analyzed and optimized the trade-offs between privacy and utility in privacy-

preserving data visualizations in a methodical manner using these metrics and approaches. 

Researchers and industry professionals gained important insights from this optimization 

process, empowering them to decide on the right degree of privacy protection to 

implement without compromising the usability of their data. In order to ensure that the 

data is suitable for analysis while sufficiently protecting individual privacy, we were able 

to strike a significant balance between privacy gain and utility measures, for example, by 

identifying the optimal epsilon values through this process. This optimization guarantees 

that sensitive information can be analyzed efficiently without compromising it, while also 

improving the reliability of the privacy-preserving methods. 
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Chapter 4: Results and Discussions 

This chapter explores the implications of the results obtained by using the methods 

that have been described. The results offer vital insights into the fine balance that exists 

between privacy protection and data utility within the framework of differentially private 

techniques. After careful analysis, it was discovered that different epsilon levels had a 

considerable impact on privacy and data utility metrics, particularly when it came to 

sensitive numerical components. 

These findings have important applications for businesses that handle data security, 

privacy, and utility. The study provides useful guidance for enhancing comprehension and 

application of differential privacy techniques by highlighting the delicate balance that 

needs to be struck between these factors. To optimize privacy protection and data utility, 

this chapter emphasizes the significance of modifying privacy settings following 

organizational requirements and levels of data sensitivity. 

4.1 Data Collection 

4.1.1 Description of the Dataset 

The "Adult Census Income" dataset was used for this study due to its invaluable 

resource for researching the outcomes of privacy preservation techniques because of its 

many characteristics, it’s obtained from Kaggle. It includes a wide range of variables for 

analysis, including age, education level, marital status, capital gain, and more. Due to its 

size and complexity, the dataset is a good option for investigating the practical applications 

of differential privacy and other privacy-preserving techniques. Complete data preparation 

processes are necessary to guarantee the accuracy and quality of the data for analysis 

Furthermore, the dataset's historical significance and comparability with more recent 

datasets are enhanced by its origins in the US Census database from 1994. This provides 

insights into the evolution of privacy concerns and data analysis over time. 
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4.1.2 Data Preprocessing 

The dataset includes multiple attributes with missing values, such as "workclass," 

"occupation," and "native_country." The "workclass" attribute had 1,836 missing values, 

the "occupation" attribute had 1,843 missing values, and the "native_country" attribute 

had 583 missing values. These entries were specifically eliminated. The dataset decreased 

to 30,163 rows when the total number of removed records reached 2399. The validity and 

completeness of the dataset are guaranteed for further analysis through this careful data-

cleaning procedure. It also included a range of numerical attributes that represent distinct 

facets of people's socioeconomic and demographic identity. Numerical values such as age, 

education level, weekly hours worked, capital gain, and capital loss are represented by 

these numerical values. By identifying the distribution and range of these variables among 

the people surveyed, each of these attributes offers important insights into the population 

included in the dataset. For example, the age attribute shows the age of each person, which 

may range from young adults to seniors. A person's education level, expressed in terms of 

education years, indicates how much of their formal education they have finished. 

Comparably, the number of hours worked per week measures the duration of time 

dedicated to work-related tasks. Financial aspects are represented by capital gain and loss, 

which show the gains or losses that people have made through investments or other 

financial activities. It is necessary to comprehend the nature of these numerical values to 

perform insightful analyses and draw conclusions from the dataset. 

Further cleaning was done on the dataset to fix errors and inconsistencies after the 

entries with missing values were eliminated. This included resolving inconsistencies in 

numerical data, guaranteeing consistency in formatting, and standardizing categorical 

values. To ensure the dataset's accuracy and integrity and to provide a strong basis for 

insightful analysis and interpretation, these careful data preparation procedures are 

essential. Numerical attributes were also normalized for the evaluation phase to make sure 

they fall into a comparable range. The purpose of this normalization step was to evaluate 

various algorithms and metrics, thereby reducing measurement bias and improving the 

performance of analytical models. The accuracy and integrity of the dataset are ensured 
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by these meticulous data preparation steps, which also serve as a solid foundation for 

perceptive analysis and interpretation. 

4.2 Overview of the Main Findings 

The study's findings provide critical insights into the delicate balance between data 

utility and privacy protection within the framework of differentially private techniques. A 

thorough investigation revealed that differences in epsilon levels had a major effect on 

data utility and privacy measures, especially for sensitive numerical attributes. In 

particular, higher levels of privacy protection were consistently linked to lower epsilon 

values, which led to both a decrease in data utility and an increase in privacy gain. This 

emphasizes how difficult it is to choose epsilon values that best balance privacy and utility. 

A comprehensive evaluation of privacy and utility was made possible by the combination 

of metrics like Privacy Gain, Normalized Mutual Information (NMI), and Sum Squared 

Error (SSE). These measurements played a crucial role in calculating the trade-offs and 

directing the choice of epsilon values that offer the best possible balance. For example, the 

study showed that higher epsilon values improved the accuracy and usefulness of the data 

for analytical purposes, but they also decreased privacy protection. 

To preserve privacy, we employed Laplace noise in our method to disturb the data. 

We successfully managed the trade-offs between privacy and data utility by carefully 

controlling the application of Laplace noise with the epsilon parameter. Through the 

application of curve fitting techniques, we were able to model the relationship between the 

hybrid metrics and epsilon values, thereby determining the epsilon value that best balances 

data utility and privacy protection. 

The practical implications of these findings for organizations managing data 

security, privacy, and utility are noteworthy. Businesses will be better equipped to weigh 

the privacy vs utility trade-off when using the insights from this study to improve 

differential privacy technique understanding and implementation. The study offers 

practical advice for organizations attempting to manage the complexity of data 

management in a setting where privacy is becoming more and more important by 

illustrating the careful balance that must be struck between these factors. 
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The study also emphasizes how crucial it is to adjust privacy settings in accordance 

with particular organizational requirements and degrees of data sensitivity. The results 

indicate that, in order to maximize privacy protection and data utility, customized 

strategies should be used rather than a one-size-fits-all approach. This can contribute to a 

better-informed discussion on privacy-enhancing data usage in various sectors by 

informing policy-making, operational strategies, and the development of privacy-

preserving technologies. 

4.3 Applying Laplace Noise for Differential Privacy 

Protecting individual privacy while preserving data utility requires applying 

differential privacy techniques, like adding Laplace noise, to sensitive attributes like age. 

We applied Laplace noise to the dataset and demonstrated how the amount of privacy 

protection applied can be controlled by adding Laplace noise to all values with different 

epsilon values such as age, education number, capital gain and loss, and hours per week. 

While masking individual-level details, this procedure guarantees that the perturbed data 

maintains statistical relevance and analytical utility. Also, we count the number of negative 

values in each perturbed column after it has been perturbed. this step is essential, to ensure 

that the privacy guarantees are maintained and to comprehend how a perturbation affects 

the distribution of data, this step is essential. 

The dataset becomes more privacy-preserving when the attribute values are 

changed because the original values are obscured. However, there is a trade-off between 

privacy protection level and data utility. Greater privacy is possible, but the data's 

usefulness for some analyses may decrease as epsilon values increase due to the more 

obvious added noise. Given the particular use case and privacy requirements, this trade-

off is crucial to privacy-preserving data analysis and needs to be carefully considered.  

For example, between the original and perturbed age values for various epsilon 

values, the results in Table 2 offer a clear comparison. An evaluation of the effects of 

various privacy protection levels on the data is made possible by this comparison. This 

knowledge can help researchers and data analysts make decisions about how to balance 

privacy and utility by helping them understand how differential privacy techniques affect 

their data. In general, the use of Laplace noise to the age attribute highlights the larger 
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issues and concerns with privacy-preserving data analysis. It emphasizes how crucial it is 

to responsibly apply privacy-enhancing strategies to safeguard people's privacy while 

preserving the data's value for analysis and decision-making. 

