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Abstract

In this thesis, we modify two methods for locating zeros of polynomial systems which
are one dimensional path following and Lancrzos method. Both approaches arebased on
calculating the resultant matrix corresponding to each variable in the system. These
methods are stable and preserving the spareness of these matrices. These methodsare
developed to avoid using the zeros of the multiresultant of each variable which are
condition problems. Theoretical and numerical results will be given to show the efficiency

of these methods. Finally, algorithms for the Mathematica codes are given.

Keywords: Resultant matrix, Lanczos method, One dimensional path following method,

multiresultant.
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Chapter 1: Introduction

In this thesis, we will introduce a new practicable method for approximating all real zeros
of polynomial systems using the multiresultant method. Multiresultant method is used
to solve systems of polynomial equations to determine whether or not solutions exist,
or to reduce a given system to one with fewer variables and/or fewer equations. Histor-
ically, a number of authors have considered the task of numerically determining all of
the zero points of polynomial systems of equations. In [3], Morozov et al. discussed
hidden-variable multiresultant method is a popular class of algorithms for global multi-
dimensional root finding. They study how to compute all the solutions of polynomial

systems of the form

G1 (xl, ......... xn) 0
G(x) = = s (Xl xn) € C"
G (Xpyeeeennnnn. Xn) 0
where n > 0 and Gj....G,, are polynomials in xy, ..., x;,, with real coefficients. Mathemati-

cally, they are based on these methods appear to be a practitioner’s dream as a difficult root
finding problem is solved by the robust QR or QZ algorithm, which exploits the semisep-
arable matrix structure to approximate the eigenvalues in a fast and robust way and gives
access to intermediate results in the computation of generalized eigenvalues [17]. De-
sirably, these methods have received considerable research attention from the scientific
computing community. However, in higher dimensions they are known to miss zeros,
calculate roots to low precision, and introduce spurious solutions. Noferini & Townsend
[14] show that the hidden variable multiresultant method based on the Cayley (Dixon or
Bezout) matrix is inherently and spectacularly numerically unstable by a factor that grows
exponentially with the dimension. They also show that the Sylvester matrix for solving
bivariate polynomial systems can square the condition number of the problem. In other

words, two popular hidden variable multiresultant method is numerically unstable, and



this mathematically explains the difficulties that are frequently reported by practitioners.
Along the way, they prove that the Cayley resultant is a generalization of Cramer’s rule
for solving linear systems and generalize Clenshaw’s algorithm to an evaluation scheme
for polynomials expressed in a degree-graded polynomial basis. In recent years, a number
of authors have considered the task of numerically determining all of the zeros of polyno-
mial systems of equations. In particular, we mention the resultant method of Collins [1]
and the homotopy methods [4]. Since the calculation of the determinant of the resultant is
an unstable problem, Collins’ method has heretofore been confined to systems involving
integer coefficients, and the use of exact integer arithmetic plays a crucial role. In the
homotopy approach, one calculates all of the complex zero points by numerical continu-
ation. The homotopy method is generally stable but its computational cost is high. Most
of the applications arising in science concerning polynomial systems are of this nature.
Allgower et al. [2] gave preliminary work for computing real zeros of polynomial sys-
tems using aspects of both the multiresultant method and the conjugate gradient method.
The two major tasks which they had been dealt with the construction of the multiresultant

matrix M (x;) and the instability of the equation

det(M (x;) = 0.

Since typically G(x) is a polynomial of very high degree in the unknown x, they handle

the latter problem by replacing the condition G(x) = 0 with the equivalent condition

min 1M; (xi) ul|* = 0.
However, they used the conjugate gradient method to calculate the smallest eigenvalue of
the matrix M; (x;)' M; (x;) and testing whether it is zero. Here and in the following, we
denote transposition by 7. Their work was preliminary. They explained how to construct
the Multiresultant matrix but they did not concentrate too much on the numerical tech-

niques for solving these kind of problems. Syam [6] discussed the same problem and he



solved examples using Lanczos method. Also, he wrote some algorithms to construct the

multiresultant matrix. Both techniques in [2] and [6] have the following two problems.

* Their work is preliminary to present the idea of the multiresultant. So, the complex-

ity of their techniques is high which means that their techniques are not practicable.

* They did not discuss the case of singular situation arising in the resultant matrix

application.

To explain the research question of the thesis, we present the idea of multiresultant matrix.
We want to describe how to construct the multiresultant matrix for both homogenous and
inhomogeneous systems. First, we will study the homogeneous case.

Let
GI (x17x27 cee 7-xi’l)

G2 (.X],Xz, ce ,xn)

Gy (X1,X2, ..., Xp)

be n polynomials with real coefficients in n variables. Let r; be the degree of G;(x) for

i=1,2,...... ,n and let Y, be the vector space that is spanned by the set
B, = {x’fxgz ......... X000 < ryingeeennnyiny and i £ in ..., +in:a’}

where d =1—n+Y" | ri. Then f3, is a basis for Y,,. It is easy to see that the dimension

of T, is the binomial coefficient.

Y!
(n—DN(y—n+1)!

where ¥ = Y"r;. Write the basis vectors in f3, in the "reverse lexicographical" order

with (xff) first, (xff’lxn,l) , etc. Then, partition the basis 8, of Y, into n disjoint sets



Ai,i=1,...,n,as follows:

Ai={g € Bn: is divisible by x{ but not divisible by any of x',...,x;"| }.
Let d; be the number of elements in the set A;,i = 1,...,n. Itis easy tosee thats =Y." , d;.
Now, we are ready to define the multiresultant matrix of the system G(x) = 0. It is a
square matrix of order s and it is denoted by M. For any 1 <i < n, there exists an integer
1 < j; < n such that {’:711 d<i< Z{i:l dy. LetK;=i— {‘;]1 d; and g j, be the Kl?h element
of the set A;,. We should note that g, is a monomial of degree d and it is divisible by x:j h

Now, we describe how to homogenize inhomogenize polynomial system of the form

GI1 (x1,x2,...,%) 0

G2 (x1,x2,...,X 0
G(x) = ( )|

Gn (x1,x2,...,X) 0

First, we describe how to construct the multiresultant matrix M (x;) and the multiresultant
G (x;) for each i = 1,2,3,....n. Choose any j € {1,2,...... ,n} and fix the value of
xj. Thus, the system becomes an inhomogeneous system in n equations and (n — 1)
variables X, ... Xj_1,Xj41,.--.. X, To homogenize Gy (x1,x2,....x,) = 0, we introduce a
new variable xo. Then, multiply each term in each polynomial by xg to make the system
homogeneous. The variable xj is called an auxiliary variable and the new polynomial is

called the homogenization of G(x) and it is denoted by G(()j ), Thus, the system becomes

Géj) (XQ,XI;...,X]'+1;,...;XH) 0

(J) . L .
G(j)(x): Gy (X(),X[,...,XJ_H,,...,XH) _ 0
G,(f_)l (Xo,Xl;...,Xj+1;,...;Xn) 0

Now, we see that the coefficients of the homogeneous for the new system are polynomial



expressions in the coefficients of the old system and the chosen variable x;. Let M (x;)
be the multiresultant matrix of G\/)(x). Then M (x;) is called the multiresultant matrix of
G(x) with respect to the variable x;. For more details, see [6]. Let ; be the set of all real
roots of the equation det (M (x;)) =0 forall j=1,2,....n. Then, the set of all real solution
of G(x) = 0 is a subset of the Cartesian product H;le o;. We should test all the points of
H?:1 o numerically to find all real solutions of G(x) = 0. For more details, see [7]-[10].
DUff et al. [11] studied different methods for finding the root set of a generic system
in a family of polynomial systems with parametric coefficients. Although, he presented
a framework for characterizing monodromy-based solvers in terms of decorated graphs.
Under the theoretical that monodromy actions are produced uniformly, they show that the
estimated number of homotopy paths followed by an algorithm following this framework
is linear in the number of roots.

Loisel and Maxwell [12] used Path Following Method to determine the field of values
of a matrix with high accuracy. Additionally, characterizing a unique and efficient algo-
rithm for evaluating the field of values boundary, W (-), of an arbitrary complex square
matrix. The boundary is designed by a system of ordinary differential equations which
are solved using Runge—Kutta (Dormand-Prince) numerical integration to achieve control
points with derivatives, then finally Hermite interpolation is applied to provide a dense
output. The algorithm computes dW (-) both efficiently and with low error. Formal error
bounds are proven for specific classes of matrix. Furthermore, they summarize the pre-
vailing state of the art and make comparisons with the new algorithm. Finally, numerical
experiments are performed to quantify the cost-error trade-off between the new algorithm
and existing algorithms.

Musco et al. [13] presented the stability of the Lanczos Method for Matrix Function Ap-
proximation as he illustrated theoretically elegant and ubiquitous in practice, the Lanczos
method can approximate f(A)x for any symmetric matrix A € R"*", vector x € R" , and
function f. By using analysis bounds, the power of stable estimating polynomials and
raises the question if they fully characterize the behavior of finite precision Lanczos in

solving linear systems.



Chapter 2: The Multiresultant of Polynomial Systems

In this chapter, the resultant matrix of homogeneous and inhomogeneous polynomial sys-
tems will be presented. The relation between the resultant matrix and the zeros of polyno-
mial systems will be investigated. This technique will produce a large sparse matrix. This
chapter will be divided into three sections. Section one is devoted to the homogeneous
polynomial systems while the Second section devoted for inhomogeneous polynomials
systems. Several numerical examples will be presented. In the last section, we present an
important theorem which gives us some stable alternatives to the determinant of resultant

matrix.

