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Abstract 

This thesis is concerned with species distribution modeling of the Socotra 

Cormorant (Phalacrocorax nigrogularis), a regionally endemic seabird to 

the Arabian Gulf, the Arabian Sea, and the Gulf of Aden. Socotra 

Cormorants are important for the marine ecosystem as they apply top-down 

control and maintain the balance between trophic levels. They also 

contribute to the cycling of nutrients significantly. The bird is categorized 

as vulnerable by the IUCN. Large portions of their suitable habitat are 

disturbed or degraded due to oil exploration and coastal development. The 

seabird is poorly studied in every ecological aspect. The main objective of 

this thesis is to predict the potential current and future marine distribution 

of the species and estimate the effect of climate change on its distribution. 

The thesis also aims to analyze the important environmental variables for 

the species distribution. Occurrence data were collected over several years 

(2013-2015, 2019-2020) using satellite transmitters attached to the birds. 

Data were obtained from 28 birds in total covering 3 different colonies in 

the Arabian Gulf. Data were fed to Maxent software along with a chosen set 

of environmental variables. Results showed that there is a total of 64,100 

km2 of potential current highly suitable areas for the species. These areas 

existed mainly in the Arabian Gulf and the Red Sea. However, projecting 

the model on 2050 indicated a sharp decline with nearly 73%  loss in suitable 

areas according to the climate change scenario used. Most contractions 

occurred in the Arabian Gulf and the Red Sea. However, the Red Sea was 

still holding considerable areas of  moderate suitability. Mixed layer 

thickness and sea floor depth are the most important variables to the 

distribution of the seabird. This study showed that there are large highly 

suitable areas not colonized yet in the Red Sea. It also indicated that if GHGs 

continue to rise, Socotra Cormorants will be at great risk. It also highlighted 
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the importance of mixed layer thickness and shallow depth for the species 

foraging grounds.   

 

Keywords: Socotra Cormorant, Arabian Gulf, Arabian Sea, Red Sea, 

Habitat Suitability, Habitat Loss, Distribution Modeling, Maxent 
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Title and Abstract (in Arabic) 

 برنامج ماكسنت   السوقطري باستخدامالتوزيع المكاني لطائر الغاق مذجة ن

 ص الملخ 

 Phalacrocoraxالهدف من هذه الأطروحة هو نمذجة التوزيع المكاني لطائر الغاق السوقطري )

nigrogularis .وهو طائر بحري متوطن إقليميا في الخليج العربي وبحر العرب وخليج عدن ،)

طائر الغاق السوقطري مهم للنظام البيئي البحري حيث انه يطبق تحكما من أعلى السلسلة الغذائية  

إلى أسفلها ويحافظ على التوازن بين المستويات الغذائية. كما أنه يساهم في تدوير العناصر الغذائية 

ل كبير. تم تصنيف الطائر في فئة ضعيف غير محصّن من قبل الاتحاد الدولي لحفظ الطبيعة.  بشك

وتطوير   النفط  عن  التنقيب  بسبب  التدهور  أو  للاضطرابات  موطنه  من  كبيرة  أجزاء  تتعرض 

السواحل. تمت دراسة الطائر بشكل ضئيل في كل جانب من الجوانب البيئية. الهدف الرئيسي من 

هو التنبؤ بالتوزيع البحري الحالي والمستقبلي المحتمل لهذا الطائر وتقدير تأثير تغير    هذه الأطروحة 

المناخ على توزيعه. تهدف الأطروحة أيضًا إلى تحليل العوامل البيئية المهمة لتوزع الطائر. تم جمع  

( سنوات  عدة  مدى  على  التواجد  إرسال  2020- 2019،  2015- 2013بيانات  أجهزة  باستخدام   )

المكانية  للأ البيانات  على  الحصول  تم  بالطيور.  متصلة  الصناعية  طائرًا    28مجموعه    مماقمار 

(  Maxentمستعمرات مختلفة في الخليج العربي. تم ادخال البيانات في برنامج ماكسنت )  3وتغطي  

  64100جنباً إلى جنب مع مجموعة مختارة من العوامل البيئية. أظهرت النتائج أن هناك ما مجموعه  

كيلومتر مربع من المناطق الحالية المحتملة المناسبة للغاية للطائر. توجد هذه المناطق بشكل رئيس  

يشير إلى    2050  في الخليج العربي والبحر الأحمر. وبالرغم من ذلك، فإن إسقاط النموذج على عام

٪ من المناطق المناسبة وفقاً لسيناريو تغير المناخ المستخدم.  73انخفاض حاد مع خسارة ما يقرب من  

حدثت معظم التراجعات في الخليج العربي والبحر الأحمر. بالرغم من ذلك، لا يزال البحر الأحمر  

مق قاع البحر من أهم العوامل  يحتفظ بمساحات كبيرة ذات ملاءمة معتدلة. سمك الطبقة المختلطة وع

البحري.   الطائر  هذا  يتم  ألتوزيع  لم  للغاية  مناسبة  كبيرة  مناطق  هناك  أن  الدراسة  هذه  ظهرت 

إلى أنه إذا استمرت الغازات الدفيئة في الارتفاع، فإن  شارت  أاستعمارها بعد في البحر الأحمر. كما  

السوقطري سيكون في خطر   الغاق  تسأ. كما  محدقطائر  أهمية عاملي سمك  نها  الضوء على  لط 

 الطبقة المختلطة والعمق الضحل لمواقع التغذية للطائر. 

 

الرئيسية  البحث  الأحمر،  :  مفاهيم  البحر  العرب،  بحر  العربي،  الخليج  اللوه،  السوقطري،  الغاق 

 .الموائل، خسارة الموائل، نمذجة التوزيع الجغرافي، ماكسنت ملاءمة
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 3 

Chapter 1: Introduction 

1.1 Overview 

Species distribution modeling (SDM) is an increasingly used tool 

that helps countries in the designations of marine reserves. It is also used to 

alert the concerned official bodies with the possible future risks of climate 

change. This field is important for seabirds like the Socotra Cormorant 

(Phalacrocorax nigrogularis) where little is known on this species. Socotra 

Cormorant is native to the Arabian Gulf, the Arabian Sea and Gulf of Aden 

(BirdLife International, 2022; Muzaffar, 2020). Its total population number 

was low in the 1980s and was classified near threatened but improved 

slightly in early 2000s and has been vulnerable since then (BirdLife 

International, 2019). This study is trying to fill the gap in the knowledge of 

this endemic species by using SDM algorithms to produce predictions of the 

possible current and future distribution. Predictive models provide 

beneficial information not only on the complete possible range, but also on 

the important environmental variables that control the distribution.  

1.2 Statement of the Problem 

The impacts of climate change on seabirds are becoming more 

concerning, although it is not viewed as urgent as other threats (Cursach et 

al., 2019). The biggest concern of this issue might be that increasing 

temperature can affect large regions and containing its impact is 

challenging, especially for endemic species (Cursach et al., 2019; Quillfeldt 

& Masello, 2013) like Socotra Cormorants. Many studies reported 

reductions or shifts in the distribution range and changes in habitat 

suitability for seabirds (Krüger et al., 2018; Piatt, Sydeman & Browman, 

2007). Shifts in seabird phenology were also reported due to impacts 

associated with climate warming (e.g., extreme weather events and marine 

heatwaves) (Glencross, Lavers & Woehler, 2021).This is alarming for 
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Socotra Cormorant due to its limited range and declining population 

(BirdLife International, 2019; Muzaffar, 2020). Since the species is poorly 

studied, more studies are required to help understand the possible species 

distribution, the marine hotspots they depend on, and future consequences 

of climate warming on both aspects.  

1.3 Research Objectives 

This research aims to (I) predict the possible current geographic 

distribution of Socotra Cormorants using environmental variables and 

Maxent (maximum entropy modelling); (II) to project the model to 2050 

using SSP5-8.5 as a climate change scenario; (III) to analyze the important 

environmental variables for the species distribution.  

1.4 Relevant Literature 

1.4.1 Seabirds and Marine Ecosystems 

Marine ecosystems consist of various biological networks that 

maintain energy flow in two directions. The upward direction starts with 

primary producers  at the base of the food web and ends with top predators 

like seabirds and humans. The downward direction brings nutrients back to 

the cycle and is led by decomposers and detrital processes. Terrestrial and 

marine birds are known to provide various ecological services including the 

top-down pressure control (Doney et al., 2012; Grant, Bond & Lavers, 2022; 

Piatt et al., 2007). Seabirds in specific regulate their ecosystems by aiding 

in carcass disposal, physical engineering of habitat and seed dispersal. They 

also transfer beneficial nutrients and possibly pollutants back to nesting sites 

on land (Grant et al., 2022). The loss or decline in the populations of these 

keystone species may lead to destructive impacts on habitats (Bauer & 

Hoye, 2014; Grant et al., 2022). To sustain these marine services, several 

countries initiated ecosystem-based management where ecosystem 
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indicators are used to develop sustainability plans and policies (Kruse et al., 

2006). Several studies reported the frequent use of seabirds as indicators to 

the status, health and change in their marine ecosystem (Parsons et al., 

2008), even labelled them as cost-effective indicators (Piatt et al., 2007).  

Comparing with other marine organisms, most of which live under 

water, seabirds are quite visible. Most seabird species forage as flocks in 

marine hotspots and gather in certain locations, like islands, to reproduce. 

This annual assembly allows population census and monitoring of various 

parameters (Piatt et al., 2007; Sydeman, Brodeur, Grimes, Bychkov & 

McKinnell, 2006). Monitored parameters can reflect a temporal change in 

an ecosystem. The annual reproductive performance in seabirds can detect 

monthly changes (from egg-laying phase to chick rearing). Comparably, 

deferred reproduction affects the demographics and dynamics in birds’ 

population. These are used to indicate decadal variabilities (Lee, Nur & 

Sydeman, 2007; Piatt et al., 2007). For instance, the delayed breeding 

season and lower breeding success for the short-tailed shearwater (Ardenna 

tenuirostris) indicated a North Pacific marine heatwave (Glencross et al., 

2021) 

Seabirds as indicators can be categorized under two types. First, 

they act as bio-monitors or qualitative indicators (e.g., pollutants and 

contamination). Or they serve as quantitative indicators of certain 

components or elements in aquatic ecosystems (e.g., fish stocks) (Piatt et 

al., 2007). A study done in the North Sea concluded that the reproductive 

failure of black-legged kittiwake (Rissa tridactyla) was due to an 

environmental change in the North Sea ecosystem and a collapse in sand eel 

(Ammodytes spp.) population. Another analysis on seabirds’ data from the 

Gulf of Alaska reported an early shift in the physical regime of the gulf 

(Francis, Hare, Hollowed & Wooster, 1998). Additionally, research on 
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Peruvian guano-producing birds (cormorants, pelicans, and boobies) that 

failed to reproduce between the 1950s and 1960s indicated a collapse in the 

anchoveta (Engraulis ringens) stock (Piatt et al., 2007). Another paper 

reported a similar result were Atlantic puffins (Fratercula arctica) suffered 

from breeding failure due to a collapse in herring (Clupea harengus) fish 

stock near Norway (Piatt et al., 2007). 

1.4.2 Climate Change Impact 

The concerns toward climate change consequences on seabirds are 

increasing as it came third after incidental death and introduced species 

(Croxall et al., 2012; Dias et al., 2019). More than 20% of all seabirds are 

affected by climate change impacts. Most of these species (89%) are also 

facing other threats of similar magnitude including invasive exotic species, 

incidental capture, overfishing, pollution, and hunting (Dias et al., 2019). 

These threats may appear more dangerously imminent than climate change 

(Croxall et al., 2012; Cursach et al., 2019; Quillfeldt & Masello, 2013). Yet, 

this phenomenon can affect complete regions compared to the local impact 

of some of these threats. It also adds more to the collective pressure on 

seabirds, mostly the endemic ones (Cursach et al., 2019; Quillfeldt & 

Masello, 2013) like Socotra Cormorant. These threats also have recognized, 

and proven solutions compared to climate change where mitigation have 

limited scope for main impacts like sea level rise and extreme rainfalls 

(destruction of colonies), increased severe weather events, alteration of 

oceanographic processes (reduce marine productivity near colonies), and 

increased infections and severity of avian diseases (Dias et al., 2019).  