 

Table 3: Perturbed Ages of Individuals at Various Epsilon Values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 displays the original ages and perturbed ages of 10 individuals at different 

epsilon values (0.1, 0.2, 0.3, 0.5, and 1.0). Since the study used epsilon values ranging 

from 0.1 to 1.0 to fully investigate the effects, this table offers a sample representation. It 

shows that the perturbed ages generally decrease as the epsilon value increases, indicating 

higher privacy protection. This decrease is the outcome of more noise being added to the 

data to preserve sensitive data, which distorts the original values. Additionally, each 

individual's perturbed age varies for each of the various epsilon values shown in the data. 

The randomness of the noise created by the Laplace mechanism is reflected in this 

variability. It is important to note that although the perturbed ages show a noticeable 

change, the ages (from highest to lowest) maintain a stable order for everyone across a 

range of epsilon values. This shows that the relative relationships between ages remain 

Age     0.1 0.2 0.3 0.5 1.0 

82 89.262557 86.737559 79.746081 

 

83.270263 

 

83.643296 

 

54 50.156174 57.090540 52.737222 

 

54.775160 

 

53.815080 

 

41 41.795678 32.544603 37.242086 

 

41.326009 

 

39.907067 

 

34 70.799462 36.344986 31.203465 

 

34.236420 

 

33.959483 

 

38 64.701321 40.611345 39.923307 

 

45.529068 

 

38.341620 

 

74 54.957611 83.561871 77.644861 

 

72.971686 

 

74.641017 

68 68.970627 73.457163 74.042717 

 

62.879799 

 

68.976007 

 

45 34.758331 45.692379 45.503620 

 

43.980055 

 

45.293184 

 

38 31.638658 35.728152 39.792779 

 

35.609037 

 

39.122905 

52 56.326689 55.454249 53.443465 52.089911 50.676903 
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stable even after disturbance, emphasizing a compromise between the preservation of the 

data's overall structure and privacy protection. The data highlights the trade-off between 

privacy and data utility by showing how different privacy mechanisms, like the Laplace 

mechanism, affect specific data points. 

4.4 Visualization 

Understanding the effects of differential privacy strategies requires the use of 

visualization. The effects of applied Laplace noise on data distribution and utility are 

discussed in detail in the following sections.  

The impact of differential privacy techniques—particularly the inclusion of 

Laplace noise—on the numerical attributes of the dataset are considered, producing 

informative visualizations. We can observe the trade-offs between privacy and data utility 

by comparing the original and perturbed values of each attribute across a range of epsilon 

values. 

The perturbed values vary with varying levels of epsilon, as the epsilon decreases, 

and the line bar chart effectively illustrates this change.  This graphic illustration makes it 

easier to comprehend how the distribution of data points within each attribute is impacted 

when Laplace noise is applied. The graph also makes it simple to compare different 

attributes, emphasizing those that are more concerned with protecting privacy. Higher 

sensitivity to privacy concerns may be indicated by attributes with a larger variance 

between the original and perturbed values across epsilon values. The impact of differential 

privacy on the dataset's numerical attributes is comprehensively outlined in these 

visualizations, which offer insightful information to researchers and practitioners who are 

trying to strike a balance between privacy and data utility in their analyses.  

Figure 4 illustrates the perturbed ages at different epsilon values using a box plot. 

The visualization highlights that lower epsilon values are associated with more variation 

in the ages following the perturbation process, which suggests a higher degree of privacy 

protection. On the other hand, perturbed ages with higher epsilon values (e.g., 1.0) closely 

resemble the original values, and noise is the main source of variation. Increased 

variability in perturbed ages is the result of lower epsilon values (e.g., 0.1), which provide 
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stronger privacy protection at the risk of decreasing the data's analytical utility for some 

types of analyses. 

 

Figure 4: Effect of Epsilon Values on Age Perturbation: A Box Plot Analysis. 

 

Interesting insights can be obtained from the box plot of the perturbed values of 

education numbers across various epsilon values as it’s shown in Figure 5 In comparison 

to the original data, the distribution is noticeably skewed at epsilon 0.1, suggesting a 

significant distortion brought on by larger privacy protection. The distribution gradually 

becomes less skewed and approaches the original distribution's shape as epsilon increases. 

The box plot indicates a distribution that is slightly closer to the original by epsilon 1.0, 

indicating less distortion in the perturbed data. This finding implies a trade-off between 

data integrity and privacy protection. While lower epsilon values offer greater privacy 

protection, they introduce more distortion from the original data. Higher epsilon values, 

on the other hand, result in less distortion from the original data. 
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Figure 5: Effect of Epsilon Values on Education Numbers Perturbation: A Box Plot 

Analysis. 

 

For every quantitative variable in the dataset, we create a histogram by comparing 

its original value side by side with the perturbed values at various epsilon levels for better 

comparison. We specify different bin widths based on the nature and range of the attribute. 

The variable capital loss employs a bin width of 500, which is probably chosen to align 

with the capital loss value range and guarantee sufficient coverage in the histogram. 

The bin width for capital gain is 1000 since the range of that column is from 0 to 99999. 

This expands the bin range and effectively captures the distribution of data. By considering 

the range and type of values found in the dataset, these bin width selections seek to produce 

histograms that accurately represent the data distribution for each variable.  
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Figure 6: Comparison of Perturbed Education Numbers at Different Epsilon Values. 

 

Figure 6 in various colors, indicating clear differences. There is a clear difference 

where there is a greater degree of privacy, particularly at an epsilon value of 0.1 where the 

bin heights vary significantly. To examine the comparison in greater detail, let's 

concentrate on the first bin. We note that in this case, the number of people with one to 

three years of education slightly exceeds 2000 following perturbation with epsilon 0.3, as 

opposed to the initial count of less than 2000. The count increases over 1000 at epsilon 0.5 

and approaches the original count with epsilon 1.0, indicating less privacy protection. This 

analysis emphasizes the trade-off between data utility and privacy by highlighting the 

effects of varying epsilon values on the distribution of the perturbed data. 

The trade-off between data utility and privacy is highlighted by the trends in the 

perturbed education numbers. More variability in the perturbed data is caused by a higher 

epsilon value, which may compromise the data's usefulness for some analyses but also 

reflects enhanced privacy protection. Lower epsilon values, on the other hand, maintain 
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data utility but provide less privacy protection because they produce perturbed data that 

closely resembles the original values. 

The "Hours.per.week" variable's distribution is shown in Figure 7 both before and 

after Laplace noise is applied for various epsilon values. The original "Hours.per.week" 

data is represented, undisturbed, in the blue histogram. The distributions of 

"Hours.per.week" are shown in the following histograms, which were created by 

perturbing the data with epsilon values between 0.1 and 1.0. The corresponding epsilon 

value used for the perturbation is used to title each histogram. 

The perturbed data distributions get closer to the original distribution as epsilon 

increases. The histograms exhibit a wider spread and a more significant deviation from the 

original data for lower epsilon values (e.g., 0.1, 0.2), which suggests higher levels of noise 

and, thus, greater privacy protection. The perturbed data distributions narrow and start to 

more closely resemble the original distribution as the epsilon value rises (for example, to 

0.5, 0.6, and at last to 1.0). Higher epsilon values preserve the original data characteristics 

by reducing noise, but they provide less privacy protection. This trend illustrates the trade-

off between privacy and data utility. The figure gives a clear picture of how different 

epsilon values affect the perturbed data's privacy-utility balance. 
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Figure 7: Comparison of Perturbed Hours Per Work at Different Epsilon. 
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Figure 8 compares the original bins with their perturbed counterparts using a 

different method. It is possible to compare the original and perturbed bins more directly 

with this method, which facilitates pinpointing the precise differences between them. 

Finding the epsilon value that achieves the best trade-off between privacy and utility is the 

goal of this comparison. The perturbed age at epsilon 0.5, for instance, shows that there 

was a change because of the perturbation because the bin at age 20 has a higher count in 

the perturbed data than in the original data. On the other hand, the perturbed data shows a 

lower count in the age 35 bin when compared to the original. However, when comparing 

the perturbed data to the original, the bins at ages 55, 65, 70, and 75 appear to be the same. 