2.1 The Multiresultant of Homogeneous Polynomial Systems

Consider the following polynomial system
G:R"—R"

where

G1 (Xl,XQ, . ,x,,)

G (X1,%2,. .., Xp)
G(x1,X0,..Xp) = . = 1. 2.1

Gy (x1,Xx2,...,X,)

Here, we assume that each G; is a polynomial in term of xy, x>, ...,x,. The degree of the
term

& & &

axj x5~ ...x;

is& +&+...+&, where &1,&,,..., &, are nonnegative integers. The degree r; of G;(x)
is the maximum of the degrees of its terms. The Polynomial G; (x1,xp,---,xy) is called

homogeneous if its terms has same degrees.



For example,

2 2 2
G<xlax27x3) = x%+x1x2
X2 —X1+x3

is homogeneous since

2 2 2
G (x1,%2,X3) = x| — X5 — X3,

2
G2 (x1,X2,X3) = x5 +X1x2,
G3 (x1,Xx2,X3) = X2 — X1 + X3

are homogeneous while

X =5
G(x17x2;x3) = X%+X1
X2 —X1+Xx3
. . 2 .
is inhomogeneous since, G (x1,x2,x3) = x5 4+ x1 is inhomogeneous.

Let us assume that G (x1,x2,...,x,) in equation (2.1) be homogeneous and r; be the de-

gree of G (x1,x2,...,x,) fori=1,2,... n.

n
Letd=1—n+)Y r. (2.2)

i=1
Note that any monomial of degree d in x’s must be divisible by x:f for some j. Let ¥, 4 be
the vector space of homogeneous polynomials in x1,x»,...,x, of degree exactly d. The
basis for ¥, 4 is given by the set of monomials in (x1,x2,...,x,) of degree exactly d. The

dimension of ¥, 4 is the binomial coefficient

d+n—1 Al

- n—1 :(n—l)z(,x_nH)M:iZ]ri. (2.3)




Write the basis elements of ¥, ; in "reverse lexicographical" order, with xﬁ first, next

x4=1x,_1,---, etc. Then, partition the basis f3, into A;,i = 1,2,...,n as follows:
Ai= {g € Py xi ]gbutx;jxg forj=1,2,---i— 1}. (2.4)

The resultant matrix M is s X s matrix, and it is describe as follows. Choose an index i and
amonomial f =x{'...x¢ of A;. Then, e; <r,...,e;_; <ri_j,ande¢; > r;. Letg :f/x{i be
the corresponding element of 4;/x/". Then, gG; (x1,x2,...,X,) is a polynomial of degree
S. Then, write gG; in terms of the basis and the row vector of the coefficients is a row in
the matrix M. The matrix M is called the resultant matrix of G. The multiresultant of the
System (2.1) is

R = det(M). (2.5)

Example 2.1.1 Consider the following homogeneous system

G1 (x1,x2,x3) Xf—X5—x3 0
G(xl,X2,X3) = Gy <x1,x2,X3) = x%-l—xlxz = 0
G3 (x1,x2,x3) X2 — X1 + X3 0

Then, the degrees of G1,G,, and G3 are
r :2,}’2:2,7‘3:1,
respectively. Then,
3
d=1-n+)Y ri=1-34+24+2+1=3.
i=1

Let V3 be the vector space that be spanned by

2 .2 3 2
{x3,x2x3,x2x3,x2,x1x3 ,X1X2X3,X1X2,X1X3,XIX2, }



with dimension 10. Let

A ={nepBs:xi|n} = {xixs,xix,x},
Ay = {n € B3 :x% N butx%fn} = {x%X3,x3,x1x%},

Az = {n € B3 :x3|n bus x% X1 andx%fn} = {xg,xzx%,xlx%,xlxzxg}.

The resultant matrix M is formed by dividing the elements of A; by x7 to get {x3,x2,x1 }.
Then, multiply each element in {x3,x,x; } by G1, and write the coefficients out in "reverse
Iexicographical" order to generate the first three rows of M. To explain the idea, we do

the following calculations as follows.

2 > 3
x3Gy (x1,X2,X3) = X]X3 — X5X3 — X3,

2 3 2
xG1 (x1,%2,X3) = X]X2 — X5 — X0X3,

3 2 2
x1Gy (x1,%2,X3) = X] —X1X5 — X]X3.

Then, the first three rows of M are

-1 0 -1 0 0 O O 100
0O -1 0 -1 0 0 0 O1O0
O 0 0 0 —-10 -1001

Divide A, by x% to get {x3,x2,x] }, then multiply each element in {x3,x,x; } by G2 (x1,x2,x3)

to get the following

>

x3G7 (X1,X2,X3) = X5X3 + X1 X2X3,
G 3 2
x2G7 (x1,X2,X%3) = X3 + X1x3,

2, .22
x1G2 (x2,%2,X3) = X1X3 4+ X7X3.
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Then the fourth, fifith and sixth rows of M are

001001O0O0O00©O0
00010O0T1QO0O0O®O
0000O0OO0OT1O0OTPO

In order to complete all rows of M, same steps will be processed like before. Divide Az by
x3 to get {X%7XZ)C3,X1X3,X1)C2}, then multiply each element in {x3,x2,x] } by G3 (x1,x2,x3)

to get

2 2 2, 3
x3G3 (X1,X2,X3) = XpX3 — X1 X5 + X3,
G 2 2
02x3G3 (X1,X2,X3) = X5X3 — X1 X2X3 + X2X3,
G _ 2 2
x1x3G3 (X1,%2,X3) = X1 X2X3 — XTX3 + X1 X3,

2 2
x1%2G3 (x1,X2,X3) = X1X5 — X7X2 + X1 X0X3.

Then, the last four rows of M are

1100 -1 0 0 0 0 O
0110 0 -10 0 0 O
00001 1 O0-1 0 O
o000 o0 1 1 0 —-10
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Therefore, the resultant matrix is

!1 0 -1t 0 0 0 0 1 0 0

O -1 0 -1 0 0 0O 0 1 0

o 0 0 0O -1 0 -1 0 0 1

o o0 1 o0 o 1 0 0 o0 0

v o 0 o0 1 o0 o 1 0 o0 O
o 0 o0 o0 o o 1 o0 1 0

1 1.0 0 -1 0O O O 0 O

o 1 1 o0 0 -1 0 0 0 0

o 0 o o 1 1 0 -1 0 O

o 0 o o o 1 1 0 —-10

Then, the multiresultant R is
R=det(M)=0.

One can see that if we change the order of the polynomials in G (x1,x,x3), then the matrix

M is also changed. However, its multiresultant will stay zero.

Example 2.1.2 Consider the following homogeneous system

X1X2 —x% 0
G (x1,x2,x3) = xX1xp)—x1x3+2xx3 | =1 O
X1+ 2x) —x3 0

Then, the degrees of G1,G> and G3 are

r1:2,r2:2,r3:1,
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respectively. Then,

3
d=1-n+Y ri=1-3+24+2+1=3.

i=1

Let V3 be the vector space that be spanned by
3.2 2 3 2 2.2 2 3
ﬁ3 = {X3,X2X3,X2X3,x2,X1)C3,X1X2X3,X1X2,X1X3,X1X2,x1}
with dimension 10. Let

Ar={neBs:xi|n}={xix3,x{x,x}}
Ay ={n € Bs:x3n butxi {0} = {x5x3,0,x123},

Ay ={n€pBs:x3|nbutxitnandx3tn} = {63,505 x3,x10x3 } .

The resultant matrix M is formed by dividing the elements of A; by x7 to get {x3,x2,x1 },
then multiply each element by G| and writing the coefficients out in "reverse lexicograph-

ical" order to generate the first three rows of M which are

-1 0 00 O 1 0O0O0O
O -1 00 0 O01O0O0O
0 0 00 -1 0O0O0OTO

Divide A; by x% to get {x3,x2,x] } then multiply each term by G5 (x1,x2,x3) to get fourth,

fifith and sixth rows of M as ,

0200-1 1 0 0 00
0020 0 —-11 0 00O
0000 O 2 0-110
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Divide A3 by x3 to get {x%,x2x3,x1x3,x|xz}, then multiply each element by G3 (x1,x7,x3)

to get the last four rows of M as

-1 2 00 I O 0O0O0O
0O -120 0 1 0O0O00O0
O 0 00 -1 2 0100
0O 0 00 0 —-120T120

Therefore, the matrix M is given by

-1 0 00 O 1 0 0 00
0O -1 00 0 O 1 0 0O
0O 0 00 -1 O O O 10
0O 2 00 -1 1 0 0 OO
O 0 20 0 -1 1 0 0O
M =
0O 0 00 0 -20-110
-1 2 00 1 0 0 0 00O
0O -120 0 1 0 0 0O
0O 0 00 -1 2 0 1 0O
0O 0 00 O —-12 0 10
Then, the multiresultant R is
R =det(M) = 0.

