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Abstract

Over the past few years, On-Board Computing Systems for satellites
have been facing a limited level of modularity. Modularity is the ability to
reuse and reconstruct the system from a set of predesigned units, with
minimal additional engineering effort. CDHS hardware systems currently
available have a limited ability to scale with mission needs. This thesis
addresses the integration of smaller form factor CDHS modules used for
nanosatellites with the larger counterparts that are used for larger missions. In
particular, the thesis discusses the interfacing between Modular Computer
Systems based on Open Standard commonly used in large spacecrafts and
PC/104 used for nanosatellites. It also aims to create a set of layers that
would represent a hardware library of COTS-like modules. At the beginning,
a review of related and previous work has been done to identify the gaps in
previous studies and understand more about Modular Computer Systems
based on Open Standard commonly used in large spacecrafts, such as cPCI
Serial Space and SpaceVPX. Next, the design requirements have been set to
achieve this thesis objectives, which included conducting a prestudy of
system alternatives before creating a modular CDHS hardware architecture
which was later tested. After, the hardware suitable for this architecture based
on the specified requirements was chosen and the PCB was designed based
on global standards. Later, several functional tests and communication tests
were conducted to assess the practicality of the proposed architecture.
Finally, thermal vacuum testing was done on one of the architecture’s layers
to test its ability to withstand the space environment, with the aim to perform
the vibration testing of the full modular architecture in the future. The aim of
this thesis has been achieved after going through several tests, comparing
between interfaces, and understanding the process of interfacing between
different levels of the CDHS. The findings of this study pave the way for
future research in the field and offer valuable insights that could contribute to
the development of modular architectures for other satellite subsystems.
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Chapter 1: Introduction

According to industry experts, the current global space economy is

capped at $423.8 billion and is expected to reach $1 trillion USD in annual

revenue by 2040 [63]. Satellites can be categorized according to their sizes

and respective mass. There are large satellites that have a mass more than

1,000 kg, medium-sized satellites having a mass of 500-1,000 kg, and small

satellites. There are weights that determine the classification of small

satellites, femto (less than 0.1 kg), pico (0.1-1 kg), nano (1-10 kg), micro

(10-100 kg), and mini (100-500 kg) [5]. Geostationary satellites, or GEO

satellites, are excellent for communication because they are always in the

same place and have zero inclination above the equator. However, MEO

satellites are between the LEO and GEO orbits, and they are used for

navigation purposes. Furthermore, satellites placed in the elliptical orbits are

used for government and military missions, while some of them can be used

for commercial purposes. Under normal conditions, it takes between 5 and 15

years to determine the need for and install an average-sized or large satellite

in the proper orbit. However, satellites in LEO orbit are usually small

satellites, which includes nanosatellites that usually have low cost of making

and are compact in size. The primary benefit of a nanosatellite, aside from its

small size and low cost, is the rapidity with which each model is developed. It

can take less than 8 months to identify a requirement and launch a

nanosatellite into orbit. The development in small satellites is continuously

emerging as there are also certain standards that are currently being

developed in experimental format for picosatellites. This type of satellites can

be used for earth observation, space observation, and telecommunications

[38]. These reasons are continuously attracting more people to invest in this

field, including not just companies, but students and researchers too.

CubeSats have become popular as these cubic structured have dimensions of
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10 cm3 per unit, mass of 1.33 kg per unit, relatively lower cost and power

consumption than larger ones, and allowing the use of COTS (commercial

off-the-shelf components) [36]. A satellite’s Command and Data Handling

System (CDHS) is a critical component of the satellite. The CDHS is

considered as the brain of the satellite as it is responsible for controlling and

coordinating the various subsystems and components on the satellite, as well

as for processing and transmitting the data that the satellite collects. The

CDHS consists of several elements as shown in Figure 1.1. Some of these

units have their own CPUs, such as the Radhard platform controller,

Instrument Control Unit (ICU), Mass Memory (provides a file system for

payload data), Star Tracker, and GPS receiver. While other units without

CPUs are the S-Band communication, X-Band Downlink, Antenna Control,

and Remote Interface Unit that is used to connect all kind of sensors and

actuators of the spacecraft. There are also different communication links that

connect components with the CDHS and also that connect the CDHS with

other subsystems within the satellite. These components are typically

interconnected using a computer bus architecture, such as SpaceVPX or cPCI

Serial, which allows for efficient communication and data transfer between

the different subsystems. Additionally, software defined payload computers,

which benefit from a modular architecture due to the growing demand for

on-board computing and processing flexibility throughout the mission

lifetime (e.g., change of protocols or algorithms), are useful to payload

computers. The hardware configuration can be adjusted in accordance with

the sensor and required processing power thanks to a modular architecture. In

software or firmware, the exact mission requirements are implemented [22].

The CDHS has several types of communication protocols used for on-board

interfacing between components and other protocols used for high speed

board-to-board interfacing. The conventional on-board communication
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protocols are I2C, UART, SPI, and CAN. However, the high speed

board-to-board communication protocols are PCIe, Ethernet, Rapid-IO, and

SpaceWire.

Figure 1.1: Command and Data Handling System Architecture of a Satellite

This rapid development in the space industry has led to increasing the

demand for high-performance computer systems on board space missions

applications, such as artificial intelligence and machine learning are drivers of

the need for higher on-board command and data handling requirements.

Consequently, a modular Command and Data Handling System (CDHS) is

required in order to manage the complexity of future CDHS hardware. The

CDHS serves as the satellite’s brain, controlling all of its operations. Among

its functionalities are data management, data preparation for transmission to

the earth, command maneuvers, and autonomous monitoring and response to

a wide range of potential on-board issues [30]. Currently, CDHS hardware

architectures have a limited ability to scale with mission needs. However,

several modular standards began to introduce the concept of modularity in

space applications where they aim to reduce the satellite development time

and expenses. Despite the plethora of works on modular satellite systems, as
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highlighted in section 1.1, to the best of our knowledge, there is no

consolidated article that provides a comprehensive survey of modular CDHS.

This thesis aims to provide modular CDHS hardware architectures that allow

interfacing between up to four layers. This also includes interfacing between

PC/104 based computing layers and cPCI based systems. We also aim to

explore high data rate interfacing options. To do that, we look at systems

level perspective of CDHS, particularly exploring their modularity aspects.

Also, we answer some research questions that can provide insights about the

need for modularity in satellites, for example, what is the importance of

modularity, what are the benefits of modularity, and what modularity aspects

can be implemented. Next, we discuss the different satellite modular

standards and compare among them in terms of interfaces for the user to

utilize, main software used in each of them, the scale of projects these

standards are implemented in, and the fault tolerance schemes adopted in

these standards. After, we identify several satellite missions that adopted

modular architectures, going over the aspects of modularity implemented in

each of them, while including brief background information about the

missions, and focusing on the CDHS that is used in each of them.

Furthermore, we present the data interfaces used in satellite systems, covering

both, the conventional on-board communication interfaces and the high speed

board-to-board communication interfaces, as well as comparing between

different connectors used in the market currently to achieve such

communication. Finally, we present some future improvements that can help

in the development of the space field.

1.1 Related Work

The Modular Satellite Systems literature includes several review

articles, as listed in Table 1.1. The application of product architectural
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selection theory to small satellites, particularly the feasibility of adopting

modular platform architecture for spacecraft is discussed in [70]. However,

some concepts discussed in this paper might be outdated, as the study was

published back in 2005, and this paper does not provide comprehensive

insights on the architectures that are currently implemented. Two small

satellites that were built using various methods were the subject of another

study published in 2010 [51], which addressed the design challenges. The

first one (PiCPoT) had a "custom" design because it was created in

accordance with a precise set of criteria that identified the satellite’s

dimensions and functionality. The second one (ARaMiS), rather than a single

satellite, represents an architecture. A fully modular approach results in the

fabrication of totally reusable units (the "tiles"), allowing for the construction

of a range of small satellites with varying sizes, weights, and functionalities.

Within the MAESS-2006 initiative, "Regione Piemonte" is funding this

research. Both projects have some issues in common, including: a focus on

education, as master’s and doctoral students participate in the design teams,

and final projects often develop specific units or subsystems; and the use of

commercial devices (COTS), with careful selection and design decisions to

achieve the required reliability. Furthermore, the developers of the CubeSat

Trailblazer, a 1U SPA-only spacecraft, launched in 2012 as a testbed for SPA

technology, have discussed their experience. This included presenting the

simplifications associated with software development of a Command and

Data Handler (CDH) and the mechanisms of self-organization for

independent modules as a cooperating communications system [31]. To

increase the interoperability of spacecraft components, another article

suggests that the space community create and adopt a global standard for

spacecraft modularity. A global industry consensus standard for open and

modular spaceship architecture will promote commerce, eliminate regulatory
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hurdles to the market, and ultimately boost consumer value and the

profitability of the space industry. This concept paper outlines the following

topics: (1) the objectives of an SUMO standard and how the space

community will benefit from it; (2) background information on spacecraft

modularity and relevant existing standards; (3) the proposed technical scope

of the current standardization effort; and (4) a methodology for developing an

SUMO standard [13]. The design and construction of "Modular" and "Open"

satellite buses and mission payload, as well as practical design concerns

related to the usage of the Modular Open System Approach, are covered in

[44], which was published in 2020. For typical commercial, civilian, and

military satellite systems, existing modular Bus and mission payload

architectures are reviewed. The chapter presents opinions from the space

industry on "Open" versus "Closed" interface design and discusses the

difficulties with Open System Architecture (OSA) approach employing

MOSA principles. The system interfaces covered in this chapter include

those that are internal to the satellite bus and mission payload (PL), between

the bus and the payload, and external to both. This review can be really

beneficial for the development of modular satellite system architecture;

however, it is considered as a broad review as it focuses on the satellite buses

and interfaces, unlike our review which dives into the details of the subsystem

architecture of the CDHS.
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Table 1.1: Overview of the existing surveys

Paper Title Year Area of focus
Modular Platform Architecture
for Small Satellites: Evaluating
Applicability and Strategic Issues [70]

2005
Investigating the feasibility of adopting modular platform
architecture for spacecraft, specifically small satellites, through
the application of product architectural selection theory.

Design Solutions for Modular
Satellite Architectures [51] 2010

Discussing the implementation of a
modular satellite design in satellite missions.

The advent of the PnP
Cube satellite [31] 2012

Exploring the development process of an SPA-only single-unit
small satellite. Specifically, focusing on the simplifications
achieved through the software development of a Command and
Data Handler (C&DH) for the satellite.

Development of a space universal
modular architecture (SUMO) [13] 2013

Suggesting the development and implementation of a standard for
spacecraft modularity aiming to enhance the interoperability of
different spacecraft components.

Future Satellite System
Architectures and Practical
Design Issues: An Overview [44]

2020

Examining current and forthcoming patterns in the development
and construction of satellite buses and mission payloads with a
focus on "Modular" and "Open" approaches, as well as exploring
practical design challenges.

1.2 A Review on Modular Command and Data Handling Systems

Many CDHS hardware architectures lack the appropriate level of

modularity to enable scalability based on mission requirements. However,

several modular standards began to introduce the concept of modularity in

space applications where they aim to reduce the satellite development time

and expenses, as well as to add further functionality to the satellite system

with minimal or no adjustments done on the main satellite bus.

The single biggest determinant in deciding a product’s flexibility and which

attributes can be maximized is its architecture, which describes how its

functions, interfaces, and components are specified [70]. Modularity is the

ability to add additional features with the minimal need for customization.

Applying modular architectures in satellites would have lots of advantages on

subsystem level and the satellite as a whole. This is especially done in

satellite constellations, where several satellites are launched to be operated

collaboratively, each containing minimal requirements. Therefore, following

modularity can lead to a significant reduction in the associated costs [61].

The following are some of the modular CDHS that were developed along

with some of the missions associated with them for technical demonstration.
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1.2.1 Space Plug-and-Play Avionics (SPA)

The Space Plug-and-Play Avionics (SPA) is a modular approach to

developing satellite hardware and software architectures. It offers a way for

developers to customize their architecture or use pre-developed solutions

according to their needs. This approach allows for self-discovery and

self-configuration of heterogeneous Plug-and-Play (PnP) networks where

components can communicate without prior knowledge of the corresponding

component’s location or the type of interconnection network it uses [35]. The

SPA technology supports five different subnets with their unique capabilities,

including I2C, USB, SpaceWire, Optical, and local UDP sockets. However,

no single subnet fulfills all the requirements for a SPA subnet, and each must

be supplemented in its way [39]. The SPA network has standardized

interfaces in usual software communication and network layers, such as

RS-422, shown on the left side of Figure 1.2, which provide several benefits

over typical RS-422 software, shown on the right side [12]. The modular,

reconfigurable SPA interface can result in substantial cost and schedule

savings during development and testing [40].

