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Abstract 

Mountain recreation is becoming more popular with mountaineering, rock 

climbing, skiing, mountain biking, hiking, and mushroom picking among the 

most popular sports. Despite this tendency, there is currently limited research 

available explaining the rise in search and rescue (SAR), as well as the 

injuries and illnesses that entail SAR aid in tourist-friendly mountain and 

desert areas. The objective of a search and rescue operation is to scan the 

farthest area feasible in the shortest amount of time in order to locate a lost or 

wounded individual. In the past decade, several new and spectacular uses for 

drones, including search and rescue, surveillance, traffic monitoring, and 

weather monitoring, have been created and deployed. Current advancements 

in drone technology have resulted in major modifications that enable drones 

to conduct a vast array of tasks with an increasing degree of complexity. 

Missions such as search and rescue and forest surveillance need a vast camera 

coverage, making drones an ideal tool for performing complex tasks.  

Meantime, the rising prevalence of deep learning applications in computer 

vision offers exceptional insight into these research areas. In search and 

rescue operations, the main object is the human being; however, recordings 

from a bird's eye perspective are not embedded or incorporated in the large 

datasets that are used to train these cutting-edge detectors. To attain the best 

potential detection accuracy of the model, the dataset, which is to be 

employed for training, should contain conditions comparable to those that are 

encountered where model is to be tested. Hence, it is required to train the 

model with data, which is obtained using a bird's eye perspective. A recent 

dataset (SARD) has been used to detect a person's presence in mountain spots. 

The research conducted in this work proposes a method for identifying the 

presence of human's mountain setting utilizing an algorithm for human 

detection with a deep learning framework. Even if the individual is partially 
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veiled, a trained deep learning system can recognize from a variety of 

perspectives. Existing well-known detectors such as YOLO-v4, RetinaNet, 

Faster R-CNN, and Cascade R-CNN have been investigated in previous 

research on various datasets to simulate rescue scenes. Although those 

algorithms achieve good recall, the other recent detector such as YOLO-v5 

may be investigated for comparative performance. Thus, in this research, 

YOLO-v5 is trained on SARD dataset to validate its speed and accuracy, as 

well as the small number of false detections. It turns out that it achieves the 

highest mean average accuracy of 96.9% compared with other detectors. 

Experimental results using YOLO-v5 conducted on SARD dataset are 

presented for comparison.  

Keywords: Search and Rescue, Aerial Imagery, UAV, YOLO-v5.  
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Title and Abstract (in Arabic) 

 ستخدام الشبكات العصبية للكشف عن الاشخاص في عمليات البحث والإنقاذ ا

 الملخص   

وركوب   والتزلج  الصخور  وتسلق  الجبال  تسلق  أصبح  حيث   ، شيوعًا  أكثر  الجبلي  الترفيه  أصبح 

لة وقطف الفطر من بين أكثر الرياضات شعبية. على الرغم  الدراجات في الجبال والمشي لمسافات طوي 

 من هذا الاتجاه ، إلا أن هناك أبحاثاً محدودة متاحة حالياً تشرح الزيادة في عمليات البحث والإنقاذ

(SAR)   فضلاً عن الإصابات والأمراض التي تنطوي على مساعدة البحث والإنقاذ في المناطق ،

منطقة  الجبلية   أبعد  في  البحث  والإنقاذ هو  البحث  الهدف من عملية  للسياح.  الصديقة  والصحراوية 

ممكنة في أقصر فترة زمنية لتحديد مكان الشخص المفقود أو المصاب. في العقد الماضي ، تم إنشاء  

قاذ ونشر العديد من الاستخدامات الجديدة والمذهلة للطائرات بدون طيار ، بما في ذلك البحث والإن 

الطائرات   تكنولوجيا  الحالية في  التطورات  أدت  الطقس.  المرور ومراقبة  والمراقبة ومراقبة حركة 

المهام   إجراء مجموعة واسعة من  بدون طيار من  الطائرات  تمكن  كبيرة  تعديلات  إلى  طيار  بدون 

طية واسعة للكاميرا بدرجة متزايدة من التعقيد. تحتاج المهام مثل البحث والإنقاذ ومراقبة الغابات إلى تغ

 .، مما يجعل الطائرات بدون طيار أداة مثالية لأداء المهام المعقدة

ثاقبة  نظرة  الكمبيوتر  رؤية  في  العميق  التعلم  لتطبيقات  المتزايد  الانتشار  يوفر   ، ذلك  في غضون 

خص ؛  استثنائية في مجالات البحث هذه. في عمليات البحث والإنقاذ ، يكون الكائن الأساسي هو الش

ومع ذلك ، لا يتم تضمين التسجيلات من منظور عين الطائر في مجموعات البيانات الكبيرة المستخدمة  

لتدريب هذه الكواشف المتطورة. لتحقيق أفضل دقة محتملة لنموذج الكشف ، يجب أن تحتوي مجموعة  

مواجه تمت  التي  لتلك  مماثلة  شروط  على  عليها  النموذج  تدريب  يتم  التي  اختبار  البيانات  أثناء  تها 

النموذج. وبالتالي ، من الضروري تدريب النموذج بالبيانات التي تم الحصول عليها من منظور عين  

لاكتشاف وجود شخص في المناطق الجبلية.   (SARD) الطائر. تم استخدام مجموعة بيانات حديثة

ة للإنسان باستخدام خوارزمية  يقترح البحث الذي تم إجراؤه في هذا العمل طريقة لتحديد وجود بيئة جبلي 

لاكتشاف الكائن البشري وإطار عمل التعلم العميق. حتى لو كان الفرد محجبا جزئيا ، يمكن لنظام 

التعلم العميق المدرب التعرف من مجموعة متنوعة من وجهات النظر. تم فحص أحدث أجهزة الكشف  

في بحث   Cascade R-CNN و  RetinaNet و YOLO-v4 و Faster R-CNN الحالية مثل 

الخوارزميات  أن هذه  الرغم من  الإنقاذ. على  لمحاكاة مشاهد  بيانات مختلفة  سابق على مجموعات 

من أجل الأداء   YOLO-v5 تحقق استرجاعًا جيداً ، إلا أنه قد يتم فحص الكاشف الحديث الآخر مثل
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تنمية الريفية المستدامتين على مجموعة بيانات الزراعة وال YOLO-v5 المقارن. وبالتالي ، تم تدريب 

في هذا البحث للتحقق من سرعته ودقته ، بالإضافة إلى العدد الصغير من الاكتشافات الخاطئة. اتضح  

متوسط   أعلى  تحقق  متوسط  أنها  النتائج  96.9دقة  عرض  تم  الأخرى.  الكشف  بأجهزة  مقارنة   ٪

 .لمقارنةل SARD التي أجريت على مجموعة YOLO-v5 التجريبية باستخدام

  –البحث والإنقاذ ، الصور الجوية ، الطائرات بدون طيار ، الشبكة يولو  مفاهيم البحث الرئيسية:

   5ف
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 3 

Chapter 1: Introduction 

In this chapter, background of search and rescue operations is detailed along 

with problems associated with it. At the end, the problem statement is 

developed, which is addressed in this thesis. 

1.1 Overview 

One of the most critical computer vision tasks is object detection. The 

problem becomes more challenging when the object of interest is small, due 

to a limited resolution and information. In this study, we focus on small object 

detection in search and rescue (SAR) operations where human is the target. 

