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Abstract

Keywords: Resultant matrix, Lanczos method, One dimensional path following method,

multiresultant.

In this thesis, we modify two methods for locating zeros of polynomial systems which
are one dimensional path following and Lancrzos method. Both approaches arebased on
calculating the resultant matrix corresponding to each variable in the system.These 
methods are stable and preserving the spareness of these matrices. These methodsare 
developed to avoid using the zeros of the multiresultant of each variable which are
condition problems. Theoretical and numerical results will be given to show the efficiency
of these methods. Finally, algorithms for the Mathematica codes are given.
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 ص الملخ  
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Chapter 1: Introduction

G(x) =


G1 (x1, . . . . . . . . .xn)

...

Gn (x1, . . . . . . . . . .xn)

=


0
...

0

 , (x1, . . . . . . . . .xn) ∈ Cn

where n > 0 and G1....Gn are polynomials in x1, ...,xn with real coefficients. Mathemati-

cally, they are based on these methods appear to be a practitioner’s dream as a difficult root

finding problem is solved by the robust QR or QZ algorithm, which exploits the semisep-

arable matrix structure to approximate the eigenvalues in a fast and robust way and gives

access to intermediate results in the computation of generalized eigenvalues [17]. De-

sirably, these methods have received considerable research attention from the scientific

computing community. However, in higher dimensions they are known to miss zeros,

calculate roots to low precision, and introduce spurious solutions. Noferini & Townsend

[14] show that the hidden variable multiresultant method based on the Cayley (Dixon or

Bezout) matrix is inherently and spectacularly numerically unstable by a factor that grows

exponentially with the dimension. They also show that the Sylvester matrix for solving

bivariate polynomial systems can square the condition number of the problem. In other

words, two popular hidden variable multiresultant method is numerically unstable, and

In this thesis, we will introduce a new practicable method for approximating all real zeros

of polynomial systems using the multiresultant method. Multiresultant method is used

to solve systems of polynomial equations to determine whether or not solutions exist,

or to reduce a given system to one with fewer variables and/or fewer equations. Histor-

ically, a number of authors have considered the task of numerically determining all of

the zero points of polynomial systems of equations. In [3], Morozov et al. discussed

hidden-variable multiresultant method is a popular class of algorithms for global multi-

dimensional root finding. They study how to compute all the solutions of polynomial

systems of the form
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this mathematically explains the difficulties that are frequently reported by practitioners.

Along the way, they prove that the Cayley resultant is a generalization of Cramer’s rule

for solving linear systems and generalize Clenshaw’s algorithm to an evaluation scheme

for polynomials expressed in a degree-graded polynomial basis. In recent years, a number

of authors have considered the task of numerically determining all of the zeros of polyno-

mial systems of equations. In particular, we mention the resultant method of Collins [1]

and the homotopy methods [4]. Since the calculation of the determinant of the resultant is

an unstable problem, Collins’ method has heretofore been confined to systems involving

integer coefficients, and the use of exact integer arithmetic plays a crucial role. In the

homotopy approach, one calculates all of the complex zero points by numerical continu-

ation. The homotopy method is generally stable but its computational cost is high. Most

of the applications arising in science concerning polynomial systems are of this nature.

Allgower et al. [2] gave preliminary work for computing real zeros of polynomial sys-

tems using aspects of both the multiresultant method and the conjugate gradient method.

The two major tasks which they had been dealt with the construction of the multiresultant

matrix M(xi) and the instability of the equation

det(M (xi) = 0.

Since typically G(x) is a polynomial of very high degree in the unknown x, they handle

the latter problem by replacing the condition G(x) = 0 with the equivalent condition

min
∥u∥=1

∥Mi (xi)u∥2 = 0.

However, they used the conjugate gradient method to calculate the smallest eigenvalue of

the matrix Mi (xi)
t Mi (xi) and testing whether it is zero. Here and in the following, we

denote transposition by t. Their work was preliminary. They explained how to construct

the Multiresultant matrix but they did not concentrate too much on the numerical tech-

niques for solving these kind of problems. Syam [6] discussed the same problem and he
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solved examples using Lanczos method. Also, he wrote some algorithms to construct the

multiresultant matrix. Both techniques in [2] and [6] have the following two problems.

• Their work is preliminary to present the idea of the multiresultant. So, the complex-

ity of their techniques is high which means that their techniques are not practicable.

• They did not discuss the case of singular situation arising in the resultant matrix

application.

To explain the research question of the thesis, we present the idea of multiresultant matrix.

We want to describe how to construct the multiresultant matrix for both homogenous and

inhomogeneous systems. First, we will study the homogeneous case.

Let

G(x) =



G1 (x1,x2, . . . ,xn)

G2 (x1,x2, . . . ,xn)

...

Gn (x1,x2, . . . ,xn)


be n polynomials with real coefficients in n variables. Let ri be the degree of Gi(x) for

i = 1,2, . . . . . . ,n and let ϒn be the vector space that is spanned by the set

βn =
{

xi1
1 xi2

2 . . . . . . . . .xin
n : 0 ≤ ii, i2, . . . . . . , in, and i1 + i2 + . . . . . .+ in = d

}

where d = 1−n+∑
n
i=1 ri. Then βn is a basis for ϒn. It is easy to see that the dimension

of ϒn is the binomial coefficient.

S =
γ!

(n−1)!(γ −n+1)!

where γ = ∑
n
i ri. Write the basis vectors in βn in the "reverse lexicographical" order

with
(
xd

n
)

first,
(
xd−1

n xn−1) , etc. Then, partition the basis βn of ϒn into n disjoint sets
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λi, i = 1, . . . ,n, as follows:

λi =
{

g ∈ βn : is divisible by xri
1 but not divisible by any of xr1

1 , . . . ,x
ri−1
i−1

}
.

Let di be the number of elements in the set λi, i = 1, . . . ,n. It is easy to see that s = ∑
n
i=1 di.

Now, we are ready to define the multiresultant matrix of the system G(x) = 0. It is a

square matrix of order s and it is denoted by M. For any 1 ≤ i ≤ n, there exists an integer

1 ≤ ji ≤ n such that ∑
ji−1
l=1 dl ≤ i ≤∑

ji
l=1 dl . Let Ki = i−∑

ji−1
l=1 dl and q ji be the Kth

i element

of the set λ ji . We should note that q ji is a monomial of degree d and it is divisible by x
r ji
ji .

Now, we describe how to homogenize inhomogenize polynomial system of the form

G(x) =



G1(x1,x2, . . . ,xn)

G2(x1,x2, . . . ,xn)

...

Gn(x1,x2, . . . ,xn)


=



0

0
...

0


.

First, we describe how to construct the multiresultant matrix M(xi) and the multiresultant

G(xi) for each i = 1,2,3, . . . ,n. Choose any j ∈ {1,2, . . . . . . ,n} and fix the value of

x j. Thus, the system becomes an inhomogeneous system in n equations and (n − 1)

variables x1, . . .x j−1,x j+1, . . . . . .xn. To homogenize G1 (x1,x2, . . . .xn) = 0, we introduce a

new variable x0. Then, multiply each term in each polynomial by xµ

0 to make the system

homogeneous. The variable x0 is called an auxiliary variable and the new polynomial is

called the homogenization of G(x) and it is denoted by G( j)
0 . Thus, the system becomes

G( j)(x) =



G( j)
0

(
x0,x1; . . . ,x j+1; , . . . ;xn

)
G( j)

0
(
x0,x1; . . . ,x j+1; , . . . ;xn

)
...

G( j)
n−1

(
x0,x1; . . . ,x j+1; , . . . ;xn

)


=



0

0
...

0


.

Now, we see that the coefficients of the homogeneous for the new system are polynomial
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expressions in the coefficients of the old system and the chosen variable xi. Let M(xi)

be the multiresultant matrix of G( j)(x). Then M(xi) is called the multiresultant matrix of

G(x) with respect to the variable xi. For more details, see [6]. Let α j be the set of all real

roots of the equation det(M (xi)) = 0 for all j = 1,2, . . . .n. Then, the set of all real solution

of G(x) = 0 is a subset of the Cartesian product ∏
n
j=1 α j. We should test all the points of

∏
n
j=1 α j numerically to find all real solutions of G(x) = 0. For more details, see [7]-[10].

DUff et al. [11] studied different methods for finding the root set of a generic system

in a family of polynomial systems with parametric coefficients. Although, he presented

a framework for characterizing monodromy-based solvers in terms of decorated graphs.

Under the theoretical that monodromy actions are produced uniformly, they show that the

estimated number of homotopy paths followed by an algorithm following this framework

is linear in the number of roots.

Loisel and Maxwell [12] used Path Following Method to determine the field of values

of a matrix with high accuracy. Additionally, characterizing a unique and efficient algo-

rithm for evaluating the field of values boundary, ∂W (·), of an arbitrary complex square

matrix. The boundary is designed by a system of ordinary differential equations which

are solved using Runge–Kutta (Dormand-Prince) numerical integration to achieve control

points with derivatives, then finally Hermite interpolation is applied to provide a dense

output. The algorithm computes ∂W (·) both efficiently and with low error. Formal error

bounds are proven for specific classes of matrix. Furthermore, they summarize the pre-

vailing state of the art and make comparisons with the new algorithm. Finally, numerical

experiments are performed to quantify the cost-error trade-off between the new algorithm

and existing algorithms.

Musco et al. [13] presented the stability of the Lanczos Method for Matrix Function Ap-

proximation as he illustrated theoretically elegant and ubiquitous in practice, the Lanczos

method can approximate f (A)x for any symmetric matrix A ∈ Rn×n, vector x ∈ Rn , and

function f. By using analysis bounds, the power of stable estimating polynomials and

raises the question if they fully characterize the behavior of finite precision Lanczos in

solving linear systems.



6

Chapter 2: The Multiresultant of Polynomial Systems

In this chapter, the resultant matrix of homogeneous and inhomogeneous polynomial sys-

tems will be presented. The relation between the resultant matrix and the zeros of polyno-

mial systems will be investigated. This technique will produce a large sparse matrix. This

chapter will be divided into three sections. Section one is devoted to the homogeneous

polynomial systems while the Second section devoted for inhomogeneous polynomials

systems. Several numerical examples will be presented. In the last section, we present an

important theorem which gives us some stable alternatives to the determinant of resultant

matrix.

2.1 The Multiresultant of Homogeneous Polynomial Systems

Consider the following polynomial system

G : Rn −→ Rn

where

G(x1,x2, ...,xn) =



G1 (x1,x2, . . . ,xn)

G2 (x1,x2, . . . ,xn)

...

Gn (x1,x2, . . . ,xn)


=


0
...