Moreover, climate warming could reduce the distribution range and 

change habitat suitability of multiple groups of terrestrial and marine 

organisms (Cursach et al., 2019; Krüger et al., 2018). For seabirds, the 

impacts of climate change are mainly due to extreme temperatures and 
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alteration and shifting of habitat, with nearly 40 species exposed for each 

impact. Storms and flooding are also affecting >20 seabird species (Dias et 

al., 2019). In fact, a warming period in the southern California Bight favored 

subtropical seabird species as their numbers increased at the expense of the 

subarctic ones. Another warming phase in the Gulf of Alaska caused a 

growth in flatfish and gadoids numbers, whereas several pandalid shrimp 

and forage fish species disappeared (Piatt et al., 2007). The rising 

temperature changes the productivity of phytoplankton, thus alters the 

fecundity and abundance of herbivorous zooplankton like the euphausiids 

and small copepods. Inevitably, the impact reaches pelagic fish, squid, and 

carnivorous zooplankton (Crawford, Sabarros, Fairweather, Underhill & 

Wolfaardt, 2008; Cursach et al., 2019). Seabirds largely feed on these prey 

species (small pelagic fish, squid, or sizeable zooplankton) (Cursach et al., 

2019; Quillfeldt & Masello, 2013) and this is another climate-associated 

impact on seabirds. Previous studies on demographic dynamics of small 

populations of pelagic fish in upwelling ecosystems indicated that a collapse 

in such populations is often succeeded by sharp decline in predator seabirds’ 

populations (Crawford et al., 2008; Cursach et al., 2019). Various seabirds 

live within the productive upwelling range including Socotra Cormorants 

(Jennings, 2010; Nelson, 2005). 

1.4.3 Remote Sensing 

During the last 60 year, seabirds’ populations decreased by nearly 

70% worldwide (Croxall et al., 2012; Dias et al., 2019; Paleczny, Hammill, 

Karpouzi & Pauly, 2015). Obtaining the adequate knowledge of their 

movement patterns and spatial distribution is increasingly important to 

conserve the marine grounds they depend on. Seabirds are highly mobile, 

and their use of areas varies between breeding, molting, or stopover 

purposes (Oppel et al., 2012; Tremblay et al., 2009). In the breeding season, 
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seabirds become central foragers and target surrounding marine hotspots. In 

contrast, usage areas outside the breeding season are more distant as many 

species migrate and use foraging spots along migratory routes, or roam 

broad areas (Oppel et al., 2012). Stopover areas are important for migratory 

seabirds, hence identifying and protecting it is a step of prime concern 

(Oppel, Dickson & Powell, 2009; Oppel et al., 2012).  

Shipboard surveys of seabirds present a fragmented spatio-

temporal distribution where absences may be pseudo-absences due to the 

time of surveying. These false absences cause uncertainties and lower the 

predictive performance of density and spatial distribution models (Oppel et 

al., 2012). The development of remote sensing devices brought the ability 

to obtain high resolution data on a large scale. These data act as predictor 

variables when used in distribution modeling (Oppel et al., 2012; Tremblay 

et al., 2009).  

1.4.4 Distribution Modelling  

Studying the potential responses and future condition of 

biodiversity due to climate change has become a busy field in ecology 

(Cursach et al., 2019; Pecl et al., 2017). Consequently, future distribution 

modeling is considered a valuable tool for scientists and governments to 

predict the possible impacts of the warming climate (Cursach et al., 2019; 

Pereira et al., 2010). Distribution modeling also allows the prediction of the 

approximate full distribution range of species when used properly (Merow, 

Smith & Silander, 2013). In comparison with marine environment, 

terrestrial species are far more studied and numerous comparative modeling 

studies were conducted. Expectedly, marine environment is highly dynamic 

and species like seabirds are challenging to study given its mobility and 

breeding cycle (Oppel et al., 2012; Robinson et al., 2011).   
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Various modelling methods were applied to predict the potential 

distribution and density of seabirds at sea (e.g., Nur et al., 2011; Oppel et 

al., 2012; Tremblay et al., 2009). Some of these models use 

presence/absence localities while others depend on presence only data (PO 

data). Since seabirds’ presence in certain areas varies temporally, it makes 

it difficult to obtain true absences and this is the case for most species where 

only PO data is available. As a result, it is often  preferred to use PO 

modeling whilst considering its limitations (Merow et al., 2013).  

1.4.5 Future Scenarios  

To predict future impacts of climate change, models must be fed 

with projected variables. The Coupled Model Intercomparison Project 

phase 6 (CMIP6) is an experimental framework that focus on studying 

computer-based models of Earth's climate. In these models, several parts 

(e.g., oceans, land, atmosphere, ice) are coupled with each other and allowed 

to interact in computer simulations. The project leads many experiments that 

vary in the target study time and the resolution of the produced variables 

(Koomey, Schmidt, Hummel & Weyant, 2019).  

CMIP6 uses shared socioeconomic pathways (SSPs) which are 

scenarios of projected socioeconomic changes and its associated climate 

policies. Each scenario produces certain amount of greenhouse gas 

emissions and deals with adaption and mitigation to climate change 

differently (Riahi et al., 2017). SSP1 represent a future where mitigation and 

adaptation challenges are low. The opposite is true for SSP3 where both are 

high. Similarly, SSP4 and SSP5 oppose each other as SSP4 describes low 

mitigation challenges coupled with high adaptation challenges. Finally, 

SSP2 is designed as an intermediate scenario where challenges to mitigation 

and adaptation are moderate (Meinshausen et al., 2020; Riahi et al., 2017). 

Population is also central in SSP2 with a peak at 9.4 billion around 2070. In 
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SSP1 and SSP5, population is the lowest with 7 billion by 2100. The highest 

population is in SSP3, reaching a population of 12.6 billion in 2100 (Riahi 

et al., 2017). 

1.4.6 Socotra Cormorants 

The Socotra Cormorant is a flighted bird of an average size and is 

historically endemic to the majority of the marine region of the Arabian 

Peninsula (BirdLife International, 2022; Cook, Gubiani, Ryan & Muzaffar, 

2017; Muzaffar, 2020). The recent total population is estimated to be 

750,000 individual (Muzaffar, 2020), with the majority of it breeding and 

residing within the Arabian Gulf and a smaller subpopulation within the 

southern Omani waters and Gulf of Aden off Yemen (BirdLife 

International, 2022; Muzaffar, 2020). At present, there are up to 16 islands 

supporting the breeding population within the Arabian Gulf, namely, one in 

both Bahrain and Qatar, three in the Saudi territory of the Gulf of Salwa and 

up to 11 in the UAE. Nonetheless, non-breeding birds are still roaming the 

entire gulf (Muzaffar, 2020). Within the southern subpopulation, 5 islands 

are reported to host breeding pairs, one island off Oman and 4 islands in the 

Gulf of Aden (BirdLife International, 2022). A remaining two isles (Kal 

Farun and Sabuniya) in the Socotra archipelago were previously used for 

breeding (Porter & Suleiman, 2014) but the current state is unknown. The 

bird was seen frequently on the coast and islands off the center and south of 

Eritrea, with more than 1,500 birds in summer to 500-4,000 birds in winter 

(Semere et al., 2008). Breeding was suspected off the Danakil coast 

(southern coast of Eritrea to the western coast of Djibouti), but no nesting 

islands confirmed (BirdLife International, 2022; Semere et al., 2008).  

The Gulf of Salwa, located south of Gulf of Bahrain, is 

characterized with high productivity levels. Socotra Cormorants have been 

historically known to nest in high concentrations in that area, mainly on the 
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Hawar archipelago (Jennings, 2010; King, 1999; Muzaffar, 2020). Up to 

recent time, the Gulf of Salwa was supporting the largest percentage of the 

species population (Jennings, 2010). Recently, the UAE was estimated to 

hold 82,800 breeding pairs (Khan et al., 2018; Muzaffar, 2020) out of the 

total breeding population of 110,000 (BirdLife International, 2022). In the 

UAE, Abu Dhabi colonies experienced fluctuations over the last decade. 

Some islands suffered from persistent decline due to human disturbance like 

Umm Qasr. Whereas many colonies on islands of restricted public access 

grew in numbers considerably like Bu  Tinah, Rufayk and Gagha, that 

altogether host more than 30,000 breeding pairs each year (Khan et al., 

2018; Muzaffar, 2020), making it comparable to the Gulf of Salwa 

(Muzaffar, 2020). Siniya Island colony in the north of the UAE (in Umm Al 

Quwain emirate) also have restricted access and has nearly doubled in 

numbers with 15,500 pairs in the 1990s (Jennings, 2010) to 26,000-41,000 

pairs during the breeding seasons count between 2011 and 2016 (Muzaffar, 

Whelan, Clarke, Gubiani & Benjamin, 2017a). Accordingly, Siniya colony 

is considered the largest colony within the UAE as it holds about half of the 

UAE breeding population (Muzaffar et al., 2017a).  

Overall, Socotra Cormorant is poorly studied in every ecological 

aspect including their foraging ecology.  Several studies reported that they 

forage in groups (Cook et al., 2017; Jennings, 2010; Muzaffar et al., 2020), 

with flock size estimated around 33,000 at any time, excluding nonbreeding 

birds (Cook et al., 2017). Notably, A recent study suggested that foraging 

flocks over 100,000 individuals could be observed in some parts of the 

Arabian Gulf (Muzaffar, 2020, Table1). This gregarious behavior is thought 

to be helping in prey detection and transmission of information (Cook et al., 

2017) in a communal rather than cooperative way (Nelson, 2005). Socotra 

Cormorant diet consist of small to medium sized fish (Muzaffar, 2020). 

They might be opportunistic as their diet appear to vary from one area to 
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another (Muzaffar et al., 2015). One study from Siniya Island reported their 

forage fish to be anchovies Encrasicholina spp., Blue-Stripe Sardine 

Herklotsichthys quadrimaculatus, Pink Ear Emperor Lethrinus lentjan, 

Sailfin Flying Fish Parexocoetus mento, Bigeye Scad Selar 

crumenophthalmus, Pickhandle Barracuda Sphyraena jello, and Congaturi 

Halfbeak Hyporhamphus limbatus (Muzaffar et al., 2015). Another study 

from Hawar archipelago, between Bahrain and Qatar, reported a diet of 

White Sardines Sardinella albela, Yellowtail Scad Atule mate, Bigeye Scad 

Selar crumenopthalmus, Spotted Halfbeak Hemiramphus far and Silverside 

Atherinomorous lacunosus (Jennings, 2010). There has been an escalating 

debate on the competition between Socotra Cormorants and fishermen on 

fishery resources, however, the claim was refuted as low overlap was found 

(Muzaffar et al., 2015). Annual fish consumption from Siniya Island 

population alone was estimated between 11000 to 18000 tons (Muzaffar et 

al., 2015). A succeeding study calculated the average daily fish intake as 47 

tons (Cook et al., 2017). With such amounts, it is expected that Socotra 

cormorants control fish density, improve fisheries, fish diversity and 

dynamics of their marine ecosystem (Muzaffar et al., 2015). The bird also 

contributes greatly to marine nutrient cycling and vegetation on nesting 

islands by its nutrient-rich guano (Aspinall, 1995; Ksiksi, Muzaffar, 

Gubiani & Alshihi, 2015).  

Socotra Cormorants were believed to follow some movement 

patterns in the Arabian Gulf and the Arabian Sea; however, it was unclear 

to determine if its dispersal or a seasonal movement (Aspinall, 1996; 

Johnsgard, 1993). Jennings (2010) suggested a dispersive movement, 

however, Muzaffar et al. (2017b) showed that one colony (i.e., Siniya 

Island) exhibited a short directional migration based on data collected using 

outfitted colony members with satellite transmitters over 2 consecutive 

years. Movement patterns also indicated an overlap between breeding 
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cormorant distribution and primary productivity, but that was not applicable 

to the distribution of non-breeders (Muzaffar, 2017b). Comparing with 

oceanographic variables and fish movements might explain the hanging 

questions on the distribution of the species, but there were no published 

studies on pelagic forage fish in the Arabian Gulf. Notably, the species 

might vagrantly disperse to the west African coast of the Red Sea and west 

India (Del Hoyo, Elliott & Sargatal, 1992). The breeding season appear to 

be synced internally within each colony (Del Hoyo et al.,1992) as a response 

to local conditions of prey availability (Johnsgard, 1993(. Colonies off 

Saudi Arabia in the Arabian Gulf were reported breeding in April, May, and 

September to November (Bundy, Conner & Harrison, 1989). The Siniya 

Island colony breeds from August to December, sometimes up to March in 

events of disruption or delayed breeding (Muzaffar, 2017b). Observations 

from Al Hallaniyat Islands (previously Kuria Maria islands) off Oman 

reported breeding events between June to October (Gallagher & Woodcock, 

1980). In the Socotra archipelago, the breeding season seems to be from 

August to February based on several observations from isles in the 

archipelago (Porter & Suleiman, 2014). 