Remark. 1 Since Ay,...,A, is a partition of 3,, then

a)Aj £ D fori=1,2,...,n,

b)AlﬂA]:q) fOI'i,jG {1727 7”}7i7£j7

C) U A,’ = Bﬂ
i=1
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Remark. 2 The degrees of the elements of 33 in the previous two examples can be written

in the matrix form as following:

_xl X2 x3_
0 0 3
0 1 2
0 2 1
0 3 0
I 0 2
I 1 1
1 2 0
2 0 1
2 1 0

|3 0 0

Remark. 3 If we change the orders of the polynomials of example 2.1.2 as

X1X) —x% 0
G (x1,x2,Xx3) = 2x7 — x3+ X1 =10 |,

X1X2 — X1X3 + 2x2X3 0
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then the matrix M will be

-1 0 0 0 0 10 0 00O

O -1 0 0 0 01 0 0O

0O 0 0 0 -100 010

O -1 2 0 0 10 O OO

M O 0 -12 0 01 0 0O
0O 0o o0 0 O 12 0 1O

O 0 0 0 -120 1 0O

-1 2 0 0 1 00 O 0O

0O 2 0 0 -11T0 0 0O

O 0 0 0 0 20 -110

with multiresultant
R=det(M)=0.

Remark. 4 The resultant matrix is always sparse matrix and the number of nonzeros in

each row is the number of terms in the corresponding polynomial G; (x1,xp,...,X,).

2.2 The Multiresultant for Inhomogenius Systems

Consider the inhomogeneous polynomial systems in n variables

Gy (x1,Xx2,...,Xn) 0
Gz(xl,X2,...,xn) 0

G(x1,X%0,...,%y) = =1 (2.6)
Gy (X1,x2, ..., Xp) 0

with real coefficients, which has a finite number of solutions. Choose x; and fix a value
for this x;. Then, System (2.2) becomes a system of n inhomogeneous polynomials in

the other n — 1 variables. This new system can be homogenized by adding an auxiliary
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variable x( to obtain a system of n homogeneous polynomials in the n variables consisting

of the other n — 1, variables and the new xg such as

Fl ()C(),"' 7xi*17xi+la---7xn) 0
F> (X0, yXi—1,Xit1, - - s Xn) 0

in (XO, X1, X1, 7~xn> - ) = ) . (27)
Fo (X053 Xim 1, Xig 1 - -5 Xn) 0

Note that the coefficients of System (2.7) are polynomials expressions in the coefficients
of System (2.6) and x;. Hence, the coefficients of System (2.7) are polynomials in x;. Let
R; be the multiresultant of System (2.7) which is a polynomial of x; for simplification can
be written

R; = Ri(x;). (2.8)

Theorem 2.2.1 If the system (2.6) has a solution (%1,%3,...,%,) € C", then, for each
ic{1,2,-,n},

Ri (xi) =0.

Proof. 1f system (2.6) has a solution (%},%,...,Xx,) € C", then System (2.7) obtained by
fixing x; = %] has the solution (%;,...,%_1,%+1...%,). Hence, the homogenized system
(2.7) has corresponding solution by setting xo = 1, for this value %; of x;. Therefore, R;(%;)

must be zero ]

Remark. 5 The converse of Theorem (2.2.1) is not always true.

One can write the real version of Theorem (2.2.1) as follows:

Theorem 2.2.2 If System (2.6) has a real solution (%1,%,,...,%,) € R", then for each i,X

is a real root of R;(x;).
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Thus, If A;is the set of all real solutions of R; (x;), then the set of solutions of System
(2.6) is a subset of the Cartesian product A} X Ay X --- X A,. To explain the idea, the

following examples are investigated.

Example 2.2.1 Consider the following system

x%—}—lexz +x+3 0
G(x1,x) = = ) (2.9

x2+2x1xz—|—x%—|—3 0
Using Mathematica 12.1, the real solutions are x| = 4.62672,x; = —9.952 and x| =
1.26547,x, = —1.42357.

Now, fix x; to get the following system

x% + (2x1 + 1)xaxp + 3x%
Fy, (x0,%2) = =10 |- (2.10)

(1+2x1)x2 + (x5 +3)x0

Then, the orders of Fy, , and Fy,arer) = 2,r, = 1 which implies that d = 2. Then,

3!
C-DI3—2+1)!

S = 3.

Thus,
B = {x%,xoxz,x(z)}. Hence

M={nep:xg|nt={3},

A = {Tl Eﬁz 1Xp | n butx%fn} = {X%,Xoxz}.



Then
A
=11y,
G-
A
o {x2,x0}.
Thus,

1(x3 + (2x1 4 1)xaxg + 3x3) = x5 + (2x1 + 1)xox0 + 3x3,

x2 (14 2x1)x2 4+ (3 +3)x0 = (1 +2x1)x3 + (x% +3) xox2,

x0(1+2x1)x2 + (3 4+ 3)xp = (1+2x1) xx2 + (x? +3) X3

Then, the resultant Matrix is

1 2x1 +1 3
M(x) = 142x; x?—|—3 0

0 1+4+2x; x}+3

Hence,

Ry (x1) =det(M(x1)) =9+ 5x; —dxT —4x3 +x8 =0
which implies that the real roots are A = {1.26547,4.62672}.
Now, fix x, to get the following system

(x% +x2 +3)x0 + 2x1x2 0
Fy,(x0,x1) = =

(%2 +3)23 + (2x2) X163 +x3 0

18

2.11)



Then, the orders of FxZ_’ , and F,,, are r; = 1,r, = 3 which implies that d = 3. Then,

41

(2—1)!(4—2+1)!:4‘

S =

Thus,
B3 = {x7,x0x7, 521,53 }
and
A ={n € B3 :x0/N} = {xoxT, xGx1,x5 }
A= {n € B3 :x?/n, x(z)xn} = {x?}
Thus,
A > 2
% = {xbxoxl,xo},
A
— ={l1}.
X
Hence

X3 (3 +x2 +3)x0 + 2x1x2) = (x5 +x2 + 3)x0xT + 2x3x2,

x0x1 (03 4 x2 4 3)x0 4 2x1x2) = (43 + x2 + 3)x5x1 + 2x0x3x2,
2002 (2 3 2

xg((x5 +x2 4+ 3)x0 4+ 2x1x2) = (x5 +x2 + 3) x5 + 2x5x1 X2,

1((x + 3)x(3) + (2x2)x1x(2) —l—x%) = (x4 3)x(3) + (2x2)x1x(2) +x?.

19
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Then the resultant matrix is

2x7 x% +x+3 0 0
0 2x7 3+x+3 0
M(x2) =
0 0 2x> x% +x+3
1 0 2x» x2+3

Hence,

Ro(x2) = =27 —27xp — 36x3 — 193 — 12x3 — 1155 — x5 =0

which implies that the real roots are Ay = {—9.952,—1.423572}. Thus, the roots of

system (2.11) belongs to the following set

Ay X Ay = {1.2654734077068486,4.626724494907232} x {—9.952,1.42357}

= {(1.26547,-9.952), (1.265473, —1.42357232), (4.62672, —9.952), (4.62672, —1.42357)} .

Then, we have four order pairs and we want to verify which one of them is a solution to

system (2.11). Then,

66.9024 0
G(1.26547,-9.952) = - ,

—30.1134 0

0 0
G(1.26547,—1.42357) = :

8.88178 x 10716 0

12
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—9.56997 0
G(4.62672,—1.42357) = £ ,
—87.4498 0
—1.24345 x 10714 0
G(4.62672,-9.952) = ~
1.42109 x 10714 0

Thus, the roots of system (2.11) are

x1 =4.62672,xp = —9.952,

x1 = 1.26547 x5 = —1.42357.

Example 2.2.2 Consider the following system

¥y +2-1 0
G(x,y,2) = 7—x*—y? =1 0 |- (2.12)
y—x* -7 0

Then, this system describes the intersection of a sphere in R* with two parabolas. Using
Mathematica 12.1, the solutions are x = +0.485868,y = 7z = +0.618034

Now, fix x to get the following systems

(xz—l)x%—f—yz—l—zz 0
Fy(x0,%,2) = —xzx% — 2 4 2xg =10
—xzx(z) +yxo — 22 0

Then,



which implies that

d=1-34+24+2+2=4.
Than, the dimension of 3 4 is

6! 6!
B-1DY6-3+1)! 2141

S = 15.

Then

4 3 .22 3 .4 3 2 2 3 .22 2 2.2 3 .3 .4
B4: {Z Y YT,V T,V LY X028, X0YT 5, X0Y 2, X0Y 5, X028 s X0YT XY 5, XL, X y7x0}

and

Ay ={n € BalgIn} = {x52%,5yz. 5y% x5z 0y x5 |
Ap={n € Bs|y*[n butxgtn} =’y 20" xoy*z,x00°

As={nepBs|Z|nbutxgtnandy® | n} = {z*yz>,x02 . x0yz°} .