Search operations are typically applied where activities such as lost in desert, 

hiking, mountain biking, paragliding, free climbing, and rafting are carried 

out. As a result, the necessity to safeguard persons in harsh environment and 

difficult-to-reach regions such as forests, mountains, desert, canyons, and 

caverns is rising. Due to the nature of these environments and lack of physical 

and mental preparation involving such activities, a rising number of injuries 

such as sliding, burying, and so on are occurring. The main goal of such 

operations is to locate missing people who are injured possibly. In addition to 

the possibility of injury, hikers face risks related to their expertise in dealing 

with potential situations. Sudden weather changes, insufficient preparation, 

inappropriate equipment or clothing, non-compliance to warnings and timely 

information or overestimation of one's talents or understanding can all lead to 

emergencies. Disorientation and sickness are typical causes for missing 

people reports. The likelihood of a missing person's survival drops over time, 

while the search area expands exponentially [1]. 

Search and rescue teams are always working to enhance and upgrade their 

daily routine operations by creating strategies for promptly locating people 

who have been lost in such environments. Traditionally, dogs are trained and 
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employed to locate such lost individuals; however, the number of dogs 

required, and the time needed for such tasks is prohibitive. Using humans to 

aid in such search is an alternate method of locating individuals, albeit it is 

time-consuming and needs the coordination of numerous volunteers and 

experts [2]. 

To increase the survival rates, innovative technologies such as unmanned 

aerial vehicles (UAV) have been adopted, which can assist in identifying 

missing people faster as well as decreasing the cost of search and rescue 

operations. According to [3], the number of people estimated by about 59 

have been rescued, until 2017, using drones in difficult-to-reach 

environments in 18 separate cases around the world. 

1.2 Statement of the problem 

There is a necessity to initiate a search and rescue sequence for providing 

required healthcare to individuals, who participate in different adventure 

related sports or involve in tourism that requires to stay in desert areas, 

mountains and other different-to-reach regions. The purpose of a SAR 

operation is to search as much of the land as possible in the shortest amount 

of time to locate a missing or wounded individual. Nowadays, unmanned 

aerial vehicle (UAV) has been used extensively as a significant resource in 

search operations where the landscape is scanned and photographed. 

Detection of persons or any other objects using the unmanned aerial vehicle 

(UAV) captured imagery is a challengeable task due to position variations, 

weather conditions, humans' relatively small size, and camouflaged 

environment. Therefore, an automatic detection system of people or objects 

is deemed necessary.  

To facilitate and increase detection accuracy of objects and accelerate image 

processing, several image-processing algorithms have been developed and 

reported in literature. The latest detectors reported in literature are based on 



 5 

either deep learning networks, for example YOLO, RetinaNet, Faster R-

CNN, and Cascade R-CNN or hybrid ones. The datasets for SAR operations 

are limited due to lack of similar conditions typically found in real life 

scenarios. Most of these detectors’ performance evaluations also include 

speed for real timeliness, accuracy and number of false detections during 

testing. In SAR situation, the main object under search is a human being, 

however, seen or recorded from above. Typically, such camera views or 

recordings are not found in the large datasets, which are used to train well-

known object detectors. To obtain the maximum possible accuracy for object 

detection, the dataset on which the model is to be trained should have similar 

environmental parameters that are under investigation. Thus, it becomes 

essential to train the model using views or recordings done from above. 
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Chapter 2: Literature Review  

In this chapter, survey of literature is presented that is relevant to this topic 

and the research works that have been published in the same direction. 

2.1 Object detection challenges 

Recently, extensive research has been conducted to provide several 

algorithms for object detection in aerial images. Low visibility owing to 

different elevations, the variations in position and scale, object of interest, 

disguised surroundings with trees, bushes and trees, and high-resolution aerial 

photos all play a role in object detection in aerial images [4]. Detection of 

objects from aerial images is still deemed a tough challenge [5], even though 

typical ground imagery has generated acceptable results in detection of 

objects. One crucial challenge is to save individuals in search and rescue 

(SAR) tasks using aerial imagery without incurring any losses. In practice, to 

locate missing people, search and rescue efforts must be carried out as 

promptly as feasible. It can be quite costly, and it necessitates a variety of 

actions such as deploying big groups of people, sniffing dogs, and a large 

number of air and ground vehicles such as helicopters and cars. The National 

Police Air Service of UK, for example, registered almost about 17,000 

mission hours by 2016-17, with each operation hour costing above £2800 [6].  

2.2 Object detection technologies 

Humans can be recognized using several technologies such as machine 

learning approaches [7-9] or using thermal imaging techniques [10], which 

avoid the large costs and time commitments associated with traditional SAR 

methods. Machine learning is a technique that is utilized for a variety of road 

and air applications, such as mapping a specific location with drones, 

autonomous driving and detecting persons in search and rescue missions. A 
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lot of aerial data is needed to train and recognize persons with machine 

learning-based human detection. 

The alternative method of human detection from aerial imagery is the use of 

thermal cameras fitted in UAVs to obtain real time feedback. Since thermal 

infrared cameras have relatively fewer pixels, it turns out that reception of 

images becomes quite easy. However, the deployment of thermal cameras is 

not always possible because detection of people using thermal cameras is not 

reliable in certain weather conditions. In cold terrain, the temperature of the 

human body is higher than that of the environment, so humans appear clearer 

and bright using thermal cameras. While in tropical terrain or in summer, the 

human body temperature is much lower than that of the environment, so it 

becomes a challenge to detect persons in such environments. The use of 

thermal infrared cameras [11] for detection of objects have the limitation of 

requiring the person/object carry bulky equipment. The SARD dataset [12] 

used to train the model does not include any thermal imaging aerial photos, 

which is another reason not to include thermal imaging in the research. By 

combining thermal and visual imaging, Authors in [13] were able to create a 

real-time human and vehicle detection system. Thermal and visual imaging 

were also employed by authors in [10] to locate people in various stances on 

the ground in video sequences. 

 

2.3 Human detection in SAR operations 

To recognize people from aerial photos taken using drones, researchers [14] 

used image segmentation, contrast augmentation, and SSD detector. They 

also created synthetic datasets representing search and rescue operations with 

the use of a 3D game editor. The authors in [15] combined the proposed 

model with support vector machine (SVM) technique to search using UAVs 

for persons caught in an avalanche. In a similar task [16], the focus is 

detecting individuals at sea. Th imagery is taken by aerial vehicles equipped 
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with multispectral camera, and MobileNet architecture. In another work, 

using a dataset involving GPS location calculation, the authors [18] 

constructed a system for detecting persons and recognizing actions. In another 

example [18], GPS signal is demonstrated in search and rescue operations. 

This is envisioned considering that the person has a mobile device turned on, 

and thus the person's location is calculated by combining the GSM signal 

strength with UAV’s GPS position. In [19], the Tiny YOLO-v3 architecture 

was used to create a model to identify a person in water. The model is trained 

on well-known MSCOCO dataset, which was developed in HD resolution 

(with a GoPro camera) by a UAV. 

The authors [20] propose a real-time approach to recognize and track ocean 

surface objects. In another work [21], the authors present a technique for 

classifying drone imagery and object detection utilizing semi-supervised and 

supervised machine learning approaches, as well as a hardware and software 

architecture proposed for a UAV platform. 

