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Abstract 

Over the next five to ten years, desalination will play an ever-important role in 

our society. Developing nations will look at desalination from the point of water scarcity, 

while developed nations will consider the perspective of the Water-Energy-Food nexus. 

With current technology, for every liter of freshwater produced, one and a half liters is 

thrown away as waste. This body of research proposes to employ chemical precipitation 

in ammoniated brine solutions, that have reasonably high ionic concentrations. CO2 

absorption in Bubble Column Reactors can reduce sodium ions by precipitating 

NaHCO3. Also, the absorbed CO2 can reduce chloride ions and induce hydrate 

formation, by operating the column at a lower temperature (10 – 15℃).  

The Bubble Column Reactor model includes CO2 absorption, aqueous reaction, 

and salt precipitation. The kinetic/equilibrium reaction system is simulated and 

optimized using non-linear programming. The hydrate formation process is modeled and 

optimized using Machine Learning. The results from the optimization show that brine 

with 23400 ppm of Na+ ions and 44000 ppm of Cl- ions can be reduced by 72.5% and 

54.2%, respectively. The absorption process will use 1.15 mol of CO2 absorbed per mole 

of NH3 dissolved with a total of 8.702 mol of CO2 absorbed. 

This work develops a new process for Zero Liquid Discharge. The proposed 

process utilizes CO2 absorption in Bubble Column Reactor to remove Na+ and Cl- ions. 

This study provides all the necessary equations to determine the appropriate operating 

conditions. These results can be taken into the lab and used as an initial point for 

optimization using statistical methods. 

 

Keywords: Desalination revitalization, chemical precipitation, carbon capture, Bubble 

Column Reactor, hydrate formation, Machine Learning Application 
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Title and Abstract (in Arabic) 

 معالجة المياه المالحة بالتقاط ثاني اكسيد الكربون: تحسين العملية باستخدام التعلم الالي 

 ص الملخ  

تحلية المياه دورًا مهمًا دائمًا في مجتمعنا. ستنظر  على مدى السنوات الخمس إلى العشر القادمة ، ستلعب  

الدول النامية إلى تحلية المياه من وجهة ندرة المياه ، بينما ستنظر الدول المتقدمة إلى منظور العلاقة بين المياه  

ونصف كنفايات.  والطاقة والغذاء. بإستخدام التكنولوجيا الحالية ، مع إنتاج كل لتر من المياه العذبة ، يتم إنتاج لتر 

تقترح الأطروحة هذه استخدام الترسيب الكيميائي في المحاليل الملحية المذوبة بالأمونيا، التي تحتوي على تركيزات  

أيونية عالية بشكل معقول. امتصاص ثاني أكسيد الكربون في العمود الفقاعي يمكنه أن يقلل من أيونات الصوديوم  

(. أيضًا ، يمكن لثاني أكسيد الكربون الممتص تقليل أيونات  3aHCONعن طريق ترسيب كربونات الصوديوم )

درجة    15 - 10الكلوريد والحث على تكوين الهيدرات ، عن طريق تشغيل العمود عند درجة حرارة منخفضة )

 .مئوية(

نموذج مفاعل العمود الفقاعي يحتوي علي نماذج رياضية لامتصاص ثاني أكسيد الكربون وللتفاعل المائي  

لترسيب الملح. يتم محاكاة نظام التفاعلات الحركية و التوازنية وتحسينه باستخدام البرمجة غير الخطية. تم تصميم  و

عملية تكوين الهيدرات وتحسينها باستخدام التعلم الالي. تظهر النتائج أنه يمكن تقليل محلول ملحي الذي يحتوي على  

٪ و  72.5جزء في المليون من الأيونات الكلوربد بنسبة   44000 جزء في المليون من الأيونات الصوديوم و 23400

مول من ثاني أكسيد الكربون لكل مول من الأمونيا الذائبة   1.15٪ على التوالي. ستستخدم عملية الامتصاص 54.2

 مول من ثاني أكسيد الكربون الممتصة.  8.702بإجمالي 

. تستخدم العملية المقترحة امتصاص ثاني أكسيد  يطور هذا العمل عملية جديدة لتصريف السوائل الصفرية

الكربون في مفاعل العمود الفقاعي لإزالة أيونات الصوديوم والكلوريد. توفر هذه الدراسة جميع المعادلات اللازمة  

لتحديد ظروف التشغيل المناسبة للمفاعل العمود الفقاعي. يمكن أخذ هذه النتائج إلى المختبر واستخدامها كنقطة 

 ائية للتحسين العملية باستخدام الأساليب الإحصائية. مبد

 تنشيط تحلية المياه، ترسيب الكيميائي، التقاط الكربون ، مفاعل عمود الفقاعي، التعلم الالي.  :مفاهيم البحث الرئيسية
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Chapter 1: Introduction 

1.1 Overview 

Access to freshwater is one of the main necessities in life. Today, one percent of 

freshwater produced comes from desalination treatment plants. These plants supply 300 

million people in 150 countries across the world [1]. Around 237 million m3 of water is 

desalinated in 16000 plants daily [2]. Desalinated water is used in many applications. 

Mostly, it is used in municipalities, in the form of potable water, for household 

applications, commercial uses, and public demands. The rest is mostly used industrially 

in cooling/heating utilities, energy generation, and washing products [3]. There are other 

uses such as irrigation, military use, and other miscellaneous activities. Water generation 

allows communities to grow as it provides the necessary resources needed to live a 

comfortable lifestyle. 

Nations are pushed towards desalination because of the minimum amount of 

freshwater available. In fact, less than three percent of water bodies are considered 

freshwater, and only one percent is drinkable [4]. These bodies come in the form of 

lakes, rivers, groundwater, or even glaciers. Over the following couple of decades, 50%-

60% of the global population will face water scarcity [5]. Reasons, such as climate 

change, population growth, and urbanization, are amplifying the water shortage problem. 

Among the many, California in USA, Cape Town in South Africa, and Egypt have all 

had their water shortage problems in the past decade [6]–[8]. The recent launch of water 

trading as a commodity [9], highlights the fears of water scarcity. The rising amount of 

global water shortages should lead to water-trade diplomacy [10], [11]. 

Another factor that will play an important role over the next couple of decades is 

the water-energy nexus. Energy is needed to produce purified/desalinated water, and 

water is needed to produce energy when utilizing steam turbines [12]. There are five 

important aspects to the nature of the nexus. The main aspect is the economic one, as it 

highlights that the water/electricity price structure will ultimately affect local/national 

economies [13]. In addition, technological advancements in any or both fields will lead 

to better outcomes for society [13]. Therefore, policies dictated at local and national 

levels will have to be integrated to ensure better outcomes. This will affect social 
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behavior and public perception of the matter. Finally, the nexus will allow governments 

to value their environment for what its worth of water and energy resources [13].  

In the gulf region, United Arab Emirates depends on desalinating seawater to 

provide freshwater [14]. Geographically, the gulf region is abundant with petroleum and 

natural gas, yet they lack the natural resources needed to provide fresh drinkable water. 

UAE uses combined power and desalination plants to secure its energy and freshwater 

needs. There are two main types of desalination methods: (1) processes that depend on 

pressure, mainly reverse osmosis (RO); (2) processes that depend on temperature, mainly 

thermal distillation [15]. Although RO requires lower energy needs, thermal distillation 

is mainly used as it is integrated with energy production [14]. Combined power and 

desalination stations burn natural gas to evaporate seawater. The steam produced powers 

turbines to generate electricity, and the water exiting the turbines is used as potable water 

[16]. 

UAE has been working on national energy and economic strategies to secure its 

water and energy needs [14]. To be able to meet their ever-growing population demand, 

they will need to provide reliable electricity and freshwater resources. However, as the 

demand keeps rising, the environmental burden will keep persisting and increasing. UAE 

has been working on developing innovative solutions to this existing problem [17]. El-

Naas et al. [18] have been proposing the management of desalination reject brine with 

simultaneous carbon dioxide capture. 

1.2 Current State of Research 

To fully make desalination affordable, one must solve the problem from its roots. 

The problem lies in two-fold: (1) wastewater recycling is less than 10% [19], and (2) 

desalination production is not as cheap as freshwater production [20]. Wastewater 

treatment is complex as it involves various processes to purify water streams. A typical 

treatment scheme includes physical/mechanical treatment, followed by chemical and 

biological treatments [21]. The final stage involves sludge disposal according to local 

regulations [21]. The issue lies in attempting to remove all impurities 

dissolved/suspended. The most difficult item to remove is Pharmaceuticals and Personal 

Care Products [22], followed by organics and microplastics [23]. The aeration process, 
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which degrades biological and organic matter, consumes most of the energy in 

wastewater treatment plants [24]. While wastewater is a huge problem, most research is 

focused on developing more affordable desalination systems [25]. 

Currently, desalinated water production costs 2-3 times the price of producing 

freshwater [26]. Reverse Osmosis (RO) and Multi-Stage Flash (MSF) are the most 

prominent technologies used in large-scale water production [2]. Most of the cost for 

producing desalinated water comes from energy costs (mechanical pressure or thermal 

energy) and amortized capital costs [27]. Seawater is the most water source used, 

followed by brackish water. RO plants can recover 42% to 65%, while MSF can only 

recover 22% to 33% [2]. Virtually, all newly built desalination plants use RO 

technology. Out of the 237 million m3 processed, only 97 million m3 is considered 

freshwater, as 141 million m3 is regarded as waste [2]. There is a lot of room for 

improvement. 

The current trend in desalination technologies is to develop better membranes for 

RO applications [28]. There has been a focus on high-pressure RO systems. Certain 

membranes have been developed to handle high pressures and recover more water [29]. 

Another focus has been shifted in the direction of utilizing a new-generation of 

antiscalants in membranes [30]. Scaling can cause chemical fouling, which allows 

membranes to recover less water than optimal. This is one of the main limitations with 

current membrane technologies. New advancements should lower operating costs along 

with membrane replacement costs. Another trend is to use electrodialysis in brackish 

water desalination plants. At a Total Dissolved Solids (TDS)  level less than 30 g/L, 

electrodialysis can compete with the price of RO [31]. Electrodialysis has a high energy 

efficiency with 90% water recovery, when compared to 65% recovery from RO 

technology [2]. 

1.3 Scope of Thesis 

Research objectives describe what you expect to achieve by your research study. 

It should be closely related to the statement of the problem. For example, if the problem 

identified is low utilization of a health care service, the general objective of the study 

could be to identify the reasons for this low uptake, in order to find ways of improving it.  
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Research advancements in desalination technology require building state-of-the-

art technology. This drives current research to focus on using cheaper material 

membranes that will require less energy in production. However, sometimes ignored is 

the amount of water discharged as desalination waste. For each cubic meter of 

desalinated water produced, one and a half cubic meter is rejected as waste [2]. This 

body of research aims to minimize the amount of brine water rejected. This should allow 

to reclaim more freshwater and monetize the salt produced, which should theoretically 

lower desalination costs. The research will focus on reclaiming desalination waste by 

dissolving pure CO2, and by achieving so through its objectives. The five main 

objectives are: 

1. Maximize Na+ removal. The main objective of this research is to study the 

absorption/reaction system inside a Bubble Column Reactor. This study will 

determine the best operating conditions that maximize sodium removal. 

2. Maximize CO2 absorption. The second objective is to determine the best 

operating conditions that maximize the amount of HCO3
- formed. The amount of 

CO2 dissolved affects the NaHCO3 salt equilibrium and the amount of Na+ 

precipitated. This objective is considered a secondary objective, as it aids in 

achieving the first objective indirectly. 

3. Maximize Cl- removal. The third objective is to investigate Cl- removal capacity 

using a CO2-based hydrate system. The CO2-hydrate system will be modeled 

using Machine Learning. The study will determine the factors important in 

achieving maximum Cl- removal. 

4. Model the Bubble Column Reactor. The fourth objective is to build a 

mathematical model that represents the important factors affecting the first three 

objectives. These factors are temperature, pressure, ionic interactions, and 

absorbent type and amount. This mathematical model will be important for 

understanding the process through simulation. 

5. Optimizing operating conditions. The fifth and last objective of this study is to 

utilize the models built to achieve the first three objectives. The operating 

conditions of the Bubble Column Reactor are tuned using Non-Linear 

Programming and Machine Learning. 
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The novelty of this research relies on the mathematical framework used to 

develop an optimized solution. First, a mathematical model is developed to represent 

CO2 absorption and salt precipitation in a Bubble Column Reactor. The multiphase 

phenomena modeled are gas absorption, aqueous reaction, and salt precipitation. These 

phenomena require modeling kinetic and thermodynamic reactions, and non-ideal 

behavior in gas and aqueous phases. Second, these models are optimized using Non-

Linear Programming to maximize the amount of CO2 absorbed and minimize the amount 

of material consumed. In addition, the process is optimized using Machine Learning to 

configure the best operating conditions for maximum chloride removal. 

Desalination waste revitalization will aid in lowering the cost of desalination 

using ion removal by reclaiming the rejected water and utilizing salts precipitated. In the 

second chapter, a survey of the literature reviews current trends in treating reject brine, 

and in CO2 capture using absorption. The third chapter covers the theoretical framework 

used to model CO2 absorption and reaction in brine solutions. In addition, the third 

chapter includes the Machine Learning modeling framework. The fourth chapter 

discusses the results from model validation, simulation, and optimization. Finally, the 

last chapter concludes the research with a summary and three recommendations for 

future works. 
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Chapter 2: Literature Review 

Zero Liquid Discharge (ZLD) is important not only for the environmental impact 

of brine, but also for the economic value it could add [32]. The technology aims to 

maximize the amount of freshwater reclaimed and minimize the amount of brine waste 

disposed of. It achieves so through a sustainable desalination solution [33]. Such a 

solution should aim to reuse any brine waste produced. If not feasible, it should aim to 

recycle brine and reduce waste disposed of. Beyond the three R’s, a solution should 

recover any material from waste streams [34]. In addition, a solution should consider a 

balance between all the costs associated with water treatment, and all the benefits of 

minimizing the water supplied. Although current technologies are not economically 

viable for large-scale brine treatment, emerging solutions will aid in achieving so. In this 

chapter, brine treatment solutions are reviewed, along with carbon capture technologies 

through absorption. 

2.1 Brine treatment technologies 

There are various brine treatment technologies being developed. The conventional 

method of using thermal evaporation is very energy intensive; however, emerging 

technologies should make the process cheaper. Brine is usually characterized by having 

greater than 70 grams of Total Dissolved Solids (TDS). It mostly consists of sodium ions 

(Na+) and chloride ions (Cl-). Other major ions would be magnesium (Mg2+), and sulfate 

(SO4
2-), as shown in Figure 1. Some treatment technologies aim to remove certain ions, 

while other technologies work on reducing the total salinity of brine. 
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Figure 1: Main dissolved ions (wt%) in brine solutions obtained from a Multi-Stage 

Flash desalination unit in Abu Dhabi, UAE [35]. 

2.1.1 Conventional Method 

The current conventional method for ZLD starts with a pretreatment unit before 

sending the effluent to a concentrator and a crystallizer [34]. Brines retentate coming 

from RO membranes contains about 70,000 ppm (mg/L) of TDS, as seen in Figure 2. 

The retentate, concentrated water is sent to a brine concentrator in which the brine is 

concentrated to 300,000 mg/L. The brine crystallizer evaporates the concentrate even 

further to recover most of the solids, and the final concentrate is sent to evaporation 

ponds for solid disposal  [34]. The conventional method is only applied in certain 

applications, and to limited volumes of brine waste. This is due to the huge amounts of 

capital and operational costs associated with it [32]. 

30%

56%

8%

3% 3%

Na Cl SO4 Mg others
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Figure 2: The desalination technology favorable at each salinity concentration [32]. 

2.1.1.1 Pretreatment 

Pretreatment processes cover the chemical removal of scaling/fouling ions, such 

as calcium ions, sulfate ions, and silicon dioxide. The most common technique is to 

precipitate chemicals using a dosage of alkaline chemicals, such as NaOH, Na2CO3, or 

Ca(OH)2 [36]. Another method is to use nucleation seeds, or pellets/inert-particles to 

induce precipitation. In addition, this allows salts to precipitate on pellets instead of 

producing a sludge that will be harder to separate. Chemical precipitation usually 

removes calcium ions, magnesium ions, and silicon dioxide. Carbonates can be removed 

through gas strippers using fluidized bed reactors by precipitating calcium carbonate 

(CaCO3) [37]. Sulfates can precipitate, or be removed using ion-exchange resins [37], 

but new research focuses on using sulfate-reducing bacteria [38]. Sal-Proc was a product 

of all the research in this area, as it involves various steps in which ions precipitate one 

after another [39]. Other small-scale techniques are ion exchange units and 

electrocoagulation which have high operational and maintenance costs [40], [41]. 

Generally, pretreatment techniques are not used for their high capital and operational 

costs. These costs scale with the amount of water and TDS required to remove. 
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2.1.1.2 Brine Concentrator 

Brine concentrators are evaporators that concentrate water without scaling or 

fouling the heat exchangers. Brine effluent coming out of Reverse Osmosis (RO) 

membrane units has a TDS of 70-90 g/L. These brine streams are heated to near 100℃, 

which allows the brine to be saturated with steam and start evaporating most of the water 

[42]. The final molality of such brine solutions reaches up to 300 g/L which is just below 

the solubility limit of NaCl [32]. Improvements to such exchangers allow them to 

operate at reduced temperatures and lower operating costs. A common type of brine 

concentrator is a falling film Brine Concentrator. It utilizes the characteristic of vertical 

falling films to saturate the solutions at around 50-70℃ [43]. Another factor to consider 

is the turbidity occurring inside the heat exchanger, as salts can precipitate/suspend in 

the concentrator. Some of these common salts are Na2SO4, CaCO3, and CaSO4 [43]. 

2.1.1.3 Brine Crystallizer 

Brine crystallizers are evaporators that operate at the NaCl solubility limit, 360 

g/L TDS. Brine streams coming out of brine concentrators lose most of their water 

content. However, there is still some water left that needs to be evaporated in order to 

concentrate the NaCl solution. This can get tricky as scaling becomes an issue at these 

concentrations. The most common brine crystallizers are Multi-Stage-Flash Crystallizers 

and Membrane Distillation Crystallizers [32], [44]. The most important factor for 

crystallization effectiveness is the temperature of the crystallizer unit and the circulate 

flowrate. Energy intensification can be achieved by preheating the input flow and 

recovering valuable salts [44]. However, the operating costs hinder scaling such process 

for mass-scale. 

2.1.2 Emerging technologies 

Conventional Zero Liquid Discharge using thermal evaporation is an important 

step towards affordable ZLD technology. With current systems, RO is the best 

technology for desalination up to 70 g/L TDS, and brine concentrators are important for 

brines with TDS up to 250-300 g/L. Brine crystallizers are the only method for TDS 

above 300 g/L. Emerging technologies are fighting for the spot between 70 to 300 g/L 
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TDS range[32]. The best contenders in this space so far are Forward Osmosis [45] and 

Membrane Distillation [46]. The runners-ups are electrodialysis [47] and freeze 

distillation [48]. On that note, electrodialysis is associated with brackish water 

desalination more than it is associated with ZLD because of the energy costs of 

technology. Lately, electrodialysis has only been considered for ZLD, as the technology 

has become cheaper than Multi-Stage Flash for brine feeds [47]. 

2.1.2.1 Advanced Osmosis Systems 

By far, the best emerging technology is osmatic systems, and Forward Osmosis 

(FO) is the most developed in that area, technology-wise. FO utilizes the osmatic 

pressure difference, or the concentration difference, to drive water across a 

semipermeable membrane, from the high-concentration side to the low-concentration 

side [49]. The emphasis is on the draw solution, or the concentrated solution. The most 

important characteristic of the draw solution is the ability to recover fresh water with low 

energy requirements [50]. The most widespread draw solution is an NH3/CO2 mixture, as 

it generates high osmatic pressures. It is easily recoverable because the NH3 and CO2 are 

easily volatile and evaporate at 60℃ [50]. Another type of draw solution is using 

precipitable inorganics, such as sulfates. The approach is to saturate a solution with 

sulfates and draw fresh water in, so that small addition of these sulfates will precipitate 

them, and fresh water will be left [50]. Sulfuric acid is then added, and the draw solution 

is circulated back to the FO membrane. Currently, China’s coal-to-chemicals plant in 

Zhejiang province uses lots of freshwater. FO units were used in their wastewater 

facilities to recover more than 90% of the water [32]. 

Reverse Osmosis for ZLD is in constant development alongside RO systems for 

desalination. RO for desalination focuses on developing membranes with better 

materials, or membranes that can withstand higher pressures. Reverse Osmosis for ZLD 

focuses on adding a secondary RO unit that can concentrate brine to even higher TDS 

values of 130 g/L [51]. To achieve so, RO membranes are usually accompanied with a 

pretreatment unit. These pretreatment units could be chemical-softening units or ion 

exchange units, as mentioned earlier. Low-Salt-Rejection Reverse Osmosis heightens the 

process, of a pretreatment followed by an RO unit, by having N stages [52]. The 
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retentate from the first RO unit is sent to the following RO unit in which the retentate 

keeps going until the final stage. The permeate from that RO unit is sent to the prior RO 

unit. This is possible when the total ∆P across all membranes is 70-80 bar. With all these 

advances, Reverse Osmosis will always be essential for desalination and ZLD systems. 

Another approach to advancing osmosis systems is combining both RO and FO in 

what is called Osmotically Assisted Reverse Osmosis (OARO). In the unit, the brine-

waste feed is pressurized through the OARO membrane. In addition, a draw/sweep 

solution is used to assist in driving water across the membrane, thus decreasing the 

pressure required [51]. Through a series of OARO stages, freshwater is transferred from 

a medium of high TDS to a medium of lower TDS (i.e., a series of dilutions). This 

explains why such systems can concentrate brines, while only recovering less than 50% 

of freshwater [51]. The technology is available commercially under different names: 

Cascading Osmotically Mediated Reverse Osmosis or Counter-Flow Reverse Osmosis 

[46]. The technology is still in its infancy with high energy/treatment costs compared to 

FO and RO costs. 

2.1.2.2 Thermal Membrane Systems 

Thermal membrane systems are another emerging technology aiming to drive 

freshwater across membranes using heat. Membrane Distillation (MD) is the most 

advanced technology in emerging technologies for ZLD, as it can treat brines with up to 

350 g/L TDS [51]. It uses a temperature gradient to produce vapor pressure across a 

hydrophobic membrane. This allows only volatile components to pass with high 

recovery and more concentrate. There are various configurations, but Direct Contact 

Membrane Distillation (DCMD) is the most suitable for brine treatment. In DCMD, 

brine is heated to 40-80℃, and the overhead vapor transfers across the membrane, 

allowing for high rejection [51]. The cold side of the membrane condenses the vapor, 

allowing for high recovery. In practice, MD systems have low permeate flux compared 

to RO units [32], [51]. Although MD consumes less energy than Multi-Stage Flash, the 

technology is still in its infancy with research focusing on improving mass transfer rates 

and flux and controlling membrane wetting. 
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Alternatives to MD are Wind-Aided Intensified eVaporation (WAIV) and 

humidification and dehumidification systems. They are classified as thermal-based 

systems that are having some adoption. WAIV involves vertical wetted columns that use 

wind to evaporate brines [51]. WAIV systems are usually attached to RO units to handle 

concentrates, and column packing is used to enhance evaporation rates. These 

characteristics make WAIV a viable solution, as it has low energy requirements [53]. 

However, it has a high footprint, but still a lower footprint than evaporation ponds. 

Furthermore, humidification & dehumidification systems use air to carry water vapor 

and provide freshwater [54]. The humidifier heats the solution as air pass over to carry 

the water vapor. The dehumidifier condenses this saturated air to provide freshwater. 

Even with the drawbacks of high area requirements and low-scale application [55], it is 

used in treating highly contaminated wastewater in coal-fired power plants, in Shanghai 

[34]. These thermal systems provide an alternative to membrane distillation in specific 

applications where salinity is high, or where water recovery and water quality could be 

low. 

2.1.2.3 Freeze Distillation 

Another thermal-based approach that gained attention is Eutectic Freeze 

Crystallization. Instead of evaporating brines, Fernández-Torres et al. proposed freezing 

solutions as it requires 6-7 times less energy [48]. The technology freezes brine at 

various eutectic points to achieve freshwater with pure salts. A list of various salts and 

their eutectic points can be found in Table 1. In the process, brines are cooled down until 

the first eutectic point in which the salt precipitates and ice floats. The salt and ice are 

recovered as pure substances, and the remaining solution is cooled to the next eutectic 

point [48]. There is a large-scale plant in South Africa, reporting a treatment cost of 

$1.42/m3 freshwater produced [56]. 

Table 1: List of salts and their respective eutectic point. 

Salt Eutectic point (℃) 

Na2SO4 -1.27 

NaHCO3 -3.9 

NaCl -21.2 
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Hydrate-based desalination is another approach to freeze distillation. The 

technique traps water inside hydrated gases in what is called a clathrate [57]. The 

clathrate hydrate forms complex crystalline structures in water. The process usually 

operates at high pressures and low temperatures, but at temperatures much higher than 

the eutectic approach. CO2 forms clathrate hydrates at 10℃ and a pressure of 50 bars 

[58]. The higher the pressure, the better CO2 is at capturing water into its clathrate 

hydrates. Attempts were made to combine CO2 with other gases, such as CH4 or other 

alkanes, so that the pressure required is lower. The research ended up focusing on 

cycloalkanes, specifically cyclopentane, as its clathrate has a lower density than water 

[59]. CO2 hydrates had a higher density which made it hard to separate from precipitated 

salts [58]. Cyclopentane-hydrate provides the state of the art in hydrate distillation 

technology, even though the technology is still in its early phases.  

2.1.3 Commercial Technologies 

Commercial technologies refer to patented, sellable technologies. All the 

technologies mentioned below are just used on a small scale. There has been no attempt 

to use such in any other order. By far, the most widely used technology is the 

conventional method. Even the conventional method is used in limited cases with a 

limited scale of water. These technologies provide context on how the industry is 

tackling the problem at hand. 

2.1.3.1 ARROW 

Advanced Reject Recovery Of Water (ARROW) is a brine treatment method that 

can recover up to 95% of water [56]. ARROW has a configuration of a primary RO unit, 

followed by a secondary RO unit. It has a chemical softening step, but instead of having 

it between the membranes, it is the last step. In addition, the treated-water reject is 

recycled back to both RO units. The advantage of this method is a lower capital cost. 

The amount of treated water is reduced, allowing for smaller softening units. The 

disadvantage of such technology is that the process is very sensitive to the chemical 

precipitation step. Any changes to the number of hardness ions removed will increase the 

feed salinity and cause scaling [56]. There has been no report on energy requirements. 
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2.1.3.2 SPARRO 

Slurry Precipitation And Recycle Reverse Osmosis (SPARRO) is a brine 

treatment technology used to recover up to 95% of water [60]. The technology was 

developed by the Chamber of Mines of South Africa Research Organization to treat 

scaling mine water [56]. It uses a tubular RO unit in which seed crystals are introduced 

to precipitate scaling compounds. In this case, these crystals serve as nucleation sites to 

precipitate CaSO4, instead of scaling the membrane [60]. The seeds are recoverable 

through a cyclone separator. The benefit of such a configuration is that the concentration 

factor can be higher than with regular RO membranes. The drawback is that seed crystals 

can clog membrane channels. There has been no report on energy requirements. 

2.1.3.3 VESP 

Vibratory Shear Enhanced Process (VSEP) is a brine treatment technology used 

to recover 75% to 92% of water [56]. It uses a plate-and-frame membrane in which a 

torsional oscillation is applied to the membrane’s surface. These vibrations are 

sinusoidal and dampen within micrometers of the membrane surface. This produces a 

shear stress, in the fouling boundary layer, 10 times more than normal membranes [56]. 

The advantage of this vibratory motion is that it reduces scaling/fouling while using high 

operational flux. However, experimental results showed that scaling still occurred, yet 

acidic/basic chemical washing removed all scaling on membranes [56]. There has been 

no report on energy requirements. 

2.1.4 Summary 

The conventional method of using a concentrator followed by a crystallizer is the 

most common technology for achieving Zero Liquid Discharge. There has been some 

commercial application, yet nothing can replace the conventional method. Emerging 

technologies should provide a pathway toward ZLD. Whether through thermal-based 

solutions, or membrane-based technologies, ZLD will probably rely on the latter more 

than the former. Most research has been focused on the various types of osmosis 

systems, leaving behind older technologies such as chemical precipitation. This thesis 
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will focus on chemical precipitation, as more salt removal could be realized by using 

such technology. 

2.2 Aqueous CO2 Absorption 

CO2 absorption is important to examine as it is the second objective of this study, 

and it affects the first objective indirectly. Usually, CO2 absorption is employed to 

remove acid gases for natural gas sweetening [61], or to remove CO2 from flue gas 

streams for carbon capture [62]. In this study, CO2 absorption is utilized to precipitate 

NaHCO3. Generally, there are two important characteristics of an absorption column: the 

absorbent chemical [63] and the operating conditions of the column [64]. The chemical 

used can affect the absorption rate and the column capacity. In addition, energy 

requirements for absorption and desorption cycles will help in determining the best 

chemical to use. Studying the operating conditions of a column will aid in determining 

the optimal conditions for maximizing column capacity. 

2.2.1 Chemical Absorbents 

The most important characteristic of an absorption column is the absorbent used. 

Amines are the most surveyed chemical absorbents in literature [65], for CO2 absorption. 

Lately, there has been a shift towards inorganic hydroxides and carbonates for Carbon 

Capture and Storage [66], [67]. The three absorbents surveyed in this study are: sodium 

hydroxide (NaOH), calcium hydroxide (Ca(OH)2), and ammonia (NH3), the simplest 

form from which all amines are derived. One important factor to examine is the 

mechanism of absorption, as this will aid in understanding the efficiency of the 

absorption. Another important factor to study is the column loading capacity, as this will 

be studied through the concentration of bicarbonate in the solution. Finally, the energy 

requirements of chemicals are studied through their absorption and regeneration costs. 

2.2.1.1 Mechanism 

It is important to examine CO2 absorption mechanism, as it aids in understanding 

CO2 absorption rate. The mechanism of CO2 absorption depends on mass transfer 

resistance in the gas bubble, gas-liquid film, and bulk concentration of the base. For CO2 

absorption, there is no resistance in the gas bubble as the liquid film has most of the 
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resistance [68]. Resistance in the bulk liquid depends on the type of base used and its 

concentration. Depending on the pH region, CO2 reaction with water is dominated by 

one of two reaction pathways: either to react with water or react with hydroxide ions. In 

the case of ammonia or amines, there is another pathway added in which an amine reacts 

with CO2 through the zwitterion or tertiary mechanism [69]. This reaction decreases 

resistance in the bulk base at the expense of releasing bicarbonate later. 

Hatta number [70] is what connects the resistance in the mass transfer with 

resistance in reaction rates. The optimal Hatta number should be around unity. For high 

Hatta numbers, mass transfer resistance can be decreased by using packed columns or 

fluidized beds, instead of a bubble column [71]. Both setups increase interfacial area 

either by increasing gas flowrate in fluidized beds, or by increasing gas-liquid contact in 

packed columns. Furthermore, the bulk concentration of the base increases by increasing 

the concentration of the base, or by increasing the strength of the base. 

2.2.1.2 Column Loading 

Column loading comes from either physical absorption or chemical absorption. 

Physical absorption is the transfer of CO2 from the gas phase into the liquid phase. On 

the other hand, chemical absorption is the reaction of CO2 with a base to form 

bicarbonate. Chemical absorption makes up most of the loading capacity because of the 

base used. In this study, bicarbonate loading is of major interest because any other 

carbonic form will hinder salt removal, specifically the sodium ions. Hydroxides should 

generate the most amount of bicarbonate; however, calcium hydroxide tends to 

precipitate calcium carbonate in low quantities [72]. Amines are very good at chemically 

absorbing CO2, yet they cannot produce high amounts of bicarbonate ions. Amines react 

with CO2 to form carbamate ions [73], an undesirable by-product, which minimizes the 

concentration of bicarbonates present. Hydroxide absorbents would do a better job 

because they do not involve the same side reactions as amines. 

2.2.1.3 Absorption Costs 

The energy costs of CO2 absorption consist of the energy required for CO2 

hydration, and the energy used in side reactions with CO2. The energy required for CO2 
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hydration will be the same regardless of the chemical absorbents used. On the other 

hand, the energy consumed in the CO2 reaction with the base will be different for each 

absorbent. Sodium reaction with CO2 should not be considered because that is the 

intended consequence of this study, i.e. salt removal. However, the side reaction will be 

considered because some of the salt precipitated is from the base used and not from 

precipitating the salt in the brine solution. From Table 2, CO2 reaction with hydroxides 

releases heat, while CO2 reaction with amines requires heat. Sodium hydroxide is the 

best candidate in terms of absorption costs, but it would probably require the most 

amount of energy for separation from CO2. 

Table 2: List of absorbents and their enthalpy of absorption 

Base Energy Requirements for 

Absorption (kJ/kg of CO2) 

reference 

NaOH -2485 [74] 

Ca(OH)2 -2477 [74] 

MEA  1930 [75] 

NH3 (2.5 wt.%) 1590 [75] 

DEA 1590 [76] 

2.2.1.4 Regeneration costs 

Regeneration of absorbent is important for attaining a feasible absorption process. 

