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Abstract

It is well known that the fundamental solution to the classical wave equation ∆u(x, t)−

∂ttu(x, t) = 0 is supported on the light cone
{
(x, t) ∈ Rn ×R : ||x||= |t|

}
if and only if the

dimension n is odd and ≥ 3. Because we are living in a 3-dimensional world we can hear

each other clearly; One has a pure propagator without residual waves. In this thesis we

consider the wave equation

2∥x∥∆kuk(x, t)−∂ttuk(x, t) = 0, (x, t) ∈ Rn ×R,

where ∆k is a second order differential and difference operator. First, we prove the existence

and the uniqueness of the solution uk(x, t). Second, we search for the condition on the

parameter k and the dimension n for the fundamental solution to be supported on the light

cone
{
(x, t) ∈Rn ×R :

√
2||x||= |t|

}
. Our approach is based heavily on the representation

theory of the Lie algebra sl(2,R), where we construct a new representation ωk of sl(2,R)

acting on the Schwartz space S(Rn). Finally, we prove that ωk lifts to give raise to a unitary

representation of a simply connected Lie group with Lie algebra sl(2,R).

Keywords: Dunkl operators, wave equation, conservation of total energy, generalized Fourier
transform, convolution structure, Huygens’ principle, Lie algebra sl(2,R), representation theory
Lie algebras, integrability of infinitisimal representations.
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Chapter 1: Introduction

1.1 The Classical Wave Equation

One of the most fascinating features of partial differential equations is the second order

wave equation, which is the canonical example of a hyperbolic PDE. In n dimensions, the

equation takes the form

∆u(x, t)−∂ttu(x, t) = 0

Where ∆ is the Laplacian operator
∂ 2

∂x2
1
+ · · ·+ ∂ 2

∂x2
n
. Since the wave equation is of second

order in t, a well-posed initial value problem for this equation would normally involve two

initial conditions such as u(x,0) = f (x) and ∂tu(x,0) = g(x).

The wave equation has numerous applications. The classical 1-dimension example is

the vibration of an ideal string, and in two-dimension (2D) this becomes the vibration

of an ideal membrane or drum. In three-dimensional (3D), the most famous example

is the propagation of sound waves in a gas or liquid. A curious property known as

Huygens principle is as follows: In his wave theory of light, Huygens implicitly proposed

that the fundamental solution of the wave equation supported in the future cone C+ =

{(x, t) ∈ Rn ×R : ||x|| ≤ |t|} is actually supported on the light cone

∂C+ = {(x, t) ∈ Rn ×R : ||x||= |t|}

for n = 3,5,7, . . . (See some historical remarks in [1]).

In [2] Hadamard searched for other second-order hyperbolic equations that satisfied this

remarkable fact. He proved the necessary condition that n is odd, and gave a sufficient

condition which is highly ineffective to the point that no non-trivial example could be found

from it. Here trivial examples refer to those that could be obtained from the wave equation

above by a non-singular change of variables or multiplication by a non-zero function. The

belief that no non-trivial equation with Huygens principle exist is known as Hadamard’s

conjecture, and for n = 3 it was proved independently by Mathisson [3] and Asgeirsson [4]:

1



• The solution to the wave equation in 1-dimension is given by d’Alembert’s:

u(x, t) =
1
2
( f (x+ t)+ f (x− t))+

1
2

∫ x+t

x−t
g(s)ds.

• The solution to the 2-dimensional wave equation is:

u
((

x1

x2

)
, t
)
=
∫∫

D

f
(y1

y2

)√
t2 − (y1 − x1)2 − (y2 − x2)2

dy1dy2

2π

+
∂

∂ t

(∫∫
D

g
(y1

y2

)√
t2 − (y1 − x1)2 − (y2 − x2)2

dy1dy2

2π

)
,

where D =
{(y1

y2

)
: (x1 − y1)

2 +(x2 − y2)
2 ≤ t2

}
• Kirchhoff’s formula gives the solution to the wave equation in the 3-spatial dimension.

u(x, t) =
1

4πt2

∫∫
S(x,t)

f (s)ds+
∂

∂ t

(
1

4πt2

∫∫
S(x,t)

g(s)ds
)

where S ⊂ R3 is the sphere of center x and radius |t|.

• The solution to the wave equation in odd dimensions is given by

u(x, t) =
1
cn

(
∂

∂ t

)(
1
t

∂

∂ t

) n−3
2
(

tn−2
∫

∂B(x,t)
f (s)ds

)
+

1
cn

(
1
t

∂

∂ t

) n−3
2
(

tn−2
∫

∂B(x,t)
g(s)ds

)
,

where cn = 1 ·3 ·5 ·7 · · ·(n−2). Here ∂B(x, t) is the boundary of the ball of center x

and radius |t|.

• Using the method of descent, the solution to the wave equation in even dimensions is

given by

u(x, t) =
1
cn

(
∂

∂ t

)(
1
t

∂

∂ t

) n−2
2 (

tn
∫

B(x,t)

f (y)√
t2 −∥y− x∥2

dy
)

+
1
cn

(
1
t

∂

∂ t

) n−2
2 (

tn
∫

B(x,t)

g(y)√
t2 −∥y− x∥2

dy
)
.

2



As a surprise, Stellmacher [5] found the first counterexample to Hadamard’s conjecture

when n = 5 with the example

∆− 2
x2

1
−∂tt .

One interesting family of examples comes from Calogero-Moser systems of which Stellmacher’s

example is a particular example. It takes the form

∆− 1
2 ∑

α∈R

kα(kα +1)
⟨α,α⟩

−∂tt ,

where Berest and Veselov [2] proved that Huygens’ principle holds when n is odd and

n ≥ 3+∑α∈R kα . Here R⊂ Rn is a root system and (kα)α is a set of parameters.

1.2 Motivation

Dunkl theory is an evolution of Euclidean Fourier analysis and the theory of special

functions in several variables. In the late 1970s, it gradually became apparent that radial

analysis on flat symmetric spaces and the theory of special functions in one variable are

closely related. Generally speaking, it turns out that spherical functions on flat symmetric

spaces are written in terms of Bessel functions.

A number of attempts were made in the 80’s to generalize the above connection to higher

ranks. This subject is partly motivated by harmonic analysis on flat symmetric spaces and

the growing interest in special functions of several variables. The crucial breakthrough

came with the discovery of the rational Dunkl operators introduced by Dunkl in [6].

These operators are differential-reflection operators associated with finite reflection groups

on some finite-dimensional Euclidean space. Dunkl’s theory has been enriched by this

discovery. This theory is based on the work of Koornwinder [7], Heckman [8], Opdam [9],

and Dunkl [6]. Following a series of papers, Dunkl developed the so-called Dunkl transform,

which is a theory of integral transforms in several variables related to reflection groups.

There has been considerable interest in this theory since it encompasses harmonic analysis

on flat symmetric spaces and spherical functions in several variables in a unified manner.

See, for example, [10], [11], [12], [13] and [14].

Apart from Fourier analysis and multivariable special functions, Dunk theory is also deeply

interconnected with algebra (degenerate Hecke algebras) and probability (Feller processes

3



with jumps). Additionally, Dunkl operators can serve as useful tools for studying quantum

many body systems of the Calogero-Moser type. In recent years, such models have gained

considerable attention in mathematical physics. A comprehensive bibliography is contained

in [15].

In [16] Ben Saïd, Kobayashi and Ørsted gave a far reaching generalization of the Dunkl

theory through introducing a positive real parameter a as a deformation parameter of Dunkl

theory. In particular, a (k,a)-generalized Fourier transform Fk,a has been constructed

and acts on a concrete Hilbert function space deforming L2(Rn). The parameter k is a

multiplicity function coming from Dunkl’s theory. If a = 2, then we recover the Dunkl

Fourier analysis [6], while the case a = 1 provides a new framework and is of particular

interest, since it is related to the Laguerre semigroup and the minimal unitary representations

of O(n+ 1;2) in Kobayashi and Mano’s works [17] and [18]. In [16] and [19], Ben

Saïd, Kobayashi and Ørsted developed this original approach which, as evidenced by

the literature, has received increasing interest from international researchers. Examples

include [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30] and [31]. Several

questions were addressed in detail, but many additional problems were left unsolved.

In this thesis we are dealing with a challenging problem that falls within the line of research

described above, that is associated with the generalized Fourier transform Fk,a with a = 1.

Our main objective is to study the support properties of the unique solution to the the wave

equation

2∥x∥∆kuk(x, t)−∂ttuk(x, t) = 0.

Our approach is based heavily on the representation theory of the Lie algebra sl(2,R),

where we construct a new representation ωk of sl(2,R) acting on the Schwartz space S(Rn).

Further, we prove that ωk integrates to give raise to a unitary representation of a simply

connected Lie group with Lie algebra sl(2,R).

1.3 Framework and Results

Let G be the Coxeter group associated with a root system R in Rn. For a G-invariant

real function k on R, we write ∆k for the Dunkl Laplacian on Rn. The operator ∥x∥∆k is

symmetric on the Hilbert space L2(Rn,ϑk(x)dx) consisting of square integrable functions

4



on Rn against the measure

ϑk(x)dx = ∥x∥α−2
∏

α∈R
|⟨α,n⟩|kα .

Then ϑk(x) has a degree of homogeneity 2⟨k⟩−1 where ⟨k⟩= 1
2 ∑α∈R kα .

The generalized Fourier transform Fk,1 is defined by

Fk,1( f )(ξ ) = ck

∫
Rn

f (y)Bk(x,y)ϑk(y)dy

where

Bk(x,y) =Vk

(
J̃⟨k⟩+ n−3

2
(
√

2rt(1+ ⟨θ ′, ·⟩))
)
(θ ′′)

with Vk is the Dunkl intertwining operator and x = rθ ′, y = tθ ′′. Here J̃ denotes the

normalized Bessel function

J̃ν(w) =
∞

∑
l=0

(−1)lw2l

22ll!Γ(ν + l +1)
.

In particular,

Bk(0,y) = 1, |Bk(x,y)| ≤ 1, ∥x∥∆kBk(x,y) =−∥y∥Bk(x,y).

We pin down that Fk,1 in a unitary operator from L2(Rn,ϑk(x)dx) onto itself, and the inverse

transform is given by F−1
k,1 = Fk,1.