22



Using similar argument as in Example 2.2.2, the matrix M (x) is given by

1 0 1 0 0 0O 0 O 0 x*-1 0 0 0 0
O 1L 0 1 0 0 0 0 0 0 x*~1 0 0 0
0O 0 1 0 1 0 0 0 O© 0 0 x*-1 0 0
o 0 0 0 O 1 0 1 0 0 0 0 x*—1 0
0O 0 0 0 O O 1 0 1 0 0 0 0 x*—1
0O 0 0 0 0 O 0 0 0 1 0 1 0 0
0 0 -1 0 0 1 0 0 0 —=x* 0 0 0 0
0O 0 0 -1 0 0O 1 O 0 0 x> 0 0 0
0O 0 0 0 -1 0 0 1 0 0 0 —x2 0 0
0O 0 0 0 0 0 0 —1 0 1 0 0 -2 0
0O 0 0 0 O O O 0 -1 0 1 0 0 —x?
-1 0 0 0 0 0 —-1 0 0 —x* 0 0 0 0
0O -1 0 0 0 0 0 —1 0 0 x> 0 0 0
0O 0 0 0 0 —-1 0 0 0 0 —1 0 —x> 0
0O 0 0 0 0 O —-1 0 0 0 0 —1 0 —x2

Hence, the real roots of R(x) = det(M(x)) =0 are A} = {—1,—0.485868,0.485868, 1}

23




Now, fix y to get the following system

(2 —1) 3 +x>+22 0
Fy(x0,%,2) = —yzx%—x2+z,xo =10
—x? +yx3 — 7 0

Then,

r1:r2:r3:2

which implies that

d=1-3+42+2+2=4

Thus, the dimension of }3 4 is

6! 6!
p— p— :1 .
S=BoDi6e—3+1) 241

Then,

4 2.2 2.2
B4 = {z Xz 227, 07,0t x02  xoxz?, xox?z, xox> , x5 xoz xoxz XpXx xgz xX'x xo}

and

={neps ‘x%’ n}= {x%  Xgx2, x5, xgz,xgx,xg}

={n €B4‘x2’nbutxofn} {x 22,07, x%, xpxz, xox }
Ay ={n € Bs||n butxg fn and * | n} = {*,x2°, 02, xox2” }

Using similar argument as in Example 2.2.2, the matrix M(y) is given by

24



1 0 1 0 0 O O 0 0 y*-1 0 0
O I 0 1 0 0 0 0 O 0 -1 0
o 0 1 0 1 0 0 0 O 0 0 -1
o 0 0 0 O I O 1 0 0 0 0
0O 0 0 0 O 0 1 o0 1 0 0 0
0O 0 0 0 0 0 O 0 O 1 0 1
0 0 -1 0 0 1 0 0 0 —y? 0 0
0O 0 0 -1 0 0 1 0 O 0 —y? 0
o 0 0 0 -1 0 O 1 0 0 0 —y
0O 0 0 0 0O 0 0 —-1 0 1 0 0
O 0 0 0 0 0O O O -1 0 1 0
-1 0 -1 0 0 0 0O 0 0 vy 0 0
0O -1 0 -1 0 0 0 O 0 O y 0
0O 0 0 0 0 -1 0 -1 0 0 0 0
o 0 0 0 O 0 -1 0 —-1 0 0 0
Hence, the real roots of Ryy = det(M(y)) = 0 are
Ay ={—1.61803,—1,0.618034,1}.
Now, fix z to get the following system
(zz—l)x(z)—i—xz—l—y2 0
F(z) = —yz—x2+z,x(2) =10

—x? +yxo — 2°%5 0

25
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Then,

I
S}

ri=nrn=r;

which implies that

d=1-342+2+42=4.

Then, the dimension of 3 4 is

6! 6!

S GBoD6-3+1) 214

15.

Then
4 3 .2.2 .3 4 3 2 2 3 .22 .2 2.2 .3 3 4
B4: {y Y XY L, XY L, X Y, X , X0y ,XoXy ,X0X Y, X0X ,XgY ,XoXY,XpX ,X0Y,X x7x0}

and

Al = {77 < ﬁ4 |x(2)‘ n} = {x(z)yzux(Z)xyux(Z)xzaxg’)y;xg-xrxé}7

A2 = {n < ﬁ4 |X2‘ n but x(z)'fr’} = {x2y27x3y7x47x0x2y7x0x3}7

Az={n e ps |y2‘ n but x3 1 1 and x? | n}= {y4,xy3,xoy3,xoxy2}.

Using similar argument as in Example 2.2.2, the matrix M(z) is given by
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Hence, the real roots of R(z) = det(M(z)) =0 are

Az = {—1.61803,—1,0.618034, 1}

Thus, the roots of system (2.12) are subset of A| X A X A3 where

A ={—1,-0.485868,0.485868, 1},
A, = {—1.61803,—1,0.618034, 1},

Az = {—1.61803,—1,0.618034,1}.

Direct substitution of the elements of A} X Ay X A3 in the system (2.12) implies that

x = =£0.485868,y = 0.618034, and z = 0.618034.
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Chapter 3: Path Following Method

Let G : R" — R”" be n inhomogeneous polynomial with real coefficients in n variables
defined by

G1 ()Cl,xz, . ,xn)

G2 (X],Xz, cee ,xn)
G(x) = . 3.1

Gn (XI,XQ, A ,xn)

In Chapter 2, we discussed the resultant method for solving

G(x) = 0. (3.2)

For each i € {1,2,--- ,n}, we generate the multiresultant matrix M (x;) and the multire-
sultant

R(x;) = det(M(x;)). (3.3)

Then, we proved that the roots of System (3.2) is subset of A} X Ay X --- X A, where A;
is the set of all roots of equation (3.3). We noticed that R(x;) is a polynomial of too high
degree and to find its roots are numerically unstable.

In this chapter, we present a new method to deal with this problem which is numerically
stable and preserve the sparseness of the matrix M(x;). This approach is called one-

dimensional path following method.

3.1 Method of Solution

Let M(x;) be m x m matrix for each i € {1,2,---,m}. Let a and b be two random vectors
in R” with entries from the interval [—a, a] when o > 0. It is worth mentioning that once

a and b have been chosen, they have to be kept fixed.
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Define (m+ 1) x (m+ 1) matrix A(x;) by

Ax;) = . (3.4)

Consider the linear system

A(x;) _ . (3.5)

whenz: R — R"and u : R — R.
Our goal is to show that R(x;) = 0 has a root when pt(x;) = 0 has a root. In this case, we
transform the problem of finding the roots of det(M(x;)) into One-dimensional problem.

To start our process, we need the following definition

Definition 3.1.1 Two subspaces U and V of R* are called acute if

Uunvt={0} (3.6)

where V= is the orthogonal complement of V.

Example 3.1.1 Let

U ={(x,0,0) : x € R} = span{(1,0,0)},
V:{(O,y,z) : y7ZER}:Span{(07170)7(050a1)}7

W ={(x,y,0) : x,y € R} = span{(1,0,0),(0,1,0)}.
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Then,
Vvt ={(x,y,z) € R*: (x,y,2)-(0,1,0) = (0,0,0), (x,y,2) - (0,0,1) = (0,0,0)}
={(x,y2) € R3 =y=0,z=0} =span{(1,0,0)}.
and

Wt ={(x,y,2) € R*: (x,y,2) - (1,0,0) = (0,0,0), (x,y,2) - (0,1,0) = (0,0,0)},

—{(x,y,2) € R3;x=0,y=0} =span{(0,0,1)}

Then,

Unv+t=v+£{0},

Unwt = {0}.

Thus, V and W are acute while U an v are not acute.

Definition 3.1.2 Let A be k X k real matrix. Then, kernel of A is defined by

ker(A) = {xe R :szO}.

Example 3.1.2 Let
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Let Ax = 0. Then, the augmented matrix of Ax =0 is

U= 03 0|0

Subtract row one from row three to get

U2=103 0|0

Multiply row two of U, by % to get

Thus, x; = x» = 0 an x3 € R. Thus,

ker(A) = {(0,0,x3) : x3 € R?} = span{(0,0,1)}.
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In the next theorem, we investigate the singularity of the matrix A(x;) in Equation (3.4)

Theorem 3.1.1 Let a and b be two nonzero vectors such that

1) kerpt(x;) N (span{b})* = {0},

2) span{a} N (Ker(u(x:)) ")+ = {0}.

Then A(x;) is nonsingular matrix.

Proof. Let x; € R and M (x;) = M. Consider the following system

Z 0
A(x;) = . (3.7)
u 0
Then,
M a Z 0
T 0 u 0
which implies that
Mz+ pa =0, (3.8)
b'z =0. (3.9)

We have two cases to consider.

i- Let u = 0. Then, from Equation (3.8), we have

MZ =0. (3.10)



34

Then, z € Kar(M). From Equation (3.9), we get

which yields to

z € span{b}~*

with respect to the Euclidean inner product. Thus, by condition (1) of the theorem
z € Kar(u) N (span{b})* = {0}.

Hence, z = 0. Thus the solution of System (3.7) is

a=_—Mz (3.11)
U
From Condition (2) of the theorem, we have
L
span{a} NKer (M ) = {0}.

Then, a ¢ ker (MT)L.

Thus, there exists a nonzero vector u € ker (M T) such that

a'u#0. (3.12)
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Since u € ker (M T), then

uu=0. (3.13)

Since a = _TIMZ’ then

-1
a = 7zTMT. (3.14)

Hence, from Equation (3.12), (3.13), and (3.14) we have

—1
0#du=—zp'u=—20=0
m m

which is a contradiction. Therefore, the only solution to System (3.7) is the trivial solu-
tion.

Thus, A (x;) is nonsingular matrix. O
In the next theorem, we discuss the sign of det(A(x;)).
Theorem 3.1.2 Under the conditions of Theorem (3.1.1), det(A(y;)) does not change its

sign.

Proof. By Theorem 3.1.1, A (x;) is nonsingular matrix matrix. It is easy to see that

det (A (x;)) is a polynomial of degree m + 1. Thus,
det(A(x;)) # 0. (3.15)

If det(A (x;)) changes its sign, then by intermediate value theorem, there is a root to
det (A (x;)) which contradicts Equation (3.1.5). Hence, det(A (x;)) does not change its

sign. [

Thus, In the next theorem, we want to prove that u (x;) is well defined function and

belongs to C*(R).