Unmanned Aerial Vehicles (UAVs) are aircraft that are piloted by a computer 

system or a person from a distance [22] which can be deployed for object 

detection tasks of SAR operations in remote areas. SAR operations have 

benefited greatly in recent years from aerial imagery captured by unmanned 

aerial vehicles (UAVs) to explore harsh, inaccessible or difficult-to-reach 

remote places like mountainous regions or dense forests or woodlands [23].  

Several deep learning methods have been created and documented in the 

literature to make object detection in SAR operations easier and faster, as well 

as to speed up image processing. Many deep learning architectures have been 

divided into two frameworks based on the ROI (region of interest) [24]. ROI 

pooling is followed by object detection and bounding box regression in two-

stage detectors, whereas end-to-end detection is done without explicitly 

extracting object proposals in one-stage detectors. In terms of localization and 

classification accuracy, two-stage detectors such as Faster RCNN [25], 
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RetinaNet [27], and cascade R-CNN [27], are usually more accurate. They 

are, however, slower to process than single-stage detectors such as YOLO 

[28] and SSD [29]. Therefore, single stage detectors are commonly employed 

in real-time object detection [30]. Some of the research papers [31-32] 

combined handcrafted methods with hybrid deep learning methods, whereas 

others [33-35] employed pure convolution neural networks (CNNs). 

For training and testing, most CNNs require a fixed small input size that limits 

network width, depth, and resolution of the image. Because the photographs 

recorded by drones are typically of high-resolution, it becomes one of the 

main issues with aerial datasets. Given the limitations of aspect ratio and 

scaling, some Google researchers created EfficientDET [36-37], a one-stage 

object detector that proved to be much more efficient than two-stage object 

detectors. The authors presented a scaling factor that can scale all width, 

depth, and resolution dimensions evenly. The EfficientNet-B7 [38] obtains a 

state-of-the-art 84.4 percent accuracy on ImageNet and an average precision 

of 52.2 percent on MSCOCO test-dev [39], thus, proposing a new coefficient 

and employing Bi-directional Feature Pyramid Network [36]. 

Transfer learning is also a machine learning approach that allows to reuse a 

network that has already been trained on a specific dataset. This technique is 

especially beneficial for remote sensing images, and when enough data is not 

available. By using transfer learning, the authors of [40] suggested a deep 

network model for classification of search and rescue images, which do not 

require a larger labeled dataset. To speed up the classification of remote 

sensing data, transfer learning was employed in [41]. According to the 

authors, transfer learning on bigger, generic natural image datasets 

outperforms transfer learning that works on tiny remotely sensed datasets. 

The authors in [42] employed transfer learning in a region-based 

convolutional network dubbed as a Double Multi-scale Feature Pyramid 

Network, in which intrinsic multi-scale pyramidal features with low-
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resolution features are merged with high-resolution features using transfer 

learning. Using transfer learning in [43], the authors devised a deep neural 

network model for search and rescue image categorization that does not 

require dataset that is labelled. 

Transfer learning has showed considerable promise in surmounting 

difficulties faced by a lack of data for training deep learning frameworks, as 

evidenced by earlier works, and indicates a step toward strong machine 

learning. Labeled-image databases are commonly utilized for deep neural 

network training and testing and have been attempted in a research work [40]. 

In water rescue operations [44], the authors suggested a novel deep 

architecture that consists of an ensemble of different deep network classifiers 

coordinated by the fusion module. Individual models have been combined to 

improve detection results. For example, Faster R-CNN with Feature Pyramid 

Network with ResNet backbone (50 and 101 layers deep) have been 

implemented, but there is an evident drawback in the form of increased 

computing effort. This can be reduced in various ways, such as by sharing 

feature maps among detection heads with the same backbone. Aside from 

improved performance, it is a simpler training procedure because each model 

is trained separately and individually, and with flexibility in the object 

detector selection, which may be changed by merely a simple weight 

optimization step. Faster-R-CNN algorithm was used in a web application 

[45], where authors analyzed raw and processed images. The system 

outperformed an expert in recall, but the experts outperformed the algorithm 

in accuracy when analyzing images that had previously been processed and 

labeled.  

The reliability of existing state-of-the-art detectors such as YOLOv4, 

RetinaNet, Faster R-CNN, and Cascade R-CNN has been examined in [22] 

using a VisDrone benchmark and custom-made dataset built to mimic rescue 

scenes. The detection outcomes were compared after the models were trained 
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on selected datasets. The YOLO-v4 detector was chosen for further 

investigation due to its great speed and accuracy, as well as the low number 

of false detections. The research [46] offered a novel approach for detecting 

persons from aerial imagery for search and rescue missions. This approach 

describes how to train HERIDAL's existing high-resolution database. To 

tackle person detection challenge, the EfficientDET deep network is trained 

using a newly built database. In comparison to all current methods, the 

proposed method attained the accuracy of 93.29 percent mAP. The primary 

purpose of SAR operations is to improve detection outcomes, particularly in 

lowering the number of false positive detections and, as a result, improving 

precision. Thus, the research in [47] offered a strategy in which image 

sequences are used as the system's input. The proposed method revolves on 

the idea that an object/person detected in numerous consecutive images is 

more likely to be a real positive detection, whereas objects/persons detected 

in only one consecutive image are more likely to be false positives. Multiple 

neural networks were employed in both the region level and during 

classification stages of this method. 

Images collected during the search and rescue mission are typically processed 

on board the UAV or provided to a third party for further analysis. However, 

due to the UAV's limited computational resources, processing high-resolution 

photos requires a high level of computational complexity, which is 

challenging to achieve. Images should not be compressed when being 

transferred from the UAV to the ground station because compression results 

in information loss, which might have undesirable consequences in that it 

might need additional processing to detect a very small object of interest. 

Though lossless compression solutions exist, they necessitate a substantial 

amount of computational resource on the UAV to run a compression 

algorithm on high-resolution images, which is often not practical and is very 

time-consuming. As a result, it is more practical for a UAV to send original 



 15 

photos to a ground station. With this mind, the authors [48] describe an 

efficient approach for transmitting high-resolution images. 

2.4 Weaknesses in current approaches 

The deep learning methods are frequently adjusted in numerous ways to be 

able to conduct small object detection and thus produce noteworthy results to 

address this problem. One of the obstacles in object recognition tasks from 

aerial imagery is in recognizing the object from multiple aerial perspectives 

and angles, in varied positions, when it is partially blocked or obstructed or 

even in motion. If an object gets rotated, translated, scaled or partially hidden 

from view, a human is likely to recognize it in an image. However, because 

of the way computers address this problem, this task is significantly more 

difficult with computer vision systems. Furthermore, human detection from 

aerial imagery may result in a large number of false positives. Because the 

images collected during search and rescue operations are sequential, the 

continuity of the detected object in several images could be utilized to reduce 

false positive detections. Unfortunately, only a small body of information 

exists on the application of deep learning and computer vision techniques to 

this type of problem [49]. Furthermore, most of the current works employ 

images obtained by drones to show everyday-life scenes that are unrealistic 

from a SAR aspect.  It is challengeable to have representative datasets for 

developing such detection methods.  