For suitable functions on Rn, in [23] the authors defined the translation operator τy by

τy f (x) = ck

∫
Rn

Bk(x,ξ )Bk(y,ξ )Fk,1 f (ξ )ϑk(ξ )dξ .

For n+2⟨k⟩−2 > 0, the authors proved that τy extends to a bounded operator on the space

Lp
rad(R

n,ϑk(x)dx), of radical function in Lp(Rn,ϑk(x)dx), with 1 ≤ p ≤ 2

∥τy f∥Lp
k
≤ ∥ f∥Lp

k
, 1 ≤ p ≤ 2.

5



By means of the translation operator, a convolution operator ⊛ was defined on the space

Lp(Rn,ϑk(x)dx) by

f ⊛g(x) = ck

∫
Rn

f (y)τxg(y)ϑk(y)dy.

In particular f ⊛ g = g⊛ f and Fk,1( f ⊛ g) = Fk,1( f )Fk,1(g). They proved that the map

f 7→ f ⊛g, with g ∈ L1
rad(Rn,ϑk(x)dx), extends to the space Lp(Rn,ϑk(x)dx) with

∥ f ⊛g∥Lp
k
≤ ck ∥ f∥Lp

k
∥g∥L1

k

for every 1 ≤ p ≤ ∞.

This thesis was motivated by the paper [32] duo to Ben Said and Ørsted which studies the

Huygens principle for the so-called Dunkl wave equation ∆ku(x, t)−∂ttu(x, t) = 0. They

proved that the fundamental solution is supported on the light cone
{
(x, t) ∈Rn×R : ∥x∥=

|t|
}

if and only if n+1+ ⟨k⟩= 4,6,8, . . . Notice that n needs not be odd, in contrast with

Hadamard’s and Petrovsky’s conditions for the differential case.

Consider the following Cauchy problem2∥x∥∆ku(x, t)−∂ttu(x, t) = 0

u(x,0) = f (x), ∂tu(x,0) = g(x),

where the initial data ( f ,g) belongs to the Schwartz space S(Rn).

First we prove that there exits a unique solution to the above Cauchy problem given by

u(x, t) = P11
k,t ⊛ f (x)+P12

k,t ⊛g(x),

where

P11
k,t (x) = F−1

k (cos(t
√

2∥ · ∥))(x), P12
k,t (x) = F−1

k (sin(t
√

2∥ · ∥)/
√

2∥ · ∥)(x).

Our construction of the solution uses Fourier analysis related to the transform Fk := Fk,1.

To prove the uniqueness of u(x, t), we show that the total energy

Ek[u](t) =
∫
Rn

(
|∂tu(x, t)|2 + |

√
2∥x∥∆ku(x, t)|2

)
ϑk(x)dx

6



is indeed independent of the time t. Therefore if u1 and u2 are two solutions to the above

Cauchy problem, then Ek(u1 −u2)(t) = 0, implying that ∂t(u1 −u2)(x, t) = 0, which gives

(u1 −u2)(x, t) = (u1 −u2)(x,0) = 0 that is u1(x, t) = u2(x, t).

Using P11
k,t and P12

k,t we define the distributions P11
k and P12

k on the Schwartz space S(Rn+1)≃

S(Rn)⊗S(R) by

Pi j
k (ψ1 ⊛ψ2) =

∫
R

Pi j
k,t(ψ1)ψ2(t)dt,

for ψ1 ∈ S(Rn) and ψ2 ∈ S(R). From the construction of the solution u(x, t), we deduce

easily that

(2∥x∥∆k −∂tt)P
i j
k = 0.

Further, for λ > 0 and ψ ∈ S(Rn+1), we introduce Sx
λ

ψ(x, t) = ψ(λ 2x, t), St
λ

ψ(x, t) =

ψ(x,λ t), and we set Sλ = Sx
λ
◦St

λ
. By duality, the operator Sλ acts on distributions in the

standard way. We prove that P11
k and P12

k satisfy

Sλ Pi j
k = λ

1+ j−i Pi j
k .

Now saying that P11
k and P12

k are supported on the light cone

∂C+ =
{
(x, t) ∈ Rn ×R |

√
2∥x∥= |t|

}
,

is equivalent to say that (
2∥x∥− |t|2

)m
Pi j

k = 0,

for some integer m (see [33]). Next we shall connect the above proved properties of P11
k

and P12
k to a representation of the Lie algebra sl(2,R).

We introduce the following differential-difference operators on Rn \{0} by

E+
k := i∥x∥, E−

k := i∥x∥∆k, Hk := n+2⟨k⟩−1+2
n

∑
i=1

xi∂i.

We prove that E+
k , E

−
k and Hk form an sl2-triple, that is

[E+
k ,E

−
k ] =Hk, [Hk,E+

k ] = 2E+
k , [Hn,1,E−

k ] =−2E−
k .

7



By means of the above operators we construct a representation ωk of the 3-dimensional Lie

algebra sl(2,R) by mapping1 0

0 −1

 7→Hk,

0 1

0 0

 7→ E+
k ,

0 0

1 0

 7→ E−
k .

In the light of the above constructed representation ωk together with the properties of the

distributions P11
k and P12

k mentioned earlier, we conclude that proving Huygens’ principle

for the wave equation 2∥x∥∆ku(x, t)−∂ttu(x, t) = 0 is equivalent to show that P11
k and P12

k

generates a finite dimensional representation ωk(sl(2,R)). Using a result in [16] about

the branching decomposition of S(Rn) under the action of G× sl(2,R), we deduce that

Huygens’ principle fails when 2⟨k⟩−1/2 /∈ Z, which leaves the likelihood that the wave

equation may satisfies Huygens’ principle when 2⟨k⟩− 1/2 ∈ Z. Then we were able to

prove that ωk generates a finite dimensional representation of sl(2,R) if and only if (recall

that ⟨k⟩ ∈ R)

2n+4⟨k⟩−5 ∈ 2N.

It is remarkable to see that when the multiplicity function k is zero, then 2∥x∥∆−∂tt = 0

does not satisfy the Huygens’ principle, where ∆ is the classical Laplacian, while if the

multiplicity function k is non-zero, then the Huygens principle holds as long as 2n+4⟨k⟩−5

is an even integer.

We close the thesis by answering to the question of integrability of the Lie algebra

representation ωk constructed above. Note that the integrability fact is not obvious, since

in infinite dimensions, the existence of a group representation is not guaranteed from

the existence of a Lie algebra representation. By means of a beautiful result due to E.

Nelson [34], we prove that ωk exponentiates to a unique unitary representation of the

universal covering group of SL(2,R).
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Chapter 2: Dunkl Operators

2.1 Introduction

Dunkl’s discovery in 1989 of the differential difference operators that now bear his name is

one of the most important recent developments in the theory of special functions associated

with root systems. In this chapter, we will provide an introduction to the theory of Dunkl

operators, and to give some of their properties. We do not intend to give a complete survey,

but rather focus on those aspects which will be important in the context of this thesis. Our

main references for this chapter are [10, 35–37].

2.2 Root Systems and Coxeter Groups

Let ⟨·, ·⟩ be the standard Euclidean scalar product in Rn. For x ∈ Rn, denote ∥x∥= ⟨x,x⟩1/2.

Given any vector α in Rn\{0}, we denote by sα the orthogonal reflection in the hyperplane

Hα = {y ∈ Rn : ⟨α,y⟩= 0} . More precisely,

sα(x) = x−2
⟨α,x⟩
⟨α,α⟩

α, ∀x ∈ Rn.

Lemma 2.1. For any v ∈ Rn\{0}, the reflection sv preserves the inner product ⟨·, ·⟩.

Proof. By definition we have

⟨sv(x),sv(y)⟩

= ⟨x−2
⟨x,v⟩
⟨v,v⟩

v,y−2
⟨y,v⟩
⟨v,v⟩

v⟩

= ⟨x,y⟩+

〈
x,−2

⟨y,v⟩
⟨v,v⟩

v

〉
+

〈
−2

⟨x,v⟩
⟨v,v⟩

v,y

〉
+

〈
−2

⟨x,v⟩
⟨v,v⟩

v,−2
⟨y,v⟩
⟨v,v⟩

v

〉

= ⟨x,y⟩−2
⟨y,v⟩
⟨v,v⟩

⟨x,v⟩−2
⟨x,v⟩
⟨v,v⟩

⟨v,y⟩+2
⟨y,v⟩
⟨v,v⟩

·2⟨x,v⟩
⟨v,v⟩

⟨v,v⟩

= ⟨x,y⟩−4
⟨x,v⟩⟨y,v⟩

⟨v,v⟩
+4

⟨x,v⟩⟨y,v⟩
⟨v,v⟩

= ⟨x,y⟩.
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□

Definition 2.1. A subset R of Rn is called a root system if it satisfies the following axioms:

(a) R is finite, does not contain 0, and spans Rn;

(b) for all α,β ∈R, we have sα(β ) ∈R.

If in addition R∩Rα = {±α} for all α ∈R, then R is called reduced.

Example 2.1. Let {e1, . . . ,en} be the standard basis vectors of Rn.

(1) For n ≥ 2 the reduced root system of type An−1 is given by

R=
{
±(ei − e j) : 1 ≤ i < j ≤ n

}
.

(2) For n ≥ 2 the reduced root system of type Bn is defined by

R=
{
±(ei ± e j) : 1 ≤ i < j ≤ n

}
∪{±ei : 1 ≤ i ≤ n} .

2.3 Finite Coxeter Groups

A matrix s = (si j)
n
i, j=1 is called orthogonal if ssT = In, where sT denotes the transpose of s

and In is the n×n identity matrix. For α ∈R, writing

sα = In −2
(
αα

T)−1
α

T
α

shows that sα = sT
α and sαsT

α = In (note that ααT = ⟨α,α⟩ ). This implies that sα belongs

to the group of orthogonal matrices O(n).

Definition 2.2. Given a root system R, we will denote by G the subgroup of O(n) generated

by the reflections {sα : α ∈R}. We say that G is the Coxeter group associated with R.

Example 2.2. Denote by Sn the symmetric group of all the permutations of length n.

10



(1) For the root system An−1 =
{
±(ei − e j) ,1 ≤ i < j ≤ n

}
, the corresponding Coxeter

group is given by G ≃ Sn

(2) For the root system Bn =
{
±(ei ± e j) : 1 ≤ i < j ≤ n

}
∪{±ei : 1 ≤ i ≤ n}, we have

G ≃ Sn ⋉{±1}n.