Theorem 3.1.3 Under the conditions of Theorem 3.1.1, 1 (x;) is well defined and belongs
to C*(R).
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Proof. Since A(x;) is nonsingular by Cramer’s rule one gets

 det(M (x;))

u(x;) = et (A () (3.16)

Since the denominator and the numerator are polynomials of x; and det (A (x;) # 0, then

From Equation (3.16), u (x;) is well defined and u € C*(R). O

In the next theorem, we study the relation between sign of (x;) and det(M(x;)).

Theorem 3.1.4 Let a and b be two nonzero vectors in R" such that:

1) Ker(M(x;)) Nspan{b})* = {0},

2) Span{a} ﬁKer((M(xi))T)L = {0}.

Let

and

Then, W (x;) changes its sign when det (M (x;)) changes its sign.

Proof. By Cramer’s rule, one gets

~ det(M (x;))
p(x;) = det(A (%))

By Theorems (3.1.1) — (3.1.2), u(x;) changes its sign when det(M (x;)) changes its sign.
It is worth mentioning that since i (x;) changes its sign, a secant method will approximate

the root fast. O]
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One should note the following points
* u(x;) is smooth function.

* We handle a one-dimensional path following method to find the roots of the function
1(xi).
* It is a bad practice to expand the determinants symbolically when the size of the

matrix is large
* The secant method is fast in our approach and it is easy to use.
We end this section by summarizing our method in the following algorithm:
* Input: The vectors a and b.
* Step 1: Compute M(x;) using Chapter 2.

* Step 2: Compute A(x;) using Equation (3.4).

Step 3: Solve System (3.5) to get p(x;).

Step 4: If u(x;) - u(x;) <0, then do step 5.
* Step 5: Use secant method to approximate the roots of R(x;) = 0.
* Step 6: Stop.

Example 3.1.3 Consider the following system

V2 +2xy+y+3 0
G(x,y) = =

y+2xy+x>+3 0

Using Mathematica 12.1, the real solutions are x =4.62672, y = —9.952 and x = 1.26547, y =

—1.42357. Let

a' ={1,0,0,0},

b={1,0,1,0}.
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Table 3.1: x* and p(x*)

1) X
20.798558 | 0.25
0.673099 | 0.5
0.505173 | 0.75
028 I
20.0165201 | 1.25
0235862 | 1.5
0428809 | .75
0541096 | 2.
0579238 | 2.25
056311 | 25
0513321 | 2.75
0445732 | 3.
0.370829 | 3.25
0.294895 | 3.5
0221401 | 3.75
0.152079 | 4.
0.0876429 | 4.25
0.0282364 | 4.5
20.0263015 | 4.75

Fix x. Then, the new system will be

1 2x+1 3 1 0
1+2x ¥*+3 0 0 Z(x) 0
0 1+2x x*+3 0 u(x) E 0
1 0 1 0 1

Therefore, for the step size 0.25, the values of p(x*) is given in Table (3.1)

From Table (3.1) we see the p(x*) changes it’s sign in the intervals, [1.25,1.5] and [4.5,4.75].
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Now, we implement the secant method with

xo=125;x1=1.5,

Uo = —0.01652009424883017; 3 = 0.23586206896551723.

Let p(x;) = t;. Then

2y =y~ MEITX0) 6636,

=1
t, = 0.000949409,

ey PRI ey

h—1
13 = —0.0000570186,

_ B3(x3—x)

= 1.2654734,
13—

X4 = X3

14 = 5.697774372563688 x 10~°.

Also, from Table (3.1) we see the u(x;) changes it’s sign in the interval [4.5,4.75].

Now, we implement the secant method with

X0 — 4.5;X1 = 4.75,

o = 0.028236389732285275; 1 = —0.026301469746214605.
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Figure 3.1: x* and p(x*)

Let u(x;) = ;. Then

2y =y — EI=X0) 043,

H—1
) = —0.000590483,

=y 202Xy osen.

h—1
13 = 0.0000127746,

rymxy— BB T g6

3—0h

14 = 6.013758251406966 x 10~°.

is presented in Figure (3.1). Secondly, for y values, let

a' ={1,0,0,0,0},

b={1,0,0,1,0}.

40

Thus, the approximate value of x* are 1.2654734 and 4.626724. The graph of pu(x*)



The new system will be 5 x 5 matrix:

2y Y +y+3 0 0 1
0
0 2y V2 +y+3 0 0
Z(y) 0
0 0 2y y4+y+3 0 =
p(y) 0
1 0 2y y+3 0
1
1 0 0 1 0

Then, using the step size 0.3, the values of i (y) are given by Table (3.2).
From Table (3.2) we see the 1 (y) changes it’s sign in the intervals [—10.2,—9.9]

Now, we implement the secant method with

Yo = —10.2;y1 = —9.9,

Ho = —0.569606951512295; uy = 0.11554562830423577.

Let pu(y;) = t;. Then,

t —_
3y =y~ MO1=30) g 95050

=1
t, = 0.00314952,

l’ —_
y3=y2— L0223 g 95901,

h—1n
t3 = —0.0000184043,

l’ J—
yimys - BB go5

B3—0n

Also, from Table (3.2) we see the t(y*) changes it’s sign in the intervals [—1.5, —1.2]

41



Table 3.2: y* and p(y*)

m(O™) »*
—5.62403 | —12.
46693 | —11.7
—37595 | —114
—2.89463 | —11.1
—2.0747 | —10.8
—1.29969 | —10.5
—0.569607 | —10.2
0.115546 | —9.9
0.755769 | —9.6
135106 | —93
1.90142 | —9.
240684 | —8.7
286732 | —84
328284 | —8.1
3.6534 —738
397896 | —7.5
425952 | —72
449503 | —6.9
468544 | —6.6
483071 | —6.3
493074 | —6.
498543 | —5.7
499463 | —5.4
495814 | —5.1
487566 | —4.8
474681 | —45
457103 | —42
434751 | —3.9
407505 | —36
375184 | —3.3
3.375 -3,
2.93984 | —2.7
2.4382 —2.4
1.85479 | —2.1
1.15808 | —1.8
0274038 | —15
~1.00365 | —12
—3.39647 | —0.9
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Now, we implement the secant method with

yo = —1.5;y1 = —1.200000000000001,

Uo = 0.2740384615384618; u; = —1.0036475409836005.

Let u(yi) =ti.

t P
ya—yy = HOIZ00) L gas66

=1
t, =0.0451181,

Z‘ I
yiyy— 2027y uassy

h—n
t3 = 0.00731354,

l’ J—
yo—y— DUy s

I3—0n
t4 = —0.0000587725,

t —_
ys =y 408 TY) ey

IW—13

ts =7.6264 x 1078,

Thus, the approximate value of y are —9.952 and —1.42357. The graph of u(y*) is pre-
sented by Figure (3.2). Now, we test the order pairs (1.2654734,9.952), (1.2654734,1.42357),
(4.626724,9.952), (4.626724,1.42357) to check which root will satisfy the system. Thus,

the roots are (4.626724,9.952) and (1.2654734,1.42357).

Example 3.1.4 Consider the following system

P4y +2 -1 0

y—x*—7 0



Figure 3.2: y* and pu(y*)

44

Then, this system describes the intersection of a sphere in R* with two parabolas. Using

Mathematica 12.1 the solutions are x = +0.485868,y = z = +0.618034. Let

Fix x. Then the matrix A(x) is 16 x 16 and given by
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ol

0

0
ol

0

raiuall

0

=(0)V



Using step size 0.05, the values of p(x) is given in Table (3.3).

From Table (3.3) we see the pt(x) changes it’s sign in the intervals [—0.5, —0.45].

Now, we implement the secant method as

xo = —0.45000000000000007;x1 = —0.5,

Ho = 0.3533061794418093; u; = —0.14754098360655818.

Let p(x;) = t;. Then,

vy =y — WFLZX0) g yesoy
nh—1

1 = 0.00614393,

w22 g esee
h—1

13 = 0.000088305,

wmxy BBTR) G esees
3—0n

t4 = —5.714600953287278 x 1078.

Also, from Table(3.3) we see the p(x) changes it’s sign in the intervals [0.45,0.5]

Now, we implement the secant method as

X0 = 0.45;)61 = 0.5,

o = 0.35330617944181153; u; = —0.14754098360655818.



Table 3.3: x and u(x)

(x) X
—2.85968 | —1.1
—2.93823 | —1.05
-3 —1.
—3.03397 | —0.95
—3.02559 | —0.9
—2.95708 | —0.85
—2.80924 | —0.8
—2.5653 | —0.75
—221689 | —0.7
—1.77035 | —0.65
—1.24994 | —0.6
—0.694427 | —0.55
—0.147541 | —0.5
0.353306 | —0.45
0.784349 | —0.4
1.1366 —0.35
141244 | —03
1.62073 | —0.25
1.77262 —0.2
1.87885 | —0.15
1.9483 —0.1
1.98739 | —0.05
2. 0.
1.98739 | 0.05
1.9483 0.1
1.87885 | 0.15
1.77262 0.2
1.62073 | 0.25
141244 |03
1.1366 0.35
0.784349 | 0.4
0.353306 | 0.45
—0.147541 | 0.5
—0.694427 | 0.55
—1.24994 | 0.6
—1.77035 | 0.65
—221689 | 0.7
—2.5653 | 0.75
—2.80924 | 0.8
—2.95708 | 0.85
—3.02559 | 0.9
—3.03397 | 0.95
-3 1.
—2.93823 | 1.05
—2.85968 | 1.1
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Let p(x;) = t;. Then,

2y = xy — LX) aesoay

=1
t, = 0.00614393,

s =y~ 202X ) sesgs

h—1
3 = 0.000088305,

B3l —x)

X4 = X3
3—0

= 0.485868,

14 = —5.714600953287278 x 1078,

Thus, the approximate values of x are 0.485868 and —0.485868. The graph of p(x) is

given by the Figure 3.3.