 

 

Figure 9 analyzes another attribute, such as hours per week, to obtain more 

understanding of the impact of epsilon 0.5. Here, we find that the original and perturbed 

bins differ significantly, with a count difference of about 4000, at 40 hours per week. But 

the disturbed bins look a lot like the original bins at 10, 15, 30, and 70 hours a week. The 

context and requirements of the data analysis will determine whether epsilon 0.5 is a good 

trade-off. Stronger privacy protection is offered by larger epsilon values; however, they 

may also make the data less useful for certain types of analysis. Hence, depending on the 

Figure 8: Comparison of Perturbed Age at 0.5 Epsilon Values. 
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desired balance between privacy and utility in the particular use case, great thought should 

be given to the selection of epsilon. According to this, epsilon 0.5 preserves some 

usefulness in the data while offering a moderate level of privacy protection. 

 

 

One interesting finding is that capital gains and losses appear to be more resilient 

to the effects of varying epsilon values. This resistance is seen in Figures 10 and 11, 

especially when it comes to capital gains, where the epsilon values are 0.1 and 0.3. There 

are very few observable differences between each bin in these figures and the original; in 

fact, changes are hardly noticeable at all. It's important to note that, to facilitate a clearer 

comparison, we removed from the visualization any original values that equal zero.  

The nature of the data itself could be the root cause of this resistance. When it comes 

to capital gains and losses, a sizable percentage of the initial values are zero. For instance, 

only 2,712 of the dataset's 32,562 total values are nonzero; the remaining values are zeros. 

Due to the high prevalence of zero values, the data may be less variable and therefore more 

resistant to being perturbed by the addition of Laplace noise at various epsilon levels. For 

Figure 9: Comparison of Perturbed Hours Per Week at 0.5 Epsilon Values. 
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this reason, even with different values of epsilon, the perturbed values for capital gain and 

loss are almost identical to the original values. 

 

 

 

 
Figure 10: Comparison of Perturbed Capital Gain at Different Epsilon Value. 
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Figure 11: Comparison of Perturbed Capital Loss at Different Epsilon Value. 
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4.5 Evaluation Metrics 

Evaluation metrics are critical to determining how well privacy-preserving 

strategies work. The following sub-sections look at the application of key metrics used in 

this study. We demonstrate the optimal value and find a compromise between data privacy 

and data utility by utilizing various evaluation metrics. These metrics offer quantifiable 

assessments of the trade-off between privacy and utility, such as privacy gain and NMI. 

We can identify the most appropriate epsilon value that minimizes NMI while maximizing 

the Privacy Gain by examining these metrics for different epsilon values and numerical 

attributes. This approach enables us to make well-informed decisions regarding the trade-

off between privacy and utility, ensuring that the data maintains its analytical value while 

safeguarding the privacy of individuals. 

Finding out how data perturbation techniques impact data privacy and utility 

requires an understanding of these evaluation metrics. Privacy Gain measures the 

enhancement in privacy protection that results from the perturbation process, taking into 

account the sensitivity of the data and the epsilon value chosen for perturbation. On the 

other hand, Normalized Mutual Information (NMI) measures how much information is 

retained in the perturbed data when compared to the original data. We can learn more 

about how different noise levels affect the privacy and usefulness of the data by 

methodically examining these metrics for a range of epsilon values and numerical 

characteristics. This analysis helps determine the optimal epsilon value for a given dataset 

and analytical task by balancing privacy and utility. These metrics allow comparisons of 

the efficacy of various perturbation strategies and help in the design of privacy-preserving 

mechanisms that maximize privacy gain and minimize the NMI while maintaining high 

levels of data utility. This section describes the techniques used to find the ideal epsilon 

value that strikes a compromise between utility and data privacy. We conducted two 

independent experiments: empirical and estimated experiments.  
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4.5.1 Applying Privacy Gain 

The enhancement in privacy protection generated by the perturbation process is 

measured by privacy gain. We first apply Laplace noise to the data to calculate privacy 

gain, making sure the perturbed values stay within acceptable ranges. Next, both the 

original and perturbed data are scaled to the same value. The maximum absolute difference 

between the normalized original and perturbed data is used to calculate privacy gain. 

Figure 12 shows how privacy gain changes for age, education.num, and hours.per.week at 

different epsilon values. 

 

 

Figure 12: Privacy Gain by Epsilon for Different Variables. 

  

The age variable exhibits strong privacy protection, as evidenced by the relatively 

high privacy gain of approximately 0.87 at the lowest epsilon value of 0.1. The privacy 

gain gradually declines as epsilon rises, suggesting that the disturbance has less of an effect 

on privacy. The privacy gain decreases to about 0.13 by the time epsilon reaches 1.0, 

indicating less privacy protection. According to this trend, there are significant privacy 

gains for the age variable at smaller epsilon values; however, the benefit decreases with 
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increasing epsilon. This implies that when choosing epsilon for age, the trade-off between 

privacy and utility needs to be carefully considered. 

Between all epsilon values, the education.num variable exhibits the largest privacy 

gain, beginning at almost 1.0 for epsilon 0.1. This suggests that, at low epsilon values, the 

perturbation offers the education.num variable strong privacy protection. In comparison 

to the other variables, the privacy gain stays relatively high even as epsilon increases. For 

example, the privacy gain remains approximately 0.98 at epsilon 0.5. It decreases to 

roughly 0.57 by epsilon 1.0, indicating that even at higher epsilon values, the variable 

maintains a sizable degree of privacy protection. The high privacy gain for education.num 

indicates that privacy-preserving techniques are more beneficial for this variable because 

it is more sensitive to perturbations. Nevertheless, significant amounts of noise 

introduction may also have an impact on the data utility. 

At lower epsilon values, the hours.per.week privacy gain is likewise high; it begins 

at about 0.83 for epsilon 0.1. As epsilon rises, the privacy gain falls off similarly to the 

other variables. The privacy gain is approximately 0.21 at epsilon 0.5 and decreases to 

approximately 0.11 at epsilon 1.0. This shows that hours.per.week starts off with strong 

privacy protection, but it decreases significantly faster than education.num as epsilon 

values rise. The drop in privacy gain for hours.per.week emphasizes the necessity of 

striking a balance between privacy and usefulness, especially for variables for which 

usefulness is essential to analysis. It may be necessary to use lower epsilon values to 

protect privacy without significantly sacrificing data utility. 

The results of privacy gain for the education.num are shown in Table 3 across 

various epsilon values. Through the perturbation process, privacy protection has 

improved, as measured by privacy gain. The privacy gain typically declines as the epsilon 

value rises, indicating a decrease in privacy protection. 

Higher privacy gains are associated with lower epsilon values, suggesting stronger 

privacy protection, according to the analysis of the privacy gain chart. Across all epsilon 

values, education.num exhibits the highest privacy gain among the variables, indicating 

that it is the one that gains the most privacy protection from the Laplace noise perturbation. 

On the other hand, although age and hours.per.week show significant increases in privacy 
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at lower epsilon values, the rate at which their privacy protection decreases with increasing 

epsilon is higher. This analysis facilitates comprehension of the responses of various 

variables to privacy-preserving strategies and aids in determining the ideal trade-off 

between privacy and utility. 

 

Table 4: Privacy Gain Results for education.num. 

Epsilon Privacy Gain 

0.1 0.998005 

0.2 0.979817 

0.3 0.985801 

0.4 0.931214 

0.5 0.984668 

0.6 0.777150 

0.7 0.681798 

0.8 0.686826 

0.9 0.592840 

1.0 0.566785 

 

4.5.2 Applying NMI 

The amount of information retained in the perturbed data relative to the original 

data is measured by Normalized Mutual Information (NMI). First, we use min-max 

normalization to normalize the original and perturbed data to calculate NMI. Next, the 

discretized original and perturbed data are divided into bins using the normalized data, and 

the NMI is calculated. Greater NMI values represent enhanced information retention of 

the original data following disturbance. 