Socotra Cormorant is categorized as vulnerable, and its overall 

population trend is declining (BirdLife International, 2019; Muzaffar, 

2020). The bird lives within a limited range and many of their roosting and 

breeding islands are disturbed or degraded due to oil exploration and 

commercial and residential development (BirdLife International, 2022; 

Jennings, 2010; Khan, et al., 2018; Muzaffar, 2020).  Indeed, Socotra 

Cormorants used to nest on islands all over the Arabian Gulf including 

Kuwait and Iran which no longer support a breeding population (Jennings, 

2010; Muzaffar, 2020). Overall, the Arabian Gulf is considered among the 

highest anthropogenically impacted areas (Halpern et al., 2008). Two recent 

studies on the Indian anchovy (Stolephorus indicus) and the Indian oil 
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sardines (Sardinella longiceps) in the Arabian gulf (the UAE side) found 

heavy metals including lead, cadmium, and mercury. Zinc, Copper, 

Cadmium and Chromium were found in concentrations that exceeded the 

maximum permissible limit listed in several international organizations 

(EC, FAO and WHO) (Alizada, Malik & Muzaffar, 2020; Malik, Alizada & 

Muzaffar, 2020). Mercury, lead, and cadmium are highly toxic even in low 

concentrations. Likewise, the accumulation of essential metals like zinc and 

copper to toxic levels can harm aquatic ecosystems (Hao et al., 2019). 

The Arabian Gulf also represents one of the most extreme marine 

environments (Diaz Lopez et al., 2021). Consequently, marine organisms 

were reported to be living near their environmental tolerance boundary 

(Riegl & Purkis, 2012). Compared with the Gulf of Oman that have over 

1200 fish species, the Arabian Gulf has about 700 fish species, though it is 

still able to host around 20 seabird species (Muzaffar, 2020). Optimistically, 

Socotra Cormorants are legally protected in most range states (Muzaffar, 

2020). The bird is also included in the Convention on Migratory Species 

under Appendix II since 1994 (CMS, 2022). Appendix II lists migratory 

species that live in unfavorable conservation status and need international 

agreements to provide protection on the long term. Currently, from all range 

states of Socotra Cormorant, only Kuwait, Qatar and Oman are not parties 

in the convention (CMS, 2022). 
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Chapter 2: Materials and Methodology 

2.1 Study Area  

The study covered the marine area between 9° and 31° north of the 

equator and 32° to 61° east of the prime meridian, representing mainly the 

Arabian Gulf, the Arabian Sea, the Gulf of Aden, and the Red Sea (Figure 

1). The marine environment in both the Arabian Gulf and the Red Sea are 

unique as they experience very high levels of surface temperature and 

salinity. The Arabian Gulf might sometimes exceed the Red Sea levels 

(Edwards, 1987; Halpern et al., 2008). It is also the shallowest sea in the 

study area, with an average depth of 36 m and a maximum depth around 90 

m near the entrance to the Strait of Hormuz (Al-Yamani & Naqvi, 2019). 

 

Figure 1: Study area 

2.2 Focal Species  

The Socotra Cormorant is a seabird species listed as vulnerable by 

the IUCN (BirdLife International, 2019). The bird lives in a restricted range 

extending from the Arabian Gulf, the Arabian Sea into the Gulf of Aden 

(BirdLife International, 2022; Muzaffar, 2020). Most of the population roost 
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and breed within the Arabian Gulf formulating the northern subpopulation. 

The smaller southern subpopulation resides on islands off Oman and in the 

Gulf of Aden (BirdLife International, 2022; Muzaffar, 2020). The latest 

total population estimate was 750,000 birds (Muzaffar, 2020). However, 

due to range limitations and the continuous human disturbance the bird 

experience on many of their usage islands (BirdLife International, 2022; 

Khan, et al., 2018) the population is declining (BirdLife International, 

2019). Generally, the movement pattern of Socotra Cormorant is not clear 

as one study suggested a dispersive movement (Jennings, 2010), with the 

species visiting the west coast of India and the west of the Red Sea (Del 

Hoyo et al., 1992). Yet, another study reported a short directional migration 

by one colony in the UAE (Muzaffar et al., 2017b).  

2.3 Materials  

2.3.1 Choosing Predictor Variables  

The following variables were chosen to perform the distribution 

modeling: mean sea surface temperature, SST (C); mean sea surface 

salinity, SSS (ppt); mean sea surface height, SSH (m); mean mixed layer 

thickness, MLD (m); and sea floor depth, depth (m). These predictors are 

either known or presumed to be linked to the abundance and distribution of 

seabirds (Gilmour et al., 2018; Louzao et al., 2006; Tremblay et al., 2009; 

Oppel et al., 2012; Wakefield, Phillips & Matthiopoulos, 2009). The Socotra 

Cormorant itself is explicitly marine and lives within the productive 

upwelling range (Nelson, 2005). Its movement, breeding and foraging 

patterns also signify the shallow coastal waters for both the bird and forage 

fish (Muzaffar, 2020).  
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2.3.2 Source of Current Predictor Variables 

All current variables (SSS, SST, SSH, MLD, depth) were obtained 

at 0.083° (~ 9.2 km) resolution as monthly averages (E.U. Copernicus 

Marine Service Information, 2022a). Variables covered the period from 

2011 to May 2020, except the depth variable as its considered invariant 

throughout the study period. For the period of June to December 2020, the 

dynamic variables were obtained also as monthly averaged data at the same 

resolution (E.U. Copernicus Marine Service Information, 2022b).  

2.3.3 Source of Future Predictor Variables 

The same dynamic oceanographic variables were extracted as 

monthly data at 10 km resolution for the period of 2041 to 2050. The future 

scenario used was SSP5-8.5 from the HadGEM3-GC31-HH model 

(Roberts, 2019). For this scenario, the radiative forcing in 2050 is projected 

to reach nearly 4 W/m2 and 5.9 W/m2 for CO2 and all GHGs respectively. 

By 2100, radiative forcing would stabilize at 9.7 W/m2 for all GHGs and 

between 8 to 8.5 W/m2 for CO2 (Meinshausen et al., 2020).  

The data is provided by the World Climate Research Programme 

(WCRP) website under the Coupled High Resolution Model 

Intercomparison Project Phase 6 (CMIP6 HighResMIP). The CMIP6 is an 

internationally coordinated project that provides simulation data aimed at 

answering fundamental science concerns and is used by the 

Intergovernmental Panel on Climate Change (IPCC-AR6) (Roberts, 2019). 

The SSPs or “Shared Socioeconomic Pathways” examine how the world 

would evolve using five different narratives. Each narrative looks at 

different levels of socioeconomic factors (e.g., population, education, 

economic growth, technological development, and urbanization). These 

narratives are: 
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➢ SSP1 highlights a global sustainability trend where challenges to 

mitigation and adaptation are low. The narrative suggests a global 

gradual shift toward more sustainable development and an economic 

growth concerned with human well-being. Consumption pattern is lower 

in energy and resources demands and uses less material. Inequality also 

declines globally. 

➢ SSP2 is a middle narrative where challenges to adaptation and mitigation 

are moderate. Population moderately grows then stabilizes after 2050. 

The social, technological, and economic patterns almost remain the same 

as historical trends. Income growth is uneven; as a result, inequality 

generally remains. The consumption of resources and energy decreases 

and a slow sustainable trend takes place globally and nationally. 

However, ecological systems will still suffer from degradation.    

➢ SSP3 expects a regional rivalry where high challenges to adaptation and 

mitigation exist. A nationalism trend appears, and regional conflicts 

make policies shift toward securing energy and food on regional and 

national levels. This lowers the allotments to development, technology, 

and education. Population growth is high in developing nations and the 

opposite is true in developed countries. Inequality worsen or remain at 

same levels.  Consumption of material is high. Ultimately, severe 

environmental degradation occurs in some regions 

➢ SSP4 is a narrative of major disparities and challenges to mitigation are 

low but high to adaptation. The world experience uneven economic and 

political power leading to inequalities even within countries. The 

resulted gap creates two ‘worlds’, one has higher income, education, and  

technological development while the other is completely the opposite 

where societies are mainly labor intensive. Consequently, conflict arise 

and social structure collapse. Environmental policies in moderate and 

high developed countries focus on national challenges.  
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➢ SSP5 suggests a rapid development correlated with fossil fuel 

exploitation. This produces high mitigation challenges, however, 

challenges to adaptation are low. Societies interest and trust toward 

competitive but collaborative markets increase. They also largely invest 

in human capital in terms of education, health, and social capital as a way 

to achieve sustainable development. Markets worldwide become more 

integrated over time. The fast economic growth is largely dependent on 

fossil fuels and the consumption of resources and energy is high. World 

population peaks then drops during the century. Environmental issues 

like air pollution are successfully managed on local scales and positive 

views toward the ability of societies to handle its social and 

environmental systems increase (Meinshausen et al., 2020; Riahi et al., 

2017).  

2.3.4 Instruments  

The instruments used in the field survey were: 

➢ Portable transmitter terminals (Kiwisat Platform Terminal 

Transmitters (PTTs), Model K3H 174A, Sirtrack). 

➢ Harnesses of Teflon ribbons (14 mm), to attach transmitter devices 

on the backs of the seabirds. 

2.3.5 Software  

The software used for data preparation, processing, and interpretation 

were:  

➢ ArcGIS Desktop 10.8.1 

➢ MS-OFFICE 2022  

➢ R-studio version 4.1.1. 

➢ Maxent v 3.4.3 (Maximum entropy modeling) 
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2.4 Methods 

2.4.1 Occurrence Data Collection  

Occurrence data were collected over three periods by Dr. Muzaffar. 

The first period was from November 2013 to December 2013 then May to 

June 2014. The gap in data was due to a technical error in the ARGOS 

satellite system that prevented signal recording. In this phase, 8 PTT devices 

were attached to individuals from the Siniya Island colony using a harness 

of Teflon ribbons in a back-pack style. The second period took place on the 

same island from November 2014 to August 2015 and 10 PTT devices were 

attached. The third period lasted from December 2019 to December 2020. 

Devices in this phase were attached to birds from 2 different colonies in 

southern Arabian Gulf, namely 4 transmitters for Bu Tinah colony, and 6 

devices for Hawar archipelago colony. Birds were chosen randomly, and 

their condition was checked prior to device attachment. The recommended 

payload of a transmitter is less than 3% of the bird’s  body mass (Phillips, 

Xavier & Croxall, 2003). One transmitter weights 36.5 g and the average 

body mass of an adult Socotra Cormorant is 1.5 ± 0.1 kg (Cook et al., 2017). 

Therefore, the transmitter load is 2.4 ± 0.2%, and is within the recommended 

range.  

2.4.2 Preparation of Bird Location Data 

Occurrence data collected using satellite transmitter devices tend to 

be repetitive and spatially clustered as birds roost for certain period of time 

during the day. Clustering of data can increase model overfitting and bias 

(Boria, Olson, Goodman & Anderson, 2014; Veloz, 2009). As a result, data 

were rarefied using the spatially rarefy occurrence data tool in SDM toolbox 

in ArcGIS at a resolution of 10 km, matching the environmental predictors. 

Moran’s Index was calculated to check spatial autocorrelation in the species 

distribution. The index ranges from +1 (perfect correlation) to -1 (perfect 
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dispersion) and values near zero indicate randomness in the spatial pattern 

(Oppel et al., 2012) 

2.4.3 Preparation of Predictor Variables 

Variables were obtained in NetCDF format and rasterized using the 

multidimension tools. Variables were then masked to the desired spatial 

extent using spatial analyst tools. Future predictor variables come in a grid 

format that needs interpolation. Hence, the kriging method was used (e.g., 

Cursach et al., 2019). Kriging method has a good sensitivity and is known 

to produce accurate re-gridded surfaces (Lima-Ribeiro, et al., 2015; Varela, 

Lima-Ribeiro & Terribile, 2015). Furthermore, current variables were re-

grided from 9.2 to 10 km to match the resolution of the future variables. 

Monthly data for each variable were then averaged using cell statistics in 

the spatial analyst tools to produce one layer of that variable.  