0

 . (2.1)

Here, we assume that each Gi is a polynomial in term of x1,x2, ...,xn. The degree of the

term

axξ1
1 xξ2

2 . . .xξn
n

is ξ1 +ξ2 + . . .+ξn where ξ1,ξ2, . . . ,ξn are nonnegative integers. The degree ri of Gi(x)

is the maximum of the degrees of its terms. The Polynomial Gi (x1,x2, · · · ,xx) is called

homogeneous if its terms has same degrees.
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For example,

G(x1,x2,x3) =


x2

1 − x2
2 − x2

3

x2
2 + x1x2

x2 − x1 + x3


is homogeneous since

G1 (x1,x2,x3) = x2
1 − x2

2 − x2
3,

G2 (x1,x2,x3) = x2
2 + x1x2,

G3 (x1,x2,x3) = x2 − x1 + x3

are homogeneous while

G(x1,x2,x3) =


x2

1 − x2
2 − x2

3

x2
2 + x1

x2 − x1 + x3



2 (x1,x2,x3) = x2
2 + x1 is inhomogeneous.

Let us assume that G(x1,x2, . . . ,xn) in equation (2.1) be homogeneous and ri be the de-

gree of Gi (x1,x2, . . . ,xn) for i = 1,2, . . . ,n.

Let d = 1−n+
n

∑
i=1

ri. (2.2)

Note that any monomial of degree d in x′is must be divisible by xr j
j for some j. Let γn,d be

the vector space of homogeneous polynomials in x1,x2, . . . ,xn of degree exactly d. The

basis for γn,d is given by the set of monomials in (x1,x2, . . . ,xn) of degree exactly d. The

dimension of γn,d is the binomial coefficient

S =

 d +n−1

n−1

=
λ !

(n−1)!(λ −n+1)!
,λ =

n

∑
i=1

ri. (2.3)

is inhomogeneous since,         G
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Write the basis elements of γn,d in "reverse Iexicographical" order, with xd
n first, next

xd−1
n xn−1, · · · , etc. Then, partition the basis βn into λi, i = 1,2, . . . ,n as follows:

λi =
{

g ∈ βn : xri
i | g but xr j

j xg for j = 1,2, · · · i−1
}
. (2.4)

The resultant matrix M is s×s matrix, and it is describe as follows. Choose an index i and

a monomial f = xe1
1 . . .xen

n of λi. Then, e1 < ri, . . . ,ei−1 < ri−1, and ei ≥ ri. Let g= f/xri
i be

the corresponding element of λi/xri
i . Then, gGi (x1,x2, . . . ,xn) is a polynomial of degree

S. Then, write gGi in terms of the basis and the row vector of the coefficients is a row in

the matrix M. The matrix M is called the resultant matrix of G. The multiresultant of the

System (2.1) is

R = det(M). (2.5)

Example 2.1.1 Consider the following homogeneous system

G(x1,x2,x3) =


G1 (x1,x2,x3)

G2 (x1,x2,x3)

G3 (x1,x2,x3)

=


x2

1 − x2
2 − x2

3

x2
2 + x1x2

x2 − x1 + x3

=


0

0

0

 .

Then, the degrees of G1,G2, and G3 are

r1 = 2,r2 = 2,r3 = 1,

respectively. Then,

d = 1−n+
3

∑
i=1

ri = 1−3+2+2+1 = 3.

Let V3 be the vector space that be spanned by

β3 =
{

x3
3,x2x2

3,x
2
2x3,x3

2,x1x2
3,x1x2x3,x1x2

2,x
2
1x3,x2

1x2,x3
1
}
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with dimension 10. Let

Λ1 =
{

η ∈ β3 : x2
1 | η

}
=
{

x2
1x3,x2

1x2,x3
1
}
,

Λ2 =
{

η ∈ β3 : x2
2 | η but x2

1 ∤ η
}
=
{

x2
2x3,x3

2,x1x2
2
}
,

Λ3 =
{

η ∈ β3 : x3 | η bus x2
1 ×η and x2

2 ∤ η
}
=
{

x3
3,x2x2

3,x1x2
3,x1x2x3

}
.

The resultant matrix M is formed by dividing the elements of Λ1 by x2
1 to get {x3,x2,x1}.

Then, multiply each element in {x3,x2,x1} by G1, and write the coefficients out in "reverse

Iexicographical" order to generate the first three rows of M. To explain the idea, we do

the following calculations as follows.

x3G1 (x1,x2,x3) = x2
1x3 − x2

2x3 − x3
3,

x2G1 (x1,x2,x3) = x2
1x2 − x3

2 − x2x2
3,

x1G1 (x1,x2,x3) = x3
1 − x1x2

2 − x1x2
3.

Then, the first three rows of M are


−1 0 −1 0 0 0 0 1 0 0

0 −1 0 −1 0 0 0 0 1 0

0 0 0 0 −1 0 −1 0 0 1

 .

Divide Λ2 by x2
2 to get {x3,x2,x1}, then multiply each element in {x3,x2,x1} by G2 (x1,x2,x3)

to get the following

x3G2 (x1,x2,x3) = x2
2x3 + x1x2x3,

x2G2 (x1,x2,x3) = x3
2 + x1x2

2,

x1G2 (x2,x2,x3) = x1x2
2 + x2

1x2
2.
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Then the fourth, fifith and sixth rows of M are


0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 0 1 0

 .

In order to complete all rows of M, same steps will be processed like before. Divide Λ3 by

x3 to get
{

x2
3,x2x3,x1x3,x1x2

}
, then multiply each element in {x3,x2,x1} by G3 (x1,x2,x3)

to get

x2
3G3 (x1,x2,x3) = x2x2

3 − x1x2
3 + x3

3,

x2x3G3 (x1,x2,x3) = x2
2x3 − x1x2x3 + x2x2

3,

x1x3G3 (x1,x2,x3) = x1x2x3 − x2
1x3 + x1x2

3,

x1x2G3 (x1,x2,x3) = x1x2
2 − x2

1x2 + x1x2x3.

Then, the last four rows of M are



1 1 0 0 −1 0 0 0 0 0

0 1 1 0 0 −1 0 0 0 0

0 0 0 0 1 1 0 −1 0 0

0 0 0 0 0 1 1 0 −1 0


.
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Therefore, the resultant matrix is

M =



−1 0 −1 0 0 0 0 1 0 0

0 −1 0 −1 0 0 0 0 1 0

0 0 0 0 −1 0 −1 0 0 1

0 0 1 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 0 1 0

1 1 0 0 −1 0 0 0 0 0

0 1 1 0 0 −1 0 0 0 0

0 0 0 0 1 1 0 −1 0 0

0 0 0 0 0 1 1 0 −1 0



.

Then, the multiresultant R is

R = det(M) = 0.

One can see that if we change the order of the polynomials in G(x1,x2,x3), then the matrix

M is also changed. However, its multiresultant will stay zero.

Example 2.1.2 Consider the following homogeneous system

G(x1,x2,x3) =


x1x2 − x2

3

x1x2 − x1x3 +2x2x3

x1 +2x2 − x3

=


0

0

0

 .

Then, the degrees of G1,G2 and G3 are

r1 = 2,r2 = 2,r3 = 1,
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respectively. Then,

d = 1−n+
3

∑
i=1

ri = 1−3+2+2+1 = 3.

Let V3 be the vector space that be spanned by

β3 =
{

x3
3,x2x2

3,x
2
2x3,x3

2,x1x2
3,x1x2x3,x1x2

2,x
2
1x3,x2

1x2,x3
1
}

with dimension 10. Let

Λ1 =
{

η ∈ β3 : x2
1 | η

}
=
{

x2
1x3,x2

1x2,x3
1
}

Λ2 =
{

η ∈ β3 : x2
2|η but x2

1 ∤ η
}
=
{

x2
2x3,x3

2,x1x2
2
}
,

Λ3 =
{

η ∈ β3 : x3 | η but x2
1 ∤ η and x2

2 ∤ η
}
=
{

x3
3,x2x2

3,x1x2
3,x1x2x3

}
.

The resultant matrix M is formed by dividing the elements of Λ1 by x2
1 to get {x3,x2,x1},

then multiply each element by G1 and writing the coefficients out in "reverse Iexicograph-

ical" order to generate the first three rows of M which are


−1 0 0 0 0 1 0 0 0 0

0 −1 0 0 0 0 1 0 0 0

0 0 0 0 −1 0 0 0 1 0

 .

Divide Λ2 by x2
2 to get {x3,x2,x1} then multiply each term by G2 (x1,x2,x3) to get fourth,

fifith and sixth rows of M as ,


0 2 0 0 −1 1 0 0 0 0

0 0 2 0 0 −1 1 0 0 0

0 0 0 0 0 2 0 −1 1 0

 .
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Divide Λ3 by x3 to get
{

x2
3,x2x3,x1x3,x1x2

}
, then multiply each element by G3 (x1,x2,x3)

to get the last four rows of M as



−1 2 0 0 1 0 0 0 0 0

0 −1 2 0 0 1 0 0 0 0

0 0 0 0 −1 2 0 1 0 0

0 0 0 0 0 −1 2 0 1 0


.

Therefore, the matrix M is given by

M =



−1 0 0 0 0 1 0 0 0 0

0 −1 0 0 0 0 1 0 0 0

0 0 0 0 −1 0 0 0 1 0

0 2 0 0 −1 1 0 0 0 0

0 0 2 0 0 −1 1 0 0 0

0 0 0 0 0 −2 0 −1 1 0

−1 2 0 0 1 0 0 0 0 0

0 −1 2 0 0 1 0 0 0 0

0 0 0 0 −1 2 0 1 0 0

0 0 0 0 0 −1 2 0 1 0



.

Then, the multiresultant R is

R = det(M) = 0.

Remark. 1 Since Λ1, . . . ,Λn is a partition of βn, then

a)Λi ̸= Φ for i = 1,2, . . . ,n,

b)Λi ∩Λ j = φ for i, j ∈ {1,2, · · · ,n} , i ̸= j,

c)
n⋃

i=1

Λi = βn.
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Remark. 2 The degrees of the elements of β3 in the previous two examples can be written

in the matrix form as following:



x1 x2 x3

0 0 3

0 1 2

0 2 1

0 3 0

1 0 2

1 1 1

1 2 0

2 0 1

2 1 0

3 0 0



.

Remark. 3 If we change the orders of the polynomials of example 2.1.2 as

G(x1,x2,x3) =


x1x2 − x2

3

2x2 − x3 + x1

x1x2 − x1x3 +2x2x3

=


0

0

0

 ,



15

then the matrix M will be

M =



−1 0 0 0 0 1 0 0 0 0

0 −1 0 0 0 0 1 0 0 0

0 0 0 0 −1 0 0 0 1 0

0 −1 2 0 0 1 0 0 0 0

0 0 −1 2 0 0 1 0 0 0

0 0 0 0 0 1 2 0 1 0

0 0 0 0 −1 2 0 1 0 0

−1 2 0 0 1 0 0 0 0 0

0 2 0 0 −1 1 0 0 0 0

0 0 0 0 0 2 0 −1 1 0



.

with multiresultant

R = det(M) = 0.

each row is the number of terms in the corresponding polynomial Gi (x1,x2, . . . ,xn).