Figure 1.2: RS-422 software with additional specifications provided by SPA
(Left) vs Typical RS-422 software (Right)
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During the AFRL TacSat-3 spacecraft mission, the Spacecraft Avionics

Experiment (SAE) was tested as a secondary experiment to showcase the SPA

technology. The SPA interface was modular and reconfigurable, providing

significant cost and time savings during SAE development and testing. The

SAE flight experiment consisted of two distinct interfaces, the Smart Deck

for SPA-U devices and the Intelligent Power and Data Ring (IPDR) PnP

interface for all other sensors [12]. The PnPSat-1 mission was also planned to

demonstrate the SPA technology, providing a standardized small spacecraft

bus that can be quickly fitted with prefabricated modular sensors and avionic

modules. The PnPSat-1 mission was expected to launch in 2008 on a

Falcon-1 launch vehicle, but it was not successfully developed on time [65],

serving only as an engineering model for the development of the Modular

Space Vehicle (MSV) satellite [17].

1.2.2 Modular Architecture for Robust Computing (MARC)

The main objective of the Modular Architecture for Robust Computing

(MARC) project is to demonstrate the basic characteristics of a reliable and

distributed avionics system that uses a SpaceWire network [23]. The

SpaceWire network used in MARC is centered around a High Flexibility

Cluster (HFC), consisting of two 8-port routers that provide redundancy.

Each module of the HFC is connected to both routers to support the failure of

one router in the cluster. The HFC includes four modules that can perform

any task that requires a network interface, including processing, memory, and

I/O [57]. Additionally, it has four spare ports, each with a redundant

SpaceWire link that can connect to clusters or other system components, such

as the TMTC system or EGSE. The HFCs can be connected in different

topologies, and the number of 8-port routers can be increased to increase bus

bandwidth. MARC uses five types of SpW-modules to meet the basic
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platform and payload computing requirements: I/Os Module (IOM),

Telemetry/Telecommand Module (TTM), Core Computing Module (CCM),

General Computing Module (CGM), and Memory Module (MM), as

illustrated in Figure 1.3. The project applies a specific fault-tolerance method,

implementing an n+m redundancy approach to processing modules, rather

than the traditional 2n approach. This method takes advantage of the other

features of GenFAS, a decentralized PUS-based data handling onboard

software architecture, based on the SOIS and SpaceWire communication

specifications [22].

Figure 1.3: MARC SpW High Flexibility Cluster (SpW-HFC)

1.2.3 Integrated Modular Avionics (IMA)

Integrated Modular Avionics (IMA) is a system architecture commonly

used in aircrafts that allows multiple independent functional chains to share a

common computing resource while protecting each application from

interference through memory protection strategies and controlled

communication channels [49]. This architecture has caught the attention of

the European Space Agency (ESA), which has proposed the use of Integrated

Modular Avionics for Space (IMA-SP) in spacecraft flight software

architecture. This would increase the reliability and security of space systems

while improving the efficiency of software development and validation

processes by integrating software partitioning technology [60]. The IMA-SP
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could also benefit from using existing ARINC standards such as ARINC 429

Networking, ARINC 650, ARINC 651, and ARINC 653. While IMA has not

yet been fully integrated into space applications, a similar standard, cPCI

Serial Space, has been successfully implemented in large scale satellites,

showing the potential for IMA-SP integration in the space industry [50].

Figure 1.4: Integrated Modular Avionics Architecture

Table 1.2 shows a comparison between the three modular architectures

mentioned above.

1.2.4 AraMiS

The AraMiS project was developed by a team of researchers at Turin

Polytechnic, with the goal of creating a fault-tolerant system that uses

commercial-off-the-shelf (COTS) components to keep costs reasonable. To

achieve this, the project identified the most critical subsystems, including the

mechanical subsystem, on-board processing subsystem (CDHS), power

management subsystem (EPS), telecommunication subsystem, payload

support, and ground segment [10]. The system uses an intelligent tile-based

modular architecture, with inner tiles containing the on-board processor and

payload support, and outer tiles including the power management and
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Table 1.2: Detailed Comparison Between SPA, MARC, and IMA

SPA [35] MARC [23] IMA [49, 60]

Voltage
Interfaces 28v and 5v

3.3v and 5v
(Additional 1.8v
can also be
supplied)

5V is required
(An extra supply of
+/-12V is needed
only if required
by mounted PMC
module)

Data
Interfaces

– SPA-O
– SPA-S(LV)
– SPA-U
– SPA-1

– UART
– CAN
– I2C
– SLINK
– SpaceWire

–Ethernet
- AFDX

Software

xTEDS
(extended
Transducer
Electronic
Datasheets)

GenFas Software
(based on CCSDS-
SOIS Architecture)
including FDIR
Manager

ARINC 653
(Avionics
Application
Software
Standard Interface)
operating system
specification

Scale of
Projects

Nano and Small
Scale Satellites

Small and Medium
Scale Satellites Aircrafts

telecommunication subsystems. The CDHS is designed to perform regular

tasks such as storing data, executing commands, and controlling payload

boards, while also utilizing a RAID-1-like storage system for radiation

hardness. The On-Board Computer (OBC) is triple modular redundant and

can correct Single Event Upset errors. The project’s design enables graceful

performance degradation while still keeping costs reasonable.

1.2.5 PiCPoT

After the successful AraMiS project, Turin Polytechnic started another

student nanosatellite project called PiCPoT, which has a modular architecture

and uses Commercial Off-The-Shelf (COTS) components for every system.

The goal of this satellite is to transmit on-board telemetry measures, such as

temperature, voltage, and current of solar panels and batteries, and photos

taken with commercial cameras. Due to budget restrictions, the design had to

be radiation-hardened by using C-MOS technology, but an anti-latch-up

system was added to monitor the supply current of all ICs [16]. PiCPoT has a
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special CDHS that consists of two independent subsystems, each with its own

On-Board Computer, power supply (Li-Po and Ni-Cd batteries charged by 5

GaAs solar panels with 5 MPPT), time scheduler, and RF module (437 MHz

and 2.44 GHz). One of the two board processors is called ProcA, which is

responsible for acquiring analog signals from the power supply board and the

number of latch-up events from the power switch board. The acquired signals

are selected using an analog multiplexer controlled by a processor through an

address decoder implemented with a Xilinx CPLD. The collected data is

stored in a serial FERAM, and then telemetry packets are created using this

data [15]. The battery status is checked, and the selected battery is charged

using the solar panels. After completing all the housekeeping operations,

ProcA waits for incoming commands from the ground station. If a correct

command is received, the corresponding operation is performed; else, the

housekeeping telemetry packet is sent as a beacon, and the "Switch-Off"

command is sent to the Power Switch board to turn off the OBC. The second

board processor is called ProcB, which has a different design from ProcA to

ensure fault-free operation of at least one of them. ProcB uses the integrated

FLASH memory of its MSP430 microcontroller to save space in the board, an

external transceiver housed in the Tx-Rx board, and is connected to an

electric motor with a reaction wheel to add active spin-axis stabilization [16].

Both ProcA and ProcB have the same commands, with only the addition of

the reaction wheel command on ProcB.

1.2.6 BRAC Onnesha

BRAC Onnesha is a nanosatellite project that was built in Bangladesh

in collaboration with the Kyushu Institute of Technology Birds-1 program.

Originally, the satellite was planned to have a unique design consisting of six

individual pyramid-shaped units that could be assembled to form a central
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space for the battery. This modular design would allow for equipment to be

set up on all six sides, making it easier to test each mission as a unit and

shorten the development period [28]. The satellite also uses reaction wheels

to achieve constant repositioning and maximize its exposure to the sun.

However, the final design was a 1U CubeSat that was part of the Birds-1

program constellation, which provided valuable experience for students and

allowed for communication with seven ground stations across several

countries [24].

1.2.7 iBOSS

The iBOSS project, supported by the German Aerospace Center DLR,

has two main components: modules containing both structural and functional

elements and a standardized 4-in-1 interface for docking, power, data, and

thermal interconnection. The project aims to enable in-orbit spacecraft

servicing, as well as the replacement and improvement of standard in-orbit

infrastructure elements. This will allow the fast development of iBOSS-based

flexible space systems using prequalified modules and interfaces [32].

However, a major challenge is integrating a highly functional interface

mechanism within limited building space while keeping the overall module

dimensions reasonable. To ensure robotic servicers can manipulate these

interfaces, mechanical interface designs are evaluated experimentally.

Additionally, computer-aided satellite design using a module catalog makes

the satellite design process more manageable by applying modularity [54].

1.2.8 SNAP-1

The Surrey Space Centre (SSC) and Surrey Satellite Technology Ltd

(SSTL) designed and built the UK’s first nano-satellite, SNAP-1, to

demonstrate that a fully agile and sophisticated satellite can be constructed
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rapidly and inexpensively using a modular, COTS-based design philosophy.

The design philosophy relied on standardizing the electrical and mechanical

interfaces of each module, which included regulated 5V and raw battery

power connections, a single bidirectional Controller-Area-Network (CAN)

bus for data transfer, and a standard 9-way D-type connector in all modules.

In addition, each module included a standard 8-bit CAN-micro-controller,

except for the on-board computer (OBC) and machine vision system (MVS)

modules which were equipped with 32-bit StrongARM SA1100 RISC

processors [66]. The SNAP-1 program defined a standard mechanical format

for hosting standard Eurocard printed circuit boards, which allowed

mechanics, avionics, and payload design to occur in parallel and enabled

procurement to begin early in the program. The mechanical structure of

SNAP-1 consists of three sets of three electronic module boxes connected

together to form a triangular structure. The success of the SNAP-1 mission

demonstrated that sophisticated mission objectives could be achieved using

low-cost, modular, COTS-based nano-satellites constructed rapidly (in less

than 9 months) [67].

1.2.9 UWE-3

The UWE-3 CubeSat, built by University of Würzburg students and

funded by the German Federal Ministry of Economics, was launched in

November 2013. The satellite’s goal was to create a simple and robust

infrastructure for developing, integrating, testing, maintaining, and replacing

subsystems during flat-sat development or flight model integration. This was

achieved by having a generalized backplane that connects boards with

standardized connectors [7]. The UWE-3 bus includes redundancy features

such as a dual-redundant low power onboard computer, a redundant and

distributed electrical power system, a redundant UHF communication system
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with separate monopole antennas, and an attitude determination and control

system. The OBC enhances reliability by implementing two redundant

processing units on a single subsystem board, using ultra-low power

microcontrollers optimized for housekeeping and basic operations [8]. The

design also reduces the target for radiation-induced errors and improves

robustness through code execution from flash memory, warm-backup

schemes, and independent toggle watchdog units. Additionally, the redundant

devices can cross-connect and provide mutual aid and re-configuration if

required [9].

1.3 Overall Comparison between the Surveyed Modular Architectures

Significant advancements have been made in the field of modular

architectures for a variety of applications, including avionics, robust

computing, and space systems. To give a thorough overview of the

modularity features of various modular architectures, such as Space

Plug-and-Play Avionics, Modular Architecture for Robust Computing,

Integrated Modular Avionics, AraMIS, PiCPoT, BRAC Onnesha, iBOSS,

SNAP-1, and UWE-3, Table 1.3 has been created. Standardization stands up

as a key component among the examined factors, with Integrated Modular

Avionics and Space Plug-and-Play Avionics both providing standardized

interfaces. Another important factor is modularity, which is found in

abundance in the Space Plug-and-Play Avionics, Modular Architecture for

Robust Computing, BRAC Onnesha, and UWE-3 systems. The sizes of the

architectures vary, with PiCPoT and UWE-3 emphasizing smaller form

factors and Space Plug-and-Play Avionics and Modular Architecture for

Robust Computing focused on larger systems. Each architecture has a

different level of interconnection, scalability, and power consumption. Every

system demonstrates distinctive qualities, such as diverse power consumption
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rates, scalability possibilities, and various connectivity types, such as serial,

Ethernet, PCIe, SPI, I2C, and UART. The systems’ different data rate

capabilities offer flexibility to meet the needs of various applications. The

ecosystem that surrounds each architecture is also in a state of development

and availability that varies. While AraMIS, PiCPoT, BRAC Onnesha, and

iBOSS are in the development stage, Integrated Modular Avionics benefits

from an established ecosystem. All of the aforementioned architectures have

a limited commercial availability, which highlights the need for more

development and market penetration.

It is crucial to remember that the data in this table and the discussion in this

section is only a broad overview, and that the details of how each architecture

has been implemented and advanced may have an impact on its qualities and

applicability for certain applications, as mentioned in the sections that

describe each of the modular architectures from satellite development

perspective, focusing on Nano and Micro Satellites.
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Table 1.3: Overall Comparison between the Surveyed Modular Architectures

Architecture
Standard-

ization Modularity Size
Scal

ability
Inter-

connect Ecosystem
Application
Suitability

Comme
rcial
Avail
ability

Fault
Toler-
ance

Plug-
and-
Play
Capa

bilities
Space

Plug-and-Play
Avionics

Yes High
Small to

Large High
Serial,

Ethernet,
etc.

Expanding
Satellites,
Spacecraft Limited Yes Yes

Modular
Architecture
for Robust
Computing

No High Large High
Ethernet,
PCIe, etc. Developing

Robust
Computing

Systems
Limited Yes No

Integrated
Modular
Avionics

Yes High Large High
Serial,

Ethernet,
etc.