2.4.4 Autocorrelation Test of Predictor Variables 

Multicollinearity was assessed between the environmental variables 

using Variance Inflation Factor analyses (VIF) in R (version 4.1.1) using 

VIF >10 as a threshold (Duque-Lazo, Van Gils, Groen & Navarro-Cerrillo, 

2016).  

2.4.5 Bias File Creation  

A bias file was created using the gaussian kernel density of 

sampling localities tool in SDM toolbox in ArcGIS. The purpose of the bias 

file is to allow the model to control the density and place of where 

background points are selected. By this method, the model avoids sampling 

background points that are significantly outside the known range of the 

species. These points might be less informative and affect model prediction. 

Gaussian kernel density also accounts for sampling bias by providing 

Maxent with a background file that have the same level of bias in presence 



 

24 

 

localities (Barbet‐Massin, Jiguet, Albert & Thuiller, 2012; Brown, Bennett 

& French, 2017).  

2.4.6 Modeling Algorithm  

Maxent 3.4.3 (Phillips, Dudík & Schapire, 2022) was used for the 

modeling analyses. Maximum Entropy Modeling (Maxent) is one of the 

commonly used techniques in niche and species distribution modeling 

because it requires PO data only (Bradie & Leung, 2017; Cursach et al., 

2019; Merow et al., 2013; Phillips & Dudik, 2008). Since 2006, more than 

1000 papers used it for simple and sophisticated cases. Maxent have a user-

friendly interface and offers a bundle of settings the user can manipulate to 

better compare outcomes (Merow et al., 2013). It also performed better 

when compared to most other PO modeling programs (Elith et al., 2011; 

Merow et al., 2013; Phillips & Dudik, 2008; Wisz et al., 2008). To predict 

spatial distributions, Maxent takes a list of presence locations for a single or 

multiple species as input, and a set of environmental predictor variables 

(e.g., temperature, precipitation) of a defined area by the user (Merow et al., 

2013).  Maxent method is considered robust as it employs machine learning 

and statistical modeling to predict occurrence probability, build model and 

project it into another period of time (Phillips, Anderson & Schapire, 2006).   

2.4.7 Model Calibration  

It is recommended to make modeling decisions based on biological 

considerations that is driven by species-specific conditions and research 

goals (Merow et al., 2013). Indeed, one of Maxent most argued points is the 

common use of its default settings and visualizing it as a ‘blackbox’ tool 

(Hernandez, Graham, Master & Albert, 2006; Phillips & Dudik, 2008). 

From this scoop, the study used the spatial jackknifing tool in SDM toolbox 

in ArcGIS (i.e., Brown et al., 2017). The tool tests Maxent model 

performance on multiple levels to produce the most possible calibrated 
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powerful model. First, it creates groups of spatially segregated and 

independent occurrences based on natural spatial clustering . It then 

calibrates the model with one group and evaluate it using the remaining 

groups. Second, it tests the model over a range of regularization multipliers 

(RMs) and feature class types (linear, quadratic, product, threshold, and 

hinge) to enhance the model performance. Lastly, the best model is 

automatically chosen based on a defined order of priorities by the user. In 

this study, the order was: the model with lowest omission rate (OR) of test 

localities, then highest area under the curve (AUC) and finally the least 

complex model (e.g., simplest feature class types) (Brown et al., 2017; 

Radosavljevic & Anderson, 2014). In fact, the RM parameter of Maxent 

algorithm aids the model to achieve the maximum entropy or the most 

uniform distribution over study area while accounting for recognized 

constrains in distribution modeling. It also plays a crucial role in reducing 

model overfitting (Hernandez et al., 2006; Phillips & Dudik, 2008).  

The final model was run using an RM of 2 with linear and quadratic 

features. It was replicated for 15 runs by the subsampling method where 

25% of occurrence data were allocated for model testing. The purpose of 

replication is to average prediction probabilities and avoid any skewness in 

the model outcome. To further prevent the model from under or 

overpredicting spatial relationships, iterations were set at 5000 considering 

the recommended convergence threshold of 10-5. Finally, Maxent projected 

the current model distribution relationships onto 2050 year using the 

provided future variables of SSP5-8.5 scenario.  

2.4.8 Model Significance Evaluation  

We evaluated the accuracy of the final predictive model using 

threshold independent Receiver Operating Characteristics (ROC) Area 

Under Curve (AUC) method conducted by Maxent software itself. AUC 



 

26 

 

value ranges from 0 to 1, with value closer to 1 indicating a better model 

performance. AUC<0.5 means a model performance no better than random 

(Merckx, Steyaert, Vanreusel, Vincx & Vanaverbeke, 2011). 

We also evaluated model significance using threshold dependent 

tests, namely true skill statistics (TSS) and Cohen’s kappa, using the 

maximum training sensitivity and specificity threshold (West, Kumar, 

Brown, Stohlgren & Bromberg, 2016).  Cohen’s kappa (k) works by 

estimating the expected accuracy that occurred by chance. When k < 0.4, 

model accuracy is considered low, while 0.4 < k < 0.75 indicate a good 

accuracy, and k > 0.75 represent an excellent model accuracy (Landis & 

Koch, 1977). Kappa statistic was criticized for being dependent on 

prevalence in data. As a result, TSS was calculated to support kappa result 

since it retains all kappa advantages, less affected by prevalence and 

accounts for omission and commission errors (Allouche, Tsoar & Kadmon, 

2006; Lantz & Nebenzahl, 1996). TSS ranges from −1 to +1, where TSS<0 

reflecting a random model and the closer the value to +1 is excellent for a 

model performance (West et al., 2016). Both statistics were calculated using 

Microsoft Excel and R (ROCR, vcd and boot packages).  

2.4.9 Sensitivity and Contribution Analysis  

Maxent performs jackknife analysis to assess the relative 

importance of each environmental predictor. It estimates the training gain 

for each predictor if used in isolation by the model and if omitted while 

keeping all the variables in the model. The analysis mainly shows variable 

importance for the model. Contribution percentage of all variables is 

estimated as well by Maxent. Response curves for predictor variables are 

also produced by Maxent. These curves show how habitat suitability 

changes with changing environmental variable levels, while withholding all 

other variables at the average value.  
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2.4.10 Assessing Environmental Novelty  

Analysis of extent of extrapolation using multivariate 

environmental similarity surfaces (MESS) analysis measures the similarity 

of a given point or to a reference point or location. In other words, it 

measures closeness between current and future variable values (Elith, 

Kearney & Phillips, 2010; Rodder et al., 2013). MESS score ranges from 

positive to negative, with positive values indicating that the future variables 

level at that location is similar to the current training range. Positive values 

of 100 score suggest that the point is not novel at all. On the contrary, 

negative values indicate that a future point is outside the current training 

range and there is extrapolation in that location in the future (Rodder et al., 

2013). The most dissimilar variable (MoD) analysis is based on the MESS, 

as it shows which variable is affecting the MESS value the most at any given 

point.  

MESS and MoD analyses were made using Maxent bat file, 

following the method reported by Elith et al. (2010). Results were processed 

and visualized in ArcGIS.  

2.4.11 Limiting Factors 

The limiting factor is the most variable that influence the model 

prediction at each location. The statistical analyses run through one variable 

each turn and change its value at that point to the mean value of that variable 

across species presence data. The resulted model value is recorded. The 

variable that increases model value the most, that is the occurrence 

probability, is considered a limiting factor (Elith et al., 2010). This step is 

interesting and could be powerful when combined with ecological 

knowledge (Elith et al., 2010).  
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The analysis was made for both current and future predictions using 

Maxent bat file. The method followed is available in Elith et al. (2010). 

Results were processed and visualized in ArcGIS.  

2.4.12 Visualizing of Maps and Related Spatial Analyses  

The final distribution map for both current and future were 

rasterized then visualized in ArcGIS using the reclassify tool. Area 

calculations were made for current and future predicted distributions using 

the fields toolset in data management toolbox in ArcGIS. The process was 

speeded up after developing a python code script that run several steps 

automatically. Python code can be run using the python window integrated 

within ArcGIS. To examine how occurrence probability changed in the 

future, cell statistics tool was used to subtract the current layer from the 

future layer. The change was visualized in a map and area calculations were 

made accordingly.   
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Chapter 3: Results  

3.1 Overview of the Main Findings 

Model performance power was found to be highly accurate. Mixed 

layer thickness and sea floor depth were the most important environmental 

variables for understanding Socotra Cormorant distribution. The potential 

current distribution model predicted large areas of high suitability in 

southern Red Sea region. However, the future model indicated a severe 

decline in suitability in almost all regions, based on SSP5-8.5 scenario for 

2050.  

3.2 Results  

3.2.1 Occurrence Data  

Filtering of occurrence data resulted in58 presence points that were 

used for the distribution modeling (Figure 2), based on a 10 km spatial grid.  

 

Figure 2: Occurrence points used for modelling of Phalacrocorax 

nigrogularis 

The spatial autocorrelation performed using Moran’s I is around 

zero indicating a random distribution of presence points. Negative value 
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indicates a tendency towards dispersion while positive value indicates 

tendency towards clustering. Moran’s I value is slightly negative (-0.0023) 

but its negligible since its close to zero (Figure 3). 

The P-value is a probability that measures if the observed spatial 

pattern a result of random processes. In this case, the P-value is 0.72 which 

is greater than 0.05 (Figure 3) and this shows that the observed spatial 

pattern was very possibly created by random. The z-score of -0.36 also 

shows that the pattern does not appear to be significantly different than 

random, in other word, the species localities are randomly distributed.  

 

Figure 3: Spatial Autocorrelation report for Phalacrocorax nigrogularis  

3.2.2 Autocorrelation Test of Predictor Variables  

VIF analysis showed no correlation between the predictor 

variables considering a VIF >10 as a critical threshold (Duque-Lazo, 2016). 

Thus, no variables were excluded.  
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3.2.3 Model Evaluation  

The model calculated the omission rate for test data (Figure 4) 

where it indicates the proportion of test presence points incorrectly 

predicted. A good omission rate is the one with a good match or relatively 

close to the predicted omission as the definition of the cumulative threshold 

states. The fractional value for predicted area at any point indicate that up 

to this value the occurrence probability is incorrectly predicted.  

 

Figure 4: Average omission rate for test data of  Phalacrocorax nigrogularis 

(The shading in blue and orange represent variation) 

The averaged Area Under the ROC curve (AUC) for test data 

(Figure 5) shows sensitivity and specificity. Sensitivity measures the 

proportion of presence data correctly predicted by the model. The specificity 

is defined using predicted area, rather than true commission (Phillips et al., 

2006).  

The AUC is an indicator to the performance and validity of the 

model. As stated earlier, AUC ≤ 0.5 indicates that a model is not better than 

random, and the higher the AUC value the better the model in discriminating 

suitable versus unsuitable areas for the species (Phillips et al., 2006). Our 

model showed a credible level of accuracy with AUCtest at 0.965 and 
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AUCtrain at 0.966 and standard deviation of 0.006, meaning the model has 

96.5% performance (Table 1).  

 

Figure 5: The receiver operating characteristic (ROC) curve for the data 

averaged over the replicate run 

Cohen’s Kappa analysis also indicated a good model accuracy as 

Kmax= 0.438 and it falls within the good range (0.4 < k < 0.75) (Landis & 

Koch, 1977)  (Table 1). TSS result also supported the earlier results as the 

averaged value is TSS= 0.874, and this indicates a high performance (West 

et al., 2016).  

Table 1: Mean AUC, TSS and Kappa analyses values of the distribution 

model for Phalacrocorax nigrogularis  

AUCtest AUCtrain 
TSS 

Kappa 

max 

0.965 0.966 0.874 0.448 

 

3.2.4 Sensitivity Analysis  

Examining Table 2, mixed layer thickness (MLD) and sea floor 

depth (Depth) were the top contributors, with 43.3% and 41.1% 

respectively. The contribution of other variables was much lower, however, 
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that shouldn’t underestimate their role in helping the model to better 

understand environmental relationships.  