The first weakness in existing methods is the performance, like Faster R-CNN 

detector based on two-phase region-based detection has lower performance 

than YOLO detector. In [22], an example of overlapping of persons' detection 

in an image was recognized by several detectors, but most of them exhibit 

occlusion issues and failed to detect a person crouching behind a moving 

figure. Another example described in [50] used salient detection approach 

that began by narrowing the search space by using a visual attention algorithm 
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to detect the image's most salient or significant segments. This approach used 

pre-trained and fine-tuned convolutional neural networks (Faster-R-CNN) 

with a detection rate of 88.9%. 

The second weakness in existing methods is the speed of training and testing. 

One of the most prominent methods, Faster R-CNN, provides a good speed 

value of 0.2 seconds per image. The Mask R-CNN architecture is compared 

to YOLOv3 in [51], where Mask R-accuracy CNN's was shown to be much 

higher in performance than YOLO-v3's, though YOLO-v3 surpassed Mask 

R-CNN in terms of detection speed. YOLO-v4 is compared to SSD and Faster 

R-CNN in [52] with 2620 training and 568 test photos. It turned out that the 

accuracy of YOLO-v4 was found to be much greater than that of SSD and 

Faster R-CNN, while the detection speed of SSD was found to be 

significantly faster than that of YOLO-v3 and Faster R-CNN. Although some 

of the stated methods had a good inference time, the huge dataset of search 

and rescue application requires less time for analyzing the images and 

detecting the humans quickly. Run speed is a critical issue in such 

applications. 
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Chapter 3: Models and Methods 

The YOLO algorithm has gained many versions over time depending on 

applications, where it was applied for specific objectives. The improvements 

range from version 1 to 5. Below, we discuss each. 

3.1 YOLO-v1 

The YOLO findings concerning algorithm's strength is in its small model size 

and quick calculation speed. YOLO has an easy-to-understand structure. 

Through the neural network, it can immediately output the bounding box's 

position and categorization. Because YOLO just has to upload the image to 

the network in order to obtain the final results of detection. YOLO approach 

can also do video time-detection. Since YOLO detects objects directly using 

the global image, hence it is capable of encoding global information and 

minimizing the inaccuracy associated with detecting the backdrop as an 

object. For items that are very close to one another and ingroups, YOLO's test 

results are poor. This bad performance is caused by the fact that just two 

boxes in the grid are anticipated and they all belong to a new objects class in 

the same category, resulting in an unacceptable aspect ratio and the factors 

such as a lack of generalization capacity. The YOLO architecture in its initial 

form consisted of 24 convolutional layers followed by fully linked layers. 

YOLO predicts many bounding boxes per cell, but only with the highest 

Intersection Over Union (IOU) with the ground truth are chosen, a technique 

called non-maxima suppression [53]. YOLO has two flaws: the first is 

imprecise location; the second is a lower recall value than the method using 

area predictions. In YOLO-v1 [55] approach, the image is split into slots 

grids, with each grid predicting some B bits of bounding box information 

directly. While YOLO-v1 has a fast detection speed and a low false detection 

rate for background photos, its object identification accuracy is very low. It 
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views target detection as a regression problem and suggests an approach to 

develop target detection algorithms. The Figure 1 depicts the network's 

structure. 

Figure 1: YOLO-v1 structure diagram [54] 

3.2 YOLO-v2 

YOLO-v2 [55] is also known as YOLO9000 which was released by Joseph 

Redmon and Ali Farhadi at the end of 2016. The key enhancements in this 

version are a quicker, and more powerful R-CNN that also includes an object 

identification method that utilizes a Region Proposal Network to recognize 

objects in an input image, and Single Shot Multibox Detector (SSD). This 

approach outperformed well-known detectors at that time, such as Faster R-

CNN, on the VOC 2012 detection dataset. Owing to its unique structure, 

YOLO-v2 may run at approximately 40 frames per second on a GeForce GTX 

Titan X and between 20-25 frames per second on a GeForce GTX 970. The 

network is trained in a supervised manner, which means that for each object, 

the training method must be supplied with both true labels and bounding box 
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coordinates. For each box, the YOLO-v2 approach predicts three properties 

[56] which are the Intersection over union (IoU) that estimates each anchor 

box's objectless score, the offsets of the anchor box which adjust the location 

of the anchor box, and finally the class probability that assigns each anchor 

box a class label based on the class likelihood. Additionally, because the 

original YOLO model (dubbed YOLO-v1) suffers from localization errors 

and low recall predictions, the research in [55] presents YOLO-v2, which 

incorporates novel and prior work-based improvements, namely SSD, to 

address the constraints and further improve the speed vs accuracy trade-off. 

The YOLO-v2 first trains the classifier on ImageNet at 224x224 resolution. 

Second, it finetunes the classifier for 10 epochs at 448x448 resolution. This 

forces the network's filters to adapt to higher resolution inputs. Furthermore, 

YOLO-v2 has a multi-scale training: On YOLO-v1, there is a problem in 

detecting items with varying sizes of input. This means that if YOLO is 

trained on smaller photographs of an object, it will have difficulty detecting 

the same object on larger images. This issue has been addressed to a large 

extent in YOLO-v2, which is trained on random pictures with dimensions 

from 320*320 to 608*608. This enables the network to learn and predict 

objects accurately using different input dimensions. The YOLO-v2 is built on 

Darknet-19 architecture, which includes nineteen (19) convolutional layers, 

five (5) max pooling layers, and a softmax layer. The Darknet-19 architecture 

is illustrated in Figure 2. Compared to YOLO-v1, YOLOv2 results in lower 

computing costs, higher speed, and increased mean average precision (mAP). 

Preprocessing the input data with batch normalization significantly enhances 

the performance of mAP [55].  
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Figure 2: Darknet framework [57] 

3.3 YOLO-v3 

YOLO-v3 is a real-time object detection system that recognizes items in 

films, live feeds, or photos. YOLO-v3 is a significant upgrade over the 

previous two YOLO versions in terms of robustness. This model incorporates 

multi-scale detection, a more robust feature extraction network, and a few 

loss function tweaks. To gain a high-level knowledge, the network 

architecture is broken down into two primary components: the feature 

extractor and the feature detector (Multi-scale Detector).  

YOLO-v3 [58], is an incremental form of YOLO-v2. The image is initially 

fed to the feature extractor, which extracts feature embeddings, and then to 

the network's feature detector, which outputs the processed image with 

bounding boxes surrounding the identified classes. 
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Figure 3: YOLO-v3 architecture [58] 

Earlier YOLO versions employed Darknet-19 as a 19-layer feature extractor. 

YOLO-v2 introduced 11 additional levels to Darknet-19, bringing the total to 

30. Nonetheless, the method encountered difficulties recognizing small 

objects due to the down sampling of the input image, which resulted in the 

loss of fine-grained features. YOLO-v3 proposed a more robust architecture 

in which the feature extractor was a combination of YOLO v2, Darknet-53 

(an ImageNet-trained network), and Residual networks (ResNet). The 

network employs 53 convolutional layers (hence the name Darknet-53) and 

is constructed using a series of 3x3 and 1x1 convolutional layers followed by 

a skip connection. The darknet's 53 layers are layered with 53 additional 

layers for the detection head, giving YOLO-v3 a total of 106 layers of fully 

convolutional underlying architecture as indicated in Figure 3 [58]. Thus, a 

vast architecture is created, slowing it down slightly in comparison to YOLO-

v2, but improving accuracy at the same time. 
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The multi-scale detector is utilized to guarantee that tiny items are identified 

as well, in contrast to YOLO-v2, which received continual criticism for this. 