The NMI values for the variables education.num, hours.per.week, and age are 

shown across various epsilon levels in Table 4. This table shows in detail how information 

retention gets better as the epsilon value rises. For example, the NMI for education.num is 

very low at 0.011670 at epsilon 0.1, suggesting that the noise added causes most of the 

information to be lost. On the other hand, education.num's NMI of 0.373906 at epsilon 1.0 

indicates a notable improvement in information retention. Similarly, when less noise is 

added, the hours.per.week variable demonstrates better retention, progressing from 
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0.160823 at epsilon 0.1 to 0.653625 at epsilon 1.0. As the perturbation decreases, the age 

variable, which has the highest NMI values, increases from 0.162595 at epsilon 0.1 to 

0.763038 at epsilon 1.0, demonstrating its resilience in retaining information. 

 

Table 5: NMI Results for Different Epsilon Values. 

Epsilon Variable NMI 

0.1 education.num 0.011670 

0.1 hours.per.week 0.160823 

0.1 age 0.162595 

0.2 education.num 0.041800 

0.2 hours.per.week 0.347454 

0.2 age 0.357541 

0.3 education.num 0.081916 

0.3 hours.per.week 0.460653 

0.3 age 0.478549 

0.4 education.num 0.127998 

0.4 hours.per.week 0.529508 

0.4 age 0.565493 

0.5 education.num 0.174724 

0.5 hours.per.week 0.577069 

0.5 age 0.621282 

0.6 education.num 0.219034 

0.6 hours.per.week 0.604466 

0.6 age 0.664778 

0.7 education.num 0.264395 

0.7 hours.per.week 0.622609 

0.7 age 0.693642 

0.8 education.num 0.299529 

0.8 hours.per.week 0.636698 

0.8 age 0.724776 

0.9 education.num 0.337182 

0.9 hours.per.week 0.647630 

0.9 age 0.750452 

1.0 education.num 0.373906 

1.0 hours.per.week 0.653625 

1.0 age 0.763038 

 

 

Figure 13 shows how the variables education.num, hours.per.week, and age change 

as NMI varies across epsilon values. The NMI for the education.num variable is extremely 

low at epsilon 0.1, or roughly 0.01; this suggests that information retention is poor at this 
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degree of disturbance. On the other hand, the NMI rises dramatically with increasing 

epsilon, reaching roughly 0.37 at epsilon 1.0. This pattern implies that better information 

persistence of the original data for education.num is associated with higher epsilon values 

(less noise). 

 

 

Figure 13: NMI by Epsilon for Different Variables. 

  

In contrast to education.num, the hours.per.week variable displays a similar pattern, 

but with higher NMI values at each epsilon level. The NMI is about 0.16 at epsilon 0.1. 

The NMI rises gradually with increasing epsilon, reaching roughly 0.65 at epsilon 1.0. 

This suggests that at all perturbation levels, hours.per.week retains more information than 

education.num. 

Among the three variables for the age variable, the NMI is the highest across all 

epsilon values. The NMI increases to roughly 0.76 at epsilon 1.0 from a starting point of 

roughly 0.16 at epsilon 0.1. This suggests that the age variable retains more information 

even at higher noise levels and is less perturbed than the other variables. 
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The NMI chart analysis shows that the NMI values for all variables increase as 

epsilon increases, indicating less noise. This pattern implies that greater epsilon values 

result in greater information retention from the original data. Age is the variable that 

constantly exhibits the highest NMI values, meaning it retains the most information 

following disturbance. Education.num has the lowest NMI values across all epsilon levels, 

followed by hours.per.week and education.num, which have slightly lower values. To 

balance the trade-off between privacy and data utility and guarantee that information 

retention satisfies the analysis's requirements, this analysis emphasizes the significance of 

choosing suitable epsilon values. 

4.5.3 Empirical Exploration Results 

This sub-section explores the findings derived from empirical examination of the 

data in various privacy configurations, emphasizing the efficacy of hybrid metrics. 

4.5.3.1 Hybrid Metric for Privacy Gain and SSE 

 In this work, we examined a hybrid metric that balances privacy gain and utility 

loss to determine the ideal epsilon (ϵ) values for various attributes, including 

education.num, hours.per.week, and age. To comprehend the trade-offs between these two 

factors, this involved varying privacy and utility weight combinations, ranging from 

privacy weight = 0 to privacy weight = 1.0. 

Laplace noise was first applied to the original data to disturb it and make sure the 

disturbed values stayed within the range of the original data. To simulate data 

anonymization and safeguard privacy without significantly reducing the usefulness of the 

data, this step was essential. Following that, the perturbed and original data were both 

normalized to a similar scale so that privacy gain and utility loss could be computed more 

easily. 

Privacy Gain is calculated to quantify the degree of data alteration and thus the 

degree of privacy protection attained, the maximum absolute difference between the 

normalized original and perturbed data. The Sum of Squared Errors (SSE) between the 

normalized frequencies of the original and perturbed data was used to calculate the utility 
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loss. This metric was selected because it accurately measures the utility loss brought on 

by data perturbation. We also calculated the average SSE and root sum of squares to gain 

an additional understanding of the impact of the data perturbation. 

The bin widths were manually specified for each attribute: age was assigned 22 

bins, education.num and hours.per.week were assigned 9 bins each. The empirical 

specification ensured that the frequency counts were comparable and meaningful by 

basing it on the type and distribution of data in these columns. 

Next, we calculated a hybrid metric using different weights for privacy and utility, 

which is a weighted sum of privacy gain and utility loss (1 - SSE). We were able to 

investigate various trade-offs between privacy and usefulness because of this. We 

performed constrained optimization to make sure epsilon stayed within the [0.1, 1.0] range 

and visualized the result of the hybrid metric in a line chart to determine the optimal 

epsilon value. 

 

 

Figure 14: Hybrid Metric for PG and SSE for hours.per.work. 
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In the beginning, we looked at each attribute's behavior separately to find the best 

weight combinations to strike a balance between privacy and utility. Figure 14 shows the 

hybrid metric with different epsilons for the attribute "hours.per.week" with a privacy 

weight of 0.08 and a utility weight of 0.92. This particular weight combination indicates 

that data utility is prioritized over privacy. The hybrid metric in this case peaks at an 

epsilon value of about 0.3, indicating that this epsilon value offers the best compromise 

between preserving data utility and guaranteeing privacy protection. Beyond this point, 

the hybrid metric decreases, suggesting that while increasing epsilon further improves 

privacy, it also begins to significantly reduce data utility. 

Similar analyses are shown in Figure 15, although the privacy and utility weight 

combinations vary. These variations serve as an example of how changing the weight 

priorities can affect the optimal epsilon value even for the same attribute. In the chart 

where the utility weight is set at 0.85 and the privacy weight at 0.15. The optimal balance 

point is sensitive to the specified weights, as further evidenced by the fact that the hybrid 

metric's peak occurs at a different epsilon value which is 0.2. The hybrid metric again 

peaks at the same epsilon value of 0.2, with privacy weight of 0.20 and utility weight of 

0.80. However, with a utility weight of 0.90 and a privacy weight of 0.10, the hybrid metric 

peaks at 0.3 same as Figure 14. This change implies that the ideal epsilon value required 

to obtain the best balance can be changed by making small adjustments to the relative 

importance of privacy versus utility. 

These findings demonstrate that the ideal epsilon value is not constant but rather 

depends on the desired trade-off between privacy and utility. The observed variations 

between the charts indicate that practitioners should carefully choose and modify these 

weights according to their unique needs and the circumstances surrounding their data 

analysis assignments. Because of its flexibility, a customized strategy for striking a 

balance between privacy and utility can be implemented, guaranteeing that the chosen 

epsilon value will satisfy the requirements of the application while maintaining the data's 

usefulness and safeguarding the privacy of everyone. 
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Figure 15: Hybrid Metric for PG and SSE for hours.per.work in Different Combinations of 

Weights. 
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To find the optimal epsilon values for each attribute, we used Laplace noise to 

perturb the original data over a range of epsilon values while maintaining the perturbed 

data's range within the original dataset. We determined the privacy gain for each perturbed 

dataset. This gives an indication of the extent to which the data has been modified for 

privacy protection. Furthermore, we computed the sum of squared errors (SSE) between 

the normalized frequencies of the perturbed and original data to evaluate the utility loss. 