Lemma 2.2. The following hold true:

(1) If α ∈R then −α ∈R.

(2) For any root system R in Rn, the Coxeter group G is finite.

Proof. (1) The first statement follows from the fact that sα(α) =−α.

(2) As the elements of G permute R, there exists a natural homomorphism ψ : G → S(R)

of G into the symmetric group S(R) of R, given by ψ(g)(α) := gα . This homomorphism

is injective: indeed, each reflection sα , and therefore also each element g ∈ G, fixes the

orthogonal complement of the subspace spanned by R. If also gα = α for all α ∈R, then

g must be the identity. Thus, G is a subgroup of the symmetric group. As a subgroup of a

finite group, G is finite.

Definition 2.3. (multiplicity function). A multiplicity function k : R→ C,α 7→ k(α), is a

series of parameters assigned to each disjoint part of a root system R. That is, if α,β ,γ ∈R

such that sα(β ) = γ , then k(β ) = k(γ). In other words, the multiplicities assigned to two

different roots are different if they cannot be related by a series of reflections.

Example 2.3. In the case where the root system

R= B2 = {±(e1 − e2) ,±(e1 + e2) ,±e1,±e2}

there is no root that reflects the roots ±e1 and ±e2 into the roots ±(e1 − e2) and ±(e1 + e2).

Therefore, the multiplicity function for B2 can take only two different values: k (±e1) =

k (±e2) = k1 and k (±(e1 − e2)) = k (±(e1 + e2)) = k2.

11



2.4 Dunkl Operators

We will assume that R is a normalized reduced root system with ⟨α,α⟩= 2 for all α ∈R.

We will denote by K+ the set of multiplicity functions k such that kα ≥ 0 for every α ∈R.

Definition 2.4. (see [38]). For ξ ∈ Rn and k ∈ K+, the Dunkl operator Tξ := Tξ (k) is

defined on C1 (Rn) by

Tξ f (x) = ∂ξ f (x)+
1
2 ∑

α∈R
kα⟨α,ξ ⟩

{
f (x)− f (sαx)

⟨α,x⟩

}

where ∂ξ = ⟨ξ ,∇⟩ is the directional derivative associated to ξ , with ∇ =
(

∂

∂x1
, . . . , ∂

∂xn

)
.

Notice that when k ≡ 0, the Dunkl operator Tξ reduces to ∂ξ .

Example 2.4. There is only one root system of rank 1, consisting of two nonzero vectors

R = {±
√

2}, which is a root system of type A1. The corresponding Coxeter group is

G = {±id}. The Dunkl operator with multiplicity parameter k ∈ C is given by

T f (x) = f ′(x)+ k
f (x)− f (−x)

x
.

Example 2.5. Dunkl operators of type An−1. Suppose G= Sn with root system of type An−1.

As all transpositions σi j are conjugate in Sn, the vector space of multiplicity functions is

one-dimensional. The Dunkl operators associated with the parameter k ≥ 0 are given by

Ti = ∂i + k ·∑
j ̸=i

1−σi j

xi − x j
(i = 1, . . . ,n).

Example 2.6. Suppose R is a root system of type Bn. There are two conjugacy classes of

reflections in G, leading to multiplicity functions of the form k = (k0,k1) . The associated

Dunkl operators are given by

Ti = ∂i + k1 ∑
i

1−σi

xi
+ k0 ·∑

j ̸=i

[
1−σi j

xi − x j
+

1− τi j

xi + x j

]
(i = 1, . . . ,n),

where τi j := σi jσiσ j.
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Let P := C [Rn] be the C-algebra of polynomial functions on Rn, and Pm ⊂ P be the space

of polynomials of degree m. It is well know that :

(D1) The Dunkl operator Tξ is homogeneous of degree −1 on P, that is, Tξ p ∈ Pm−1 for

all p ∈ Pm.

(D2) The Dunkl operator Tξ leaves the spaces C∞
c (Rn) and S (Rn) invariant.

The above two claims follow directly from the fundamental theorem of calculus

f (x)− f (sαx)
⟨α,x⟩

=
∫ 1

0
∂α f (x− t⟨α,x⟩α)dt.

Theorem 2.1. If f ,g ∈C1 (Rn), we have

Tξ ( f g)(x) =g(x)Tξ f (x)+ f (x)Tξ g(x)

− 1
2 ∑

α∈R
kα

⟨α,ξ ⟩
⟨α,x⟩

{ f (x)− f (sαx)}{g(x)−g(sαx)} .

Proof. Using definition 2.4. we have

Tξ ( f g)x = ∂ξ ( f g)(x)+
1
2 ∑kα

⟨α,ξ ⟩
⟨α,x⟩

{
f (x)g(x)− f (sαx)g(sαx)

}
= ∂ξ f (x)g(x)+∂ξ g(x) f (x)+

1
2 ∑kα

⟨α,ξ ⟩
⟨α,x⟩

{
f (x)g(x)− f (sαx)g(sαx)

}
= ∂ξ f (x)g(x)+

1
2 ∑kα

⟨α,ξ ⟩
⟨α,x⟩

{
f (x)g(x)−g(x) f (sαx)

}
−1

2 ∑kα

⟨α,ξ ⟩
⟨α,x⟩

{
f (x)g(x)−g(x) f (sαx)

}
+∂ξ g(x) f (x)+

1
2 ∑kα

⟨α,ξ ⟩
⟨α,x⟩

{
f (x)g(x)− f (x)g(sαx)

}
−1

2 ∑kα

⟨α,ξ ⟩
⟨α,x⟩

{
f (x)g(x)− f (x)g(sαx)

}
+

1
2 ∑kα

⟨α,ξ ⟩
⟨α,x⟩

{
f (x)g(x)− f (sαx)g(sαx)

}
This finishes the proof.

As a corollary we obtain the following important property.
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Corollary 2.1. Assume that f and g are in C1 (Rn) and at least one of them is G invariant.

Then,

Tξ [ f g](x) = g(x)Tξ f (x)+ f (x)Tξ g(x).

It is well known that ∂ξ ∂η = ∂η∂ξ . The most remarkable fact about the Dunkl operators is

that a similar fact holds true.

Theorem 2.2. (see [35, 39]) For fixed k ∈ K+, the Dunkl operators commute,

Tξ Tη = TηTξ for all ξ ,η ∈ Rn.

Proof. Using the bracket [·, ·] for the commutator of two operators, i.e. [A,B] = A◦B−

B◦A. Let us write the Dunkl operator as Tξ = ∂ξ +
1
2 ∑

α∈R
kα⟨α,ξ ⟩∆α where ∆α f (x) =

f (x)− f (rαx)
⟨α,x⟩

. For arbitrary ξ ,η ∈ Rn we can have

[
Tξ ,Tη

]
= I+ II+ III

where
I =

[
∂ξ ,∂η

]
= 0,

II =
1
2 ∑

α∈R
kα

{
⟨α,ξ ⟩ [∆α ,∂η ]+ ⟨α,η⟩

[
∂ξ ,∆α

]}
,

III =
1
4 ∑

α,β∈R
kαkβ ⟨α,ξ ⟩⟨β ,η⟩

[
∆α ,∆β

]
.

For α ∈R, we have

[
∂ξ ,∆α

]
=

⟨α,ξ ⟩
⟨α, ·⟩

{rα∂α −∆α} ,

and

[∆α ,∂η ] =−⟨α,η⟩
⟨α, ·⟩

{rα∂α −∆α} .

Therefore,

II =
1
2 ∑

α∈R
kα

⟨α,ξ ⟩⟨α,η⟩
⟨α, ·⟩

{rα∂α −∆α}(−1+1) = 0.
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The term III can be written as

III =
1
4 ∑

α,β∈R
kαkβ{⟨α,ξ ⟩⟨β ,η⟩−⟨α,η⟩⟨β ,ξ ⟩}∆α∆β .

The fact that part III = 0 is due to the following crucial fact proved by Dunkl.

Theorem 2.3. Suppose B(·, ·) is a bilinear form on Rn such that

B(sαλ ,sα µ) = B(µ,λ ) ∀λ ,µ ∈ Rn,∀α ∈ R∩ span⟨λ ,µ⟩.

If w ∈ G is a pure rotation (i.e. dimIm(w− id) = 2) then

∑
α,β∈R,sα sβ=w

kαkβ B(α,β )∆α∆β = 0.

This finishes the proof of Theorem 2.2..

2.4.1 The Dunkl Laplacian

The constant coefficient differential operator p(∂ ), with p ∈ C[Rn], has a well defined

Dunk-analogue p(T ) defined for a monomial m(x) = xd1
1 · · ·xdn

n by m(T ) = T d1
e1 · · ·T dn

en .

Here e1, . . . ,en is an orthonormal basis for Rn. For p0(x) = ∥x∥2 = ∑
n
j=1 x2

j , we write

∆k := p0(T ). The operator ∆k is the so-called Dunkl Laplacian.

Theorem 2.4. The Dunkl Laplacian operator can be written as

∆k f (x) = ∆ f (x)+ ∑
α∈R

kα

{
⟨∇ f (x),α⟩

⟨α,x⟩
− f (x)− f (rαx)

⟨α,x⟩2

}

where ∇ =
(

∂

∂x1
, . . . , ∂

∂xn

)
denotes the usual gradient operator.

Proof. Suppose {e1, , ....en} is an orthonormal basis for Rn. Recall that Te j = ∂e j +
1
2 ∑

α∈R
kα

〈
α,e j

〉
∆α ,

where ∆α f (x) =
f (x)− f (rαx)

⟨α,x⟩
.
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Thus,

n

∑
j=1

T 2
e j

=
n

∑
j=1

{
∂e j +

1
2 ∑

α∈R
kα

〈
α,e j

〉
∆α

}2

=
n

∑
j=1

{
∂

2
e j
+

1
2 ∑

α∈R
kα

〈
α,e j

〉(
∂e j∆α +∆α∂e j

)
+

1
4 ∑

α,β∈R
kαkβ

〈
α,e j

〉〈
β ,e j

〉
∆α∆β

}

= ∆+
1
2 ∑

α∈R
kα (∂α∆α +∆α∂α)+

1
4 ∑

α,β∈R
kαkβ ⟨α,β ⟩∆α∆β

= ∆+
1
2 ∑

α∈R
kα (∂α∆α +∆α∂α)+

1
4 ∑

α,β∈R,α ̸=β

kαkβ ⟨α,β ⟩∆α∆β .