Figure 3.3: x and u(x)

Fix y. Then choose a' and b. Then the matrix A(y) is 16 x 16 and it’s given by
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o

0
A+01—

0

0
Al B

0

0

b

0

=Ky
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Using the step size 0.05, the values of (y) is given by in Table (3.4). From Table
(3.4). We see the p(y) changes it’s sign in the intervals [0.6,0.65]. Now, we implement

the secant method as

Yo = 0.6;y1 = 0.65,

o = 0.011539848539487864; 11 = —0.019432092104461694.

Let u(y;) =t;. Then,

l’ I
Yo =yp — 11 —yo) —0.61863,
I —1
1, = —0.000374233,
t —_
y3=y2— 20223 _ 618014,
Ih—1
t3 = 0.0000128767,
t —_
vamyy— BT g 6igoma
13—

14 = —7.681868690869802 x 10~°.

Thus, the approximate value of y is 0.618034, The graph of p(y) is given in Figure (3.4).

Fix z. Let

Then, the matrix A(z) is 16 x 16 and it’s given by



Table 3.4: y and pu(y)

©(y) y
0455794 | —0.7
0.504948 | —0.65
0547159 | —0.6
0.582176 | —0.55
0.609756 | —0.5
0.629724 | —0.45
0.642012 | —04
0.646685 | —0.35
0.643956 | —0.3
0.634179 | —0.25
0.617843 | —0.2
0.595547 | —0.15
0567977 | —0.1
0.535873 | —0.05
0.5 0
0461125 | 0.05
0419991 | 0.1
0.3773 0.15
0.333699 | 0.2
0.289779 | 0.25
0.246066 | 0.3
0.20303 0.35
0.161088 | 0.4
0.120617 | 0.45
0.0819672 | 0.5
0.0454851 | 0.55
0.0115398 | 0.6
—0.0194321 | 0.65
—0.0468591 | 0.7
—0.0699161 | 0.75
—0.0873016 | 0.8
~0.0967757 | 0.85
—0.0940791 | 0.9
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Figure 3.4: y and u(y)
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Using step size 0.03, the values of p(z) are given by Table (3.5).

Table 3.5: z and u(z)

u(z) z
0.605 —0.7
0.61375 | —0.65
0.62 —0.6
0.62375 | —0.55
0.625 —05
0.62375 | —0.45
0.62 —0.4
0.61375 | —0.35
0.605 —0.3
0.59375 | —0.25
0.58 —0.2
0.56375 | —0.15
0.545 —0.1
0.52375 | —0.05
0.5 0
0.47375 | 0.05
0.445 0.1
0.41375 | 0.15
0.38 0.2
0.34375 | 0.25
0.305 0.3
0.26375 | 0.35
0.22 0.4
0.17375 | 0.45
0.125 0.5
0.07375 | 0.55
0.02 0.6
—0.03625 | 0.65
—0.095 |07
—0.15625 | 0.75
—0.22 0.8
—0.28625 | 0.85
—0355 |09

54

From Table (3.5) we see the u(z) changes it’s sign in the intervals [0.6,0.65]. Now, we

implement the secant method with

z0 = 0.6;z1 = 0.65,

Ho = 0.020408163265306024,

11 = —0.03498190591073593.
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Let u(z;) =t;. Then,

l’ —_
gy — BT 61800
Hh—1
fy = —0.000434134,
l‘ —_
2y 2272 618005,
h—1

13 =9.591148678045336 x 107°,

Bz —2)

=0.618034,
13 —0n

4 =123

14 = 1.664970439296809° x 10~°.

Thus, the approximate value of z is 0.618034. The graph of pi(z) is given in Figure 3.5.

Figure 3.5: zand u(z)
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Chapter 4: Lanczos Method

4.1 Equivalent Conditions to Multiresultant

As we noticed in Chapter 2, computing zeros of n inhomogeneous polynomials system
G(x)=0 4.1)
with real coefficients in n variables is equivalent to solve
R(x;) =det(M (x;)) =0 4.2)

fori =1,2,...,n. However, computing the determinant of the resultant matrix M (x;) is
unstable problem. To overcome this instability, we replace problem (4.2) by the following

stable problem.

Jemin (31) = min { 1M ()l s w € R, | = 1}

M (x;) ul|*
:min{M:MERS,u#O}

a2

4.3)

where ||.|| denotes the Euclidean norm. Theorem (4.1.1) gives some equivalent conditions

to Equation (4.2).
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Theorem 4.1.1 The following are equivalent.

a) R(x;)=det(M(x;)) =0.
b) mm{|yM(x,-)u||2 Lu € R and |Ju| = 1} = 0.

M (x;) ul|?
c) min{%:ueRsandu#O}:O
u

d) The smallest eigenvalue of M(x;)*M (x;)is zero, when * weans transpose of the matrix.

Proof. (a) = (b): If R (x;) = 0, then M(x;) is singular matrix. Thus, there exists ug € R*

with ug # 0 such that

M (x;) up = 0.

Letv = IIZgII' Then, ||v|| = 1 such that M (x;) v = 0. Thus,
1M (x;) v]| = [[0] = 0.

Since ||M (x;)u|| > O for all u € R® and ||u|| = 1, then
min{||M(x,~)uH2 cu € RS and ||u] = 1} = 0.

(b) = (c) : For any u € R* with u # 0, we define

V. — u
Cull

Then, v, € R® with ||v,|| = 1. Thus,

1M (xi) u]|?

2 . 2
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which implies that

M (x;) ul)?
Ogmin{%:ueRsandu#O}
u

<min{[|[M (x;)v|[*:veR and |v|=1} =0.

Hence,

0.

lue]]?

M (x;)ull
min{M:ueRsandu%O}

(c) = (d) Let

N2
min M:ueRsandu 0, =0.
[Juel |
u

Then, there exists u € R® with u £ 0 such that

M)l
ul
Ju

which implies that
(M (x;)u) = 0.
Thus,
M (x))M (x;))u=0
Then, zero is an eigenvalue of M* (x;) M (x;).

Also, all eigenvalues of M*(x;)M (x;) are nonnegative real numbers. Hence, the smallest

eigenvalue of M* (x;) M (x;) is zero.
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(d) = (a) : If the smallest eigenvalue of M* (x;) M (x;) is zero, then

det (M* (x;) M (x;)) = det® (M (x;)) = 0

which implies that

R (x,’) = det (M (x,')) =0.
[

Therefore, we will look for x; such that the smallest eigenvalue of M* (x;) M (x;)
is zero.
Let us assume that

1 (xi) = M* (xi) M (x;) . (4.4)

One should note that u (x;) is a large sparse square symmetric matrix. In some cases,
W (x;) is singular. Therefore, we should use suitable method for such matrices which is

the Lanczos method.

4.2 Lanczos Method

Let us assume that

p(xi) = M" (x;) M (x;) (4.5)

for i = 1,2,...,n. Then, u is large, square, symmetric matrix of order s. Also, u is
singular matrix in sometimes. For this reason, Lanczos method is one of the most suitable
methods to use in this case. In this section, we describe it.

Let us define the Rayleigh quotient as follows
* .

Ry = ""HL g (4.6)
u*u

Then, using Theorem (4.1.1), the minimum of R(u) is the smallest eigenvalue of p(x;).

Let us fix x; and for simplicity write t(x;) by pu. Let {qi,...,qs} C R® be the Lanczos
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orthonormal vectors and define

Qn: q1, 92, *** qn 7n:1,2,"'7s. (47)

Then, ) )

a f 0 O

. B & - 0
Qn;u“Qn = Tn —

0 . . B

0 0 B oy
We can generate qy,...,qn, &1, .., 0, and Bi,..., B,_1 using the following algorithm.
Algorithm 1:

* Input: The matrix A of order n.
* Qutput: The matrices Q, and T,,.
Step 1: Let g € R® with ||¢;|| = 1 using the Euclidean norm.

Step 2: Let

/
VI = Uq1
/%
a; =V qi1

/
Vi =V — 4.

Step 3: Fori=2:n,do steps 4 —8.
Step 4: Let B; = ||vi—1].

Step 5: If B; # 0, then ¢; = %, else choose g; of norm one and orthogonal to g, j = 1:

i—1.

Step 6: Let v/ = Ag;.
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Step 7: Let 0; = v!*qg;.

Step 8: Let v; = V! — 04qi — Bigi—1.