The SSE aids in calculating how much a perturbation affects the utility of data. 

By calculating a hybrid metric for each combination of privacy and utility weights, 

we were able to balance the gain in privacy and the loss in utility. Finding the highest point 

in the combined metric line charts when merging privacy gain and accuracy allowed us to 

calculate the ideal epsilon values for each attribute. The lowest point in the hybrid metric 

line charts was used to calculate the ideal epsilon when combining NMI and SSE. 

The findings of the analysis indicate that when the utility weight declines and the 

privacy weight rises, the hybrid metrics' peaks typically move to lower epsilon values. 

While there are some exceptions based on sensitivity, this pattern is generally consistent 

across all attributes. While the age and education.num attributes show more consistent 

trends, the hours.per.week attribute displays multiple peaks, suggesting a more complex 

relationship with epsilon. 

Table 6 summarize the best epsilon values for every characteristic across various 

privacy and utility weight combinations. The best epsilon value for each attribute and 

weight combination is shown in this table, enabling the best possible trade-off between 

privacy and utility. The best epsilon is represented by the highest point in the line chart 

when privacy gain and accuracy are combined. This in-depth knowledge is essential for 

modifying epsilon values to attain the appropriate balance between privacy and usefulness, 

guaranteeing successful data anonymization and subsequent analysis. 
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Table 6: Best Epsilon Values for Each Attribute. 
 

Column Privacy Weight Utility Weight Best Epsilon 

0 education.num 0.00 1.00 1.0 

1 hours.per.week 0.00 1.00 0.7 

2 age 0.00 1.00 1.0 

3 education.num 0.01 0.99 1.0 

4 hours.per.week 0.01 0.99 0.7 

5 age 0.01 0.99 0.1 

6 education.num 0.02 0.98 1.0 

7 hours.per.week 0.02 0.98 0.7 

8 age 0.02 0.98 0.1 

9 education.num 0.03 0.97 1.0 

10 hours.per.week 0.03 0.97 0.4 

11 age 0.03 0.97 0.1 

12 education.num 0.05 0.95 0.8 

13 hours.per.week 0.05 0.95 0.4 

14 age 0.05 0.95 0.1 

15 education.num 0.08 0.92 0.8 

16 hours.per.week 0.08 0.92 0.3 

17 age 0.08 0.92 0.1 

18 education.num 0.10 0.90 0.5 

19 hours.per.week 0.10 0.90 0.3 

20 age 0.10 0.90 0.1 

21 education.num 0.15 0.85 0.5 

22 hours.per.week 0.15 0.85 0.2 

23 age 0.15 0.85 0.1 

24 education.num 0.20 0.80 0.5 

25 hours.per.week 0.20 0.80 0.1 

26 age 0.20 0.80 0.1 

27 education.num 0.30 0.70 0.5 

28 hours.per.week 0.30 0.70 0.1 

29 age 0.30 0.70 0.1 

30 education.num 0.40 0.60 0.1 

31 hours.per.week 0.40 0.60 0.1 

32 age 0.40 0.60 0.1 

33 education.num 0.50 0.50 0.1 

34 hours.per.week 0.50 0.50 0.1 

35 age 0.50 0.50 0.1 

36 education.num 0.60 0.40 0.1 

37 hours.per.week 0.60 0.40 0.1 

38 age 0.60 0.40 0.1 

39 education.num 0.70 0.30 0.1 

40 hours.per.week 0.70 0.30 0.1 

41 age 0.70 0.30 0.1 

42 education.num 0.80 0.20 0.1 

43 hours.per.week 0.80 0.20 0.1 

44 age 0.80 0.20 0.1 

45 education.num 0.90 0.10 0.1 

46 hours.per.week 0.90 0.10 0.1 

47 age 0.90 0.10 0.1 
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4.5.3.2 Hybrid Metric for NMI and SSE 

This study also investigates the correlation between normalized mutual information 

(NMI) and the sum of squared errors (SSE) for the same attributes, at varying epsilon 

values. Understanding the trade-offs between privacy and utility in data anonymization 

requires an understanding of these metrics. To ensure that the perturbed values stayed 

within the original data range, the approach involved perturbing the original data with 

Laplace noise as we did with the privacy gain. The original and perturbed data were then 

normalized to make the computation of NMI and SSE simpler. 

The mutual information score was computed after the normalized original and 

perturbed data were discretized into bins to calculate NMI. The metric measures the degree 

of resemblance between the original and perturbed data distributions; higher values 

correspond to decreased data utility retention. Lower values indicate less utility loss. In 

contrast, SSE measures the deviation between the original and perturbed data frequencies. 

To perform the analysis, different combinations of privacy and utility weights were 

tested, ranging from privacy weight = 0 to privacy weight = 1.0. A comprehensive measure 

of the trade-off between NMI and utility loss was obtained by computing a hybrid metric, 

which was calculated as a weighted sum of NMI and SSE. By fitting a quadratic function 

to the hybrid metric values and identifying the peaks of the fitted curves, the ideal epsilon 

values were found as we did before. By guaranteeing that the epsilon values fell between 

[0.1, 1.0], this technique successfully balanced data utility and privacy protection. 

An example of the education.num attribute's hybrid metric versus epsilon is shown 

in Figure 16, where the utility weight is 0.85 and the privacy weight is 0.15. This hybrid 

metric combines the concepts of Sum of Squared Errors (SSE) and Normalized Mutual 

Information (NMI). A lower total metric value in this case refers to a better trade-off 

between privacy and usefulness. The U-shaped pattern on the curve indicates the ideal 

epsilon value for this set of weights at its lowest point. At epsilon = 0.1, the curve begins 

with a relatively high hybrid metric. The hybrid metric falls with an increase in epsilon 

and reaches its minimum at epsilon = 0.3 to 0.4. The hybrid metric starts to rise again after 

this point. 
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The ideal balance between NMI and SSE is represented by the lowest point on the 

curve, which happens at epsilon = 0.4. The fact that the hybrid metric value has reached 

its minimum at this point suggests that this epsilon value offers the best compromise 

between reducing noise-induced distortion (measured by SSE) and maintaining the 

original data's structure (measured by NMI). A lower hybrid metric value indicates that 

the data's structure is not unduly distorted by the noise added to it, all the while maintaining 

a suitable level of privacy. The selected epsilon value of 0.4 guarantees a reasonable 

degree of privacy protection while ensuring that the data is still useful for analysis. 

Beyond epsilon = 0.4, the hybrid metric value increases, suggesting that as epsilon 

increases, less noise is added to the data, resulting in less privacy protection and a higher 

SSE. As a result, the trade-off is less advantageous. On the other hand, excessive noise is 

produced by extremely low epsilon values (such as 0.1), which greatly distorts the data 

and raises the hybrid metric. In summary, with the given privacy and utility weights, 0.4 

is the ideal epsilon value for the education.num attribute. The best compromise between 

preserving data utility and guaranteeing privacy is offered by this value. 

 

 

Figure 16: Optimal Epsilon Value Determination for education.num Using Combined Metric. 
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The hybrid metric for the education.num attribute versus epsilon for various 

combinations of privacy and utility weights are shown in Figure 17. The combinations 

shown in the charts are those in which the utility and privacy weights are, respectively, 

0.20 and 0.80 and 0.30 and 0.70. 

In the figure where the utility weight is 0.70 and the privacy weight is 0.30, the total 

metric increases steadily as epsilon rises. This suggests that lower epsilon values work 

better in this combination; the ideal epsilon is found at the lowest point of the combined 

metric curve, which is 0.2. To maintain an ideal balance, a smaller epsilon is required 

because this combination stresses privacy a little more. The hybrid metric in the 

second chart in Figure 17 also shows a U-shaped curve, with a privacy weight of 0.20 and 

a utility weight of 0.80. This curve's lowest point is located at epsilon = 0.3. This suggests 

that the optimal epsilon stays close to the same value even when the emphasis on privacy 

is slightly increased in comparison to the first combination (0.15 privacy weight and 0.85 

utility weight). 