Established
Avionics
Systems Limited No Yes

AraMIS No Medium Medium Medium Ethernet Developing
Military,

Aerospace Limited Yes No

PiCPoT No Medium Small Low SPI Developing
IoT

Devices Limited No No

BRAC
Onnesha Yes High Small High I2C, SPI Developing

Small
Satellites Limited No Yes

iBOSS Yes Medium Small High UART Developing
Small

Satellites Limited No No

SNAP-1 Yes High Small Medium I2C Established
Nano

Satellites Limited No No

UWE-3 Yes High Small Medium I2C Established
Nano

Satellites Limited No No
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1.4 Modularity Standards

1.4.1 Data Interfaces to Support Modularity

There is a set of communication protocols that allow the command and

data interfacing within subsystems and between systems. There

communication protocols are categorized into typical command and data

interfaces and high speed communication protocols.

1.4.2 Low Speed Communication Protocols

The Inter-Integrated Circuit (I2C) is a type of serial communication bus

that is often used for connecting slower peripheral integrated circuits (ICs) to

processors or microcontrollers over short distances [58]. It is a synchronous

protocol, meaning that data is sent using a shared clock signal between the

sender and receiver, and can support multiple devices connected to a single or

multiple master devices. The I2C is similar to other buses like UART and SPI,

but combines their best features by using only two wires to transmit data like

UART and synchronizing output and input using a clock signal like SPI. The

UART protocol is also a type of asynchronous serial communication that uses

two signals, Tx and Rx, to communicate, and can support maximum data rates

of up to 460 kbps [71]. Another protocol, the Controller Area Network (CAN),

was initially developed for the automotive industry and is used for time-critical

functions, supporting data rates of up to 5 Mb/s, if it is CAN FD [52]. The

Serial Peripheral Interface (SPI) is another type of data bus that is similar to

I2C, but it uses a dedicated slave select wire per device and is a full duplex

bus, meaning that data can be transmitted in both directions simultaneously

[58]. The data rate of SPI is limited by the clock speeds of the master or slave

device and can be up to several hundred megabits per second, but it is best to

stay at least one order of magnitude below the slowest controller clock speed

for robustness.
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These interfaces are compared in terms of speed, type of duplexity, and

whether being synchronous or asynchronous. As illustrated in Table 1.4, we

can identify that in terms of speed, SPI has the highest, CAN bus comes next,

then UART and I2C. Furthermore, the I2C is half-duplex while the rest are

full-duplex. The rest of the details are included in the table.

Table 1.4: Comparison Between Low-Speed Communication Interfaces

I2C [71] UART [58] SPI [71] CAN [52]
Speed 3.4 Mbps 5 Mbps 60 Mbps 5 Mbps
Protocol
(Sync /
Async)

Synchronous
Asynchronous
(Serial
protocol)

Synchronous
Synchronous
(Multimaster
protocol)

Duplex Half duplex Full duplex Full duplex Full duplex

Types of
Lines /

Ports

Two Lines:
SCL (serial
clock line)
SDA (serial
data line
acceptance
port)

Two Lines:
TX
RX

Four ports:
MOSI,
MISO,
SCLK, and
NSS

Two Lines:
CAN High
CAN low

1.4.3 High Speed Communication Protocols

Also, in terms of high speed communication protocols, Spacewire,

Ethernet, RapidIO, and PCIe are used. SpaceWire is a point-to-point data bus

(directly connects two devices) that is designed by the European Space

Agency (ESA) specifically for space applications. One of the devices

connected by SpaceWire can be a router which connects several other devices

via SpaceWire or other data busses [46]. SpaceWire is also a a full duplex bus

that uses differential signaling and has separate data and strobe signal,

supporting data rates of up to 400 Mb/s [47]. However, due to its higher

power consumption when compared to I2C and other low power busses,

SpaceWire is less suitable for small factor satellites, such as CubeSats [14].

Ethernet is another protocol used for high speed interfacing, as it is the

traditional technology for connecting devices in a wired local area network

(LAN) or wide area network (WAN) allowing them to transmit data so other
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devices on the same LAN or campus network can recognize, receive and

process the information. An Ethernet cable is the physical, encased wiring

over which the data travels, where it is used by connected devices that use

cables to access a geographically localized network, instead of a wireless

connection. When compared to other technologies, Ethernet is less

vulnerable to disruptions making it highly reliable and secure. It can also

offer a greater degree of network security and control than wireless

technology because devices must connect using physical cabling [68]. A third

protocol used for high speed interfacing is Rapid-I-O, which is a data bus for

time critical computer systems with extreme performance requirements. The

throughput of this bus is up to 10 Gb/s for a single lane and can be multiplied

by increasing the number of lanes [21]. Rapid-I-O is most commonly used in

the terrestrial telecommunications industry, such as in equipment at cellular

towers. The performance and its robustness make this point-to-point data bus

interesting for some dedicated space instrumentation with very high

performance requirements [6]. The fourth protocol is Peripheral Component

Interconnect Express (PCIe), which is a high-speed serial bus standard that is

commonly used in computers and other electronic devices to connect

peripheral devices to the motherboard. PCIe provides a high-speed, scalable,

and flexible interface that allows for efficient communication and data

transfer between different components in a system. In satellite applications,

PCIe is often used in conjunction with a bus architecture such as SpaceVPX

or cPCI Serial Space. This provides a standardized and scalable interface that

allows for easy integration and interoperability between different subsystems

on the satellite. PCIe is particularly well-suited for use in satellites due to its

high data rates and being configurable, supporting a wide range of data rates,

from 4 Gb/s for a single lane and can be multiplied by increasing the number

of lanes, reaching up to 64 Gb/s [43]. This allows satellite designers to use
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PCIe to support a wide range of applications and subsystems, from low-speed

peripherals such as sensors and cameras, to high-speed data transfer and

processing systems.

Table 1.5: High Speed Communication Protocols

Ethernet [68] SpaceWire [47] Rapid-IO [21] PCIe [43]

Bandwidth 10 Mbps to
400 Gbps 2 to 400 Mbps

25 Gbps/lane,
100 Gbps/port

4 Gbps/lane,
64 Gbps/port

Duplex Full-duplex Full-duplex Full-duplex Full-duplex
Links Point-to-point Point-to-point Point-to-point Point-to-point

Packet Size 1500 bytes 4 to 64 bytes 4 to 64 bytes
32 to 512
bytes

Ethernet, SpaceWire, RapidIO, and PCIe are all high-speed

communication protocols that are commonly used in computer networking

and data transfer. Each of these protocols has its own characteristics in terms

of packet size, bandwidth, and robustness, and they are designed for different

applications and environments. As illustrated in Table 1.5, we can identify

that each of these protocols has its own characteristics in terms of packet size,

bandwidth, and robustness, and they are designed for different applications

and environments. Ethernet is a widely used networking protocol with a

relatively large packet size and robust error checking and recovery

mechanisms, while SpaceWire is a highly reliable protocol designed for use

in space applications with a small fixed packet size. RapidIO and PCIe are

both high-speed interconnect protocols with a wide range of packet sizes and

built-in error checking and recovery mechanisms.

1.4.4 Connectors

In satellite systems nowadays, there is an increasing demand for high

speed connectors and cables for board-to-board interfacing, as they carry data

and power between different subsystems of a spacecraft or satellite. As a

result, space-qualified connectors must meet demanding standards such as
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radiation resistance, high temperature and vacuum conditions, and long-term

reliability. The connections in Table 1.6 are some of the most widely utilized

in space applications. Because of its excellent reliability and robustness, the

D-Subminiature connector is commonly utilized in space applications.

Another typical connector that can withstand high vibration and shock loads

is MIL-C-55302. MIL-C-83513 Space Grade is a small connector that is

extremely dependable and can be utilized in high-density applications.

MIL-C-38999 is a tough connector that can withstand extreme temperatures

and has a good radiation resistance. Newer connector types, such as the PCIe

connector, SODIMM, and Bergstak Mezzanine connector, are also included

in the chart, and can provide high-speed data transmission rates for space

applications [20]. These connectors’ transmission speeds can vary depending

on their model and setup. As a result, choosing the right connector

necessitates careful consideration of various criteria, including data transfer

rate, contact arrangement, mating cycles, size, and environmental

requirements.

Table 1.6: Comparison between space qualified connectors

Connector
Name Pitch

Number
of

Contacts

Voltage
Rating

Current
Rating

Temp.
Range

Transfer
Speed
Limit

(Gbps)

Micro-D [27] 1.27mm 9-51 200V 3A
-55°C to
+125°C 1.5

Nano-D 0.635mm 9-65 200V 1A
-55°C to
+125°C 6

D-Subminiature 2.54mm 9-104 1000V 5A
-55°C to
+125°C 6

Space Grade
MIL-C-55302 2.54mm 6-96 200V 5A

-65°C to
+125°C 6

Space Grade
MIL-C-83513 1.27mm 9-100 200V 3A

-65°C to
+125°C 10

Space Grade
MIL-C-38999 10-22mm 3-128 200V 23A

-65°C to
+175°C 3

PCIe [20] 1.00mm 36-164 30V 1A
-55°C to
+125°C 32

SODIMM 2.54mm 144-260 200V 1.5A
-55°C to
+85°C 21.3

BergStak 0.50mm 20-240 50V 0.5A
-55°C to
+85°C 6
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1.5 Standard Architectures

CPCI Serial Space and SpaceVPX are two different technologies that

are used in high-performance computing applications, such as in aerospace

and defense. cPCI serial space is a type of computer bus used in some types

of industrial and commercial systems. It is an extension of the CompactPCI

(cPCI) bus, which is a standardized format for computer boards and systems

that is widely used in a variety of applications. CPCI Serial Space is based on

the PCI Express (PCIe) standard and is designed to provide a high-speed,

serial communication link, allowing devices to communicate with each other

using serial protocols such as RS-232 and RS-485 [25]. This enables the bus

to support a wider range of devices and communication methods, making it

more versatile and flexible than the original cPCI bus. CPCI Serial Space

differentiates between three slot profiles: Power, System, and Peripheral,

along with an additional Shelf Controller, which is not part of the standard, as

illustrated in Figure 1.5. The Controller Switch Module and Switch Module

are typically used in system slots, while the Data In Module, Storage Module,

Processing Module, and Controller Module are typically used in peripheral

slots. Each peripheral slot is connected to the C&C bus of the corresponding

system slot. So, a dual star architecture is put into practice. If one component

fails, the backup component takes over. A full mesh design, in which each

slot is connected to every other slot (up to 8) using four differential pairs, is

used by cPCI for high-speed interconnects. It is feasible to send data at a 10

Gbps rate over the backplane. Also, a dual star architecture is also feasible

when used with a switch. Any of the peripheral slots may get the switch.

Each of the slots has six connectors. The connector P6 is given access to the

entire mesh network. The pins for the SpaceWire star architecture are

provided by the connectors P2, P4, and P5 in a system slot, therefore each

peripheral slot is connected to the system slot by connector P2 [34]. The
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redundant CAN bus is also connected via the connector P2. P1 has access to

all power and management signals. Up to 180 user-definable pins are

provided by each peripheral slot. These could be utilized for peripheral slot

connectivity or back connectors.

Figure 1.5: CPCI Serial Space slot profiles

However, SpaceVPX is a system architecture for space-based

computing platforms that is based on the VPX (VITA 46) open standard [26].

VPX is a standard for modular embedded computing systems that is widely

used in military and aerospace applications. SpaceVPX builds on this

standard to provide a scalable and flexible architecture for space-based

computing platforms, such as satellites and spacecraft. The goal of

SpaceVPX is to enable the development of more advanced space systems that

can be easily integrated, updated, and expanded over time. The unit is known

as Space Utility Module (SpaceUM) in Space VPX [48]. The goal is

comparable to that of the cPCI shelf controller. System management,

reference clocks, reset, and power signals are all routed over the Switched

Utility Plane, and the Space Utility Module switches between redundant

units. Space VPX differentiates between 9 slot profiles: Power, DataIn

Module, Processing Module, Storage Module, DataOut Module, Controller

Module, Controller Switch Module, DataSwitch Module, and Space Utility
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Module, as illustrated in Figure 1.6.

Figure 1.6: SpaceVPX slot profiles

In summary, cPCI Serial Space and SpaceVPX are two technologies

that are used in high-performance computing applications, but they have

different architectures, interfaces, form factors, and levels of scalability. Here

is a detailed technical comparison between the two:

• Architecture: CPCI Serial Space is a bus architecture that adds a

high-speed serial bus to the traditional parallel bus architecture of cPCI.

SpaceVPX, on the other hand, is a modular architecture based on the

VITA 46 (VPX) standard.

• Interface: CPCI Serial Space uses the PCIe interface for the serial bus,

which provides high-speed communication between different

components of a system. SpaceVPX, on the other hand, uses the Serial

RapidIO (SRIO) interface for high-speed communication between

modules.

• Form factor: Both CPCI Serial Space and Space VPX use the 3U form

factor, which is a standard size for electronic modules that are used in
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computer systems. Also, both of them can also be of the 6U form factor,

which is 2.7 times larger than the 3U form factor and allows for more

complex and powerful electronic systems.

• Scalability: Both CPCI Serial Space and SpaceVPX are scalable

technologies, meaning that they can be easily expanded to support

additional components or modules. However, the modular architecture of

SpaceVPX allows for more flexibility and scalability compared to the bus

architecture of CPCI Serial.