The above third term vanishes due to Theorem 2.3. and the fact that ∆2
α = 0. Further,

∂α∆α +∆α∂α = [∂α ,∆α ]+2∆α∂α

=
2

⟨α, ·⟩
{sα∂α −∆α}+

2
⟨α, ·⟩

(1− sα)∂α

=
2

⟨α, ·⟩
{∂α −∆α} .

This finishes the proof of the statement.

Example 2.7. For n = 1, we have R= {±
√

2} and G = {±id}. In this case,

T f (x) = f ′(x)+ k
f (x)− f (−x)

x

and

∆k f (x) = T 2 f (x) = f ′′(x)+
2k
x

f ′(x)−2k
f (x)− f (−x)

x2 .

Proof.

T 2 f (x) =
(

f ′(x)+
k
x
( f (x)− f (−x))

)′
+

k
x

(
f ′(x)+

k
x
( f (x)− f (−x))

)
− k

x

(
f ′(−x)+

k
−x

( f (−x)− f (x))
)

16



= f ′′(x)+
k
x

(
f ′(x)− f ′(−x)

)
− k

x2 ( f (x)− f (−x))+
k
x

f ′(x)

+
k2

x2 ( f (x)− f (−x))− k
x

f ′(−x)+
k2

x2 ( f (−x)− f (x))

= f ′′(x)+
k
x

f ′(x)− k
x

f ′(−x)− k
x2 f (x)+

k
x2 f (−x)+

k
x

f ′(x)

+
k2

x2 f (x)− k2

x2 f (−x)− k
x

f ′(−x)+
k2

x2 f (−x)− k2

x2 f (x)

= f ′′(x)+
2k
x

f ′(x)− k
x2 f (x)+

k
x2 f (−x)

= f ′′(x)+
2k
x

f ′(x)+
k
x2 ( f (−x)− f (x)) .

2.4.2 The Dunkl Intertwining Operator

Dunkl’s intertwining operator is an isomorphism on P = C[Rn] which intertwines the

commutative algebra of Dunkl operators with the algebra of partial differential operators

with constant coefficients.

Theorem 2.5. Let k ∈ K+. There exists a unique linear isomorphism (intertwining

operator) Vk on P such that

TξVk =Vk∂ξ , Vk1 = 1, VkPm = Pm.

An explicit representation for Vk is known so far only in some special cases. However, for

a further development of the theory it is crucial to extend the domain of Vk a way from

polynomials. For instance, Trimèche proved that Vk induces a homeomorphism of C(Rn)

and also that of C∞(Rn). The most important property of Vk is the following result:

Theorem 2.6. (see [40]) For each x ∈ Rn there exists a unique probability measure µk
x on

Rn such that

Vk f (x) =
∫
Rn

f (y)dµ
k
x (y).

Example 2.8. (see [38]) For n = 1 and k > 0, the integral representation of Vk is given by

Vk f (x) =
Γ(k+1/2)
Γ(1/2)Γ(k)

∫ 1

−1
f (xt)(1− t)k−1(1+ t)kdt.
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Below we can verify that T (Vk f ) =Vk ( f ′). Indeed, let bk =
Γ(k+1/2)

Γ(1/2)Γ(k) . Then,

TVk f (x) = ∂x(Vk f )+ k
Vk f (x)−Vk f (−x)

x

= bk

∫ 1

−1
t f ′(xt)(1− t)k−1(1+ t)kdt +

bk
k
x

∫ 1

−1
f (xt)(1− t)k−1(1+ t)kdt −bk

k
x

∫ 1

−1
f (−xt)(1− t)k−1(1+ t)kdt

= bk

∫ 1

−1
t f ′(xt)(1− t)k−1(1+ t)kdt

+bk
k
x

∫ 1

−1
f (xt)(1+ t)k(1− t)k

{
1

1− t
− 1

1+ t

}
dt

= bk

∫ 1

−1
t f ′(xt)(1− t)k−1(1+ t)kdt +bk

∫ 1

−1

(
f (xt)

x

)
2kt(1− t2)k−1dt.

Further, an integration by parts gives

TVk f (x) = bk

∫ 1

−1
f ′(xt)(t +(1− t))(1− t)k−1(1+ t)kdt

= Vk f ′(x).

That is T (Vk f ) =Vk ( f ′).

2.5 The Dunkl Kernel and The Dunkl Transform

2.5.1 The Dunkl Kernel

For a fixed y ∈ Rn we search for a function f solvingTξ f (x) = ⟨ξ ,y⟩ f (x), ∀ξ ∈ Rn,

f (0) = 1.

If k ≡ 0 then the solution to this problem is f (x) = e⟨x,y⟩.

For fixed y ∈ Rn define

Ek(x,y) :=Vk(e⟨ · , y⟩)(x), x ∈ Rn.

18



Indeed we may rewrite Ek(x,y) as

Ek(x,y) =
∞

∑
n=0

1
n!

Vk⟨·,y⟩n(x).

Then:

i) The homogeneity of Vk implies Ek(0,y) = 1.

ii) By the intertwining property, we have

TξVk⟨·,y⟩n(x) =Vk∂ξ ⟨·,y⟩n(x) = n⟨ξ ,y⟩Vk⟨·,y⟩n−1(x).

Thus

Tξ Ek(x,y) = ⟨ξ ,y⟩
∞

∑
n=1

1
(n−1)!

Vk⟨·,y⟩n−1(x) = ⟨ξ ,y⟩Ek(x,y).

The uniqueness follows by standard arguments. Hence we have proved:

Theorem 2.7. Let y ∈ Rn and k ∈ K+. Then Ek(·,y) is the unique solution of the systemTξ f (x) = ⟨ξ ,y⟩ f (x)

f (0) = 1.

Example 2.9. For n = 1, we have

Ek(x,y) =Vk(ey)(x) =
Γ(k+ 1

2)√
πΓ(k)

∫ 1

−1
etxy(1+ t)(1− t2)k−1dt

= exy
1F1(k;2k+1;−2xy),

where

1F1(a;b; t) =
∞

∑
k=0

(a)n

(b)n

tn

n!
.

We collect some basic properties of the Dunkl kernel Ek.

Proposition 2.1. ( [41, 42]) The Dunkl kernel Ek satisfies: For x,y ∈ Rn, λ ∈ R, and

g ∈ G,
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a) Ek(x,y) = Ek(y,x).

b) Ek(λx,y) = Ek(x,λy) and Ek(gx,gy) = Ek(x,y).

c) Ek(x,y)> 0.

d) |Ek(x,−iy)| ≤ 1.

2.5.2 The Dunkl Transform

Let L1(Rn,ϑk(x)dx) be the space of integrable functions on Rn with respect to the measure

ϑk(x)dx = ∏
α∈R

|⟨α,x⟩|kα dx.

The Dunkl kernel gives rise to an integral transform.

Definition 2.5. The Dunkl transform associated to a root system R and a multiplicity

function k ∈ K+ is defined on L1(Rn,ϑk(x)dx) by

Fk,2( f )(ξ ) = ck

∫
Rn

f (x)Ek(x,−iξ ) ∏
α∈R

|⟨α,x⟩|kα dx

for some positive constant ck.

The following are the main properties for the Dunkl transform; they are in complete analogy

to the corresponding results for the Euclidean Fourier transform.

Theorem 2.8. (see [6, 43])

1) (Plancherel Theorem) The Dunkl transform Fk,2 has a unique extension to an isometric

isomorphism of L2(Rn,ϑk(x)dx).

2) (L1-inversion) If f ∈ L1(Rn,ϑk(x)dx) and Fk,2 f ∈ L1(Rn,ϑk(x)dx), then

f = F−1
k,2Fk,2 f a.e,

where F−1
k,2 f (ξ ) := Fk,2 f (−ξ ).

3) The Dunkl transform Fk,2 is injective on L1(Rn,ϑk(x)dx).
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4) The Dunkl transform Fk,2 is an homeomorphism of the Schwartz space S(Rn).
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Chapter 3: The (k,a)-Generalized Fourier Transform

3.1 Introduction

In the previous chapter we introduced the Dunkl transform Fk,2. In the present chapter

we will introduce the generalized Fourier transform Fk,a where a > 0. This transform was

introduced by Ben Said, Ørsted and Kobayashi in [16]. The main properties of Fk,a will

be given, such as the Plancherel formula and the inversion formula. The framework of

this thesis concerns with the case a = 1. We close this chapter by a convolution structure

associated with Fk,a when a = 1.

3.2 The Kernel Bk,a(x,y)

In this section we will introduce the kernel of the generalized Fourier transform. When

a = 2, this kernel reduces to the Dunkl kernel introduced in the previous chapter.

Let us introduce the normalized I-Bessel function Ĩν(w) defined by

Ĩλ (w) :=
(w

2

)−λ

Iλ (w) =
∞

∑
ℓ=0

w2ℓ

22ℓℓ!Γ(λ + ℓ+1)

=
1

√
πΓ
(
λ + 1

2

) ∫ 1

−1
ewt (1− t2)λ− 1

2 dt.

The normalized Bessel function of the first kind J̃ν(ω) is given by

J̃ν(ω) :=
(

ω

2

)−ν

Jν(ω) =
∞

∑
ℓ=0

(−1)ℓω2ℓ

22ℓℓ!γ(ν + ℓ+1)
.

From the definition of the normalized I-Bessel function we have

J̃ν(ω) = Ĩν(−iω) = Ĩν(iω).

Definition 3.1. The Gegenbauer polynomials Cα
m(t) are defined for α > 0 and m ∈ N by

Cα
m(t) =

1
Γ(α)

[m/2]

∑
k=0

(−1)k Γ(m− k+α)

k!(m−2k)!
(2t)m−2k,
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In [19], the authors proved that there exists a constant B(ν)> 0 such that

sup
−1≤t≤1

∣∣∣∣1ν Cν
m(t)

∣∣∣∣≤ B(ν)m2ν−1 for any m ∈ N.

For b > 0, let us consider the following infinite sum:

I(b,ν ;w; t) =
Γ(bν +1)

ν

∞

∑
m=0

(m+ν)
(w

2

)bm
Ĩb(m+ν)(w)C

ν
m(t).

Lemma 3.1. 1) The above summation converges absolutely and uniformly on any compact

subset of

U := {(b,ν ,w, t) ∈ R+×R×C× [−1,1] : 1+bν > 0}.