These graphs show that, even for the same attribute, the ideal epsilon value can 

differ considerably depending on the weight combination selected. The ideal epsilon value 

typically moves towards lower values as the privacy weight rises and the utility weight 

falls. This change reflects a stronger focus on adding noise to preserve privacy, which is 

consistent with the combined metric's higher priority for privacy. On the other hand, larger 

utility weights balance towards better data utility preservation by producing higher optimal 

epsilon values. In result, different combinations of privacy and utility weights result in 

different values for the optimal epsilon for the education.num attribute. When privacy is 

the top priority, lower epsilon values are better; conversely, when utility is the focus, 

higher epsilon values are better. These results emphasize how crucial it is to carefully 

choose epsilon depending on the privacy and utility balance needed for the analysis. 
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Figure 17: Optimal Epsilon Value Determination for education.num Using Combined 

Metric for Different Combinations of Weights. 
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The ideal epsilon values for each attribute (education.num, hours.per.week, and 

age) are displayed in Table 7 for various combinations of privacy and utility weights. To 

minimize the combined metric, which balances NMI and SSE, the ideal epsilon values 

were determined using the hybrid metric. 

For the education.num attribute, the ideal epsilon value is 1, indicating little noise 

addition, when the utility weight is high (e.g., 1.0). The optimal epsilon falls as the privacy 

weight rises, indicating that more noise is added to preserve privacy. For instance, the ideal 

epsilon is 0.2 when the privacy weight is 0.30. When the privacy weight is 0.4 or more, 

the smallest optimal epsilon (0.1) is seen. 

For the hours.per.week attribute, a high utility weight (1.0) results in an optimal 

epsilon value of 0.6. As the privacy weight increases, the optimal epsilon value decreases. 

For instance, with a privacy weight of 0.10, the optimal epsilon is 0.3. The lowest epsilon 

value (0.1) is seen for privacy weights of 0.20 and higher. 

Similarly, for the age attribute, a high utility weight (1.0) corresponds to an optimal 

epsilon value of 0.6. As the privacy weight increases, the optimal epsilon value decreases 

significantly. For example, with a privacy weight of 0.01, the optimal epsilon is 0.1. The 

lowest epsilon value (0.1) appears consistently for privacy weights of 0.01 and higher. 

In summary, the analysis shows that depending on how privacy and utility are 

balanced, different epsilon values are ideal. Higher epsilon values, which indicate less 

noise addition and higher data utility, are typically the result of higher utility weights. On 

the other hand, lower epsilon values correspond to higher privacy weights, suggesting that 

more noise should be added to improve privacy protection. This pattern emphasizes how 

crucial it is to carefully choose epsilon depending on the particular privacy-to-utility ratio 

that the analysis calls for. This table offers a helpful guide for selecting the right epsilon 

value in practical applications so as to attain the intended trade-off between privacy 

protection and data utility. 
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Column Privacy Weight Utility Weight Best Epsilon 

0 education.num 0 1 1 

1 hours.per.week 0 1 0.6 

2 age 0 1 0.6 

3 education.num 0.01 0.99 1 

4 hours.per.week 0.01 0.99 0.5 

5 age 0.01 0.99 0.1 

6 education.num 0.02 0.98 1 

7 hours.per.week 0.02 0.98 0.5 

8 age 0.02 0.98 0.1 

9 education.num 0.03 0.97 1 

10 hours.per.week 0.03 0.97 0.4 

11 age 0.03 0.97 0.1 

12 education.num 0.05 0.95 1 

13 hours.per.week 0.05 0.95 0.4 

14 age 0.05 0.95 0.1 

15 education.num 0.08 0.92 0.7 

16 hours.per.week 0.08 0.92 0.3 

17 age 0.08 0.92 0.1 

18 education.num 0.1 0.9 0.6 

19 hours.per.week 0.1 0.9 0.3 

20 age 0.1 0.9 0.1 

21 education.num 0.15 0.85 0.4 

22 hours.per.week 0.15 0.85 0.2 

23 age 0.15 0.85 0.1 

24 education.num 0.2 0.8 0.3 

25 hours.per.week 0.2 0.8 0.1 

26 age 0.2 0.8 0.1 

27 education.num 0.3 0.7 0.2 

28 hours.per.week 0.3 0.7 0.1 

29 age 0.3 0.7 0.1 

30 education.num 0.4 0.6 0.1 

31 hours.per.week 0.4 0.6 0.1 

32 age 0.4 0.6 0.1 

33 education.num 0.5 0.5 0.1 

34 hours.per.week 0.5 0.5 0.1 

35 age 0.5 0.5 0.1 

36 education.num 0.6 0.4 0.1 

37 hours.per.week 0.6 0.4 0.1 

38 age 0.6 0.4 0.1 

39 education.num 0.7 0.3 0.1 

40 hours.per.week 0.7 0.3 0.1 

41 age 0.7 0.3 0.1 

42 education.num 0.8 0.2 0.1 

43 hours.per.week 0.8 0.2 0.1 

44 age 0.8 0.2 0.1 

45 education.num 0.9 0.1 0.1 

46 hours.per.week 0.9 0.1 0.1 

47 age 0.9 0.1 0.1 

Table 7: Optimal Epsilon Values for Different Privacy and Utility Weights Across Attributes. 
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4.5.4 Estimated Analysis Results 

 

Estimated methods, including Sturges' rule for bin width selection and curve fitting 

for selecting the best epsilon, were tested to validate the effectiveness of the hybrid 

metrics. These findings emphasized how crucial it is to balance privacy and usefulness 

when processing data automatically. 

Finding the best possible balance between data protection and data utility is 

essential when it comes to data privacy. Discretizing continuous data attributes into bins 

is one of the process's key steps. An important factor in determining the outcome of 

privacy-utility trade-offs is the choice of bin width. Bin widths are typically manually set, 

which can add subjectivity and variability to the analysis. This section examines the 

automated bin width identification process that makes use of Sturges' rule, a technique that 

systematically establishes the number of bins according to the properties of the dataset. 

A commonly used technique for determining the number of bins in histograms is 

Sturges' rule. It offers a simple and theoretically supported method by calculating the bin 

width based on the sample size's logarithm. This analysis seeks to standardize the 

evaluation of privacy-utility trade-offs across various data attributes and epsilon values by 

automating the binning process through the application of Sturges' rule. 

A thorough understanding of the trade-offs between privacy and utility for various 

dataset attributes can be obtained from the results and visualizations produced by applying 

Sturges' rule to automatically calculate bin width. For this analysis, the sum of squared 

errors (SSE) and privacy gain were integrated with different weights to create a hybrid 

metric. A methodical approach to figuring out the ideal number of bins is provided by 

Sturges' rule, and the following analysis shows how this impacts the trade-off between 

privacy and utility. 

In the estimated experiment, the number of bins was determined by applying 

Sturges' rule to the hybrid metric for the attribute education.num in the example shown in 

Figure 18. After that, a quadratic curve was fitted to this metric to determine the ideal 

epsilon value. The relationship between epsilon values and the hybrid metric for three 

distinct privacy and utility weight combinations is depicted in the figures. 
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The hybrid metric based on the curve fitting increases initially in the first chart, 

where the utility weight is 0.85 and the privacy weight is 0.15. It peaks at approximately 

0.5 epsilon value, after which it declines. This pattern is closely followed by the quadratic 

fit, which suggests that the ideal epsilon is approximately 0.5. This peak indicates that, 

under these weight conditions, the balance between privacy and utility is maximized at 

this epsilon value. 

A similar pattern can be seen in the second chart, which has a utility weight of 0.90 

and a privacy weight of 0.10. The fitted curve shows that the hybrid metric increases, 

peaks, and then falls, with the peak occurring around an epsilon value of 0.6 and 0.7. 