There are three possible ways for absorbent recovery: thermal regeneration, chemical 

substitution, or electrochemical regeneration. Thermal regeneration is quite common in 

amine-based absorption as it is the easiest method. According to one study, experts 

believe that amine regeneration costs for large-scale plants would be in the range of 

3500-6000 kJ/kg of CO2 absorbed [77]. The dual-alkali method, through the Solvay 

process [78], the hot potassium process [79], [80], and the modified Solvay process [35], 

[81], [82], is another form of regeneration through chemical substitution. The method 

utilizes two alkalis with different dissociation constants (pKb) to absorb CO2 and 

regenerate the more expensive alkali. The operating costs for such a process are mainly 

dependent on the cheap absorbent cost. The other possible way to regenerate absorbents 

is through electrochemical cells. One method [83] absorbs CO2 using NaOH and 

regenerates the solution using a cell with a membrane that only passes positive ions 

(Na+). As the cell replaces Na+ with H+, the solution acidifies, and CO2 can be collected 
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in a stripping unit. The regeneration costs for such an infant process are very high around 

8500 kJ/kg-CO2, but theoretically, the costs could be cut in half to 3730 kJ/kg-CO2 [83]. 

All the absorbents discussed are summarized in Table 3. 

Table 3: List of absorbents and their enthalpies of desorption 

Base Energy Requirements for 

Regeneration (kJ/kg of CO2) 

reference 

Amine 3500–6000 [77] 

MEA (20 wt.%) 2955 [84] 

NH3 4000-4200 [85] 

DEA 1630 [86] 

NaOH 8500 [83] 

2.2.2 Column Operating Conditions 

Another important characteristic of an absorption column is absorption 

thermodynamics, and the thermodynamics can be studied through the operating 

conditions of the column, such as temperature, pressure, and electrochemistry. It is quite 

common for absorption columns to operate at high pressures and low temperatures, and 

vice versa for regeneration/stripping columns [87]. The reason being is that increased 

pressure enhances gas solubility, while increased temperature reduces the solubility [87]. 

In addition, high pressures and low temperatures favor forward reactions of CO2 with 

absorbent, and vice versa for CO2 dissociation reaction [88]. The heat of absorption is 

not affected by temperature and pressure changes [89]. However, it is important to 

operate at temperatures higher than and pressures lower than the condensation point [73]. 

It was reported that absorption can be enhanced by the electrolytic ions dissolved, and 

there are mainly two pathways where electrolysis can be applied. One application is 

seawater electrodialysis, in which Na+ and Cl- ions are separated to obtain HCl and 

NaOH, where NaOH can then be used in carbon sequestration [90]. The other 

application is absorbent regeneration as mentioned above.  

2.2.3 Summary 

CO2 absorption was studied to maximize NaHCO3 precipitation by examining the 

effects of the absorbents and operating conditions of the column. The CO2 absorbents 

studied were NH3, NaOH, and Ca(OH)2. Mechanism-wise, CO2 absorption resistance is 
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mostly found in the gas-liquid film, and this resistance can be improved by either 

changing the column structure or the absorbent used. In addition, hydroxide absorbents 

have low absorption costs, while amines have lower regeneration costs. The dual-alkali 

process through Solvay or modified Solvay could be a better substitute than thermal 

regeneration. Finally, absorption columns should be operated at high pressures and low 

temperatures, but temperatures should be higher than and pressures should be lower than 

the condensation point. These conditions enhance solubility and favor forward reactions 

of CO2 with absorbent. 
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Chapter 3: Research Methodology 

This research focuses on answering the research objectives outlined in the 

introduction, maximizing sodium removal and maximizing the amount of CO2 capture, 

along with maximizing chloride removal using CO2-hydrate. The research aims to 

achieve so, through the modeling of a Bubble Column Reactor and optimizing the 

reactor’s operating conditions. The modeling involves brine treatment using chemicals 

and gas absorption in aqueous media. Two phenomena occurring in the aqueous phase 

are gas absorption and various reactions. Gas absorption can be modeled using a mass 

transfer coefficient, or expanded through Computational Fluid Dynamics (CFD). 

Reactions modeled include aqueous complexation, acid-base reactions, and solid 

precipitation. In addition, the effective concentrations are accounted for through fugacity 

calculations for each phase. All these equations are compiled into what is known as 

reaction-diffusion-advection models. Finally, the chapter ends with the Machine 

Learning models used in the CO2-hydrate system. 

3.1 Reaction System Model 

A complex reaction system will involve slow and fast reactions with non-ideal 

chemical interactions. Reaction modeling of complex systems requires solving 

equilibrium with kinetic equations simultaneously. In addition, chemical fugacity 

calculations should be included to account for the non-ideal behavior of aqueous species 

and gas mixtures. The following system of equations are compiled, and then, solved 

using Non-Linear Programming. 

3.1.1 Kinetic Reactions 

All chemical reactions are dynamic in nature and need to be modeled through 

chemical kinetics. The reaction rate constant is the determinant factor for modeling 

reaction dynamics. Slow reactions have a relatively small rate constant compared to fast 

reactions that have a higher rate constant [91]. In fact, the rates of fast and slow reactions 

can have orders of magnitude differences which can make reaction systems stiff, or 

harder to solve [92]. To address this issue, fast and slow reactions are often decoupled to 

speed up simulation time. In the case of a Bubble Column Reactor, there are only three 
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kinetics reactions: CO2 absorption into aqueous media, CO2 reaction with hydroxide ion, 

and CO2 reaction with ammonia. There is various research focused on obtaining reaction 

rates for each reaction [93]. The first reaction is a phase transition equation that will be 

discussed in the Gas Absorption section of this chapter. 

𝐶𝑂2 (𝑔)  ↔   𝐶𝑂2 (𝑎𝑞.) 𝑅1 

𝐶𝑂2 (𝑎𝑞.) + 𝑂𝐻−   ↔   𝐻𝐶𝑂3
− 𝑅2 

𝐶𝑂2 (𝑎𝑞.) +   𝑁𝐻3 (𝑎𝑞.)   ↔    𝑁𝐻2𝐶𝑂𝑂−   +   𝐻+ 𝑅3 

CO2 reaction in basic media was reported by Pinsent et al. in 1956 along with 

ammonia kinetics [93], [94]. Over the years, there have been more supporting research to 

confirm the kinetic constant obtained from the original paper [95]. Research suggests 

that the hydroxide reaction is important only at high pH (pH>8.5) [96]. Carbon dioxide 

would then react with water to form carbonic acid which will then dissociate and form 

bicarbonate. Mechanism-wise, it is important to consider all pathways; however, 

bicarbonate production is the final and more important species to study. So, in the 

reaction system considered, only the hydroxide reaction is considered along with water 

dissociation thermodynamics to account for pH reaction dynamics. In addition, the 

backward reaction is accounted for through an equilibrium constant, which is a topic that 

will be discussed in the next section. The reaction rate constant [93] for the hydroxide 

reaction is listed in Equation 1. 

log 𝑘𝑂𝐻− = 13.635 − (
2895

𝑇
) 

(1) 

As mentioned above, CO2 reaction with ammonia was first reported by Pinsent et 

al, yet it was missing a reaction mechanism. Research suggests two pathways, either 

through zwitterion formation or by tertiary mechanism [69]. One theory suggests that a 

zwitterion forms when aqueous NH3 combines with aqueous CO2 [97]. A zwitterion is a 

molecule with a positive charge around the nitrogen atom and a negative charge around 

the oxygen atom. The zwitterion molecule of Carbamic acid is shown in Figure 3. The 

zwitterion formed can be easily attacked by a base to form a carbamate ion (NH2COO-) 

[69]. The other theory suggests that a base deprotonates NH3, while NH3 is attacking 
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CO2 in a three-way interaction. This instantly forms carbamate through the tertiary 

mechanism [98]. Both pathways suggest that the ammonia reaction is not elementary, 

and that the concentration of ammonia needs to be raised to a power greater than one in 

the reaction rate law. This can be evaluated by fitting experimental data to the reaction 

rate [99]. This can be avoided by using the original formulation and accounting for n 

through ionic activity. The reaction rate constant for the ammonia reaction is listed in 

Equation 2. Also, the backward reaction was reported later in the literature [100] and 

mentioned in Equation 3. 

 

Figure 3: Zwitterion form of carbamic acid. 

𝑟𝑁𝐻3
= 𝐶𝐶𝑂2

 .  𝐶𝑁𝐻3 
𝑛 .  𝑘𝑁𝐻3

     →       𝑟𝑁𝐻3
=  𝛾𝐶𝑂2

 𝐶𝐶𝑂2
 .  𝛾𝑁𝐻3

 𝐶𝑁𝐻3
 .  𝑘𝑁𝐻3

  

log 𝑘𝑁𝐻3
= 11.13 − (

2530

𝑇
) 

(2) 

log 𝑘𝑁𝐻2𝐶𝑂𝑂− = 1.03 ∗ 1019 ∗ exp (−
16180

𝑅 𝑇
 ) 

𝑤ℎ𝑒𝑟𝑒   𝑅 =  1.9872
𝑐𝑎𝑙

𝑚𝑜𝑙 𝐾
 

(3) 

3.1.2 Thermodynamic Reactions 

Most reactions in the bubble column are considered fast, which are easier to be 

modeled through equilibrium equations [91]. There are two types of equilibrium 

reactions: aqueous homogeneous reactions, and precipitation heterogeneous reactions 

[101]. Homogenous reactions are characterized by having all the species in the 

equilibrium equation, while heterogenous only consider aqueous species in an inequality. 

The reaction quotient for heterogenous reactions is an inequality rather than an equation 

because aqueous species are limited by the corresponding solubility limit [102]. Also, 
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the inequality is considered only when aqueous species exceed the solubility limit or 

when the solid species is present. Gibbs free energy (𝐺𝑓
𝑜) is the thermodynamic property 

used to calculate equilibrium constant for each reaction. All the thermodynamic 

reactions considered are listed below (𝑅4 − 𝑅16). 

𝐻+  +   𝑂𝐻−   ↔  𝐻2𝑂(𝑙) 𝑅4 

𝐻+   +   𝑆𝑂4
2−   ↔    𝐻𝑆𝑂4

− 𝑅5 

𝑀𝑔2+   +   𝑂𝐻−   ↔   𝑀𝑔𝑂𝐻+ 𝑅6 

𝐻+   +     𝐶𝑂3
2−     ↔     𝐻𝐶𝑂3

− 𝑅7 

𝑁𝐻3(𝑎𝑞.)
 +  𝐻+    ↔   𝑁𝐻4

+ 𝑅8 

𝑁𝑎𝑂𝐻(𝑠)    ↔    𝑁𝑎+  +  𝑂𝐻− 𝑅9 

𝑀𝑔(𝑂𝐻)2(𝑠)    ↔    𝑀𝑔2+  +  2 𝑂𝐻− 𝑅10 

𝐶𝑎(𝑂𝐻)2(𝑠)   ↔    𝐶𝑎2+  +  2 𝑂𝐻− 𝑅11 

𝐶𝑎𝐶𝑂3(𝑠)    ↔    𝐶𝑎2+   +  𝐶𝑂3
2− 𝑅12 

𝑁𝑎𝐻𝐶𝑂3(𝑠)    ↔    𝑁𝑎+  +  𝐻𝐶𝑂3
− 𝑅13 

𝑁𝑎2𝐶𝑂3. 10𝐻2𝑂(𝑠)  ↔  2 𝑁𝑎+  +  𝐶𝑂3
2−  +  10  𝐻2𝑂(𝑙) 𝑅14 

𝑁𝑎2𝑆𝑂4. 10𝐻2𝑂(𝑠)  ↔  2 𝑁𝑎+  +  𝑆𝑂4
2−  +  10 𝐻2𝑂(𝑙) 𝑅15 

𝐶𝑎𝑆𝑂4. 2𝐻2𝑂(𝑠)  ↔  𝐶𝑎2+  +  𝑆𝑂4
2−  +  2  𝐻2𝑂(𝑙) 𝑅16 

3.1.2.1 Water Model: IAPWS 

The model used to calculate the 𝐺𝑓
𝑜 of water was developed by the International 

Association for Properties of Water and Steam (IAPWS). There are two relevant models: 

the IAPWS-95 [103] and IAPWS-IF97 [104] models. The IAPWS-95 model uses 

temperature and density as its input parameters, while the IAPWS-97 model is non-

continuous with temperature and pressure as input parameters. The later model was used 

as it uses temperature and pressure without sacrificing much accuracy. Also, the 

IAPWS-97 is used as it has an equation for calculating Gibbs free energy, Equation 4. 

Another issue to point out is that the 𝐺𝑓
𝑜 values obtained by the model are in fact the 

changes in the value from 25℃ (∆𝐺𝑓
𝑜), and not the actual value at a particular 
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temperature (𝐺𝑓
𝑜). This is remediated by using the standard Gibbs free energy of 

formation data obtained from JANAF thermochemical tables [105], Equation 5.  

𝐺(𝑃, 𝑇)

𝑅 𝑇
=  ∑ 𝑛𝑖  (7.1 −

𝑃

𝑃∗
)

𝐼𝑖

  .    (
𝑇∗

𝑇
− 1.222)

𝐽𝑖

 

34

𝑖=1

 
(4) 

𝑤ℎ𝑒𝑟𝑒:   𝑃∗ = 16.53 𝑀𝑃𝑎,   𝑇∗ = 1386 𝐾,   𝑅 =  0.461526
𝑘𝐽

𝑘𝑔 𝐾
 

The list of equations used is tabulated below and the code used can be found in 

A3.1. All parameters used in Equation 4 can be found in Table 4. 

Table 4: Parameters (𝐼𝑖 , 𝐽𝑖 , 𝑛) used in the Gibbs free energy formulation of water, 

Equation 4. 

𝒊 𝑰𝒊 𝑱𝒊 𝒏𝒊 𝒊 𝑰𝒊 𝑱𝒊 𝒏𝒊 
1 0 -2 1.4632971213E-01 18 2 3 -4.4141845330846E-06 

2 0 -1 -8.4548187169E-01 19 2 17 -7.2694996297594E-16 

3 0 0 -3.7563603672E+00 20 3 -4 -3.1679644845054E-05 

4 0 1 3.3855169168E+00 21 3 0 -2.8270797985312E-06 

5 0 2 -9.5791963388E-01 22 3 6 -8.5205128120103E-10 

6 0 3 1.5772038513E-01 23 4 -5 -2.2425281908000E-06 

7 0 4 -1.6616417200E-02 24 4 -2 -6.5171222895601E-07 

8 0 5 8.1214629984E-04 25 4 10 -1.4341729937924E-13 

9 1 -9 2.8319080124E-04 26 5 -8 -4.0516996860117E-07 

10 1 -7 -6.0706301566E-04 27 8 -11 -1.2734301741641E-09 

11 1 -1 -1.8990068218E-02 28 8 -6 -1.7424871230634E-10 

12 1 0 -3.2529748771E-02 29 21 -29 -6.8762131295531E-19 

13 1 1 -2.1841717175E-02 30 23 -31 1.4478307828521E-20 

14 1 3 -5.2838357970E-05 31 29 -38 2.6335781662795E-23 

15 2 -3 -4.7184321073E-04 32 30 -39 -1.1947622640071E-23 

16 2 0 -3.0001780793E-04 33 31 -40 1.8228094581404E-24 

17 2 1 4.7661393907E-05 34 32 -41 -9.3537087292458E-26 
 

𝐺𝑓
𝑜

𝐻2𝑂(𝑙)
(𝑃, 𝑇) =  −237.141 𝑘𝐽 + (𝐺(𝑃, 𝑇) − 𝐺(𝑃 = 1, 𝑇 = 298.15))  (5) 
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3.1.2.2 Electrolyte model: HKFT 

In 1981, Helgeson-Kirkham-Flowers developed an Equation of State for 

calculating the thermodynamic properties of aqueous ions for Geological applications 

[106]. In 1988, Helgeson and Tanger expanded the temperature and pressure ranges of 

the model, and substantially improved accuracy for higher temperatures and pressures 

[107]. In 1992, the HKFT model was recompiled into the form it is today. This allowed 

electrolytes and non-electrolytes to be calculated using the same equations [108]. 

Currently, the model utilizes seven parameters to calculate thermodynamic properties 

between 0-1000℃ and between 1-5000 bar, Equation 6. The only other way to calculate 

𝐺𝑓
𝑜 is through evaluating equilibrium constants for each aqueous reaction, which can be 

quite cumbersome and can be inaccurate. The equations used in the HKFT model are 

listed beneath Equation 6 and the code used can be found in in A3.2. 

𝐺𝑓
𝑜(𝑇, 𝑃) = 𝐺𝑟𝑒𝑓

𝑜 +  𝐺𝑛𝑜𝑛−𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 +  𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛   (6) 

𝐺𝑛𝑜𝑛−𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 =  −𝑆𝑟𝑒𝑓 ∗ (𝑇 −  𝑇𝑟𝑒𝑓) −  𝑐1 ∗ (𝑇 ∗ 𝑙𝑛 (
𝑇

𝑇𝑟𝑒𝑓

)  +  𝑇𝑟𝑒𝑓  −  𝑇)  

           +  𝑎1 ∗ (𝑃 −  𝑃𝑟𝑒𝑓)  +  𝑎2 ∗ 𝑙𝑛 (
𝑃 +  Ψ

𝑃𝑟𝑒𝑓  +  Ψ
) ∗

𝑃 +  Ψ

𝑃𝑟𝑒𝑓  +  Ψ
  

             + 𝑎3 ∗
𝑃 −  𝑃𝑟𝑒𝑓

𝑇 −  Θ
 +  

𝑎4

𝑇 −  Θ
∗ 𝑙𝑛 (

𝑃 +  Ψ

𝑃𝑟𝑒𝑓  +  Ψ
)  

−   𝑐2 {
Θ −   T

Θ
∗ [

1

𝑇 −  Θ
−  

1

𝑇𝑟𝑒𝑓  −  Θ
]  −  

𝑇

Θ2
∗ 𝑙𝑛 (

𝑇𝑟𝑒𝑓(𝑇 −  Θ)

𝑇(𝑇𝑟𝑒𝑓  −  Θ)
)}  

 

𝐺𝑠𝑜𝑙𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑤𝑗 ∗ (
1

𝜖
 −  1)  −  𝑤𝑟𝑒𝑓 ∗ (

1

𝜖𝑟𝑒𝑓

 −  1)  +  𝑤𝑟𝑒𝑓 ∗ 𝑌𝑟𝑒𝑓 ∗ (𝑇 −  𝑇𝑟𝑒𝑓) 

𝑤ℎ𝑒𝑟𝑒: 

𝑇𝑟𝑒𝑓 = 298.15 𝐾,   𝑃𝑟𝑒𝑓 = 1 𝑏𝑎𝑟,   Ψ = 2600 𝑏𝑎𝑟,   Θ = 228 𝐾 
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𝑤𝑗 = 𝑛 ∗  (
𝑍𝑗2

𝑟𝑒,𝑗

  −
𝑍𝑗

3.082 +  𝑔
) 

𝑟𝑒,𝑗  =  𝑟𝑒.𝑗.𝑟𝑒𝑓  +  𝑍𝑗 ∗  𝑔 

𝑟𝑒,𝑗,𝑟𝑒𝑓  =   𝑍𝑗2  (
𝑤𝑟𝑒𝑓

𝑛
  +

𝑍𝑗

3.082
)⁄  

𝑤ℎ𝑒𝑟𝑒 𝑍𝑗  𝑖𝑠 𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 

𝑛 =  
𝑁𝐴  ∗  𝑒2

2
 ∗  2.39      𝑤ℎ𝑒𝑟𝑒    𝑁𝐴 = 6.02252 ∗ 1023   &    𝑒 =  4.80298 ∗ 10−10 

𝑔(𝜌𝑤 , 𝑇) = 𝑎𝑔 ∗ (1.0 − 𝜌𝑤)𝑏𝑔 − 𝑓 

𝑤ℎ𝑒𝑟𝑒: 𝑎𝑔 = ∑ 𝑎𝑔,𝑖 ∗ 𝑇𝑖

2

𝑖=0

,   𝑏𝑔 = ∑ 𝑏𝑔,𝑖 ∗ 𝑇𝑖

2

𝑖=0

 

𝑓 = [ (
𝑇 −  155

300
)

4.8

+ 𝑓𝑔,0 (
𝑇 −  155

300
)

16

] [𝑓𝑔,1(1000 − 𝑃)3  +  𝑓𝑔,2(1000 − 𝑃)4] 

𝑓𝑜𝑟 𝑔(𝜌𝑤 , 𝑇) 𝑓𝑢𝑛𝑐𝑡𝑜𝑛,   𝑻 𝑖𝑠 𝑖𝑛  deg 𝐶   &   𝝆𝒘  𝑖𝑠 𝑖𝑛 
𝑔𝑚

𝑐𝑚3
 

Table 5 contains the parameters used in the 𝑔 function, and Table 6 contains all 

the parameters used to calculate 𝐺𝑓
𝑜 for dissolved species in the reaction system. 

Table 5: Parameters (𝑎𝑔,𝑖 , 𝑏𝑔,𝑖 , 𝑓𝑔,𝑖) used in the 𝑔(𝜌𝑤 , 𝑇) function 

𝒊 𝒂𝒈,𝒊 𝒃𝒈,𝒊 𝒇𝒈,𝒊 

0 -2.037662 6.107361 3.666666e1 

1 5.747000E-3 -1.074377E-2 -1.504956E-8 

2 -6.557892E-6 1.268348E-5 5.017997E-12 

 

 

 



 27 

Table 6: List of species and their corresponding parameters for the HKFT model 

Species 𝑮𝒓𝒆𝒇
𝒐  𝑺𝒓𝒆𝒇 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒄𝟏 𝒄𝟐 𝒘𝒓𝒆𝒇 

H 0 0 0 0 0 0 0 0 0 

OH  -157297 -10.7110 0.5241296 30.87792 7.708183 -116403 17.3636 -432876 721572 

Na -261881 58.40864 0.769438 -956.044 13.6231 -114056 76.06512 -124725 138323 

K -282462 101.0436 1.489086 -616.303 22.74004 -113470 30.9616 -74935.4 80625.68 

Mg -453985 -138.072 -0.3438 -3597.82 35.10376 -99997.6 87.0272 -246521 643164.5 

Ca -552790 -56.484 -0.08146 -3034.24 22.16097 -103730 37.656 -105520 517393.4 

HCO3 -586940 98.44952 3.163983 481.3692 5.165566 -118265 54.13887 -199071 532748.7 

CO3 -527983 -49.9988 1.193444 -1667.07 26.83701 -109382 -13.8934 -719301 1418962 

SO4 -744459 18.828 3.473306 -830.357 -25.9918 -112842 6.86176 -753036 1316412 

CO2 (aq.) -385974 117.5704 6.400014 -4199.98 -232 310000.9 154.0001 150000.6 -31070 

NH3 (aq.) -26706.5 107.8217 2.130116 1170.265 36.08616 -121110 84.9352 -48952.8 -20920 

NH4 -79454.2 111.1689 1.621844 981.0643 35.81713 -120328 73.0108 -878.64 62843.68 

 

The HKFT model [108] uses seven parameters 𝑐1 & 𝑐2 are only temperature 

dependent, 𝑎1 & 𝑎2 are both pressure dependent, while 𝑎3 & 𝑎4 are both temperature and 

pressure dependent. The final parameter 𝑤𝑟𝑒𝑓 depends on the Born radius of the ion and 

its solvation thermodynamics. 𝐺𝑓
𝑜 calculation depends on the non-solvation energy 

needed to dissolve species in solution, and the electrostatic energy required to interact in 

aqueous media. An important factor to consider is that the HKFT model requires the 

evaluation dielectric constant of water, which is accounted for in the terms: 

1

𝜖
,

1

𝜖𝑟𝑒𝑓
 , 𝑎𝑛𝑑 𝑌𝑟𝑒𝑓.  

IAPWS recommends using the ‘formulation for static permittivity,’ developed by 

Fernández et al. [109], for calculating the dielectric constant (𝜖) of water, Equation 7. A 

factor to consider is that the dielectric constant of water is a function of the density of 

water. The molar density is the inverse of the molar volume. The molar volume of water 

(𝑉𝑤) was calculated by taking the derivate of the Gibbs free energy, from the IAPWS-97 

model, with respect to pressure at a constant temperature. This dielectric constant can be 
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plugged in the 𝐺𝑓
𝑜 from the HKFT model to evaluate 𝐺𝑓

𝑜for any dissolved species in 

water. The code used can be found in in A3.3. 

𝜖(𝜌, 𝑇) =
1 +  𝐴 +  5𝐵 + √9 +  2𝐴 +  18𝐵 +  𝐴2  +  10 𝐴 𝐵 +  9𝐵2

4 −  4𝐵
 

(7) 

𝑤ℎ𝑒𝑟𝑒: 

𝑨 =  
𝑁𝐴  ∗  𝜇2

 𝜖0 ∗   𝑘
∗  

𝜌 ∗  𝑔

𝑇
            &             𝑩 =  

𝑁𝐴  ∗  𝛼

 3𝜖0

∗  𝜌 

𝝐𝟎     = (4 ∗ 10−7 ∗  𝜋 ∗  2997924582)−1    &      𝒌 = 1.380658 ∗ 10−23  

    𝑵𝑨 =  6.0221367 ∗ 1023    &     𝜶 =  1.636 ∗ 10−40    &     𝝁 =  6.138 ∗ 10−30 

𝑔(𝜌, 𝑇) =  1 + ∑ 𝑁𝑘  ∗  (
𝜌

𝜌𝑐

)
𝑖

  ∗  (
𝑇𝑐

𝑇
−  1)

𝑗11

𝑘=𝑖

 +  𝑁12  ∗  (
𝜌

𝜌𝑐

)  ∗  (
𝑇

228
−  1)

−1.2

 

𝑤ℎ𝑒𝑟𝑒:   𝑻𝒄 = 647.096 𝐾    &   𝝆𝒄 =
322

𝑘𝑔
𝑚3

𝑀𝑊𝑤

    &    𝑴𝑾𝒘 =  0.018015268 

𝝐𝒓𝒆𝒇 = 𝜖(𝜌(𝑃𝑟𝑒𝑓 , 𝑇𝑟𝑒𝑓), 𝑇𝑟𝑒𝑓)         &          𝒀𝒓𝒆𝒇 =
1

𝜖𝑟𝑒𝑓

∗
𝜕𝜖

𝜕𝑇
]

𝑃=𝑃𝑟𝑒𝑓

  

𝝆𝒘 =
1

𝑉𝑤

    &    𝑽𝒘  =  
𝜕𝑔

𝜕𝑃
]

𝑇
  

Table 7 contains the parameters used in the 𝑔 function. 

Table 7: Parameters (𝑁𝑖 , 𝑖, 𝑗) used in the 𝑔(𝜌, 𝑇) function. 

𝒌 𝑵𝒌 𝒊 𝒋 𝒌 𝑵𝒌 𝒊 𝒋 

1 0.978224486826 1 0.25 7 0.949327488264E-1 4 2 

2 -0.957771379375 1 1 8 -0.980469816509E-2 5 2 

3 0.237511794148 1 2.5 9 0.165167634970E-4 6 5 

4 0.714692244396 2 1.5 10 0.937359795772E-4 7 0.5 

5 -0.298217036956 3 1.5 11 -0.123179218720E-9 10 10 

6 -0.108863472196 3 2.5 12 0.196096504426E-2 1 1.2 
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3.1.2.3 Gases and Solids: Heat Capacity Method 

There is no specific model to obtain thermodynamic properties for solids and 

gases. A common method to calculate 𝐺𝑓
𝑜 at any temperature and pressure is to use heat 

capacity and molar volume. Heat capacity power functions account for changes in 

temperature and molar volume accounts for changes in pressure. One common heat 

capacity function is the Maier-Kelly heat capacity power function [110], Equation 8. 

There is data to calculate 𝐺𝑓
𝑜 for gases, Equation 9, and simple inorganic salts, Equation 

10. For complex salts with multiple cations and anions, there is a group contribution 

method that can estimate 𝐺𝑓
𝑜 using heat capacity power functions [111], [112], Equation 

11 and 12 respectively. The code used can be found in in A3.3 and A3.4, for gas 

calculations and solid calculations, respectively. 

𝐶𝑝,𝑚𝑎𝑖𝑒𝑟−𝑘𝑒𝑙𝑙𝑦(𝑇) =  𝑎 + 𝑏 ∗ 𝑇 +
𝑐

𝑇2
 (8) 

  

𝐺𝑓,   𝑔𝑎𝑠
𝑜 (𝑇, 𝑃) =  Δ𝐻 +  Δ(𝑇 𝑆) (9) 

Δ𝐻 =  ∫ 𝐶𝑝
𝑇

𝑇𝑟𝑒𝑓

𝑑𝑇 =  𝑎 ∗ (𝑇 −  𝑇𝑟𝑒𝑓)  +  𝑏 ∗
𝑇2 − 𝑇𝑟𝑒𝑓

2

2
 −  𝑐 ∗  (

1

𝑇
 −

1

𝑇𝑟𝑒𝑓

) 

Δ(𝑇 𝑆) = 𝑇 ∗ 𝑆𝑜 − 𝑇𝑟𝑒𝑓 ∗ 𝑆𝑟𝑒𝑓
𝑜  

𝑆𝑜 =  𝑎 ∗  𝑙𝑛 (
𝑇

𝑇𝑟𝑒𝑓

)  +  𝑏 ∗  (𝑇 − 𝑇𝑟𝑒𝑓)  −
𝑐

2
∗ (

1

𝑇2
 −

1

𝑇𝑟𝑒𝑓
2 )  −  𝑅 ∗ 𝑙𝑛 (

𝑃

𝑃𝑟𝑒𝑓

) 

 

𝐺𝑓,   𝑠𝑎𝑙𝑡
𝑜 = 𝐺𝑟𝑒𝑓

𝑜  −  𝑆𝑟𝑒𝑓
𝑜  (𝑇 −  𝑇𝑟𝑒𝑓) +  𝑎

∗ (𝑇 −  𝑇𝑟𝑒𝑓  −  𝑇 𝑙𝑛 (
𝑇

𝑇𝑟𝑒𝑓

))  + 

𝑏 ∗ (𝑇 ∗ 𝑇𝑟𝑒𝑓  −
𝑇2

2
 −

𝑇𝑟𝑒𝑓
2

2
) +  𝑐 ∗ (

1

𝑇𝑟𝑒𝑓

 −
1

2𝑇
 −

𝑇

2𝑇𝑟𝑒𝑓
2 ) + 𝑉 ∗ Δ𝑃 

(10) 

 

𝐶𝑝,𝑚𝑢𝑙𝑡𝑖−𝑠𝑎𝑙𝑡(𝑇) =  𝑎 + 𝑏 ∗ 𝑇 +
𝑐

𝑇2
+ 𝑑 ∗ 𝑇2 (11) 
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 The 𝐺𝑓,   𝑚𝑢𝑙𝑡𝑖−𝑠𝑎𝑙𝑡
𝑜  uses 𝐶𝑝,𝑚𝑢𝑙𝑡𝑖−𝑠𝑎𝑙𝑡 to calculate changes in 𝐺𝑓

𝑜 in complex salts. 

𝐺𝑓,   𝑚𝑢𝑙𝑡𝑖−𝑠𝑎𝑙𝑡
𝑜 = 𝐺𝑟𝑒𝑓

𝑜  −  𝑆𝑟𝑒𝑓
𝑜  (𝑇 −  𝑇𝑟𝑒𝑓) +  𝑎

∗ (𝑇 −  𝑇𝑟𝑒𝑓  −  𝑇 𝑙𝑛 (
𝑇

𝑇𝑟𝑒𝑓

))  + 

𝑏 ∗ (𝑇 ∗ 𝑇𝑟𝑒𝑓  −
𝑇2

2
 −

𝑇𝑟𝑒𝑓
2

2
) +  𝑐 ∗ (

1

𝑇𝑟𝑒𝑓

 −
1

2𝑇
 −

𝑇

2𝑇𝑟𝑒𝑓
2 ) + 

𝑑 ∗ (
𝑇3

6
 −  𝑇 ∗

𝑇𝑟𝑒𝑓
2

2
 +

𝑇𝑟𝑒𝑓
3

3
) 

(12) 

 

𝑤ℎ𝑒𝑟𝑒  𝑇𝑟𝑒𝑓 = 298.15 𝐾,   𝑃𝑟𝑒𝑓 = 1 𝑏𝑎𝑟,   𝑅 = 8.314462 
𝐽

𝑚𝑜𝑙 𝐾
 

Table 8 contains the gases and simple solids and all the parameters used to 

calculate 𝐺𝑓
𝑜, while Table 9 contains the parameters used to calculate 𝐺𝑓

𝑜 of complex 

solids using specific groups. 