Consider the inhomogeneous polynomial systems in n variables

G(x1,x2, . . . ,xn) =



G1 (x1,x2, . . . ,xn)

G2 (x1,x2, . . . ,xn)

...

Gn (x1,x2, . . . ,xn)


=



0

0
...

0


(2.6)

with real coefficients, which has a finite number of solutions. Choose xi and fix a value

for this xi. Then, System (2.2) becomes a system of n inhomogeneous polynomials in

the other n− 1 variables. This new system can be homogenized by adding an auxiliary

2.2 The Multiresultant for Inhomogenius Systems

Remark. 4 The resultant matrix is always sparse matrix and the number of nonzeros in
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variable x0 to obtain a system of n homogeneous polynomials in the n variables consisting

of the other n−1, variables and the new x0 such as

Fxi (x0, · · · ,xi−1,xi+1, . . . ,xn) =



F1 (x0, · · · ,xi−1,xi+1, . . . ,xn)

F2 (x0, · · · ,xi−1,xi+1, . . . ,xn)

...

Fn (x0, . . . ,xi−1,xi+1 . . . ,xn)


=



0

0
...

0


. (2.7)

Note that the coefficients of System (2.7) are polynomials expressions in the coefficients

of System (2.6) and xi. Hence, the coefficients of System (2.7) are polynomials in xi. Let

Ri be the multiresultant of System (2.7) which is a polynomial of xi for simplification can

be written

Ri = Ri(xi). (2.8)

Theorem 2.2.1 If the system (2.6) has a solution (x̃1, x̃2, . . . , x̃n) ∈ Cn, then, for each

i ∈ {1,2, · · · ,n},

Ri (x̃i) = 0.

x1, x̃2, . . . , x⃗n) ∈ Cn, then System (2.7) obtained by

fixing xi = x̃1 has the solution (x̃i, . . . , x̃i−1, x̃i+1 . . . x̃n). Hence, the homogenized system

(2.7) has corresponding solution by setting x0 = 1, for this value x̃i of xi. Therefore, Ri(x̃i)

must be zero

Remark. 5 The converse of Theorem (2.2.1) is not always true.

One can write the real version of Theorem (2.2.1) as follows:

Theorem 2.2.2 If System (2.6) has a real solution (x̃1, x̃2, . . . , x̃n) ∈ Rn, then for each i, x̃

i(xi).is a real root of R

Proof. If system (2.6) has a solution ( ˜



17

If A i i (xi

1 ×A2 × ·· · ×An

Example 2.2.1 Consider the following system

G(x1,x2) =

 x2
2 +2x1x2 + x2 +3

x2 +2x1x2 + x3
1 +3

=

 0

0

 . (2.9)

Using Mathematica 12.1, the real solutions are x1 = 4.62672,x2 = −9.952 and x1 =

1.26547,x2 =−1.42357.

Now, fix x1 to get the following system

Fx1(x0,x2) =

 x2
2 +(2x1 +1)x2x0 +3x2

0

(1+2x1)x2 +(x3
1 +3)x0

=


0

0

0

 . (2.10)

Then, the orders of Fx1,1 and Fx1,2 are r1 = 2,r2 = 1 which implies that d = 2. Then,

S =
3!

(2−1)!(3−2+1)!
= 3.

Thus,

β2 =
{

x2
2,x0x2,x2

0
}
. Hence

λ1 = {η ∈ β2 : x2
0 | η}=

{
x2

0
}
,

λ2 =
{

η ∈ β2 : x2 | η but x2
0 ∤ η

}
=
{

x2
2,x0x2

}
.

. To explain the idea, the

following examples are investigated.

Thus,

(2.6) is a subset of the Cartesian product A

is the set of all real solutions of R ), then the set of solutions of System
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Then

λ1

x2
0
= {1},

λ2

x2
= {x2,x0} .

Thus,

1(x2
2 +(2x1 +1)x2x0 +3x2

0) = x2
2 +(2x1 +1)x2x0 +3x2

0,

x2(1+2x1)x2 +(x3
1 +3)x0 = (1+2x1)x2

2 +
(
x3

1 +3
)

x0x2,

x0(1+2x1)x2 +(x3
1 +3)x0 = (1+2x1)x0x2 +

(
x3

1 +3
)

x2
0.

Then, the resultant Matrix is

M(x1) =


1 2x1 +1 3

1+2x1 x3
1 +3 0

0 1+2x1 x3
1 +3

 .

Hence,

R1(x1) = det(M(x1)) = 9+5x3
1 −4x4

1 −4x5
1 + x6

1 = 0

which implies that the real roots are A1 = {1.26547,4.62672}.

Now, fix x2 to get the following system

Fx2(x0,x1) =

 (x2
2 + x2 +3)x0 +2x1x2

(x2 +3)x3
0 +(2x2)x1x2

0 + x3
1

=

 0

0

 . (2.11)
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Then, the orders of Fx2,1 and Fx2,2 are r1 = 1,r2 = 3 which implies that d = 3. Then,

S =
4!

(2−1)!(4−2+1)!
= 4.

Thus,

β3 =
{

x3
1,x0x2

1,x
2
0x1,x3

0
}

and

λ1 = {η ∈ β3 : x0/η}=
{

x0x2
1,x

2
0x1,x3

0
}
,

λ2 =
{

η ∈ β3 : x3
1/η , x2

0xη

}
=
{

x3
1
}
.

Thus,

λ1

x0
=
{

x2
1,x0x1,x2

0
}
,

λ2

x3
1
= {1}.

Hence

x2
1((x

2
2 + x2 +3)x0 +2x1x2) = (x2

2 + x2 +3)x0x2
1 +2x3

1x2,

x0x1((x2
2 + x2 +3)x0 +2x1x2) = (x2

2 + x2 +3)x2
0x1 +2x0x3

1x2,

x2
0((x

2
2 + x2 +3)x0 +2x1x2) = (x2

2 + x2 +3)x3
0 +2x2

0x1x2,

1((x2 +3)x3
0 +(2x2)x1x2

0 + x3
1) = (x2 +3)x3

0 +(2x2)x1x2
0 + x3

1.
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Then the resultant matrix is

M(x2) =



2x2 x2
2 + x2 +3 0 0

0 2x2 x2
2 + x2 +3 0

0 0 2x2 x2
2 + x2 +3

1 0 2x2 x2 +3


.

Hence,

R2(x2) =−27−27x2 −36x2
2 −19x3

2 −12x4
2 −11x5

2 − x6
2 = 0

which implies that the real roots are A2 = {−9.952,−1.423572}. Thus, the roots of

system (2.11) belongs to the following set

A1 ×A2 = {1.2654734077068486,4.626724494907232}×{−9.952,1.42357}

= {(1.26547,−9.952),(1.265473,−1.42357232),(4.62672,−9.952),(4.62672,−1.42357)} .

Then, we have four order pairs and we want to verify which one of them is a solution to

system (2.11). Then,

G(1.26547,−9.952) =

 66.9024

−30.1134

 ̸=

 0

0

 ,

G(1.26547,−1.42357) =

 0

8.88178×10−16

≃

 0

0

 ,
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G(4.62672,−1.42357) =

 −9.56997

−87.4498

 ̸=

 0

0

 ,

G(4.62672,−9.952) =

 −1.24345×10−14

1.42109×10−14

≃

 0

0

 .

Thus, the roots of system (2.11) are

x1 = 4.62672,x2 =−9.952,

x1 = 1.26547,x2 =−1.42357.

Example 2.2.2 Consider the following system

G(x,y,z) =


x2 + y2 + z2 −1

z− x2 − y2

y− x2 − z2

=


0

0

0

 . (2.12)

Then, this system describes the intersection of a sphere in R3 with two parabolas. Using

Mathematica 12.1, the solutions are x ∼=±0.485868,y = z ∼=±0.618034

Now, fix x to get the following systems

Fx(x0,y,z) =


(
x2 −1

)
x2

0 + y2 + z2

−x2x2
0 − y2 + zx0

−x2x2
0 + yx0 − z2

=


0

0

0

 .

Then,

r1 = r2 = r3 = 2
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which implies that

d = 1−3+2+2+2 = 4.

Than, the dimension of γ3,4 is

S =
6!

(3−1)!(6−3+1)!
=

6!
2!4!

= 15.

Then

β4 =
{

z4,yz3,y2z2,y3z,y4,x0z3,x0yz2,x0y2z,x0y3,x2
0z2,x2

0yz,x2
0y2,x3

0z,x3y,x4
0
}

and

Λ1 =
{

η ∈ β4|x2
0|η

}
=
{

x2
0z2,x2

0yz,x2
0y2,x3

0z,x3
0y,x4

0
}
,

Λ2 =
{

η ∈ β4
∣∣y2∣∣η but x2

0 ∤ η
}
=
{

y2z2,y3z,y4,x0y2z,x0y3} ,
Λ3 =

{
η ∈ β4 | z2 | η but x2

0 ∤ η and y2 | η
}
=
{

z4,yz3,x0z3,x0yz2} .
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

1 0 1 0 0 0 0 0 0 x2 −1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 x2 −1 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 x2 −1 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 x2 −1 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 x2 −1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 x2 −1

0 0 −1 0 0 1 0 0 0 −x2 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0 −x2 0 0 0 0

0 0 0 0 −1 0 0 1 0 0 0 −x2 0 0 0

0 0 0 0 0 0 0 −1 0 1 0 0 −x2 0 0

0 0 0 0 0 0 0 0 −1 0 1 0 0 −x2 0

−1 0 0 0 0 0 −1 0 0 −x2 0 0 0 0 0

0 −1 0 0 0 0 0 −1 0 0 −x2 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 −1 0 −x2 0 0

0 0 0 0 0 0 −1 0 0 0 0 −1 0 −x2 0



Hence, the real roots of R(x) = det(M(x)) = 0 are A1 = {−1,−0.485868,0.485868,1}

Using similar argument as in Example 2.2.2, the matrix M(x) is given by
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Now, fix y to get the following system

Fy(x0,x,z) =


(
y2 −1

)
x2

0 + x2 + z2

−y2x2
0 − x2 + zx0

−x2 + yx2
0 − z2

=


0

0

0

 .

Then,

r1 = r2 = r3 = 2

which implies that

d = 1−3+2+2+2 = 4

Thus, the dimension of γ3,4 is

S =
6!

(3−1)!(6−3+1)!
=

6!
2!4!

= 15.