Table 2: Percent contribution for each variable in the distribution model for 

Phalacrocorax nigrogularis  

Variable Contribution to the model (%) 

MLD 42.3 

Depth 41.1 

SST 9.6 

SSH 6.4 

SSS 0.6 

 

The jackknife test conducted by Maxent highlights the important 

environmental variables for the potential distribution of Socotra Cormorant 

(Figure 6). The red bar in the plot indicates the overall performance of the 

model. The blue bar reflects model’s performance when only the 

corresponding variable is used while the light blue bar shows the 

performance of the model after omitting the underlying variable. The 

environmental variable with highest gain when used in isolation is mixed 

layer thickness (MLD), which therefore appears to have the most useful 

information by itself. The environmental variable that decreases the gain the 

most when it is omitted is also MLD, which therefore appears to have the 

most information that isn't present in the other variables. Sea floor depth is 

the second most important variable with a clear drop in average gain when 

it is not used in the model.  
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Figure 6: Jackknife evaluation of the relative importance of each variable 

Depth: sea floor depth, MLD: mixed layer thickness, SOS: SSS (sea surface 

salinity, TOS: SST (sea surface temperature), ZOS: SSH (sea surface height) 

3.2.5 Predicted Potential Suitability 

Examining the predicted current distribution (Figure 7a), Socotra 

Cormorants have large moderate and high suitability areas  across the study 

area. The total predicted suitable area is 331,600 km2, with 64,100 km2 

predicted as highly suitable areas (>0.6) (Table 3). From that, the Arabian 

Gulf alone had 24,000 km2 which equals 37.4% of the total (Table 5, 

Appendix).  The model also predicted suitable areas off Oman extending 

from Masirah Island in the north, with highly suitable areas, to Al Hallaniyat 

archipelago where suitability was  mostly low (<0.4). Interestingly, the 

model predicted considerable highly suitable areas in southern Red Sea, 

with 31,300 km2 or 48.8% from the total (Table 5, Appendix).  

The potential future distribution for Socotra Cormorant was based 

on SSP5-8.5 scenario for 2050 (Figure 7b). The visual observations suggest 

that the potential current distribution will decline sharply in the future, under 

Maxent model assumptions. The total suitable area is 89,900 km2, which 

means 72.9% loss of suitable area by 2050 under SSP5-8.5 scenario. More 

precisely, only 1,700 km2 of the total area was highly suitable (>0.6) (Table 

3). These areas are mostly found near Socotra archipelago (Figure 7b). The 

Red Sea mostly had moderately suitable areas of 5,200 km2, and 100 km2 of 
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highly suitable area. The Arabian Gulf lost all its highly and moderately 

suitable areas (Table 5, Appendix).  

 

 

Figure 7: Potential current and future geographic distribution of 

Phalacrocorax nigrogularis 

(a) Predicted current distribution (b) Projected future distribution under SSP5-8.5 

scenario in 2050 

(a) 

(b) 
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Table 3: Probability of occurrence for Phalacrocorax nigrogularis 

expressed in surface area 

Occurrence 

probability 

Current  

(km2) 

Future  

(SSP5-8.5 scenario) (km2) 

0.1 - 0.2 112200 57300 

0.2 - 0.3 73400 15500 

0.3 - 0.4 39900 9400 

0.4 - 0.5 21700 4000 

0.5 - 0.6 20300 2000 

0.6 - 0.7 15600 400 

0.7 - 0.8 13000 500 

0.8 - 0.9 14400 100 

0.9 - 1.0 21100 700 

Total 331600 89900 (72.9% loss) 

 

3.2.6 Spatial Analyses of Suitability Change 

Visual comparison of the change in area suitability from present 

to future showed a decreasing trend in suitable areas for Socotra Cormorants 

(Figure 8).  The total contraction is estimated to be 125,300 km2 (Table 4), 

where most of it occurring in the Arabian Gulf and the Red Sea. 

Specifically, in the Arabian Gulf, the contraction is a complete loss in 

moderate and high suitable areas, while in the Red Sea it is a decline in 

suitability degree (Figure 7b). On the other hand, the total expansion is 

17,100 km2 (Table 4) and is mostly present in the Gulf of Aden (Figure 8). 

Precisely, areas near Socotra Islands increased to high suitability degree, 

whilst areas along the northern coast of Somalia acquired new but low 

suitable areas (Figure 7a & b).  
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Figure 8: Change in geographic distribution from present to future (2050) 

for Phalacrocorax nigrogularis under SSP5-8.5 scenario 

Table 4: Change in area suitability from current to future (2050) under 

SSP5-8.5 scenario expressed in surface area 

 
Suitability change (km2) 

Region Contraction No change Expansion 

All 125300 2057500 17100 

Arabian Gulf 51600 172300 0 

Arabian Sea, Gulf of Aden 20800 1493900 15500 

Red Sea 52900 391300 1600 

 

3.2.7 Response Curves  

Response curves indicate how each predictor variable affects 

Maxent prediction. The response curves for Maxent model were created 

using only the corresponding variable (Figure 9). Each curve reflects the 

dependence of potential suitability on the selected variable and on 
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dependencies induced by correlations between the selected variable and 

other variables.  

The results showed that the probability of presence declines 

sharply with the increasing value of depth and MLD variables. For these 

two variables, high suitability (>0.6) occurs in areas where depth is ≤ 30.3 

m and MLD is ≤ 12.5 m. On the contrary, potential suitability increases with 

increasing SSS and SST values, with highly suitable areas (>0.6) occurring 

when  SSS is ≥ 37.2 ppt and SST is  ≥ 28.3°C. For SSH, suitability increases 

with the corresponding value of the variable up to 0.24 m in heigh then 

begins to decrease gradually.  

 

                Sea floor depth (Depth)                 Mixed layer thickness (MLD) 

 

             Sea surface salinity (SSS)              Sea surface temperature (SST) 

Figure 9: Response curves of the environmental variables showing 

occurrence probability for Phalacrocorax nigrogularis 

Depth, MLD and SSH in meters, SSS in ppt and SST in °C 
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Sea surface height (SSH) 

Figure 9: Response curves of the environmental variables showing 

occurrence probability for Phalacrocorax nigrogularis (Continued)  

3.2.8 Assessing Environmental Novelty  

The MESS (Multivariate Environmental Similarity Surface) 

analysis below shows the extrapolated region of Socotra Cormorant 

distribution (Figure 10a). The MESS score ranges from -44.2243 to 55.8923 

averaged over 15 replicates. The negative values reflect extrapolated areas, 

and the higher negative MESS value indicates that locations lie outside the 

current training range. Whereas positive MESS values indicate points 

within the training range (Rodder et al., 2013). The most extrapolation 

region within the predicted distribution of Socotra Cormorant (areas within 

the black polygon) is found in southern Red Sea (Figure 10a). This 

extrapolation is more influenced by sea surface temperature (SST) (Figure 

10b). The Gulf of Aden area appears to be the least extrapolated region 

within the predicted future distribution of the species (Figure 10a). The 

extrapolation is influenced more by sea surface temperature (SST) along 

Yemen and Somalia coastlines, and sea surface salinity (SSS) with mixed 

layer thickness (MLD) near the Socotra archipelago (Figure 10b).  
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Figure 10: Extrapolation region and clamping of Phalacrocorax 

nigrogularis  

The black polygon represents potential future distribution range of Phalacrocorax 

nigrogularis based on Maxent prediction. (a) Extrapolation region under SSP5-8.5 

scenario in 2050 using MESS analysis. (b) Clamping map for SSP5-8.5 scenario in 

2050 using MoD analysis  

3.2.9  Limiting Factors 

The limiting factor analyses indicated that mixed layer thickness 

(MLD) is the dominant limiting factor over the predicted current range 

(a) 

(b) 
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(areas within the black polygon) (Figure 11a). Shallow areas in the south of 

the Arabian Gulf, off the UAE coast, has sea floor depth (Depth) as the 

limiting factor. While areas around Hawar Islands have sea surface salinity 

(SSS) as the limiting factor.  

The limiting factor analyses for the potential future distribution 

(Figure 11b) showed that sea surface height (SSH) is the limiting factor in 

almost all the predicted future range (areas within the black polygon). Areas 

near the Socotra archipelago shows that mixed layer thickness (MLD) is the 

limiting factor.  

 

Figure 11: Limiting factors analyses for predicted current and future 

distribution of Phalacrocorax nigrogularis  

The black polygon represents potential current distribution range of Maxent 

prediction. (a) Limiting factors based on the potential current distribution model  

(a) 
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Figure 11: Limiting factors analyses for predicted current and future 

distribution of Phalacrocorax nigrogularis (Continued) 

The black polygon represents potential future distribution range of Maxent 

prediction. (b) Limiting factors based on the projected future distribution under 

SSP5-8.5 scenario in 2050 

 
 
 

 

 

(b) 
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Chapter 4: Discussion 

4.1 Predicted Suitability and Predictive Power  

The predicted current distribution of Socotra Cormorants shows 

consistency with the current known distribution (Figure 7a). The predicted 

large areas of high suitability in the Arabian Gulf strengthen the recent 

evaluation of Muzaffar (2020) and Khan et al. (2018). Markedly, the model 

predicted large patches of highly suitable areas in the southern Red Sea 

region. Those areas even exceeded the prediction in the Arabian Gulf, which 

currently supports the largest portion of the bird population, by 7,300 km2 

(Table 5, Appendix). Some islands in this region are either historically used 

or not colonized yet, and the species might be foraging in the surrounding 

marine grounds (BirdLife International, 2022). 

 In regard to colonization, there are no studies that extensively 

investigated Socotra Cormorant movement between colonies and how fast 

or slow it responds to change in their islands and marine foraging ground 

status. Khan et al. (2018) reported that Socotra Cormorants were able to 

relocate to inactive colonies and colonize new areas as seen in the case of 

Ghagha, Bu Tinah and Digala Islands off western Abu Dhabi coast. 

However, the proximity between these islands and the surrounding active 

colonial islands must be considered as it was ≤150 km. These three colonies 

showed low disturbance levels and two of them (Ghagha and Bu Tinah) 

have restricted access, and this highlights the importance of conserving 

suitable areas for possible colonization. Since the study was conducted on 

decadal bases (1996, 2006, 2016), the temporal movement of 

colonization/recolonization was not documented precisely. But the general 

outcome indicated that the species made a gradual shift to these colonies.   
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Intermixing between the UAE colonies was reported during the 

post-breeding period at roosting sites where recolonization is suggested to 

occur (Khan et al., 2018; Muzaffar, 2020). Indeed, the breeding population 

in Abu Dhabi Islands increased significantly in the last decade. The 

movement was suspected to be from nearby colonies off eastern Qatar or 

other UAE colonies (Khan et al., 2018). Our tracking data showed that birds 

from Siniya and Abu Dhabi colonies have visited eastern Qatar and Hawar 

Archipelago colony between January and March for few days. And the 

opposite is also true. However, recolonization movement between these two 

areas cannot be determined unless long-term tracking takes place. If future 

data showed that the species can recolonize areas that are ≥300 km away; 

the colonization of southern Red Sea region may occur from nearby colonies 

off Yemen. A previous study also reported observations of Socotra 

Cormorants near the Eritrean coastline and islands with numbers surpassing 

1,500 birds in the summer season alone (Semere et al., 2008). Breeding was 

also suspected to occur on southern Eritrea coast extending to Djibouti 

(Semere et al., 2008), but no confirmation up to this date (BirdLife 

International, 2022). The Red Sea is one of the busiest shipping routes 

globally and anthropogenic disturbance is expected to be high. Taking the 

Arabian Gulf as an example, it is also among the heavily used lanes and 

experienced significant pollution levels due to oil industry, however, the 

species persisted and increased in numbers with the growing protection. 

This case encourages conservation efforts in the Red Sea.  

Our future prediction under SSP5-8.5 scenario showed an extreme 

declining trend in area suitability with nearly 73% between complete loss 

and reduced suitability (Figure 7b). This trend is similar to other studies 

investigating climate change impact on seabirds (e.g., Cursach et al., 2019; 

Jenouvrier et al., 2014; Krüger et al., 2018). A recent study surveyed 538 

animal and plant species globally and predicted that ≥ 30% may become 
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extinct within their regions based on all future scenarios. The study 

indicated that dispersal alone might not be enough to face temperature 

change and niche shifts may be highly important to avoid extinction 

(Román-Palacios & Wiens, 2020). The present study used SSP5-8.5 

scenario that expects temperature to increase more than 1.5°C by 2050 

(Meinshausen et al., 2020). Despite the major loss in area suitability, 

southern Red Sea region was still holding 5,300 km2 of moderate and high 

suitable areas in future prediction (Table 5, Appendix). Although the model 

highly extrapolated in this region (Figure 10a), extrapolation doesn’t 

necessarily mean that all environmental conditions will change. The change 

might be driven by one or two variables and the species may be able to adapt 

and spread through this region. A niche shift could also facilitate its 

adaptation to the new environmental conditions, and it may reduce 

extinction rate in northern subpopulation.  