Step 9: Let
On=1q1---qa].
Step 10: Let ) )
(04] ﬁz 0 0
B o . 0
T, =
0 . ﬁn
0 0 B, oy
Step 11: Stop.
One can see that
my = minu;éOR(Qnu) Z A'min (xi>7 (4.8)
and my = my > ... = mg = Apin(x;). 4.9)
Example 4.2.1 Let ) )
1 4 3
H=14 45
356
Let o
1
a1 =10




Then

1
Vi=Ugqi=| 4
3
Where o) = v{*q; = 1. Thus
1 1 0
vi=vi—ouqi=|4|—-]0|=14
3 0 3
Then, fB, =75 and
0
92= | 4/5
3/5
Thus, g1 -g> =0 and
1 4 3 0 25

Hence, &, = vy*qs = 5[0+ 124+ 114] = 28 and,

25 0 1 0

, 1 238 1
V2:V2—0‘2(I2—[32QI:§ 31 ~ 125 4 1=5|0 =125 —177

38 3 0 236

Thus, B3 = [|v2|| = % and
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0
\%)
3= 5 = ;3 9
1 Bs 5
4
- 5 -
Where q1-2=0, ¢2-g3=0, q1-93=0.
Then, ) o ) o
1 4 3 0 0
f = = -3 | =18
V3 = Ugs 4 45 = R
4 9
_3 5 6_ |5 5 |
and ) )
0
12
= Vi¥gr = 8 9 -3 | ==
0 =V3qs [0 5 3} < | 25
4
L. 5 -
Thus, 7, and Q,, have been generated as
1 5 0
= 238 59
59 12
_O ﬁ E —
1 0 0

On=10 4/5 -3/5

0 3/5 4/5
It is worth mentioning that there is no need to calculate all m; for i =1 : 5. since we
will get an excellent approximation to A, (x;) by m, for n is smaller than s. Another

advantage is that T, is tridiagonal matrix. Thus, we can write it as n X 3 matrix to save
storage in the computer and to reduce the computational cost.
We can write Algorithm 1
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in the following form to make it more suitable for programming.

Algorithm 2:

* Input: € > 0 % tolerance, ® € R® with ||®||, = 1, a matrix u.
s output: o;,i=1:nand B;,j=2:n.

Step 1: Leti=1,v=0,5, = 1.

Step 2: While 3; > € and i < n, do steps 3-7.

Step 3: If i # 1, do steps 4 — 5.

Step 4: For k=1 :s, do steps 5.

Step 5: Lett = wy, wy = %, Vi =—B;-t.

Step 6: Letv=v+ .

Step 7: For

i=i+l,0_1=0"V,v=v—0;_1®

Bi = [val|

Step 8: Stop.

Remark. 6 One can see the following.

1. In each step, we need one evaluation of yu®. Thus, 7, can be generated by n evaluations
of uw.

2. In our code, to compute L m, we need

a) Compute r = p (x;) o,

b) Compute M* (x;)r.

3. If M (x;) has y nonzero elements in average in each row, then the single Lanczos step
need (3y+8)s flops.

4. The vectors @ has size s x 1.
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5. The main disadvantage of Algorithm 2, we loose the orthogonality of the Lanczos vec-
tors @’s due to the cancellation.

To overcome the difficulty in point (5), We can use either complete reorthogonalization or
selective orthogonalization. Unfortunately, the complete reorthogonalization is compli-
cated to use and very expensive in terms of computational cost. Therefore, in this section,
we use the selective orthogonelization. Since 7, is triadiagonal symmetric matrix, we can
apply the symmetric QR methad on it. Let 0y, 6,, ..., 6, be the computed Ritz values and

Sn 1s nearly orthogonal matrix of eigenvectors. Let

Yo =1[y1---Yn| = OnSn. (4.10)

Then, it can be shown that

nJr] |~ 8
”| ”i|

and

1y = Biyill ~ |Bal lsni| = B,

where € is the machine precision. We say the computed Ritz pair (0,y) is "good" if
ey — 8yl = Vel 2.
One can measure the loss of orthogonality of Q; by
ki = ||l — Qi Qill and ky = [|1 — g1

Then,

ki <k, < <k

The relation between k; | and k; is given by the following theorem.
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Theorem 4.2.1 if k; < n, then

1
< 3 (n+ein-er 4l )

Now, Let us fix 17, say ) = 10 ~2. If k; <7, then g;41 is orthogonal on all columns of
Q; . In this case, no need to do any reorthogonalization. If k; > 7, then we orthogonalize
gi+1 against each "good" Ritz vectors. It is easy to see that the selective orthogonlization is
much less costly than the complete reorthogonalization since there are fewer "good" Ritz
vectors than Lanczos vectors. Another advantage in using the selective orthogonadization
is that we implement the symmetric QR method on 7,, which has small size comparing
with the size of p. The following algorithms shows how can we apply the Rayleigh
quotient iteration with selective orthogonatization to find the smallest eigenvalue of the
matix 7. It is easy to see that 75 and u are similar and they have the same eigenvalues.

Algorithm 3:

Input : x(©) such that HX(O)H =1

Output: Approximate value for smallest eigenvalue of 7;,.

Step 1: For k =0,1,..., do steps 2-5.

. o x(k)*Tn_x(k)
Step 2: Compute my, = RNGEN R

Step 3: Set I, to be the identity matrix of order n.

Step 4: Solve (T, — myd,) 2%V = x(*) for 7*k+1),

. (k-‘rl) o Z(k+l)
Step 5: Set x = [
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* Step 6: Stop.
For more details about selective of orthogonalization and Lanczos method, see [16]

Example 4.2.2 Consider the following 73

1 5 0

;= 238 59
3 5 35 53
59 12

0 5 35

We want to find the smallest eigenvalues. Let

X0

|
o

Then

Then, z; is the solution of

Which implies that,

<1




Hint, ) )
—0.637577
<1
X1 =7_7 = | 0.16577
[zl
0.7527341
Similarly, we will get
—0.474403
w=0471545, x= | 0.034914
0.879615
—0.48391
M2 = 0.587372,  x3 =] 0.0399022
0.874208
w3 =0.587717

Thus,

Uz = min{||A]| : A is an eigenvalue of 73} .

Note that the eigenvalues of 73 are {12.2221,—1.8098,0.587717}.

4.3 Numerical Results

68

In this section, we present two examples. The first example is taken from [2.2.2] to make

a comparison with their results.
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Example 4.3.1 Consider the following system of polynomials

2, 2., 2

Gy (x1,x2,x3) =x]+x5+x5— 1,
2., 2

G (x1,%2,x3) = x| +x3 — X3,

2 2
G3 (x17x27x3) =X +X3 —X2.

Using Mathematica, it is easy to see that the solution to the system

G(x)=0 (4.11)

are

5-1
X) =X3= \/_2 ~0.618 and x; = +4/x3 —x% ~ £0.486.

We scan for a solution of the x; parameter in the interval [—0.7,0.7] and of x, parameter
in the interval [—0.9,0.9]. The parameter x3 will give the same result as x,. In all cases,
the increment is 0.05. Table 1 and 2 show the minimal eigenvalues A and the number of
evaluations of uw which were necessary to obtain A, say v. We should note for Tables
(4.1)-(4.3) that, the x; compute of the roots belongs to [—0.5,—0.45] and [0.45,0.5]. Also

x3 and x3 compute of the roots belong to [0.6,0.65].



Then the matrix M(y) 15 x 15 and it’s given by
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Then the matrix M(x) 15 x 15 and it’s given by
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Then the matrix M(z) 15 x 15 and it’s given by

72




Table 4.1: Minimal eigenvalues for x;

X1

A

X1

A

—0.70

1.27191124¢ 92

0.05

2.22173682¢ 2

—0.65

8.85884225¢ 02

0.10

2.08564155¢ 02

—0.60

4.67641301e9

0.15

1.86667841¢ 92

—0.55

1.51264545¢93

0.20

1.57759820e 92

—0.50

7.18964033¢ %

0.25

1.23793046¢ 92

—0.45

4.38330123e ™

0.30

8.75111892¢ 03

—0.40

2.31806868¢ %

0.35

5.25114642¢ %

—0.35

5.25114642¢ %

0.40

2.31806868¢ %

—-0.30

8.75111893e¢ 03

0.45

4.38330123e %

—0.25

1.23793046¢ 92

0.50

7.18964033¢ %

—-0.20

1.57759820e 92

0.55

1.51264545¢=%

—0.15

1.86667841¢ 92

0.60

4.67413007¢ %

—0.10

2.08564155¢ 02

0.65

8.85884225¢ 03

—0.05

2.22173682¢ 92

0.70

1.27191124¢ 92

0.00

2.26785889¢ 02
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Table 4.2: Minimal eigenvalues for x»

X2

A

X2

A

—-0.90

7.37871009¢ 92

0.05

3.98609845¢ 92

—0.85

1.54541246¢ 92

0.10

3.56493115¢ 92

—0.80

2.52100806¢ 92

0.15

3.11355792¢ 92

—0.75

3.56222937¢ 02

0.20

2.64209258¢ 92

—0.70

4.47391043e 92

0.25

2.16350960e 92

—0.65

4.92109204e 92

0.30

1.69348432¢ 93

—0.60

5.19030914¢ 92

0.35

1.24973056¢ %

—0.55

5.39712898¢ 92

0.40

8.50791843e¢ 03

—-0.50

5.55339702¢ 92

0.45

5.14372620e %

—0.45

5.66056506¢ 92

0.50

2.55436512¢ %

—0.40

5.71834514¢ 92

0.55

8.44063522¢ 04

—0.35

5.72614010e %2

0.60

5.82790608¢ %

—0.30

5.68340255¢ 92

0.65

1.77750934e %4

—0.25

5.58976649¢ 02

0.70

1.12056512¢ %3

—0.20

5.44512936e 92

0.75

2.74818083e¢ %3

—0.15

5.24973687¢ Y2

0.80

4.85268510e 93

—0.10

5.00429927¢ 92

0.85

6.88978374¢ %3

—0.05

4.71016689¢ 92

0.90

5.59574311e=%

0.00

4.36959277e 92
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Example 4.3.2 Consider the following system

Gi1(x,y,z,w,r) =X+ + 22 +wr+r2 -1,
Go(x,y,2,w,r) = x>+ + 22 +w? —r,
G3(x,y,2,w,r) = x>+ + 224+ 17 —w,
Ga(x,y,z,w,r) =xt—7,

GS(x7y7Z7W7 I") = Zz _y2.