Table 8: List of solids and gases, and their respective parameters for Gibbs free energy 

calculation 

Species 𝐺𝑟𝑒𝑓
𝑜  𝑆𝑟𝑒𝑓

𝑜  𝑉 𝑎 𝑏 𝑐 

CO2(g) -394358.736 213.73964 94 44.22488 8.7864 -8.61904 

Mg(OH)2 -831992 59.428 24.63 102.20 15.11 -26.17 

Ca(OH)2 -896887 83.390 33.056 89.26 33.11 -10.36 

CaCO3 -1129177.92 92.6756 104.51632 21.92416 -25.94080 36.934 

NaHCO3 -851156 101.936 38.080 87.61 0 0 

Na2SO4:10H2O -3646334 591.900 219.180 574.46 0 0 

Na2CO3:10H2O -3427945 564.710 0 550.32 0 0 

CaSO4:2H2O -1797387 193.930 74.690 186.20 0 0 

 

 

 

 



 31 

Table 9: List of specific groups used to calculate Gibbs free energy for complex solids 

Species 𝐺𝑟𝑒𝑓
𝑜  𝑎 𝑏 𝑐 𝑑 

Na -199.801 14.186 9.665 0.529 4.851 

K -211.713 25.309 -2.284 0.218 5.174 

Mg -372.414 14.639 -0.637 -0.074 -0.609 

Ca -432.414 20.470 -6.225 -0.026 -3.219 

NH4 -53.199 4.205 116.120 1.206 2.166 

OH -230.428 28.917 30.730 -0.628 3.257 

HCO3 -643.288 26.758 138.905 -0.373 -5.013 

CO3 -635.990 47.278 86.757 -0.887 -5.133 

SO4 -795.046 85.866 52.357 -1.925 -0.047 

H2O -244.317 15.458 66.593 0.470 -40.518 

 

3.1.3 Fugacity and Activity 

Fugacity is the measure of how effectively a set of molecules interact in a given 

system. For gases, fugacity is a measure of the effective partial pressure, as it indicates 

the real/effective interaction in a mixture of gases. For liquids, the fugacity of a species 

is a measure of the real concentration and its activity/effectiveness. The fugacity/activity 

of a solid refers to its interaction in a solid solution to form specific lattice structures. In 

another way, fugacity is a departure from ideality. As pressure increases, pure gases and 

gas mixtures become non-ideal, while solutions with high concentrations become non-

ideal. For solids, non-ideality appears when solid solutions form new crystalline 

structure that differs from the respective pure solid structures. 

3.1.3.1 Gas Phase: Peng Robinson 

Any Equation of State (EOS) for gases will relate the pressure of a gas with its 

temperature and molar volume. There are many equations that describe real gas 

behavior, and among the most accurate are Peng-Robinson EOS (PR) [113], and its 

precedent, Soave-Redlich-Kwong EOS (SRK) [114]. PR-EOS has a slightly more 

accurate estimation of thermodynamic properties near the critical point, yet there is a use 

case for each EOS. PR-EOS is better for condensate systems, while SRK is better for 
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polar solutions [115]. However, this is not a distinctive factor for the system being 

developed, as the EOS chosen will be used for the gas phase only. PR-EOS was chosen 

for its more accurate gas-phase behavior prediction near the critical point. The gas 

calculations were made using Equation 13 and the code used can be found in A3.5. 

ln(𝜙) =  𝑍 − 1 − 𝑙𝑛(𝑍 − 𝐵) −
𝐴

𝑙𝑛(8) ∗ 𝐵
 ∗ 𝑙𝑛 (

𝑍 +  (1 + √2) ∗ 𝐵

𝑍 +  (1 − √2) ∗ 𝐵
) (13) 

𝑤ℎ𝑒𝑟𝑒:    𝑍3  + (𝐵 − 1) ∗ 𝑍2  + (𝐴 −  3𝐵2 − 2𝐵) ∗ 𝑍 + (𝐵2  +  𝐵3  −  𝐴𝐵) =  0 

𝐴 =
𝑎 ∗  𝛼 ∗  𝑃

𝑅2 𝑇2
       &       𝐵 =  

𝑏 ∗ 𝑃

𝑅 𝑇
 

𝑎 =
0.457235 ∗ 𝑅2 ∗ 𝑇𝑐

2

𝑃𝑐

        &          𝑏 =
0.0777961 ∗ 𝑅 ∗ 𝑇𝑐

𝑃𝑐

 

𝛼 = ( 1 + 𝑘 ( 1 −  √
𝑇

𝑇𝑐

 ) )

2

    &      𝑘 = 0.37464 + 1.54226 ∗ 𝑤 − 0.26992 ∗ 𝑤2 

𝑤ℎ𝑒𝑟𝑒:      𝑅 = 8.314462 ∗ 10−5   
𝑚3 ∗ 𝑏𝑎𝑟

𝐾 𝑚𝑜𝑙
 

3.1.3.2 Aqueous Phase: Pitzer Model 

At infinite dilution, aqueous solutions behave ideally, but as species concentration 

starts to increase, solutions need to be approximated using an activity model. Below 

0.1M, aqueous solutions can be modeled through the standard Debye-Hückel (D-H) 

equation [116], or through the extended form of the equation for slightly higher 

concentrations. Beyond the D-H equation, there are many equations attempting to extend 

the model to concentrated solutions. Among the few are Bromley’s equation [117], 

Specific-ion Interaction Theory (SIT) [118]–[120], and Pitzer model [121], [122]. 

Bromley’s equation is the easiest to fit, while Pitzer model uses rigorous 

thermodynamics and can model three-ion interactions. SIT sits in between in terms of 

modeling complexity. 

Another approach to modeling excess Gibbs free energy in liquid mixtures is the 

Universal Quasi-Chemical equation, or for UNIQUAC short. The model uses statistical 
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thermodynamics to approximate molecular-level interactions. The model combines a 

combinatorial term (entropic term) with a residual term (enthalpic term). The model was 

very successful, as it was expanded to various applications, such as UNIFAC [123], 

LIQUAC [124], and extended UNIQUAC [125]. Mixed Solvent Electrolyte (MSE) 

developed by OLI Systems [126] is the most accurate with no limitation on ionic 

strength. MSE is extremely accurate with seldom any public data, while the Pitzer model 

provides relatively high accuracy with huge amounts of public data. In fact, it is 

characterized by having the most amount of research/data, yet the model works within 

certain temperatures and chemical concentration ranges, depending on each interaction 

coefficient. The Pitzer model, specified in Equation 14-17, has different equations for 

water, cations, anions, and neutral species. The parameters 𝐵0, 𝐵1, 𝐵2, 𝐶0, 𝜃 , 𝑎𝑛𝑑 𝜆 used 

in two-ion interactions are listed in appendix A1.1 along with the references used. In 

addition, parameters 𝜓, 𝜉, 𝑎𝑛𝑑 𝜇 used in three-ion interactions are listed in appendix 

A1.2. The code used for the Pitzer equations can be found in in A3.6. 

ln(𝛾𝑤) =
∑ 𝑚𝑖 ∗  𝑀𝑊𝑤

1000
∗ 𝜙 (14) 

(𝜙 − 1) =
2

∑ 𝑚𝑖

∗ {−
𝐴𝜙√𝐼3

1 + 𝑏√𝐼
  +  ∑ ∑ 𝑚𝑐𝑚𝑎(𝐵𝑐𝑎

𝜙
+ 𝑍𝐶𝑐𝑎)

𝑎𝑐

+  

∑ ∑ 𝑚𝑐𝑚𝑐′ (Φ
𝑐𝑐′
𝜙

+ ∑ 𝑚𝑎𝜓𝑐𝑐′𝑎

𝑎

) 

<  𝑐′𝑐

+  ∑ ∑ 𝑚𝑎𝑚𝑎′ (Φ
𝑎𝑎′
𝜙

+ ∑ 𝑚𝑐𝜓𝑐𝑎𝑎′

𝑐

) 

<  𝑎′𝑎

+ 

∑ ∑ 𝑚𝑛𝑚𝑐𝜆𝑛𝑐

𝑐𝑛

+ ∑ ∑ 𝑚𝑛𝑚𝑎λ𝑛𝑎

𝑎𝑛

+ ∑ ∑ ∑ 𝑚𝑛𝑚𝑐𝑚𝑎𝜉𝑛𝑐𝑎

𝑎𝑐𝑛

+ 

3 ∑ ∑ ∑ 𝑚𝑛𝑚𝑛′𝑚𝑐𝜇𝑛𝑛′𝑐

𝑐𝑛′𝑛

+ 3 ∑ ∑ ∑ 𝑚𝑛𝑚𝑛′𝑚𝑎𝜇𝑛𝑛′𝑎

𝑎𝑛′𝑛

} 

ln(𝛾𝑀) = 𝑧𝑀
2 𝐹 + ∑ 𝑚𝑎(2𝐵𝑀𝑎 + 𝑍𝐶𝑀𝑎)

𝑎

+ ∑ 𝑚𝑐 (2Φ𝑀𝑐 + ∑ 𝑚𝑎𝜓𝑀𝑐𝑎

𝑎

)

𝑐

+ 

(15) 
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∑ ∑ 𝑚𝑎𝑚𝑎′𝜓𝑀𝑎𝑎′  

<  𝑎′𝑎

+ |𝑧𝑀|  ∑ ∑ 𝑚𝑐𝑚𝑎𝐶𝑐𝑎

𝑎𝑐

 + 

2 ∑ 𝑚𝑛𝜆𝑛𝑀

𝑛

+ ∑ ∑ 𝑚𝑛𝑚𝑎𝜉𝑛𝑀𝑎

𝑎𝑛

+  6 ∑ ∑ 𝑚𝑛𝑚𝑛′𝜇𝑛𝑛′𝑀

𝑛′𝑛

 

ln(𝛾𝑋) = 𝑧𝑋
2𝐹 + ∑ 𝑚𝑐(2𝐵𝑐𝑋 + 𝑍𝐶𝑐𝑋)

𝑐

+ ∑ 𝑚𝑎 (2Φ𝑎𝑋 + ∑ 𝑚𝑐𝜓𝑐𝑎𝑋

𝑐

)

𝑎

+ 

∑ ∑ 𝑚𝑐𝑚𝑐′𝜓𝑐𝑐′𝑋  

<  𝑐′𝑐

+ |𝑧𝑀|  ∑ ∑ 𝑚𝑐𝑚𝑎𝐶𝑐𝑎

𝑎𝑐

 + 

2 ∑ 𝑚𝑛𝜆𝑛𝑋

𝑛

+ ∑ ∑ 𝑚𝑛𝑚𝑐𝜉𝑛𝑐𝑋

𝑐𝑛

+  6 ∑ ∑ 𝑚𝑛𝑚𝑛′𝜇𝑛𝑛′𝑋

𝑛′𝑛

 

(16) 

 

ln(𝛾𝑁) = 2 ∑ 𝑚𝑐𝜆𝑁𝑐

𝑐

+ 2 ∑ 𝑚𝑎𝜆𝑁𝑎

𝑎

+ 2 ∑ 𝑚𝑛𝜆𝑁𝑛

𝑛

+ ∑ ∑ 𝑚𝑐𝑚𝑎𝜉𝑁𝑐𝑎

𝑎𝑐

+  6 ∑ ∑ 𝑚𝑛𝑚𝑐𝜇𝑁𝑛𝑐

𝑐𝑛

+  6 ∑ ∑ 𝑚𝑛𝑚𝑎𝜇𝑁𝑛𝑎

𝑎𝑛

 

(17) 

In which Equations 15 and 16 use F to be: 

𝑭 =  −𝐴𝜙 (
√𝐼

1 + 𝑏√𝐼
+

2

𝑏
ln(1 + 𝑏√𝐼)) +  ∑ ∑ 𝑚𝑐𝑚𝑎𝐵𝑐𝑎

′

𝑎𝑐

+ 

∑ ∑ 𝑚𝑐𝑚𝑐′Φ𝑐𝑐′
′  

<  𝑐′𝑐

+  ∑ ∑ 𝑚𝑎𝑚𝑎′Φ𝑎𝑎′
′  

<  𝑎′𝑎

 

𝑤ℎ𝑒𝑟𝑒: 

𝒃 = 1.2    &     𝑨𝝓(𝝆, 𝝐, 𝑻) =
1

3
(

2 ∗ 𝜋 ∗ 𝜌 ∗ 𝑁𝐴

1000
)

1
2⁄

 ∗  (
100 ∗ 𝑒2

 (4 ∗ 𝜋 ∗ 𝜖0) ∗ 𝜖 ∗ 𝑘 ∗ 𝑇
)

3
2⁄

 

𝑵𝑨 = 6.0221367 ∗ 1023      &     𝒆   =  1.6021773 ∗ 10−19 

𝝐𝟎 =  8.8541878 ∗ 10−12      &      𝒌 =  1.380658 ∗ 10−23 

𝑰 =
1

2
∑ 𝑚𝑖  𝑧𝑖

2           &       𝒁 =  ∑ 𝑚𝑖  |𝑧𝑖| 

𝐵𝑚𝑥
𝜙

= 𝐵0 + 𝐵1 ∗ 𝑒𝑥𝑝(−𝛼1√𝐼) + 𝐵2 ∗ 𝑒𝑥𝑝(−𝛼2√𝐼) 
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𝐵𝑚𝑥 = 𝐵0 + 𝐵1 ∗ 𝑔(𝛼1√𝐼) + 𝐵2 ∗ 𝑔(𝛼2√𝐼) 

𝐵𝑚𝑥
′ = [𝐵1 ∗ 𝑔′(𝛼1√𝐼) + 𝐵2 ∗ 𝑔′(𝛼2√𝐼)] 𝐼⁄  

𝑔(𝑥) =
2

𝑥2
[1 − (1 + 𝑥)exp (−𝑥)] 

𝑔′(𝑥) =
−2

𝑥2
[1 − (1 + 𝑥 +

𝑥2

2
) exp (−𝑥)] 

{
𝑖𝑓 𝐵2 = 0, 𝛼1 = 2,   𝛼2 = 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝛼1 = 1.4,   𝛼2 = 12

 

𝐶𝑚𝑥 =
𝐶0

2√|𝑧𝑚 𝑧𝑥|
 

Φ𝑖𝑗
𝜙

=  𝜃𝑖𝑗 + 𝜃𝑖𝑗 
𝐸 + 𝐼 ∗ 𝜃𝑖𝑗 

𝐸 ′
 

Φ𝑖𝑗
 =  𝜃𝑖𝑗 + 𝜃𝑖𝑗 

𝐸  

Φ𝑖𝑗
 ′ =  𝜃𝑖𝑗

′
 

𝐸  

𝜃𝑖𝑗 

𝐸 =
𝑧𝑖 𝑧𝑗

4 𝐼
(𝐽0(𝑥𝑖𝑗) −

𝐽0
(𝑥𝑖𝑖)

2
 −

𝐽0(𝑥𝑗𝑗)

2
) 

𝜃𝑖𝑗
′

 

𝐸
=

𝑧𝑖 𝑧𝑗

8 𝐼2
(𝑥𝑖𝑗 ∗ 𝐽1(𝑥𝑖𝑗) −

𝑥𝑖𝑖 ∗ 𝐽1
(𝑥𝑖𝑖)

2
 −

𝑥𝑗𝑗 ∗ 𝐽1(𝑥𝑗𝑗)

2
) −

𝜃𝑖𝑗 

𝐸

𝐼
 

𝑥𝑖𝑗 = 6 𝑧𝑖  𝑧𝑗  𝐴ϕ √𝐼 

𝐽0 = 𝑥 ∗ (4 + 4.581 ∗ 𝑥−0.7237 ∗ 𝑒𝑥𝑝(−0.0120 ∗ 𝑥0.528))
−1

 

𝐽1 =
𝑑(𝐽0)

𝑑𝑥
 

3.1.3.3 Solids 

The fugacity of solids, or the activity coefficient, is assumed to be ideal and 

valued at 1. This assumption is based on the fact that solids are formed instantly and do 

take geological time scales to change structure [127], [128]. 
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3.2 Absorption System Model 

CO2 reactive absorption in aqueous brines is modeled in a Bubble Column 

Reactor. Bubble columns are not the most efficient at absorbing CO2. However, bubble 

columns are the simplest form of column reactors that provide enough information on 

how CO2 absorption affects sodium removal. The absorption process is temporal and 

spatial in nature. Absorption dynamics should be considered as the process is slower 

than the slowest reaction [99], the hydroxide reaction with aqueous CO2. In addition, the 

absorption process depends on the column dimensions and constituents. For example, the 

mass transfer coefficient will be different, for different bubble sizes, column types, and 

column dimensions [68]. This will require solving bubble hydrodynamics and bubble 

mass transfer dynamics simultaneously [129]. If the spatial dynamics are not included, 

the absorption model is considered a lumped process [130]. This approach assumes the 

whole column is lumped into one volume that exchanges content with the gas phase. On 

the other hand, the distributed method differentiates the spatial coordinates into smaller 

domains each with its own lumped process. 

3.2.1 Lumped Method 

The lumped method uses one mass transfer coefficient for the whole process 

[130]. There are three resistances to the mass transfer from the gas phase to the liquid 

phase: gas-side resistance, liquid-side resistance, and bulk-phase where the reaction 

happens. For CO2 absorption, the liquid-side coefficient has most of the resistance, and it 

can be used to estimate the overall mass transfer [68]. The process involves CO2 

bubbling in a nonflowing liquid brine inside a cylindrical contactor. The contactor has an 

inner diameter of 54 mm and a height of 600 mm [18]. Many research papers are 

reporting various mass transfer coefficients [131]. The accuracy of the lumped method 

depends on the range of each input variable. 

Hikita et al. [132] published work that was found to have a similar process to the 

system being developed. The paper reports O2 absorption in 100-190 mm columns at low 

pressures [132]. The authors argued that systems with low gas velocities will have low 

gas holdup, making column diameter irrelevant to mass transfer. In addition, Oak Ridge 

National Laboratory was able to extend Hikita’s work to CO2 absorption in basic media 
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[133]. Their experimental results matched with Hikita’s model. Furthermore, Schumpe et 

al. found that mass transfer at high pressures is a function of gas density, in coalescing 

and non-coalescing liquids [134]. The process modeled assumes bubbly flow with no 

coalescing [18]. Equation 18 requires obtaining physical properties for saline water 

solution and gaseous CO2. These properties were obtained from [99], [135] and the 

equations used are listed beneath Equation 18.  

𝑘𝑙𝑎 = 14.9 ∗ 𝐺0.752 ∗ 𝑈𝑔
0.76 ∗ 𝜌𝑠𝑜𝑙

0.852 ∗ 𝜇𝐶𝑂2
0.243 ∗ 𝜇𝑠𝑜𝑙

−0.079 ∗ 𝜎𝑠𝑜𝑙
−1.016  ∗  𝐷𝐶𝑂2

0.604 ∗ (
𝜌𝐶𝑂2

𝜌𝑟𝑒𝑓

)

0.46

 (18) 

Equation 18 defines 𝑘𝑙𝑎 as a function of multiple coefficients and all these are defined 

below. 

𝜇𝑠𝑜𝑙 = 𝜇𝑤𝑎𝑡𝑒𝑟( 1 +  𝐴 ∗ 𝑆 +  𝐵 ∗ 𝑆2) 

𝑤ℎ𝑒𝑟𝑒: 

𝜇𝑤𝑎𝑡𝑒𝑟 =  4.2844 ∗ 10−5 + (0.157 ∗ (𝑇 +  64.993)2  −  91.296)−1 

𝐴 = 1.541 + 1.998 ∗ 10−2 ∗ 𝑇 − 9.520 ∗ 10−5 ∗ 𝑇2 

𝐵 = 7.974 − 7.561 ∗ 10−2 ∗ 𝑇 + 4.724 ∗ 10−4 ∗ 𝑇2 

 

𝜎𝑠𝑜𝑙 = 𝜎𝑤𝑎𝑡𝑒𝑟 ∗ ( 1 +  (2.26 ∗ 10−4 ∗ 𝑇 +  9.46 ∗ 10−3 ∗ 𝑙𝑛(1 + 0.0331 ∗ 𝑆)) 

𝑤ℎ𝑒𝑟𝑒: 

𝜎𝑤𝑎𝑡𝑒𝑟 = 0.2358 ∗ (1 −
𝑇

647.096
)

1.256

∗ (1 − 0.625 ∗ (1 −
𝑇

647.096
)) 

 

𝜌𝑠𝑜𝑙 = 𝜌𝑤𝑎𝑡𝑒𝑟 + 𝜌𝑠𝑎𝑙𝑡 

𝑤ℎ𝑒𝑟𝑒: 

𝜌𝑤𝑎𝑡𝑒𝑟 = 𝑎0 +  𝑎1 ∗ 𝑇 +  𝑎2 ∗ 𝑇2  +  𝑎3 ∗ 𝑇3  +  𝑎4 ∗ 𝑇4 

𝜌𝑠𝑎𝑙𝑡 = 𝑏0 ∗ 𝑆 + 𝑏1 ∗ 𝑆 ∗ 𝑇 + 𝑏2 ∗ 𝑆 ∗ 𝑇2 + 𝑏3 ∗ 𝑆 ∗ 𝑇3 + 𝑏4 ∗ 𝑆2 ∗ 𝑇4 
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𝜇𝐶𝑂2
=

0.0148

1000
∗

0.555 ∗ 527.67 + 240

0.555 ∗ (9
5⁄ ∗ 𝑇) + 240

∗ (
9

5⁄ ∗ 𝑇

527.67
)

1.5

 

 

𝜌𝐶𝑂2
=

𝑃 ∗ 𝑀𝑊𝐶𝑂2

𝑍 ∗ 𝑅 ∗ 𝑇
 

 

𝐷𝐶𝑂2
= 2.35 ∗ 10−6 ∗ 𝑒𝑥𝑝 (

−2119

𝑇
) ∗ (

𝜇𝑠𝑜𝑙

𝜇𝑤𝑎𝑡𝑒𝑟

)
0.8

 

Table 10 includes the parameters used in calculating the density of saline water 

(𝜌𝑠𝑜𝑙), defined above. 

Table 10: Parameters used in calculating the density of saline water. 

 0 1 2 3 4 

a 9.999E2 2.034E-2 -6.162E-3 2.261E-5 -4.567E-8 

b 8.020E2 -2.001 1.677E-2 -3.060E-5 -1.613E-5 

3.2.2 Distributed Method 

CO2-absorption modeling using a distributed method will require spatial 

dynamics along with temporal dynamics. This will result in a Partial Differential 

Equation system that is usually solved using the Finite Volume Method [136]. There are 

three phases to be considered: brine liquid, gas bubbles, and suspended solids. Fine solid 

particles can be included as part of the liquid phase to reduce the total number of phases 

to two. Each phase can be modeled either using the Euler continuous method or 

Lagrange discrete method [137]. The Eulerian approach treats a phase as a continuum 

that occupies a volume fraction of a defined control volume. The Lagrangian approach 

tracks a particle in space, not being confined by any control volume. At one time step, a 

particle can be in one control volume, while in another time step, the particle can be in 

another control volume. 
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For Bubble Column Reactors, there are three CFD models: Reynolds Averaged 

Navier Stokes (RANS) [138], Large Eddy Simulations (LES) [139], and Direct 

Numerical Simulation (DNS) or Discrete Bubble Model (DBM) [140]. RANS model 

uses an Euler-Euler approach; the Euler method for the liquid phase and the Euler 

method for the gas phase. DBM model uses an Euler-Lagrange approach; the Euler 

method for the liquid phase and the Lagrange method for each bubble in the gas phase. 

The LES model uses an Euler-Euler approach in which small eddies are modeled, while 

large eddies are resolved at simulation time. In terms of computation complexity, the 

RANS model is the fastest with the lowest resolution, the LES model is slower with 

more eddy details, and the DNS model is the slowest with the most simulation details 

[141]. 

Another approach to modeling spatial dynamics in a bubble column is the axial 

dispersion model. The equation assumes that changes in concentration are due to 

dispersion, advection, or reaction [142]. Effective dispersion is a combination of axial 

dispersion and cross-phase diffusion. Dispersion coefficients are empirical and need to 

be evaluated for each column configuration. Diffusion coefficients are easily obtainable, 

depending on mass transfer assumptions [143]. Numerical solutions could be as simple 

as using finite difference method to solve PDEs [144]. 

Gas absorption in Bubble Column Reactors was modeled using the RANS model 

[129]. The RANS model was combined with species and energy transport equations. 

Species balance includes diffusion, advection, and reaction in each phase [145]. Energy 

balance contains advection, thermal diffusion, and heat produced-from/consumed-by 

reaction and cross-phase absorption [145]. Momentum transfer is represented in the 

Navier-Stokes equation for incompressible fluids. The equation includes extra 

momentum terms for bubble drag and momentum from cross-phase diffusion [146]. 

Also, the system is considered a bubbly flow in which the k-ε turbulence model is not 

included. The turbulence term is removed from the effective viscosity [147]. The 

equations used in the RANS model are included in Equation 19-22. 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡: 
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𝜕𝜖𝑗𝑐𝑖

𝜕𝑡
+ ∇ (𝑢 . 𝜖𝑗  ci) = ∑ 𝐷𝑖𝑘 ∇2𝜖𝑗  𝑐𝑖

𝑘

+ 𝑟𝑖  (19) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡: 

𝜕(𝜖𝑙𝜌𝑙𝐶𝑝𝑇)

𝜕𝑡
+ ∇(𝑢 . 𝜖𝑙𝜌𝑙𝐶𝑝𝑇)

= −∇(𝑘𝑙  . ∇𝑇) + ∑ 𝑟𝑖  ∆𝐻

𝑖

+ ∑ 𝑟𝑎𝑏𝑠,𝑗  ∆𝐻

𝑗

  
(20) 

𝜕(𝜖𝑔𝜌𝑔𝐶𝑝𝑇)

𝜕𝑡
+ ∇(𝑢 . 𝜖𝑔𝜌𝑔𝐶𝑝𝑇) = −∇(𝑘𝑔 . ∇𝑇) + ∑ 𝑟𝑎𝑏𝑠,𝑗  ∆𝐻

𝑗

 (21) 

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡: 

𝜕(𝜖𝑗  𝜌𝑗 𝑢𝑗)

𝜕𝑡
+ ∇(𝜖𝑗𝜌𝑗𝑢𝑗𝑢𝑗)

= 𝜖𝑗∇𝜏𝑗 − 𝜖𝑗∇𝑃 + (𝑀𝐷 + 𝑚𝑗′̇ 𝑢𝑗′ − 𝑚𝑗̇ 𝑢𝑗) +  𝜖𝑗𝜌𝑗𝑔 

(22) 

𝜏𝑗 = −𝜇𝑒𝑓𝑓[∇𝑢𝑗 + ∇𝑢𝑗
𝑇 −

2

3
𝐼(∇. 𝑢𝑗)] 

𝜇𝑒𝑓𝑓 = 𝜇𝑙 + 𝜇𝑇 

𝜇𝑇 = 0 

𝜇𝑔 =
𝜌𝑔

𝜌𝑙

 𝜇𝑒𝑓𝑓 

𝑀𝐷 =
1

2
𝜌 𝐶𝐷

𝐴𝑝

𝑉
 (𝑢𝑔 − 𝑢𝑙)|𝑢𝑔 − 𝑢𝑙| 

𝐶𝐷 = {
24

𝑅𝑒
(1 + 0.15𝑅𝑒0.687)    𝑅𝑒 < 1000 

0.44                                    𝑅𝑒 > 1000

 

𝑅𝑒 =
𝜌𝑙|𝑢𝑙 − 𝑢𝑔| 𝑑𝑝

𝜇𝑔

 

𝐴𝑝

𝑉
=

6𝜖𝑔

𝑑𝑝

 

𝑑(𝜖𝑗  𝜌𝑗)

𝑑𝑡
+  ∇(𝜖𝑗  𝜌𝑗𝑢𝑗) = 0 
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3.3 Numerical Solutions 

The capability to simulate and optimize mathematical models depends on the 

numerical solvers and hardware computation used. All equations developed were solved 

on an intel core i7-6700HQ processor with 16 GB RAM. The mathematical solver used 

was the IPOpt [148], a Non-Linear Programming solver, under the GEKKO library [149] 

in python version 3.8.5 [150]. The challenge in the reaction system was with solving 

both kinetic and equilibrium reactions simultaneously. There was a challenge with 

solving spatial dynamics of absorption and temporal dynamics of reactions. This led to 

some simplifications in the current model proposed, as outlined below. 

3.3.1 Reaction System 

The challenge with solving reaction systems is that some species are involved in 

both fast and slow reactions. This makes the system impossible to solve with traditional 

Differential-Algebraic-Equation solvers. These solvers require the number of equations 

to be equal to the number of species. A proper way to handle this issue is to combine 

reactions in a way that a species only shows up in either a kinetic or equilibrium 

reaction. The systematic way of achieving so is through Gauss-Jordan elimination, as 

described in the RAFT simulator [151]. The reaction-species matrix is built by having 

the coefficient of each species in a separate column, in which each row represents a 

reaction. This coefficient matrix can be reduced to row echelon form in order to separate 

kinetic species from equilibrium species. All row operations performed on the 

coefficient matrix are applied to a species identity matrix. The resultant species matrix 

produces the new reaction system. This final system will include kinetic reactions, 

equilibrium reactions, and mass balance equations. 

𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒔𝒚𝒔𝒕𝒆𝒎: (𝑤𝑖𝑡ℎ 10 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 & 9 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

𝐾𝐻2𝑂(𝑙)
=

𝛾𝐻+𝐻+ ∗  𝛾𝑂𝐻−𝑂𝐻−

𝛾𝐻2𝑂(𝑙)

 (23) 



 

 42 

𝑑 𝐶𝑂2(𝑎𝑞.)

𝑑𝑡
=  𝑘𝑙𝑎 (𝜙𝐶𝑂2(𝑔)

𝐶𝑂2(𝑔)
 − 𝛾𝐶𝑂2(𝑎𝑞.)

𝐶𝑂2(𝑎𝑞.)
) + 𝑘𝐻𝐶𝑂3

−

∗ 𝛾𝐻𝐶𝑂3
−𝐻𝐶𝑂3

− −  𝑘𝑂𝐻− ∗ 𝛾𝐶𝑂2(𝑎𝑞.)
𝐶𝑂2(𝑎𝑞.)

∗ 𝛾𝑂𝐻−𝑂𝐻−

+ 𝑘𝑁𝐻2𝐶𝑂𝑂− ∗ 𝛾𝑁𝐻2𝐶𝑂𝑂−𝑁𝐻2𝐶𝑂𝑂− ∗ 𝛾𝐻+𝐻+ −  𝑘𝑁𝐻3(𝑎𝑞.)

∗ 𝛾𝐶𝑂2(𝑎𝑞.)
𝐶𝑂2(𝑎𝑞.)

∗ 𝛾𝑁𝐻3(𝑎𝑞.)
𝑁𝐻3(𝑎𝑞.)

 

(24) 

𝐶𝑂2(𝑔)
=  𝐾𝐶𝑂2(𝑔)

∗ 𝑃𝐶𝑂2(𝑔)
 (25) 

𝑑 𝐻𝐶𝑂3
−

𝑑𝑡
=  𝑘𝑂𝐻− ∗ 𝛾𝐶𝑂2(𝑎𝑞.)

𝐶𝑂2(𝑎𝑞.)
∗ 𝛾𝑂𝐻−𝑂𝐻− − 𝑘𝐻𝐶𝑂3

−

∗ 𝛾𝐻𝐶𝑂3
−𝐻𝐶𝑂3

− 

(26) 

𝐾𝐶𝑂3
2− =

𝛾𝐻𝐶𝑂3
−𝐻𝐶𝑂3

−

𝛾𝐻+𝐻+  ∗  𝛾𝐶𝑂3
2−𝐶𝑂3

2− (27) 

𝑑 𝑁𝐻2𝐶𝑂𝑂−

𝑑𝑡
= 𝑘𝑁𝐻3(𝑎𝑞.)

∗ 𝛾𝐶𝑂2(𝑎𝑞.)
𝐶𝑂2(𝑎𝑞.)

∗ 𝛾𝑁𝐻3(𝑎𝑞.)
𝑁𝐻3(𝑎𝑞.)

− 𝑘𝑁𝐻2𝐶𝑂𝑂− ∗ 𝛾𝑁𝐻2𝐶𝑂𝑂−𝑁𝐻2𝐶𝑂𝑂− ∗ 𝛾𝐻+𝐻+ 

(28) 

𝐾𝑁𝐻4
+ =

𝛾𝑁𝐻4
+𝑁𝐻4

+

𝛾𝐻+𝐻+  ∗  𝛾𝑁𝐻3(𝑎𝑞.)
𝑁𝐻3(𝑎𝑞.)

 (29) 

𝑁𝐻3(𝑎𝑞.)
+ 𝑁𝐻2𝐶𝑂𝑂− + 𝑁𝐻4

+ = 𝑁𝐻3𝑡=0
 (30) 

𝐶𝑂2(𝑎𝑞.)
+ 𝐻𝐶𝑂3

− + 𝑁𝐻2𝐶𝑂𝑂− + 𝐶𝑂3
2− = 𝐶𝑂2𝑡=0

+ ∫ 𝐶𝑂2(𝑎𝑞.)
𝑑𝑡 (31) 

𝐻+ + 𝑁𝐻4
+ = 𝑂𝐻− + 𝐻𝐶𝑂3

− + 2 ∗ 𝐶𝑂3
2− + 𝑁𝐻2𝐶𝑂𝑂− (32) 

 

𝒇𝒊𝒏𝒂𝒍 𝒔𝒚𝒔𝒕𝒆𝒎: (𝑤𝑖𝑡ℎ 9 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 & 9 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

𝐾𝐻2𝑂(𝑙)
=

𝛾𝐻+𝐻+ ∗  𝛾𝑂𝐻−𝑂𝐻−

𝛾𝐻2𝑂(𝑙)

 (23) 

𝑑 𝐶𝑂2(𝑎𝑞.)