Then,

β4 =
{

z4,xz3,x2z2,x3z,x4,x0z3,x0xz2,x0x2z,x0x3,x2
0z2,x2

0xz,x2
0x2,x3

0z,x3x,x4
0
}

and

Λ1 =
{

η ∈ β4
∣∣x2

0
∣∣η

}
=
{

x2
0z2,x2

0xz,x2
0x2,x3

0z,x3
0x,x4

0
}

Λ2 =
{

η ∈ β4
∣∣x2∣∣η but x2

0 ∤ η
}
=
{

x2z2,x3z,x4,x0x2z,x0x3}
Λ3 =

{
η ∈ β4

∣∣z2∣∣η but x2
0 ∤ η and x2 | η

}
=
{

z4,xz3,x0z3,x0xz2}
Using similar argument as in Example 2.2.2, the matrix M(y) is given by
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

1 0 1 0 0 0 0 0 0 y2 −1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 y2 −1 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 y2 −1 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 y2 −1 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 y2 −1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 y2 −1

0 0 −1 0 0 1 0 0 0 −y2 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0 −y2 0 0 0 0

0 0 0 0 −1 0 0 1 0 0 0 −y2 0 0 0

0 0 0 0 0 0 0 −1 0 1 0 0 −y2 0 0

0 0 0 0 0 0 0 0 −1 0 1 0 0 −y2 0

−1 0 −1 0 0 0 0 0 0 y 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0 y 0 0 0 0

0 0 0 0 0 −1 0 −1 0 0 0 0 y 0 0

0 0 0 0 0 0 −1 0 −1 0 0 0 0 y 0



M = det(M(y)) = 0 are

A2 = {−1.61803,−1,0.618034,1}.

Now, fix z to get the following system

F(z) =


(
z2 −1

)
x2

0 + x2 + y2

−y2 − x2 + zx2
0

−x2 + yx0 − z2x2
0

=


0

0

0

 .

Hence, the real roots of R
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1 = r2 = r3 = 2

3,4 is

S =
6!

(3−1)!(6−3+1)!
=

6!
2!4!

= 15.

Then

β4 =
{

y4,xy3,x2y2,x3y,x4,x0y3,x0xy2,x0x2y,x0x3,x2
0y2,x2

0xy,x2
0x2,x3

0y,x3x,x4
0
}

and

Λ1 =
{

η ∈ β4
∣∣x2

0
∣∣η

}
=
{

x2
0y2,x2

0xy,x2
0x2,x3

0y,x3
0x,x4

0
}
,

Λ2 =
{

η ∈ β4
∣∣x2∣∣η but x2

0 ∤ η
}
=
{

x2y2,x3y,x4,x0x2y,x0x3} ,
Λ3 =

{
η ∈ β4

∣∣y2∣∣η but x2
0 ∤ η and x2 | η

}
=
{

y4,xy3,x0y3,x0xy2} .
Using similar argument as in Example 2.2.2, the matrix M(z) is given by

Then,

r

which implies that

d = 1−3+2+2+2 = 4.

Then, the dimension of γ
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

1 0 1 0 0 0 0 0 0 z2 −1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 z2 −1 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 z2 −1 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 z2 −1 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 z2 −1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 z2 −1

−1 0 −1 0 0 0 0 0 0 z 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0 z 0 0 0 0

0 0 −1 0 −1 0 0 0 0 0 0 z 0 0 0

0 0 0 0 0 −1 0 −1 0 0 0 0 z 0 0

0 0 0 0 0 0 −1 0 −1 0 0 0 0 z 0

0 0 −1 0 0 1 0 0 0 −z2 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0 −z2 0 0 0 0

0 0 0 0 0 0 0 −1 0 1 0 0 −z2 0 0

0 0 0 0 0 0 0 0 −1 0 1 0 0 −z2 0


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Hence, the real roots of R(z) = det(M(z)) = 0 are

A3 = {−1.61803,−1,0.618034,1}

Thus, the roots of system (2.12) are subset of A1 ×A2 ×A3 where

A1 = {−1,−0.485868,0.485868,1},

A2 = {−1.61803,−1,0.618034,1},

A3 = {−1.61803,−1,0.618034,1}.

Direct substitution of the elements of A1 × A2 × A3 in the system (2.12) implies that

x =±0.485868,y = 0.618034, and z = 0.618034.
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Chapter 3: Path Following Method

Let G : Rn → Rn be n inhomogeneous polynomial with real coefficients in n variables

defined by

G(x) =



G1 (x1,x2, . . . ,xn)

G2 (x1,x2, . . . ,xn)

...

Gn (x1,x2, . . . ,xn)


. (3.1)

In Chapter 2, we discussed the resultant method for solving

G(x) = 0. (3.2)

For each i ∈ {1,2, · · · ,n}, we generate the multiresultant matrix M (xi) and the multire-

sultant

R(xi) = det(M(xi)). (3.3)

Then, we proved that the roots of System (3.2) is subset of A1 ×A2 ×·· ·×An where Ai

is the set of all roots of equation (3.3). We noticed that R(xi) is a polynomial of too high

degree and to find its roots are numerically unstable.

In this chapter, we present a new method to deal with this problem which is numerically

stable and preserve the sparseness of the matrix M(xi). This approach is called one-

dimensional path following method.

3.1 Method of Solution

Let M(xi) be m×m matrix for each i ∈ {1,2, · · · ,m}. Let a and b be two random vectors

in Rn with entries from the interval [−α,α] when α > 0. It is worth mentioning that once

a and b have been chosen, they have to be kept fixed.
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Define (m+1)× (m+1) matrix A(xi) by

A(xi) =

 M (xi) a

b⊤ 0

 . (3.4)

Consider the linear system

A(xi)

 z(xi)

µ (xi)

=

 0

1

 . (3.5)

when z : R−→ Rm and µ : R−→ R.

Our goal is to show that R(xi) = 0 has a root when µ(xi) = 0 has a root. In this case, we

transform the problem of finding the roots of det(M(xi)) into One-dimensional problem.

To start our process, we need the following definition

Definition 3.1.1 Two subspaces U and V of Rk are called acute if

U ∩V⊥ = {0} (3.6)

where V⊥ is the orthogonal complement of V .

Example 3.1.1 Let

U = {(x,0,0) : x ∈ R}= span{(1,0,0)},

V = {(0,y,z) : y,z ∈ R}= span{(0,1,0),(0,0,1)},

W = {(x,y,0) : x,y ∈ R}= span{(1,0,0),(0,1,0)}.
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Then,

V⊥ = {(x,y,z) ∈ R3 : (x,y,z) · (0,1,0) = (0,0,0),(x,y,z) · (0,0,1) = (0,0,0)}

=
{
(x,y,z) ∈ R3 = y = 0,z = 0

}
= span{(1,0,0)}.

and

W⊥ = {(x,y,z) ∈ R3 : (x,y,z) · (1,0,0) = (0,0,0),(x,y,z) · (0,1,0) = (0,0,0)},

=
{
(x,y,z) ∈ R3;x = 0,y = 0

}
= span{(0,0,1)}

Then,

U ∩V⊥ = v ̸= {0},

U ∩W⊥ = {0}.

Thus, V and W are acute while U an v are not acute.

Definition 3.1.2 Let A be k× k real matrix. Then, kernel of A is defined by

ker(A) =
{

x ∈ Rk : Ax = 0
}
.

Example 3.1.2 Let

A =


1 2 0

0 3 0

1 1 0

 .



32

Let Ax = 0. Then, the augmented matrix of Ax = 0 is

U1 =


1 2 0 0

0 3 0 0

1 1 0 0

 .

Subtract row one from row three to get

U2 =


1 2 0 0

0 3 0 0

0 1 0 0

 .

Multiply row two of U2 by 1
3 to get

U3 =


1 2 0 0

0 1 0 0

0 1 0 0

 .

Multiply row two by −2 and add it to row one and subtract row two to row three to get

U4 =


1 0 0 0

0 1 0 0

0 0 0 0

 .

Thus, x1 = x2 = 0 an x3 ∈ R. Thus,

ker(A) =
{
(0,0,x3) : x3 ∈ R2}= span{(0,0,1)}.
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In the next theorem, we investigate the singularity of the matrix A(xi) in Equation (3.4)

Theorem 3.1.1 Let a and b be two nonzero vectors such that

1) kerµ(xi)∩ (span{b})⊥ = {0},

2) span{a}∩ (Ker(µ(xi))
⊤)⊥ = {0}.

Then A(xi) is nonsingular matrix.

Proof. Let xi ∈ R and M (xi) = M. Consider the following system

A(xi)

 z

µ

=

 0

0

 . (3.7)

Then,  M a

bT 0


 z

µ

=

 0

0

 .

which implies that

Mz+µa = 0, (3.8)

b⊤z = 0. (3.9)

We have two cases to consider.

i- Let µ = 0. Then, from Equation (3.8), we have

MZ = 0. (3.10)
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Then, z ∈ Kar(M). From Equation (3.9), we get

b · z = 0

which yields to

z ∈ span{b}⊥

with respect to the Euclidean inner product. Thus, by condition (1) of the theorem

z ∈ Kar(µ)∩ (span{b})⊥ = {0}.

Hence, z = 0. Thus the solution of System (3.7) is

 z

µ

=

 0

0

 .

ii- Let µ ̸= 0. Then, from Equation (3.8)

a =
−1
µ

Mz. (3.11)

From Condition (2) of the theorem, we have

span{a}∩Ker
(

M⊤
)⊥

= {0}.

Then, a /∈ ker
(
M⊤)⊥.

Thus, there exists a nonzero vector u ∈ ker
(
M⊤) such that

a⊤u ̸= 0. (3.12)
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Since u ∈ ker
(
M⊤), then

µ
⊤u = 0. (3.13)

Since a = −1
µ

Mz, then

a⊤ =
−1
µ

z⊤MT . (3.14)

Hence, from Equation (3.12), (3.13), and (3.14) we have

0 ̸= atu =
−1
µ

z⊤µ
⊤u =

−1
µ

z⊤0 = 0

which is a contradiction. Therefore, the only solution to System (3.7) is the trivial solu-

tion.

Thus, A(xi) is nonsingular matrix.

In the next theorem, we discuss the sign of det(A(xi))

Theorem 3.1.2 Under the conditions of Theorem (3.1.1), det(A(yi)) does not change its

sign.

Proof. By Theorem 3.1.1, A(xi) is nonsingular matrix matrix. It is easy to see that

det(A(xi)) is a polynomial of degree m+1. Thus,

det(A(xi)) ̸= 0. (3.15)

If det(A(xi)) changes its sign, then by intermediate value theorem, there is a root to

det(A(xi)) which contradicts Equation (3.1.5). Hence, det(A(xi)) does not change its

sign.

i

∞(R).

Theorem 3.1.3 Under the conditions of Theorem 3.1.1, µ (xi) is well defined and belongs

to C∞(R).