Using Mathematica, the solution of the system

G(x)=0 (4.12)

are

x = 10.418202002, y==+0.174892914

z==20.174892914, w=r=0.618033189.

One can see that the size of the resultant matrix for each variable is 445 x 495. We make
an entirely analogous analysis to that of Example (4.3.1). We Scan for a solution of
the x-parameter in the interval [—0.7,0.7], y-parameter, and z-parameter in the interval
[—0.4,0.4], and w-parameter and r-parameter in the interval [—0.9,0.9]. In all the cases,
the increment is 0.05. Tables (4.3 —4.7), show the minimal eigenvalues A and the number

of evaluations of uw which were necessary to obtain A, say V.



Table 4.3: Minimal eigenvalues for x

A

A

—0.70

8.3714¢ 02

10

0.05

3.2421e 92

11

—0.65

4.4281e792

10

0.10

2.6543e92

11

—0.60

1.7562¢ 02

10

0.15

1.6870e 02

10

—0.55

7.2162¢ 93

11

0.20

1.0057¢ 02

10

—0.50

1.3869¢ 93

11

0.25

5.7392¢ 93

10

—0.45

3.2863¢ 04

10

0.30

1.5155¢ 03

10

—0.40

1.1111e79

10

0.35

6.5101e %

10

—0.35

7.5412e %4

10

0.40

1.1081e 95

11

—-0.30

2.5410e 93

10

0.45

3.3832¢ ™

10

—0.25

7.8320e 93

10

0.50

2.9126e 93

10

—-0.20

1.7774¢ 02

11

0.55

7.2106e 03

10

—0.15

2.7656e 92

11

0.60

2.4111e792

11

—0.10

3.1826¢ 92

11

0.65

5.8532e 02

11

—0.05

4.2010e 02

11

0.70

6.7210e 92

11

0.00

6.2341e 92

12

76



Table 4.4: Minimal eigenvalues for y

A

A

—0.40

3.2145¢ 92

11

0.05

2.8085¢ 93

11

—0.35

1.2360e 02

11

0.10

5.6910e %

11

—0.30

5.7681e 93

12

0.15

3.1232¢= %

10

-0.25

4.4441e 04

11

0.20

3.6295¢ %

10

—-0.20

3.2142e 9

10

0.25

5.6563e %

11

—0.15

3.0210e %

10

0.30

4.4222¢03

11

—0.10

5.4980e %4

11

0.35

8.9066e 93

12

—0.05

3.0289¢ 93

12

0.40

2.9400e 92

11

0.00

2.1256e92

11

Table 4.5: Minimal eigenvalues for z

A

A

—0.40

3.5412¢ 92

12

0.05

1.9326¢ 03

12

—0.35

1.8720e 02

11

0.10

2.1211e ™

11

—0.30

4.9998¢ 03

12

0.15

3.0022e %

10

-0.25

3.3321¢= ™

11

0.20

3.1240e=%

10

—0.20

3.3908e %

10

0.25

4.4781e=%4

11

—0.15

3.2085¢ %

10

0.30

3.4061e 93

11

—0.10

4.2106e =%

11

0.35

7.0169¢ 03

12

—0.05

5.2376e 93

12

0.40

3.9223e02

12

0.00

1.8720e 02

12
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Table 4.6: Minimal eigenvalues for w

A

A

—0.90

7.9911¢ 92

12

0.05

5.3245¢792

11

—0.85

2.6712¢792

12

0.10

4.3876¢ 02

11

—0.80

6.7802¢ 92

11

0.15

3.2345¢792

11

—0.75

8.9112¢ 92

11

0.20

2.9879¢ 92

10

—0.70

1.1114¢792

12

0.25

1.0221¢702

10

—0.65

8.9262¢ 92

12

0.30

5.0211¢ 93

10

—0.60

8.0925¢ 02

12

0.35

4.2333¢703

10

—0.55

7.0254¢92

12

0.40

2.0011¢ 93

11

—-0.50

5.0282¢792

12

0.45

1.0098¢ 03

11

—0.45

5.9845¢02

12

0.50

1.0001¢93

11

—0.40

2.0186¢ 92

12

0.55

4.9888¢ 04

10

—0.35

7.0982¢ 92

11

0.60

2.0110e 9

10

—0.30

7.0981¢ 92

11

0.65

1.2299 04

10

—0.25

1.1652¢02

11

0.70

3.0098¢ 03

11

—0.20

2.0931e 92

11

0.75

4.6721e 93

10

—0.15

1.8733¢ 92

11

0.80

7.8882¢ 93

11

—0.10

6.0245¢92

10

0.85

8.9901¢ 93

11

—0.05

7.9867¢ 92

10

0.90

9.9913¢ 93

12

0.00

6.0001¢ 92

10
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Table 4.7: Minimal eigenvalues for r

r A v r A v

—0.90 | 8.2234¢792 | 131 0.05 | 7.2397¢ 92 | 12

—0.85|4.8972¢792 1 121 0.10 | 5.5551e7 92 | 12

—0.80 | 7.3003¢792 | 121 0.15 | 3.2458¢792 | 11

—0.75 | 7.5412¢792 | 121 0.20 | 2.3145¢792 | 11

—0.70 | 2.3341¢79%2 | 121 0.25 | 1.9110¢7 92 | 10

—0.65 | 7.1112¢792 | 121 0.30 | 9.9994¢=% | 10

—0.60 | 9.9989¢792 | 12 0.35 | 7.8234¢ 9 | 11

—0.55(1.2312¢792 | 121 0.40 | 5.3572¢ % | 11

—0.50 | 4.0026¢9%2 | 121 0.45 | 2.2299¢ % | 11

—0.45 | 4.1209¢79%2 | 121 0.50 | 1.1009¢ % | 11

—0.40 | 7.2124¢79%2 | 11 | 0.55 | 4.4422¢79% | 10

—0.35(3.9920¢79% | 11 | 0.60 | 2.1180¢=% | 10

—0.30 | 1.1191¢79% | 11 [ 0.65 | 1.7521e % | 10

—0.25(2.1367¢792 | 11 10.70 | 3.6001e¢ % | 11

—0.20 | 6.3456¢792 | 11 | 0.75 | 5.9236¢93 | 10

—0.15]1.9867¢792 | 11 | 0.80 | 6.9221¢ 93 | 11

—0.10 | 3.3332¢792 | 10 | 0.85 | 9.9966¢=% | 11

—0.05 | 1.0009¢792 | 10 | 0.90 | 5.4470e=9 | 12

0.00 | 4.5321¢7%2| 10

From Tables (4.3 —4.7), we see that this approach works nicely and efficiently. Com-
paring the number of evaluations v in our approach with Allgower [2], we see that their

approach is more expensive than ours.
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4.4 Conclusions

In this thesis, the location of the zeros of polynomial systems using multiresultant metrics
demonstrated in different methods such as “one-dimensional path following method” and
the “Lancrzos method”. It started with preliminaries about the multiresultant of homoge-
nous polynomial systems and how to homogenize the inhomogenous polynomial system,
although several numerical examples were presented and illustrated the technique dealing
with large sparse matrices which has a finite number of solutions for homogenous as well
as inhomogenous polynomial systems. Chapter 1 presented the literature review. Further-
more, Chapter 2 investigated the relationship between the resultant matrix and the zeros
of polynomial systems and it is devoted to homogeneous and inhomogeneous polyno-
mial systems. Several numerical examples were illustrated with theoretical results which
prove that the multiresultant matrix has at least one zero eigenvalues. In Chapter 3, we
presented a new method to deal with an unstable method which has been used in Chapter
2 to find the roots of high degree multiresultant. However, the new method is numerically
stable and preserves the sparseness of the multiresultant matrix, this new method is called
the one-dimensional path following method. Also, the numerical results of the singular
matrix showed the efficiency and sufficiency of the proposed method. The approach of
theorems (3.1.1)-(3.1.2) and Cramer’s rule shows the approximation of the zeros’ location
when the sign of the function changes. Moreover, secant method has been used to approx-
imate the root fastly and it is easy to use. Furthermore, a one-dimensional path following
method is to find the roots of the function, and it is a bad practice to expand the determi-
nants symbolically when the size of the matrix is large. In addition, a numerical example
described the intersection of a sphere in R with two parabolas by using Mathematica-
(12.1) and path following method and secant method to identify the accurate solutions of
the System 3.1.4. In addition, Chapter 4 presented equivalent conditions to multiresultant,
as we justify in Chapter 2 computing the determinant of the resultant matrix is unstable
and costly to overcome these issues we proceed to equivalent conditions to multi-resultant
by using Lanczos method which is one of the most suitable to use for large sparse square

symmetric matrix. Finally, some conclusions were drawn in Chapter 4.
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