𝑑𝑡
+

𝑑 𝐻𝐶𝑂3
−

𝑑𝑡
+

𝑑 𝐶𝑂3
2−

𝑑𝑡
+

𝑑 𝑁𝐻2𝐶𝑂𝑂−

𝑑𝑡

=  𝑘𝑙𝑎 (𝜙𝐶𝑂2(𝑔)
𝐶𝑂2(𝑔)

 − 𝛾𝐶𝑂2(𝑎𝑞.)
𝐶𝑂2(𝑎𝑞.)

) 

(33) 

𝐶𝑂2(𝑔)
=  𝐾𝐶𝑂2(𝑔)

∗ 𝑃𝐶𝑂2(𝑔)
 (25) 
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𝑑 𝐻𝐶𝑂3
−

𝑑𝑡
+

𝑑 𝐶𝑂3
2−

𝑑𝑡

=  𝑘𝑂𝐻− ∗ 𝛾𝐶𝑂2(𝑎𝑞.)
𝐶𝑂2(𝑎𝑞.)

∗ 𝛾𝑂𝐻−𝑂𝐻− − 𝑘𝐻𝐶𝑂3
−

∗ 𝛾𝐻𝐶𝑂3
−𝐻𝐶𝑂3

− 

(34) 

𝐾𝐶𝑂3
2− =

𝛾𝐻𝐶𝑂3
−𝐻𝐶𝑂3

−

𝛾𝐻+𝐻+  ∗  𝛾𝐶𝑂3
2−𝐶𝑂3

2− (27) 

𝑑 𝑁𝐻2𝐶𝑂𝑂−

𝑑𝑡
= 𝑘𝑁𝐻3(𝑎𝑞.)

∗ 𝛾𝐶𝑂2(𝑎𝑞.)
𝐶𝑂2(𝑎𝑞.)

∗ 𝛾𝑁𝐻3(𝑎𝑞.)
𝑁𝐻3(𝑎𝑞.)

− 𝑘𝑁𝐻2𝐶𝑂𝑂− ∗ 𝛾𝑁𝐻2𝐶𝑂𝑂−𝑁𝐻2𝐶𝑂𝑂− ∗ 𝛾𝐻+𝐻+ 

(28) 

𝐾𝑁𝐻4
+ =

𝛾𝑁𝐻4
+𝑁𝐻4

+

𝛾𝐻+𝐻+  ∗  𝛾𝑁𝐻3(𝑎𝑞.)
𝑁𝐻3(𝑎𝑞.)

 (29) 

𝑑 𝑁𝐻3(𝑎𝑞.)

𝑑𝑡
+

𝑑 𝑁𝐻2𝐶𝑂𝑂−

𝑑𝑡
+

𝑑 𝑁𝐻4
+

𝑑𝑡
= 0 (35) 

𝑑 𝐻+

𝑑𝑡
=

𝑑 𝐻𝐶𝑂3
−

𝑑𝑡
+ 2

𝑑 𝐶𝑂3
2−

𝑑𝑡
 +

𝑑 𝑁𝐻3(𝑎𝑞.)

𝑑𝑡
+ 2

𝑑 𝑁𝐻2𝐶𝑂𝑂−

𝑑𝑡
 

+
𝑑 𝑂𝐻−

𝑑𝑡
 

(36) 

3.3.2 Reaction and Absorption System 

Solving spatial dynamics with temporal dynamics can become challenging with 

highly non-linear reaction equations. Operator splitting decouples reaction systems from 

absorption dynamics to reduce computation complexity but with error introduction 

[152]. This can be alleviated using higher orders of operator splitting. The most common 

operator splitting is Strang splitting which is a second-order splitting scheme[153]. 

Operator splitting applied to the reaction-absorption system will split the species 

transport equations into Partial Differential Equations and Differential Algebraic 

Equations, instead of the complex Partial Differential Algebraic Equations. This will 

reduce complexity and computation time. 

3.3.3 Model Simplification 

The current model was complex and needed to be simplified so that it could be 

simulated within a reasonable time frame. The spatial dynamics were removed, as 

hydrodynamics had a negligible effect on Na+ removal. So, the distributed method was 
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replaced with the lumped method, using a mass transfer coefficient. There were 

hundreds of possible complex solids that could precipitate, but since the concentration of 

dissolved ions is low, only six salts were considered (NaHCO3, Na2CO3.10H2O, CaCO3, 

CaSO4.2H2O, Mg(OH)2, Ca(OH)2). Aqueous complexation reactions (such as CaHCO3
+ 

and MgOH+) were removed since the brine solution is treated in basic-to-neutral media 

[154], [155]. Gas mixtures were not considered because this research aims to study CO2 

effects on salt precipitation. Gas mixtures will impact results, yet with or without their 

consideration, results should show similar patterns. Equilibrium constants were poly-

fitted to remove complexity on the solver. The final code used model used in simulation 

and optimization can be found in A3.7 and A3.8, respectively. Figure 4 shows a 

flowchart overview of the final model being used and how it is built. 

 
Figure 4: Simulation flowchart of modeling reactions. 

3.4 Gas Hydrate Model 

Gas-Based hydrate is a thermal desalination process that removes salts by 

freezing brine solutions [57]. It is more attractive than freezing distillation because it can 

be operated at higher temperatures, above 0℃ [57]. In addition, CO2 absorbed in the 

sodium removal process can be utilized to remove chloride ions by lowering the 



 45 

operating column temperature by 7-10℃. The hydration process is quite complex to 

model using traditional methods, so black-box modeling was utilized to study the 

system. The process starts with CO2-H2O clathrate forming in which a snow-like 

structure traps water molecules [58]. Some ions in the brine solution are trapped inside 

the clathrate and do not allow the process to achieve 100% ion removal [58]. Machine 

Learning will be used to study the entrapment process for simulation and optimization.  

3.4.1 Data Collection 

Experimental data was collected from CO2-based hydrate systems that had initial 

concentration, final concentration, and operating condition data points. The ions included 

were Na+, K+, Mg2+, Ca2+, Cl-, and SO4
2-. The initial concentration of the samples was 

collected from seawater, synthetic brines, salt solutions, or a combination of seawater 

solutions. The final concentration of the samples was either reported as removal 

efficiency, ion’s removed concentration, or ion’s remaining concentration. The final 

concentration of all the samples was changed to the ion’s removed concentration. For 

some samples, the anions’ composition was not available, and it had to be estimated. The 

initial concentration was estimated using Na+/Cl- ratio for Cl- and Cl-/SO4
2- for SO4

2-. 

The ratio used was obtained from the given salt composition. The final composition was 

estimated using the average removal efficiency of all the other ions. The list of the data 

used, and all the references can be found in Appendix A2. 

3.4.2 Machine Learning Algorithms 

Machine Learning (ML) is a subset of Artificial Intelligence in which the system 

learns from the given dataset and can keep improving with newly added data [156]. 

There are three important components to a machine learning system: the learning 

algorithm, the loss function, and optimization [157]. The learning algorithm is the 

representation function that allows the system to process data and extract patterns. The 

loss function is the cost associated with deviating from the correct output. Optimization 

is the solver used to search in the space; grid-space. In addition, regularization can be 

added to the loss function to prevent overfitting to the data, allowing it to generalize to 

new input data better [158]. Also, hyperparameters are parameters used to tweak the ML 

process [159]. 
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The error from variance and bias is another important factor to consider in a 

Machine Learning system [160]. Model bias culminates in how well it can represent the 

data. Input data that have a quadratic relationship with the output variable will have a 

high bias, if the given model was linear. This is because the model cannot capture the 

essential information. Model variance is the change in model structure when new data is 

represented. A model with high variance will keep changing when new data is added, 

indicating its inability to learn. An ideal machine learning system should have low bias 

and low variance; however, this is impossible, as they are inversely proportional [160]. 

3.4.2.1 Weighted Regression 

Regression using weights is one approach to Machine Learning in which the 

system estimates the importance of each feature through a coefficient. Linear 

proportionality is the simplest weighting technique. Non-linear weightings apply a 

nonlinear transformation to the input feature. Multi-layer Perceptron is the ultimate form 

of a non-linear weighting technique. Below is a summary of the key factors to assess 

when considering each. 

3.4.2.1.1 Linear Regression 

Linear regression is the oldest and most studied modeling technique in statistical 

analysis [161]. The regression maps the relationship between the dependent variable and 

independent variables using linear proportionality. This is considered the learning 

function, and the loss function is the mean squared error. Regularization can be applied 

in the context of linear regression, in cases, such as, lasso regression and ridge regression 

[161]. There are no hyperparameters used in linear regression other than the constants in 

regularization. 

3.4.2.1.2 Multi-Layer Perceptron 

Multi-Layer Perceptron (MLP) is a form of Artificial Neural Network that is 

composed of layers [162], as seen in Figure 5. The first layer is the input layer, and it 

consists of all the dataset features. Each feature is a neuron. Data is passed to subsequent 

middle layers, called hidden layers. Each neuron in a hidden layer takes a linear weighted 

sum of all the neurons in the previous layer and passes it through an activation function 
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[163]. The activation/non-linear function allows certain data to pass to the next layer. The 

final layer is the output layer which consists of all the output-responses/neurons [162]. An 

MLP with one hidden layer is sufficient to solve any problem [164]. There are many 

optimization functions for MLP, but the most common one is gradient descent. The 

network updates its weights by differentiating the error in the output layer, and its rippling 

effect all the way to the input layer; known as backpropagation [163]. This requires the 

activation to be differentiable in addition to being non-linear. Regularization comes in the 

form of dropout, such as, neuron dropout, weight dropout, or layer dropout [165]. 

Common hyperparameters are the learning rate for gradient descent, the number of hidden 

layers, the number of neurons in each layer, and the dropout rate for regularization. 

 

Figure 5: Multi-Layer Perceptron architecture with an input layer composed of n inputs, 

n hidden layers, and an output layer with n responses [166]. 

3.4.2.2 Regression Trees 

3.4.2.2.1 Decision Tree 

A decision tree is a form of a binary tree in which each node is either a decision 

node or a leaf node [167]. A decision node uses a condition to evaluate whether to 

choose the left child node or the right child node. Each decision node uses one feature in 

its condition to evaluate how to split the data. If the condition is evaluated to be true, the 
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decision is passed to the left node, and vice versa for the right node [168]. Finally, the 

decision ends in a leaf node in which its value is equal to the average of all the training 

data points in that node, as seen in Figure 6. The loss function for a decision tree is to 

minimize the entropy of the data [169]. The data is split recursively to maximize the 

amount of information gained. A hyperparameter for decision trees is the number of 

features to consider for decision nodes. 

 

Figure 6: A typical structure of a decision tree [168]. 

3.4.2.2.2 Random Forest 

Random Forest is a combination of decision trees that use random sampling to 

achieve lower variance; a problem with decision trees [170]. The Random Forest 

algorithm creates new datasets from training data using random sampling with 

replacement [171]. In addition, the algorithm randomly samples a subset of features for 

training each decision tree. The final decision, or the regression value, is equal to 

aggregating the decisions from all the decision tree instances and taking the average for 

the final value. This method applies two random processes, making the learning 

algorithm less sensitive to the original training data. The number of feature subsets is 

usually equal to the logarithm or square root of the feature-set size. Common 

hyperparameters include the number of decision trees and the number of features for 

each tree. One problem with Random Forest is that the learning system sacrifices 

interpretability for lower variance [171]. 
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3.4.2.2.3 XGBoost 

eXtreme Gradient Boost (XGBoost) is the ultimate form of a decision tree that is 

used commonly in Machine Learning tasks [172]. This system combines an ensemble of 

methods that give it the ‘extreme’ title in its name. The system uses gradient boosting 

that gradually adds more trees to improve on older mis-modeled data. In contrast, 

Random Forest adds decision trees independent of the tree’s performance [170]. In 

addition, the system can handle missing values, as it treats them as zeros [172]. The 

learning system applies cross-validation at each step to lower model bias. The system 

runs in parallel to use computing resources efficiently. The system applies pruning, 

allowing for deeper yet optimized trees [172]. The system uses regularization in the form 

of lasso or ridge regularization. Common hyperparameters are learning rate, max depth 

of the tree, and minimum child node weight. 

3.4.2.3 Grouping Algorithms 

The main concept behind grouping algorithms is the kernel function. A kernel is a 

linear/non-linear transformation that aims to separate data into higher-dimensional space 

[173]. The kernel is the eigenvector solution in Principal Component Analysis. The 

kernel is used in Support Vector Machines to separate data by a hyperplane. The kernel 

is the distance functionality in the k-Nearest Neighbors algorithm. 

3.4.2.3.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a dimensionality reduction algorithm that 

uses Singular Value Decomposition [174]. The learning system, first, calculates the 

covariance matrix of all the feature-set. Then, the algorithm calculates the eigenvectors 

applied to the covariance matrix [175]. The eigenvalues establish a hierarchy of the 

eigenvectors based on their corresponding values. The top N eigenvectors are the 

principal components, and the dimension of the feature set is reduced to N [174]. There 

is no loss function or regularization needed since SVD does calculations analytically. As 

the feature set grows and the amount of training data, analytical methods become slow, 

and other optimization algorithms can be used [176]. The value of N is the only 

hyperparameter to consider. 
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3.4.2.3.2 Support Vector Machine 

Support Vector Machine, or Network, (SVM) is a Machine Learning algorithm 

that uses a hyperplane to separate data into groups [173]. The distance between the 

nearest data points and the hyperplane is the margin. The loss function maximizes the 

marginal distance and penalizes data points that are on the wrong side of the hyperplane. 

For regression, the learning machine tries to find the best fit hyperplane to the training 

data [177]. Figure 7 shows a typical SVM regressor with the maximum margin as a 

dotted line on either side of the plane [178]. The system can model non-linear behavior 

through a non-linear transformation of the data. Regularization influences the number of 

data points considered when calculating the margin [179]. Common hyperparameters are 

the kernel transformation function, the penalty constant for the loss function, and the 

penalty tolerance level. 

 
Figure 7: A typical Support Vector Machine used for Regression with the hyperplane 

being the bold, solid line in the middle [178]. 

3.4.2.3.3 k-Nearest Neighbors 

The k-Nearest Neighbors is a simple yet powerful Machine Learning method 

[180]. The system functions under the assumption that objects in proximity behave 

similarly [181]. Training data are clustered into groups based on a previously chosen 

number. For regression, the clustering algorithm separates the data into N clusters using 

a distribution function. In prediction, the k nearest data points are used to calculate the 
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average value of the new data point [182]. The distance is calculated using vector-norm 

distance or the simple difference between the two points. This becomes a disadvantage 

when the number of features increases because evaluation becomes slower [183]. The 

system does not use a loss function or a regularization parameter, but the clustering 

algorithm might use mean squared error. The hyperparameters to consider are the k 

number of neighbors and the N number of clusters. 
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Chapter 4: Results and Discussion 

This chapter presents an answer to the research objectives by utilizing the 

theoretical framework established. The reaction system built gives insight into how CO2 

absorption can achieve the objective of maximizing salt removal. Firstly, model 

validation verifies that the mathematical equations can be examined within the validated 

region. Three components are validated: CO2 absorption, CO2 reaction in basic solutions, 

and salt solubility diagrams. The CO2-hydrate formation is modeled, and the Cl- removal 

data is validated using Machine Learning. Secondly, simulations provide an 

understanding of the underlying factors affecting modeling capabilities, and a reference 

to compare the performance of the studied absorbents. Also, simulations provide insight 

into reaction pathways to achieve the desired product. Finally, optimization presents the 

final solution at which the Bubble Column Reactor should be operated. This sets the 

stage for optimizing operating conditions to reach research objectives of maximizing salt 

removal (Na+ and Cl-) and maximizing CO2 absorption. These results can be taken into 

the lab and used as an initial point for optimization using statistical methods. 

4.1 Model Validation 

Model validation aims to make sure that the equations being developed in the 

theoretical framework agree with the experimental results published. For CO2 

absorption, the developed model is compared to CO2 solubility data that is a function of 

pressure (1 – 90 bar) and temperature (25 – 100℃). In addition, the CO2 reaction with 

hydroxide and ammonia is modeled and results are compared with simulated kinetic 

data. Finally, the thermodynamic and activity models are validated over a temperature 

range of 10 – 50℃. 

4.1.1 CO2 Absorption 

CO2 absorption thermodynamics is important to be validated because it is one of 

the main components of modeling Bubble Column Reactors. The CO2 absorption 

phenomenon being modeled considers phase transition, aqueous CO2 dissociation 

reactions, and water dissociation for pH balance. In addition, both phases, gaseous and 

aqueous, included non-ideality that was modeled using fugacity coefficients. Figure 8 
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shows a good agreement between experimental data and model predictions for aqueous 

CO2 solubility (mol/kg) as a function of pressure (1 – 90 bar) and temperature (25 – 

100℃). The experimental data used in Figure 8 was obtained from Appelo et al. [184]. 

 

Figure 8: CO2 solubility in water at various temperatures and pressures, experimental 

data (dots), and our model (lines). 

4.1.2 CO2 Reaction 

CO2 reaction with absorbents is the second component of modeling Bubble 

Column Reactors. CO2 reaction has only two kinetic reactions: CO2-OH- reaction and 

CO2-NH3 reaction. These bases are the only way aqueous CO2 interacts in the bulk 

phase. There are many publications reporting a wide range of CO2-NH3 rate constants 

with order of magnitudes of difference [185]–[189]. The original CO2-NH3 reaction rate 

from Pinsent et. al [94] was chosen because of its wide range of applicability and its 

reporting in citations. There has been no experimental data reported on CO2 reaction 

dynamics in basic media; however, there was one report found with simulation data 

[190]. The validation was done by reacting 3.8 mM CO2 (aq.) with 4.0 mM NH3 (aq.). The 

validation graphs, in figures 9b and 10b, show four to five times slower kinetics when 

compared to simulated results [190], in figures 9a and 10a. Both figures show similar 
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behavior of an NH2COO- peak (around the one-second mark) and the rise of HCO3
- and 

NH4
+. 

 

Figure 9: Simulation of 3.8 mM CO2 (aq.) and 4.0 mM NH3 (aq.) reaction a) for 10 

seconds [190], and b) for 40 seconds (this study). 
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Figure 10: Simulation of 3.8 mM CO2 (aq.) and 4.0 mM NH3 (aq.) reaction a) for 120 

seconds [190], and b) for 10 minutes (this study). 

4.1.3 Solubility Diagrams 

Solubility diagrams are good at showing the effects of concentration and non-

ideality of aqueous species. The diagrams plot the solubility of inorganic salts over a 

certain temperature range. Solubilities are affected by temperature, and its study can 

validate solubility product and ionic activity of species in water. The six solids used in 

the model were evaluated: NaHCO3, Na2CO3.10H2O, CaCO3, CaSO4.2H2O, Mg(OH)2, 

Ca(OH)2. Figure 11 shows the solubilities of these solids. 
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Figure 11: Solubility plots of the six salts used in the reaction model. 

4.1.4 Validation of CO2-hydrate data 

Chloride removal using CO2-hydrate was modeled and optimized using Machine 

Learning. The amount of data collected pushed us towards the machine learning 

approach. Data validation is achieved using a three-step process, preprocessing, data 

mining, and post-processing. The input data includes the initial concentration of four 

cations (Na+, K+, Ca2+, Mg2+), two anions (Cl- and SO4
2-), and the operating conditions 

(temperature and pressure). The output data includes the final concentration of all ions 

present. This data was collected from multiple sources that comes often with noise. Input 

features were expanded and reduced using Principal Component Analysis, to the most 

significant ones. This was followed by a data mining step, in which three families of 
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Machine Learning algorithms were assessed using two scoring functions. Postprocessing 

analysis looks at the effect of preprocessing on the model evaluation. The final model 

will be used in the optimization section of this thesis.  

4.1.4.1 Preprocessing 

The preprocessing step involves cleaning the raw data collected, attached in 

Appendix A2, and preparing it for data mining. The input data includes an initial 

concentration of cations, the initial concentration of anions, and the operating 

temperature and pressure. The output data includes the final concentration of all ions 

present. The final concentration of chloride was the only output response considered. 

The final concentrations of the other ions were not considered to ensure no data leakage. 

Data points with no chloride ion present were treated as missing values and removed. 

Also, data points with zero chloride removal were not considered because their count 

was small, less than five out of 207 data points, to study CO2 hydrate formation. The 

formation behavior can be modeled analytically/numerically using the Celsius-

Clapeyron equation [191]. Finally, the input data was separated into three groupings 

(cation data, anion data, and operating conditions data) for Principal Component 

Analysis (PCA). 

PCA is a dimensionality reduction technique that was used to extract important 

features from the input data. The initial concentration of cations was expanded by 

evaluating the square, cube, logarithm, square root, and inverse of each cation’s initial 

concentration. This resulted in a six-times expansion, from four input features (initial 

concentration of Na+, K+, Ca2+, Mg2+) to 24 features. The new feature set was studied 

using PCA and the top five principal components were considered. These principal 

components are a linear combination of all the cation-expanded feature-set. Figure 12 

plots the three different output variables against the five principal components, PC 1 

through PC 5. The output variables considered were the amount of chloride removed, the 

amount of chloride remaining, and the percentage of chloride removal, or process 

efficiency. Looking at the plots of the three output variables, the amount of chloride 

removed is the best output response, since it shows some variation with the input 

principal components. Another conclusion made is that the first principal component, PC 
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1, is the only feature showing any variation with the output response, while the other 

features scatter with the output responses. So, the first principal component (PC 1) was 

only chosen for the final regression analysis. 
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Figure 12: Scatter plots of the three output responses vs the five principal components 

used for cation data. 
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A similar procedure was applied to the anion input data in which the 

concentration of two anions (Cl-, SO4
2-) was expanded to 12 features and the top five 

features were selected. These principal components are a linear combination of all the 

anion-expanded feature-set. Figure 13 shows the three output responses against the five 

principal components, PC 6 through PC 10. A similar conclusion can be made about the 

best output response. The amount of chloride removed is the best output response, since 

it shows some variation with the input principal components. In addition, the first two 

principal components (PC 6 and PC 7) show variation in the output response and were 

chosen for the final regression analysis. 
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Figure 13: Scatter plots of the three output responses vs the five principal components 

used for anion data. 
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This procedure failed to work when applying it to the operating temperature and 

pressure. The operating conditions were expanded from two to 12 features and reduced 

to the top five principal components, PC 11 through PC 15. These principal components 

are a linear combination of all the operating-conditions expanded feature-set.  It was 

found that the operating conditions did not produce any statistically significant response, 

as seen in Figure 14. So, none of the principal components were considered, while only 

one feature from the cation principal components (PC 1) and two features from the anion 

principal components (PC 6 and PC 7) were considered. 
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Figure 14:  Scatter plots of the three output responses vs the five principal components 

used for the operating temperature and pressure data. 
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4.1.4.2 Data Mining 

The results obtained from the PCA were used in the model selection phase of the 

Machine Learning optimization. There were seven algorithms tested: two weighting 

systems, three tree techniques, and two grouping methods, as seen in Table 11. All 

algorithms were implemented in python software version 3.8.5 [150] using scikit-learn 

library version 1.0.2 [192] and XGBoost library version 1.5.0 [172]. The Input data were 

randomly split into training and testing data with a 70/30 split, respectively. The training 

dataset was passed through the PCA preprocessing step and only three features were 

chosen, PC 1, PC 6, and PC 7.  All learning systems were trained using standard 

procedure except for the Support Vector Machine (SVM).  

SVM training was studied using a hyperparameter grid search to obtain the best 

possible result from the model. The hyperparameters tested were the kernel type, the 

constant C, and the error ε. The kernel types used were radial kernels, linear kernels, and 

polynomial kernels. The constant C encompassed orders of magnitude, from 10-2 to 101. 

A similar order was followed for ε error, from 10-2 to 100. The eight models were tested, 

and the results are reported in Table 11. The results show that all three regression tree 

algorithms reported the highest R2 score, compared to the other learning systems. The 

model coefficients of each principal component are plotted in Figure 15, showing PC 6 

to be the most prominent feature. 

Table 11: List of the eight ML algorithms along with their respective results. 

Weight Algorithms 

Model Linear model Multi-Layer Perceptron 

R2 0.7014 0.6977 

Regression Trees 

Model Decision Tree Random Forest XGBoost 

R2 0.9039 0.9064 0.9053 

Grouping Algorithms 

Model Support Vector Machine K-Nearest Neighbors 

R2 0.5355 0.7176 
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Figure 16: Predicted vs actual scatter plot for decision tree regression model. 

 

Figure 17: Predicted vs actual scatter plot for Random Forest regression model. 



 67 

 

Figure 18: Predicted vs Actual scatter plot for XGBoost regression model. 

4.1.4.3 Postprocessing 

The decision tree model was shown to be the best Machine Learning algorithm to 

model chloride-removal using CO2-Hydrate. However, one factor worth considering is 

the effectiveness of PCA in the preprocessing phase. So, the input features, initial 

concentration and operating conditions, were trained/tested on a decision tree regression 

model without PCA. Table 13 highlights the results of using decision trees along with 

and without PCA as a preprocessing step. R2 and MAE results show the importance of 

using the PCA preprocessing step. In addition, similar results are shown in the predicted 

vs actual plots in Figure 19 vs Figure 20. This is expected due to the nonlinear 

transformation applied when expanding the feature set. Another factor to consider is the 

anomaly data point found that was incorrectly predicted by the model in Figure 20. The 

outlier was found to be from a synthetic brine-water sample that had a very low chloride 

removal percentage (36.3%) [194]. This synthetic solution corresponds to a sample with 

low electric conductivity. The authors argue that brines with low electric conductivity 

will generate more clathrates that are smaller in size. This abundance of smaller 

clathrates will entrap more ions, allowing for less ion removal. Finally, after analyzing 
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Figure 21: Final Machine Learning system used for Chloride removal modeling. 

4.2 Simulation Results 

Simulation of Bubble Column Reactors provides the possibility of testing how 

effective the CO2 bubbling dynamics are in precipitating dissolved sodium ions. It is 

important to study the relationship between CO2 and the reacting absorbent. In addition, 

it is important to study the effect of operating conditions (pressure, temperature, and pH 

level) on achieving research goals; minimizing Na+ dissolved and maximizing the 

amount of CO2 absorbed. The simulation results will emphasize the important factors to 

consider when bubbling CO2 in brine solutions. 

4.2.1 CO2 Bubbling in Basic Solution 

The relationship between CO2 and the base used requires analyzing the reaction 

mechanism, CO2 absorption rate, CO2 absorption capacity, and possible precipitating 

salts. Studying the absorption mechanism facilitates determining the best absorbent for 

CO2 bubbling. In addition, CO2 absorption rate and absorption capacity can be optimized 

for maximum Na+ removal. Finally, the type of base used determines the types of salts 

that can precipitate, which will be important for regeneration and fractional 

crystallization costs. 

4.2.1.1 Reaction Mechanism 

The pH level, or the hydrogen concentration, is a key factor for understanding the 

reaction mechanism. It determines which reaction pathways are taken to produce certain 
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species. pH dynamics in hydroxide-base solutions behave like a titration process, since 

NaOH and Ca(OH)2 are relatively stronger bases. In Figure 22a, the pH level starts at a 

constant level in a buffer zone, and then, the pH level drops sharply around the 

equivalence point. Finally, the pH level flattens, as the solution saturates with CO2 in the 

form of bicarbonate, mainly. In Figure 22, the reaction time on the x-axis is scaled by 

dividing over the molar concentration of the base used. 

For ammonia, the pH-dynamics graph has a different S-shaped curve due to the 

affinity of ammonia to dissolved CO2 in the solution. In the beginning, ammonia reacts 

with CO2 to form carbamate and produce H+ (R3), which lowers the pH level sharply, as 

seen in Figure 22b. Then, around the pH level of 9, ammonia dissolves and produces 

hydroxide ions (R8), which start reacting with CO2 and producing HCO3
- (R2). This 

means that higher pH levels will require more time to dissolve ammonia and produce 

bicarbonate ions, as seen in Figure 23. In the figure, the left end of the pH curve depends 

on carbamate production, while the right hand depends on ammonia dissolution. 

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑎𝑡ℎ𝑤𝑎𝑦 1:     𝐶𝑂2(𝑎𝑞.)
+ 𝑁𝐻3(𝑎𝑞.)

 
 

↔   𝑁𝐻2𝐶𝑂𝑂−  + 𝐻+        (𝑅3) 

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑃𝑎𝑡ℎ𝑤𝑎𝑦 2:       𝑁𝐻3(𝑎𝑞.)
+  𝐻2𝑂(𝑙)  

 
↔   𝑁𝐻4

+ + 𝑂𝐻−        (𝑅8) 

&        𝐶𝑂2(𝑎𝑞.)
   +    𝑂𝐻−   

 
↔      𝐻𝐶𝑂3

−        (𝑅2) 
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Figure 22: The measure of pH level in CO2 bubbling in a) hydroxide brine solution and 

b) ammonia brine solution, operating at temperature of 25℃ and pressure of 1 atm. 

Ammonia as a base provides two reaction pathways, but the first reaction pathway 

will produce carbamate ion, an undesired product. Carbamate is produced at the 

beginning of the reaction and reverts to HCO3
- as the pH drops, shifting from reaction 

pathway 1 to reaction pathway 2. This indicates that carbamate concentration is a 

function of pH and its production can be reduced by operating at lower pH levels. 

Caplow [97] shows that carbamate production and breakdown depends on the pKb of 
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ammonia (pKb = 4.75). This suggests that pH levels below 9.25 should be good to 

operate at. 

 

Figure 23: Reaction mechanism of bubbling CO2 in 1 M ammonia solution at a 

temperature of 25℃ and pressure of 1 atm. 

4.2.1.2 CO2 Absorption Rate 

The rate of CO2 absorption is important for delivering a viable, feasible process. 

Residence time captures the essence of feasibility in dynamic systems. Higher absorption 

rates will lower residence time to achieve a feasible solution. Pressure is mainly 

considered to affect the absorption rate. The amount of CO2 was differentiated 

numerically to calculate the absorption rate. As can be seen in Figure 24, the CO2 initial 

absorption rate increases rapidly with pressure. Also, the figure shows that the CO2 

absorption rate decreases abruptly over time. The absorption rate in the semi-batch setup 

can be translated to the absorption efficiency measured in continuous processes. 

Research shows that high pressure is essential for CO2 absorption [87], [195]. 
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Figure 24: CO2 absorption rate in 5M NaOH, at a temperature of 25℃, and different 

pressures. 

4.2.1.3 CO2 Absorption Capacity 

CO2 absorption capacity is important to ensure maximum Na+ removal, which is 

the first objective of this research. The absorption capacity is also important because the 

second objective of this research, maximize CO2 capture. The absorption capacity is 

determined by two factors: temperature and type of base used. In the simulations, it was 
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found that temperature does not have a huge effect on absorption capacity. From Figure 

25, there is a difference of about 0.2 mol of CO2 absorbed over a temperature range of 15 

– 40℃ [84], [196]. In addition, the curvature of the absorption capacity curve (T= 15℃), 

compared to the other temperatures, shows that lower temperatures will require more 

time to saturate. Experimental work on primary/tertiary amines shows similar results 

[197]. Figure 26 highlights the effects of the type of base used on the absorption 

capacity. Sodium hydroxide provides the maximum absorption capacity among the bases 

used, NaOH, Ca(OH)2, and NH3. This is due to the strength of the base and its affinity 

towards CO2 [198]. Also, Figure 26 uses different molarities for each absorbent to ensure 

similar OH- concentration is maintained. 

 

Figure 25: CO2 absorption capacity in 5M NaOH, at a pressure of 1 atm, and different 

temperatures. 
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Figure 26: CO2 absorption capacity with the absorbent as a parameter, at a temperature 

of 25℃ and pressure of 1 atm. 

For CO2 absorption capacity, a more important factor is the aqueous CO2 to 

HCO3
- ratio. It is important to dissolve more CO2 and maximize absorption capacity, but 

what must not be ignored, is the amount of Na+ ions removed. NaHCO3 precipitation 

depends on the HCO3
- concentration. The higher the concentration of HCO3

- is, the 

higher the amount of Na+ ions removed, according to le Chatelier’s principle (R13). 

Maximum HCO3
- concentration is achieved by maximizing CO2 absorption capacity and 

operating at a certain pH level. Simulations with ionic activity in water show that a pH 

level around 7.3 is the best pH level to maximize NaHCO3 precipitation, as seen in 

Figure 27. Carbonic speciation as a function of pH depends on the amount of CO2 

dissolved. HCO3 maximum relative concentration is around pH level of 8 in low 

amounts of CO2 dissolved (CO2,tot = 1 mmol) [199], and the maximum relative 

concentration lowers pH level to around 7.5 at high concentration (CO2,tot = 1 molal) 

[200]. 

𝑁𝑎𝐻𝐶𝑂3(𝑠)    ↔    𝑁𝑎+  +  𝐻𝐶𝑂3
−    (𝑅13) 
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Figure 27: 5 molal of dissolved CO2 and its speciation in water as a function of pH level, 

at a temperature of 25℃ and pressure of 1 atm. 

4.2.1.4 Salt Precipitation 

CO2 bubbling in hydroxide-based brine solutions can coprecipitate undesired 

salts, while CO2 bubbling in ammonia will produce undesired species, carbamate ions. In 

NaOH brine solutions, CO2 bubbling will precipitate NaHCO3 and coprecipitate CaCO3. 