Thus, In the next theorem, we want to prove that µ (x ) is well defined function and

belongs to C

ayade055@gmail.com
Typewritten text
.
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Proof. Since A(xi) is nonsingular by Cramer’s rule one gets

µ (xi) =
det(M (xi))

det(A(xi))
. (3.16)

Since the denominator and the numerator are polynomials of xi and det(A(xi) ̸= 0, then

From Equation (3.16), µ (xi) is well defined and µ ∈C∞(R).

i i)).

Theorem 3.1.4 Let a and b be two nonzero vectors in Rn such that:

1) Ker(M(xi))∩ span{b})⊥ = {0},

2) Span{a}∩Ker((M(xi))
⊤)⊥ = {0}.

Let

A(xi) =

 M (xi) a

b⊤ 0

 .

and

A(xi)

 z(xi)

µ (xi)

=

 0

1

 .

Then, µ (xi) changes its sign when det(M (xi)) changes its sign.

Proof. By Cramer’s rule, one gets

µ(xi) =
det(M (xi))

det(A(xi))
.

By Theorems (3.1.1)− (3.1.2), µ(xi) changes its sign when det(M(xi)) changes its sign.

It is worth mentioning that since µ(xi) changes its sign, a secant method will approximate

the root fast.

In the next theorem, we study the relation between sign of µ(x ) and det(M(x
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One should note the following points

• µ(xi) is smooth function.

• We handle a one-dimensional path following method to find the roots of the function

µ(xi).

• It is a bad practice to expand the determinants symbolically when the size of the

matrix is large

• The secant method is fast in our approach and it is easy to use.

We end this section by summarizing our method in the following algorithm:

• Step 1: Compute M(xi

• Step 2: Compute A(xi

i)

• Step 4: If µ(x̄i) ·µ(x̄i

• Step 5: Use secant method to approximate the roots of R(xi) = 0.

Example 3.1.3 Consider the following system

G(x,y) =

 y2

y+2xy+ x3 +3

=

 0

0

 .

Using Mathematica 12.1, the real solutions are x= 4.62672, y=−9.952 and x= 1.26547, y=

−1.42357. Let

a⊤ = {1,0,0,0},

b = {1,0,1,0}.

) using Chapter 2.

) using Equation (3.4).

)< 0, then do step 5.

• Step 6: Stop.

• Step 3: Solve System (3.5) to get µ(x

• Input: The vectors a and b.

+2xy+ y+3

ayade055@gmail.com
Typewritten text
.
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Fix x. Then, the new system will be



1 2x+1 3 1

1+2x x3 +3 0 0

0 1+2x x3 +3 0

1 0 1 0



 Z(x)

µ(x)

=



0

0

0

1


.

µ (x ) x
-0.798558 0.25
-0.673099 0.5
-0.505173 0.75
-0.28 1 .
-0.0165201 1.25
0.235862 1.5
0.428809 1.75
0.541096 2 .
0.579238 2.25
0.56311 2.5
0.513321 2.75
0.445732 3 .
0.370829 3.25
0.294895 3.5
0.221401 3.75
0.152079 4.
0.0876429 4.25
0.0282364 4.5
-0.0263015 4.75

Table 3.1: x* and µ(x*)

Therefore, for the step size 0.25, the values of µ(x*) is given in Table (3.1)

From Table (3.1) we see the µ(x*) changes it’s sign in the intervals, [1.25,1.5] and [4.5,4.75].

ayade055@gmail.com
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*
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Now, we implement the secant method with

x0 = 1.25;x1 = 1.5,

µ0 =−0.01652009424883017; µ1 = 0.23586206896551723.

Let µ(xi) = ti. Then

x2 = x1 −
t1(x1 − x0)

t1 − t0
= 1.26636,

t2 = 0.000949409,

x3 = x2 −
t2(x2 − x1)

t2 − t1
= 1.26542,

t3 =−0.0000570186,

x4 = x3 −
t3(x3 − x2)

t3 − t2
= 1.2654734,

t4 = 5.697774372563688×10−9.

Also, from Table (3.1) we see the µ(xi) changes it’s sign in the interval [4.5,4.75].

Now, we implement the secant method with

x0 = 4.5;x1 = 4.75,

µ0 = 0.028236389732285275; µ1 =−0.026301469746214605.
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Let µ(xi) = ti. Then

x2 = x1 −
t1(x1 − x0)

t1 − t0
= 4.62943,

t2 =−0.000590483,

x3 = x2 −
t2(x2 − x1)

t2 − t1
= 4.62667,

t3 = 0.0000127746,

x4 = x3 −
t3(x3 − x2)

t3 − t2
= 4.626724,

t4 = 6.013758251406966×10−9.

a⊤ = {1,0,0,0,0},

b = {1,0,0,1,0}.

Figure 3.1: x* and µ(x*)

Thus, the approximate value of x* are 1.2654734 and 4.626724. The graph of µ(x*)

is presented in Figure (3.1). Secondly, for y values, let



41

The new system will be 5×5 matrix:



2y y2 + y+3 0 0 1

0 2y y2 + y+3 0 0

0 0 2y y2 + y+3 0

1 0 2y y+3 0

1 0 0 1 0



 Z(y)

µ(y)

=



0

0

0

1



Then, using the step size 0.3, the values of µ(y) are given by Table (3.2).

From Table (3.2) we see the µ(y) changes it’s sign in the intervals [−10.2,−9.9]

Now, we implement the secant method with

y0 =−10.2;y1 =−9.9,

µ0 =−0.569606951512295; µ1 = 0.11554562830423577.

Let µ(yi) = ti. Then,

y2 = y1 −
t1(y1 − y0)

t1 − t0
=−9.95059,

t2 = 0.00314952,

y3 = y2 −
t2(y2 − y1)

t2 − t1
=−9.95201,

t3 =−0.0000184043,

y4 = y3 −
t3(y3 − y2)

t3 − t2
=−9.952,

Also, from Table (3.2) we see the µ(y*) changes it’s sign in the intervals [−1.5,−1.2]
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Table 3.2: y* and µ(y*)

−5.62403 −12.
−4.6693 −11.7
−3.7595 −11.4
−2.89463 −11.1
−2.0747 −10.8
−1.29969 −10.5
−0.569607 −10.2
0.115546 −9.9
0.755769 −9.6
1.35106 −9.3
1.90142 −9.
2.40684 −8.7
2.86732 −8.4
3.28284 −8.1
3.6534 −7.8
3.97896 −7.5
4.25952 −7.2
4.49503 −6.9
4.68544 −6.6
4.83071 −6.3
4.93074 −6.
4.98543 −5.7
4.99463 −5.4
4.95814 −5.1
4.87566 −4.8
4.74681 −4.5
4.57103 −4.2
4.34751 −3.9
4.07505 −3.6
3.75184 −3.3
3.375 −3.
2.93984 −2.7
2.4382 −2.4
1.85479 −2.1
1.15808 −1.8
0.274038 −1.5
−1.00365 −1.2
−3.39647 −0.9

µ (y*) y*
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Now, we implement the secant method with

y0 =−1.5;y1 =−1.200000000000001,

µ0 = 0.2740384615384618; µ1 =−1.0036475409836005.

Let µ(yi) = ti.

y2 = y1 −
t1(y1 − y0)

t1 − t0
=−1.43566,

t2 = 0.0451181,

y3 = y2 −
t2(y2 − y1)

t2 − t1
=−1.42552,

t3 = 0.00731354,

y4 = y3 −
t3(y3 − y2)

t3 − t2
=−1.42356,

t4 =−0.0000587725,

y5 = y4 −
t4(y4 − y3)

t4 − t3
=−1.42357,

t5 = 7.6264×10−8.

Example 3.1.4 Consider the following system

G(x,y,z) =


x2 + y2 + z2 −1

z− x2 − y2

y− x2 − z2

=


0

0

0

 . (3.17)

Thus, the approximate value of y are −9.952 and −1.42357. The graph of µ(y*) is pre-

sented by Figure (3.2). Now, we test the order pairs (1.2654734,9.952), (1.2654734,1.42357),

(4.626724,9.952), (4.626724,1.42357) to check which root will satisfy the system. Thus,

the roots are (4.626724,9.952) and (1.2654734,1.42357).
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Then, this system describes the intersection of a sphere in R3 with two parabolas. Using

Mathematica 12.1 the solutions are x ∼=±0.485868,y = z ∼=±0.618034. Let

a⊤ = {1,0, .....,0},

b = {1,0, .....,0}.

Fix x. Then the matrix A(x) is 16×16 and given by

Figure 3.2: y* and µ(y*)
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A
(x
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                                                           .
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x0 =−0.45000000000000007;x1 =−0.5,

µ0 = 0.3533061794418093; µ1 =−0.14754098360655818.

Let µ(xi) = ti. Then,

x2 = x1 −
t1(x1 − x0)

t1 − t0
=−0.485271,

t2 = 0.00614393,

x3 = x2 −
t2(x2 − x1)

t2 − t1
=−0.48586,

t3 = 0.000088305,

x4 = x3 −
t3(x3 − x2)

t3 − t2
=−0.485868,

t4 =−5.714600953287278×10−8.

Also, from Table(3.3) we see the µ(x) changes it’s sign in the intervals [0.45,0.5]

Now, we implement the secant method as

x0 = 0.45;x1 = 0.5,

µ0 = 0.35330617944181153; µ1 =−0.14754098360655818.

Using step size 0.05, the values of µ(x) is given in Table (3.3).

From Table (3.3) we see the µ(x) changes it’s sign in the intervals [−0.5,−0.45].

Now,we implement the secant method as
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Table 3.3: x and µ(x)

µ(x) x
−2.85968 −1.1
−2.93823 −1.05
−3. −1.
−3.03397 −0.95
−3.02559 −0.9
−2.95708 −0.85
−2.80924 −0.8
−2.5653 −0.75
−2.21689 −0.7
−1.77035 −0.65
−1.24994 −0.6
−0.694427 −0.55
−0.147541 −0.5
0.353306 −0.45
0.784349 −0.4
1.1366 −0.35
1.41244 −0.3
1.62073 −0.25
1.77262 −0.2
1.87885 −0.15
1.9483 −0.1
1.98739 −0.05
2. 0.
1.98739 0.05
1.9483 0.1
1.87885 0.15
1.77262 0.2
1.62073 0.25
1.41244 0.3
1.1366 0.35
0.784349 0.4
0.353306 0.45
−0.147541 0.5
−0.694427 0.55
−1.24994 0.6
−1.77035 0.65
−2.21689 0.7
−2.5653 0.75
−2.80924 0.8
−2.95708 0.85
−3.02559 0.9
−3.03397 0.95
−3. 1.
−2.93823 1.05
−2.85968 1.1
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Let µ(xi) = ti. Then,

x2 = x1 −
t1(x1 − x0)

t1 − t0
= 0.485271,

t2 = 0.00614393,

x3 = x2 −
t2(x2 − x1)

t2 − t1
= 0.48586,

t3 = 0.000088305,

x4 = x3 −
t3(x3 − x2)

t3 − t2
= 0.485868,

t4 =−5.714600953287278×10−8.