Concatenating up-sampled layers with prior layers results in the preservation 

of fine-grained characteristics that aid in the detection of tiny objects. 

In YOLO-v2, the last three terms are squared errors; while in YOLO-v3, they 

have been replaced with cross-entropy error terms. In other words, logistic 

regression is now used to estimate object confidence and class predictions in 

YOLO-v3. While training the detector, a bounding box is provided to each 

ground truth box, whose anchor has the greatest overlap with the ground truth 

box. 

One of the improvements in the third version is that YOLO-v3 represents 

multilabel classification where no soft maxing the classes. The YOLO-v3 

suggest a trade-off between speed and accuracy when YOLO is used instead 

of RetinaNet, since RetinaNet training time is longer. However, by utilizing 

a bigger dataset, the accuracy of recognizing objects using YOLO-v3 may be 

equivalent to that of RetinaNet, making it an attractive alternative for models 

that can be trained with huge datasets [55]. A frequent example of this is in 

common detection models such as traffic detection, where a large amount of 

data may be utilized to train the model due to the abundance of photos of 

various cars. On the other hand, YOLOv3 may be unsuitable for use with 

niche models for which huge datasets are difficult to get. 

3.4 YOLO-v4 

The authors [23] developed YOLO-v4. YOLO-v4 is a development of the 

YOLO-v3 architecture, which made use of the CSP darknet-53 classifier. 

Furthermore, it makes use of pyramid pooling and a path aggregation network 

(PAN) to link the YOLO-v3 head. It is the fastest and most accurate method 

for detecting several objects in a single frame. The significant improvement 

in YOLO-v4 is that it is twice as quick as EfficientDet, while maintaining 
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comparable performance. Additionally, the AP metric rose by 10% and FPS 

metrics rose by 12%, when compared to YOLO-v3. 

Typically, an object detector's backbone network is pre-trained on ImageNet 

categorization. Pre-training implies that the network's weights have been 

updated to recognize important aspects in an image. CSPDarknet53 is a 

unique backbone that can be used to enhance CNN's learning ability. The 

spatial pyramid pooling block is superimposed over CSPDarknet53 in order 

to expand the receptive field and isolate the most salient background 

information. Instead of the feature pyramid networks (FPNs) utilized in 

YOLOv3, the PANet is used to aggregate parameters for multiple detector 

levels.  

The next phase in object detection is to prepare for detection by mixing and 

combining the features obtained in the ConvNet backbone [65]. YOLOv4 

makes use of a "Bag of Freebies," so named because they boost network speed 

without increasing inference time during production. The majority of the 

items in the Bag of Freebies are related to data augmentation. YOLOv4 

employs data augmentation to extend their training set and expose the model 

to semantic contexts it would not have encountered otherwise. 

YOLO-v4 employs what are known as "Bag of Specials" strategies [65]. 

These methods add little to inference time but greatly boost performance, 

making them worthwhile. The authors conduct experiments using a variety of 

different activation functions. As features move across the network, 

activation functions change them. It might be challenging to get the network 

to drive feature creations toward their optimum point using typical activation 

functions such as ReLU. 

A very recent application of YOLO-v4 can be diagnosed [60] for pedestrian 

detection, where they implement an application that detects people's social 

distance in public spaces during COVID-19, analyze the danger of infection 
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in this region, and provide recommendations to those who are too near to one 

another. 

As shown in Figure 4, YOLO-v4 [67], is a model that achieves optimal speed 

with great accuracy. YOLO-v4 is believed as an object detector for 

production systems and designed for parallel computing. YOLO-v4 enhances 

YOLO-v3’s FPS (12%) and mAP (10%) [68] with resulting speed of double 

of EfficientDet. 

Figure 4: YOLO-V4 architecture [23] 

3.5 YOLO-v5 

YOLO-v5, the fifth generation of YOLO, is the most recent version that was 

not produced by the original inventor of YOLO. However, the YOLO-v5 [61] 

outperforms the YOLO-v4 in terms of accuracy and speed. Glenn Jocher 

introduced YOLO-v5 shortly after the release of YOLO-v4 utilizing the 

Pytorch framework.  

The most cutting-edge developments in the field of computer vision have 

been included into YOLO-v5 and preceding versions. YOLO-v5 is a group 

of compound-scaled object detection models trained on the MSCOCO 

dataset. It contains straightforward capability for TTA, model assembly, 

hyperparameter evolution, and export to ONNX, CoreML, and TFLite. 

Moreover, YOLO-v5 inherits the advantages of YOLO-v4, including the 



 27 

addition of SPP-NET, modification of the SOTA technique, and introduction 

of new data improvement methods such as mosaic training, self-adversary 

training (SAT), and multi-channel feature replacing FPN fusion with PANet 

[62]. Along with network construction advancements in recent years, a group 

of researchers has been focusing on loss layer advancements. Wen Yandong 

pioneered the Center Loss monitoring technique [63]. It can significantly 

improve the capacity of a neural network to recognize deep learning 

characteristics, especially, lowering the intra-class variations while 

maintaining the characteristics of various separable classes. To do so, the 

center loss function was introduced [63]: 

 

𝐿
𝑐= 

1

2

  ∑ ∥ 𝑥𝑖 − 𝑐𝑦𝑖
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2𝑚
𝑖=1                                 (1) 

where 𝑐𝑦𝑖
 ∈ Rd represents the 𝑦𝑖𝑡ℎ class center with deep features. This 

formulation characterizes the intra-class differences effectively. Ideally, the 

𝑐𝑦𝑖
 need to be updated when the deep features are modified. Mainly, the full 

training set should be considered with the average of the features of each class 

in every iteration, which is wasteful and unworkable. Thus, the center loss 

cannot be employed directly. This quite possibly be the reason that such a 

center loss has not been employed in convolutional networks till now. 

To overcome this, two important adjustments were suggested. First, instead 

of updating the centers with regard to complete training set, the update is 

applied based on mini batch set. During each iteration, the centers are 

calculated by averaging the characteristics of respective classes. During this 

instance, some of the centers may not get updated. Second, to keep away huge 

perturbations due to few mis-labelled samples, a scalar α is used to adjust the 

learning rate. The gradients of LC for xi and update equation of cyi are 

computed as:   
𝜕𝐿𝑐

𝜕𝑋𝑖
=  𝑥𝑖− 𝑐𝑦𝑖
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where δ (condition) equals 1 when the condition is met and 0 when it is not, 

α is constrained to [0,1]. After including soft-max loss, the inter-class distance 

increases while the intra-class distance decreases. 

The architecture of yolo-v5 as shown in Figure 5 consists of three parts: (1) 

Backbone: CSPDarknet, (2) Neck: PANet, and (3) Head: Yolo Layer. The 

data are first input to CSPDarknet for feature extraction, and then fed to 

PANet for feature fusion. Finally, Yolo layer outputs detection results (class, 

score, location, size). 