In Ca(OH)2 brine solutions, CO2 bubbling will precipitate CaCO3 along with 

CaSO4:2H2O. This can be seen in Figure 28a and has been reported in the literature 

[201], [202]. Fractional crystallization will be an important factor to determine the best 

absorbent for a sustainable ZLD process. The working principle behind fractional 

crystallization is exploiting a difference in solubility to precipitate the least soluble salt 

first. In the case of NaOH, the solubility product of NaHCO3 (Ksp= 0.4) is orders of 

magnitude higher than that of CaCO3 (Ksp= 3.3e-9), at 25℃. This makes the 

crystallization process feasible to accomplish. For the case of Ca(OH)2, the solubilities of 

the co-precipitated salts (CaCO3 and CaSO4:2H2O) are within the same order of 

magnitude (Ksp= 3.3e-9 and 2.5e-5, respectively), making it infeasible to separate the 
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salts [203]. Figure 28 highlights the different salts that can precipitate from using 

hydroxides. 

 

Figure 28: Salt precipitation in hydroxides, at a temperature of 25℃ and pressure of 1 

atm, in a) 2.5M of Ca(OH)2 and b) 5M of NaOH. 
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4.2.2 Operating Condition Effects 

This section summarizes the results drawn from the previous section, as it 

provides context into the appropriate operating conditions. Simulation results were 

studied to understand the underlying operating conditions for maximum Na+ removal 

and CO2 capture, the first two objectives of this study. 

4.2.2.1 Temperature 

The operating temperature of the Bubble Column Reactor can and will affect CO2 

absorption, aqueous chemical reactions, and salt precipitation reactions. Figure 29 shows 

key factors and the effect of temperature on them. The plots show that lower 

temperatures are important for sodium removal and CO2 absorption capacity (CO2 

solubility), while higher temperatures are better for the absorption rate (CO2 mass 

transfer coefficient). In Figure 30, the CO2 absorption rate is initially higher at lower 

temperature (T=15℃), but takes longer to reach full capacity, at zero. Higher 

temperature (T=40℃) has a smaller initial value, yet a steeper curve that reaches zero 

faster. So, temperature (15 – 40℃) does not play an important role in maximizing CO2 

absorption [84]. 

 
Figure 29: Key factors and their effects on temperature. 
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Figure 30: CO2 absorption rate in 5M NaOH at 1 bar and different temperatures. 

4.2.2.2 Pressure 

The operating pressure mainly affects the CO2 absorption rate and CO2 absorption 

capacity. High pressures will increase the absorption rate rapidly [195], going from three 

hours (1 bar) down to around 1 minute (70 bar). In addition, CO2 absorption capacity 

increases with pressure, but starts to have diminishing returns, in the range of 30 bar to 

70 bar. Figure 24b highlights the effect of high pressure on CO2 solubility. 

4.2.2.3 pH Level 

The pH level was found to be important for the HCO3
- to CO2 (aq.) ratio, and when 

using ammonia as a base. In Figure 27, HCO3
- relative concentration is maximum around 

a pH level of 7.3 for 5 M aqueous CO2 dissolved at a temperature of 25℃ and a pressure 

of 1 bar. Also, the pH level is important when using NH3 as an absorbent. At high pH 

levels, NH3 reacts with CO2 through the first reaction pathway to produce NH2COO- as a 

by-product. At lower pH levels, NH3 dissolves to produce OH-, which then reacts with 

CO2 to produce HCO3
-, reaction pathway 2. Simulation results obtained by Caplow [97] 

showed the optimum pH level to operate is at the dissociation constant of NH3 (pKb = 

4.76), below the pH level of 9.25 
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4.2.2.4 Strength of Base 

There are two parts to consider when choosing the right absorbent: the type of 

base, and the concentration of the base used. NaOH could be a better absorbent than 

Ca(OH)2 based on the types of solids it can precipitate. NaOH precipitates NaHCO3 and 

CaCO3, while CaCO3 precipitates CaCO3 and CaSO4.2H2O. This will be an important 

factor, if fractional crystallization costs were to be considered. Also, NaOH could be a 

better absorbent than NH3 based on CO2 absorption capacity, as highlighted in Figure 26. 

Finally, the concentration of the base will be an important factor, as higher 

concentrations are needed to absorb huge amounts of CO2 [84], [195], [196]. Figure 31 

shows the effect of concentration on the absorbent (NaOH) at a temperature of 25℃ and 

a pressure of 1 atm. A similar trend can be observed in the other bases (Ca(OH)2 and 

NH3).  

 
Figure 31: CO2 absorption capacity with NaOH concentration as a parameter, operating 

at a temperature of 25℃ and pressure of 1 atm. 

4.3 Optimization of Solid Precipitation 

 CO2 absorption in Bubble Column Reactor was modeled and optimized using 

non-linear programming, while the CO2-hydrate formation was modeled and optimized 
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using Machine Learning. The CO2 bubbling process is optimized first, followed by the 

CO2-hydrate process optimization. A final simulation of CO2 bubbling at the optimum 

conditions is presented. 

4.3.1 Base Comparison 

There are three criteria chosen to compare the absorbents considered: percentage 

of Na+ removal, the amount of CO2 absorbed, and the ability to separate by-products. 

The optimization work includes all the mathematical equations used in building the 

simulations. These equations include CO2 absorption using mass transfer coefficient, 

CO2 reaction with the absorbent used, aqueous thermodynamic reactions, and solid 

precipitation reactions. In addition, both phases, gaseous and aqueous, account for non-

ideality using fugacity coefficients. The results from the optimization study reveal that 

only NH3 was able to reduce the sodium content (72.5%). Also, it was found that 

ammonia precipitates NaHCO3 in slightly acidic media (pH = 6.25), when operating at a 

high pressure of 70 bar. On the other hand, NaOH was able to precipitate Na+ ions, but 

the base leaves more Na+ content than what was originally present in brine solutions. 

The results showed 1.545 moles left vs 1.009 moles initially present (-53.1%), when 

operating at 15℃ and 70 bar. Within the optimization boundaries, Ca(OH)2 was not able 

to precipitate any Na+ ions because of replacement by chemical affinity [201], [204]. The 

initial concentrations of all the ions used in the optimization work are listed in Table 14. 

The main observations found are highlighted in Table 15. 

Table 14: Initial concentration of the ions considered in the CO2 bubbling process. 

Ion Na+ K+ Mg2+ Ca2+ Cl- SO4
2- 

Initial conc. (ppm) 23200 808 2610 890 44000 6090 

 

Table 15: Conclusions made from the optimization work. 

NaOH Ca(OH)2 NH3 (aq.) 

• NaHCO3 ppt. (-53.1%) 

• Defeats the purpose 

• No ppt of NaHCO3 

• Only CaCO3 

• NaHCO3 ppt. (72.5%) 

• ppt in slightly acidic media 
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4.3.2 Simulation of Optimum Conditions 

The results from the optimization work were used to simulate the best absorbent 

with the optimum conditions. CO2 bubbling using ammonia dissolves a total of 8.702 

moles of CO2 in which 1.15 moles of NH3 dissolved were used per mole of CO2 

absorbed. The process was able to precipitate 0.732 moles of Na+ ions (72.5%), 

operating at 22.2℃ and 68.7 bars. In addition, the amount of ammonia used was 

dissolved over 10 seconds to ensure the pH level does not increase rapidly. The plot of 

the final simulation with the optimum conditions is shown in Figure 32. 

 

Figure 32: Simulation of salt precipitation in bubble column reactor, operating at 22.2℃ 

and 68.7 bars. 

4.3.3 CO2-Hydrate Optimization 

The PCA + decision tree model was applied to predict Cl- removal for the CO2-

hydrate formation process. The CO2-hydrate formation depends on CO2 bubbling, and 

the bubbling will precipitate the dissolved Na+ ions. A hypothetical situation to consider 

is the CO2-hydrate formation before the Na+ ions precipitation. If the results from the 

hypothetical situation were drastically better, then the operating conditions would have 

to be optimized for that hypothetical situation. So, there are two situations considered, 



 83 

before NaHCO3 precipitation and after the precipitation in ammonia solution. Using the 

initial conditions in Table 14, chloride removal amounted to 25083 ppm. Using the final 

conditions of 72.5% Na+ removal, chloride removal was equal to 23828 ppm. Since the 

results show little to no difference, the optimum process sequence would be the CO2 

bubbling process followed by the CO2-hydrate formation process. The overall process 

removes 72.5% of Na+ ions, and 54.2% of Cl- ions dissolved. 
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Chapter 5: Conclusion 

Water Scarcity will become a bigger concern, as nations develop, urbanize, and 

the population grows. Desalination is our only hope for surviving and prospering as 

nations. Desalination is very costly, and as capacities grow exponentially, revitalizing 

the brine waste produced will be essential. Zero-Liquid Discharge (ZLD) technology 

will mitigate environmental problems while driving the cost of desalination down. While 

many research institutions and governments have been focusing on improving membrane 

efficiency, desalination costs can go down by revitalizing the waste produced. The 

current treatment of reject brine utilizes evaporators and crystallizers to achieve Zero 

Liquid discharge. This research provides a path to minimize desalination costs by 

chemical precipitation and hydrate formation, since the dissolved-salt concentrations are 

high enough. 

The literature surveyed common brine treatment solutions, along with 

conventional CO2 absorption techniques. For brine treatment solutions, emerging 

technologies are the only pathway toward ZLD. The best emerging technologies are 

Forward Osmosis and Membrane Distillation. FO relies on the draw solution and the 

type of membrane used, and MD combines a thermal-based method with a membrane-

based technology. There has been some commercial success, yet nothing can replace the 

conventional method for ZLD. For carbon capture techniques, three absorbents were 

considered (NH3, NaOH, and Ca(OH)2). Hydroxide absorbents have low absorption 

costs, while amines have lower regeneration costs. The dual-alkali process could be 

cheaper than the thermal regeneration of the absorbent. In addition, absorption columns 

should be operated at high pressures and low temperatures, but temperatures should be 

higher than and pressures should be lower than the condensation point. 

The theoretical framework introduced the essential equations for modeling 

multiphase phenomena in a Bubble Column Reactor. Absorption was modeled using a 

mass transfer coefficient, it was combined with the kinetic reactions. The reaction 

system combined the kinetic and thermodynamic reactions into a system of Differential 

Algebraic Equations. These equations were simulated and optimized using non-linear 

programming. Hydrate formation for chloride removal was modeled using Machine 
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Learning. Experimental data was collected from CO2-based hydrate systems that 

reported the initial concentration, final concentration, and operating condition. Eight 

algorithms were considered: two weighting systems (linear regression and Multi-Layer 

Perceptron), three regression trees (decision tree, Random Forest, and XGBoost), and 

three grouping methods (Principal Component Analysis, Support Vector Machine, and 

k-Nearest Neighbors). 

The simulation and optimization results provided the best operating conditions for 

the Bubble Column Reactor. The dynamic simulations showed the effect of pH level on 

bicarbonate production. Also, the simulations showed that high pressures were essential, 

while the temperature did not have a significant effect (15 – 50℃). The machine learning 

optimization showed that the PCA preprocessing step was essential, and the decision tree 

was the best regression model. The optimization results indicated that ammonia was the 

best absorbent, being able to remove 72.5% of Na+ ions. The process will absorb 0.87 

mol of CO2 per mole of NH3 dissolved with a total of 8.702 mol of CO2 absorbed. This 

will allow the hydrate formation process to remove 54.2% of Cl- ions. 

This body of research provided a pathway for using chemical precipitation to 

remove Na+ and Cl- ions in reject-brine solutions. One future research direction can 

focus on ammonia escape in Bubble Column Reactor. Research shows that CO2 bubbling 

can act as a driving force, diffusing NH3 into the bubbles and out of the solution [205]. 

In addition, another important research direction is to study CO2 interaction with 

ammonia in the hydrate formation process. Ammonia can penetrate CO2-water clathrate 

formed, affecting ionic interactions and water recovery [206]. Finally, there can be some 

focus on optimizing/maximizing the salt recovery process for the partial crystallization 

process. The intensification of the system will allow for better salt recovery and a more 

sustainable solution [207]. 
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Appendix 

A.1 Pitzer Interactions 

This section includes a list of all the interactions used in the Pitzer Model. The 

data is separated into two tables: Table A1.1 has two-ion interactions, while Table A1.2 

involves three-ion interactions. Below is a list of equations that were used by each 

reference to calculate an interaction (𝑃𝑖𝑜𝑛) at some temperature (𝑇) and pressure (𝑃). 

Each equation will require some parameters (𝑎1, 𝑎2, … 𝑎11) which could be found the 

tables below. 

𝑃𝑖𝑜𝑛 =  𝑎1 (1) 

𝑃𝑖𝑜𝑛 =  𝑎1  +  𝑎2 ∗ (𝑇 − 298.15)  +  𝑎3 ∗ (𝑃 −  1) (2) 

𝑃𝑖𝑜𝑛 =  𝑎1  +  𝑎2 ∗ 𝑇 +  𝑎3 ∗ 𝑇2  +
𝑎4

𝑇
 +  𝑎5 ∗ 𝑙𝑛(𝑇) (3) 

𝑃𝑖𝑜𝑛 =  𝑎1  +  𝑎2 ∗ 𝑇 +  𝑎3 ∗ 𝑇2  +  𝑎4 ∗ 𝑇3  +
𝑎5

𝑇
 (4) 

𝑃𝑖𝑜𝑛 =
𝑎1

𝑇
 +  𝑎2  +  𝑎3 ∗ 𝑙𝑛(𝑇) +  𝑎4 ∗ 𝑇 +  𝑎5 ∗ 𝑇2  +

𝑎6

𝑇2
 (5) 

𝑃𝑖𝑜𝑛 = 𝑎1 +
𝑎2

𝑇
 +  𝑎3 ∗ 𝑇 +  𝑎4 ∗ 𝑇2  +  

𝑎5

𝑇2
  +  

𝑎6

𝑇3
 (6) 

𝑃𝑖𝑜𝑛 =  𝑎1  +  𝑎2 ∗ 𝑇 +  𝑎3 ∗ 𝑇2  +
𝑎4

𝑇
  +  𝑎5 ∗ 𝑙𝑛(𝑇)  +  𝑎6 ∗ (𝑃 − 1) (7) 

𝑃𝑖𝑜𝑛 =  𝑎1  +  𝑎2 ∗ 𝑇 +  𝑎3 ∗ 𝑇2  +  𝑎4 ∗ 𝑇3  +
𝑎5

𝑇
 +  𝑎6 ∗ 𝑙𝑛(𝑇) +

𝑎7

𝑇 −  263.
 

+
𝑎8

680. − 𝑇
 +  𝑎9 ∗ (𝑃 − 1) 

(8) 

𝑃𝑖𝑜𝑛 =  𝑎1  +  𝑎2 ∗ 𝑇 +
𝑎3

𝑇
 +  𝑎4 ∗ 𝑙𝑛(𝑇)  +

𝑎5

𝑇 − 263.
 +  𝑎6 ∗ 𝑇2  +

𝑎7

680. − 𝑇
 

+
𝑎8

𝑇 − 227.
 +  𝑎9 ∗ (𝑃 −  1) 

(9) 

𝑃𝑖𝑜𝑛 = 𝑎1 + 𝑎2 (
𝑇

2
+

2982

2 𝑇
− 298)  + 𝑎3 (

𝑇2

6
 +

2983

3 𝑇
 −

2982

2
)

+  𝑎4 (
𝑇3

12
 +

2984

4 𝑇
 −

2983

3
)  + 𝑎5 (298 −

2982

𝑇
)  + (𝑃 − 1)

∗ [
𝑎6

𝑇
+ 𝑎7 + 𝑎8 ∗ 𝑇 + 𝑎9 ∗ 𝑇2] 

(10) 
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𝑃𝑖𝑜𝑛 = 𝑎1 + 𝑎2 ∗ 𝑙𝑛(𝑇) + 𝑎3 ∗ 𝑇 + 𝑎4 ∗ 𝑇2  +
𝑎5

𝑇 − 227
 +

𝑎6

648 − 𝑇
+ (𝑃 − 70)

∗ [𝑎7 + 𝑎8 ∗ 𝑙𝑛(𝑇) + 𝑎9 ∗ 𝑇 + 𝑎10 ∗ 𝑇2 +
𝑎11

648 − 𝑇
] 

(11) 



 

 

1
0
8

 A.1.1 Two-Ion Interaction 

Table 16: List of two-ion interactions used in the Pitzer Model 

Ion 
1 

Ion 2 𝑷𝒊𝒐𝒏 a1 a2 a3 a4 a5 a6 a7 a8 a9 T P 
Eqn. Ref. 

H Cl B0 0.052098 0.000627 -2.18E-06 0 0 0 0.100115 48.79791 5.50E-07 0.0 - 
250.0 

1 - 
500 

(8) [208], 
[209] 

H Cl B1 2.195496 -0.00778 1.85E-05 0 0 0 -0.4065 -461.358 -7.40E-06 0.0 - 
250.0 

1 - 
500 

(8) [208], 
[209] 

H SO4 B0 -1.48304 0.017793 -6.30E-05 7.04E-08 0 0 0 0 0 0.0 - 
225.0 

1 (8) 
[208] 

H SO4 C0 -2.5412 0.021434 -5.70E-05 4.81E-08 0 0 0 0 0 0.0 - 
225.0 

1 (8) 
[208] 

H Na θ -4.05426 0.048136 0 0 0 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

H K θ -55.8754 0.202784 0 0 0 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

H Mg θ 0 0.516539 0 -0.00313 5.83E-06 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

H Ca θ 0 0.096862 0 0 0 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

H NH4 θ -0.019 0 0 0 0 0 0 0 0 25.00 1 (1) [210] 

Na Cl B0 14.37832 0.005608 -422.185 -2.51227 0 -2.62E-06 4.438545 -1.70502 1.23E-05 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[211] 

Na Cl B1 -0.48306 0.001407 119.312 0 0 0 0 -4.23433 4.35E-06 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[211] 

Na Cl C0 -0.10059 -1.81E-05 8.611855 0.012488 0 3.41E-08 0.068304 0.293923 -6.58E-07 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[211] 

Na OH B0 0.748451 -0.00105 0 0 -98.8884 0 0 0 0 0.0 - 
250.0 

1 (4) 
[208] 

Na OH B1 1.20223 -0.0013 0 0 -206.112 0 0 0 0 0.0 - 
250.0 

1 (4) 
[208] 

Na OH C0 -0.09113 0.000118 0 0 17.30006 0 0 0 0 0.0 - 
250.0 

1 (4) 
[208] 



 

1
0
9

 

Na HCO3 B0 -37.2624 -0.01446 0 682.886 6.899586 -1.16E-05 0 0 0 0.0 - 
90.0 

1 - 
500 

(7) [209], 
[212] 

Na HCO3 B1 -61.4635 -0.02447 0 1129.389 11.41086 0.000178 0 0 0 0.0 - 
90.0 

1 - 
500 

(7) [209], 
[212] 

Na CO3 B0 -60.5388 -0.0233 0 1108.376 11.19856 5.98E-05 0 0 0 0.0 - 
90.0 

1 - 
500 

(7) [209], 
[212] 

Na CO3 B1 -237.516 -0.09989 0 4412.512 44.58207 8.16E-05 0 0 0 0.0 - 
90.0 

1 - 
500 

(7) [209], 
[212] 

Na CO3 C0 0.0052 0 0 0 0 -3.25E-06 0 0 0 0.0 - 
90.0 

1 - 
500 

(7) [209], 
[212] 

Na SO4 B0 81.692 0.03011 -2321.94 -14.378 -0.6665 -1.04E-05 0 0 5.33E-05 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[212] 

Na SO4 B1 1004.63 0.577454 -21843.4 -189.111 -0.20355 -0.00032 1467.722 0 0.000129 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[212] 

Na SO4 C0 -80.7817 -0.03545 2024.388 14.61977 -0.0917 1.44E-05 -2.42272 0 -2.91E-06 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[212] 

Na K θ -0.05023 0 14.02131 0 0 0 0 0 0 0.0 - 
250.0 

1 (9) 
[212] 

Na Mg θ 0 -0.06334 0 0.000447 0 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

Na Ca θ 0.05 0 0 0 0 0 0 0 0 0.0 - 
250.0 

1 (1) 
[212] 

Na NH4 θ 0.0044 0 0 0 0 0 0 0 0 25 1 (1) [210] 

K Cl B0 26.73756 0.010072 -758.485 -4.70624 0 -3.76E-06 0 0 1.28E-05 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[212] 

K Cl B1 -7.4156 0 322.893 1.164386 0 0 0 -5.94578 8.95E-06 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[212] 

K Cl C0 -3.30531 -0.0013 91.27121 0.58645 0 4.96E-07 0 0 -7.13E-07 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[212] 

K OH B0 -0.59064 0.000788 0 0 147.0094 0 0 0 0 0.0 - 
170.0 

1 (4) 
[208] 

K OH B1 12.65747 -0.01713 0 0 -2151.13 0 0 0 0 0.0 - 
170.0 

1 (4) 
[208] 

K OH C0 0.136927 -0.0002 0 0 -22.316 0 0 0 0 0.0 - 
170.0 

1 (4) 
[208] 



 

 

1
1
0

 K HCO3 B0 -0.30882 0.001 0 0.000699 -4.70E-06 -2.71E-06 0 0 0 0.0 - 
90.0 

1 - 
500 

(7) [209], 
[212] 

K HCO3 B1 -0.2802 0.0011 0 0.000937 6.16E-06 0.00017 0 0 0 0.0 - 
90.0 

1 - 
500 

(7) [209], 
[212] 

K CO3 B0 -0.19916 0.0011 0 1.81E-05 0 3.50E-05 0 0 0 0.0 - 
90.0 

1 - 
500 

(7) [209], 
[212] 

K CO3 B1 0.133058 0.00436 0 0.00119 0 0.000165 0 0 0 0.0 - 
90.0 

1 - 
500 

(7) [209], 
[212] 

K CO3 C0 0.0005 0 0 0 0 -8.48E-07 0 0 0 0.0 - 
90.0 

1 - 
500 

(7) [209], 
[212] 

K SO4 B0 40.79088 0.008269 -1418.43 -6.74729 0 0 0 0 -2.32E-05 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[212] 

K SO4 B1 -13.167 0.023579 2067.126 0 0 0 0 0 0.000364 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[212] 

K SO4 C0 -0.0188 0 0 0 0 0 0 0 2.91E-05 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[212] 

K Mg θ -1048.6 5.878668 0 -0.00792 0 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

K Ca θ 0.1156 0 0 0 0 0 0 0 0 0.0 - 
250.0 

1 (1) 
[211] 

Mg Cl B0 0.35093 0.031018 -0.00023 3.84E-07 -9.88E-05 6.31185 -0.05596 0.000164 -1.58E-07 0.0 - 
200.0 

1 - 
175 

(10) 
[213] 

Mg Cl B1 1.6508 0.031018 -0.00023 3.84E-07 0.002666 6.31185 -0.05596 0.000164 -1.58E-07 0.0 - 
200.0 

1 - 
175 

(10) 
[213] 

Mg Cl C0 0.002301 0.031018 -0.00023 3.84E-07 -7.62E-05 6.31185 -0.05596 0.000164 -1.58E-07 0.0 - 
200.0 

1 - 
175 

(10) 
[213] 

Mg HCO3 B0 13697.1 8.25084 -0.00434 -273406 -2607.12 0 0 0 0 0.0 - 
90.0 

1 (3) 
[212] 

Mg HCO3 B1 -157840 -92.7779 0.047764 3203210 29927.15 0 0 0 0 0.0 - 
90.0 

1 (3) 
[212] 

Mg SO4 B0 165424 -3907.31 658.4623 -1.15985 0.000383 -7748191 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

Mg SO4 B1 55777.55 -1872.46 340.9427 -0.92295 0.00047 -1819568 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

Mg SO4 B2 0 13318.13 -3193.09 21.9253 -0.01912 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 



 

1
1
1

 

Mg SO4 C0 2488.001 -73.3291 12.70537 -0.02426 6.94E-06 -67851.9 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

Mg Ca θ -4785.63 225.3627 -42.2631 0.123292 -5.95E-05 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

Mg NH4 θ 0.0124 0 0 0 0 0 0 0 0 25.00 1 (1) [210] 

Ca Cl B0 -94.1896 -0.04048 2345.504 17.09123 -0.92289 1.51E-05 -1.39082 0 1.31E-05 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[211] 

Ca Cl B1 3.4787 -0.01542 0 0 0 3.18E-05 0 0 -2.46E-05 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[211] 

Ca Cl C0 19.3056 0.009771 -428.384 -3.57996 0.088207 -4.62E-06 9.911135 0 -1.27E-07 0.0 - 
250.0 

1 - 
500 

(9) [209], 
[211] 

Ca OH B0 415.173 -1.58106 0 0.000264 0 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

Ca OH B1 0 -0.2303 0 0 0 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

Ca OH B2 0 -5.72 0 0 0 0 0 0 0 0.0 - 
120.0 

1 (5) 
[15] 

Ca HCO3 B0 29576.53 18.44731 -0.00999 -576521 -5661.12 0 0 0 0 0.0 - 
90.0 

1 (3) 
[212] 

Ca HCO3 B1 -1028.85 -0.37259 8.97E-05 26492.24 183.1316 0 0 0 0 0.0 - 
90.0 

1 (3) 
[212] 

Ca SO4 B0 -0.015 0 0 0 0 0 0 0 0 0.0 - 
250.0 

1 - 
1516 

(1) 
[214] 

Ca SO4 B1 3 0 0 0 0 0 0 0 0 0.0 - 
250.0 

1 - 
1516 

(1) 
[214] 

Ca SO4 B2 -129.399 0 0.400431 0 0 0 0 0 0 0.0 - 
250.0 

1 - 
1516 

(6) 
[214] 

NH4 SO4 B0 0.0545 0 3.15E-05 0 0 0 0 0 0 0.0 - 
50.0 

1 - 
500 

(2) [209], 
[215], 
[216] 

NH4 SO4 B1 0.878 0 5.85E-05 0 0 0 0 0 0 0.0 - 
50.0 

1 - 
500 

(2) [209], 
[215], 
[216] 

NH4 SO4 C0 -0.00219 0 -9.92E-07 0 0 0 0 0 0 0.0 - 
50.0 

1 - 
500 

(2) [209], 
[215], 
[216] 
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 Cl OH θ 0.110486 0 0 0 -49.3613 0 0 0 0 0.0 - 
250.0 

1 (8) 
[208] 

Cl HCO3 θ 0.03 0 0 0 0 0 0 0 0 25.00 1 (1) [217] 

Cl CO3 θ -0.02 0 0 0 0 0 0 0 0 25.00 1 (1) [217] 

Cl SO4 θ 0.07 0 0 0 0 0 0 0 0 0.0 - 
250.0 

1 (1) 
[208] 

OH SO4 θ 0.230122 -0.00123 7.78E-07 0 0 0 0 -21.0214 0 0.0 - 
250.0 

1 (8) 
[208] 

HCO3 CO3 θ -0.04 0 0 0 0 0 0 0 0 25.00 1 (1) [217] 
HCO3 SO4 θ 0.01 0 0 0 0 0 0 0 0 25.00 1 (1) [217] 

CO3 OH θ 0.1 0 0 0 0 0 0 0 0 25.00 1 (1) [217] 

CO3 SO4 θ 0.01 0 0 0 0 0 0 0 0 25.00 1 (1) [217] 
NH3 NH3 λ 0.01478 0 0 0 0 0 0 0 0 25.00 1 (1) [210] 
NH3 Na λ 0.14716 0 -0.00054 5.33E-07 0 0 0 0 0 40.0 - 

160.0 

1 (6) 
[218] 

NH3 K λ 0.0454 0 0 0 0 0 0 0 0 25.00 1 (1) [210] 
NH3 Mg λ -0.21 0 0 0 0 0 0 0 0 25.00 1 (1) [210] 
NH3 Ca λ -0.081 0 0 0 0 0 0 0 0 25.00 1 (1) [210] 
NH3 Cl λ -0.12282 -0.17183 0.000541 -5.33E-07 0 0 0 0 0 40.0 - 

120.0 

1 (6) 
[218] 

NH3 OH λ 0.103 0 0 0 0 0 0 0 0 25.00 1 (1) [218] 
NH3 HCO3 λ 0.2857 -99.466 0 0 0 0 0 0 0 37.0 - 

197.0 

1 (6) 
[210] 

NH3 CO3 λ -0.3391 151.28 0 0 0 0 0 0 0 37.0 - 
197.0 

1 (6) 
[218] 

NH3 SO4 λ 0.14 0 0 0 0 0 0 0 0 25.00 1 (1) [210] 
NH3 NH2

COO 

λ -0.03933 25.263 0 0 0 0 0 0 0 37.0 - 
197.0 

1 (6) 
[218] 

CO2 H λ -0.005 0 0 0 0 0 0 0 0 25.00 1 (1) [210] 

CO2 Na λ -5496.38 -3.32657 0.001753 109399.3 1047.022 0 0 0 0 0.0 - 
160.0 

1 (3) [212], 
[218] 

CO2 K λ 2856.528 1.767008 -0.00095 -55954.2 -546.074 0 0 0 0 0.0 - 
90.0 

1 (3) 
[212] 
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CO2 Mg λ -479.363 -0.54184 0.000388 3589.474 104.3453 0 0 0 0 0.0 - 
90.0 

1 (3) 
[212] 

CO2 Ca λ -12774.6 -8.10156 0.004425 245541.5 2452.51 0 0 0 0 0.0 - 
90.0 

1 (3) 
[212] 

CO2 Cl λ 1659.945 0.996433 -0.00052 -33159.6 -315.828 0 0 0 0 0.0 - 
160.0 

1 (3) [212], 
[218] 

CO2 OH λ 0.005 0 0 0 0 0 0 0 0 25.00 1 (1) [210] 

CO2 HCO
3 

λ 0.084301 -16.148 0 0 0 0 0 0 0 37.0 - 
197.0 

1 (6) 
[218] 

CO2 CO3 λ 0.01 0 0 0 0 0 0 0 0 25.00 1 (1) [210] 

CO2 SO4 λ 2274.657 1.827095 -0.00114 -33927.8 -457.016 0 0 0 0 0.0 - 
90.0 

1 (4) 
[212] 

Ion 1 Ion 2 P a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 T P Eqn. Ref. 

NH4 Cl B0 -0.92969 0.220237 -0.00103 5.49E-07 -0.91506 0 0.048877 -0.01096 5.62E-05 -3.63E-08 0.019357 25-
250 

1 - 
350 

(11) [219] 

NH4 Cl B1 0.613399 -0.14256 0.001094 0 0 0 0 0 0 0 0 25-
251 

1 - 
350 

(11) [219] 

NH4 Cl C0 -0.0022 0 -7.41E-06 0 0.212221 0 0 0 0 0 0 25-
252 

1 - 
350 

(11) [219] 
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 A.1.2 Three-Ion Interaction 

Table 17: List of three-ion interactions used in Pitzer Model 

Ion 1 Ion 2 Ion 3 P a1 a2 a3 a4 a5 a6 a7 a8 T P Eqn. Ref. 