Thus, the approximate values of x are 0.485868 and −0.485868. The graph of µ(x) is

given by the Figure 3.3.

Figure 3.3: x and µ(x)

Fix y. Then choose a⊤ and b. Then the matrix A(y) is 16×16 and it’s given by

a⊤ = (1,0, ....,0),

b = (1,0, ....,0,1,0).
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                                                           .
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the secant method as

y0 = 0.6;y1 = 0.65,

µ0 = 0.011539848539487864; µ1 =−0.019432092104461694.

Let µ(yi) = ti. Then,

y2 = y1 −
t1(y1 − y0)

t1 − t0
= 0.61863,

t2 =−0.000374233,

y3 = y2 −
t2(y2 − y1)

t2 − t1
= 0.618014,

t3 = 0.0000128767,

y4 = y3 −
t3(y3 − y2)

t3 − t2
= 0.618034,

t4 =−7.681868690869802×10−9.

Thus, the approximate value of y is 0.618034, The graph of µ(y) is given in Figure (3.4).

Fix z. Let

a⊤ = (1,0, ......,0)

b = (1,0, ....,0,1).

Then, the matrix A(z) is 16×16 and it’s given by

(3.4). We see the µ(y) changes it’s sign in the intervals [0.6,0.65]. Now, we implement

Using the step size 0.05, the values of µ(y) is given by in Table (3.4). From Table
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µ(y) y
0.455794 −0.7
0.504948 −0.65
0.547159 −0.6
0.582176 −0.55
0.609756 −0.5
0.629724 −0.45
0.642012 −0.4
0.646685 −0.35
0.643956 −0.3
0.634179 −0.25
0.617843 −0.2
0.595547 −0.15
0.567977 −0.1
0.535873 −0.05
0.5 0
0.461125 0.05
0.419991 0.1
0.3773 0.15
0.333699 0.2
0.289779 0.25
0.246066 0.3
0.20303 0.35
0.161088 0.4
0.120617 0.45
0.0819672 0.5
0.0454851 0.55
0.0115398 0.6
−0.0194321 0.65
−0.0468591 0.7
−0.0699161 0.75
−0.0873016 0.8
−0.0967757 0.85
−0.0940791 0.9

Table 3.4: y and µ(y)
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Figure 3.4: y and µ(y)
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                                                           
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Using step size 0.05, the values of µ(z) are given by Table (3.5).

Table 3.5: z and µ(z)

µ(z) z
0.605 −0.7
0.61375 −0.65
0.62 −0.6
0.62375 −0.55
0.625 −0.5
0.62375 −0.45
0.62 −0.4
0.61375 −0.35
0.605 −0.3
0.59375 −0.25
0.58 −0.2
0.56375 −0.15
0.545 −0.1
0.52375 −0.05
0.5 0
0.47375 0.05
0.445 0.1
0.41375 0.15
0.38 0.2
0.34375 0.25
0.305 0.3
0.26375 0.35
0.22 0.4
0.17375 0.45
0.125 0.5
0.07375 0.55
0.02 0.6
−0.03625 0.65
−0.095 0.7
−0.15625 0.75
−0.22 0.8
−0.28625 0.85
−0.355 0.9

From Table (3.5) we see the µ(z) changes it’s sign in the intervals [0.6,0.65]. Now, we

implement the secant method with

z0 = 0.6;z1 = 0.65,

µ0 = 0.020408163265306024, µ1 =−0.03498190591073593.
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Let µ(zi) = ti. Then,

z2 = z1 −
t1(z1 − z0)

t1 − t0
= 0.618422,

t2 =−0.000434134,

z3 = z2 −
t2(z2 − z1)

t2 − t1
= 0.618025,

t3 = 9.591148678045336×10−6,

z4 = z3 −
t3(z3 − z2)

t3 − t2
= 0.618034,

t4 = 1.664970439296809‘×10−9.

Thus, the approximate value of z is 0.618034. The graph of µ(z) is given in Figure 3.5.

Figure 3.5: z and µ(z)
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Chapter 4: Lanczos Method

4.1 Equivalent Conditions to Multiresultant

As we noticed in Chapter 2, computing zeros of n inhomogeneous polynomials system

G(x) = 0 (4.1)

with real coefficients in n variables is equivalent to solve

R(xi) = det(M (xi)) = 0 (4.2)

for i = 1,2, . . . ,n. However, computing the determinant of the resultant matrix M (xi) is

unstable problem. To overcome this instability, we replace problem (4.2) by the following

stable problem.

λmin (xi) = min
{
∥M (xi)u∥2 : u ∈ Rs,∥u∥= 1

}
= min

{
∥M (xi)u∥2

∥u∥2 : u ∈ Rs,u ̸= 0

} (4.3)

where ∥.∥ denotes the Euclidean norm. Theorem (4.1.1) gives some equivalent conditions

to Equation (4.2).
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Theorem 4.1.1 The following are equivalent.

a) R(xi) = det(M (xi)) = 0.

b) min
{
∥M (xi)u∥2 : u ∈ Rs and ∥u∥= 1}= 0.

c) min

{
∥M (xi)u∥2

∥u∥2 : u ∈ Rs and u ̸= 0}= 0

d) The smallest eigenvalue of M(xi)
∗M(xi)is zero, when * weans transpose of the matrix.

Proof. (a) ⇒ (b): If R(xi) = 0, then M(xi) is singular matrix. Thus, there exists u0 ∈ Rs

with u0 ̸= 0 such that

M (xi)u0 = 0.

Let ν = u0
∥u0∥ . Then, ∥ν∥= 1 such that M (xi)ν = 0. Thus,

∥M (xi)ν∥= ∥0∥= 0.

Since ∥M(xi)u∥⩾ 0 for all u ∈ Rs and ∥u∥= 1, then

min
{
∥M (xi)u∥2 : u ∈ Rs and ∥u∥= 1}= 0.

(b)⇒ (c) : For any u ∈ Rs with u ̸= 0, we define

νu =
u

∥u∥
.

Then, νu ∈ Rs with ∥νu∥= 1. Thus,

∥M (xi)u∥2

∥u∥2 = ∥M (xi)νu∥2 ≤ min
{
∥M (xi)ν∥2 : ν ∈ Rs and ∥ν∥= 1

}
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which implies that

0 ⩽ min

{
∥M (xi)u∥2

∥u∥2 : u ∈ Rs and u ̸= 0

}

⩽ min
{
∥M (xi)ν∥2 : ν ∈ Rs and ∥ν∥= 1

}
= 0.

Hence,

min

{
∥M (xi)u∥2

∥u∥2 : u ∈ Rs and u ̸= 0

}
= 0.

(c) ⇒ (d) Let

min
{
∥M (xi)u∥2

∥u∥2 : u ∈ Rs and u ̸= 0
}
= 0.

Then, there exists u ∈ Rs with u ̸= 0 such that

∥M (xi)u∥2

∥u∥2 = 0

which implies that

(M(xi)u) = 0.

Thus,

M∗(xi)M (xi)u = 0

Then, zero is an eigenvalue of M∗ (xi)M (xi).

Also, all eigenvalues of M∗(xi)M (xi) are nonnegative real numbers. Hence, the smallest

eigenvalue of M∗ (xi)M (xi) is zero.
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(d) ⇒ (a) : If the smallest eigenvalue of M∗ (xi)M (xi) is zero, then

det(M∗ (xi)M (xi)) = det2 (M (xi)) = 0

which implies that

R(xi) = det(M (xi)) = 0.

i such that the smallest eigenvalue of M∗ (xi)M (xi)

is zero.

Let us assume that

µ (xi) = M∗ (xi)M (xi) . (4.4)

One should note that µ (xi) is a large sparse square symmetric matrix. In some cases,

µ (xi) is singular. Therefore, we should use suitable method for such matrices which is

the Lanczos method.

4.2 Lanczos Method

Let us assume that

µ (xi) = M∗ (xi)M (xi) (4.5)

for i = 1,2, . . . ,n. Then, µ is large, square, symmetric matrix of order s. Also, µ is

singular matrix in sometimes. For this reason, Lanczos method is one of the most suitable

methods to use in this case. In this section, we describe it.

Let us define the Rayleigh quotient as follows

R(u) =
u∗µ (xi)u

u∗u
, u ̸= 0. (4.6)

Then, using Theorem (4.1.1), the minimum of R(u) is the smallest eigenvalue of µ(xi).

Let us fix xi and for simplicity write µ(xi) by µ . Let {q1, . . . ,qs} ⊆ Rs be the Lanczos

Therefore, we will look for x
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orthonormal vectors and define

Qn =

[
q1, q2, · · · qn

]
,n = 1,2, · · · ,s. (4.7)

Then,

QnµQ∗
n = Tn =



α1 β2 0 0

β2 α2
. . . 0

0 . . . . . . βn

0 0 βn αn


.

We can generate q1, . . . ,qn,α1, . . . ,αn, and β1, . . . ,βn−1 using the following algorithm.

Algorithm 1:

• Input: The matrix A of order n.

• Output: The matrices Qn and Tn.

Step 1: Let q1 ∈ Rs with ∥q1∥= 1 using the Euclidean norm.

Step 2: Let

ν
′
1 = µq1

α1 = ν
′∗
1 q1

ν1 = ν
′
1 −α1q1.

Step 3: For i = 2 : n, do steps 4−8.

Step 4: Let βi = ∥νi−1∥.

Step 5: If βi ̸= 0, then qi =
νi−1
βi

, else choose qi of norm one and orthogonal to q j, j = 1 :

i−1.

Step 6: Let ν ′
i = Aqi.
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Step 7: Let αi = ν ′∗
i qi.

Step 8: Let νi = ν ′
i −αiqi −βiqi−1.

Step 9: Let

Qn = [q1 . . .qn] .

Step 10: Let

Tn =



α1 β2 0 0

β2 α2
. . . 0

0 . . . . . . βn

0 0 βn αn


.

Step 11: Stop.

One can see that

mn = minu̸=0R(Qnu)⩾ λmin(xi), (4.8)

and m1 ⩾ m2 ⩾ . . .⩾ ms = λmin(xi). (4.9)

Example 4.2.1 Let

µ =


1 4 3

4 4 5

3 5 6

 .

Let

q1 =


1

0

0

 .
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Then

ν
′
1 = µq1 =


1

4

3

 .

Where α1 = ν ′∗
1 q1 = 1. Thus

ν1 = ν
′
1 −α1q1 =


1

4

3

−


1

0

0

=


0

4

3

 .

Then, β2 = 5 and

q2 =


0

4/5

3/5

 .

Thus, q1 ·q2 = 0 and

ν
′
2 = µq2 =

1
5


1 4 3

4 4 5

3 5 6




0

4

3

=
1
5


25

31

38

 .