Interestingly, in contrast to all other regions, area suitability near 

the Socotra Archipelago increased under future prediction (Figure 7b). This 

can be explained by the MESS analysis (Figure 10a) that showed less 

extrapolation in this area, meaning that the environmental conditions will 

likely be the most similar to the current suitable conditions. Therefore, this 

area appears to be somewhat resistant to climate change impacts under the 

SSP5-8.5 scenario. Overall, moderate and high suitable areas in the future 

should grab the conservation attention. The successful enforcement of the 

Paris Agreement goals of limiting the warming to less than 1.5°C by 2100 

can possibly reduce major declining trends regionally and globally (Román-

Palacios & Wiens, 2020).  

 It is evident that the present study samples didn’t cover the 

complete known range of the species (i.e., the southern subpopulation). 

However, the sensitivity of Maxent algorithm, maximum entropy, to sample 
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sizes was reported to be among the least sensitive algorithms (Wisz et al., 

2008). Likewise, its able to predict reasonable and representative total area 

regardless of sample size (Hernandez et al., 2006). In addition, our samples 

covered the marine distribution and foraging range of the main colonies in 

the Arabian Gulf. We assume that since the Arabian Gulf hosts most of the 

population, hence most useful environmental information exist. Examining 

Figure 7a, the model was able to predict the current known distribution in 

the Omani waters and in the Gulf of Aden. We also applied precautionary 

measurements (bias layer, data filtering, Moran’s I test, etc.) and calibrated 

Maxent parameters (RM, features, etc.) based on recommended practice 

(e.g., the spatial jackknifing tool) to reduce overfitting and enhance model 

predictive power. As a result, all evaluation metrics showed a credible level 

of performance power (Figure 4 & 5, Table 1). 

4.2 Influence of Environmental Predictor Variables 

Socotra Cormorants like many other birds are exclusively marine 

and only come to cliffs and offshore islands to breed or roost (Nelson, 2005). 

In the modeling analysis we used static and dynamic marine variables thar 

are commonly associated with the distribution and foraging range of 

seabirds (Gilmour et al., 2018; Louzao et al., 2006; Tremblay et al., 2009; 

Oppel et al., 2012; Wakefield et al., 2009).  

4.2.1 The Shallow Depth 

The importance of shallow sea floor lies in its association with 

upwelling areas of high productivity (Gilmour et al., 2018). This study 

showed that shallow coastal areas are important for Socotra Cormorants as 

the contribution percentage of the depth variable came in second (41.1%) 

(Table 2). Specifically, areas where depth is ≤ 30.3 m were predicted to be 

highly suitable for the species distribution (Figure 9a). Likewise, examining 

the predicted current and future distribution maps (Figure 7a & b) the 
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relationship can be clearly seen as suitable areas existed mainly off 

coastlines and islands such as Masirah Island in Omani waters, Socotra 

archipelago in the Gulf of Aden, Farasan Island and Dahlak archipelago in 

the Red Sea and Abu Dhabi western islands. In the limiting factors analyses 

(Figure 11a), areas off southern UAE coast had depth as the limiting factor. 

As stated earlier, this area is currently holding large portion from the total 

bird population (Muzaffar, 2020). Socotra Cormorants of Siniya Island 

colony were observed foraging mostly at depths of 15 m or lower, and this 

is where forage fish are commonly encountered in winter (Muzaffar, 2020).  

4.2.2 Mixed Layer Thickness 

The study also indicated that mixed layer thickness (MLD) has a 

great contribution to the species distribution. MLD was the top contributor 

variable to Maxent model with 42.3% (Table 2) and had the highest gain 

when used in isolation (Figure 6). This is interpreted as it contains the most 

useful information to the model. It was also the most variable that decreased 

Maxent model gain when omitted, suggesting that it holds the most 

information that isn't present in the other variables. Maxent also predicted 

MLD as the limiting factor in most of the potential current distribution 

(Figure 11a). The Arabian Gulf, which holds major high suitable areas, is 

very shallow and most of its parts have no thermal stratification. The 

combination of these two factors enhances nutrient mixing process, thus 

productivity (Riegl & Purkis, 2012). This result was also supported in a 

survey study that found that the whole water column was mixed in most 

areas in winter. Even in summer, water column was moderately well-mixed 

in shallow areas  (Azizpour, Chegini, Khosravi & Einali, 2014).  

MLD was also the limiting factor near Socotra archipelago in the 

projected 2050 model (Figure 11b). This location is where most highly 

suitable areas existed in the predicted future distribution (Figure 7b). Thus, 
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MLD ≤ 12.5 m (Figure 9b) will aid the bird to persist under the future 

climate change scenario.  

4.2.3 Sea Surface Height  

Sea surface height reflects ocean surface topography and large-

scale circulations (Gilmour et al., 2018; Landerer, Jungclaus & Marotzke, 

2007). It is used a proxy for eddies, upwelling areas, and current dynamics. 

These processes bring nutrients to sea surface and affect its distribution on 

sea water surface, thus contribute to marine productivity (Gilmour et al., 

2018). SSH for example is used to as a proxy for the potential location of 

many commercial fish catches like tuna (Syah, Siregar, Siregar & Agus, 

2020). In the Arabian Gulf, many fish species migrate from the northern 

areas off the UAE coastline toward the south off Abu Dhabi emirate. This 

migration is correlated with main surface water currents in the area 

(Hoolihan, 2006; Hoolihan & Luo, 2007; Kampf & Sadrinasab, 2006).  

In this study, SSH was the limiting factor off Iraq and Kuwait 

according to Maxent current model (Figure 11a). It was also the dominant 

limiting factor in all remaining suitable areas in the future (Figure 11b.) As 

sea surface level is expected to rise because of climate change, islands and 

shallow coastlines will be submerged. This explains why the Arabian Gulf 

was predicted to lose all its moderate and high suitable areas (Figure 7a & 

b). Socotra Cormorants will face increasing challenges to find suitable 

breeding and roosting sites. The moderate and high suitable areas in 

southern Red Sea and Socotra Archipelago may be the last resort for the 

species to survive if it does not adapt or make a shift in its niche.  

4.2.4 Sea Surface Temperature 

SST gradient aggregate forage fish and is commonly used to 

identify foraging grounds for seabirds (Gilmour et al., 2018). Fish 
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movement pattern is not well understood within some important regions 

holding the Socotra Cormorant population, essentially in the Arabian Gulf 

(Muzaffar, 2020). One study on Siniya Island colony suspected that forage 

fish such as sardines and anchovies, move westwards to the cooler waters 

in the central Arabian Gulf when temperature peaks in summer (Muzaffar 

et al., 2017b). In addition, large numbers of seabirds including Socotra 

Cormorants are found between January and June near Umm Qasr and Bu 

Tinah islands off Abu Dhabi emirate coastline. This distribution is 

associated with a little cooler SST compared to the coastal areas (Muzaffar, 

2020). In the future, SST is expected to increase and extreme environment 

conditions of high SST and SSS already exist in the Arabian Gulf and the 

Red Sea (Diaz Lopez et al., 2021; Edwards, 1987; Halpern et al., 2008). As 

a result, wide range of marine organisms including the Socotra Cormorant 

are expected to decrease. Overall, studying forage fish migration, especially 

those that constitute a large portion in Socotra Cormorant diet, will allow a 

better use of this variable in predicting the distribution.  

4.3 Current Conservation Policies  

The Federal Law of the UAE forbids any destruction of Socotra 

Cormorant habitat, hunting of chicks or adults and egg collection (UAE 

Federal Law # 24, 1999). Even though it is not competently enforced 

(Muzaffar et al., 2017a; Khan et al., 2018), the law was supported the 

declaration of all breeding islands of Socotra Cormorants as Important Bird 

and Biodiversity Areas (IBAs) (BirdLife International 2019). Additionally, 

several islands have restricted access or not open for the public (e.g., 

Ghagha, Yasat, Dinah, Bu Tinah, Rufayq) (Khan et al., 2018). Regionally, 

all range states of Socotra Cormorant, except Kuwait, Qatar and Oman are 

parties in the Convention on Migratory Species (CMS, 2022). CMS lists 

Socotra Cormorant in Appendix II. However, species listed in this appendix 
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are not always included in legally binding agreements which happens to be 

the case for Socotra Cormorant. Despite Oman and Qatar being non-party 

in the CMS, they had joined the Convention on Biological Diversity. The 

CBD is a legally binding treaty and requires its members to conserve their 

marine biodiversity (CBD, 2022).  

4.4 Limitations and Unresolved Questions  

Species distribution models have some methodological constraints 

mainly for not integrating representative variables of the ecological 

interactions such as fishing exploitation and human disturbance (Cursach et 

al., 2019). As a result, its recommended for future modeling algorithms to 

develop techniques and procedures that allow researchers to include field 

data measurements about fishing and anthropogenic disturbance.  

It is important to recognize that modeling marine species have 

significant challenges compared to terrestrial animals and stationary plants 

as the conditions of marine environment are constantly changing (Oppel et 

al., 2012). Consequently, data availabilities are affected as there are much 

less sources with calibrated, high-resolution, and continuous temporal 

coverage available for marine researchers. Further, SDMs for seabirds face 

an unresolved question regarding the best spatiotemporal scale to use for 

modeling. Several approaches were suggested for seabird distribution 

modeling and there is no preponderance for a certain approach over another. 

One approach collects occurrences over several years and use averaged 

environmental data (e.g., Cursach et al., 2019). Another similar approach 

pools presence data and averages the predictor variables on seasonal basis 

(e.g., Oppel et al., 2012). There is also the annual approach which as the 

word suggests model the seabird distribution separately for each year 

(Tuanmu et al., 2011).  
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Chapter 5: Conclusion 

Species distribution modeling is a significant tool for scientists 

and policy makers to forecast the potential future changes in habitat suitably 

and species ecological niche due to climate change (Pereira et al., 2010). In 

present, selecting marine protected areas can benefit from the information 

predicted by the modeling of multiple species distribution (Oppel et al., 

2012).  Likewise, the statistical tools for distribution modeling have been 

available for a considerable time now. Despite, the present study is one of 

only a few climate change evaluations conducted on a seabird in the Arabian 

Peninsula and maybe the middle east region. It is also the only study of such 

approach on the Socotra Cormorant, according to our knowledge. We 

recommend integrating the information provided in this study along with 

other species distribution data that may interest the public and stakeholders 

to designate marine reserves that are self-financed from ecotourism.  

There is a need for baseline studies on the movement patterns of 

forage fish in the Arabian Gulf as its highly lacking. Understanding their 

movement will help scientists better understand the gaps in Socotra 

Cormorant breeding and nonbreeding distribution (Sabir, 2020).  It will also 

facilitate the conservation of the marine hotspots they depend on. 

Conservation measures should be conducted regularly on the islands used 

by the bird. Equally important, framing protective transboundary policies 

across the known range of Socotra Cormorant. 



 

58 

 

References  

Alizada, N., Malik, S., & Muzaffar, S. B. (2020). Bioaccumulation of 

heavy metals in tissues of Indian anchovy (Stolephorus indicus) 

from the UAE coast, Arabian Gulf. Marine pollution bulletin, 154, 

111033.  

Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of 

species distribution models: prevalence, kappa and the true skill 

statistic (TSS). J. Journal of applied ecology, 43(6), 1223–1232. 

Al-Yamani, F., & Naqvi, S. W. A. (2019). Chemical oceanography of the 

Arabian Gulf. Deep Sea Research Part II: Topical Studies in 

Oceanography, 161, 72-80. 

Aspinall, S. (1995). Why the Socotra Cormorant Phalacrocorax 

nigrogularis should be formally protected. NOTES FOR 

CONTRIBUTORS, 5, 10-12. 

Aspinall S. (1996). The Breeding Birds of the United Arab Emirates. 

British Birds, 89(10), 463. 

Azizpour, J., Chegini, V., Khosravi, M., & Einali, A. (2014). Study of the 

physical oceanographic properties of the persian gulf, strait of 

hormuz and gulf of oman based on PG-GOOS CTD 

measurements. Journal of the Persian Gulf, 5(18),37-48. 

Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). 

Selecting pseudo‐absences for species distribution models: how, 

where and how many?. Methods in ecology and evolution, 3(2), 

327-338. 

Bauer, S., & Hoye, B. J. (2014). Migratory animals couple biodiversity 

and ecosystem functioning worldwide. Science, 344(6179), 

1242552. 