Table 1.7: Backplane Standards: CPCI Serial Space vs SpaceVPX

Criteria cPCI Serial Space [25] SpaceVPX [26]

Backplane Layout
(Number of slots)

Number of
peripheral slots

varies from 0 to 7 [34]

Number of slot types per
backplane may vary for

different configurations [34]
Form factor 3U / 6U 3U / 6U

Connector

Airmax VS
(Proven in harsh

environment,
lower complexity,

and lower cost)

MultiGitg RT
(Proven in space)

Total number of
pins per board

Up to 184 pin
pairs (3U/6U)

Up to 192 pin pairs and
48 single-ended (6U)

Command &
Control link

SpW dual star; switch
fabric in system slot

SpW dual star; switch
fabric in dedicated slot

C&C or
Management bus CAN, I2C I2C

Secondary Power
Voltage

12V and 5V
auxiliary voltage, POL

3.3V, 5V, 12V, 3.3V AUX,
and 48V, POL for big racks

Slot types
Power, System, and

Peripheral slots

Power, System, Control,
Payload, Storage,

and Switching slots

Power dissipation Up to 80 W per slot
Capable of dissipating more

than 80W per slot

Standardization Fully standardized
Partly standardized

(provides a lot of flexibility)
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Chapter 2: Design

The aim of this thesis is to design and implement a modular Command

and Data Handling System that includes four layers and is capable to

interface with a CompactPCI (cPCI) serial backplane, which includes both

PCIe and Ethernet interfaces. The system also has the ability to also be

modified to interface with SpaceVPX. The cPCI Serial Space standard

defines a serial interconnect system for embedded systems, which supports a

range of interfaces including PCIe, Ethernet, USB, and others. The cPCI

serial backplane provides a high-speed interconnect between cPCI serial

boards, with the PCIe and Ethernet interfaces being the most commonly used.

Figure 2.1 presents an example of cPCI-based On-board Computer

architecture that contains an ASIC, Memories, and Power converters [19].

Therefore, to apply the same thing to our architecture, we are aiming to use

the PC104-based computing layer (layer 3) as our main computing unit

equipped with the Ethernet transceiver, a daughterboard that contains the

Ethernet-to-PCIe converter (layers 1 and 2), and a 3U form factor board as

the host board (layer 4) for the other layers and contains the cPCI connectors

that are connected to the cPCI-based backplane. This 3U board would mount

an FPGA that is used for extra functionality.

2.1 Design Requirements

This section lists the design requirements and explains them. The

general architecture and the components used shall fulfill these requirements.

2.1.1 PCIe Interface

The design shall be compatible with a PCIe Gen2 x1 interface, which

has at least one data lane operating at 5 GT/s. Future generations are

preferred, but not required. To accommodate increasing data rate
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Figure 2.1: A cPCI-based On-board Computer Architecture

requirements, the lane arrangement can be expanded based on future specific

system requirements. The architecture ought to support PCIe data

transmission and reception.

2.1.2 Physical Size and Characteristics

The modular system should consist of four layers, each containing

boards of different sizes, as presented in Figure 2.2. These are the size

requirements of the four layers:

• Layer 1: This layer shall contain components of different sizes. The total

size of these components shall be smaller than the size of the layer 2 board.

• Layer 2: This layer shall contain a board of one of the M.2 expansion

cards standard sizes (ranging from 22x30x0.8 mm to 22x80x0.8 mm).

• Layer 3: This layer shall contain a board of the PC/104 standard size

(90x90x1.6 mm).

• Layer 4: This layer shall contain a board of the cPCI standard size,

following either the 3U or 6U form factor (160x100x1.6 mm).
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Figure 2.2: The physical size of the four layers
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2.1.3 Power Consumption

The design shall be operational with minimal power requirements.

2.1.4 Heat Dissipation

The design shall fit into a compact space with few cooling and heating

options, which means that the solutions shall not require active cooling or

heating.

2.2 Prestudy of System Alternatives

An examination of the possibilities that can provide the functionality

that was previously defined makes up the prestudy. The study comprises

weighing the advantages and disadvantages of the various alternatives and

choosing which one will be put into practice. The PCIe standard and data

flow between devices were studied to learn about potential solutions. When

sufficient understanding of the standard had been attained, other options for

accomplishing the needed functionality were looked into. The choices are

listed below, and the best choice is determined by comparison. The decision

is influenced by a number of factors, including: Power requirements,

solution’s complexity, components’ price, components’ physical size, and key

components’ life cycle.

2.2.1 System Sketch

To achieve this study’s objectives, a method to convert between PCIe

and CMOS/LVDS should be chosen. There are different methods that can be

used to accomplish this, while taking into account factors like cost,

complexity, physical dimensions, and longevity. The data will be supplied to

the bridge where the following actions are performed through a rapid PCIe

link: (1) The overhead is eliminated from data transmitted via PCIe before it
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is transmitted as LVDS/CMOS over a user-defined interface. (2) After

acknowledging receipt, the recipient transmits the data back to the root

complex after reinserting the overhead.

The bridge should be able to communicate quickly with many different

devices. The system sketch, with the bridge block representing the system

that manages PCIe to LVDS/CMOS conversion is shown in Figure 2.3.

Figure 2.3: The system’s high-level sketch

The possibilities are severely constrained by the requirement for a PCIe

endpoint because a sizable number of the devices on the market are only built

to support root complicated mode. Additionally, the need for data conversion

between interfaces further reduces the available options. The use of a PCIe

switch with multiple hardware bridges, which would allow each interface to

appear as a separate endpoint, was one suggested option. Due of the limited

number of hardware bridges that can handle different interfaces and the

complexity of modifying such a solution after it has been built, this idea was

finally abandoned. Therefore, only two implementation choices remained: a

Central Processing Unit (CPU) or a Field Programmable Gate Array (FPGA).

2.2.2 Potential Solutions

To achieve this thesis’ objectives, which are mainly establishing

communication between the cPCI backplane and the four layers of the
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modular CDHS architecture, there are several alternative solutions that have

to be evaluated based on their advantages/disadvantages and one of them has

to be chosen.

1. Programmable logic: FPGAs and other programmable logic are

frequently utilized for accelerating computing in high-speed applications.

Many vendors provide value-line and low-power FPGAs appropriate for

digital processing. Figure 2.4 depicts the system sketch when an FPGA is

used.

Figure 2.4: The solution’s system sketch when using a FPGA

There are several advantages of using FPGAs, such as they frequently

have a lot (100+) of GPIOs, and the majority of them allow both single

ended and differential termination choices. Some FPGAs can function as

endpoints and offer complete hardware support for all PCIe levels. It is

also possible to configure FPGAs that lack hardware PCIe capability to

support it due to the way they function [69]. To meet this requirement,

such FPGAs, with the addition of transceivers, must be able to

communicate at PCIe speeds. The higher levels are implemented using

the transceiver in conjunction with intellectual property (IP) cores. While

extremely flexible, such a method comes at the expense of FPGA logic

components. The size of the FPGA configuration and the speed of the
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programming interface both affect boot times. As a result, many smaller

FPGAs can start up faster than the 100 ms time limit specified in the

PCIe base specification [53]. A FPGA-based system can achieve high

throughput and low and predictable latency since FPGAs are typically

configured to carry out highly particular jobs. Both of these features are

desired because the bridge should provide fast communication between

the root complex and several LVDS/CMOS ports. The fact that FPGAs

may be configured to support virtually any interface is their fundamental

advantage over alternative options. FPGAs don’t, however, have the same

variety of peripherals or software-implemented interfaces. The need for a

Non-Volatile Storage (NVS) to save the settings while utilizing an FPGA

is one design consideration. The programming of FPGAs differs greatly

from MPUs and CPUs due to the operating principle, which is another

significant factor to take into account. Hardware Description Languages

(HDLs), such as Very High Speed Integrated Circuit HDL (VHDL) or

Verilog, are frequently used to program FPGAs. These languages are

very different from sequential programming languages.

2. CPU: When data processing and acquisition are necessary, a CPU is

frequently a wise choice. They have a track record of dependability and

provide fast clock speeds, which are essential for the bridge’s

deployment. Figure 2.5 depicts a system sketch for a bridge that uses a

CPU. The SSI to LVDS/CMOS bridge block represents an optional

interface that, if the CPU is unable to do so directly, enables

communication with the external contact [56].

An operating system like Linux can be used with many CPUs. This

indicates that there are more programming language options available.

The fact that few CPUs may be used in an endpoint setup despite the fact
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Figure 2.5: The solution’s system sketch when using a CPU with native PCIe
capabilities

that many of them support PCIe is a drawback. Texas Instruments and

Broadcomm are two companies that make endpoint competent CPUs

[59]. Another problem is that LVDS output capabilities is frequently

absent from CPUs. Fortunately, lots of Central Processing Units (CPUs)

are equipped with high-speed serial interfaces, such as Quad Serial

Peripheral Interface (Quad SPI), that enable them to establish

connections with external devices capable of operating as LVDS/CMOS

interfaces.

3. PCIe to PHY interface: If the computing device lacks support for PCIe,

an integrated circuit (IC) that includes a PCIe to PHY bridge can be

employed to bridge the connection between the PCIe interface and the

computing device, as shown in Figure 2.6. This IC acts as an endpoint

device and facilitates connection to the root complex. It comprises a

Serializer/Deserializer (SerDes) consisting of a Parallel In Serial Out

(PISO) block and a Serial In Parallel Out (SIPO) block, which enables

bi-directional data transfer between a serial and a parallel interface.

Given that the current layers inside the PCIe standard are software-based,

the adoption of a PCIe PHY bridge, specifically a PCIe-Ethernet bridge

significantly expands the range of CPUs that are readily available [33].
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Figure 2.6: The solution’s system sketch when using a CPU without native
PCIe capabilities

After going through these three alternatives, there are several points

that should be taken into account when choosing the most suitable alternative

among them. The programmable logic devices such as FPGAs have various

useful characteristics and are usually used in endpoint configuration as lost of

vendors offer endpoint IP cores; however, they might not be easy to use by

programmers who are used to working with CPUs. Also, an external memory

is required to be used with FPGAs due to its extensive connectivity options.

Furthermore, the CPUs, that directly support PCIe, are strong yet complex

and slow to boot. However, a CPU, typically a microcontroller with

additional PCIe PHY bridge has relatively lower power consumption and can

satisfy the requirements mentioned above. Therefore, considering these

points, we decided that the most suitable option to consider in this design is

using a CPU, typically a microcontroller that is commonly used in CubeSat

designs along with a PCIe-Ethernet bridge to enable PCIe communication;

however, as we aim to test the PCIe connectivity through this thesis, we aim

to simulate the cPCI backplane by using an FPGA with PCIe compatibility as

an end-device.

2.3 Selection of Hardware

To choose an appropriate FPGA as well as peripheral components,

different manufacturers and product lines were compared. This part will go
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over how to identify, evaluate, and select various hardware.

2.3.1 FPGA Selection

A number of product series from several manufacturers were reviewed

in order to determine which FPGA would work best for the initial testing of the

practicality of the design, being cPCI compatible, and possibly being included

in the design in the future to add more computing power to it. The following

three FPGA producers were taken into consideration: Intel (formerly Altera),

Microsemi, and Xilinx. First, various product series were looked into, and

then particular device packages. The product series must be flight-proven and

support at least PCIe Gen 2 x1 to be considered as a potential contender. Table

2.1 lists the contenders once they were collected into a list.

Table 2.1: Comparison between flight-proven FPGAs

FPGA Manufacturer Logic
Elements

DSP
Blocks Memory Power

Consumption (W)
Stratix IV GX Intel/Altera 530K 2,520 10 GB 69
Stratix V GX Intel/Altera 1.1M 3,288 10 GB 58

Kintex-7 Xilinx 478K 1,760 4.4 MB 31
Artix-7 Xilinx 215K 740 1.5 MB 14

Cyclone V GX Intel/Altera 220K 1,288 4.3 MB 7
Cyclone 10 GX Intel/Altera 220K 1,288 4.3 MB 7
SmartFusion2 Microsemi 120K 166 1.1 MB 2.2

Zynq-7000 Xilinx 85K 220 512 MB 3.5

Among the FPGAs included, the Artix-7 stood among the other

alternatives due to its radiation resilience and low power consumption, as it is

also a cost-effective FPGA that is frequently utilized in space applications.

Numerous space missions, such as the ExoMars mission and the Mars

Atmosphere and Volatile Evolution mission, have made use of it. Artix-7 is

appropriate for a variety of space applications because it strikes a reasonable

mix between performance and price. Artix-7 provides up to 215,000 logic

cells, 740 DSP slices, and 52 Mb of block RAM in terms of performance.

This is equivalent to other FPGAs that have been used in flight, like the
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Kintex-7, Cyclone V GX, and Cyclone 10 GX. In comparison to these

FPGAs, Artix-7 also consumes less power, which may be favorable in

applications requiring limited power in space. Overall, Artix-7 stands out as a

cost-effective and dependable solution that provides a reasonable balance

between performance and power consumption, despite the fact that there are a

number of flight-proven FPGAs available for space applications.

2.3.2 Microcontroller Selection

There are several flight-proven microcontrollers that can be chosen

among based on the specific application requirements. Each microcontroller

has its own advantages and disadvantages, and the best choice for a particular

application depends on factors such as performance requirements, power

consumption constraints, available budget, and other specific features. Table

2.2 presents a comparison between the main flight-proven types of

microcontrollers, where it can be seen that the RH850 is a good choice for

safety-critical applications due to its hardware-based functional safety

features. The STM32 is a good balance between performance, power

consumption, and cost, while the MSP430 is a low-power option suitable for

battery-powered applications. The PIC32 offers high performance and a wide

range of peripherals and interfaces. According to our needs, we have decided

to use the STM32 microcontrollers due to the balanced features that they

have.