In particular, I(b,ν ;w; t) is a continuous function on U.

2) (Special value at w = 0)

I(b,ν ;0; t)≡ 1. (3.1)

Proof. 1) It is sufficient to show that for a sufficiently large m0 the summation over m

(≥ m0) converges absolutely and uniformly on any compact set of U. It is known that

|Ĩλ (w)| ≤
e|Relw|

Γ(λ +1)
,∣∣∣∣1ν Cν

m(t)
∣∣∣∣≤ B(ν)m2ν−1 for any m ≥ 1.

Then,

1
ν

∞

∑
m=m0

∣∣∣∣∣(m+ν)
(w

2

)bm
Ĩb(m+ν)(w)C

ν
m(t)

∣∣∣∣∣
≤

∞

∑
m=m0

∣∣∣∣∣(m+ν)B(ν)wbme|Relw|m2ν−1

2bmΓ(bm+bν +1)

∣∣∣∣∣
= B(ν)e|Relw|

∞

∑
m=m0

(1+ ν

m)m
2ν

Γ(bm+bν +1)

(∣∣∣w
2

∣∣∣b)m

.

Since b > 0, Γ(bm+ bν + 1) grows faster than any other term in each summand as m

goes to infinity, and consequently, the last sum converges. Furthermore, the convergence
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is uniform on any compact set of parameters (b,ν ,w). Hence, we have proved the first

assertion.

2) Since b > 0, the summand defining I vanishes at w = 0 for any m > 0, and therefore

I(b,ν ;0; t) =
Γ(bν +1)

ν
·ν · Ĩbν(0) ·Cν

0 (t)

= 1.

Thus, the second assertion is proved.

Example 3.1. The special values at b = 1,2 are given by

I(1,ν ;w; t) = ewt ,

I(2,ν ;w; t) = Γ

(
ν +

1
2

)
Ĩ
ν− 1

2

(
w(1+ t)

1
2

√
2

)
.

Definition 3.2. Introduce the following continuous function of t ∈ [−1,1] with parameters

r,s > 0, and z ∈ C+\iπZ :

hk,a(r,s;z; t) :=
exp
(
−1

a (r
a + sa)coth(z)

)
sinh(z)

2⟨k⟩+n+a−2
a

I

(
2
a
,
2⟨k⟩+n−2

2
;

2(rs)
a
2

asinh(z)
; t

)
,

where

⟨k⟩ :=
1
2 ∑

α∈R
kα .

Example 3.2. For a = 1,2 we respectively have:

hk,a(r,s;z; t) =
exp(−1

a(r
a + sa)coth(z))

sinh(z)
2⟨k⟩+n+a−2

a

×


Γ

(
⟨k⟩+ n−1

2

)
Ĩ⟨k⟩+ n−3

2

(√2(rs)
1
2

sinhz
(1+ t)

1
2

)
exp
( rst

sinhz

)
.
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For x,y ∈ R, we define the kernel function Λk,a (x,y;z) by

Λk,a (rω,sη ;z) = Ṽk(hk,a(r,s;z; ·))(ω,η)

where Ṽk is given in terms of the Dunkl intertwining operator by

(Ṽkh)(x,y) := (Vkhy)(x) =
∫
Rn

h(⟨ξ ,y⟩)dµ
k
x (ξ ).

Definition 3.3. For a multiplicity function k ⩾ 0, a > 0 such that 2⟨k⟩+n > max(1,2−a)

we introduce the kernel Bk,a(ξ ,x) by

Bk,a(x,y) = eiπ((2⟨k⟩+1+a−2)/2a)
Λk,a

(
x,y; i

π

2

)
.

Example 3.3. For n = 1,a > 0,k ⩾ 0 such that 2k > 1−a, we can write the kernel Bk,a

as follows

Bk,a(x,y) = Γ

(
2k+a−1

a

)(
J̃(2k−1)

a

(
2
a
|xy|

a
2

)
+

xy

(ai)
2
a

J̃(2k+1)
a

(
2
a
|xy|

a
2

))
.

Example 3.4. (see [19]) For arbitrary dimension n, and a = 1,2 we get respectively

following the formula:

hk,a(r,s;
πi
2

; t) =

Γ

(
⟨k⟩+ n−1

2

)
e−

πi
2 (2⟨k⟩+n−1)J̃⟨k⟩+ n−3

2
(
√

2(rs)
1
2 (1+ t)

1
2 )

e−
πi
2 (⟨k⟩+ n

2 )e−irst .

In the polar coordinates x = rω and y = sη , the kernel Bk,a(x,y) , with a = 1,2 is given

respectively by

Bk,a(rω,sη) =

Γ

(
⟨k⟩+ n−1

2

)(
Ṽk

(
J̃⟨k⟩+ n−3

2

(√
2rs(1+ ·)

)))
(ω,η)(

Ṽk
(
e−irs·))(ω,η).

As one can see form the example above that the kernel Bk,2(x,y) coincides with the

Dunkl kernel at E(x,−iy) (see Chapter 2). The following important result was proved
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in [19]

Theorem 3.1. Let k ∈ K+ be a non-negative root multiplicity function, a = 1 or 2, and

x,y ∈ Rn. Then
∣∣Bk,a(x,y)

∣∣⩽ 1.

In analogy with the Dunkl kernel properties stated in the previous chapter, we shall list the

main properties of the kernel Bk,a for every a > 0. Recall that the Dunkl kernel corresponds

to the case a = 2.

Recall from the previous chapter the Dunkl Laplacian operator ∆k, and let E be the Euler

operator defined by

E =
∞

∑
j=0

x j∂x j .

Theorem 3.2. The kernel Bk,a(ξ ,x) solves the following differential-difference equations

on Rn ×Rn

ExBk,a(ξ ,x) = Eξ Bk,a(ξ ,x)

∥ξ∥2−a
∆kBk,a(ξ ,x) =−∥x∥aBk,a(ξ ,x),

∥x∥2−a
∆kBk,a(ξ ,x) =−∥ξ∥aBk,a(ξ ,x).

The superscripts in Ex and Eξ denote the relevant variable.

Properties 3.1. On Rn ×Rn, the kernel Bk,a(·, ·) satisfies the following properties

(1) Bk,a(λx,ξ ) = Bk,a(x,λξ ) for every λ ∈ R.

(2) Bk,a(gx,gξ ) = Bk,a(x,ξ ) for every g ∈ G.

(3) Bk,a(ξ ,x) = Bk,a(x,ξ ).

(4) Bk,a(0,x) = 1.

3.3 The (k,a)-Generalized Fourier Transform

Dunkl theory is a generalization of the Euclidean Fourier analysis, where the role of

orthogonal groups, which provides the underline structure for the ordinary Fourier analysis,
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is played by finite reflection groups, and the Lebesgue measure is replaced by a weighted

measure invariant under the reflection group and parameterized by a multiplicity function

k. This theory started at the beginning of the 90s. Later on, S. Ben Said, T. Kobayashi

and B. Ørsted [16] gave a far reaching generalization of the Dunkl theory by introducing a

parameter a > 0 which arises from the interpolation of two sl(2,R) actions. This provides

the so-called (k,a)-generalized Fourier transform which includes the Fourier transform

(k = 0 and a = 2), the Dunkl transform (k > 0 and a = 2), the Kobayashi-Mano transform

(k = 0 and a = 1), and a new unitary operator (k > 0 and a = 1) having a rich structure, as

much as the Dunkl transform.

For a > 0 and a multiplicity function k on the root system R, we introduce the following

normalization constant

ck,a :=
(∫

Rn
exp
(
−1

a
∥x∥a

)
ϑk,a(x)dx

)−1

,

where the density function ϑk,a(x) on Rn is given by

ϑk,a(x) := ∥x∥a−2
∏

α∈R
|⟨α,x⟩|kα .

Denote by L2(Rn,ϑk,a(x)dx) the space of square integrable functions on Rn with respect to

the weighted measure ϑk,a(x)dx. The (k,a)-generalized Fourier transform Fk,a is defined

on L2
(
Rn,ϑk,a(x)dx

)
by

Fk,a f (ξ ) = ck,a

∫
Rn

Bk,a(ξ ,x) f (x)ϑk,a(x)dx.

For a = 1 or 2, the explicit expression of the kernel Bk,a can be deduced from the previous

part. In particular, for a = 1 or 2, the unitary operator Fk,a includes some known transforms

as special cases:
• the Euclidean Fourier transform (a = 2, k ≡ 0),

• the Hankel transform (Kobayashi-Mano) (a = 1, k ≡ 0),

• the Dunkl transform (Dunkl) (a = 2, k > 0),

• a new Dunk type transform (a = 1, k > 0).

Next we will discuss basic properties of Fk,a for general k and a.
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Theorem 3.3. Let a > 0 and k be a non-negative multiplicity function on the root system

R satisfying the inequality a+2⟨k⟩+n > 2 .

1) (Plancherel formula) The (k,a)-generalized Fourier transform Fk,a is a unitary operator

from L2(Rn,ϑk,a(x)dx) into itself. That is, Fk,a is a bijective linear operator satisfying

∥Fk,a( f )∥k = ∥ f∥k

for any f ∈ L2(Rn,ϑk,a(x)dx).

2) The (k,a)-generalized Fourier transform Fk,a is of finite order if and only if a ∈Q. If

a is of the form a = q
q′ , where q and q′ are positive integers, then

F2q
k,a = id.

Theorem 3.4. (Inversion formula [19]). Let r be a non negative integer and suppose the

inequality 2⟨k⟩+n > 2−a with a = 1/r is satisfied. We pin down that Fk,1/r is a unitary

operator on L2(Rn,ϑk,1/r(x)dx). The inversion formula is given as

F−1
k, 1

r
= Fk, 1

r
.

Theorem 3.5. The unitary operator Fk,a satisfies the following intertwining relations on a

dense subspace of L2
(
Rn,ϑk,a(x)dx

)
.

1) Fk,a ◦E =−(E +n+2⟨k⟩+a−2)◦Fk,a.

2) Fk,a ◦∥x∥a =−∥x∥2−a∆k ◦Fk,a.

3) Fk,a ◦∥x∥2−a∆k =−∥x∥a ◦Fk,a.