H Na Cl ψ 3.593046 -0.01456 0 0 0 0 0 0 0.0 - 

120.0 

1 (5) [15] 

H Na SO4 ψ 2.478988 0.004762 0 0 0 0 0 0 0.0 - 

120.0 

1 (5) [15] 

H K Cl ψ 43.64163 -0.80328 0.111868 2.12E-05 0 0 0 0 0.0 - 

120.0 

1 (5) [15] 

H K SO4 ψ -40.4662 0.129875 0 0 0 0 0 0 0.0 - 

120.0 

1 (5) [15] 

H Mg Cl ψ -1357.29 61.24457 -11.3092 0.029271 -1.12E-05 -33.6837 0 0 0.0 - 

120.0 

1 (5) [15] 

H Ca Cl ψ 19.8165 -0.20841 0.017166 0.000108 0 0 0 0 0.0 - 

120.0 

1 (5) [15] 

H NH4 Cl ψ -0.0091 0 0 0 0 0 0 0 25.00 1 (1) [220] 
H NH4 SO4 ψ -0.02245 0 0 0 0 0 0 0 25.00 1 (1) [210] 
Na Cl OH ψ 12.7602 0.003665 0 0 -355.227 -2.21051 0.003231 -27.1989 0.0 - 

250.0 

1 (8) [208] 

Na Cl HCO3 ψ 0.015 0 0 0 0 0 0 0 25.00 1 (1) [217] 
Na Cl CO3 ψ 0.0085 0 0 0 0 0 0 0 25.00 1 (1) [15] 
Na Cl SO4 ψ -0.009 0 0 0 0 0 0 0 0.0 - 

250.0 

1 (1) [211] 

Na OH CO3 ψ -0.017 0 0 0 0 0 0 0 25.00 1 (1) [217] 
Na OH SO4 ψ 0.101804 -7.30E-05 0 0 -25.3106 0 0 0 0.0 - 

250.0 

1 (8) [208] 

Na HCO3 CO3 ψ 0.002 0 0 0 0 0 0 0 25.00 1 (1) [217] 
Na HCO3 SO4 ψ -0.005 0 0 0 0 0 0 0 25.00 1 (1) [217] 
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Na CO3 SO4 ψ -0.005 0 0 0 0 0 0 0 0.0 - 

120.0 

1 (1) [217] 

Na K Cl ψ 0.013421 0 -5.10213 0 0 0 0 0 0.0 - 

250.0 

1 (9) [211] 

Na K OH ψ -184.025 1.091896 0 -0.0016 0 0 0 0 0.0 - 

120.0 

1 (5) [15] 

Na K HCO3 ψ -0.003 0 0 0 0 0 0 0 25.00 1 (1) [217] 
Na K CO3 ψ 0.003 0 0 0 0 0 0 0 25.00 1 (1) [217] 
Na K SO4 ψ 0.034812 0 -8.21657 0 0 0 0 0 0.0 - 

250.0 

1 (9) [211] 

Na Mg Cl ψ 0 -2.67634 0.618873 -0.00368 2.64E-06 0 0 0 0.0 - 

120.0 

1 (5) [15] 

Na Mg SO4 ψ -73.6843 0.464812 0 -0.00078 0 0 0 0 0.0 - 

120.0 

1 (5) [15] 

Na Ca Cl ψ -0.003 0 0 0 0 0 0 0 0.0 - 

250.0 

1 (1) [211] 

Na Ca OH ψ 0 5086.727 -1196.01 7.53769 -0.00584 0 0 0 0.0 - 

120.0 

1 (5) [15] 

Na Ca SO4 ψ -0.012 0 0 0 0 0 0 0 0.0 - 

250.0 

1 (1) [211] 

Na NH4 Cl ψ -0.0031 0 0 0 0 0 0 0 25.00 1 (1) [210] 
Na NH4 SO4 ψ -0.00326 0 0 0 0 0 0 0 25.00 1 (1) [210] 
K Cl OH ψ -0.00354 2.02E-05 0 0 -1.7041 0 0 0 0.0 - 

180.0 

1 (8) [208] 

K Cl HCO3 ψ -0.0037 0 0 0 0 0 0 0 25.00 1 (1) [217] 
K Cl CO3 ψ 0.004 0 0 0 0 0 0 0 25.00 1 (1) [217] 
K Cl SO4 ψ -0.21248 0.000285 37.56196 0 0 0 0 0 0.0 - 

250.0 

1 (9) [211] 

K OH CO3 ψ -0.01 0 0 0 0 0 0 0 25.00 1 (1) [217] 
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 K OH SO4 ψ -42.0903 0.131441 0 0 0 0 0 0 0.0 - 

120.0 

1 (5) [15] 

K HCO3 CO3 ψ 0.012 0 0 0 0 0 0 0 25.00 1 (1) [217] 
K CO3 SO4 ψ -0.009 0 0 0 0 0 0 0 25.00 1 (1) [217] 
K Mg Cl ψ 332.1117 -2.40744 0 0.005377 -3.73E-06 0 0 0 0.0 - 

120.0 

1 (5) [15] 

K Ca Cl ψ 0.047628 0 -27.0771 0 0 0 0 0 0.0 - 

250.0 

1 (9) [211] 

Mg Cl HCO3 ψ -0.096 0 0 0 0 0 0 0 25.00 1 (1) [217] 
Mg Cl SO4 ψ -669.972 5.835016 0 -0.01647 1.48E-05 0 0 0 0.0 - 

120.0 

1 (5) [15] 

Mg HCO3 SO4 ψ -0.161 0 0 0 0 0 0 0 25.00 1 (1) [217] 
Mg Ca Cl ψ -1.24709 -16.4105 3.898083 -0.02566 2.08E-05 0 0 0 0.0 - 

120.0 

1 (5) [15] 

Mg Ca SO4 ψ -2574.07 54.25584 -8.00941 0 0 0 0 0 0.0 - 

120.0 

1 (5) [15] 

Mg NH4 Cl ψ -0.0249 0 0 0 0 0 0 0 25.00 1 (1) [210] 
Mg NH4 SO4 ψ -0.0439 0 0 0 0 0 0 0 25.00 1 (1) [210] 
Ca Cl OH ψ 98.19793 -0.82029 0 0.00152 0 0 0 0 0.0 - 

120.0 

1 (5) [15] 

Ca Cl SO4 ψ -0.018 0 0 0 0 0 0 0 0.0 - 

250.0 

1 (1) [211] 

NH3 NH3 Na μ 0.000416 -0.18982 0 0 0 0 0 0 40.0 - 

160.0 

1 (6) [218] 

NH3 NH3 K μ -0.00032 0 0 0 0 0 0 0 25.00 1 (1) [210] 
NH3 NH3 NH4 μ -0.00075 0 0 0 0 0 0 0 25.00 1 (1) [210] 
NH3 NH3 Cl μ -0.00073 -0.18982 0 0 0 0 0 0 40.0 - 

160.0 

1 (6) [218] 

NH3 NH3 CO3 μ 0.000625 0 0 0 0 0 0 0 25.00 1 (1) [210] 
NH3 K OH ζ 0.0231 0 0 0 0 0 0 0 25.00 1 (1) [210] 
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NH3 Ca Cl ζ -0.00804 0 0 0 0 0 0 0 25.00 1 (1) [210] 
NH3 NH4 SO4 ζ -0.00919 0 0 0 0 0 0 0 25.00 1 (1) [210] 
CO2 H Cl ζ -804.122 -0.47047 0.000241 16334.39 152.3839 0 0 0 0.0 - 

90.0 

1 (3) [212] 

CO2 Na Cl ζ -379.459 -0.25801 0.000148 6879.031 73.74512 0 0 0 0.0 - 

90.0 

1 (3) [212] 

CO2 Na SO4 ζ 67030.02 37.93052 -0.01895 -

1399082 

-12630.3 0 0 0 0.0 - 

90.0 

1 (3) [212] 

CO2 K Cl ζ -379.686 -0.25789 0.000147 6853.264 73.79977 0 0 0 0.0 - 

90.0 

1 (3) [212] 

CO2 K SO4 ζ -2907.03 -2.86076 0.001951 30756.87 611.3756 0 0 0 0.0 - 

90.0 

1 (3) [212] 

CO2 Mg Cl ζ -1342.6 -0.77229 0.000392 27726.81 253.6232 0 0 0 0.0 - 

90.0 

1 (3) [212] 

CO2 Mg SO4 ζ -7374.24 -4.60833 0.002489 143162.6 1412.303 0 0 0 0.0 - 

90.0 

1 (3) [212] 

CO2 Ca Cl ζ -166.065 -0.018 -2.47E-05 5256.844 27.37745 0 0 0 0.0 - 

90.0 

1 (3) [212] 

CO2 NH4 Cl ζ -0.00175 0 0 0 0 0 0 0 40.0 - 

160.0 

1 (1) [218] 
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 A.2 CO2-Hdydrate Experimental Data 

This section includes the experimental data used in the modeling of chloride removal using CO2-Hydrate. The data collected 

includes initial concentration of cations and anions, as well as the operating conditions of the process. The output responses reported 

are the final concentration of the ions present after solid separation and CO2 degasification. 

 

Table 18: CO2-hydrate data used in the machine learning process. 

Initial Concentration 
Operating 
Conditions 

Final Concentration 

𝑵𝒂+ 𝑲+ 𝑴𝒈𝟐+ 𝑪𝒂𝟐+ 𝑪𝒍− 𝑺𝑶𝟒
𝟐− 𝑻 𝑷 𝑵𝒂+ 𝑲+ 𝑴𝒈𝟐+ 𝑪𝒂𝟐+ 𝑪𝒍− 𝑺𝑶𝟒

𝟐− Ref. 

10247.78 716.32 1199.69 390.89 20934.98 2419.57 280 29 2561.945 121.7744 299.9225 93.8136 5233.745 653.2839 

[221] 10247.78 716.32 1199.69 390.89 20934.98 2419.57 280 80 2254.512 107.448 263.9318 85.9958 4396.346 556.5011 

10247.78 716.32 1199.69 390.89 20934.98 2419.57 280 100 1844.6 42.9792 215.9442 70.3602 3558.947 411.3269 

8689 382.7 981 647 17133 6465 277.15 25 1258 61.5 189 141 7587 2451 [222] 

24609.11 4532.951 1028.05 4874.56 53620.85 1131.56 271.15 31 6644.46 1142.304 259.0686 1277.135 13941.42 294.2056 

[223] 24609.11 4532.951 1028.05 4874.56 53620.85 1131.56 283.15 31 2300.952 362.6361 85.84218 431.3986 4825.877 101.8404 

24609.11 4532.951 1028.05 4874.56 53620.85 1131.56 277.15 31 1439.633 203.9828 49.75762 252.5022 3217.251 67.8936 

1276 56 165 68 2712.894 375.4891 277 29 275.39 13.01 34.29 14.93 593.799 82.18718 

[224] 

2657 125 324 133 5649.027 781.8767 277 29 495.07 23.6 60.11 25.59 1063.51 147.1995 

5231 248 625 268 11121.59 1539.329 277 29 1264.97 65.34 141.58 62.1 2679.007 370.7989 

7808 369 948 399 16600.53 2297.664 277 29 1785.54 78.7 212.59 87.9 3679.141 509.2265 

10849 516 1288 547 23065.97 3192.54 277 29 2652.22 111.84 309.56 131.81 5435.044 752.2595 

9000 600 2000 700 19134.83 2648.434 274 35 2610 78 780 217 5357.752 741.5616 

[225] 

9000 600 0 0 0 0 274 35 2570 82.19 0 0 0 0 

9000 600 0 700 0 0 274 35 2563.3 100 0 223 0 0 

9000 600 2000 700 0 0 274 35 2776.8 108.08 750.21 239.26 0 0 

9000 600 2000 700 19134.83 2648.434 277 35 3381.3 124.2 1048 287.875 7261.428 1005.048 
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11804.96 0 0 0 18195.04 0 279.45 35 9837.468 0 0 0 15162.53 0 

[226] 

11804.96 0 0 0 18195.04 0 278.35 30 11411.46 0 0 0 17588.54 0 

11804.96 0 0 0 18195.04 0 279.15 30 8932.421 0 0 0 13767.58 0 

11804.96 0 0 0 18195.04 0 279.15 35 7830.624 0 0 0 12069.38 0 

11804.96 0 0 0 18195.04 0 281.25 40 9050.47 0 0 0 13949.53 0 

7869.974 0 0 0 12130.03 0 281.65 40 4682.635 0 0 0 7217.365 0 

7869.974 0 0 0 12130.03 0 279.15 30 4210.436 0 0 0 6489.564 0 

7869.974 0 0 0 12130.03 0 278.15 30 3895.637 0 0 0 6004.363 0 

5902.481 0 0 0 9097.519 0 276.15 20 4721.985 0 0 0 7278.015 0 

5902.481 0 0 0 9097.519 0 278.15 30 5508.982 0 0 0 8491.018 0 

5902.481 0 0 0 9097.519 0 280.65 40 4131.737 0 0 0 6368.263 0 

5902.481 0 0 0 9097.519 0 281.15 40 4053.037 0 0 0 6246.963 0 

5902.481 0 0 0 9097.519 0 280.35 40 3856.287 0 0 0 5943.713 0 

3934.987 0 0 0 6065.013 0 279.15 30 2321.642 0 0 0 3578.358 0 

3934.987 0 0 0 6065.013 0 280.25 35 3226.689 0 0 0 4973.311 0 

3934.987 0 0 0 6065.013 0 280.45 35 2872.541 0 0 0 4427.459 0 

1967.494 0 0 0 3032.506 0 279.15 30 1298.546 0 0 0 2001.454 0 

1967.494 0 0 0 3032.506 0 279.65 30 944.3969 0 0 0 1455.603 0 

1967.494 0 0 0 3032.506 0 280.35 37 1573.995 0 0 0 2426.005 0 

8819 555 1340 678 21100 2295 276.15 30 3783.351 238.095 574.86 290.862 9051.9 984.555 

11804.96 0 0 0 18195.04 0 274.2 26 1404.79 0 0 0 3038.571 0 

[227] 

11804.96 0 0 0 18195.04 0 274.2 26 1570.06 0 0 0 3256.912 0 

11804.96 0 0 0 18195.04 0 274.2 26 1593.67 0 0 0 2674.671 0 

11804.96 0 0 0 18195.04 0 274.2 26 1605.475 0 0 0 2656.476 0 

11804.96 0 0 0 18195.04 0 274.2 26 1629.085 0 0 0 2929.401 0 

11804.96 0 0 0 18195.04 0 274.2 26 1322.156 0 0 0 2838.426 0 

11804.96 0 0 0 18195.04 0 274.2 24.7 2915.825 0 0 0 5003.636 0 

11804.96 0 0 0 18195.04 0 274.2 24.7 2266.553 0 0 0 3966.518 0 

15200 985 1512 11720 120500 694 274.2 35 15200 985 1512 11720 120500 694 [194] 
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 12160 788 1209.6 9376 96400 555.2 274.2 35 12160 788 1209.6 9376 96400 555.2 

10640 689.5 1058.4 8204 84350 485.8 274.2 35 4309.2 279.2475 428.652 3322.62 34161.75 196.749 

9120 591 907.2 7032 72300 416.4 274.2 35 4441.44 287.817 441.8064 3424.584 35210.1 202.7868 

7600 492.5 756 5860 60250 347 274.2 35 3974.8 257.5775 395.388 3064.78 31510.75 181.481 

27500 490 607 3900 48744 291 274.2 35 15100.88 269.0702 333.3175 2141.579 26766.44 159.7947 

24609 6114 1028 4875 53621 1132 274.2 35 15678.32 3895.21 654.9355 3105.847 34161.77 721.1936 

27500 490 607 3900 48744 291 274.2 35 14384.61 256.3077 317.5077 2040 25496.86 152.2154 

7600 492.5 756 5860 60250 347 274.2 35 3972.727 257.4432 395.1818 3063.182 31494.32 181.3864 

9120 591 907.2 7032 72300 416.4 274.2 35 4439.206 287.6722 441.5841 3422.861 35192.39 202.6848 

10640 689.5 1058.4 8204 84350 485.8 274.2 35 4305.203 278.9885 428.2544 3319.538 34130.06 196.5665 

13594.16 246.6934 307.4243 1987.766 24681.39 147.1882 274.2 9.8 7219.547 131.0132 163.266 1055.657 13107.71 78.16823 

[228] 

8665.389 255.8139 358.333 2587.066 28644.86 167.4047 274.2 9.8 5825.808 171.9857 240.91 1739.304 19258.16 112.5475 

12268.24 248.2496 319.6412 2136.969 25630.06 151.9568 274.2 9.8 7047.632 142.6099 183.6216 1227.607 14723.49 87.29333 

9660.286 272.9811 379.3704 2720.659 30334.95 177.5144 274.2 9.8 5116.152 144.5726 200.9171 1440.879 16065.59 94.0128 

16990.33 388.4539 516.2311 3557.495 41344.75 243.7804 274.2 9.8 6949.785 158.8945 211.1609 1455.17 16911.8 99.71677 

13349.82 237.8731 294.6729 1893.296 23663.15 141.2681 274.2 9.8 7926.9 141.2451 174.9719 1124.208 14050.79 83.88265 

11665.37 297.7425 405.5637 2858.161 32452.45 190.5455 274.2 9.8 5814.554 148.4085 202.1515 1424.638 16175.79 94.9766 

16725.66 306.5789 383.2792 2486.615 30767.52 183.3769 274.2 9.8 7834.259 143.6008 179.5271 1164.725 14411.43 85.8933 

11199.7 246.4263 324.417 2215.996 25991.43 153.5023 274.2 9.8 7032.43 154.7341 203.7054 1391.451 16320.34 96.38597 

18094.17 364.9435 469.4642 3135.772 37644.75 223.2261 274.2 9.8 7609.384 153.4746 197.43 1318.728 15831.25 93.87623 

9509.741 270.8903 377.0221 2707.232 30145.61 176.363 274.2 9.8 5212.811 148.4898 206.6665 1483.983 16524.46 96.67424 

13385.67 245.0457 306.2278 1985.883 24582.64 146.5252 274.2 9.8 7352.319 134.5957 168.2011 1090.781 13502.45 80.48157 

9384.237 252.27 347.2613 2470.013 27776.79 162.8035 274.2 9.8 6240.598 167.7617 230.9317 1642.579 18471.8 108.2657 

11940.9 288.0784 387.6374 2702.063 31031.65 182.5813 274.2 9.8 6018.334 145.1945 195.3732 1361.867 15640.27 92.02285 

10601.77 245.0742 326.5429 2255.774 26150.19 154.1195 274.2 9.8 6995.208 161.7037 215.4579 1488.394 17254.29 101.6904 

15646.75 318.4254 410.6499 2749.718 32925.51 195.1558 274.2 9.8 7276.663 148.0866 190.9764 1278.781 15312.31 90.75896 

15163.41 358.7349 480.5736 3336.351 38477.7 226.5635 274.2 9.8 6652.498 157.3844 210.8375 1463.726 16880.96 99.39806 

9676.019 270.8392 375.7274 2690.451 30045.51 175.8725 274.2 9.8 5242.937 146.7538 203.5873 1457.817 16280.12 95.29628 

9433.814 262.748 364.1614 2605.538 29121.59 170.4909 274.2 9.8 5661.136 157.6724 218.5296 1563.557 17475.57 102.3099 



 

1
2
1

 

13122.65 377.9944 527.1589 3791.848 42147.12 246.4931 274.2 9.8 5703.627 164.2915 229.1243 1648.088 18318.82 107.1357 

18427.92 342.3499 429.8142 2800.879 34497.43 205.451 274.2 9.8 8016.347 148.926 186.9739 1218.413 15006.76 89.37342 

12364.84 303.0427 409.2026 2861.428 32753.88 192.5996 274.2 9.8 6076.049 148.9144 201.0811 1406.098 16095.17 94.64294 

10237.03 256.9983 348.8419 2450.778 27917.18 164.0136 274.2 9.8 6169.718 154.8895 210.2423 1477.051 16825.31 98.8488 

14047.92 276.2203 352.7625 2339.273 28294.62 167.997 274.2 9.8 7059.448 138.808 177.2725 1175.547 14218.79 84.42291 

14903.25 343.209 456.8907 3153.608 36589.89 215.6804 274.2 9.8 6720.805 154.7743 206.0405 1422.158 16500.67 97.26375 

8626.552 256.9773 360.5322 2606.405 28819.07 168.3788 274.2 9.8 5752.731 171.3687 240.4257 1738.116 19218.38 112.2857 

14770.65 289.2064 368.8937 2443.221 29589.86 175.7257 274.2 9.8 7236.343 141.6862 180.726 1196.967 14496.47 86.09041 

17535.51 352.4392 452.9322 3022.393 36320.45 215.4107 274.2 9.8 7576.098 152.269 195.6863 1305.805 15692.01 93.06673 

18892.21 365.9325 465.2832 3071.758 37326.01 221.7934 274.2 9.8 7860.892 152.2615 193.6005 1278.133 15531.05 92.28642 

11396 269.2109 360.5226 2502.132 28866.02 169.9781 274.2 9.8 5925.486 139.9793 187.4579 1301.013 15009.22 88.38208 

15819.87 282.2605 349.8123 2248.623 28090.53 167.686 274.2 9.8 7750.368 138.2832 171.3778 1101.631 13761.93 82.15167 

11388.15 260.6779 346.5227 2388.615 27752.58 163.6291 274.2 9.8 6090.385 139.4106 185.3204 1277.432 14842.09 87.5089 

11546.48 241.7841 314.245 2120.255 25188.5 149.0934 274.2 9.8 7412.939 155.2275 201.748 1361.222 16171.24 95.71928 

11013.39 249.8209 331.3657 2279.495 26540.8 156.5434 274.2 9.8 6772.446 153.622 203.7662 1401.726 16320.7 96.26299 

13781.63 361.0877 494.5097 3501.632 39562.12 232.0789 274.2 9.8 6112.745 160.158 219.3363 1553.124 17547.51 102.937 

8139.656 260.8181 370.4043 2704.98 29595.74 172.5707 274.2 9.8 5397.843 172.9625 245.635 1793.817 19626.53 114.4409 

10352.95 253.3904 342.0544 2391.237 27379.41 161.0048 274.2 9.8 6416.249 157.039 211.9885 1481.971 16968.42 99.78287 

8860.284 257.4677 359.6384 2590.345 28752.02 168.1091 274.2 9.8 5800.133 168.5439 235.427 1695.696 18821.69 110.0478 

12874.48 294.442 391.3237 2696.906 31340.88 184.7924 274.2 9.8 6374.247 145.7803 193.7471 1335.257 15517.09 91.49204 

16277.72 326.2697 418.9786 2793.688 33598.71 199.2955 274.2 9.8 7431.216 148.9509 191.275 1275.393 15338.71 90.98375 

11414.31 260.0724 345.3349 2377.974 27658.57 163.106 274.2 9.8 6134.016 139.7621 185.5819 1277.916 14863.63 87.65267 

8433.742 273.2588 388.7578 2843.12 31060.32 181.0583 274.2 9.8 4863.901 157.5936 224.204 1639.682 17913.08 104.4198 

12753.99 286.3543 378.8774 2600.257 30349.05 179.0823 274.2 9.8 6395.022 143.5819 189.9743 1303.804 15217.42 89.7943 

14483.61 309.4002 404.2501 2741.452 32396.55 191.5821 274.2 9.8 6907.666 147.5622 192.799 1307.48 15450.88 91.37122 

14343.98 258.0575 320.6861 2067.368 25748.92 153.6322 274.2 9.8 7373.183 132.6483 164.8411 1062.681 13235.62 78.971 

16752.58 394.2092 527.4432 3657.59 42232.27 248.7238 274.2 9.8 6802.817 160.0788 214.1819 1485.258 17149.5 101.0007 

11969.37 248.4322 322.1179 2168.348 25821.86 152.9061 274.2 9.8 7005.089 145.3952 188.5199 1269.028 15112.28 89.48849 

8859.425 256.3001 357.7212 2574.792 28599.55 167.2398 274.2 9.8 5862.015 169.5861 236.6934 1703.662 18923.46 110.6575 
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 9395.775 292.9061 414.1201 3013.11 33093.78 193.1089 274.2 9.8 4815.733 150.1268 212.2541 1544.347 16961.96 98.97648 

16106.04 299.7048 376.4661 2454.54 30215.05 179.9306 274.2 9.8 7669.501 142.7158 179.2686 1168.822 14388.04 85.68076 

8933.009 273.2263 385.0693 2794.351 30775.61 179.6758 274.2 9.8 4976.205 152.2029 214.506 1556.616 17143.8 100.0899 

14772.76 278.2164 350.7737 2295.834 28148.95 167.5154 274.2 9.8 7352.459 138.4694 174.5814 1142.645 14009.84 83.37306 

12517.19 268.0605 350.4646 2378.183 28085.51 166.0693 274.2 9.8 6452.739 138.1879 180.6681 1225.977 14478.36 85.6104 

9115.553 274.3026 385.5133 2791.093 30814.06 179.9827 274.2 9.8 4952.775 149.0375 209.4619 1516.491 16742.28 97.79045 

9296.099 273.1691 382.3316 2758.434 30564.15 178.6454 274.2 9.8 5047.423 148.3203 207.5913 1497.723 16595.15 96.99756 

12319.82 317.9755 434.1303 3065.773 34735.42 203.8701 274.2 9.8 5925.96 152.9495 208.8212 1474.669 16708.1 98.06364 

11868.28 255.0293 333.7218 2266.486 26742.9 158.1062 274.2 9.8 6523.268 140.174 183.4265 1245.748 14698.93 86.90127 

12260.68 357.0446 498.9223 3594.727 39886.82 233.1979 274.2 9.8 5560.942 161.9408 226.2908 1630.421 18091.03 105.769 

11128.03 373.9509 535.0196 3930.795 42737.85 248.9004 274.2 9.8 4972.916 167.1119 239.0905 1756.6 19098.77 111.229 

10543.83 275.8978 377.7427 2674.185 30220.73 177.2883 274.2 9.8 5474.563 143.2516 196.1314 1388.49 15691.2 92.05159 

14016.37 349.0803 473.0199 3318.098 37857.25 222.4762 274.2 9.8 6320.854 157.4221 213.3142 1496.337 17072.19 100.3284 

13088.43 246.2108 310.3112 2030.262 24902.24 148.2036 274.2 9.8 7252.171 136.423 171.9404 1124.949 13798.09 82.11816 

9583.626 259.6567 357.9783 2549.635 28632.47 167.7756 274.2 9.8 5871.913 159.0923 219.3342 1562.168 17543.19 102.7966 

9361.679 275.3284 385.4113 2781.004 30810.19 180.0791 274.2 9.8 4937.171 145.203 203.2586 1466.648 16248.71 94.97026 

10184.72 332.1102 472.9599 3461.769 37786.46 220.2303 274.2 9.8 4898.957 159.7485 227.4987 1665.147 18175.68 105.9331 

12892.46 308.4351 414.2447 2882.567 33163.93 195.19 274.2 9.8 6254.016 149.6191 200.9464 1398.307 16087.52 94.68493 

9833.21 272.639 377.548 2699.338 30193 176.7886 274.2 9.8 5160.313 143.0767 198.1312 1416.57 15844.81 92.77587 

13190.79 282.9399 370.0725 2512.243 29656.38 175.3451 274.2 9.8 6618.935 141.9748 185.6966 1260.604 14881.11 87.98544 

13702.24 272.2366 348.7166 2319.387 27966.92 165.9633 274.2 9.8 6946.735 138.018 176.7916 1175.878 14178.61 84.13974 

11195.3 358.8709 509.6873 3722.324 40724.53 237.4594 274.2 9.8 5119.26 164.1004 233.0641 1702.103 18622.06 108.5828 

15718.26 343.0402 450.679 3072.447 36109.97 213.3374 274.2 9.8 7030.034 153.4257 201.5674 1374.16 16150.28 95.41572 

10637.77 356.8124 510.3554 3748.732 40768.05 237.4393 274.2 9.8 4907.728 164.6152 235.4521 1729.475 18808.31 109.5425 

11972.95 256.9916 336.1925 2282.633 26941.17 159.2864 274.2 9.8 6389.811 137.1532 179.4217 1218.212 14378.16 85.00913 

9996.356 266.5573 366.3412 2602.094 29304.62 171.8045 274.2 9.8 5546.301 147.8946 203.2579 1443.726 16259.15 95.32267 

10097.39 290.352 404.8045 2910.982 32365.06 189.2935 274.2 9.8 5160.356 148.3869 206.8788 1487.682 16540.44 96.74007 

12530.77 251.0758 322.3857 2149.403 25852.83 153.3525 274.2 9.8 6854.857 137.349 176.3585 1175.814 14142.59 83.89027 

15371.82 321.2909 417.372 2814.71 33455.34 198.0429 274.2 9.8 7137.397 149.1808 193.793 1306.918 15533.88 91.9547 
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13496.11 286.1454 373.1302 2525.614 29904.8 176.9076 274.2 9.8 6722.073 142.5218 185.8468 1257.945 14894.83 88.1132 

11789.5 284.3766 382.6414 2667.144 30631.75 180.2296 274.2 9.8 5981.39 144.2782 194.1327 1353.172 15540.99 91.43929 

9742.932 270.6432 374.9174 2681.349 29982.25 175.5442 274.2 9.8 5264.736 146.246 202.5921 1448.906 16201.35 94.8579 

12099.7 251.8918 326.8684 2202.063 26201.88 155.1343 274.2 9.8 6767.167 140.879 182.8122 1231.578 14654.29 86.76413 

17004.98 366.9275 480.6623 3267.786 38516.48 227.67 274.2 9.8 7214.414 155.6701 203.9224 1386.368 16340.73 96.58969 

11227.66 239.3253 312.5154 2118.189 25045.47 148.125 274.2 9.8 7516.471 160.2187 209.2166 1418.043 16766.94 99.16379 

11181.97 248.0257 327.1809 2239.132 26210.92 154.7446 274.2 9.8 6921.74 153.5301 202.5279 1386.043 16224.8 95.78829 

12077.37 254.2626 330.9366 2235.976 26525.01 156.965 274.2 9.8 6593.388 138.8094 180.6679 1220.684 14480.77 85.69177 

14716.18 290.6124 371.6065 2467.324 29804.65 176.9235 274.2 9.8 7198.736 142.1594 181.7794 1206.945 14579.59 86.54597 

13656.71 325.3278 436.509 3034.812 34947.61 205.7222 274.2 9.8 6411.972 152.7448 204.9456 1424.876 16408.27 96.58873 

9241.309 267.1099 372.7486 2682.59 29801.15 174.271 274.2 9.8 5374.206 155.3355 216.7689 1560.038 17330.61 101.3458 

9890.057 249.9711 339.7916 2390.257 27191.5 159.7113 274.2 9.8 6514.602 164.6565 223.8214 1574.467 17911.1 105.2022 

11676.75 264.7389 351.1117 2415.063 28122.48 165.8759 274.2 9.8 6093.12 138.1451 183.2159 1260.22 14674.78 86.55676 

13521.99 248.2805 310.5642 2016.007 24929.83 148.5693 274.2 9.8 7091.111 130.2016 162.8639 1057.221 13073.53 77.91169 

9261.927 285.9522 403.6388 2932.938 32257.97 188.2815 274.2 9.8 4798.668 148.1538 209.128 1519.575 16713.08 97.54994 

10812.14 286.1429 392.6668 2785.417 31412.16 184.2069 274.2 9.8 5521.624 146.1296 200.5301 1422.478 16041.8 94.07218 

8696.379 292.8322 419.0903 3079.829 33476.97 194.9562 274.2 9.8 4486.297 151.0666 216.2008 1588.825 17270.13 100.5742 

16624.77 364.2178 478.9667 3268.306 38375.09 226.6815 274.2 9.8 7114.779 155.8716 204.9798 1398.713 16423.1 97.01119 

16079.4 387.6897 521.6042 3635.448 41756.34 245.6879 274.2 9.8 6654.717 160.4516 215.8742 1504.588 17281.53 101.6819 

16812.99 300.774 373.0807 2400.42 29958.01 178.8057 274.2 9.8 7937.534 141.9976 176.1341 1133.256 14143.39 84.41549 

12735.54 249.9672 319.0686 2114.733 25592.58 151.9679 274.2 9.8 6947.976 136.3716 174.0705 1153.71 13962.24 82.90731 

8795.314 257.6508 360.4131 2599.087 28812.51 168.4225 274.2 9.8 5770.653 169.0461 236.469 1705.275 18904.04 110.5029 

10602.33 311.5747 436.09 3146.321 34861.67 203.7637 274.2 9.8 5233.556 153.8005 215.2642 1553.097 17208.53 100.5825 

15407.27 309.5575 397.7846 2654.139 31898.31 189.1869 274.2 9.8 7279.598 146.2592 187.9446 1254.023 15071.26 89.38671 

8129.883 266.502 379.839 2782.047 30345.84 176.8405 274.2 9.8 5116.916 167.7353 239.0691 1751.009 19099.55 111.3027 

11830.68 252.3143 329.523 2233.766 26408.34 156.1816 274.2 9.8 6713.26 143.1745 186.9862 1267.539 14985.28 88.62445 

11594.53 254.0011 334.0211 2279.218 26761.98 158.0832 274.2 9.8 6570.657 143.9432 189.2908 1291.64 15166.1 89.58627 

16002.58 346.3847 454.1185 3089.711 36388.38 215.0607 274.2 9.8 7097.835 153.6365 201.4211 1370.42 16139.82 95.38869 

9826.458 248.8484 338.4051 2381.378 27080.14 159.0462 274.2 9.8 6563.84 166.2249 226.0466 1590.704 18088.89 106.2391 
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 11847.35 246.5229 319.8611 2154.591 25640.29 151.8127 274.2 9.8 7127.056 148.3017 192.42 1296.145 15424.53 91.32652 

10887.17 323.2784 453.2966 3275.487 36234.89 211.7262 274.2 9.8 5269.153 156.4597 219.3857 1585.264 17536.89 102.4709 

12381.22 346.3159 480.3705 3439.374 38413.61 224.8605 274.2 9.8 5702.88 159.5157 221.2622 1584.201 17693.6 103.5724 

14672.95 361.4591 488.6321 3420.315 39110.08 229.9314 274.2 9.8 6442.769 158.7136 214.5542 1501.831 17172.9 100.9609 

8525.541 281.3578 401.4314 2942.698 32069.75 186.8548 274.2 9.8 4470.906 147.5477 210.516 1543.19 16817.8 97.98912 

10869.82 263.4301 354.8304 2475.654 28404.3 167.0938 274.2 9.8 5857.535 141.9574 191.2113 1334.082 15306.53 90.04366 

12559.18 249.1587 319.0207 2120.978 25585.73 151.844 274.2 9.8 7000.852 138.8883 177.8314 1182.295 14262.23 84.64227 

13159.63 241.2935 301.6921 1957.514 24218.06 144.3389 274.2 9.8 7643.108 140.1432 175.2227 1136.924 14065.84 83.83198 

13324.38 273.1702 353.0056 2368.471 28301.48 167.6882 274.2 9.8 6769.994 138.7953 179.3589 1203.398 14379.72 85.20081 

12771.88 247.0714 314.0335 2072.432 25192.8 149.7071 274.2 9.8 7171.535 138.7329 176.3328 1163.691 14146 84.06199 

10793.78 269.0163 364.5865 2557.828 29178.83 171.471 274.2 9.8 5644.385 140.6765 190.653 1337.563 15258.46 89.66725 

10407.49 250.0654 336.1797 2341.427 26913.19 158.3741 274.2 9.8 6635.367 159.431 214.3338 1492.794 17158.7 100.9726 

12419.29 299.5462 403.0462 2809.33 32265.24 189.8412 274.2 9.8 6130.448 147.8629 198.9529 1386.751 15926.87 93.71001 

9503.214 273.5887 381.5149 2744.002 30502.78 178.3952 274.2 9.8 5057.643 145.6048 203.0436 1460.368 16233.68 94.94257 

196.7494 0 0 0 303.2506 0 273.35 30 85.09521 0 0 0 131.1576 0 

[229] 11804.96 0 0 0 18195.04 0 273.35 30 6448.76 0 0 0 9939.502 0 

27544.91 0 0 0 42455.09 0 273.35 30 17770.51 0 0 0 27389.76 0 

3147.99 0 0 0 4852.01 0 274.15 44.82 127.7445 0 0 0 196.8932 0 

[230] 

4249.786 0 0 0 6550.214 0 274.15 44.82 388.024 0 0 0 598.063 0 

7869.974 0 0 0 12130.03 0 274.15 44.82 422.0131 0 0 0 650.4507 0 

0 0 331.8277 0 968.1723 0 274.15 44.82 0 0 2.404549 0 7.015741 0 

0 0 1276.261 0 3723.739 0 274.15 44.82 0 0 1.849653 0 5.396724 0 

0 0 2552.521 0 7447.479 0 274.15 44.82 0 0 29.59445 0 86.34758 0 

0 0 0 18.65825 33.07175 0 274.15 44.82 0 0 0 2.487767 4.409567 0 

0 0 0 64.48693 114.3031 0 274.15 44.82 0 0 0 7.663664 13.58384 0 

0 0 0 180.3427 319.6573 0 274.15 44.82 0 0 0 15.4206 27.33302 0 

0 0 0 1760.144 3119.856 0 274.15 44.82 0 0 0 188.7691 334.5932 0 

15200 985 1512 11720 120500 694 275.2 35 15200 985 1512 11720 120500 694 
[231] 

15200 985 1512 11720 120500 694 276.2 35 15200 985 1512 11720 120500 694 
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15200 985 1512 11720 120500 694 277.2 35 15200 985 1512 11720 120500 694 

15200 985 1512 11720 120500 694 274.2 30 15200 985 1512 11720 120500 694 

15200 985 1512 11720 120500 694 274.2 20 15200 985 1512 11720 120500 694 

15200 985 1512 11720 120500 694 274.2 10 15200 985 1512 11720 120500 694 

11300 0 600 1300 24024.84 3325.256 277.15 117 3726.74 0 240.12 535.6 9145.456 1265.814 

[232] 11300 0 600 1300 24024.84 3325.256 277.15 117 4115.46 0 247.2 516.75 9399.319 1300.951 

11300 0 600 1300 24024.84 3325.256 277.15 117 4075.554 0 260.8383 537.8025 9682.757 1340.182 

10000 360 1180 380 18330 2590 278.15 20 1528.814 55.58644 235.6 69.88136 3184.449 361.722 

[233] 

10000 360 1180 380 18330 2590 278.15 20 1384.711 50.40808 219.5349 64.60595 2926.809 323.8169 

10000 360 1180 380 18330 2590 278.15 20 1456.762 52.99726 227.5674 67.24365 3055.629 342.7695 

10000 360 1180 380 18330 2590 278.15 20 1734.675 62.9841 258.5502 77.41765 3552.506 415.8722 

10000 360 1180 380 18330 2590 278.15 20 1487.791 54.11228 231.0266 68.37957 3111.105 350.9313 

10000 360 1180 380 18330 2590 278.15 20 1383.475 50.36366 219.3971 64.56069 2924.599 323.4918 

10000 360 1180 380 18330 2590 278.15 20 1579.539 57.40928 241.2551 71.73835 3275.141 375.065 

10000 360 1180 380 18330 2590 278.15 20 1122.368 40.98074 190.2879 55.00193 2457.769 254.8097 

10000 360 1180 380 18330 2590 278.15 20 1487.791 54.11228 231.0266 68.37957 3111.105 350.9313 
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A.3 Modeling Codebase 

This section includes all the coding files used in the modeling of the process, for 

the simulation and optimization. There are four files for calculating Gibbs free energy of 

species in bubble column reactor. The file, IAPWS_model.py, calculates Gibbs free 

energy of water using IAPWS-IF97 model. The file, HKFT_mode.py, calculates Gibbs 

free energy of any dissolved species in water using HKFT model. The file, 

gases_mode.py, calculates Gibbs free energy of CO2 using the Maier-Kelley heat 

capacity method. The file, solids_model.py, calculates Gibbs free energy of some 

inorganic salts using the same heat capacity method. 