The third chart displays a decline in the hybrid metric after reaching a peak value, 

with the utility weight being 0.92 and the privacy weight being 0.08. Between 0.6 and 0.7 

epsilon values are where the peak is seen. This is confirmed by the quadratic fit, which 

shows that the ideal epsilon value for this set of weights is between 0.6 and 0.7. 

Together, Figure 18 show that various combinations of privacy and utility weights 

result in different optimal epsilon values, even for the same attribute. The application of 

Sturges' rule guarantees a methodical approach to bin selection, while curve fitting permits 

accurate identification of the ideal epsilon, which maximizes the sum of the metrics. This 

analysis emphasizes how crucial it is to modify epsilon in accordance with utility and 

privacy weightings to attain the optimal balance for various data attributes. 
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Figure 18: Combined Metric vs Epsilon for Different Privacy and Utility Weights in 

Estimated Experiment (Attribute: Education Number). 
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The best epsilon values for each attribute under various combinations of privacy 

and utility weights are summarized in Table 8. The goal of this analysis is to find the 

epsilon value that, while accounting for the trade-offs between privacy and utility, 

maximizes the hybrid metric. The table shows the optimal epsilon values under various 

combinations of privacy and utility weights for each attribute ('education.num', 

'hours.per.week', and 'age'). Every combination result in a maximum value for the 

hybrid metric, which is the weighted sum of privacy gain and the inverse of SSE. 

The optimal epsilon value for the 'education.num' attribute is consistently 1.0 at 

high utility weight values (e.g., 1.0, 0.99, 0.98, and 0.97). This pattern suggests that when 

utility is given priority, less noise is preferred. The ideal epsilon value falls as the privacy 

weight rises, indicating a greater noise tolerance to improve privacy. This trend indicates 

that as privacy concerns gain importance, it becomes necessary to balance them by adding 

more noise (lower epsilon). Similar trends are seen in the 'hours.per.week' attribute, where 

utility is highly prioritized and optimal epsilon values typically range between 0.759 and 

0.781. The ideal epsilon value falls to 0.1 as the privacy weight rises, indicating a greater 

focus on maintaining privacy. This suggests that more noise is added to protect the data as 

the need for privacy increases. The ideal epsilon values for the 'age' attribute are mainly 

centered around 0.1, particularly in cases where the privacy weight is significant. On the 

other hand, the epsilon values can be higher, ranging from 0.657 to 0.780, when utility is 

given priority. This shows that the 'age' attribute can balance privacy and utility while 

tolerating higher noise levels. The different epsilon values show how flexible the 'age' 

attribute is to various trade-offs between privacy and utility. 
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Table 8: Best Epsilon Values for PG and SSE in Estimated Experiment. 
 

Column Privacy Weight Utility Weight Best Epsilon Hybrid Metric 

0 education.num 0 1 1 0.997529 

1 hours.per.week 0 1 0.781374 1.03488 

2 age 0 1 0.657293 1.07847 

3 education.num 0.01 0.99 1 0.994221 

4 hours.per.week 0.01 0.99 0.780467 1.03381 

5 age 0.01 0.99 0.1 0.979693 

6 education.num 0.02 0.98 1 0.990321 

7 hours.per.week 0.02 0.98 0.779436 1.03258 

8 age 0.02 0.98 0.1 0.943612 

9 education.num 0.03 0.97 1 0.985652 

10 hours.per.week 0.03 0.97 0.778251 1.03118 

11 age 0.03 0.97 0.1 0.933114 

12 education.num 0.05 0.95 0.933676 0.97841 

13 hours.per.week 0.05 0.95 0.775266 1.02767 

14 age 0.05 0.95 0.1 0.925183 

15 education.num 0.08 0.92 0.740003 0.936376 

16 hours.per.week 0.08 0.92 0.768163 1.01943 

17 age 0.08 0.92 0.1 0.920893 

18 education.num 0.1 0.9 0.636285 0.854953 

19 hours.per.week 0.1 0.9 0.759799 1.00992 

20 age 0.1 0.9 0.1 0.919489 

21 education.num 0.15 0.85 0.496657 0.838828 

22 hours.per.week 0.15 0.85 0.642913 0.852243 

23 age 0.15 0.85 0.1 0.917637 

24 education.num 0.2 0.8 0.293391 0.868781 

25 hours.per.week 0.2 0.8 0.1 0.991665 

26 age 0.2 0.8 0.1 0.916719 

27 education.num 0.3 0.7 0.101488 0.949807 

28 hours.per.week 0.3 0.7 0.1 0.939824 

29 age 0.3 0.7 0.1 0.915807 

30 education.num 0.4 0.6 0.1 1.00237 

31 hours.per.week 0.4 0.6 0.1 0.930453 

32 age 0.4 0.6 0.1 0.915353 

33 education.num 0.5 0.5 0.1 1.02902 

34 hours.per.week 0.5 0.5 0.1 0.926529 

35 age 0.5 0.5 0.1 0.915081 

36 education.num 0.6 0.4 0.1 1.04513 

37 hours.per.week 0.6 0.4 0.1 0.924371 

38 age 0.6 0.4 0.1 0.9149 

39 education.num 0.7 0.3 0.1 1.05593 

40 hours.per.week 0.7 0.3 0.1 0.923007 

41 age 0.7 0.3 0.1 0.914771 

42 education.num 0.8 0.2 0.1 1.05662 

43 hours.per.week 0.8 0.2 0.1 0.922066 

44 age 0.8 0.2 0.1 0.914674 

45 education.num 0.9 0.1 0.1 1.05508 

46 hours.per.week 0.9 0.1 0.1 0.921379 

47 age 0.9 0.1 0.1 0.914599 

 

Table 9 presents the optimal epsilon values for every combination of weights, 

emphasizing the epsilon that optimizes the total metric covering all attributes. The ideal 

epsilon values when utility is highly valued are typically between 0.657 and 0.781. This 
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suggests a desire for less noisy settings to preserve high utility values and manageable 

levels of privacy. When the hybrid metric is maximized, it is evident that utility gains 

exceed the trade-off. The ideal epsilon value is approximately 0.1 for weight combinations 

where the privacy and utility weights are balanced, such as a 0.5 privacy weight and a 0.5 

utility weight. This shows a more equitable trade-off where utility and privacy are given 

equal weight. The intermediate level of noise suggested by the epsilon value of 0.1 offers 

a sensible compromise between preserving data utility and safeguarding data privacy. 

When privacy is given top priority, the ideal epsilon value always decreases to 0.1. When 

the privacy weight is 0.7, 0.8, or 0.9, for example, weight combinations are observed where 

this indicates a higher tolerance for noise to improve privacy. Under these circumstances, 

the hybrid metric is still maximized, demonstrating that the elevated noise levels 

successfully preserve privacy while upholding levels of acceptable utility.  

Ultimately, the examination of the optimal epsilon values for every attribute and 

overall weight combination shows how privacy and utility must be carefully balanced. The 

findings emphasize the necessity of carefully choosing epsilon values in accordance with 

the privacy and utility requirements, making sure that the hybrid metric is maximized to 

obtain the best possible trade-off. 

Table 9: Overall Best Epsilon Values for PG and SS in Estimated Experience. 

 
Privacy Weight Utility Weight Best Epsilon Hybrid Metric 

0 0 1 0.657293 1.07847 

1 0.01 0.99 0.780467 1.03381 

2 0.02 0.98 0.779436 1.03258 

3 0.03 0.97 0.778251 1.03118 

4 0.05 0.95 0.775266 1.02767 

5 0.08 0.92 0.768163 1.01943 

6 0.1 0.9 0.759799 1.00992 

7 0.15 0.85 0.1 0.917637 

8 0.2 0.8 0.1 0.991665 

9 0.3 0.7 0.101488 0.949807 

10 0.4 0.6 0.1 1.00237 

11 0.5 0.5 0.1 1.02902 

12 0.6 0.4 0.1 1.04513 

13 0.7 0.3 0.1 1.05593 

14 0.8 0.2 0.1 1.05662 

15 0.9 0.1 0.1 1.05508 
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4.5.5 Comparison of Empirical and Estimated Experiments 

The analysis of empirical and estimated binning experiments demonstrates how 

important bin width selection is when weighing privacy versus utility trade-offs. Finding 

the ideal epsilon values to maximize a hybrid metric that combines privacy gain and 

accuracy was the aim of both strategies. While the estimated experiment used Sturges' rule 

to determine the bin widths systematically, the Empirical experiment specified bin widths 

based on the attributes.  