Here E denotes the Euler operator

E =
n

∑
j=0

x j∂x j

and ∆k denotes the Dunkl Laplacian operator

28



Example 3.5. Suppose n = 1, a > 0, and k ≥ 0 such that 2k > 1−a. Then

Bk,a(x,y) = ei π
2 (

2k+a−1
a )

Λk,a(x,y; i
π

2
)

= Γ

(2k+a−1
a

)(
J̃2k−1

a

(2
a
|xy|

a
2

)
+

xy

(ai)
2
a

J̃2k+1
a

(2
a
|xy|

a
2

))
,

where

J̃ν(w) =
1

Γ(α +1) 0F1(α +1;−w2

4
)

is the normalised J-Bessel function. Thus, for f ∈L2(R, |x|2k+a−2dx), the integral transform

Fk,a takes the form

Fk,a f (y) = 2−1a−( 2k−1
a )∫

R
f (x)

(
J̃2k−1

a

(2
a
|xy|

a
2

)
+

xy

(ai)
2
a

J̃2k+1
a

(2
a
|xy|

a
2

))
|x|2k+a−2dx.

3.4 The Translation Operator

In this section we will study a translation operator associated with the generalized Fourier

transform Fk,1, i.e. when a = 1. It is worth mentioning that the n-dimensional translation

operator, and therefore a convolution structure, are available only when a = 1. When n = 1,

these structure are available only when a= 2/m where m is a nonzero integer. In this section

we will state the main properties of the translation operator and the convolution product,

such as the positivity-preserving operator acting on a suitable space of radial functions on

Rn.

3.4.1 Translation Operator

For the classical Fourier analysis, the translation operator τy,y ∈Rn, is defined for a suitable

function f by (τy f )(x) = f (x− y). Further, τy is a positive operator (in the sense that f ⩾ 0

on Rn implies τy f ⩾ 0 on Rn) and ∥τy f∥Lp(Rn,dx) = ∥ f∥Lp(Rn,dx) for all f ∈ Lp(Rn,dx)

with 1 ⩽ p ⩽ ∞. An elementary property establishes that the translation operator and the

multiplication by characters correspond one to each other under the Euclidean Fourier

transform F ,

F(τy f )(ξ ) = ei⟨y,ξ ⟩F f (ξ ).
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In analogy with the Euclidean case, a suitable replacement for the translation operator must

be introduced. A such generalized translation operator acting on functions defined on R

has been introduced and studied in [16] using a product formula for the function Bk,1. A

such product formula is not available on Rn, and therefore, alternatively, in [23] defined the

translation operator f 7→ τy f , y ∈ Rn, for f ∈ L2 (Rn,ϑk(x)dx) by

Fk (τy f )(ξ ) := Bk(y,ξ )Fk f (ξ ), ξ ∈ Rn.

The above definition makes sense as Fk = Fk,1 is an isometry on L2 (Rn,ϑk(x)dx) onto

itself and the fact that |Bk(y,ξ )|⩽ 1.

Let

L1
k(Rn) :=

{
f ∈ L1(Rn,ϑk(x)dx) such that Fk f ∈ L1(Rn,ϑk(x)dx

}
.

We pin down that L1
k(Rn)⊂ L1(Rn,ϑk(x)dx)∩L∞(Rn,ϑk(x)dx) and, therefore, L1

k(Rn) is

a subspace of L2(Rn,ϑk(x)dx).

Definition 3.4. For f ∈ L1
k (Rn), the translation τy can also be described by

τy f (x) = ck

∫
Rn

Bk(x,ξ )Bk(y,ξ )Fk f (ξ )ϑk(ξ )dξ ,

Example 3.6. Than rank one case. Let x ∈ R and f ∈ Cb(R). For m = 2 ∈ N\{0} and

k > 1
4 , the translation operator τk

y is given explicitly by

τ
k
x f (y) =

∫
R

f (z)dν
x,y
k (z), y ∈ R,

where

dν
x,y
k (z) =


Kk(x,y,z)dµk(z) if xy ̸= 0

dδx(z) if y = 0

dδy(z) if x = 0

Here the kernel Kk(x,y,z) is compactly supported where

supp(νx,y
k )⊂

{
z ∈ R : |

√
|x|−

√
|y|<

√
|z|<

√
|x|+

√
|y|
}
.
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Moreover, the the kernel Kk(x,y,z) is explicitly given by

Kk(x,y,z) =
Mk

4
K2k−1

B

(
|x|

1
2 , |y|

1
2 , |z|

1
2

)
×{1+ξk(x,y,z)+ξk(z,x,y)+ξk(y,z,x)} .

Here Kα
B , and ξk,n are defined by

Kα
B (u,v,w) = 2−2α+1

{[
(u+ v)2 −w2

][
w2 − (u− v)2

]}α− 1
2

(uvw)2α
,

ξk(x,y,z) =
2sgn(xy)
(4k−2)

C2k−1 (σx,y,z) ,

where

Cα(t) =
1

Γ(α)

1

∑
k=0

(−1)k Γ(2− k+α)

k!(2−2k)!
(2t)2−2k,

and

σx,y,z =
|x|+ |y|− |z|

2|xy| 1
2

.

Here are some basic properties of the translation operator:

Theorem 3.6. Let f ∈ L1
k (Rn) and g ∈ L1 (Rn,ϑk(x)dx)∩L∞ (Rn,ϑk(x)dx). Then

1) For every x,y ∈ Rn, we have τy f (x) = τx f (y).

2) For every y ∈ Rn, the operator τy satisfies

∫
Rn

τy f (x)g(x)ϑk(x)dx =
∫
Rn

f (x)τyg(x)ϑk(x)dx. (3.2)

3) τ0 f = f

Proof. (i) This follows from the symmetry of the kernel Bk(x,y) = Bk(y,x)

(ii) To prove it assume first that both f and g are from S (Rn).

Hence, ∫
Rn

Fk f (x)g(x)ϑk(x)dx =
∫
Rn

f (x)Fkg(x)ϑk(x)dx.
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Then both integrals in (ii) are well defined. From the definition

∫
Rn

τy f (x)g(x)ϑk(x)dx

=
∫
Rn

(∫
Rn

Bk(x,ξ )Bk(y,ξ )Fk( f )ϑk(ξ )dξ

)
g(x)ϑk(x)dx

=
∫
Rn

Fk( f )(ξ )Fkg(ξ )Bk(y,ξ )ϑk(x)dξ

We also have

∫
Rn

f (x)τyg(x)ϑk(x)dx

=
∫
Rn

(∫
Rn

Bk(x,ξ )Bk(y,ξ )Fk(g)ϑk(x)(ξ )dξ

)
f (x)ϑk(x)dx

=
∫
Rn

Fk( f )(ξ )Fk(g)(ξ )Bk(y,ξ )ϑk(ξ )dξ .

This proves (ii) when both f and g are from S (Rn).

(iii) Follows directly from Definition 3.4.

Below is one of the main result in [23] where the translation operator is extended to the

space Lp
rad(R

n,ϑk(x)dx) of radial functions in Lp(Rn,ϑk(x)dx).

Theorem 3.7. 1) For every y ∈ Rn, the translation τy is a positive operator on the space

of bounded and positive functions in Lp
rad(R

n,ϑk(x)dx). Further, ∥τy f∥L1
k
= ∥ f∥L1

k
.

2) For every y ∈ Rn, the translation τy, initially defined on the intersection of the spaces

L1(Rn,ϑk(x)dx)∩L∞(Rn,ϑk(x)dx), extends as a bounded operator to the space

Lp
rad(R

n,ϑk(x)dx) for every 1 ⩽ p ⩽ 2, with

∥τy f∥Lp
k
⩽ ∥ f∥Lp

k
.

3.5 The Convolution Structure

We define a convolution operator ⊛ on the space L2(Rn,ϑk(x)dx) by

f ⊛g(x) := ck

∫
Rn

f (y)τxg(y)ϑk(y)dy.
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The above integral is finite as τxg ∈ L2(Rn,ϑk(x)dx) for g ∈ L2(Rn,ϑk(x)dx). By one of the

previous definitions of the generalized translation operator, we may rewrite the convolution

⊛ as

f ⊛g(x) = ck

∫
Rn

Fk f (ξ )Fkg(ξ )Bk(x,ξ )ϑk(ξ )dξ .

In particular, we obtain

f ⊛g = g⊛ f and Fk( f ⊛g) = Fk f ·Fkg.

To end this section, let us note that the map f 7→ f ⊛g, where g∈ L1
rad(Rn,ϑk(x)dx), extends

to Lp(Rn,ϑk(x)dx) for every 1 ⩽ p ⩽ ∞, with

∥ f ⊛g∥Lp
k
⩽ ck ∥ f∥Lp

k
∥g∥L1

k

for every f ∈ Lp(Rn,ϑk(x)dx). Indeed, by Theorem 3.7.,

| f ⊛g(x)| ⩽ ck

∫
Rn

| f (y)||τxg(y)|ϑk(y)dy

⩽ ck ∥g∥
1
p′

L1
k

(∫
Rn

| f (y)|p|τxg(y)|ϑk(y)dy
) 1

p

,

with 1
p +

1
p′ = 1. Thus,

∥ f ⊛g∥Lp
k

⩽ ck ∥g∥
1
p′

L1
k

(∫
Rn

∫
Rn

| f (y)|p|τxg(y)|ϑk(x)ϑk(y)dxdy
) 1

p

= ck ∥g∥
1
p′

L1
k

(∫
Rn

| f (y)|p
(∫

Rn
|τxg(y)|ϑk(x)dx

)
ϑk(y)dxdy

) 1
p

⩽ ck ∥g∥
1
p′+

1
p

L1
k

∥ f∥Lp
k
.
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Chapter 4: Linear Lie Groups and Lie Algebras

4.1 Introduction

In this chapter we start with the theory of linear Lie group and the corresponding Lie

algebras. Then, we introduce the representation theory of Lie algebras and their fundamental

properties. Finally, we recall Nelson’s theorem about the integrability of representations of

Lie algebras, which will play a crucial role in Chapter 6.

4.2 Linear Lie Groups

On M(n,R) we consider the norm

∥A∥ :=
√

⟨A,A⟩, ⟨A,B⟩ := tr
(
AT B

)
.

Clearly we have ∥AB∥ ≤ ∥A∥∥B∥. The group

GL(n,R) := {A ∈ M(n,R) | det(A) ̸= 0}.

The group GL(n,R) is an open set in M(n,R) as det : M(n,R) −→ R is a continuous

map and GL(n,R) is the complement of the inverse image of the closed subset {0} ⊂

R.