STM32 microcontrollers also have various flight-proven options to

choose among, as illustrated in Table 2.3. The STM32L4 is a low-power

microprocessor built on the ARM Cortex-M4 architecture. It provides up to 2

MB of flash memory, up to 640 KB of RAM, and a maximum operating

frequency of up to 120 MHz. Another low-power microprocessor is the

STM32L5, which is built on the ARM Cortex-M33 architecture. It provides
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Table 2.2: Comparison between flight-proven microcontrollers

MCU Architecture
Maximum
Operating
Frequency

Flash
Memory RAM Power

Consumption

RH850 32-bit RISC 400 MHz
Up to
4 MB

Up to
768 KB Low

STM32
32-bit ARM
Cortex-M 400 MHz

Up to
2 MB

Up to
512 KB Low-medium

MSP430 16-bit RISC 25 MHz
Up to

512 KB
Up to
64 KB Very low

PIC32 MIPS 200 MHz
Up to

512 KB
Up to

128 KB Low-medium

up to 2 MB of flash memory, up to 640 KB of RAM, and a maximum

operating frequency of up to 110 MHz. The STM32G4 is a high-performance

microprocessor built on the ARM Cortex-M4 architecture. It provides up to 2

MB of flash memory, up to 640 KB of RAM, and a maximum operating

frequency of up to 170 MHz. However, a heterogeneous dual-core

microprocessor built using the ARM Cortex-A7 and Cortex-M4 architectures

is the STM32MP1. It provides up to 1 GB of flash memory, up to 512 MB of

RAM, and a maximum operating frequency of up to 800 MHz. With a

maximum operating frequency of up to 480 MHz, the STM32H7

microcontroller is the most powerful in terms of performance. Additionally, it

provides up to 1 MB of RAM and up to 2 MB of flash memory.

High-performance microcontrollers with highest operating frequencies of up

to 216 MHz and 180 MHz, respectively, include the STM32F7 and

STM32F4. It is also important to mention that all of these microcontrollers

have additional security options that include memory protection and error

correction. When compared to the other flight-proven STM32

microcontrollers that are listed in the table, STM32H7 provides better

performance than most of them, with a higher maximum operating frequency

and bigger flash memory and RAM capacities, except the STM32MP1. The

STM32H7 microcontroller provides comparable optional safety features and

consumes comparable power to other microcontrollers. Therefore, as we

393939



would demand quick processing and lots of memory with lower power

consumption than what the STM32MP1 consumes, we have chosen the

STM32H7 microcontroller as our main microcontroller.

Table 2.3: Comparison between flight-proven STM32 microcontrollers

MCU Architecture
Maximum
Operating
Frequency

Flash
Memory RAM Power

Consumption

STM32H7
ARM
Cortex-M7

Up to
480 MHz

Up to
2 MB

Up to
1 MB Low-medium

STM32F7
ARM
Cortex-M7

Up to
216 MHz

Up to
2 MB

Up to
512 KB Low-medium

STM32F4
ARM
Cortex-M4

Up to
180 MHz

Up to
1 MB

Up to
192 KB Low-medium

STM32L4
ARM
Cortex-M4

Up to
120 MHz

Up to
2 MB

Up to
640 KB Low

STM32L5
ARM
Cortex-M33

Up to
110 MHz

Up to
2 MB

Up to
640 KB Low-medium

STM32G4
ARM
Cortex-M4

Up to
170 MHz

Up to
2 MB

Up to
640 KB Low-medium

STM32MP1
Dual-core
ARM Cortex-A7
& Cortex-M4

Up to
800 MHz

Up to
1 GB

Up to
512 MB Low-medium

2.4 Ethernet

As our system architecture needs to be able to communicate through

Ethernet in order to do send data over PCIe using an Ethernet-to-PCIe

converter, it is important to discuss the most important aspects that control

Ethernet communication. Networking cables and Ethernet cables almost

always use RJ45, or Registered Jack 45 connectors. Eight pins, each about 1

mm apart, make up an RJ45 connector, and the wires are crimped together for

a strong link, which is called an 8P8C (eight positions - eight contacts).

Ethernet Category 3 through Category 6 use the RJ45 specification. Cat 7

Ethernet connections can use RJ45 connectors, but GigaGate45 (GG45)

connectors are more frequently used. Fortunately, these are backward

compatible with the RJ45, so upgrading to Cat 7 does not require a totally

new installation. There are various types of Ethernet cables used as illustrated
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in table 2.4.

Table 2.4: Ethernet Cables Categories

Category Max. Bandwidth Max. Data Rate Max. Cable Length Typical Use Case

Cat3 16 MHz 10 Mbps 100 meters
Voice and data

communications in
older networks

Cat5 100 MHz 100 Mbps 100 meters
Basic home
networking

Cat5e 100 MHz 1 Gbps 100 meters
Home and small

business networking

Cat6 250 MHz 10 Gbps 55 meters
High-performance

networks, data centers

Cat6a 500 MHz 10 Gbps 100 meters
High-performance

networks, data centers

Cat7 600 MHz 10 Gbps 100 meters
Industrial and

commercial applications

Cat8 2 GHz 40 Gbps 30 meters
Data centers and
high-performance

networks

There are two main types of cables used in Ethernet communication,

crossover cables and straight through lines which are wired differently from

each other. Checking the arrangement of the colored wires inside the RJ45

connector can be a simple method to identify what you have. A

straight-through cable is one that has the same arrangement of wires on both

ends. If not, it was probably wired improperly or is a crossover connection.

Contrary to devices, straight-through cables are typically used mainly for

connecting. Additionally, crossover connections are employed when

connecting related devices. The Ethernet PHY is a transceiver that connects

the analog world to the digital world, which includes processors, FPGAs, and

application-specific integrated circuits (ASICs). Over a variety of media, an

Ethernet PHY is made to provide error-free transmission over lengths greater

than 100 meters. Figure 2.7 displays a sample block diagram of how data is

sent to and received from a processor using a standard RJ45 Ethernet cable.

A media access controller is connected to the Ethernet PHY (MAC).

The MAC regulates the data-link layer of the OSI model and is typically built
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Figure 2.7: A block diagram that represents data transfer using Ethernet

into a processor, FPGA, or ASIC. The link between the MAC and the PHY

is specified by the media-independent interface (MII). Depending on system

needs, there are MII variants that offer a low pin count and a range of data

rates. The two types of interfaces used to connect a PHY to a MAC are MII

and RMII:

• MII: A media access control (MAC) block for Fast Ethernet (100 Mbit/s)

was originally connected to a PHY chip using the media-independent

interface (MII), which was initially specified as a standard interface. The

MII, which connects various kinds of PHYs to MACs, is standardized by

IEEE 802.3u. Being media autonomous allows for the use of various

PHY devices (such as twisted pair, fiber optic, etc.) without having to

redesign or replace the MAC hardware. As a result, regardless of the

network data transmission medium, any MAC may be used with any

PHY.

• RMII: A standard called reduced media-independent interface (RMII)

was created to minimize the amount of signals needed to link a PHY to a

MAC. The cost and complexity of network hardware can be decreased by

reducing the number of pins, particularly when it comes to

microcontrollers with integrated MACs, FPGAs, multiport switches or

424242



repeaters, and PC motherboard chipsets. To accomplish this, four items

were modified from the MII standard. These modifications result in

roughly half as many signals being used by RMII as compared to MII.

2.5 System Architecture

To restate what was mentioned in the sections above, the proposed

system, illustrated in Figure 2.8, consists of up to four layers, providing

higher modularity. The four layers are defined as the following:

• Layer 1: A micro-module designed for a specific application. It is

mounted on layer 2 boards.

• Layer 2: Boards with SODIMM or Bergstak connectors can also include

the mounting of layer 1 modules on them.

• Layer 3: The motherboard that hosts the layer 2 board and interfaces with

it using one of the connectors(SODIMM, Bergstack or other high-speed

Mezzanine connectors). It follows the PC104 standard that is commonly

used in CubeSats.

• Layer 4: It is an external motherboard that usually hosts the layer 3 board

and interfaces with it using a high-speed Mezzanine connector. The layer

4 boards usually come in larger form factors (3U, 6U, etc.) and follows

the CompactPCI (cPCI) Serial Space. This layer can also be reconfigured

to match the SpaceVPX standard.

A detailed diagram that can help in illustrating the system’s main elements and

how they are interchanged is shown in Figure 2.9.
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Figure 2.8: Description of the system’s layers

Figure 2.9: The system architecture of the modular CDHS
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The proposed system can be be done with one of the two configurations

shown below. Where the first configuration, illustrated in Figures 2.10 &

2.11, includes the four layers connected to each other through Bergstak

connectors. Also, the practical demonstration of this configuration is through

Zigbee communication. This configuration can be used for transmission

speeds that are up to 6 GB/s.

Figure 2.10: The system architecture of the modular CDHS (using BergStak
connectors)

Figure 2.11: The system architecture of the modular CDHS (using BergStak
connectors)
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However, the second configuration, illustrated in Figures 2.12 & 2.13,

can be used for scenarios that require higher transmission speeds, typically up

to 32 GB/s or even more, using the PCIe connector between the layers.

Figure 2.12: The system architecture of the modular CDHS (using PCIe
connectors)

Figure 2.13: The system architecture of the modular CDHS (using PCIe
connectors)

2.6 PCB Design

To manufacture the PCBs mentioned in the modular architecture,

several manufacturers have been considered; however, JLCPCB was chosen
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for manufacturing most of the PCBs, as they provide rapid prototyping with

low minimum quantities on orders. To guarantee that the PCB gets

manufactured correctly, it is crucial to abide by the manufacturer’s guidelines

and opt for a stackup that is compatible with JLCPCB’s production process.

The 1.6 mm JLC2313 stackup used in the PCB design is listed in Table 2.5.

Despite the fact that JLCPCB offers numerous stackups with various prepreg

thicknesses and dielectric constants, we chose the JLC2313 stackup due to its

wide core and 6-layer stackup. Since the majority of the ground and power

planes are located in the two inner planes, this enables greater inter-plane

capacitance [29].

Table 2.5: JLC2313 layer stackup

Layer Material Type Thickness (mm) Dielectric
Constant

Top solder mask Solder mask 0.0127-0.0203 3.8
Top layer 1 Copper 0.035

Prepreg 2313 0.1 4.05
Inner layer 2 Copper 0.0175

Core 0.565-0.6
Inner layer 3 Copper 0.0175

Prepreg 2116 0.127 4.25
Bottom layer 4 Copper 0.035

Core 0.565-0.6
Inner layer 5 Copper 0.0175

Prepreg 2313 0.1 4.05
Bottom layer 6 Copper 0.035

Bottom solder mask Solder mask 0.0127-0.0203 3.8

2.7 Layout

There are several points that should be taken into consideration when

designing PCBs that include PCIe lanes. As illustrated in Figure 2.14, the

PCIe signals are transmitted as differential pairs, and for the best

performance, they need a close coupling and an environment with a

controlled impedance. To reduce crosstalk and maintain a constant

impedance along the whole length of the trace, the differential pairs should be

routed as closely as possible. Also, PCIe signal lanes should be routed in a

straight or gently curved path, avoiding sharp bends that might cause
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reflections and signal degradation, resulting in errors and reduced

performance. Furthermore, it is essential to make sure that each differential

pair’s trace lengths match as closely as possible. Any length difference can

result in signal skew, which can result in errors and poor performance.

Moreover, PCIe signals need to be routed on separate signal layers from

ground and power planes [2]. The isolation reduces crosstalk and

interference. To preserve signal integrity when a signal layer is shared with

other signals or planes, guard traces or shields must be used. Besides, to stop

other signals or components from interfering with PCIe signals, keep out

zones should be placed around them. The keep out zones ought to be wide

enough to allow for sufficient clearance and shield against unintentional

contact with other traces or parts. Finally, to avoid reflections and signal

degradation, the PCIe signals should be correctly terminated at both ends.

The termination should be positioned as close to the receiver as possible and

should be impedance-matched to the trace [55]. Figure 2.15 presents some of

the manufactured boards that represent layers 1, 2, and 3, mentioning that the

layer 1 module included is a COTS DIGI XBee3 module.

Figure 2.14: PCIe Layout
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Figure 2.15: Representation of the individual modules of the system’s layers
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Chapter 3: Experimental Testing and Results

In this section, we describe the different experiments that were done to

prove the reliability of the proposed modular system. These experiments

include the functional tests, transmission tests, thermal vacuum test, vibration

test, and other tests. The results of each of these tests is described in details in

the following sections.

3.1 Communication Tests

This section describes the communication tests that were done to

compare the performance of our available interfaces with the actual data rate

characteristics of each of them, which was measured using a logic analyzer.