BirdLife International (2019). Phalacrocorax nigrogularis (amended 

version of 2018 assessment). The IUCN Red List of Threatened 

Species 2019: e.T22696802A155525071. Retrieved from 

https://dx.doi.org/10.2305/IUCN.UK.2019-

3.RLTS.T22696802A155525071.en. 

https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22696802A155525071.en
https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22696802A155525071.en


 59 

BirdLife International (2022). Species factsheet: Phalacrocorax 

nigrogularis. Retrieved from 

http://datazone.birdlife.org/species/factsheet/socotra-cormorant-

phalacrocorax-nigrogularis/text.   

Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). 

Spatial filtering to reduce sampling bias can improve the 

performance of ecological niche models. Ecological 

modelling, 275, 73-77. 

Bradie, J., & Leung, B. (2017). A quantitative synthesis of the importance 

of variables used in MaxEnt species distribution models. Journal 

of Biogeography, 44(6), 1344-1361. 

Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: the 

next generation Python-based GIS toolkit for landscape genetic, 

biogeographic and species distribution model analyses. PeerJ, 5, 

e4095. 

Bundy, G., Conner, R.J. and Harrison, C.J.O. (1989). Birds of the Eastern 

Province of Saudi Arabia. Witherby, London: Academic Press. 

CBD (2022). Convention on Biological Diversity. Retrieved from 

https://www.cbd.int/convention. 

CMS (2022). Convention on the Conservation of Migratory Species of 

Wild Animals. Retrieved from 

https://www.cms.int/en/page/appendix-i-ii-cms. 

Cook, T. R., Gubiani, R., Ryan, P. G., & Muzaffar, S. B. (2017). Group 

foraging in Socotra cormorants: A biologging approach to the 

study of a complex behavior. Ecology and evolution, 7(7), 2025-

2038. 

Crawford, R. J. M., Sabarros, P. S., Fairweather, T., Underhill, L. G., & 

Wolfaardt, A. C. (2008). Implications for seabirds of a long term 

change in the distribution of sardine: a South African 

experience. African Journal of Marine Science, 30, 177-184. 

 

http://datazone.birdlife.org/species/factsheet/socotra-cormorant-phalacrocorax-nigrogularis/text
http://datazone.birdlife.org/species/factsheet/socotra-cormorant-phalacrocorax-nigrogularis/text


 

60 

 

Croxall, J. P., Butchart, S. H., Lascelles, B. E. N., Stattersfield, A. J., 

Sullivan, B. E. N., Symes, A., & Taylor, P. H. I. L. (2012). 

Seabird conservation status, threats and priority actions: a global 

assessment. Bird Conservation International, 22(1), 1-34. 

Cursach, J. A., Arriagada, A., Rau, J. R., Ojeda, J., Bizama, G., & Becerra, 

A. (2019). Predicting the potential distribution of the endemic 

seabird Pelecanus thagus in the Humboldt Current Large Marine 

Ecosystem under different climate change scenarios. PeerJ, 7, 

e7642. 

Del Hoyo, J., Elliott, A., & Sargatal, J. (1992). Handbook of the birds of 

the world. Barcelona: Lynx edicions. 

Dias, M. P., Martin, R., Pearmain, E. J., Burfield, I. J., Small, C., Phillips, 

R. A., Yates, O., Lascelles, B., Borboroglu, P.G., & Croxall, J. P. 

(2019). Threats to seabirds: a global assessment. Biological 

Conservation, 237, 525-537. 

Diaz Lopez, B., Methion, S., Das, H., Bugla, I., Al Hameli, M., Al Ameri, 

H., Al Hashmi, A., & Grandcourt, E. (2021). Vulnerability of a 

top marine predator in one of the world’s most impacted marine 

environments (Arabian Gulf). Marine Biology, 168(7), 1-11. 

Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F., 

English, C. A., Galindo, H. M., Grebmeier, J. M., Hollowed, A.B., 

Knowlton, N., Polovina, J., Rabalais, N. N., Sydeman, W. J., & 

Talley, L. D. (2012). Climate change impacts on marine 

ecosystems. Annual review of marine science, 4, 11-37.  

Duque-Lazo, J., Van Gils, H. A. M. J., Groen, T. A., & Navarro-Cerrillo, 

R. M. (2016). Transferability of species distribution models: The 

case of Phytophthora cinnamomi in Southwest Spain and 

Southwest Australia. Ecological Modelling, 320, 62-70. 

E.U. Copernicus Marine Service Information. (2022b). Global Ocean 

1/12° Physics Analysis and Forecast updated Daily. Copernicus 

Marine Service. Retrieved from https://doi.org/10.48670/moi-

00016. 

https://doi.org/10.48670/moi-00016
https://doi.org/10.48670/moi-00016


 61 

E.U. Copernicus Marine Service Information. (2022a). Global Ocean 

Physics Reanalysis. Copernicus Marine Service. Retrieved from 

https://doi.org/10.48670/moi-00021. 

Edwards, F. J. (1987). Climate and oceanography. Red sea, 1, 45-68. 

Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range‐

shifting species. Methods in ecology and evolution, 1(4), 330-342. 

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. 

(2011). A statistical explanation of MaxEnt for 

ecologists. Diversity and distributions, 17(1), 43-57. 

Francis, R. C., Hare, S. R., Hollowed, A. B., & Wooster, W. S. (1998). 

Effects of interdecadal climate variability on the oceanic 

ecosystems of the NE Pacific. Fisheries Oceanography, 7(1), 1-

21. 

Gallagher, M., & Woodcock, M. W. (1980). The birds of Oman. Quartet 

Books. 

Gilmour, M. E., Castillo‐Guerrero, J. A., Fleishman, A. B., Hernández‐

Vázquez, S., Young, H. S., & Shaffer, S. A. (2018). Plasticity of 

foraging behaviors in response to diverse environmental 

conditions. Ecosphere, 9(7), e02301. 

Glencross, J. S., Lavers, J. L., & Woehler, E. J. (2021). Breeding success 

of short-tailed shearwaters following extreme environmental 

conditions. Marine Ecology Progress Series, 672, 193-203. 

Grant, M. L., Bond, A. L., & Lavers, J. L. (2022). The influence of 

seabirds on their breeding, roosting and nesting grounds: A 

systematic review and meta‐analysis. Journal of Animal Ecology, 

91(6), 1266-1289. 

Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., 

D'Agrosa, C., Bruno, J. F., Casey, k. S., Ebert C., Fox, H. E., 

Fujita R., Heinemann, D., Lenihan, H. S., Madin, E. M., Perry, M. 

T., Selig, E. R., Spalding, M., Steneck, R., & Watson, R. (2008). 

A global map of human impact on marine ecosystems. Science, 

319(5865), 948-952. 

https://doi.org/10.48670/moi-00021


 

62 

 

Hao, Z., Chen, L., Wang, C., Zou, X., Zheng, F., Feng, W., Zhang, D., & 

Peng, L. (2019). Heavy metal distribution and bioaccumulation 

ability in marine organisms from coastal regions of Hainan and 

Zhoushan, China. Chemosphere, 226, 340-350. 

Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). 

The effect of sample size and species characteristics on 

performance of different species distribution modeling methods. 

Ecography, 29(5), 773-785. 

Hoolihan, J. P. (2006). Age and growth of Indo-Pacific sailfish, 

Istiophorus platypterus, from the Arabian Gulf. Fisheries 

Research, 78(2-3), 218-226. 

Hoolihan, J. P., & Luo, J. (2007). Determining summer residence status 

and vertical habitat use of sailfish (Istiophorus platypterus) in the 

Arabian Gulf. ICES Journal of marine Science, 64(9), 1791-1799. 

Jennings, M. C. (2010). Atlas of the breeding birds of Arabia. British 

Birds, 103, 549-553. 

Jenouvrier, S., Holland, M., Stroeve, J., Serreze, M., Barbraud, C., 

Weimerskirch, H., & Caswell, H. (2014). Projected continent-wide 

declines of the emperor penguin under climate change. Nature 

Climate Change, 4(8), 715-718.  

Johnsgard, P. A. (1993). Cormorants, pelicans, and darters of the world. 

Smithsonian Institution Press. 

Kampf, J., & Sadrinasab, M. (2005). The circulation of the Persian Gulf: a 

numerical study. Ocean Science Discussions, 2(3), 129-164.  

Khan, S. B., Javed, S., Ahmed, S., Al Hammadi, E. A., Al Hammadi, A. 

A., & Al Dhaheri, S. (2018). Does a recent surge in Socotra 

Cormorant Phalacrocorax nigrogularis nesting population and 

establishment of new breeding colonies ensure long term 

conservation? Pragmatic assessment of recent augmentation in 

Abu Dhabi Emirate, UAE. Bird Conservation International, 29(3), 

361-369. 

King, H. (1999). The breeding birds of Hawar. Ministry of Housing, 

Bahrain, 94. 



 63 

Koomey, J., Schmidt, Z., Hummel, H., & Weyant, J. (2019). Inside the 

Black Box: Understanding key drivers of global emission 

scenarios. Environmental Modelling & Software, 111, 268-281. 

Krüger, L., Ramos, J. A., Xavier, J. C., Gremillet, D., González‐Solís, J., 

Petry, M. V., Phillips, R. A., Wanless, R. M, & Paiva, V. H. 

(2018). Projected distributions of Southern Ocean albatrosses, 

petrels and fisheries as a consequence of climatic 

change. Ecography, 41(1), 195-208. 

Kruse, G. H., Livingston, P., Overland, J. E., Jamieson, G. S., McKinnell, 

S., & Perry, R. I. (2006). Report of the PICES/NPRB workshop on 

integration of ecological indicators of the North Pacific with 

emphasis on the Bering Sea. 

Ksiksi, T. S., Muzaffar, S. B., Gubiani, R., & Alshihi, R. M. (2015). The 

impact of nesting Socotra cormorants on soil chemistry and 

vegetation in a large colony in the United Arab 

Emirates. Diversity, 7(1), 60-73. 

Landerer, F. W., Jungclaus, J. H., & Marotzke, J. (2007). Regional 

dynamic and steric sea level change in response to the IPCC-A1B 

scenario. Journal of Physical Oceanography, 37(2), 296-312. 

Landis, J. R., & Koch, G. G. (1977). An application of hierarchical kappa-

type statistics in the assessment of majority agreement among 

multiple observers. Biometrics, 363-374. 

Lantz, C. A., & Nebenzahl, E. (1996). Behavior and interpretation of the κ 

statistic: Resolution of the two paradoxes. Journal of clinical 

epidemiology, 49(4), 431-434. 

Lee, D. E., Nur, N., & Sydeman, W. J. (2007). Climate and demography of 

the planktivorous Cassin's auklet Ptychoramphus aleuticus off 

northern California: implications for population change. Journal 

of Animal Ecology, 76(2), 337-347. 

 

 



 

64 

 

Lima-Ribeiro, M. S., Varela, S., González-Hernández, J., de Oliveira, G., 

Diniz-Filho, J. A. F., & Terribile, L. C. (2015). EcoClimate: a 

database of climate data from multiple models for past, present, 

and future for macroecologists and biogeographers. Biodiversity 

Informatics, 10. 

Louzao, M., Hyrenbach, K. D., Arcos, J. M., Abelló, P., de Sola, L. G., & 

Oro, D. (2006). Oceanographic habitat of an endangered 

Mediterranean procellariiform: implications for marine protected 

areas. Ecological applications, 16(5), 1683-1695. 

Malik, S., Alizada, N., & Muzaffar, S. B. (2020). Bioaccumulation of trace 

elements in tissues of Indian oil sardine (Sardinella longiceps) 

from the northern United Arab Emirates. Marine Pollution 

Bulletin, 161, 111771. 

Meinshausen, M., Nicholls, Z. R., Lewis, J., Gidden, M. J., Vogel, E., 

Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., 

Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, 

G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., 

... Wang, R. H. (2020). The shared socio-economic pathway (SSP) 

greenhouse gas concentrations and their extensions to 

2500. Geoscientific Model Development, 13(8), 3571-3605. 

Merckx, B., Steyaert, M., Vanreusel, A., Vincx, M., & Vanaverbeke, J. 

(2011). Null models reveal preferential sampling, spatial 

autocorrelation and overfitting in habitat suitability 

modelling. Ecological Modelling, 222(3), 588-597. 

Merow, C., Smith, M. J., & Silander Jr, J. A. (2013). A practical guide to 

MaxEnt for modeling species' distributions: what it does, and why 

inputs and settings matter. Ecography, 36(10), 1058-1069. 