Definition 4.1. A group G is called a linear Lie group if there is an n ∈ N such that G is

isomorphism to a closed subgroup of GL(n,R).

Example 4.1. (1) The general linear groups (over R or C) are themselves linear Lie

groups. Indeed, GL(n,C) is a subgroup of itself. Furthermore, if Am is a sequence of

matrices in GL(n,C) and Am converges to A, then by the definition of GL(n,C), either

A is in GL(n,C), or A is not invertible.

(2) The special linear group is by definition

SL(n,R) = {g ∈ GL(n,R) | det(g) = 1}

34



if An is a sequence of matrices with determinant one and An converges to A, then A

also has determinant one, because the determinant is a continuous function. Thus,

SL(n,R) is a closed subgroup of GL(n,C).

4.3 Lie Algebras

Definition 4.2. Let K be R or C. A K-vector space g provided with a K-bilinear map

g×g−→ g, (X ,Y ) 7→ [X ,Y ]

is called a Lie algebra if

[X ,Y ] =−[Y,X ], ∀X ,Y ∈ g,

and the Jacobi identity

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0

holds. The dimension of g as a K-vector space is called the dimension of the Lie algebra g.

Example 4.2.

1. Every associative algebra g is a Lie algebra with the braket [X ,Y ] := XY −Y X for all

X ,Y ∈ g.

2. Let g= R3 and let [·, ·] : R3 ×R3 → R3 be given by

[X ,Y ] = X ×Y ,

where X ×Y is the cross product .Then g is a Lie algebra.

The exponential of a matrix X ∈ M(n,K) is defined by

exp(X) =
∞

∑
n=0

Xn

n!
.

where X0 is defined to be the identity matrix I.
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Lemma 4.1. For X ,Y ∈ gl(n,R) = M(n,R) and k −→ ∞, we have

(i) exp
(

X
k

)
exp
(

Y
k

)
= exp

(
X +Y

k
+

[X ,Y ]
2k2 +O

(
1
k3

))
.

(ii) exp
(

X
k

)
exp
(

Y
k

)
exp
(
−X

k

)
exp
(
−Y

k

)
= exp

(
[X ,Y ]

k
+O

(
1
k3

))
.

Proof.

(i) Since k −→ ∞, we have

exp
(

X
k

)
exp
(

Y
k

)
=

(
I +

X
k
+

X2

2k2 +O
(

1
k3

))(
I +

Y
k
+

Y 2

2k2 +O
(

1
k3

))
= I +

X +Y
k

+
X2 +2XY +Y 2

2k2 +O
(

1
k3

)
.

Thus

log
[

exp
(

X
k

)
exp
(

Y
k

)]
=

{
X +Y

k
+

X2 +2XY +Y 2

2k2

}
− 1

2

{
X +Y

k

}2

+O
(

1
k3

)
=

X +Y
k

+
[X ,Y ]
2k2 +O

(
1
k3

)
.

(ii) By part (i) we have

exp
(

X
k

)
exp
(

Y
k

)
exp
(
−X

k

)
exp
(
−Y

k

)
=

{
I +

X +Y
k

+
X2 +2XY +Y 2

2k2 +O
(

1
k3

)}
{

I − X +Y
k

+
X2 +2XY +Y 2

2k2 +O
(

1
k3

)}
=I +

[X ,Y ]
k2 +O

(
1
k3

)
.

Thus

log
[

exp
(

X
k

)
exp
(

Y
k

)
exp
(
−X

k

)
exp
(
−Y

k

)]
=

[X ,Y ]
k2 +O

(
1
k3

)
.
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Lemma 4.2. For X ,Y ∈ gl(n,R) = M(n,R) and k −→ ∞, we have

(i) limk−→∞

[
exp
(X

k

)
exp
(Y

k

)]k
= exp(X +Y ).

(ii) limk→∞

[
exp
(X

k

)
exp
(Y

k

)
exp
(
−X

k

)
exp
(
−Y

k

)]k2
= exp([X ,Y ]).

Proof. Using Lemma 4.1. we obtain

(i) [
exp
(

X
k

)
exp
(

Y
k

)]k

=exp
(
[X ,Y ]+O

(
1
k

))
−→ exp([X ,Y ]) as k −→ ∞

(ii) Using Lemma 4.1. we obtain

[
exp
(

X
k

)
exp
(

Y
k

)
exp
(
−X

k

)
exp
(
−Y

k

)]k2

= exp
(
[X ,Y ]+O

(
1
k

))
−→ exp([X ,Y ]) as k −→ ∞.

Definition 4.3. Let G be a linear Lie group contained in GL(n,R). Henceforth we will

write

g := {X ∈ gl(n,R) | exp(tX) ∈ G for all t ∈ R},

where exp is the exponential map for matrices.

Properties 4.1. For λ ∈ R and X ,Y ∈ g, we have

(i) λX ∈ g

(ii) X +Y ∈ g

(iii) [X ,Y ] ∈ g.

Proof.

(i) we observe that exp(t(λX)) = exp((tλ )X).
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(ii) For X ,Y ∈ g we have
[
exp
( tX

k

)
exp
( tY

k

)]k ∈ G. Since G is by definition closed, it

follows from Lemma 4.2. that exp(t(X +Y )) ∈ G. That is X +Y ∈ g.

(iii) similar to (ii), we have

limk→∞

[
exp
( tX

k

)
exp
( tY

k

)
exp
(
− tX

k

)
exp
(
− tY

k

)]k2
= exp(t[X ,Y ])∈G. That is [X ,Y ]∈

g.

In view of the above properties, we can state the following:

Theorem 4.1. The set g provided with the bilinear map

[·, ·] : g×g−→ g, (X ,Y ) 7→ [X ,Y ] = XY −Y X

is a real Lie algebra, called the Lie algebra of G.

Example 4.3. the Lie Algebra of O(n,R) = {g ∈ GL(n,R) | tgg = gtg = In} is

o(n) =
{

X ∈ Mn(R) : X =−XT
}

. We have

X ∈ o(n)⇐⇒ etX ∈ O(n)∀t

⇐⇒
(
etX)−1

=
(
etX)T ∀t

⇐⇒ e−tX = etXT∀t

⇐⇒−X = XT .

Example 4.4. Recall that

SL(n,R) = {X ∈ GL(n,R) | det(g) = 1}.

Its Lie algebra sl(n,R) is the space of matrices X such that det(exp(tX)) = 1, for all t ∈R.

Using the fact that det(exp(tX)) = exp(t tr(X)), thus

sl(n,R) = {X ∈ gl(n,R) | tr(X) = 0}.

4.3.1 One-parameter Subgroups

Let G be a linear Lie group and H a complex Hilbert space.
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Definition 4.4. A one-parameter subgroup γ of a topological group G is a continuous

homomorphism γ :R−→G, t 7→ γ(t). If the one-parameter subgroup γ = γ(t) is differentiable

in t, we assign to it an infinitesimal generator Xγ by

Xγ :=
d
dt

γ(t)|t=0.

Let g be the Lie algebra of a linear Lie group G. For every X ∈ g, the following map

γ : R −→ G, t 7→ exp(tX) is a one parameter subgroup. This is due to the fact that the

map t 7→ exp(tX) is continuous (even differentiable) and exp(A+B) = exp(A)exp(B) for

commuting A,B ∈ M(n,R). In this example we have X as infinitesimal generator.

4.3.2 Representation of Lie Groups

Definition 4.5. Let G be a linear Lie group and H a complex Hilbert space. A representation

(π,H) of G (with identity e) is a group homomorphism from G to the set GL(H) of linear

bounded operators in H, that is

π (g1g2) = π (g1)π (g2) , π(e) = identity transformation,

such that for all v ∈H the map

g 7→ π(g)v

is continuous. This means that for any g0 ∈ G we have

∥π(g)v−π (g0)v∥ −→ 0 as g → g0,

for all v ∈H. The above condition is called the strong continuity property.

Definition 4.6. (1) A representation (π,H) is called trivial if π(g) = idH for all g ∈ G.

(2) A representation is said to be unitary if π(G) consists of unitary operators. Recall

that a unitary operator T on a Hilbert space is an operator such that T T ∗ = T ∗T = I,

where T ∗ is the Hilbert space adjoint operator of T .
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Definition 4.7. A finite dimensional representation of a topological group G on a vector

space V over R or C is a Lie group homomorphism

π : G −→ GL(n,K), K = R or C,

where dim(V ) = n. An n-dimensional representation of a group G is a prescription π

associating to each g ∈ G a matrix π(g) = A(g) ∈ GL(n,K) such that

A
(
gg′
)
= A(g)A

(
g′
)

holds for all g,g′ ∈ G.

Example 4.5. Let (π,Cn) be the following representation π(g) = g, where π(g) will act

by matrix multiplication on the vector space Cn.

4.3.3 Representation of Lie Algebras

Definition 4.8. Let g be a Lie algebra on a field K, and V a K-vector space. A representation

(ω,V ) of g is a homomorphism of g into End(V ), the space of endomorphisms of V , i.e.

ω(αX +βY ) = αω(X)+βω(Y ), α,β ∈ K,

ω([X ,Y ]) = [ω(X),ω(Y )] = ω(X)ω(Y )−ω(Y )ω(X).

In analogy with group representations, a representation (ω,V ) of a Lie algebra g is called

irreducible if there is no nontrivial g-invariant subspace in V .

Each Lie algebra has the trivial representation ω(X) = 0 for all X ∈ g. This is trivially an

irreducible representation.

Example 4.6. Let g be an arbitrary Lie algebra. For x ∈ g, define the operator ad(x) on g

via

ad(x)y := [x,y], y ∈ g.

40



Using Jacobi identity we have

ad([x,y])(z) = [[x,y],z] = [x, [y,z]]− [y, [x,z]]

= ad(x)(ad(y)(z))− ad(y)(ad(x)(z))

= (ad(x)ad(y)− ad(y)ad(x))(z)

= [ad(x),ad(y)](z).

Thus (ad,g) is a representation of g; it is called the adjoint representation of the Lie

algebra g.

A representation of a Lie group G gives rise to a representation of its Lie algebra g in a

natural way.