Figure 5: YOLO-v5 framework [63] 

3.6 Dataset 

Generally, the dataset includes scenes and positions of people that suits a 

particular goal and does not include search and rescue operation cases. In 

rescue operations, the main object under search is the human viewed from 

above. Typically, such records are not available in large datasets, which are 

used to train well-known detectors. To target high detection accuracy, the 

trained dataset must have similar conditions to those where the model is 
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tested, so it becomes operative for the model to be trained with data viewed 

from above.  

Recent research reports talk about deep neural networks trained on datasets 

such as MS COCO, VisDrone, Okutama, ImageNet and Pascal VOC. Each 

dataset includes scenes and positions of people that suits a particular goal and 

does not include search and rescue operation cases. Similar sights for SAR 

operations could be those of the human sitting, walking, setting in park, or 

lying on a beach. To support rescue cases, SAR dataset was used to train and 

test UAV images, in which diverse postures of wounded persons are present, 

in addition to normal positions like standing, sitting, lying, running, etc.  

 

 

 

 

 

 

 

Figure 6: Bounding box(left) , Coordinates(right) 

The picture annotation includes the bounding box position around each object 

of interest, its height and width, and person's class label (Walking, Running, 

Standing, Lying, Sitting, Not Defined) 

For annotation purposes, the first two coordinates represent the center of the 

bounding box and the next two represent the width and height of the bounding 

box, as shown in Figure 6.  

Using a high-definition camera attached to a drone equipped with a 3-axis 

solo gimbal platform, the video shooting, as an experiment, was done during 

daylight. At a frame rate of 50 frames per second, were captured at a 

resolution of 1920 x 1080 pixels. The UAV was operated at various heights 
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(ranging from 5 to 50 meters) and camera angles (45 to 90 degrees). All the 

films were taken outside of the city limits of Moslavacka gora, Croatia. 

People's positions vary from standard -lying down, sitting, and standing- to 

positions of exhausted persons of different ages. Actors are also in a variety 

of locales, ranging from obviously visible to positions in the woods, shades, 

long grass, and other similar settings, making object detection much more 

difficult.  Some sample images are shown in Figure 7. 

 

Figure 7: Sample images from the dataset 

3.7 Evaluation metrics  

The authors in [64] provided measures based on the spatial intersection of 

ground-truth and system-generated bounding boxes and then produced 

multiple performance metrics, which were then averaged for all sampled 

frames. Various detector performance keys such as bounding-box coordinates 

of identified objects, the related class, and a parameter for reliability were 
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measured on images that were unseen. The well-known evaluation measures 

employed were recall, mean average precision (mAP), and precision. In this 

research, just “person” class is considered, hence the mAP is equivalent to 

the average precision (AP). mAP is obtained by averaging the average 

precision of all classes, as indicated by equation (3), where q represents the 

number of queries and AveP (q) stands for the average precision for that 

query. mAP is also a metric for calculating the machine learning algorithms 

accuracy. True Positive in the emergency landing location recognition issue 

is the number of good (uncluttered and safe) landing spots found by the 

algorithm. The amount of non-good landing places mistakenly identified as 

excellent landing spots by the algorithm, and the number of good landing 

spots overlooked, are known as false positives and false negatives, 

respectively. Mathematically, mAP may be defined as: 

𝑚𝐴𝑃 =  ∑
𝐴𝑣𝑒𝑃(𝑞)

𝑄

𝑄
𝑞=1                     

 (3) 

Locating a person as quickly as possible is critical to a successful search and 

rescue operations, hence it is important to discover missing persons if present 

on the spot. Another term intersection over union (IOU) is used to determine 

if a prediction is false positive or true positive. It is the ratio of the ground 

truth and prediction labels' area of overlap and the area of union. Precision 

evaluates the accuracy of detection findings. It is calculated as the percentage 

of true positive (TP) detections to the total number of detections as indicated 

in Equation (4). In contrast to this, Equation (5) illustrates recall, which 

evaluates the true positive detections in relation to the total potential 

detections.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                   (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (5) 

where FP denotes false positive, and FN represents false negative.  
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3.8 Proposed method 

The research reported in this work addresses the use of real time object 

detection in human detection of SAR operations as shown in Figure 8. In 

contrast to prior developments that employed the DarkNet framework, the 

YOLOv5 implementation is investigated in Pytorch framework. This makes 

the model easier to comprehend, train with, and deploy. There have been no 

prior publications reported on using YOLO-v5 in SAR operations to identify 

persons. The YOLO models detect objects and localize them directly in one-

shot, unlike ROI detection-based networks. YOLO-v5 model has been 

selected due to its run speed, which is a clear advantage since it is a single-

stage object detection model. The YOLO-v5 architecture is Focus structure 

with CSPdarknet53 backbone. The benefit of employing a Focus layer is that 

it requires less CUDA memory, has a smaller layer, and allows for more 

forward and backpropagation. This structure aids in the efficient prediction 

of tiny to large items.  

A single learning network is applied to the whole image. The image is broken 

into regions by this network to predict bounding boxes and probabilities for 

each region. The bounding box weights are based on projected probabilities. 

If box center is in the cell, it will compute the predicted class and bounding 

box coordinates. If there is no object, the score is zero. Otherwise, the score 

equals intersection over union (IOU) between predicted and ground truth. 
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Figure 8: Block diagram of the Proposed Method involving YOLO-v5 

For detection, the data are first input to CSPDarknet53 (backbone) for feature 

extraction, and then fed to PANet (Neck) for feature fusion. Finally, Yolo 

layer (head) outputs detection results (class, score, location, size). Non-max 

suppression appears to ensure the algorithm detects each object only once. 

Each cell outputs with probability P𝒸, where P𝒸 is the probability if there is 

an object. The job of non-max suppression is that it takes the box with the 

highest value of P𝒸, throws away boxes with P𝒸 ≤ 0.6 and “silences” the boxes 

with IoU ≥ 0.5. 

SARD dataset resolution is 1920x1080, which indicates a full high-definition 

resolution. This cannot be fed directly as an input due to the tiny size of the 

targeted object in compared to size of the full image. To achieve a robust 

model involving YOLO-v5, it is required to resize and preprocess the input 

images before running the input through the network. The default training 

size needed for the proposed network is 640x640, as also recommended in 

[65]. Different resolutions have been tried for testing the images while 

maintaining the input images a1920x1080 size. Though, increasing the 

network resolution can produce better detection results, but as is to be shown 

in chapter four, the best resolution that produces the highest accuracy results 

is 832x832. 
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YOLO-v5 family has a total of 5 models [66]. YOLO-v5 nano (the smallest 

and quickest) to YOLO-v5 extra-large (the largest model). The YOLO-v5l is 

a large model, and is useful for datasets that involve detection of tiny items. 

This model suits the current research target of detecting humans in SAR 

applications.  

For comparative purposes, all models need to be tested to investigate human 

detection in search and rescue scenarios. The models are to be tested YOLO 

v5l on SARD data set and compared it with the YOLO-v3, YOLO v4 and 

state of the art Faster R CNN. The detailed results are reported in the next 

section. 
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Chapter 4: Results and Comparisons 

In this section, experimental results from a sequence of photos acquired by a 

UAV for human detection purposes using the proposed method are presented. 