3.1.1 UART Communication

UART (Universal Asynchronous Receiver-Transmitter) is a type of

serial communication protocol commonly used for board-to-board

communication. It is a simple and reliable way to transmit data between two

devices over a single wire. UART works by sending data in a series of bits,

typically one byte at a time. It uses two wires for communication: one for

transmitting data (TX) and one for receiving data (RX). The data is

transmitted asynchronously, which means that there is no fixed timing

relationship between the sender and receiver. To use UART for

board-to-board communication, both devices must be configured with the

same baud rate, which is the speed at which the data is transmitted because

the UART is asynchronous. The baud rate is typically set in software, and the

most common baud rates are 9600, 19200, 38400, and 115200 [45]. In the

following UART test, we have set the UART at 115200 baud rate. One

advantage of UART is that it is a simple and widely supported protocol, so it

can be easily integrated into many different types of devices. Another
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advantage is that it requires very little overhead, so it is often used in

applications where data throughput is not a critical factor. However, one

limitation of UART is that it is relatively slow compared to other

communication protocols. The maximum baud rate for UART is typically

around 4 Mbps. Additionally, UART is not well-suited for applications that

require long-distance communication or immunity to high levels of noise, as

it does not have built-in error correction or detection mechanisms. In the

UART communication, the test was done using two of the PC/104 computing

unit boards. Figure 3.1 illustrates the connections done between the two

PC/104 computing unit boards, connecting the UART TX and RX pins to

each other in cross-over configuration.

Figure 3.1: UART communication setup between two PC/104 computing units

As shown in Figure 3.2, the UART transmission and reception was

successful using two of our PC/104-based computing units and each byte

takes 82.4µs to be transmitted, which results in a communication speed of

94.8125 kbps.
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Figure 3.2: UART communication test results

3.1.2 I2C Bus Communication

The I2C component is a two-wire hardware interface developed by

Philips that supports I2C Slave, Master, and Multi-Master configurations. It

can be used to network multiple devices on a single board or small system

with a single master and multiple slaves, multiple masters, or a combination

of masters and slaves. The I2C component is compatible with other

third-party slave and master devices and supports standard clock speeds up to

1000 kbps. The I2C data signal is serial data (SDA), and it should be

configured as Open-Drain-Drives-Low. The master-generated I2C clock is

serial clock (SCL), and it should also be configured as

Open-Drain-Drives-Low. The UDB version requires a clock to provide 16

times oversampling, which is available when the Implementation parameter is

set to UDB. The I2C block can be reset with the reset input available only

when the Implementation parameter is set to UDB. If the reset pin is held to

logic high, communication over I2C stops. Slave Address is a parameter that

selects the I2C address recognized by the slave, and the default is 4. A slave

address between 0 and 127 (0x00 and 0x7F) can be selected, and the value

may be entered as decimal or hexadecimal. This component provides a
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parameter that allows choosing between software and hardware address

decoding. Hardware is the default, and it automatically NAKs addresses that

are not its own without CPU intervention [62]. The UDB Clock Source

parameter allows choosing between an internally configured clock and an

externally configured clock for data rate generation. When set to Internal

Clock, the clock frequency is calculated and configured by PSoC Creator

based on the Data Rate parameter and taking into account 16 times

oversampling. Master and Multi-Master operation are similar, but in

Multi-Master mode, the program must wait until the current operation is

complete before issuing a start transaction, and two masters can start at the

exact same time, which leads to arbitration loss. The I2C master has two

options: manual and automatic. In automatic mode, a buffer is created to hold

the entire transfer. The initial test of the I2C transmission involved internal

components, including a temperature sensor and current sensor. However, to

achieve higher data rates, board-to-board communication was employed via

the I2C protocol, where the setup is illustrated in Figure 3.3. Subsequently,

the results of the test were found to be successful, as shown in Figure 3.4, as

each byte took about 200 µs to be transmitted, resulting in a communication

speed of 38.6911 kbps.
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Figure 3.3: I2C bus communication setup between an PC/104 computing unit
and an Arduino Mega board

Figure 3.4: I2C bus communication results
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3.1.3 SPI Communication

SPI (Serial Peripheral Interface) is a communication protocol

commonly used in embedded systems to enable communication between

microcontrollers and peripheral devices. SPI is a full-duplex, synchronous

serial communication interface, which means that data is transmitted

simultaneously in both directions and at a fixed timing between a master and

one or more slave devices. One of the advantages of SPI is its capability to

achieve high-speed data transmission rates, which is particularly useful in

applications where real-time data processing is required. To achieve

high-speed data transmission using SPI, there are several techniques that can

be employed, such as increasing the clock frequency, optimizing the data

transfer protocol, and minimizing the signal propagation delay [62].

Increasing the clock frequency is the most straightforward way to achieve

high-speed data transmission in SPI. The clock frequency determines the rate

at which data is transferred between the master and the slave devices. By

increasing the clock frequency, the data transfer rate can be increased, and

more data can be transmitted in a shorter time period. Optimizing the data

transfer protocol can also help to achieve higher data transmission rates in

SPI. This involves reducing the overhead associated with data transmission,

such as the number of bits used to indicate the start and end of data

transmission [1]. By minimizing the overhead, more data can be transmitted

in a shorter time, resulting in higher data transmission rates. Minimizing

signal propagation delay is also critical to achieving high-speed data

transmission in SPI. Signal propagation delay refers to the time it takes for a

signal to travel from the master to the slave device, and vice versa. By

minimizing this delay, the overall time required for data transmission can be

reduced, resulting in higher data transmission rates. To test SPI

communication, data was transmitted from an STM32-based MCU to a flash

555555



memory, as illustrated in the setup in Figure 3.5.

Figure 3.5: SPI communication setup between a flash memory and an MCU

Furthermore, as presented in Figure 3.6, the data transmission over SPI

was successful using an STM32-based MCU and a flash memory, as each byte

takes 7.6075µs to be transmitted, which results in a communication speed

of 1.0515938216 Mbps. Also, as illustrated through the test results, the first

part of the signal informs the memory that we want to write to it, the second

includes three address bytes, and the third includes four data bytes.
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Figure 3.6: SPI communication results

3.1.4 CAN Bus Communication

The CAN bus protocol has two different physical layers, namely

low-speed and high-speed, which have different architectures. The low-speed

CAN is based on the ISO-11898-3 CAN standard with a speed of 128 kbps

and is terminated at each node by a 100Ω resistor. On the other hand,

high-speed CAN is based on the ISO-11898-2 CAN standard with a speed of

512 kbps and is terminated at each end of data buses by a 120Ω resistor. To

transmit data to the transceiver, the microcontroller would have a CAN

controller where data is driven from/to the bus. Moreover, the CAN protocol

has important characteristics that make it more reliable for real-time systems.

For instance, the transmission privileges higher priority messages to transmit

before lower priority messages to ensure important priority tasks are

responded on time without delay. The CAN protocol uses a lossless bitwise

arbitration method to synchronize the sample data bit on the CAN network.

During transmission, the transmitters check the ID bits on the CAN network,

and the node with a recessive (1) bit is stopped if there is a node with a

dominant (0) bit on the bus. This ensures that higher priority messages are

not delayed by lower priorities, and the higher priority ID has a lower
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number. The CAN bus protocol has three different layers, namely Object,

Transfer, and Physical Layer, each responsible for different functions. For

instance, the Object layer filters the noise on the CAN network, while the

Transfer layer transmits messages, detects errors, and performs other

functions for transmitting messages between nodes on the CAN network.

There are four types of frames in the CAN protocol: Data Frame, Remote

Frame, Error Frame, and Overload Frame. The Data Frame has two different

message formats due to having two different identifiers. The Remote Frame

requests data from the source by transmitting RTR-bit as a recessive (1) bit

and no data field. The Error Frame is transmitted if any frame detects an

error, while the Overload Frame is transmitted to delay transmitting if the

receiver requires a delay before receiving the next data frame or remote frame

or a higher priority message requires the bus [18]. In summary, the CAN bus

protocol has privileges for high priority messages, which are essential for

real-time systems without delay. Additionally, the CAN protocol provides

high-speed transmission and is convenient for connecting nodes. These are

the undeniable reasons why the CAN protocol dominates in the automobile

industry and has become widely used in embedded software fields. The

high-speed mode of the CAN bus was initially tested using the internal

loopback, which was found to be successful. Subsequently, board-to-board

communication was carried out using the high-speed mode of the CAN bus,

using the setup presented in Figure 3.7, and the results of the test were also

successful resulting in a communication speed of 842.5334112 kbps, as each

byte takes 9.495µs to be transmitted and received, as presented in Figure 3.8.
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Figure 3.7: CAN bus communication setup between two PC/104 computing
unit boards

Figure 3.8: CAN bus communication results

3.1.5 Ethernet Communication

This subsection aims to test the Ethernet communication between a PC

(server) and an STM32 microcontroller (client). To do so, an STM32F746ZG

Nucleo board was used. The testing aimed to demonstrate the importance of

configuring IP addresses and traffic flow through network layers to ensure

successful data transfer between devices. Several challenges were

encountered throughout the testing process, including setting up the IP
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addresses for both the server and client devices, configuring network layers to

allow for proper traffic flow, and ensuring proper network security protocols

were in place. These challenges required careful troubleshooting and

attention to detail to overcome. The testing utilized the Hercules software to

visualize the data being transmitted and received in real-time, providing a

clear representation of the success of the data transfer.

Firstly, the adapter settings were changed, as the Internet Protocol

Version 4 (TCP/IPv4) settings were edited as shown in Figure 3.9. Next, the

firmware in the STM32F746ZG Nucleo board was flashed and the IP address

192.168.1.11 was verified. Then, the command prompt on Windows was used

to ping the ip address of MCU with this command: 192.168.1.11. Once this

was verified, we moved to the second phase of the testing.

Figure 3.9: The IPV4 Settings

In the second phase of the testing, the lwIP stack was initialized and a

TCP client that sends a string to a remote server and waits for a response was

created. The Lightweight IP (lwIP) stack is a widely used open-source TCP/IP
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stack designed for embedded systems. To send data over Ethernet, Figure 3.10

shows the Command Prompt view along with the executed ipconfig command

that is used to verify the windows ip address which shall be the same IP address

for TCP server created on Hercules.

Figure 3.10: The Command Prompt (cmd) view

Next, the TCP server port number and IP address shown in Figure 3.10

are added to the http_test.c file in the dedicated section in the firmware to

connect to the server, as illusrated in Figure 3.11.
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Figure 3.11: TCP server port number and IP address added to the http_test.c
file

There are two options of sending the data, one is through a code that

is compiled to the STM32 MCU and the other is by using the Hercules TCP

server to send data that is written manually. Figure 3.12 presents the Hercules

TCP server window of the first option where the script that flashes the firmware

in the Nucleo-746ZG board and enables it to send data is used.

Figure 3.12: Running the script that writes to the PC

While the second option is the one that sends data directly through the
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Hercules TCP server window, as shown in Figure 3.13.

Figure 3.13: Writing data manually

3.1.6 PCIe Communication

The FPGA firmware was developed in the Xilinx Vivado Design Suite

HLx 2018.3, a comprehensive development environment for VHDL

programming. The suite is equipped with several valuable features, such as

simulation and debugging capabilities, and a wide range of pre-programmed

Intellectual Property (IP) cores that can aid in accelerating the development

process. The firmware was designed using a block design structure in VHDL,

which is a graphical method of representing hardware descriptions using

interconnected blocks [37]. Figure 3.14 presents an overview of the

simplified PCIe VHDL block design [53].
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Figure 3.14: The PCIe VHDL block design overview

3.1.6.1 AXI4 Protocol

The ARM AMBA specification includes the AXI protocol, which has

different variations and is used for high-performance communication from a

master to a slave [64]. Xilinx uses AXI4 as their preferred communication

protocol, and a VHDL solution combining AXI4 and AXI4-Lite interfaces is

presented in the thesis. Each block has its own dedicated address span [41].

AXI interconnects can be used to connect multiple slaves to a single master

or vice versa, simplifying the design and improving performance.

3.1.6.2 PCIe

The PCIe functionality was implemented using the AXI Memory

Mapped to PCIe IP core. The core acts as an intermediary between PCIe and

AXI4, converting packets between the two protocols. Block Address

Registers (BARs) are used to map data to memory. Each VHDL block is

assigned a BAR that contains information for data routing through address

translation, ensuring it reaches the intended destination [3]. The IP core has

inputs and outputs that must be constrained to the physical ports of the FPGA

associated with the M.2 PCIe pins. Once the device is programmed and a

platform device requests a PCIe enumeration, the system detects the device’s

PCIe Endpoint functionality and reports the correct configuration indicating

that the link is operating as expected.
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3.1.6.3 Clock Buffers

To establish a PCIe link, a reference clock is required as per the PCIe

standard. The M.2 connector provides this clock signal as part of the

standard. However, to use the clock signal within the device’s internal

circuitry, it needs to be converted from a differential signal to a suitable

format [4]. To accomplish this conversion, a Utility Buffer IP is employed,

which converts the differential inputs into a buffered single-ended clock

signal. The resulting signal is then connected directly to the reference clock

input of the PCIe IP [11].

3.1.6.4 Block RAM

This thesis implements a FIFO buffer to store data using a block RAM

(BRAM) on an FPGA, which can have different sizes. The BRAM has two

ports, Port A and Port B, each with its own clock, that access the same data.