Hence, α2 = ν ′∗
2 q2 =

1
25 [0+124+114] = 238

25 and,

ν2 = ν
′
2 −α2q2 −β2q1 =

1
5


25

31

38

− 238
125


0

4

3

−5


1

0

0

=
1

125


0

−177

236

 .

Thus, β3 = ∥ν2∥= 59
25 and
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q3 =
ν2

β3
=


0

−3
5

4
5

 ,

Where q1 ·q2 = 0, q2 ·q3 = 0, q1 ·q3 = 0.

Then,

ν
′
3 = µqs =


1 4 3

4 4 5

3 5 6




0

−3
5

4
5

=


0

8
5

9
5

 ,

and

α3 = ν
′∗
3 q3 =

[
0 8

5
9
5

]


0

−3
5

4
5

=
12
25

.

Thus, Tn and Qn have been generated as

Tn =


1 5 0

5 238
25

59
25

0 59
25

12
25



Qn =


1 0 0

0 4/5 −3/5

0 3/5 4/5

 .

It is worth mentioning that there is no need to calculate all mi for i = 1 : s. since we

will get an excellent approximation to λmin(xi) by mn for n is smaller than s. Another

advantage is that Tn

and
                              is tridiagonal matrix. Thus, we can write it as n× 3 matrix to save
storage in the computer       to reduce the computational cost.
We can write Algorithm 1
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in the following form to make it more suitable for programming.

Algorithm 2:

• Input: ε > 0 % tolerance, ω ∈ Rs with ∥ω∥2 = 1, a matrix µ .

• output: αi, i = 1 : n and β j, j = 2 : n.

Step 1: Let i = 1,ν = 0,β1 = 1.

Step 2: While βi ⩾ ε and i ⩽ n, do steps 3-7.

Step 3: If i ̸= 1, do steps 4−5.

Step 4: For k = 1 : s, do steps 5.

Step 5: Let t = wk,wk =
νk
βi
,νk =−βi · t.

Step 6: Let ν = ν +µω .

Step 7: For

i = i+1,αi−1 = ω
∗
ν ,ν = ν −αi−1ω

βi = ∥ν2∥.

Step 8: Stop.

Remark. 6 One can see the following.

1. In each step, we need one evaluation of µω . Thus, Tn can be generated by n evaluations

of µω .

2. In our code, to compute µω , we need

a) Compute r = µ (xi)ω ,

b) Compute M∗ (xi)r.

3. If M (xi) has γ nonzero elements in average in each row, then the single Lanczos step

need (3γ +8)s flops.

4. The vectors ω has size s×1.
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5. The main disadvantage of Algorithm 2, we loose the orthogonality of the Lanczos vec-

tors ω ′s due to the cancellation.

To overcome the difficulty in point (5), We can use either complete reorthogonalization or

selective orthogonalization. Unfortunately, the complete reorthogonalization is compli-

cated to use and very expensive in terms of computational cost. Therefore, in this section,

we use the selective orthogonelization. Since Tn is triadiagonal symmetric matrix, we can

apply the symmetric QR methad on it. Let θ1,θ2, . . . ,θn be the computed Ritz values and

Sn is nearly orthogonal matrix of eigenvectors. Let

Yn = [y1 . . .yn] = QnSn. (4.10)

Then, it can be shown that

|qn+1yi| ≈
ε∥µ∥2

βn |sni|

and

∥µyi −θiyi∥ ≈ |βn| |sni|= βni

where ε is the machine precision. We say the computed Ritz pair (θ ,y) is "good" if

∥µy−θy∥ ≈
√

ε∥µ∥2.

One can measure the loss of orthogonality of Qi by

ki = ∥Ii −Q∗
i Qi∥ and k1 = ∥1−q∗1q1∥ .

Then,

k1 ≤ k2 ≤ ·· · ≤ kn.

The relation between ki+1 and ki is given by the following theorem.
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Theorem 4.2.1 if ki ⩽ η , then

ki+1 ≤
1
2

(
η + ε +

√
(η − ε)2 +4

∥∥Q∗
i ·qi+1

∥∥2
)

−2 . If ki i+1

i i >η , then we orthogonalize

qi+1 against each "good" Ritz vectors. It is easy to see that the selective orthogonlization is

much less costly than the complete reorthogonalization since there are fewer "good" Ritz

vectors than Lanczos vectors. Another advantage in using the selective orthogonadization

is that we implement the symmetric QR method on Tn which has small size comparing

with the size of µ . The following algorithms shows how can we apply the Rayleigh

quotient iteration with selective orthogonatization to find the smallest eigenvalue of the

matix Tn. It is easy to see that Ts and µ are similar and they have the same eigenvalues.

Algorithm 3:

• Input : x(0) such that
∥∥∥x(0)

∥∥∥= 1.

• Output: Approximate value for smallest eigenvalue of Tn.

• Step 2: Compute mk =
x(k)

∗
Tnx(k)

x(k)∗x(k)
.

• Step 3: Set In to be the identity matrix of order n.

• Step 4: Solve (Tn −mkIn)z(k+1) = x(k) for z(k+1).

• Step 5: Set x(k+1) = z(k+1)

∥z(k+1)∥ .

• Step 1: For k = 0,1, . . ., do steps 2-5.

Now, Let us fix η , say η = 10 ⩽ η , then q is orthogonal on all columnsof

  Q . In this case, no need to do any reorthogonalization. If   k
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• Step 6: Stop.

Example 4.2.2 Consider the following T3

T3 =


1 5 0

5 238
25

59
25

0 59
25

12
25

 .

We want to find the smallest eigenvalues. Let

x0 =


1

0

0

 .

Then

µ0 = x⊤0 T3x0 = 1.

Then, z1 is the solution of

(T3 −µ0I3)z1 = x0.

Which implies that,

z1 =


−10
13

1
5

59
65

 .

For more details about selective of orthogonalization and Lanczos method, see [16]
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Hint,

x1 =
z1

∥z1∥
=


−0.637577

0.16577

0.7527341

 .

Similarly, we will get

µ1 = 0.471545, x2 =


−0.474403

0.034914

0.879615

 .

µ2 = 0.587372, x3 =


−0.48391

0.0399022

0.874208

 .

µ3 = 0.587717

Thus,

µ3 = min{∥λ∥ : λ is an eigenvalue of T3} .

Note that the eigenvalues of T3 are {12.2221,−1.8098,0.587717}.

4.3 Numerical Results

In this section, we present two examples. The first example is taken from [2.2.2] to make

a comparison with their results.
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Example 4.3.1 Consider the following system of polynomials

G1 (x1,x2,x3) = x2
1 + x2

2 + x2
3 −1,

G2 (x1,x2,x3) = x2
1 + x2

2 − x3,

G3 (x1,x2,x3) = x2
1 + x2

3 − x2.

G(x) = 0 (4.11)

are

x2 = x3 =

√
5−1
2

≈ 0.618 and x1 =±
√

x3 − x2
2 ≈±0.486.

We scan for a solution of the x1 parameter in the interval [−0.7,0.7] and of x2 parameter

in the interval [−0.9,0.9]. The parameter x3 will give the same result as x2. In all cases,

the increment is 0.05. Table 1 and 2 show the minimal eigenvalues λ and the number of

evaluations of µw which were necessary to obtain λ , say ν . We should note for Tables

(4.1)-(4.3) that, the x1 compute of the roots belongs to [−0.5,−0.45] and [0.45,0.5]. Also

x2 and x3 compute of the roots belong to [0.6,0.65].

Using Mathematica, it is easy to see that the solution to the system
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

1 0 1 0 0 0 0 0 0 y2 −1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 y2 −1 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 y2 −1 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 y2 −1 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 y2 −1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 y2 −1

0 0 −1 0 0 1 0 0 0 −y2 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0 −y2 0 0 0 0

0 0 0 0 −1 0 0 1 0 0 0 −y2 0 0 0

0 0 0 0 0 0 0 −1 0 1 0 0 −y2 0 0

0 0 0 0 0 0 0 0 −1 0 1 0 0 −y2 0

−1 0 −1 0 0 0 0 0 0 y 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0 y 0 0 0 0

0 0 0 0 0 −1 0 −1 0 0 0 0 y 0 0

0 0 0 0 0 0 −1 0 −1 0 0 0 0 y 0



Then the matrix M(y) 15×15 and it’s given by
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

1 0 1 0 0 0 0 0 0 x2 −1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 x2 −1 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 x2 −1 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 x2 −1 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 x2 −1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 x2 −1

0 0 −1 0 0 1 0 0 0 −x2 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0 −x2 0 0 0 0

0 0 0 0 −1 0 0 1 0 0 0 −x2 0 0 0

0 0 0 0 0 0 0 −1 0 1 0 0 −x2 0 0

0 0 0 0 0 0 0 0 −1 0 1 0 0 −x2 0

−1 0 0 0 0 0 −1 0 0 −x2 0 0 0 0 0

0 −1 0 0 0 0 0 −1 0 0 −x2 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 −1 0 −x2 0 0

0 0 0 0 0 0 −1 0 0 0 0 −1 0 −x2 0



Then the matrix M(x) 15×15 and it’s given by
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Then the matrix M(z) 15×15 and it’s given by



1 0 1 0 0 0 0 0 0 z2 −1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 z2 −1 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 z2 −1 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 z2 −1 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 z2 −1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 z2 −1