Selected models such as state of-the-art convolutional neural network-based 

object detectors (Faster R CNN, YOLO-v3, YOLO-v4, YOLO-v5) were pre-

trained on MS COCO dataset. In order to allocate the missing people in search 

and rescue scenarios effectively with the highest recall and precision, a 

custom-made SARD test set was used to train the stated detectors. A 

comparison of different CNN networks was accomplished.  

4.1 Preprocessing images 

The SARD set images were obtained from eight videos with a resolution of 

1920x 1080. The images are split 60:40 between training and testing. The 

training set has 1189 photos with 3921 people marked on them, whereas the 

testing set has 792 images with 2611 people marked on them. The network 

design as well as the input data format must be carefully considered while 

building an effective network model. The number of pictures, image height, 

image width, number of channels, and number of levels per pixel are the most 

often used image data input parameters. We usually have three data channels 

corresponding to the colors: Red, Green, and Blue (RGB) [0,255] are the most 

common pixel level. 

There were 1,981 single frames with individuals on them picked from a total 

of 35 minutes of recordings. People were manually labeled in the selected 

photographs so that dataset could be employed to train the supervised model. 

The labeling tool was used to tag individuals. The picture annotation includes 

the bounding box position around each object of interest, its height and width, 

and the person's label (Walking, Standing, Running, Sitting, Lying, Not 

Defined). Labels are saved as XML files in YOLO format. 
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4.2 Multi scale training  

The YOLO framework adjusts the size the image while maintaining the 

aspect ratio to resolution set by width and height parameters in the .cfg 

weights file. Network resolution refers to these factors. Transforming the 

image resolution in Yolo architecture may be defined as stated in equation 

(6): 

𝐼𝑚𝑔𝑡𝑟𝑎𝑖𝑛_𝑤𝑖𝑑𝑡ℎ= 𝑁𝑒𝑡_𝑤𝑖𝑑𝑡ℎ                                      (6) 

 

𝐼𝑚𝑔𝑡𝑟𝑎𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡= 
𝑁𝑒𝑡_𝑤𝑖𝑑𝑡ℎ

𝐼𝑚𝑔_𝑤𝑖𝑑𝑡ℎ
 . 𝐼𝑚𝑔ℎ𝑒𝑖𝑔ℎ𝑡 

For example, if an image's input resolution is 1920x1080 and network 

resolution is marked as width (𝑁𝑒𝑡_𝑤𝑖𝑑𝑡ℎ = 832), and height (𝑁𝑒𝑡_ℎ𝑒𝑖𝑔ℎ𝑡 = 

832), YOLO will change the input image's resolution to the set 𝑁𝑒𝑡_𝑤𝑖𝑑𝑡ℎ, 

while changing the height of the input image to gain the ratio of 𝑁𝑒𝑡_𝑤𝑖𝑑𝑡ℎ 

to 𝐼𝑚𝑔_𝑤𝑖𝑑𝑡ℎ multiplied by the original image height. e.g., 1920×1080 will 

be transformed to 832×468. For illustration purposes, this comparison of 

input and network image's resolution is shown in Figure 9. 

 

 

 

 

 

 

 

Figure 9: Input image resolution (a) and network image resolution (b) 

Another approach for improving detection performance, primarily for small 

objects detection would be to utilize higher resolution of the images and then 

(a) Full HD resolution 1920 x 

1080 

(b) 832 x 468 
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use these images to train the network. Since the YOLO network resizes the 

image down by 32, the width and height should be ensured to be a multiple 

of 32. YOLO obtains images of size 320×320, 352×352 ,…, 512×512,… 

608×608,…and 832×832 during training with a step of 32 as stated in 

equation (7). 

𝑁𝑒𝑡𝑤𝑖𝑑𝑡ℎ = 𝑁𝑒𝑡𝑤𝑖𝑑𝑡ℎ + 𝑘            𝑘 = 32𝑛                                                  (7)  

In our simulations, SARD input image size is 1920x1080, where the standard 

resolution size to choose for YOLOv5 model is 640x640 [65]. Different 

network resolutions have been used for testing the images while maintaining 

the input images at the same size of 1920 x 1080. During comparing, it can 

be shown that increasing the network resolution during testing can produce 

better detection results. Table 1 below shows that a network resolution of 

832x832 produces the best accuracy results. 

Table 1: Network resolution (%) YOLOv5 detection performance 

𝐍𝐞𝐭𝐰𝐨𝐫𝐤 𝐫𝐞𝐬𝐨𝐥𝐮𝐭𝐢𝐨𝐧𝒕𝒆𝒔𝒕 AP 𝑨𝑷𝟓𝟎 

320 x 320 38 78 

640 x 640 60 95 

832 x832 64 96 

 

4.3 Implementation platform and time 

The model that is previously trained on MSCOCO dataset was imported to 

Kaggle in order to use the pretrained weights on our custom-made dataset 

(SARD), then the trained model was exported to google Collaboratory for 

validation and testing SAR human images, The hardware machine 

specification of google colab were as follows: 

Model name   : Intel(R) Xeon(R) CPU @ 2.30GHz 

CPU MHz   : 2299.998 
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Cache size   : 46080 KB 

CPU cores   : 2 

RAM    : 12GB 

GPU    : Nvidia K80 / T4 

GPU Memory Clock 0.82GHz / 1.59GHz 

Performance 4.1 TFLOPS / 8.1 TFLOPS 

Max execution time 12 hours 

Max idle time 90 min 

 

The preprocessed image took 0.9ms for execution, while the proposed 

method's execution time is 24.5ms per image with a maximum of 12 hours 

where the network size is 832px X 832px. Since Faster-R-CNN had a 

maximum execution time of 20 hours with an inference time of 1 second per 

image [52]. The objective of a SAR operation lies in searching the shortest 

amount of time to locate a lost individual. Therefore, in comparison with other 

neural network models, YOLOv5l is the fastest in terms of predicting the 

presence of a human.  

4.4 Comparison on detection results 

The results on the SARD dataset for object detection are given in Table 2. 

With YOLOv-5, the best results were obtained. Although it was slightly better 

than YOLO-v4, the Faster R-CNN detector's performance were significantly 

worse than YOLO-v5.  

In all tested detectors, AP50 achieved the highest values. The best average 

precision has been conducted by YOLO-v5 with a value of 96.9% compared 
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with YOLO-v4 model where AP50 reached 96%. On the contrary, Faster R 

CNN acted worse with lowest AP (91%). When detector precision was altered 

from AP50 to AP75, all detectors performed worse, but the highest mean 

accuracy of 74.3% noted again by YOLO-v5. 

Table 2: Comparative Results on SARD dataset  

 

The accuracy and recall ratios for all evaluated models are shown in Table 3. 

YOLO-v5 has the best precision-to-recall ratio, with 97 percent precision and 

a recall of better than 93 percent, indicating that it was the highest performer 

in detection results and has spotted the largest number of humans/objects in 

the given image. Faster R-CNN (SARD) has the highest recall, but with a 

lower precision of just 67% and with good number of false positive detections 

than YOLO-v5. 