Ideality is captured in the standard Gibbs free energy calculated, and non-ideality 

is captured using fugacity coefficients. There are two files for calculating fugacity 

coefficients of species in bubble column reactor. The file, peng_robinson.py, calculates 

the fugacity coefficient for pure CO2 gas using Peng Robinson Equation of State. The 

file, pitzer_model.py, calculates activity coefficient for water and any species dissolved 

using Pitzer model. 

Finally, the file, simulation.py, combines all the models to simulate CO2 

absorption dynamics in bubble column reactor. The file, optimization.py, combines all 

the models to optimize sodium removal in bubble column reactor. The file, 

CO2_hydrate.py, contains the Machine Learning process used for model and optimizing 

chloride removal using Hydrate-Based Formation. 

A.3.1 IAPWS_model.py 

1. from autograd import grad 
2. import autograd.numpy as np 
3. from scipy.optimize import fsolve 
4.   
5. def Gibbs_water(P, T): 
6.     Pc = 16.53 ## MPa 
7.     Tc = 1386  ## K 
8.       
9.     Tr = Tc/T; Pr = P/Pc; 
10.       
11.     I = np.array([ 0,  0, 0, 0, 0, 0, 0,  0, 1,  1, 1,  1,  1,  1,  2,  2,  2, 
12.                   2,  2, 3, 3, 3, 4, 4,  4, 5,  8, 8, 21, 23, 29, 30, 31, 32]) 
13.       
14.     J = np.array([-2, -1, 0, 1, 2, 3, 4,  5,-9, -7,-1,  0,  1,  3, -3,  0,  1, 
15.                   3, 17,-4, 0, 6,-5,-2, 10,-8,-11,-6,-29,-31,-38,-39,-40,-41]) 
16.       
17.     n = np.array([ 0.14632971213167, -0.84548187169114, -0.37563603672040e1, 
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18.                    0.33855169168385e1, 0.95791963387872,  0.15772038513228, 
19.                -0.16616417199501e-1, 0.81214629983568e-3, 0.28319080123804e-3, 
20.               -0.60706301565874e-3, -0.18990068218419e-1, 0.32529748770505e-1, 
21.              -0.21841717175414e-1, -0.52838357969930e-4, -0.47184321073267e-3, 
22.               -0.30001780793026e-3, 0.47661393906987e-4, -0.44141845330846e-5, 
23.             -0.72694996297594e-15, -0.31679644845054e-4, -0.28270797985312e-5, 
24.              -0.85205128120103e-9, -0.22425281908000e-5, -0.65171222895601e-6, 
25.             -0.14341729937924e-12, -0.40516996860117e-6, -0.12734301741641e-8, 
26.                17424871230634e-9, -0.68762131295531e-18, 0.14478307828521e-19, 
27.             0.26335781662795e-22, -0.11947622640071e-22, 0.18228094581404e-23, 
28.            -0.93537087292458e-25]) 
29.       
30.     return np.sum( n[i] * (7.1 - P/Pc)**I[i] * (Tc/T - 1.222)**J[i] 
31.                    for i in range(34) ) 
32.   
33. def molar_volume(P, T): 
34.     R = 0.000461526 ## MJ / kg / K 
35.     dGdP= grad(Gibbs_water, 0)(P, T)     
36.     return dGdP * R * T 
37.   
38. def rho_water(P, T): 
39.     return 1 / molar_volume(P, T) 

A.3.2 HKFT_model.py 

1. import json 
2. from autograd import grad 
3. import autograd.numpy as np 
4. from os.path import abspath 
5. from scipy.optimize import fsolve 
6. from .IAPWS_model import rho_water 
7.   
8.   
9. def dielectric(rho, T): 
10. rhoc = 322/18.015268*1000 ## mol / m3 
11. Tc = 647.096  ## K 
12.       
13. e0    = 1 / 4e-7 / np.pi / 299792458**2 
14. ec    = 1.60217733e-19 
15. k     = 1.380658e-23 
16. Na    = 6.0221367e23 
17. Mw    = 0.018015268 
18. alpha = 1.636e-40 
19. mu    = 6.138e-30 
20.       
21. N = np.array([ 0.978224486826, 0.957771379375, 0.237511794148, 
22. 0.714692244396, -0.298217036956, -0.108863472196, 0.949327488264e-1, 
23. -0.980469816509e-2, 0.165167634970e-4, 0.937359795772e-4, 
24. -0.123179218720e-9,  0.196096504426e-2]) 
25.       
26. i = np.array([    1, 1,   1,   2,   3,   3, 4, 5, 6,   7, 10]) 
27. j = np.array([ 0.25, 1, 2.5, 1.5, 1.5, 2.5, 2, 2, 5, 0.5, 10]) 
28.       
29. g = 1 + sum( N[k] * (rho/rhoc)**i[k] * (Tc/T)**j[k] for k in range(11)) +          
30.        N[11] * (rho/rhoc) * (T/228 - 1)**-1.2 
31. A = Na * mu**2 * rho * g / e0 / k / T 
32. B = Na * alpha * rho / 3 / e0 
33.       
34. return (1 + A + 5*B + np.sqrt(9 + 2*A + 18*B + A**2 + 10*A*B + 9*B**2))/ 
35.        (4 - 4*B) 
36.   
37. def wj(P, T, wr, Zj): 
38.     Na = 6.02252e23; e = 4.80298e-10; 
39.     n =  Na * e**2 / 2 * 2.39; 
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40.       
41.     rho = rho_water(P/10, T+273.15)/1000 
42.       
43.     ag = np.array([ -0.2037662e1,  0.5747000e-2, -0.6557892e-5 ]) 
44.     bg = np.array([  0.6107361e1, -0.1074377e-1,  0.1268348e-4 ]) 
45.     f  = np.array([  0.3666666e2, -0.1504956e-9,  0.5017997e-13]) 
46.       
47.     rejr = Zj**2 / (wr/n + Zj/3.082) 
48.      
49.     g = ( ag[0] + ag[1]*T + ag[2]*T**2 ) * \ 
50.         ( 1 - rho/1000 )**(bg[0] + bg[1]*T + bg[2]*T**2) - \ 
51.         ( ((T - 155)/300)**4.8 + f[0]*((T - 155)/300)**16 ) * \ 
52.         ( f[1]*(1000 - P)**3 + f[2]*(1000 - P)**4 ) 
53.       
54.     rej = rejr + Zj * g 
55.       
56.     return n * (Zj**2/rej - Zj/(3.082 + g)) 
57.   
58. def Z(P, T): 
59.     return -1/dielectric(P/10, T) 
60.   
61.   
62. def HKFT(T, P, species): 
63.   
64.     with open(abspath('./reaction_data/thermo_data.json')) as json_file: 
65.         thermo_data = json.load(json_file) 
66.   
67.     data = thermo_data[species]['Data'] 
68.       
69.     Gf = data['Gf']; Hf = data['Hf']; Sr = data['Sr'] 
70.     a1 = data['a1']; a2 = data['a2']; a3 = data['a3']; a4 = data['a4'] 
71.     c1 = data['c1']; c2 = data['c2'] 
72.     wr = data['wr'] 
73.     Zj = data['Zj'] 
74.       
75.     Tc = 228. ## K 
76.     Psi = 2600. ## bar 
77.     Pr = 1. ## bar 
78.     Tr = 298.15 ## K 
79.       
80.     rho = rho_water(P/10, T))/1000 
81.     rho_ref = rho_water(Pr/10, Tr)/1000 
82.       
83.     e = dielectric(rho*1e3, T) 
84.     eref = dielectric(rho_ref*1e3, T) 
85.       
86.     if Zj == 0: wj = wr 
87.     else: wj = _wj(P, T-273.15, wr, Zj) 
88.      
89.     Yr = grad(_Z, 1)(Pr, Tr) 
90.   
91.      
92.     Gns = Gf - Sr*(T - Tr) - c1*(T*np.log(T/Tr) + Tr - T) + \ 
93.     a1*(P - Pr) + a2*np.log((P + Psi)/(Pr + Psi))*(P + Psi)/(Pr + Psi) + \ 
94.        a3*(P - Pr)/(T - Tc) +  a4*np.log((P + Psi)/(Pr + Psi))/(T - Tc) + \ 
95.      c2/Tc - c2/Tc*(T - Tc)/(Tr - Tc) - c2*T*np.log(Tr*(T - Tc)/T/ 
96.      (Tr - Tc))/Tc**2 
97.     Gs  = wj*(1/e - 1) - wr*(1/eref - 1) + wr*Yr*(T - Tr) 
98.     return Gns + Gs 
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A.3.3 gases_model.py 

1. import json 
2. from numpy import log 
3. from os.path import abspath 
4.   
5. def Gas_Calculations(T, P, gas): 
6.       
7.     with open(abspath('./reaction_data/thermo_data.json')) as json_file: 
8.         thermo_data = json.load(json_file) 
9.       
10.     data = thermo_data[gas]['Data'] 
11.       
12.     Gf = data['Gf']; Hf = data['Hf']; Sr = data['Sr'] 
13.       
14.     Cpa = data['a'] 
15.     Cpb = data['b'] / 1e3 
16.     Cpc = data['c'] * 1e5 
17.       
18.     Tref = 298.15 # K 
19.     R = 8.31446261815324  # J / K / mol 
20.       
21.     def enthalpy(): 
22.         dH = Cpa * (T - Tref) + Cpb * (T**2 -Tref**2)/2 - Cpc * (1/T - 1/Tref) 
23.         return Hf  + dH 
24.       
25.     def entropy(): 
26.         dS = Cpa * log(T/Tref) + Cpb * (T - Tref) - Cpc / 2 * (1/T**2 – 
27.                 1/Tref**2) - R * log(P) 
28.         return Sr  + dS 
29.   
30.     dH = enthalpy() - Hf 
31.     dG = dH - (T * entropy() - Tref * Sr) 
32.     return Gf  + dG 

A.3.4 solids_model.py 

1. import json 
2. import numpy as np 
3. from os.path import abspath 
4.   
5. def Solid_Calculations(T, P, salt): 
6.   
7.     with open(abspath('./reaction_data/thermo_data.json')) as json_file: 
8.         thermo_data = json.load(json_file) 
9.   
10.     data = thermo_data[salt]['Data'] 
11.   
12.     Gf = data['Gf']; Hf = data['Hf']; Sr = data['Sr']; Vr = data['Vr'] 
13.     a  = data['a']; b  = data['b']; c  = data['c']; d  = data['d'] 
14.       
15.     if d == 0: 
16.         b = b / 1000 
17.         c = c * 1e5 
18.       
19.     Tref = 298.15 
20.   
21.     G = Gf - Sr * (T - Tref) 
22.     G = G  + a  * (T - Tref - T * np.log(T/Tref)) 
23.     G = G  + b  * (T*Tref - T**2/2 - Tref**2/2) 
24.     G = G  + c  * (1/Tref - 1/2/T - T/2/Tref**2) 
25.     G = G  + d  * (T**3/6 - T*Tref**2/2 + Tref**3/3) 
26.     return G  + Vr * (P - 1) 
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A.3.5 peng_robinson.py 

1. import json 
2. import numpy as np 
3. from os.path import abspath 
4. from scipy.optimize import newton 
5. import matplotlib.pyplot as plt 
6.   
7. def peng_robinson(T, P, gas='CO2(g)'): 
8.     with open(abspath('./reaction_data/thermo_data.json')) as json_file: 
9.         thermo_data = json.load(json_file) 
10.       
11.     w  = thermo_data[gas]['Data']['w'] 
12.     Tc = thermo_data[gas]['Data']['Tc'] 
13.     Pc = thermo_data[gas]['Data']['Pc'] 
14.     Vc = thermo_data[gas]['Data']['Vc'] 
15.   
16.     Tref = 298.15 # K 
17.     R = 8.31446261815324e-5  # m3 * bar / K / mol 
18.   
19.     a = 0.457235  * R**2 * Tc**2 / Pc 
20.     b = 0.0777961 * R    * Tc    / Pc 
21.   
22.     k = 0.37464 + 1.54226 * w - 0.26992 * w**2 
23.     alpha = ( 1 + k * ( 1 - np.sqrt(T/Tc) ) )**2 
24.       
25.     a = 0.457235  * R**2 * Tc**2 / Pc 
26.     b = 0.0777961 * R    * Tc    / Pc 
27.   
28.     A = a * alpha * P / R**2 / T**2 
29.     B = b * P / R / T 
30.       
31.     a0 = B**2 + B**3 - A*B 
32.     a1 = A - 3*B**2 - 2*B 
33.     a2 = B - 1 
34.       
35.     func = lambda Z: Z**3 + a2*Z**2 + a1*Z + a0 
36.     Z = newton(func, 0.99) 
37.       
38.     numerator = Z + (1 + np.sqrt(2)) * B 
39.     denominator = Z + (1 - np.sqrt(2)) * B 
40.       
41.     ln_phi = (Z - 1) - np.log(Z - B) - A / np.sqrt(8) / B *     
42.                np.log(numerator / denominator) 
43.    return ln_phi 

A.3.6 pitzer_model.py 

1. import json 
2. import numpy as np 
3. from os.path import abspath 
4. from scipy.optimize import fsolve 
5. from IAPWS_model import rho_water 
6. from HKFT_model import dielectric 
7. from autograd import numpy 
8.   
9. def ln_activity(T, P, solution, species): 
10.   
11.     cations  = np.array([ "H+", "Na+", "K+", "Mg++", "Ca++"]) 
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12.   
13.     anions   = np.array(["Cl-", "OH-", "HCO3-", "CO3--","SO4--", "NH2COO-"]) 
14.   
15.     neutrals = np.array([ "CO2(aq)", "NH3(aq)"]) 
16.   
17.     with open(abspath('./reaction_data/pitzer_data.json')) as json_file: 
18.         pitzer_data = json.load(json_file) 
19.       
20.     substances = np.array(list(solution.keys())) 
21.     molarities = np.array(list(solution.values())) 
22.     mask = [True if '(s)' not in substance else False for substance in substances] 
23.     substances = substances[mask] 
24.     molarities = molarities[mask] 
25.     z = np.array([ substance.count('+') - substance.count('-') for substance in substances 

]) 
26.     m = molarities 
27.     I = 1/2 * np.sum(m * z**2) 
28.     Z = np.sum(m * abs(z)) 
29.     rho = rho_water(P/10, T))/1000 
30.       
31.     def A(): 
32.         Na  = 6.0221367e23  # Avogadro's constant (1/mol) 
33.         e   = 1.6021773e-19 # charge on an electron (C) 
34.         D   = _dielectric(1e3*rho, T) 
35.         k   = 1.380658e-23  # Boltzmann constant in J/K 
36.         E0  = 8.8541878e-12 # permittivity of vacuum in C**2/(J*m) 
37.         return 1 / 3 * (2e-3 * np.pi * rho * Na)**(1/2) * (100 * e**2 / (4*np.pi*E0) / D / 

k / T)**(3/2) 
38.   
39.     def Bca(calculation_type): 
40.         Bca = 0 
41.           
42.         for cation in cations: 
43.             for anion in anions: 
44.                 B0 = 0; B1 = 0; B2 = 0; a = np.zeros(15) 
45.   
46.                 if cation in substances and anion in substances and \ 
47.                 anion in pitzer_data[cation]: 
48.                     mc = m[substances == cation][0] 
49.                     ma = m[substances ==  anion][0] 
50.                 else: 
51.                     continue 
52.   
53.                 if 'B0' in pitzer_data[cation][anion]: 
54.                     parameters = pitzer_data[cation][anion]['B0']['parameters'] 
55.                     equation   = pitzer_data[cation][anion]['B0']['Equation'] 
56.                     a = np.zeros(16) 
57.                     a[:len(parameters)] = parameters 
58.                     B0 = eval(equation) 
59.                   
60.                 if 'B1' in pitzer_data[cation][anion]: 
61.                     parameters = pitzer_data[cation][anion]['B1']['parameters'] 
62.                     equation   = pitzer_data[cation][anion]['B1']['Equation'] 
63.                     a = np.zeros(16) 
64.                     a[:len(parameters)] = parameters 
65.                     B1 = eval(equation) 
66.   
67.                 if 'B2' in pitzer_data[cation][anion]: 
68.                     parameters = pitzer_data[cation][anion]['B2']['parameters'] 
69.                     equation   = pitzer_data[cation][anion]['B2']['Equation'] 
70.                     a = np.zeros(16) 
71.                     a[:len(parameters)] = parameters 
72.                     B2 = eval(equation) 
73.   
74.                 a1 = 1.4; a2 = 12 
75.                 if B2 == 0: a1 = 2 
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76.   
77.                 x1 = a1 * np.sqrt(I) 
78.                 x2 = a2 * np.sqrt(I)                 
79.                   
80.                 if calculation_type == 'water': 
81.                     e = lambda x: np.exp(-x) 
82.                     Bca = Bca + mc * ma * (B0 + B1 * e(x1) + B2 * e(x2)) 
83.                   
84.                 elif calculation_type == 'derivative': 
85.                     dg = lambda x: -2 * ( 1 - (1 + x + x**2/2) * np.exp(-x) ) / x**2 
86.                     Bca = Bca + mc * ma * (B1 * dg(x1) + B2 * dg(x2)) / I 
87.                   
88.                 elif calculation_type == cation: 
89.                     g = lambda x: 2 * ( 1 - (1 + x) * np.exp(-x) ) / x**2 
90.                     Bca = Bca + 2 * ma * (B0 + B1 * g(x1) + B2 * g(x2)) 
91.   
92.                 elif calculation_type == anion: 
93.                     g = lambda x: 2 * ( 1 - (1 + x) * np.exp(-x) ) / x**2 
94.                     Bca = Bca + 2 * mc * (B0 + B1 * g(x1) + B2 * g(x2)) 
95.   
96.         return Bca 
97.   
98.     def Cmx(calculation_type): 
99.         Cmx = 0 
100.   
101.         for cation in cations: 
102.             for anion in anions: 
103.                 C0 = 0; C1 = 0; C2 = 0; a = np.zeros(15) 
104.   
105.                 if cation in substances and anion in substances and \ 
106.                 anion in pitzer_data[cation]: 
107.                     mc = m[substances == cation][0] 
108.                     ma = m[substances ==  anion][0] 
109.                 else: 
110.                     continue 
111.   
112.                 if 'C0' in pitzer_data[cation][anion]: 
113.                     parameters = pitzer_data[cation][anion]['C0']['parameters'] 
114.                     equation   = pitzer_data[cation][anion]['C0']['Equation'] 
115.                     a = np.zeros(16) 
116.                     a[:len(parameters)] = parameters 
117.                     C0 = eval(equation) 
118.                   
119.                 if 'C1' in pitzer_data[cation][anion]: 
120.                     parameters = pitzer_data[cation][anion]['C1']['parameters'] 
121.                     equation   = pitzer_data[cation][anion]['C1']['Equation'] 
122.                     a = np.zeros(16) 
123.                     a[:len(parameters)] = parameters 
124.                     C1 = eval(equation) 
125.   
126.                 if 'C2' in pitzer_data[cation][anion]: 
127.                     parameters = pitzer_data[cation][anion]['C2']['parameters'] 
128.                     equation   = pitzer_data[cation][anion]['C2']['Equation'] 
129.                     a = np.zeros(16) 
130.                     a[:len(parameters)] = parameters 
131.                     C2 = eval(equation) 
132.   
133.                 a3 = 2.5; a4 = 1.34 
134.                 x1 = a3 * np.sqrt(I) 
135.                 x2 = a4 * np.sqrt(I) 
136.   
137.                 if C1 == 0 and C2 == 0: 
138.                     zc = z[substances == cation][0] 
139.                     za = z[substances ==  anion][0] 
140.                     C0 = C0 / 2 / np.sqrt(zc * -za) 
141.   
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142.                 h = lambda x: 4 * ( 6 - (6 + 6*x + 3*x**2 + x**3) * np.exp(-x) ) / 
x**4 

143.                   
144.                 if calculation_type == 'water': 
145.                     e = lambda x: np.exp(-x) 
146.                     Cmx = Cmx + mc * ma * (C0 + C1 * e(x1) + C2 * e(x2)) 
147.                   
148.                 elif calculation_type == 'derivative': 
149.                     dh = lambda x: -2 * (h(x1) - np.exp(-x)) / I 
150.                     Cmx = Cmx + mc * ma * (C1 * dh(x1) + C2 * dh(x2)) / 2 
151.   
152.                 elif calculation_type == 'all': 
153.                     Cmx = Cmx + mc * ma * (C0 + C1 * h(x1) + C2 * h(x2)) 
154.                   
155.                 elif calculation_type == cation: 
156.                     Cmx = Cmx + ma * (C0 + C1 * h(x1) + C2 * h(x2)) 
157.   
158.                 elif calculation_type == anion: 
159.                     Cmx = Cmx + mc * (C0 + C1 * h(x1) + C2 * h(x2)) 
160.   
161.         return Cmx 
162.       
163.     def Theta(calculation_type): 
164.         Theta = 0 
165.   
166.         if isinstance(calculation_type, str): 
167.             if calculation_type.count('+') > 0: 
168.                 calculation_type = [calculation_type, 'cations'] 
169.             else: 
170.                 calculation_type = [calculation_type, 'anions'] 
171.   
172.         if   calculation_type[1] == 'cations': total_ions = cations 
173.         elif calculation_type[1] ==  'anions': total_ions =  anions 
174.           
175.         for ion_1 in total_ions: 
176.             for ion_2 in total_ions: 
177.                 theta = 0; E_theta = 0; dE_theta = 0; a = np.zeros(15) 
178.   
179.                 if calculation_type[0] in ['water', 'derivative'] \ 
180.                 and np.where(total_ions == ion_2) <= np.where(total_ions == ion_1): 
181.                     continue 
182.                   
183.                 if ion_1 in substances and ion_2 in substances and \ 
184.                 ion_1 in pitzer_data and ion_2 in pitzer_data[ion_1]: 
185.                     m1 = m[substances == ion_1][0] 
186.                     m2 = m[substances == ion_2][0] 
187.                 else: 
188.                     continue 
189.   
190.                 if 'Theta' in pitzer_data[ion_1][ion_2]: 
191.                     parameters = pitzer_data[ion_1][ion_2]['Theta']['parameters'] 
192.                     equation   = pitzer_data[ion_1][ion_2]['Theta']['Equation'] 
193.                     a = np.zeros(16) 
194.                     a[:len(parameters)] = parameters 
195.                     theta = eval(equation) 
196.   
197.                 z1  = z[substances == ion_1][0] 
198.                 z2  = z[substances == ion_2][0] 
199.   
200.                 if z1 != z2: 
201.                       
202.                     J0 = lambda x: x / (4 + 4.581 * x**-0.7237 * np.exp(-0.0120 * 

x**0.528)) 
203.                     J1 = lambda x: 1 / (4 + 4.581 / x**0.7237 / np.exp(0.0120 * 

x**0.528)) \ 
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204.                         + x * ( 4.581 * 0.7237 / x**1.7237 / np.exp(0.0120 * x**0.528) 
\ 

205.                         + 4.581 * 0.0120 * 0.528 / x**(1.7237-0.528) / np.exp(0.0120 * 
x**0.528) ) \ 

206.                         / ( 4 + 4.581 / x**0.7237 / np.exp(0.0120 * x**0.528) )**2 
207.   
208.                     x11 = 6 * z1 * z1 * A() * np.sqrt(I) 
209.                     x22 = 6 * z2 * z2 * A() * np.sqrt(I) 
210.                     x12 = 6 * z1 * z2 * A() * np.sqrt(I) 
211.                       
212.                     E_theta  = z1 * z2 / 4 / I    * (J0(x12) - J0(x11)/2 - J0(x22)/2) 
213.                     dE_theta = z1 * z2 / 8 / I**2 * (J1(x12) - J1(x11)/2 - J1(x22)/2) 

- E_theta / I 
214.                   
215.                 if calculation_type[0] == 'water': 
216.                     Theta = Theta + m1 * m2 * (theta + E_theta + I * dE_theta) 
217.                   
218.                 elif calculation_type[0] == 'derivative': 
219.                     Theta = Theta + m1 * m2 * (dE_theta) 
220.                   
221.                 elif calculation_type[0] == ion_1: 
222.                     Theta = Theta + 2 * m2 * (theta + E_theta) 
223.   
224.         return Theta 
225.   
226.     def Lambda(calculation_type): 
227.         Lambda = 0 
228.   
229.         if isinstance(calculation_type, str): 
230.             if calculation_type.count('+') > 0: 
231.                 calculation_type = [calculation_type, 'cations'] 
232.             else: 
233.                 calculation_type = [calculation_type, 'anions'] 
234.   
235.         if   calculation_type[1] == 'cations': total_ions = cations 
236.         elif calculation_type[1] ==  'anions': total_ions =  anions 
237.   
238.         for neutral in neutrals: 
239.             for ion in total_ions: 
240.                 lamda = 0; a = np.zeros(15) 
241.   
242.                 if neutral in substances and ion in substances and \ 
243.                 ion in pitzer_data[neutral]: 
244.                     mn = m[substances == neutral][0] 
245.                     mi = m[substances ==     ion][0] 
246.                 else: 
247.                     continue 
248.   
249.                 if 'Lambda' in pitzer_data[neutral][ion]: 
250.                     parameters = pitzer_data[neutral][ion]['Lambda']['parameters'] 
251.                     equation   = pitzer_data[neutral][ion]['Lambda']['Equation'] 
252.                     a = np.zeros(16) 
253.                     a[:len(parameters)] = parameters 
254.                     lamda = eval(equation) 
255.   
256.                 if   calculation_type[0] == 'all': 
257.                     Lambda = Lambda + mn * mi * lamda 
258.                   
259.                 elif calculation_type[0] in neutrals: 
260.                     Lambda = Lambda + 2 * mi * lamda 
261.                   
262.                 elif calculation_type[0] in total_ions: 
263.                     Lambda = Lambda + 2 * mn * lamda 
264.   
265.         return Lambda 
266.   
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267.     def PSI(calculation_type): 
268.         PSI = 0 
269.   
270.         if isinstance(calculation_type, str): 
271.             if calculation_type.count('+') > 0: 
272.                 calculation_type = [calculation_type, 'cations'] 
273.             else: 
274.                 calculation_type = [calculation_type, 'anions'] 
275.   
276.         if   calculation_type[1] == 'cations': total_ions = cations 
277.         elif calculation_type[1] ==  'anions': total_ions =  anions 
278.           
279.         for cation in cations: 
280.             for ion in total_ions: 
281.                 for anion in anions: 
282.                     psi = 0; a = np.zeros(15) 
283.   
284.                     if calculation_type[0] == 'all': 
285.                         if calculation_type[1] == 'cations': 
286.                             if np.where(total_ions == ion) <= np.where(total_ions == 

cation): 
287.                                 continue 
288.                         else: 
289.                             if np.where(total_ions == anion) <= np.where(total_ions == 

ion): 
290.                                 continue 
291.   
292.                     if cation in substances and ion in substances and anion in 

substances and \ 
293.                     ion in pitzer_data[cation] and anion in pitzer_data[cation][ion]: 
294.                         mc = m[substances == cation][0] 
295.                         mi = m[substances ==    ion][0] 
296.                         ma = m[substances ==  anion][0] 
297.                     else: 
298.                         continue 
299.   
300.                     if 'PSI' in pitzer_data[cation][ion][anion]: 
301.                         parameters = 

pitzer_data[cation][ion][anion]['PSI']['parameters'] 
302.                         equation   = 

pitzer_data[cation][ion][anion]['PSI']['Equation'] 
303.                         a = np.zeros(16) 
304.                         a[:len(parameters)] = parameters 
305.                         psi = eval(equation) 
306.                       
307.                     if calculation_type[0] == 'all': 
308.                         PSI = PSI + mc * mi * ma * psi 
309.                       
310.                     elif calculation_type[1] == 'cations': 
311.                         if calculation_type[0] == cation: 
312.                             PSI = PSI + mi * ma * psi 
313.                     else: 
314.                         if calculation_type[0] ==  anion: 
315.                             PSI = PSI + mc * mi * psi 
316.   
317.         return PSI 
318.   
319.     def Zeta(calculation_type): 
320.         Zeta = 0 
321.   
322.         for neutral in neutrals: 
323.             for cation in cations: 
324.                 for anion in anions: 
325.                     zeta = 0; a = np.zeros(15) 
326.   
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327.                     if neutral in substances and cation in substances and anion in 
substances and \ 

328.                     cation in pitzer_data[neutral] and anion in 
pitzer_data[neutral][cation]: 