Port A is for writing data, while Port B is for reading data via GPIOs. Data is

loaded into the BRAM at a user-defined address location through the PCIe to

AXI4 link [42]. The BRAM is generated using the IP Block RAM Generator,

which optimizes memory allocation. The BRAM is connected to the AXI4

interface through the Block RAM Controller IP, which translates AXI4 to the

BRAM interface and provides direct access to memory via AXI4.

3.1.6.5 Custom IP

To test the functionality of the PCIe Bridge, a custom IP block, as

shown in Figure 3.15, was created with three main objectives: to read a

control register from the AXI-bus, to read the data register, and to shift the

data on the output. Vivado includes a utility to easily create custom AXI

peripherals which takes care of the AXI communication and leaves the user to
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implement the custom logic.

Figure 3.15: Basic PCIe IP block on Vivado design suite

The data rate of the output is adjustable via a configurable PLL,

resulting in synchronous serial communication suitable for testing. The

bridge generates a 50 MHz square wave by sending 1111000011110000...

with a 400 MHz data rate, while 110011001100... generates a 100 MHz

square wave. The LVDS/CMOS side was tested up to a maximum frequency

of 200 MHz, and a customized PCIe block was created to supply up to 5 GT/s

link speed, as illustrated in Figure 3.16.
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Figure 3.16: Customized PCIe block to supply link speed of 5 GT/s
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3.1.6.6 Constraints

In the design of FPGA circuits, constraints play a crucial role in

defining the behavior of each pin. These constraints are used to connect the

internal ports of the FPGA to the external pins and can determine the data

flow direction, voltage levels, and termination type. Additionally, certain pins

are assigned specific functions, and constraints related to these pins are

limited to their intended use.

3.1.6.7 Simulation and Debug

The Vivado design suite offers the ability to simulate either individual

blocks or the entire firmware, making development faster. Simulations

display input and output signals, while the debug core shows signal values on

the actual FPGA. Additionally, the suite includes a debug IP called Virtual

Input/Output (VIO) that lets the user read or set specific ports in real-time

[69]. To simulate the PCIe IP block before uploading it to the FPGA, several

steps were taken. The .xdc file from the "Constraints" category was edited

before generating the bitstream and checking the simulation results. During

initial simulation, various variables were checked to ensure proper

functionality, as shown in Figure 3.17.
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Figure 3.17: Initial PCIe communication

Then, initial tests were conducted by writing strings using the PCIe link,

illustrated in Figure 3.18.

Figure 3.18: Writing strings using the PCIe link

After, when the FPGA board is connected to the PCIe slot of the

motherboard, the user_lnk_up logic signals that the PCIe link between the

host PC and the FPGA is operational and ready for data exchange. The FPGA

board includes an RGB led, so the blue and green led outputs are connected

to the user_lnk_up logic and its complement output, respectively. When the

blue led is on, it indicates that the PCIe link is ready to exchange data, and

when the green led is on, it means that the link is not ready, or the host PC
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and FPGA are establishing communication, or there are transmission errors.

Thus, the user can observe the status of the PCIe link by monitoring the LED

outputs. Additionally, a counter is added to verify the functionality of the

PCIe clock, and its output is assigned to the red led. This allows for

observation of the RGB led blinking, indicating that the board is detected by

the host PC. This was added to the design by declaring the ‘counter’ variable

as register and assigning the ‘user_lnk_up’, ‘compliment of user_lnk_up’ and

‘counter’ output to the RGB led. Then, this counter implementation is added

after the initialization of I/O BUFFERS. Figure 3.19 presents the simulation

done after adding the led indicators and the counter, but as the green led is on,

it indicates that the link is not ready.

Figure 3.19: Simulation done after adding the led indicators and the counter -
link is not ready

Furthermore, Figure 3.20 presents the part of the simulation that

indicates that data is being sent and received shown through the txn, txp, rxn,

and rxp, as well as having the blue led on and the red led blinking. The

simulation of the data transfer using PCIe consumed around 1 W of power,
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which is relatively acceptable and shows the possibility of including the

FPGA in the future in the modular design to provide more computing power.

Figure 3.20: Data is being sent and received using PCIe

3.1.6.8 Test Application

The device’s potential to perform future tasks may vary, but it should

have the ability to generate serial protocols at acceptable speeds. To verify

this ability, the user can input data into a register on the platform system, and

then specify the number of bytes to be clocked out and trigger an event

through a control register. The FPGA then uses a separate clock signal to

transmit the data bit by bit at the specified rate. The application reads the

transmitted data on a separate pin and verifies that it matches the input data.

This process is repeated to assess the maximum achievable throughput on the

GPIO side.
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3.1.6.9 Platform Application

When a PCIe device is enumerated, it is assigned a base address that

includes all the addressable memory within the FPGA. For example, if the

BAR is set to address a specific block at 0x00001000, and the assigned base

address is 0x60200000, then the resulting memory location would be

0x60201000. This represents the physical memory of the platform device,

which is limited by the amount of RAM available. The physical memory can

be accessed directly through the /dev/mem location in Linux or by using

RW-Everything software in Windows. Writing to a specific register can

trigger an event in the FPGA, and the device can respond accordingly.

However, the device’s functionality may vary depending on the application.

In the current context, RW-Everything was used to program the FPGA flash,

as illustrated in Figure 3.21.

Figure 3.21: Flash programming is successful

Next, the FPGA was inserted in the PCIe slot of the host system’s

motherboard. After, the host was powered up to a soft restart again before

booting into Windows. Once this was done, RW-Everything software was

opened and the Xilinx PCIe device was selected from the PCI devices list.
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Then, as mentioned above, the BAR Address from the addresses section was

located and data was written to one of the address memory locations before

proceeding with doing high data transfer using the FPGA.

3.1.7 Bridge Performance

The PCIe communication was tested and verified using two methods,

the first was through the simulation that was done using Vivado Design Suite,

while the second was done by connecting the FPGA to the PC through the

PCIe enabled M.2 slot, as illustrated in Figure 3.22.

Figure 3.22: The FPGA connected to the PC through the PCIe enabled M.2
slot

The PCIe Bridge was recognized by the platform as a PCIe 5GT/s x2

device, and behaved as expected. Due to the 8/10 bit encoding used by PCIe,

the maximum transfer rate achieved was 8 Gb/s. During testing, the Artix-7

temperature was continuously monitored using the Vivado IDE. Usually, the

temperature remains consistently below 75◦C; however, as a fan along with a

heat sink was added on the FPGA, the temperature remained below 37◦C.
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Figure 3.23: Temperature and Voltage Values of the FPGA

3.2 Functional Tests

The full functional test was divided to several tests: Functional test of

the PC/104 computing layer of the CDHS architecture (representing layer 3),

functional test of layers 1 and 2 mounted on layer 3, and the fully integrated

system test (all four layers).

3.2.1 Functional Test of the PC/104 Computing Layer of the CDHS
Architecture

To perform the functional test of our PC/104 computing layer of the

CDHS architecture, the ST-Link was used to upload the code along with the

STM32 CubeIDE. The code contained functions that aim to test each of the

main components in this layer, such components include the FRAM, SDRAM,

SD Card, Flash Memory, Temperature Sensor, Current Sensor, RTC, and CAN

transceiver. After several iterations of this layer, the full functional test was

run successfully with all the components satisfying the expected outputs, thus

being a fully functional PC/104 computing unit that can be flown in CubeSat

missions. Figures 3.24, 3.25, and 3.26 present the results of the testing.
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Figure 3.24: PC/104 computing unit full functional test results - part 1
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Figure 3.25: PC/104 computing unit full functional test results - part 2
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Figure 3.26: PC/104 computing unit full functional test results - part 3

Moreover, as CubeSat missions are very sensitive to the available

power, having a PC/104 computing layer with low power consumption is

important. As shown in Figure 3.27, our PC/104 computing layer runs on

3.3V and consumes about 80 mA in nominal operations mode, that includes

the RTC, temperature sensor, and current sensor being turned on.

777777



Figure 3.27: Power Consumption of the PC/104 computing unit
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3.2.2 Functional Test of Layers 1 and 2 Mounted on Layer 3

To test the functionality of mounting layers 1 & 2 on layer 3, the setup

shown in Figure 3.28 was used. The setup included a DIGI XBee 3 module

(layer 1), an interface board equipped with a Bergstak connector (layer 2),

and a PC/104-based computing layer (layer 3). The data was successfully

transmitted and received at both, the system’s side and the PC’s side.

Figure 3.28: Zigbee Communication Test Setup

3.2.3 Functional Test of the Fully Integrated System

The full system test, that included interfacing between an MCU and a

cPCI based backplane, includes the setup shown in Figure 3.29, where on the

leftmost side, the PC/104-based computing unit is used and it communicates

through Ethernet, which gets converted to PCIe using a PCIe-Ethernet bridge.

Next, a cPCI-based interface board is used to connect the left side with the

cPCI-backplane.
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Figure 3.29: Setup used for the cPCI interfacing

Moreover, to practically test the system, a Nucleo-F746ZG board is used

to represent the PC/104-based computing unit, a LAN7430 evaluation board

is used, and a PCIe x1 - PCIe M.2 adapter is used to connect the left side with

the right side that includes an Artix-7 FPGA, as illustrated in Figure 3.30.

Figure 3.30: Actual setup used for the cPCI interfacing

Due to unforeseen delays in the manufacturing of the custom-made

PCIe-M.2 adapter PCB, an alternative solution was sought, potentially

involving any PCIe compatible device. Consequently, a personal computer

(PC) was chosen as a substitute, representing the cPCI backplane. The test

setup utilized for this purpose is presented in Figure 3.31, where the

Nucleo-F746ZG board was connected to a PCIe-Ethernet adapter known as

the "LAN7430 Evaluation Board", which was then linked to the PC’s PCIe

connector.
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Figure 3.31: The microcontroller and cPCI backplane (represented by a PC)
data transfer test setup
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To begin the test, we chose an image to send using high data rate

transmission. The transmitted image is shown in Figure 3.32.

Figure 3.32: The image sent during the test

IDLE, which is an integrated development environment for Python, was

used to run a Python code that converts the image from binary to hex format.

The converted data is saved in a C header source file, as presented in figure

3.33.

Figure 3.33: The C header file

This file is then imported to STM32CubeIDE, which includes the

Ethernet transmission code. To receive the data using the PC, the IP address

in server_V3.py file is set according to the IP address of our system, as shown

in Figure 3.34.
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Figure 3.34: The changed IP address

Then, the data is received and presented using PuTTY, as shown in

Figure 3.35, as well as in IDLE Shell.

Figure 3.35: Data received (verified using PuTTY)

Finally, the received data is converted from hex back to binary to

reconstruct the image, which matches the image that was initially sent. These

results prove the reliability of the proposed architecture and its compliance

with the cPCI Serial Space standard.
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3.3 Thermal Vacuum Test of the PC/104 Computing Layer of the CDHS
architecture

This section describes the thermal vacuum test’s plan, setup, and results

that were performed to test the performance and rigidness of the PC/104

computing layer of the CDHS architecture in the thermal ranges and vacuum

state that simulates the space environment. This test was done using

NSSTC’s Small Thermal Vacuum Chamber (STVAC).

3.3.1 Test Plan

The test was planned to run for two cycles, each having a cold state and

a hot state that lasted for one hour, under the vacuum state. The process starts

with preparing the cryogenic pump and decreasing the pressure to reaching an

ultimate vacuum pressure of less than 1e-5 mbar. Next, the first cycle starts

by increasing the STVAC’s temperature from 24°C (ambient temperature) to

50°C (hot state). The temperature is then maintained at 50°C for an hour

before dropping down to -20°C (cold state) with a 1°C/minute rate and staying

at the cold state for an hour. Then, the second cycle starts by increasing the

temperature from -20°C to 50°C and repeating the process as what was done

in cycle 1. The temperature profile of the test is illustrated in Figure 3.36.

Figure 3.36: Temperature Profile
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We have followed a specific procedure for the preparation of the test and

the functional testing that ran on the board during the thermal vacuum testing.

Due to the lack of any outgassing sensors at the NSSTC facility currently, the

success criteria of the test was based on the following pressure measurements

of the STVAC:

1. Ramp-up Starting Pressure: < 1e-5 mbar

2. After Reaching Bakeout Temp: < 1e-4 mbar

3. Test End Pressure: < 1e-5 mbar

The test is considered to have ended successfully when the pressure returns to

< 1e-5 mbar before the completion of the 24 hours dwell time.

3.3.2 Test Setup

The test’s setup contains cleaning the STVAC using Isopropyl Alcohol

(IPA), placing the board on the STVAC’s table using stands made of Teflon,

which can withstand extreme temperatures and is an excellent insulator, as

illustrated in Figure 3.37, distributing thermocouples around the STVAC and

on the board to get temperature measurements at the these areas, as illustrated

in Figures 3.38, 3.39 and 3.40, and making sure that the STVAC is closed

properly to avoid leakage of air into the STVAC during the vacuum

preparation.
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Figure 3.37: Board’s setup in
the STVAC

Figure 3.38: Thermocouple
on the door

Figure 3.39: Thermocouple
on the base plate

Figure 3.40: Thermocouple
on the cylindrical shroud
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3.3.3 Test Results

After performing the thermal vacuum test as described in section 3.3.1,

we got the following results. The chamber’s starting pressure was 1000 mbar,

then it decreased to 1e-2 mbar after primary pumping. Next, the cryogenic

pump was on and the pressure decreased to less than 1e-5 mbar before starting

the thermal control phase. During the beginning of the temperature increase

phase and when the temperature got stabilized at 50°C, the pressure increased

up to slightly less than 1e-4 mbar due to the acceleration of outgassing, then

it decreased with time to reached 1e-6 mbar during the test up until the end.