−1 0 −1 0 0 0 0 0 0 z 0 0 0 0 0

0 −1 0 −1 0 0 0 0 0 0 z 0 0 0 0

0 0 −1 0 −1 0 0 0 0 0 0 z 0 0 0

0 0 0 0 0 −1 0 −1 0 0 0 0 z 0 0

0 0 0 0 0 0 −1 0 −1 0 0 0 0 z 0

0 0 −1 0 0 1 0 0 0 −z2 0 0 0 0 0

0 0 0 −1 0 0 1 0 0 0 −z2 0 0 0 0

0 0 0 0 0 0 0 −1 0 1 0 0 −z2 0 0

0 0 0 0 0 0 0 0 −1 0 1 0 0 −z2 0


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Table 4.1: Minimal eigenvalues for x1

x1 λ ν x1 λ ν

−0.70 1.27191124e−02 8 0.05 2.22173682e−02 5

−0.65 8.85884225e−02 8 0.10 2.08564155e−02 5

−0.60 4.67641301e−03 7 0.15 1.86667841e−02 6

−0.55 1.51264545e−03 7 0.20 1.57759820e−02 7

−0.50 7.18964033e−05 7 0.25 1.23793046e−02 7

−0.45 4.38330123e−04 6 0.30 8.75111892e−03 7

−0.40 2.31806868e−03 6 0.35 5.25114642e−03 7

−0.35 5.25114642e−03 6 0.40 2.31806868e−03 7

−0.30 8.75111893e−03 6 0.45 4.38330123e−04 6

−0.25 1.23793046e−02 7 0.50 7.18964033e−05 6

−0.20 1.57759820e−02 7 0.55 1.51264545e−03 6

−0.15 1.86667841e−02 7 0.60 4.67413007e−03 6

−0.10 2.08564155e−02 7 0.65 8.85884225e−03 7

−0.05 2.22173682e−02 6 0.70 1.27191124e−02 8

0.00 2.26785889e−02 5
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2

x2 λ ν x2 λ ν

−0.90 7.37871009e−02 6 0.05 3.98609845e−02 6

−0.85 1.54541246e−02 6 0.10 3.56493115e−02 6

−0.80 2.52100806e−02 6 0.15 3.11355792e−02 6

−0.75 3.56222937e−02 6 0.20 2.64209258e−02 6

−0.70 4.47391043e−02 6 0.25 2.16350960e−02 6

−0.65 4.92109204e−02 6 0.30 1.69348432e−03 6

−0.60 5.19030914e−02 6 0.35 1.24973056e−03 6

−0.55 5.39712898e−02 5 0.40 8.50791843e−03 6

−0.50 5.55339702e−02 5 0.45 5.14372620e−03 6

−0.45 5.66056506e−02 5 0.50 2.55436512e−03 5

−0.40 5.71834514e−02 5 0.55 8.44063522e−04 5

−0.35 5.72614010e−02 5 0.60 5.82790608e−05 5

−0.30 5.68340255e−02 5 0.65 1.77750934e−04 5

−0.25 5.58976649e−02 5 0.70 1.12056512e−03 5

−0.20 5.44512936e−02 5 0.75 2.74818083e−03 5

−0.15 5.24973687e−02 5 0.80 4.85268510e−03 5

−0.10 5.00429927e−02 5 0.85 6.88978374e−03 5

−0.05 4.71016689e−02 5 0.90 5.59574311e−03 6

0.00 4.36959277e−02 5

Table 4.2: Minimal eigenvalues for x
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Example 4.3.2 Consider the following system

G1(x,y,z,w,r) = x2 + y2 + z2 +w2 + r2 −1,

G2(x,y,z,w,r) = x2 + y2 + z2 +w2 − r,

G3(x,y,z,w,r) = x2 + y2 + z2 + r2 −w,

G4(x,y,z,w,r) = x4 − z2,

G5(x,y,z,w,r) = z2 − y2.

Using Mathematica, the solution of the system

G(x) = 0 (4.12)

are

x =±0.418202002, y =±0.174892914

z =±0.174892914, w = r = 0.618033189.

One can see that the size of the resultant matrix for each variable is 445×495. We make

an entirely analogous analysis to that of Example (4.3.1). We Scan for a solution of

the x-parameter in the interval [−0.7,0.7], y-parameter, and z-parameter in the interval

[−0.4,0.4], and w-parameter and r-parameter in the interval [−0.9,0.9]. In all the cases,

the increment is 0.05. Tables (4.3−4.7), show the minimal eigenvalues λ and the number

of evaluations of µw which were necessary to obtain λ , say ν .
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Table 4.3: Minimal eigenvalues for x

x λ ν x λ ν

−0.70 8.3714e−02 10 0.05 3.2421e−02 11

−0.65 4.4281e−02 10 0.10 2.6543e−02 11

−0.60 1.7562e−02 10 0.15 1.6870e−02 10

−0.55 7.2162e−03 11 0.20 1.0057e−02 10

−0.50 1.3869e−03 11 0.25 5.7392e−03 10

−0.45 3.2863e−04 10 0.30 1.5155e−03 10

−0.40 1.1111e−05 10 0.35 6.5101e−04 10

−0.35 7.5412e−04 10 0.40 1.1081e−05 11

−0.30 2.5410e−03 10 0.45 3.3832e−04 10

−0.25 7.8320e−03 10 0.50 2.9126e−03 10

−0.20 1.7774e−02 11 0.55 7.2106e−03 10

−0.15 2.7656e−02 11 0.60 2.4111e−02 11

−0.10 3.1826e−02 11 0.65 5.8532e−02 11

−0.05 4.2010e−02 11 0.70 6.7210e−02 11

0.00 6.2341e−02 12
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Table 4.4: Minimal eigenvalues for y

y λ ν y λ ν

−0.40 3.2145e−02 11 0.05 2.8085e−03 11

−0.35 1.2360e−02 11 0.10 5.6910e−04 11

−0.30 5.7681e−03 12 0.15 3.1232e−05 10

−0.25 4.4441e−04 11 0.20 3.6295e−05 10

−0.20 3.2142e−05 10 0.25 5.6563e−04 11

−0.15 3.0210e−05 10 0.30 4.4222e−03 11

−0.10 5.4980e−04 11 0.35 8.9066e−03 12

−0.05 3.0289e−03 12 0.40 2.9400e−02 11

0.00 2.1256e−02 11

z λ ν z λ ν

−0.40 3.5412e−02 12 0.05 1.9326e−03 12

−0.35 1.8720e−02 11 0.10 2.1211e−04 11

−0.30 4.9998e−03 12 0.15 3.0022e−05 10

−0.25 3.3321e−04 11 0.20 3.1240e−05 10

−0.20 3.3908e−05 10 0.25 4.4781e−04 11

−0.15 3.2085e−05 10 0.30 3.4061e−03 11

−0.10 4.2106e−04 11 0.35 7.0169e−03 12

−0.05 5.2376e−03 12 0.40 3.9223e−02 12

0.00 1.8720e−02 12

Table 4.5: Minimal eigenvalues for z
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Table 4.6: Minimal eigenvalues for w

w λ ν w λ ν

−0.90 7.9911e−02 12 0.05 5.3245e−02 11

−0.85 2.6712e−02 12 0.10 4.3876e−02 11

−0.80 6.7802e−02 11 0.15 3.2345e−02 11

−0.75 8.9112e−02 11 0.20 2.9879e−02 10

−0.70 1.1114e−02 12 0.25 1.0221e−02 10

−0.65 8.9262e−02 12 0.30 5.0211e−03 10

−0.60 8.0925e−02 12 0.35 4.2333e−03 10

−0.55 7.0254e−02 12 0.40 2.0011e−03 11

−0.50 5.0282e−02 12 0.45 1.0098e−03 11

−0.45 5.9845e−02 12 0.50 1.0001e−03 11

−0.40 2.0186e−02 12 0.55 4.9888e−04 10

−0.35 7.0982e−02 11 0.60 2.0110e−05 10

−0.30 7.0981e−02 11 0.65 1.2299e−04 10

−0.25 1.1652e−02 11 0.70 3.0098e−03 11

−0.20 2.0931e−02 11 0.75 4.6721e−03 10

−0.15 1.8733e−02 11 0.80 7.8882e−03 11

−0.10 6.0245e−02 10 0.85 8.9901e−03 11

−0.05 7.9867e−02 10 0.90 9.9913e−03 12

0.00 6.0001e−02 10
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r λ ν r λ ν

−0.90 8.2234e−02 13 0.05 7.2397e−02 12

−0.85 4.8972e−02 12 0.10 5.5551e−02 12

−0.80 7.3003e−02 12 0.15 3.2458e−02 11

−0.75 7.5412e−02 12 0.20 2.3145e−02 11

−0.70 2.3341e−02 12 0.25 1.9110e−02 10

−0.65 7.1112e−02 12 0.30 9.9994e−03 10

−0.60 9.9989e−02 12 0.35 7.8234e−03 11

−0.55 1.2312e−02 12 0.40 5.3572e−03 11

−0.50 4.0026e−02 12 0.45 2.2299e−03 11

−0.45 4.1209e−02 12 0.50 1.1009e−03 11

−0.40 7.2124e−02 11 0.55 4.4422e−04 10

−0.35 3.9920e−02 11 0.60 2.1180e−05 10

−0.30 1.1191e−02 11 0.65 1.7521e−04 10

−0.25 2.1367e−02 11 0.70 3.6001e−03 11

−0.20 6.3456e−02 11 0.75 5.9236e−03 10

−0.15 1.9867e−02 11 0.80 6.9221e−03 11

−0.10 3.3332e−02 10 0.85 9.9966e−03 11

−0.05 1.0009e−02 10 0.90 5.4470e−03 12

0.00 4.5321e−02 10

From Tables (4.3− 4.7), we see that this approach works nicely and efficiently. Com-

paring the number of evaluations ν in our approach with Allgower [2], we see that their

approach is more expensive than ours.

Table 4.7: Minimal eigenvalues for r
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4.4 Conclusions

In this thesis, the location of the zeros of polynomial systems using multiresultant metrics

demonstrated in different methods such as “one-dimensional path following method” and

the “Lancrzos method”. It started with preliminaries about the multiresultant of homoge-

nous polynomial systems and how to homogenize the inhomogenous polynomial system,

although several numerical examples were presented and illustrated the technique dealing

with large sparse matrices which has a finite number of solutions for homogenous as well

as inhomogenous polynomial systems. Chapter 1 presented the literature review. Further-

more, Chapter 2 investigated the relationship between the resultant matrix and the zeros

of polynomial systems and it is devoted to homogeneous and inhomogeneous polyno-

mial systems. Several numerical examples were illustrated with theoretical results which

prove that the multiresultant matrix has at least one zero eigenvalues. In Chapter 3, we

presented a new method to deal with an unstable method which has been used in Chapter

2 to find the roots of high degree multiresultant. However, the new method is numerically

stable and preserves the sparseness of the multiresultant matrix, this new method is called

the one-dimensional path following method. Also, the numerical results of the singular

matrix showed the efficiency and sufficiency of the proposed method. The approach of

theorems (3.1.1)-(3.1.2) and Cramer’s rule shows the approximation of the zeros’ location

when the sign of the function changes. Moreover, secant method has been used to approx-

imate the root fastly and it is easy to use. Furthermore, a one-dimensional path following

method is to find the roots of the function, and it is a bad practice to expand the determi-

nants symbolically when the size of the matrix is large. In addition, a numerical example

described the intersection of a sphere in R3 with two parabolas by using Mathematica-

(12.1) and path following method and secant method to identify the accurate solutions of

the System 3.1.4. In addition, Chapter 4 presented equivalent conditions to multiresultant,

as we justify in Chapter 2 computing the determinant of the resultant matrix is unstable

and costly to overcome these issues we proceed to equivalent conditions to multi-resultant

by using Lanczos method which is one of the most suitable to use for large sparse square

symmetric matrix. Finally, some conclusions were drawn in Chapter 4.
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In this thesis, will modify a new practicable method for approximating all real 
zeros of polynomial systems using the multi-resultant method. Multi-Resultant 
method is used to solve systems of polynomial equations to determine whether 
or not solutions exist, or to reduce a given system to one with fewer variables 
and/or fewer equations. 
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