Muzaffar, S. B. (2020). Socotra Cormorants in the Arabian Gulf: a review 

of breeding biology, feeding ecology, movements and 

conservation. Aquatic Ecosystem Health & Management, 23(2), 

220-228. 

 



 65 

Muzaffar, S. B., Clarke, C., Whelan, R., Gubiani, R., & Cook, T. R. 

(2017b). Short distance directional migration in the threatened 

Socotra cormorant: link to primary productivity and implications 

for conservation. Marine Ecology Progress Series, 575, 181-194. 

Muzaffar, S. B., Gubiani, R., Benjamin, S., AlShihi, R., Al-Romithi, A., & 

Al Kaabi, F. H. (2015). Food consumption patterns of the 

Vulnerable Socotra cormorant Phalacrocorax nigrogularis 

indicate minimal overlap with fisheries in the eastern Arabian 

Gulf. Oryx, 51(1), 115-123. 

Muzaffar, S. B., Whelan, R., Clarke, C., Gubiani, R., & Benjamin, S. 

(2017a). Breeding population biology in Socotra cormorants 

(Phalacrocorax nigrogularis) in the United Arab 

Emirates. Waterbirds, 40(1), 1-10. 

Nelson, J. B. (2005). Pelicans, cormorants, and their relatives: 

Pelecanidae, Sulidae, Phalacrocoracidae, Anhingidae, Fregatidae, 

Phaethontidae. OUP Oxford. 

Nur, N., Jahncke, J., Herzog, M. P., Howar, J., Hyrenbach, K. D., Zamon, 

J. E., Ainley, D. G., Wiens, J. A., Morgan, K., Ballance, L. T., & 

Stralberg, D. (2011). Where the wild things are: predicting 

hotspots of seabird aggregations in the California Current 

System. Ecological Applications, 21(6), 2241-2257. 

Oppel, S., Dickson, D. L., & Powell, A. N. (2009). International 

importance of the eastern Chukchi Sea as a staging area for 

migrating King Eiders. Polar Biology, 32(5), 775-783. 

Oppel, S., Meirinho, A., Ramírez, I., Gardner, B., O’Connell, A. F., 

Miller, P. I., & Louzao, M. (2012). Comparison of five modelling 

techniques to predict the spatial distribution and abundance of 

seabirds. Biological Conservation, 156, 94-104. 

Paleczny, M., Hammill, E., Karpouzi, V., & Pauly, D. (2015). Population 

trend of the world’s monitored seabirds, 1950-2010. PloS 

one, 10(6), e0129342. 



 

66 

 

Parsons, M., Mitchell, I., Butler, A., Ratcliffe, N., Frederiksen, M., Foster, 

S., & Reid, J. B. (2008). Seabirds as indicators of the marine 

environment. ICES Journal of Marine Science, 65(8), 1520-1526. 

Pecl, G. T., Araujo, M. B., Bell, J., Blanchard, J., Bonebrake, T. C., Chen, 

I., Clark, T. D., Colwell, R. K., Danielsen, F., Evengard, B., & 

Robinson, S. (2017). Biodiversity redistribution under climate 

change: Impacts on ecosystems and human well-

being. Science, 355(6332), eaai9214. 

Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, 

J. P., Fernandez-Manjarrés, J. F., Araújo, M. B., Balvanera, P., 

Biggs, R., Cheung, W. L., Chini, L., Cooper, H. D., Gilman, E. L., 

Guénette, S., Hurtt, G. C., Huntington, H. P., Mace, G. M., 

Oberdorff, T., Revenga, C., ... Walpole, M. (2010). Scenarios for 

global biodiversity in the 21st century. Science, 330(6010), 1496-

1501. 

Phillips, R. A., Xavier, J. C., & Croxall, J. P. (2003). Effects of satellite 

transmitters on albatrosses and petrels. The Auk, 120(4), 1082-

1090. 

Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with 

Maxent: new extensions and a comprehensive 

evaluation. Ecography, 31(2), 161-175. 

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum 

entropy modeling of species geographic distributions. Ecological 

modelling, 190(3-4), 231-259. 

Phillips, S. J., Dudík, M., Schapire, R. E. (2022). Maxent software for 

modeling species niches and distributions (Version 3.4.3). 

Retrieved from 

http://biodiversityinformatics.amnh.org/open_source/maxent. 

Piatt, J. F., Sydeman, W. J., & Browman, H. I. (2007). Seabirds as 

indicators of marine ecosystems. Marine Ecology Progress 

Series, 352, 199.  

http://biodiversityinformatics.amnh.org/open_source/maxent/


 67 

Porter, R. F., & Suleiman, A. S. (2014). The populations and distribution 

of the breeding birds of the Socotra archipelago, Yemen: 2. 

Shearwaters to Terns. Sandgrouse, 36, 8-33. 

Quillfeldt, P., & Masello, J. F. (2013). Impacts of climate variation and 

potential effects of climate change on South American seabirds–a 

review. Marine Biology Research, 9(4), 337-357. 

Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent 

models of species distributions: complexity, overfitting and 

evaluation. Journal of biogeography, 41(4), 629-643. 

Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B., 

Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, 

W., Popp, A., Cuaresma, J. C., Samir, K. C., Leimbach, M., Jiang, 

L., Kram, T., Rao, S., Emmerling, J., ... Tavoni, M. (2017). The 

shared socioeconomic pathways and their energy, land use, and 

greenhouse gas emissions implications: an overview. Global 

environmental change, 42, 153-168. 

Riegl, B. M., & Purkis, S. J. (2012). Coral reefs of the Gulf: adaptation to 

climatic extremes in the world’s hottest sea. In Coral reefs of the 

Gulf (pp. 1-4). Springer, Dordrecht. 

Roberts, M. (2019). MOHC HadGEM3-GC31-HH model output prepared 

for CMIP6 HighResMIP highres-future. Version 20200514. Earth 

System Grid Federation. Retrieved from 

https://doi.org/10.22033/ESGF/CMIP6.5982. 

Robinson, L. M., Elith, J., Hobday, A. J., Pearson, R. G., Kendall, B. E., 

Possingham, H. P., & Richardson, A. J. (2011). Pushing the limits 

in marine species distribution modelling: lessons from the land 

present challenges and opportunities. Global Ecology and 

Biogeography, 20(6), 789-802. 

Rodder, D., Lawing, A. M., Flecks, M., Ahmadzadeh, F., Dambach, J., 

Engler, J. O., Habel, J. C., Hartmann, T., Hornes, D., Ihlow, F., 

Schidelko, S., Stiels, D., & Polly, P. D. (2013). Evaluating the 

significance of paleo phylogeographic species distribution models 

in reconstructing Quaternary range-shifts of Nearctic 

chelonians. PLoS One, 8(10), e72855 

https://doi.org/10.22033/ESGF/CMIP6.5982


 

68 

 

Román-Palacios, C., Wiens, J.J., (2020). Recent responses to climate 

change reveal the drivers of species extinction and survival. 

Proceedings of the National Academy of Sciences, 117, 4211-

4217. 

Semere, D., Hagos, T., Seleba, G., Gebrezgabhier, Y., Haile, Z., Chiozzi, 

G., & De Marchi, G. (2008). The status of breeding seabirds and 

waterbirds on the Eritrean Red Sea islands. Bulletin of the African 

Bird Club, 15, 228-237. 

Syah, A. F., Siregar, E. S. Y., Siregar, V. P., & Agus, S. B. (2020). 

Application of remotely sensed data and maximum entropy model 

in detecting potential fishing zones of Yellowfin tuna (Thunnus 

albacares) in the eastern Indian Ocean off Sumatera. Journal of 

Physics Conference Series, 1569(4), 042097.  

Sydeman, W. J., Brodeur, R. D., Grimes, C. B., Bychkov, A. S., & 

McKinnell, S. (2006). Marine habitat “hotspots” and their use by 

migratory species and top predators in the North Pacific Ocean: 

Introduction. Deep-Sea Research Part II, 3(53), 247-249. 

Tremblay, Y., Bertrand, S., Henry, R. W., Kappes, M. A., Costa, D. P., & 

Shaffer, S. A. (2009). Analytical approaches to investigating 

seabird–environment interactions: a review. Marine Ecology 

Progress Series, 391, 153-163. 

Tuanmu, M. N., Vina, A., Roloff, G. J., Liu, W., Ouyang, Z., Zhang, H., & 

Liu, J. (2011). Temporal transferability of wildlife habitat models: 

implications for habitat monitoring. Journal of Biogeography, 

38(8), 1510-1523.  

Varela, S., Lima-Ribeiro, M. S., & Terribile, L. C. (2015). A short guide to 

the climatic variables of the last glacial maximum for 

biogeographers. PloS one, 10(6), e0129037. 

Veloz, S. D. (2009). Spatially autocorrelated sampling falsely inflates 

measures of accuracy for presence‐only niche models. Journal of 

biogeography, 36(12), 2290-2299. 

 



 69 

Wakefield, E. D., Phillips, R. A., & Matthiopoulos, J. (2009). Quantifying 

habitat use and preferences of pelagic seabirds using individual 

movement data: a review. Marine Ecology Progress Series, 391, 

165-182. 

West, A. M., Kumar, S., Brown, C. S., Stohlgren, T. J., & Bromberg, J. 

(2016). Field validation of an invasive species Maxent 

model. Ecological Informatics, 36, 126-134. 

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, 

A., & NCEAS Predicting Species Distributions Working Group. 

(2008). Effects of sample size on the performance of species 

distribution models. Diversity and distributions, 14(5), 763-773. 

 



 

70 

 

List of Publications 

Naher, H., Al-Razi, H., Ahmed, T., Hasan, S., Jaradat, A., & Muzaffar, S. 

B. (2021). Estimated Density, Population Size and Distribution of 

the Endangered Western Hoolock Gibbon (Hoolock hoolock) in 

Forest Remnants in Bangladesh. Diversity, 13(10), 490. 

Whelan, R., Clarke, C., Almansoori, N., Jaradat, A., Al Qadi, N. S., & 

Muzaffar, S. B. (2018). Demographic consequences of native fox 

predation on Socotra cormorants on Siniya Island, United Arab 

Emirates. Wildlife Biology, 2018(1). 

 

 

 

 

 

 

 

 

 

 



 71 

Appendix 

Table 5: Suitability area for Phalacrocorax nigrogularis in each region 

expressed in surface area. In appendix 

 

Regions 

Suitability area (km2) 

Unsuitable  

(<0.2) 

Least  

suitable 

(0.2-

0.4) 

Moderately 

suitable  

(0.4-0.6) 

Highly  

suitable 

(>0.6) 

C
u
rr

en
t 

F
u
tu

re
 

C
u
rr

en
t 

F
u
tu

re
 

C
u
rr

en
t 

F
u
tu

re
 

C
u
rr

en
t 

F
u
tu

re
 

A
ll

 

1
9
8
0
5
0
0
 

2
1
7
2
7
0
0
 

1
1
3
3
0
0
 

2
4
9
0
0
 

4
2
0
0
0
 

6
0
0
0
 

6
4
1
0
0
 

1
7
0
0
 

A
ra

b
ia

n
 

G
u
lf

 

1
5
6
2
0
0
 

2
2
5
6
0
0
 

2
7
3
0
0
 

0
 

1
6
4
0
0
 

0
 

2
4
0
0
0
 

0
 

G
u

lf
 o

f 
O

m
an

, 
A

ra
b
ia

n
 

S
ea

, 
G

u
lf

 o
f 

A
d
en

 

1
4

8
8

1
0

0
 

1
5

2
4

6
0

0
 

2
5

5
0

0
 

4
1

0
0
 

7
8

0
0
 

8
0

0
 

8
8

0
0
 

1
6

0
0
 

R
ed

 S
ea

 

3
3

6
2

0
0
 

4
2

2
5

0
0
 

6
0

5
0

0
 

2
0

8
0

0
 

1
7

8
0

0
 

5
2

0
0
 

3
1

3
0

0
 

1
0

0
 

 

 



72 

 

This thesis is concerned with species distribution modeling of the Socotra 

Cormorant (Phalacrocorax nigrogularis), a regionally endemic seabird to the 

Arabian Gulf, the Arabian Sea, and the Gulf of Aden. The seabird is poorly 

studied, and large portions of its habitat are disturbed or degraded. The main 

objectives of this thesis are to predict the potential current and future marine 

distribution of the species and estimate the effect of climate change on its 

distribution. The thesis also aims to analyze the important environmental 

variables for the species distribution. 
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