The Empirical experiment revealed that the ideal epsilon values differed 

significantly depending on the privacy and utility weight combinations, indicating how 

sensitive each attribute was to the addition of noise. Table 7 shows that, for example, when 

the utility was prioritized (utility weight = 1), 'hours.per.week' exhibited a high sensitivity 

with an optimal epsilon of 0.6, while 'education.num' was more sensitive and needed an 

epsilon of 1. This suggests that various attributes have distinct noise-responses, and that 

custom bin specification can greatly affect these responses. 

On the other hand, the estimated experiment that employed Sturges' rule offered a 

more uniform method for choosing bin widths. The ideal epsilon values were more 

constant across various privacy-utility weight combinations, as Table 8 illustrates. To 

maximize the hybrid metric, the 'hours.per.week' attribute consistently needed lower 

epsilon values, suggesting a preference for higher noise levels to preserve utility while 

protecting privacy. Comparably, "education.num" and "age" exhibited reliable trends, with 

ideal epsilon values frequently centered around 0.1 in cases where privacy weights were 

raised. 

Comparing both experiments, when privacy is prioritized, the estimated approach 

using Sturges' rule typically produces lower epsilon values, indicating that a systematic 

binning method can result in a more conservative approach to privacy protection.  For 

most attributes, the optimal epsilon values decrease to 0.1 in scenarios where privacy 

weights are greater than 0.5. This consistency demonstrates how well-automated binning 

works to standardize trade-offs between privacy and utility. Furthermore, the empirical 

experiment introduces subjectivity and variability because it relies on unique bin widths 

for each attribute, which may offer more nuanced control over the trade-offs. In contrast, 
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the estimated method ensures consistency across various datasets and analyses and 

provides a more objective and repeatable methodology.  

In summary, while both estimated and custom binning techniques have advantages, 

the estimated strategy that applies Sturges' rule offers a more trustworthy framework for 

figuring out the ideal epsilon values. This makes it a useful tool for data anonymization 

and analysis by ensuring a balanced approach to privacy and utility across various 

attributes and weight combinations. 
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Chapter 5: Conclusion 

In this thesis, we used differential privacy techniques to investigate the complex 

trade-off between data privacy and utility, with a particular emphasis on the use of Laplace 

noise. This work examined the effects of Laplace noise perturbation on the privacy and 

utility of different attributes in a dataset using two different hybrid metrics: one that 

combined Privacy Gain with SSE and another that combined Normalized Mutual 

Information (NMI) with Acuracy (1-SSE). The primary goal was to determine the ideal 

epsilon values (ϵ) under various weighting schemes that efficiently strike a balance 

between privacy and utility. 

The goal for the hybrid metric combining Privacy Gain and Accuracy (1-SSE) was 

to maximize the hybrid metric. According to the analysis, higher epsilon values allowed 

for more significant data perturbation while still maintaining an acceptable level of utility, 

which generally resulted in a better balance between privacy gain and SSE. The ideal 

epsilon values, however, moved towards lower values as privacy weight increased, 

suggesting that more noise is required to improve privacy protection. There were some 

variations in sensitivity, but overall, this trend held for all attributes. 'Hours.per.week', for 

example, showed several peaks, indicating a more complex relationship with epsilon than 

the comparatively stable trends seen in 'education.num' and 'age'. The objective for the 

hybrid metric combining NMI and SSE was to minimize the hybrid metric. According to 

our research, smaller epsilon values—such as 0.1 and 0.2—offered better privacy 

protection but at the expense of higher SSE, which resulted in a notable reduction in data 

utility. When privacy is of the highest priority, these epsilon values are appropriate. 

Comparatively, situations where data utility is prioritized are better suited for higher 

epsilon values, such as 0.5 and 1.0, which provide better utility with lower SSE but less 

privacy protection. 

A systematic method for discretizing continuous data attributes was made possible 

by automating the bin width selection process using Sturges' rule, which also improved 

consistency and reduced subjectivity. The estimated approach applied Sturges' rule 

consistently across all attributes, protecting a more uniform assessment of privacy-utility 

trade-offs than empirical experiments that depended on domain expertise. 
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Overall, this study emphasizes how crucial it is to carefully choose epsilon values 

depending on the privacy and utility requirements of the application. The results give 

useful insights into the trade-offs associated with data perturbation and provide helpful 

advice on how to optimize epsilon values to attain the appropriate trade-off between 

privacy and utility in a variety of data anonymization scenarios. 

5.1 Managerial Implications 

This research has important management implications. Data utility and privacy 

trade-offs need to be carefully considered by organizations that handle sensitive data. 

According to the results, choosing the right epsilon values for differential privacy 

mechanisms is essential to preserving the harmony between data accuracy and privacy 

protection. 

Ensuring the safety of sensitive data while maintaining its analytical utility should 

be the top priority for managers and decision-makers. One effective technique for 

preserving privacy is to employ Laplace noise. Using this strategy can assist companies in 

adhering to privacy laws and fostering user confidence in data security. 

Moreover, the knowledge gathered from this study can help organizations create 

data-sharing procedures and policies that protect privacy without sacrificing the usefulness 

of the data. Organizations can reduce privacy risks and improve their data governance 

procedures by taking a proactive approach to data privacy. Also, participants can find 

useful guidance on how to incorporate differential privacy algorithms into their data 

workflows within their organizations. The process includes explaining differential privacy 

principles to relevant parties, selecting suitable privacy parameters (such as epsilon 

values), and effectively incorporating the differential privacy technique into the existing 

data infrastructure and operations. 

We highlight how important it is to continually enhance and adapt in the context of 

increasing risks to privacy, changing legal requirements, and speeding up technological 

advancements. Organizations need to be on alert for new developments in data security 

and protection. Reviewing and updating confidentiality measures and privacy policies 
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regularly is crucial. In addition, it is critical to cultivate a culture of privacy responsibility 

and awareness within the organization. 

5.2 Research Implications 

We make major contributions to the field of data privacy, both in terms of academic 

research and practical applications. By examining the effects of different epsilon values 

on privacy and utility metrics, it advances academic understanding of differential privacy 

approaches. The theoretical foundations of data privacy are strengthened by this analysis, 

which offers insightful information about how these methods can be successfully 

implemented in practical settings. From an analytical point of view, our study presents a 

new hybrid metric that integrates Sum Squared Error (SSE) with NMI, and accuracy with 

privacy gain providing a fresh way to assess privacy-preserving mechanisms. This 

methodological development not only makes the evaluation process better but also 

establishes a standard for future studies that create more thorough metrics for assessing 

how effective privacy techniques are. 

The research findings have significant implications for businesses and data 

professionals. We offer useful guidance on choosing appropriate epsilon values for data 

perturbation by demonstrating the trade-offs between privacy and utility. With the help of 

this guidance, organizations can preserve the usability and quality of their data while still 

protecting it to the desired extent. Moreover, we present insightful recommendations for 

future study paths. It suggests looking into how data privacy has changed over time about 

data sharing policies and urges the creation of increasingly sophisticated technologies that 

protect privacy. These recommendations provide a road map for upcoming studies, 

assisting researchers in developing the field of data privacy. The study's conclusions also 

open up new avenues for investigation and advancement in privacy-preserving data 

analysis by providing a framework for the creation of fresh techniques and strategies that 

will improve data privacy and usefulness even more. 
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This thesis evaluates the balance between privacy and utility in data 

visualizations, using differential privacy techniques and hybrid metrics. It 

identifies optimal privacy settings to maximize data utility while ensuring 

privacy protection. This novel contribution helps to develop strategies that 

maximize data utility and privacy protection by offering a more nuanced 

understanding of how privacy-preserving techniques affect data visualization. 
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