 

 

 

 

 

 

Model Class Images labels mAP@0.5 mAP 

@0.75 

mAP 

YOLOv5 All 792 2605 0.969 0.743 0.643 

YOLOv4 All 792 2605 0.96 0.71 0.61 

YOLOv3 All 792 2605 0.925 0.63 0.902 

Faster R-

CNN 

All 792 2605 0.91 0.51 0.50 
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Table 3: Precision – recall ratios for different models 

 

Following the calculation of recall and precision for various IOU thresholds, 

a recall and precision plots for a single classifier at various IOU thresholds 

are constructed in Figures 10 and Figure 11 respectively. After then, the 

precision-recall curve is used to compute the average precision as shown in 

Figure 12. Equally crucial is having as few false detections as possible to 

avoid wasting human resources. It was decided that if the intersection of the 

associated ground truth bounding box and the detected bounding box to that 

of the union is 50% or greater, the detection is considered positive. This 

metric is known as intersection-over-union (IoU).  

Model Precision Recall 

YOLOv5 0.971 0.932 

YOLOv4 0.96 0.91 

YOLOv3 0.962 0.892 

Faster R-CNN 0.67 0.936 
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Figure 10: Precision curve 

 Figure 11: Recall curve 
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Figure 12: Precision – recall curve 

The harmonic-mean of recall and precision, as indicated in Equation (8), is 

the F1 Score, which represents the test accuracy of the model. The maximum 

possible F1 score is 1, indicating excellent recall and precision, while the 

lowest possible score is 0, indicating neither recall nor precision has been 

registered. Figure 13 represents the F1 score that was obtained as a 

consequence of our experiment. This score was as high as 0.95, which 

proposes that there was a very good correlation between precision and recall. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                      (8) 
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Figure 13: F1 score curve 

The main aim of a search and rescue mission is to find all people who are on 

the spot. However, the detector's accuracy is also essential in order to avoid 

wasting resources on erroneous detections. As a consequence, the YOLO-v5 

detector was chosen for comparative investigation using the acquired findings 

of accuracy-to-recall ratio and the average precision. 

Examples of detection results on persons with YOLO-v5 model trained on 

SARD dataset are displayed in Figure 14. Figure 14 depicted all possible 

detection outcomes: a positive detection in which a person has been detected 

and the corresponding intersection over union of the bounding box and that 

of the person's ground truth is greater than fifty percent; a negative detection 

in which a person has not been detected and the corresponding intersection 

over union of the bounding box and that of the person's ground truth is less 

than fifty percent; and a false-positive detection in which a fraction of the 

image that does not include a person is understood as a person. 
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 In Figure 14, YOLO-v5 successfully detects all subjects in the images where 

the confidence level is shown as well. Images in the first column (left side) 

are the labelled ones, while images shown in the second column (right side) 

are the predictions. YOLO-v5 was obviously the most successful at detecting 

people in SAR events, according to the qualitative analysis of the selected 

cases. However, there have been instances where the YOLO-v5 model has 

performed poorly, as shown in Figure 15. The situations of shadows (shown 

in first row) and when the detector perceives dark portions of the vegetation 

are the most common example of erroneous detection (second row). In search 

and rescue efforts, it is nearly expected for a person to fade into the 

surroundings. 

Figure 14: A sample of positive detections with high confidence 
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Figure 15:  False detections of YOLO-v5 model (shadows, dark areas) 
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Chapter 5: Conclusion and Future Work 

In this section, conclusions based on results presented in chapter four are 

discussed. Furthermore, future directions that may help investigators to 

improve on the existing model to increase precision and reduce run time of 

the test images. 

5.1 Conclusion 

Analyzing a big number of high-resolution images for smaller objects and the 

details may be a time-consuming operation, and as a result, numerous 

mistakes are likely to occur. In human search, "searching but not seeing" is a 

well-known problem, while in an image processing system, this problem will 

be eliminated. This thesis presented a search and rescue system that combines 

UAV technology with real-time computer vision and deep learning 

algorithms. Since the datasets for SAR operations are limited due to lack of 

similar conditions typically found in real life scenarios, this work required 

search for rescue UAV images to find a suitable training dataset. To ensure 

the highest possible detection accuracy, the dataset that is likely to be used 

for training would have to include conditions that are identical to those when 

the model is tested in a similar environment, necessitating the use of 

recordings taken from above. Quick and in-time locating of the missing 

person(s) is a critical item in search and rescue operations because sometimes, 

it makes the difference between life and death. Hence, it was aimed to 

examine YOLO-v5 algorithm for increasing human detection accuracy.  

The model utilized in this research was a YOLO-v5 architecture running on 

the Nvidia K80/T4 embedded autonomous computing platform. Processes for 

training, validation, and testing have also been discussed. The study of real 

flights proved the superiority of the deep learning algorithms used. The mAP 

of the proposed model was at 96.9 percent, which is a good performance for 

an on-board human detection system compared to well-known detectors such 
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as Faster R-CNN, YOLO-v4, and YOLO-v3. Other metrics were examined 

as well such as precision and recall. The highest precision was achieved by 

the proposed approach, which evaluates the accuracy of detection findings. 

YOLO-v5 had the best precision-to-recall ratio, with 97 percent precision and 

a recall of better than 93 percent, indicating that YOLO-v5 was the most 

successful human detection and had spotted the greater number of persons in 

the image (ground truth). Despite a better value of precision for YOLO-v5 

model, the recall of Faster R-CNN model was exceeded. Precision is more 

critical than recall when a fewer False Positives are required in favor for more 

False Negatives, which indicates getting a False Positive is costly, but getting 

a False Negative is not. 

 

5.2 Future work 

Future work will involve the use of a thermal camera [9] to enhance detection 

performance where detecting people with thermal cameras is reliable with 

weather conditions. For example, in winter or cold regions, the normal 

temperature of the human body is higher than the environment, so humans 

appear bright and clear using thermal imaging. While in summer and tropical 

areas the body temperature is much lower than the environment. In addition, 

dataset could be improved by adding photos that replicate additional weather 

conditions, such as fog, snow, and ice, that may occur in genuine search and 

rescue operations. Also blur images could be involved to represent camera 

movement and aerial photography in action. In particular, a sufficient training 

dataset for deep learning model training is essential for enhancing the 

accuracy of image classifications and object detection. To further enhance the 

performance and precision of deep learning models, it is necessary to 

construct a training database containing photos of various object classes for 

future research. To expand the training database, photos of additional 

occurrences should also be sorted into distinct object groups.  
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Furthermore, drone-based mountain surveillance systems [68] might be 

coupled to forest fire detection sensors to undertake wide-scale forest 

monitoring across a large area., mountains surveillance systems [68] based 

on drones may be linked with forest fire detection sensors to conduct wide 

forest monitoring over a vast region. This approach allows for a continuous 

and remote watch on a flame in woods and mountains, all while the UAV is 

flying and gathering elevated data, allowing clients to keep the number and 

area of flame foci the same. Observing programming expands capabilities, 

such as Fire: source identification, area, and LCD module. 

Additionally, an effort is needed to investigate the benefits of alternative 

models of object saliency detection [69] and attempt to create a model that is 

tailored and specialized for this purpose by analyzing methods for detecting 

salient objects in natural air images for search and rescue missions.  It's a 

challenging and complex task in which computer-assisted proposals for target 

object positions would be quite useful. Examining a huge number of high-

resolution images for tiny items and details may be a time-consuming 

operation, and as a result, numerous errors may arise. In human search, 

"looking but not seeing" is a well-known problem. In an image processing 

system, this problem will be eliminated. 
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