This is illustrated in Figure 3.41.

Figure 3.41: Test Pressure Chart

Also, Figure 3.42 illustrates the temperatures of the shroud and base

plate, as it shows that the temperatures of both are almost identical throughout

the test.
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Figure 3.42: Test Shroud and Base Plate Temperature Chart

The temperature values of the thermocouples during the test are

presented in Figure 3.43. The graph shows that the temperature started from

24°C, then it increased until it reached 50°C within 26 minutes and it

maintained that temperature for 1 hour, then it decreased to around -20°C

within 70 minutes and this temperature was also maintained for 1 hour. Then

the same procedure got repeated for the second cycle, as the temperature got

increased to 50°C within 70 minutes and got maintained at it for an hour, then

it got decreased to around -20°C within another 70 minutes and it also got

maintained at this temperature for 1 hour. Finally, the temperature was raised

to the ambient temperature (24°C).

By subjecting the PC/104 computing layer of the CDHS architecture to

these temperature extremes under vacuum conditions, the test aimed to

evaluate its thermal stability, assess the effects of thermal cycling, and

determine its resilience to the challenging space environment. This layer has

successfully demonstrated its ability to operate within the specified

temperature range, showcasing its thermal resilience and readiness for future

space missions.
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Figure 3.43: Thermocouple Temperature Chart

3.3.4 Use Cases

Our modular architecture has several use cases that are planned for it,

which makes it useful for upcoming satellite missions with minimum

customization. Each of the following use cases has its own thermal

considerations, PCB design guidelines, power consumption, and amount of

layers utilized within the modular architecture.

3.3.4.1 Synthetic Aperture Radar (SAR)

One of the use cases of this modular architecture can be utilizing it to

create a robust SAR system for hyperspectral imaging that generates

high-resolution images by transmitting and receiving radar signals. This

system can be used for a variety of applications, such as Earth observation,

weather forecasting, and disaster management. The modular architecture can

be used to design SAR systems that are scalable, flexible, and reliable. The

system can be scaled to meet the needs of different applications, and the

modular design makes it easy to upgrade or replace components as needed.

The modular architecture also makes the system more reliable, as failures in
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individual components can be easily isolated and repaired.

• Thermal considerations: SAR systems generate a lot of heat, so it is

important to design the system with adequate thermal management. This

may include using heat pipes, heat sinks, or other cooling options.

• PCB design: The PCB for a SAR system must be designed to handle

the high frequencies used by the system. This may require using special

materials or techniques.

• Power consumption: SAR systems can be very power-hungry, so it is

important to design the system to minimize power consumption. This may

involve using low-power components or techniques.

• Layers utilized: A SAR system will typically utilize all four layers of

the modular architecture, if the SAR system is used in satellites that

support the use of 3U form factor boards; however, if it doesn’t, certain

considerations might need to be taken to satisfy the computational

requirements depending only on three layers. The layers can be used as

the following: Layer 1 accommodates control and interface components,

layer 2 hosts specialized signal processing modules, layer 3 houses the

OBC for data processing, and layer 4 provides additional computational

resources if needed.

3.3.4.2 LoRa-based Payload

LoRa (Long Range) is a low-power, long-range wireless

communication technology ideal for IoT (Internet of Things) applications,

even in areas with poor signal reception.. In this use case, the modular

architecture can be employed to develop a LoRa-Based Payload system with

downlink capabilities, enabling communication between the satellite and

ground stations. The designed payload can be small, lightweight, and

low-power. The system can be designed to meet the specific needs of the
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application, and the modular design makes it easy to upgrade or replace

components as needed.

• Thermal considerations: LoRa systems do not generate a lot of heat, so

thermal management is not a major concern.

• PCB design: The PCB for a LoRa-based payload can be designed using

standard techniques.

• Power consumption: LoRa systems are very power-efficient, so power

consumption is not a major concern.

• Layers utilized: A LoRa-based payload will typically utilize layers 1, 2,

and 3 of the modular architecture. The layers can be used as the

following: Layer 1 handles control and management, Layer 2 integrates

the LoRa transceiver module, Layer 3 incorporates the LoRa-specific

OBC. However, layer 4 can be utilized to provide additional functionality

or expansion options, if the LoRa system is used in satellites that support

the use of 3U form factor boards.

3.3.4.3 On-Board Computer (OBC) for CubeSats

An OBC (On-Board Computer) is a crucial subsystem responsible for

controlling and managing the satellite’s overall operations. The modular

architecture can be employed to develop an OBC specifically designed for

CubeSats, taking into account the unique requirements and constraints of

these miniature spacecraft. The OBC can be small, lightweight, and

low-power. The system can be designed to meet the specific needs of the

CubeSat, and the modular design makes it easy to upgrade or replace

components as needed.

• Thermal considerations: CubeSats are typically small and have limited

thermal management capabilities, so it is important to design the OBC to

minimize heat generation. This may involve using low-power components
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or thermal managment techniques.

• PCB design: The PCB for a CubeSat OBC can be designed using

standard techniques, taking into account the PC/104 form factor which is

typically 90 x 96 mm.

• Power consumption: CubeSats have very limited power budgets, so it is

important to design the OBC to minimize power consumption. This may

involve using low-power components or techniques.

• Layers utilized: A CubeSat OBC will typically utilize layer 3 of the

modular architecture, as it was initially designed to be used as an

On-Board Computer (OBC) for CubeSats, passing the qualification

testing. However, further layers, especially layers 1 and 2 can be utilized

to add further functionality or computing power to the CubeSat OBC.

3.3.4.4 Computer for Microsatellites

A microsatellite is a small satellite that is typically between 10 and 100

kilograms in mass. Microsatellites are used for a variety of applications, such

as Earth observation, weather forecasting, and communications. The

computer system in a microsatellite is responsible for handling various tasks,

such as data processing, storage, and communication. The modular

architecture can be leveraged to develop a computer system specifically

tailored for the requirements of microsatellites, being powerful, reliable, and

easy to maintain, as well as giving it the ability to easily upgrade or replace

components as needed. Specifically, this microsatellite computer can be used

in the upcoming 813-Sat mission that is hosted by the National Space Science

and Technology Center (NSSTC).

• Thermal considerations: Microsatellites are typically larger than

CubeSats and have more thermal management capabilities, so it is not as

critical to minimize heat generation. However, it is still important to
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design the system with adequate thermal management.

• PCB design: The PCB for a microsatellite computer can be designed

using standard techniques, based on the backplane used, whether it is cPCI

Serial Space based or SpaceVPX. Typically, both standards follow either

a 3U form factor (having a form factor of 100 x 160 mm) or a 6U (having

a form factor of 230 x 160 mm).

• Power consumption: Microsatellites have larger power budgets than

CubeSats, so it is not as critical to minimize power consumption.

However, it is still important to design the system to minimize power

consumption as much as possible.

• Layers utilized: A microsatellite computer will typically utilize layers 3

and 4 of the modular architecture. Layer 3 accommodates the

foundational computing elements, and layer 4 allows for vertical

expansion and specialized computing tasks, including

microsatellite-specific features. Additionally, layers 1 and 2 can be also

used to add features and computing capabilities to this microsatellite

computer.

3.3.4.5 High Performance Computing (HPC)

High Performance Computing systems are designed to handle complex

computational tasks and perform parallel processing to achieve significant

computational power. By incorporating the modular architecture, an HPC

system can be enhanced with additional computing capabilities using GPUs

(Graphics Processing Units) and FPGAs (Field-Programmable Gate Arrays).

This HPC system can be used for a variety of applications, such as scientific

computing, machine learning, and artificial intelligence.

• Thermal considerations: High-performance computing systems can

generate a lot of heat, so it is important to design the system with

939393



adequate thermal management. This may include using active cooling.

• PCB design: The PCB for a high-performance computing system must

be designed to handle the high frequencies used by the system. This may

require using special materials or techniques.

• Power consumption: High-performance computing systems can be very

power-hungry, so it is important to design the system to minimize power

consumption by using low-power components or techniques.

• Layers utilized: A high-performance computing system will typically

utilize all four layers of the modular architecture, especially if it is

integrated in microsatellites of larger form satellites that support 3U or

6U form factors. Layers 1 and 2 integrate GPUs and FPGAs for parallel

processing, Layer 3 includes the primary computational components, and

Layer 4 supports further expansion with additional GPUs or FPGAs. It is

important to mention that the modular architecture can host several layers

1 and 2 boards, which can be helpful, specifically in this use case.
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In summary, the modular architecture presents a pivotal advancement

for satellite systems, offering unparalleled adaptability, scalability, and

enhanced performance capabilities across diverse applications. By effectively

addressing critical factors such as thermal considerations, PCB design, power

consumption, and the strategic utilization of multiple layers within the

architecture, it serves as a robust foundation for various use cases. While the

aforementioned examples highlight the versatility of this modular

architecture, it is important to note that its application extends beyond these

instances, as it can be tailored to meet the specific requirements of different

missions and satellite endeavors. To provide a concise summary of the

comparative analysis among the surveyed modular architectures, as presented

in Table 1.3, the modular system in this thesis exhibits the following

characteristics: standardized interfaces and sizes, high level of modularity (up

to four layers), scalability from Nano to Micro Satellites with potential for

further expansion, diverse interconnect options including UART, I2C, CAN,

SPI, Ethernet, and PCIe, an expanding and established ecosystem, suitability

for small satellites, accessible and well-documented resources for student and

researcher utilization, fault tolerance, and plug-and-play capabilities. Also,

the following scatter plot, presented in Figure 3.44 can help further clarify

how this architecture compares to the rest in terms of system performance

(including computational power) and modularity, according to what was

mentioned in the literature review about each of the other architectures and

this thesis in specific about the proposed architecture.
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Figure 3.44: Scatter plot of the modular architectures: Performance vs Modularity
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Chapter 4: Conclusion

In this thesis, we have conducted a comprehensive review of modular

standards applicable to satellite systems, exploring various missions that have

adopted such standards, along with other relevant considerations. We have

delved into different intrasatellite communication interfaces that facilitate the

implementation of modular approaches in satellite development.

Additionally, we have compared industry-standard connectors, presenting

satellite developers with a range of options to choose from. Our CDHS

architecture consists of four layers of modularity, offering expandability and

scalability to accommodate larger satellite missions, particularly

microsatellites. During our exploration, we evaluated two prominent CDHS

standards for larger space missions: cPCI Serial Space and SpaceVPX. While

both standards provide modular design and high data rate interfacing

capabilities, cPCI Serial Space stands out due to its extensive adoption of the

PCI Express (PCIe) standard. Leveraging the large ecosystem of off-the-shelf

components and tools available for cPCI Serial Space facilitates its practical

implementation. Moreover, cPCI Serial Space supports both 3U and 6U form

factors, providing greater flexibility in system design. In contrast, SpaceWire,

a specialized space communication standard, offers lower data rates and

presents higher complexity in its implementation. We have also highlighted

the significance of specific interfaces such as UART, I2C, CAN, and SPI

within the CDHS, chosen based on system requirements and the nature of the

transmitted data. For instance, UART serves well for serial communication,

I2C proves useful for low-speed communication with small data volumes,

CAN is suitable for real-time communication, and SPI facilitates high-speed

communication with a limited number of devices. One significant challenge

we encountered was establishing PCIe communication with a non-PCIe

compatible microcontroller present in our PC/104 computing layer of the
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modular CDHS architecture. To address this, we explored several potential

solutions, ultimately selecting a microcontroller commonly used in CubeSat

designs alongside a PCIe-Ethernet bridge to enable PCIe communication. For

the purpose of testing PCIe connectivity in this thesis, we simulated the cPCI

backplane by employing an FPGA with PCIe compatibility as an end-device.

The selection of a suitable FPGA, as well as a flight-proven microcontroller,

was carefully considered during this process. Throughout the testing phase,

we practically evaluated multiple communication protocols, including UART,

I2C, SPI, CAN, Ethernet, and PCIe. Subsequently, we conducted various

tests to assess the functionality of the PC/104 computing layer, the interfacing

between layers 1 and 2 mounted on layer 3, and the cPCI interfacing layer of

the fully integrated CDHS architecture. Additionally, a thermal vacuum

testing procedure was performed on the PC/104 computing layer to qualify it

for future satellite missions. Based on our findings, the selection of a

command and data handling standard and communication interface should be

determined by the specific requirements of the space mission and the

capabilities of available technologies. Building on the successful

implementation of modularity in CDHS hardware architectures, as

experimented in this thesis, future research could explore the application of

modularity to other subsystems in satellites. This could include investigating

the feasibility of using modular designs in power systems, communication

systems, and propulsion systems. Additionally, there is potential to explore

the scalability of modular designs in satellite systems of varying sizes and

complexities. Further research could also explore the benefits of modularity

in reducing development costs and improving system reliability. This thesis

provides a strong foundation for future work in the field of satellite hardware

architecture and paves the way for a more efficient and effective approach to

designing and building satellite systems.
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