329.                         mn = m[substances == neutral][0] 
330.                         mc = m[substances ==  cation][0] 
331.                         ma = m[substances ==   anion][0] 
332.                     else: 
333.                         continue 
334.   
335.                     if 'Zeta' in pitzer_data[neutral][cation][anion]: 
336.                         parameters = 

pitzer_data[neutral][cation][anion]['Zeta']['parameters'] 
337.                         equation   = 

pitzer_data[neutral][cation][anion]['Zeta']['Equation'] 
338.                         a = np.zeros(16) 
339.                         a[:len(parameters)] = parameters 
340.                         zeta = eval(equation) 
341.   
342.                     if   calculation_type == 'all': 
343.                         Zeta = Zeta + mn * mc * ma * zeta 
344.                       
345.                     elif calculation_type in neutrals: 
346.                         Zeta = Zeta + mc * ma * zeta 
347.                       
348.                     elif calculation_type in cations: 
349.                         Zeta = Zeta + mn * ma * zeta 
350.   
351.                     elif calculation_type in anions: 
352.                         Zeta = Zeta + mn * mc * zeta 
353.   
354.   
355.         return Zeta 
356.   
357.     def Eta(calculation_type): 
358.         Eta = 0 
359.   
360.         if isinstance(calculation_type, str): 
361.             if calculation_type.count('+') > 0: 
362.                 calculation_type = [calculation_type, 'cations'] 
363.             else: 
364.                 calculation_type = [calculation_type, 'anions'] 
365.   
366.         if   calculation_type[1] == 'cations': total_ions = cations 
367.         elif calculation_type[1] ==  'anions': total_ions =  anions 
368.   
369.         for neutral in neutrals: 
370.             for ion_1 in total_ions: 
371.                 for ion_2 in total_ions: 
372.                     eta = 0; a = np.zeros(15) 
373.   
374.                     if calculation_type[0] == 'all' \ 
375.                     and np.where(total_ions == ion_2) <= np.where(total_ions == 

ion_1): 
376.                         continue 
377.                       
378.                     if neutral in substances and ion_1 in substances and ion_2 in 

substances and \ 
379.                     ion_1 in pitzer_data[neutral] and ion_2 in 

pitzer_data[neutral][ion_1]: 
380.                         mn = m[substances ==  neutral][0] 
381.                         m1 = m[substances ==    ion_1][0] 
382.                         m2 = m[substances ==    ion_2][0] 
383.                     else: 
384.                         continue 
385.   
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386.                     if 'Eta' in pitzer_data[neutral][ion_1][ion_2]: 
387.                         parameters = 

pitzer_data[neutral][ion_1][ion_2]['Eta']['parameters'] 
388.                         equation   = 

pitzer_data[neutral][ion_1][ion_2]['Eta']['Equation'] 
389.                         a = np.zeros(16) 
390.                         a[:len(parameters)] = parameters 
391.                         eta = eval(equation) 
392.   
393.                     if   calculation_type == 'all': 
394.                         Eta = Eta + mn * m1 * m2 * eta 
395.                       
396.                     elif calculation_type in neutrals: 
397.                         Eta = Eta + mn * m1 * m2 * eta 
398.   
399.                     elif calculation_type == ion_1: 
400.                         Eta = Eta + mn * m2 * eta 
401.   
402.         return Eta 
403.   
404.     def MU(calculation_type): 
405.         MU = 0 
406.   
407.         if isinstance(calculation_type, str): 
408.             if calculation_type.count('+') > 0: 
409.                 calculation_type = [calculation_type, 'cations'] 
410.             else: 
411.                 calculation_type = [calculation_type, 'anions'] 
412.   
413.         if   calculation_type[1] == 'cations': total_ions = cations 
414.         elif calculation_type[1] ==  'anions': total_ions =  anions 
415.   
416.         for neutral in neutrals: 
417.             for ion in total_ions: 
418.                 mu = 0; a = np.zeros(15) 
419.   
420.                 if neutral in substances and ion in substances and \ 
421.                     neutral in pitzer_data[neutral] and ion in 

pitzer_data[neutral][neutral]: 
422.                     mn = m[substances == neutral][0] 
423.                     mi = m[substances ==     ion][0] 
424.                 else: 
425.                     continue 
426.   
427.                 if 'MU' in pitzer_data[neutral][neutral][ion]: 
428.                     parameters = 

pitzer_data[neutral][neutral][ion]['MU']['parameters'] 
429.                     equation   = pitzer_data[neutral][neutral][ion]['MU']['Equation'] 
430.                     a = np.zeros(16) 
431.                     a[:len(parameters)] = parameters 
432.                     mu = eval(equation) 
433.                   
434.                 if   calculation_type[0] == 'all': 
435.                     MU = MU + 3 * mn * mn * mi * mu 
436.                   
437.                 elif calculation_type[0] in neutrals: 
438.                     MU = MU + 6 * mn * mi * mu 
439.   
440.                 elif calculation_type[0] in total_ions: 
441.                     MU = MU + 3 * mn * mn * mu 
442.   
443.         return MU 
444.   
445.     def F(): 
446.         term = 1 + 1.2 * np.sqrt(I) 
447.         F = - A() * (np.sqrt(I) / term  +  2 / 1.2 * np.log(term)) 
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448.         F = F + Theta(['derivative', 'cations']) + Theta(['derivative', 'anions']) + \ 
449.             Bca('derivative') + Cmx('derivative') 
450.         return F 
451.   
452.     def water_activity(): 
453.         term = 1 + 1.2 * np.sqrt(I) 
454.         term =  - A() * I**(3/2) / term + Bca('water') + Z * Cmx('water') \ 
455.                 + Theta(['water', 'cations']) + Theta(['water', 'anions']) \ 
456.                 + PSI(['all', 'cations']) + PSI(['all', 'anions']) \ 
457.                 + Lambda(['all', 'cations']) + Lambda(['all', 'anions']) \ 
458.                 + Zeta('all') + Eta(['all', 'cations']) \ 
459.                 + MU(['all', 'cations']) + MU(['all', 'anions']) 
460.   
461.         osm = 2 * term / np.sum(m) + 1 
462.         return - np.sum(m) * osm * 18.015268 / 1000 
463.   
464.     def ion_activity(): 
465.         zi = z[substances == species][0] 
466.         return zi**2 * F() + Bca(species) + Z * Cmx(species) \ 
467.                + Theta(species) + np.abs(zi) * Cmx('all')\ 
468.                + PSI([species, 'cations']) + PSI([species, 'anions']) \ 
469.                + Lambda(species) + Zeta(species) + Eta(species) + MU(species) 
470.   
471.     def neutral_activity(): 
472.         return Lambda([species, 'cations']) + Lambda([species, 'anions']) + \ 
473.                Zeta(species) + Eta([species, 'cations']) + \ 
474.                MU([species, 'cations']) + MU([species, 'anions']) 
475.   
476.     if species == 'H2O(l)': return water_activity() 
477.     elif '+' in species or '-' in species: return ion_activity() 
478.     else: return neutral_activity() 

A.3.7 simulation.py 

1. import json 
2. import numpy as np 
3. from gekko import GEKKO 
4. import matplotlib.pyplot as plt 
5. from aqueous_activity import ln_activity 
6. from gas_fugacity import peng_robinson 
7.   
8. ## Molecular Weights 
9. MW_WATER = 18.01528         # g/mol 
10. MW_Na    = 22.989769        # g/mol 
11. MW_K     = 39.0983          # g/mol 
12. MW_Mg    = 24.305           # g/mol 
13. MW_Ca    = 40.078           # g/mol 
14. MW_Cl    = 35.453           # g/mol 
15. MW_HCO3  = 61.0168          # g/mol 
16. MW_SO4   = 96.06            # g/mol 
17.   
18. ## kinetic & thermo Constants 
19. from rxn_data import K_H2O 
20. from abs_data import Kla 
21. from rxn_data import K_CO2g, k_CO2aq, K_CO2aq, K_CO3 
22. from rxn_data import K_NH3, k_CO2_NH3, k_NH2COO 
23. from rxn_data import K_MgOH, K_HSO4 
24. from rxn_data import K_NaOH, K_NaHCO3 
25. from rxn_data import K_Na2CO3_10H2O, K_Na2SO4_10H2O 
26. from rxn_data import K_MgOH2 
27. from rxn_data import K_CaOH2, K_CaSO4_2H2O, K_CaCO3 
28.   
29. ## Operating Conditions 
30. T         = 273.15  + 25    # K 
31. P         = 1.01325 * 1     # bar 
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32.   
33. ## Initial Condition 
34. NH30 = 1                    # variable 
35. Na0  = 23200/1000/MW_Na 
36. K0   =   808/1000/MW_K 
37. Mg0  =  2610/1000/MW_Mg 
38. Ca0  =   890/1000/MW_Ca 
39. Cl0  = 44000/1000/MW_Cl 
40. SO40 =  6090/1000/MW_SO4 
41. C0   =  200/1000/MW_HCO3 
42.   
43.   
44. model = GEKKO(remote=True) 
45. model.options.MAX_ITER = 5000 
46. model.options.IMODE  = 4    # Dynamic Simulation 
47. model.options.NODES  = 5    # collocation nodes 
48.   
49. ## Model variables & Initial Values 
50. Na           = model.Param(value=  Na0) 
51. K            = model.Param(value=   K0) 
52. Mg           = model.Param(value=  Mg0) 
53. Ca           = model.Param(value=  Ca0) 
54. Cl           = model.Param(value=  Cl0) 
55. SO4          = model.Param(value= SO40) 
56. CO2g         = model.Param(value=    P) 
57.   
58. H            = model.Var(value= 1e-7, lb= 0) 
59. CO2aq        = model.Var(value=    0, lb= 0) 
60. HCO3         = model.Var(value=   C0, lb= 0) 
61. CO3          = model.Var(value=    0, lb= 0) 
62. NH3aq        = model.Var(value= NH30, lb= 0) 
63. NH2COO       = model.Var(value=    0, lb= 0) 
64. NH4          = model.Var(value=    0, lb= 0) 
65. OH           = model.Var(value= 1e-7, lb= 0) 
66.   
67. solution = { 
68.     'H+'      :      H, 
69.     'Na+'     :     Na, 
70.     'K+'      :      K, 
71.     'Mg++'    :     Mg, 
72.     'Ca++'    :     Ca, 
73.     'NH4+'    :    NH4, 
74.     'OH-'     :     OH, 
75.     'Cl-'     :     Cl, 
76.     'HCO3-'   :   HCO3, 
77.     'CO3--'   :    CO3, 
78.     'SO4--'   :    SO4, 
79.     'NH2COO-' : NH2COO, 
80.     'CO2(aq)' :  CO2aq, 
81.     'NH3(aq)' :  NH3aq 
82. } 
83.   
84. ## Model Intermediates 
85. activities =  ln_activity(model, T, P, solution) 
86. water_activity = model.Intermediate(model.exp(activities[ 'H2O(l)'])) 
87. gamma_H        = model.Intermediate(model.exp(activities[     'H+'])) 
88. gamma_Na       = model.Intermediate(model.exp(activities[    'Na+'])) 
89. gamma_K        = model.Intermediate(model.exp(activities[     'K+'])) 
90. gamma_Mg       = model.Intermediate(model.exp(activities[   'Mg++'])) 
91. gamma_Ca       = model.Intermediate(model.exp(activities[   'Ca++'])) 
92. gamma_NH4      = model.Intermediate(model.exp(activities[   'NH4+'])) 
93. gamma_OH       = model.Intermediate(model.exp(activities[    'OH-'])) 
94. gamma_Cl       = model.Intermediate(model.exp(activities[    'Cl-'])) 
95. gamma_HCO3     = model.Intermediate(model.exp(activities[  'HCO3-'])) 
96. gamma_CO3      = model.Intermediate(model.exp(activities[  'CO3--'])) 
97. gamma_SO4      = model.Intermediate(model.exp(activities[  'SO4--'])) 
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98. gamma_NH2COO   = model.Intermediate(model.exp(activities['NH2COO-'])) 
99. gamma_CO2aq    = model.Intermediate(model.exp(activities['CO2(aq)'])) 
100. gamma_NH3aq    = model.Intermediate(model.exp(activities['NH3(aq)'])) 
101.   
102. gamma_CO2g = model.Intermediate(model.exp(peng_robinson(model, T, P)) 
103.   
104. ## Model equations 
105. model.Equation(gamma_H*H * gamma_OH*OH / K_H2O(T) == water_activity) 
106.   
107. model.Equation(CO2aq.dt() == Kla(T, P)*(gamma_CO2g*K_CO2g(T)*CO2g - gamma_CO2aq*CO2aq) 

+\ 
108.     -k_CO2aq(T)*(gamma_CO2aq*CO2aq * gamma_OH*OH - gamma_HCO3*HCO3/K_CO2aq(T)) \ 
109.     -(k_CO2_NH3(T)*gamma_CO2aq*CO2aq*gamma_NH3aq*NH3aq - 

k_NH2COO(T)*gamma_H*H*gamma_NH2COO*NH2COO)) 
110.   
111. model.Equation(HCO3.dt() + CO3.dt() == \ 
112.     k_CO2aq(T)*(gamma_CO2aq*CO2aq * gamma_OH*OH - gamma_HCO3*HCO3/K_CO2aq(T))) 
113.   
114. model.Equation(gamma_CO3*CO3 * gamma_H*H / K_CO3(T) == gamma_HCO3*HCO3) 
115.   
116. model.Equation(gamma_NH3aq*NH3aq * gamma_H*H == gamma_NH4*NH4 / K_NH3(T)) 
117.   
118. model.Equation(NH2COO.dt() == k_CO2_NH3(T) * gamma_CO2aq*CO2aq * gamma_NH3aq*NH3aq - \ 
119.     k_NH2COO(T) * gamma_H*H * gamma_NH2COO*NH2COO ) 
120.   
121. model.Equation(NH3aq + NH2COO + NH4 == NH30) 
122. model.Equation(H +C0 +NH30 == HCO3 +2*CO3 +NH3aq + 2*NH2COO +OH) 
123.   
124. ## Model Solver 
125. time = np.logspace(np.log10(1e-6), np.log10(1), 6) 
126. time[0] = 0; time[-1] = 0.3 
127.   
128. time = np.concatenate((time, np.linspace(1, 10, 45+1)[:-1])) 
129.   
130. time = np.concatenate((time, np.linspace(10, 60, 40+1)[:-1])) 
131.   
132. time = np.concatenate((time, np.linspace(60, 10*60, 15+1)[:-1])) 
133.   
134. model.solve(disp=True) 

A.3.8 optimization.py 

1. import json 
2. import numpy as np 
3. from gekko import GEKKO 
4. import matplotlib.pyplot as plt 
5. from aqueous_activity import ln_activity 
6. from gas_fugacity import peng_robinson 
7.   
8. ## Molecular Weights 
9. MW_WATER = 18.01528         # g/mol 
10. MW_Na    = 22.989769        # g/mol 
11. MW_K     = 39.0983          # g/mol 
12. MW_Mg    = 24.305           # g/mol 
13. MW_Ca    = 40.078           # g/mol 
14. MW_Cl    = 35.453           # g/mol 
15. MW_HCO3  = 61.0168          # g/mol 
16. MW_SO4   = 96.06            # g/mol 
17.   
18. ## kinetic & thermo Constants 
19. from rxn_data import K_H2O 
20. from abs_data import Kla 
21. from rxn_data import K_CO2g, k_CO2aq, K_CO2aq, K_CO3 
22. from rxn_data import K_NH3, k_CO2_NH3, k_NH2COO 
23. from rxn_data import K_MgOH, K_HSO4 
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24. from rxn_data import K_NaOH, K_NaHCO3 
25. from rxn_data import K_Na2CO3_10H2O, K_Na2SO4_10H2O 
26. from rxn_data import K_MgOH2 
27. from rxn_data import K_CaOH2, K_CaSO4_2H2O, K_CaCO3 
28.   
29. ## Initial Condition 
30. Na0  = 23200/1000/MW_Na 
31. K0   =   808/1000/MW_K 
32. Mg0  =  2610/1000/MW_Mg 
33. Ca0  =   890/1000/MW_Ca 
34. Cl0  = 44000/1000/MW_Cl 
35. SO40 =  6090/1000/MW_SO4 
36. C0   =   200/1000/MW_HCO3 
37.   
38. ## GEKKO Model instance 
39. model = GEKKO(remote=True) 
40.   
41. ## Model Variables 
42. K     = model.Param(value=   K0) 
43. Mg    = model.Param(value=  Mg0) 
44. Cl    = model.Param(value=  Cl0) 
45. SO4   = model.Param(value= SO40) 
46. CO2g  = model.Param(value= P) 
47.   
48. T     = model.Var(value= 298.15, lb= 283.15, ub=273.15+40) 
49. P     = model.Var(value=      1, lb=      1, ub=70) 
50.   
51. H     = model.Var(value= 1e-7, lb= 0) 
52. CO2aq = model.Var(value=    0, lb= 0) 
53. HCO3  = model.Var(value=   C0, lb= 0) 
54. CO3   = model.Var(value=    0, lb= 0) 
55. OH    = model.Var(value= 1e-7, lb= 0) 
56. Na    = model.Var(value=  Na0, lb= 0) 
57. Ca    = model.Var(value=  Ca0, lb= 0) 
58. NH3aq = model.Var(value=    0, lb= 0) 
59. NH4   = model.Var(value=    0, lb= 0) 
60. NH2COO = model.Var(value=   0, lb= 0) 
61.   
62. NH3_base = model.Var(value= 1, lb= 0, ub=10) 
63.   
64. NaHCO3       = model.Var(value= 0, lb= 0) 
65. CaCO3        = model.Var(value= 0, lb= 0) 
66.   
67. solution = { 
68.     'H+'      :      H, 
69.     'Na+'     :     Na, 
70.     'K+'      :      K, 
71.     'Mg++'    :     Mg, 
72.     'Ca++'    :     Ca, 
73.     'OH-'     :     OH, 
74.     'Cl-'     :     Cl, 
75.     'HCO3-'   :   HCO3, 
76.     'CO3--'   :    CO3, 
77.     'SO4--'   :    SO4, 
78.     'CO2(aq)' :  CO2aq, 
79.     'NH3(aq)' :  NH3aq, 
80.     'NH4+'    :    NH4, 
81.     'NH2COO-' : NH2COO 
82. } 
83.   
84. ## Model Intermediates 
85. activities =  ln_activity(model, T, P, solution) 
86. water_activity = model.Intermediate(model.exp(activities[ 'H2O(l)'])) 
87. gamma_H        = model.Intermediate(model.exp(activities[     'H+'])) 
88. gamma_Na       = model.Intermediate(model.exp(activities[    'Na+'])) 
89. gamma_K        = model.Intermediate(model.exp(activities[     'K+'])) 
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90. gamma_Mg       = model.Intermediate(model.exp(activities[   'Mg++'])) 
91. gamma_Ca       = model.Intermediate(model.exp(activities[   'Ca++'])) 
92. gamma_OH       = model.Intermediate(model.exp(activities[    'OH-'])) 
93. gamma_Cl       = model.Intermediate(model.exp(activities[    'Cl-'])) 
94. gamma_HCO3     = model.Intermediate(model.exp(activities[  'HCO3-'])) 
95. gamma_CO3      = model.Intermediate(model.exp(activities[  'CO3--'])) 
96. gamma_SO4      = model.Intermediate(model.exp(activities[  'SO4--'])) 
97. gamma_CO2aq    = model.Intermediate(model.exp(activities['CO2(aq)'])) 
98. gamma_NH3aq    = model.Intermediate(model.exp(activities['NH3(aq)'])) 
99. gamma_NH4      = model.Intermediate(model.exp(activities[   'NH4+'])) 
100. gamma_NH2COO   = model.Intermediate(model.exp(activities['NH2COO-'])) 
101.   
102. gamma_CO2g = model.Intermediate(model.exp(peng_robinson(model, T, P)) 
103.   
104. ## Model equations 
105. model.Equation(gamma_H*H * gamma_OH*OH / K_H2O(T) == water_activity) 
106.   
107. model.Equation(Kla(T, P)*(gamma_CO2g*K_CO2g(T)*CO2g - gamma_CO2aq*CO2aq) == \ 
108.     k_CO2aq(T)*(gamma_CO2aq*CO2aq * gamma_OH*OH - gamma_HCO3*HCO3/K_CO2aq(T)) + \ 
109.     (k_CO2_NH3(T)*gamma_CO2aq*CO2aq*gamma_NH3aq*NH3aq - 

k_NH2COO(T)*gamma_H*H*gamma_NH2COO*NH2COO)) 
110.   
111. model.Equation(gamma_CO2aq*CO2aq * gamma_OH*OH * K_CO2aq(T) == gamma_HCO3*HCO3) 
112. model.Equation(gamma_CO3*CO3 * gamma_H*H / K_CO3(T) == gamma_HCO3*HCO3) 
113.   
114. model.Equation(gamma_NH3aq*NH3aq * gamma_H*H / (gamma_NH4*NH4) == 1/K_NH3(T)) 
115. model.Equation(k_CO2_NH3(T) * gamma_CO2aq*CO2aq * gamma_NH3aq*NH3aq == \ 
116.     k_NH2COO(T) * gamma_H*H * gamma_NH2COO*NH2COO ) 
117.   
118. model.Equation(gamma_Na*Na * gamma_HCO3*HCO3 / K_NaHCO3(T) == 1) 
119. model.Equation(gamma_Ca*Ca * gamma_CO3*CO3   / K_CaCO3(T)  == 1) 
120.   
121. model.Equation(NH3aq +NH4 +NH2COO == NH3_base) 
122. model.Equation(H +C0 +NH3_base == HCO3 +2*CO3 +OH +NaHCO3 +2*CaCO3 +NH3aq +2*NH2COO) 
123. model.Equation(Na  + NaHCO3 ==  Na0) 
124. model.Equation(Ca  + CaCO3 ==  Ca0) 
125.   
126.   
127. ## Research Objective 
128. model.Minimize(Na) 
129.   
130.   
131.   
132. ## Model Solver 
133. model.options.SOLVER = 3 #IPOpt 
134. model.options.IMODE  = 3 #Optimization 
135. model.options.MAX_ITER = 1000 
136. model.solve(disp=True) 

A.3.9 CO2_hydrate.py 

1. ## data-holders Libraries 
2. import numpy as np 
3. import pandas as pd 
4.    
5. ## Data preperation libraries 
6. from sklearn.decomposition import PCA 
7. from sklearn.model_selection import train_test_split 
8.    
9. ## Data Analysis libraries 
10. from sklearn.model_selection import GridSearchCV 
11. from sklearn.inspection import permutation_importance 
12. from sklearn.metrics import r2_score 
13. from sklearn.metrics import mean_absolute_error 
14.    
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15. ## Plotting Libraries 
16. from matplotlib import pyplot as plt 
17.    
18. ## ML Regression Libraries 
19. from sklearn import linear_model 
20. from sklearn.neural_network import MLPRegressor 
21. from sklearn.tree import DecisionTreeRegressor 
22. from sklearn.ensemble import RandomForestRegressor 
23. from sklearn.neighbors import KNeighborsRegressor 
24. from sklearn.svm import SVR 
25.    
26.    
27.    
28. def expand_data(input_data): 
29.     feature_names = input_data.columns 
30.        
31.     for feature in feature_names: 
32.         input_data[feature+'^2'] = (input_data[feature]/1e4)**2 
33.         input_data[feature+'^3'] = (input_data[feature]/1e4)**3 
34.         input_data['ln('+feature+')'] = np.log(input_data[feature]).replace(-np.inf, 0) 
35.         input_data['sqrt('+feature+')'] = np.sqrt(input_data[feature]) 
36.         input_data['1/'+feature] = (1/input_data[feature]).replace(np.inf, 0) 
37.         input_data[feature] = input_data[feature]/1e4 
38.        
39.     return input_data 
40.    
41.    
42. ## Data Import & Cleaning 
43. data = pd.read_csv("raw_data.csv") 
44.    
45. data = data[data['Cl-'] != 0] 
46. data = data[data['Cl-_rem'] != 0] 
47.    
48. data['Cl-_rmv'] = data['Cl-_rem'] 
49. data['Cl-_rmn'] = data['Cl-'] - data['Cl-_rmv'] 
50. data['Cl-_pct'] = data['Cl-_rmv'] / data['Cl-'] 
51. del data['Cl-_rem'] 
52.    
53.    
54. ## Data Analysis on Cation data 
55. cation_data = data[['Na+','K+','Mg++','Ca++']].copy() 
56. cation_data = expand_data(cation_data) 
57.    
58. pos_pca = PCA(n_components=5) 
59. cation_pca = pos_pca.fit_transform(cation_data) 
60.    
61. plt.figure(figsize=(5*3,5*5)) 
62. for i in range(5): 
63.     plt.subplot(5,3,i*3+1) 
64.     if i==0: plt.title('Cl- removed') 
65.     plt.ylabel('PC '+str(i+1)) 
66.     plt.scatter(cation_pca[:,i], data['Cl-_rmv']) 
67.        
68.     plt.subplot(5,3,i*3+2) 
69.     if i==0: plt.title('Cl- remaining') 
70.     plt.scatter(cation_pca[:,i], data['Cl-_rmn']) 
71.        
72.     plt.subplot(5,3,i*3+3) 
73.     if i==0: plt.title('Cl- percentage') 
74.     plt.scatter(cation_pca[:,i], data['Cl-_pct']) 
75.    
76.    
77. ## Data Analysis on Anion data 
78. anion_data = data[['Cl-','SO4--']].copy() 
79. anion_data = expand_data(anion_data) 
80.    
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81. neg_pca = PCA(n_components=5, svd_solver='full') 
82. anion_pca = neg_pca.fit_transform(anion_data) 
83.    
84. plt.figure(figsize=(5*3,5*5)) 
85. for i in range(5): 
86.     plt.subplot(5,3,i*3+1) 
87.     if i==0: plt.title('Cl- removed') 
88.     plt.ylabel('PC '+str(i+1+5)) 
89.     plt.scatter(anion_pca[:,i], data['Cl-_rmv']) 
90.        
91.     plt.subplot(5,3,i*3+2) 
92.     if i==0: plt.title('Cl- remaining') 
93.     plt.scatter(anion_pca[:,i], data['Cl-_rmn']) 
94.        
95.     plt.subplot(5,3,i*3+3) 
96.     if i==0: plt.title('Cl- percentage') 
97.     plt.scatter(anion_pca[:,i], data['Cl-_pct']) 
98.    
99.    
100. ## Data Analysis on Operating Conditions 
101. op_cond_data = data[['T','P']].copy() 
102. op_cond_data = expand_data(op_cond_data) 
103.    
104. pca = PCA(n_components=5, svd_solver='full') 
105. op_cond_pca = pca.fit_transform(op_cond_data) 
106.    
107. plt.figure(figsize=(5*3,5*5)) 
108. for i in range(5): 
109.         plt.subplot(5,3,i*3+1) 
110.         if i==0: plt.title('Cl- removed') 
111.         plt.ylabel('PC '+str(i+1+10)) 
112.         plt.scatter(op_cond_pca[:,i], data['Cl-_rmv']) 
113.            
114.         plt.subplot(5,3,i*3+2) 
115.         if i==0: plt.title('Cl- remaining') 
116.         plt.scatter(op_cond_pca[:,i], data['Cl-_rmn']) 
117.            
118.         plt.subplot(5,3,i*3+3) 
119.         if i==0: plt.title('Cl- percentage') 
120.         plt.scatter(op_cond_pca[:,i], data['Cl-_pct']) 
121.    
122.    
123. ## Prepare the data  
124. modified_data = {'feature_1': np.log(cation_pca[:,0]+80), 
125.                  'feature_2': anion_pca[:,0], 
126.                  'feature_3': np.log(anion_pca[:,1]+35), 
127.                  'Cl-_rmv'  : data['Cl-_rmv']} 
128.    
129. modified_data = pd.DataFrame(modified_data) 
130.    
131. training_set, testing_set = \ 
132.     train_test_split(modified_data, test_size=0.3, shuffle=True, random_state=42) 
133.    
134. feature_list = ['feature_1','feature_2','feature_3'] 
135. x_data = modified_data[feature_list] 
136. y_data = modified_data['Cl-_rmv'] 
137.    
138. training_input_data = training_set[feature_list] 
139. training_output_data = training_set['Cl-_rmv'] 
140.    
141. testing_input_data = testing_set[feature_list] 
142. testing_output_data = testing_set['Cl-_rmv'] 
143.    
144.    
145. ## Machine Learning Regression 
146. lin_model = linear_model.LinearRegression() 
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147. lin_model.fit(training_input_data, training_output_data) 
148. print(r2_score(testing_output_data, lin_model.predict(testing_input_data))) 
149. imp = lin_model.coef_ 
150. plt.bar(x=x_data.columns,height=imp) 
151.    
152.    
153. MLP_model = MLPRegressor(hidden_layer_sizes=(5,5), max_iter=int(1e5), random_state=42) 
154. MLP_model.fit(training_input_data, training_output_data) 
155. print(r2_score(testing_output_data, MLP_model.predict(testing_input_data))) 
156. imp = permutation_importance(MLP_model, training_input_data, 
157.         training_output_data, scoring='r2').importances_mean 
158. plt.bar(x=x_data.columns,height=imp) 
159.    
160.    
161. tree_model = DecisionTreeRegressor(random_state=42) 
162. tree_model.fit(training_input_data, training_output_data) 
163. print(r2_score(testing_output_data, tree_model.predict(testing_input_data))) 
164. dt_imp = tree_model.feature_importances_ 
165. plt.barh(y=x_data.columns,width=dt_imp) 
166.    
167.    
168. forest_model = RandomForestRegressor(random_state=0) 
169. forest_model.fit(training_input_data, training_output_data) 
170. print(r2_score(testing_output_data, forest_model.predict(testing_input_data))) 
171. rf_imp = forest_model.feature_importances_ 
172. plt.barh(y=x_data.columns,width=rf_imp) 
173.    
174.    
175. from xgboost import XGBRegressor 
176. xgboost_model = XGBRegressor() 
177. xgboost_model.fit(training_input_data, training_output_data) 
178. print(r2_score(testing_output_data, xgboost_model.predict(testing_input_data))) 
179. xgb_imp = xgboost_model.feature_importances_ 
180. plt.barh(y=x_data.columns,width=xgb_imp) 
181.    
182.    
183. parameters = { 
184.     'kernel':['linear', 'rbf','poly'], 
185.     'C':[1e-2, 1e-1, 1e0, 1e1, 15], 
186.     'epsilon': [1e-2, 0.05, 1e-1, 0.2, 1] 
187. } 
188.    
189. SVR_opt = GridSearchCV(SVR(), parameters) 
190. SVR_opt.fit(training_input_data, training_output_data) 
191. print(SVR_opt.best_params_) 
192. print(SVR_opt.score(testing_input_data, testing_output_data)) 
193. perm_importance = permutation_importance(SVR_opt, testing_input_data, 

testing_output_data) 
194. imp=perm_importance.importances_mean 
195. plt.bar(x=x_data.columns,height=imp) 
196. plt.show() 
197.    
198.    
199. KNeighbors_model = KNeighborsRegressor() 
200. KNeighbors_model.fit(training_input_data, training_output_data) 
201. print(r2_score(testing_output_data, KNeighbors_model.predict(testing_input_data))) 
202. imp = permutation_importance(KNeighbors_model, training_input_data, 
203.                              training_output_data, 
204.                              scoring='r2').importances_mean 
205. plt.bar(x=x_data.columns,height=imp) 
206.    
207.    
208. ## ML model Comparison using Second scoring metric 
209. print(mean_absolute_error(training_output_data, 

tree_model.predict(training_input_data))) 
210. plt.plot(np.linspace(0,5e4),np.linspace(0,5e4)) 
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211. plt.xlabel('Actual Chloride Removal', fontsize=13) 
212. plt.ylabel('Predicted response', fontsize=13) 
213. plt.scatter(39679.429+100, 48794.9735-60, s=200, facecolors='none', edgecolors='r') 
214. plt.scatter(testing_output_data, tree_model.predict(testing_input_data), c='orange') 
215. plt.show() 
216.    
217. print(mean_absolute_error(training_output_data, 

forest_model.predict(training_input_data))) 
218. plt.plot(np.linspace(0,5e4),np.linspace(0,5e4)) 
219. plt.xlabel('Actual Chloride Removal', fontsize=13) 
220. plt.ylabel('Predicted response', fontsize=13) 
221. plt.scatter(testing_output_data, forest_model.predict(testing_input_data), c='orange') 
222. plt.show() 
223.    
224. print(mean_absolute_error(training_output_data, 

xgboost_model.predict(training_input_data))) 
225. plt.plot(np.linspace(0,5e4),np.linspace(0,5e4)) 
226. plt.xlabel('Actual Chloride Removal', fontsize=13) 
227. plt.ylabel('Predicted response', fontsize=13) 
228. plt.scatter(testing_output_data, xgboost_model.predict(testing_input_data), 

c='orange') 
229. plt.show() 
230.    
231.    
232. ## Model Inference 
233. initial_conc = pd.DataFrame({'Na+':[23200*(1-

0.725)],'K+':[808],'Mg++':[2610],'Ca++':[890],'Cl-':[44000],'SO4--':[6090]}) 
234.    
235. pos_initial_conc = expand_data(initial_conc[['Na+','K+','Mg++','Ca++']]) 
236. feature_1 = np.log(pos_pca.transform(pos_initial_conc)[:,0]+80)[0] 
237.    
238. neg_initial_conc = expand_data(initial_conc[['Cl-','SO4--']]) 
239. feature_6 = neg_pca.transform(neg_initial_conc)[:,0][0] 
240. feature_7 = np.log(neg_pca.transform(neg_initial_conc)[:,1]+35)[0] 
241.    
242.    
243. print(tree_model.predict([[feature_1, feature_2, feature_3]])) 
244. print(xgboost_model.predict(pd.DataFrame({'feature_1':[feature_1], 

'feature_2':[feature_2], 'feature_3':[feature_3]}))) 



This work explores how desalination waste (brine) can be revitalized for salt removal 

and water recoverability. Sodium ions were removed by bubbling CO2 in basic brine 

media. Chloride ions were removed by CO2 hydrate formation. The final brackish 

water can be recycled within the system to achieve Zero-Liquid Discharge. 
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