Definition 4.9. Let (π,H) be a representation of G on a Hilbert space H. We call a vector

v ∈H smooth for the representation π if the map g 7→ π(g)v is a smooth function from G

to H. The set of smooth vectors for π form a subspace H∞ of H. Let v ∈H∞ and X ∈ g,

we define

f (X) = π(exp(X))v

Then f is of class C∞. Put

dπ(X)v := d f (0)X .

It follows that

lim
t→0

π(exp(tX))v− v
t

= dπ(X)v.

Clearly dπ(X) as a linear mapping of H∞ into H and it depends linearly on X.

Theorem 4.2. Let π be a representation of a linear Lie group G on a Hilbert space H.

For X ∈ g, define a linear mapping from H∞ into H by

dπ(X)v = lim
t→0

π(exp(tX))v− v
t

.

For every X ∈ g,dπ(X) leaves H∞ stable, and dπ is a representation of g on H∞. We call

it the derived (or the infinitesimal) representation of π .
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Proof. For v ∈H∞, we have

π(g)dπ(X)v = lim
t→0

π(gexp(tX))v−π(g)v
t

=
d
dt

∣∣∣∣
t=0

π(gexp(tX))v.

Since the map g 7→ π(g)v is a C∞-map it follows that g 7→ π(g)dπ(X)v is smooth and,

therefore dπ(X)v ∈H∞. Hence H∞ is stable by dπ(X), for all X ∈ g. Next we will show

that dπ([X ,Y ]) = [dπ(X),dπ(Y )] for all X ,Y ∈ g. Let

c(t) := exp
(
(−sg t)|t|1/2X

)
exp
(
−|t|1/2Y

)
exp
(
(sg t)|t|1/2X

)
exp
(
|t|1/2Y

)
= exp

(
(sg t)|t|[X ,Y ]+o

(
|t|3/2

))
.

The function t 7→ c(t) is a C1-curve from R to G, with c′(0) = [X ,Y ]. For v ∈H∞ the map

t 7→ π(c(t))v has differential d f̃ (e)([X ,Y ]) at t = 0, where f̃ (g) = π(g)v. That is

lim
t→0

π(c(t))v− v
t

= dπ([X ,Y ])v.

Hence

lim
t→0

π
(
c
(
t2
))

v− v
t2 = dπ([X ,Y ])v.

Using the strong continuity of the representation (π,H) of G, we obtain

lim
t→0

π(exp(tX)exp(tY ))v−π(exp(tY )exp(tX))v
t2

= lim
t→0

π(exp(tY ))π(exp(tX))
π
(
c
(
t2
))

v− v
t2

=dπ([X ,Y ])v.

On the other hand, the map

(s, t) 7→ π(exp(sX)exp(tY ))v

is of class C∞. This is due to the fact that the map is the composition of the following C∞

maps

(s, t) 7→ (expsX ,exp tY ), (g1,g2) 7→ g1g2, g 7→ π(g)v.
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In particular, for each v ∈ H, the map (s, t) 7→ ⟨π(exp(sX)exp(tY ))v,v⟩ is of class C∞.

Hence

⟨dπ(X)dπ(Y )v,w⟩= ∂

∂ s
∂

∂ t
⟨π(expsX exp tY )v,w⟩|s=t=0

= lim
t→0

〈
t−2{π(exp(tX)exp(tY ))−π(exp(tX))−π(exp(tY ))+ I}v,w

〉
.

Replace X by Y and vice versa, we obtain

⟨dπ(Y )dπ(X)v,w⟩= lim
t→0

〈
t−2{π(exp(tY )exp(tX))−π(exp(tX))−π(exp(tY ))+ I}v,w

〉
.

Thus

⟨{dπ(X)dπ(Y )−dπ(Y )dπ(X)}v,w⟩= lim
t→0

〈
t−2{π(exp(tX)exp(tY ))−π(exp(tY )exp(tX))}v,w

〉
.

In conclusion dπ([X ,Y ]) = dπ(X)dπ(Y )−dπ(Y )dπ(X).

4.3.4 Integrability of Infinitesimal Representations: The Infinite Dimensional Case

In the case where H is a Hilbert space, the situation is less obvious since the infinitesimal

operators are not in general bounded and therefore are not defined on the entire H.

Next we will give Nelson’s theorem which establishes when a representation of a Lie

algebra g, given in terms of skewsymmetric operators, can be seen as the infinitesimal

representation of a unitary representation of a simply connected Lie group G having g as a

Lie algebra.

Theorem 4.3. ((see [34])). Let g be a real Lie algebra of dimension m and H be a Hilbert

space. Let {X1, . . . ,Xm} be a basis of the Lie algebra g. Assume that ω (X1) , . . . ,ω (Xm)

are skew-symmetric operators which have a common invariant dense domain D. If the

operator ω
(
X2

1 + · · ·+X2
m
)

is essentially self-adjoint, then there is on H a unique unitary

representation π of the universal covering Lie group G with Lie algebra g,

ω(X) =
d
dt |t=0

π(exp(tX)).
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Chapter 5: Wave Equation

5.1 Introduction

In this chapter we consider the wave equation

2∥x∥∆kuk(x, t)−∂ttuk(x, t) = 0, (x, t) ∈ Rn ×R,

where ∆k is a second order differential and difference operator. First, we prove the existence

and the uniqueness of the solution uk(x, t). Second, we search for the condition on the

parameter k and the dimension n for the fundamental solution to be supported on the light

cone
{
(x, t) ∈Rn ×R :

√
2||x||= |t|

}
. Our approach is based heavily on the representation

theory of the Lie algebra sl(2,R), where we construct a new representation ωk of sl(2,R)

acting on the Schwartz space S(Rn).

5.2 The Existence and Uniqueness of the Solution

For k ∈ K+ and f ∈C∞(Rn), recall from Chapter 2 the Dunkl Laplacian operator

∆k f (x) = ∆ f (x)+ ∑
α∈R

kα

{
⟨∇ f (x),α⟩

⟨α,x⟩
− f (x)− f (sαx)

⟨α,x⟩2

}

where ∇ =
(

∂

∂x1
, . . . , ∂

∂xn

)
denotes the usual gradient operator.

We will consider the following wave equation

2∥x∥∆
x
kuk(x, t)−∂ttuk(x, t) = 0

where t is any real number and x ∈ Rn. Here the superscript in ∆x
k denotes the relevant

variable. The fact that we consider the operator ∥x∥∆k in the equation above is due to the

fact that this differential-difference operator goes very well with the generalized Fourier

transform Fk,1 that we are dealing with in this thesis. More precisely,

Fk,1(∥x∥∆k f )(ξ ) =−∥ξ∥Fk,1( f )(ξ ).
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Let us recall that when n = 1,2,3, the classical wave equation ∂ttu(x, t) = ∆u(x, t) describe

roughly vibrations of a string, a drum, and sound waves in air, respectively.

The initial conditions we give are for both uk and ∂tuk,

uk(x,0) = f (x), ∂tuk(x,0) = g(x).

We will take f and g in the Schwartz space S(Rn), although the solution we will obtain

allows much more general choice. We will prove that these initial conditions (called Cauchy

data) determine a unique solution without any growth conditions.

Through out this chapter we will assume that k ∈ K+ and n ≥ 1. For t ∈ R, denote by Pk,t

the 2×2 matrix of tempered distributions on Rn

Pk,t =

 P11
k,t P12

k,t

P21
k,t P22

k,t


:=

 Fk(cos(t
√

2∥ · ∥) Fk(sin(t
√

2∥ · ∥)/
√

2∥ · ∥)

Fk(−
√

2∥ · ∥sin(t
√

2∥ · ∥) Fk(cos(t
√

2∥ · ∥))

 .

Let Uk(x,0) :=

 f (x)

g(x)

, where the initial data ( f ,g)∈ S (Rn)×S (Rn). Define the vector

column Uk(x, t) by

Uk(x, t) :=
{

Pk,t ⊛Uk(·,0)
}
(x) (5.1)

=


 P11

k,t P12
k,t

P21
k,t P22

k,t

⊛

 f

g

(x).

Applying Fourier transform Fk with respect to x to the above identity, we obtain

Fk (Uk(·, t))(ξ ) = etAFk (Uk(·,0))(ξ ),

where

A :=

 0 1

−2∥ξ∥ 0

 .
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That is Fk (Uk(·, t))(ξ ) is a solution to the following ordinary differential equation

∂tFk (Uk(·, t))(ξ ) = AFk (Uk(·, t))(ξ )

=

 0 1

−2∥ξ∥ 0

Fk (Uk(·, t))(ξ ).

Since −2∥ξ∥Fk( f )(ξ )=Fk (2∥x∥∆k f )(ξ ), and the fact that the generalized Fourier transform

Fk is injective, we conclude that

∂tUk(x, t) =

 0 1

2∥x∥∆k 0

Uk(x, t).

Hence, if we set Uk(x, t) =

 uk(x, t)

vk(x, t)

, then

∂tuk(x, t) = v(x, t)

and vk(x, t) satisfies

∂tvk(x, t) = 2∥x∥∆kuk(x, t).

In conclusion, the function uk satisfies the wave equation

∂ttuk(x, t) = 2∥x∥∆kuk(x, t).

Lemma 5.1. The above constructed solution uk(x, t) satisfies the initial data. That is

uk(x,0) = f (x) and ∂tuk(x,0) = g(x).

Proof. Denote by δ the Dirac distribution.Then,

Fk(δ ) = ck,1

∫
Rn

Bk,1(ξ ,x)δ (x)ϑk(x)dx =
〈
δ ,Bk,1(ξ , ·)

〉
= Bk,1(ξ ,0) = 1.

This implies F−1
k (cos(t

√
2∥ · ∥)) → δ as t → 0. On the other hand, one may check

easily that F−1
k (sin(t

√
2∥ · ∥)/

√
2∥ · ∥) → 0 as t → 0. Using the continuity of the of
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the convolution ⊛, we conclude that

uk(x, t)→ (δ ⊛ f )(x) as t → 0,

where

δ ⊛ f (x) = ck

∫
Rn

δ (y)τx f (y)ϑk(y)dy

= ⟨δ ,τx f (y)⟩= τx f (0) = τ0 f (x) = f (x).

For the derivative

∂tu(x, t) = P21
k,t ⊛ f (x)+P22

k,t ⊛g(x)

where P21
k,t = F−1(−

√
2∥ · ∥sin t

√
2∥ · ∥) and P22

k,t = F−1(cos(t
√

2∥ · ∥)). Using the same

approach, we deduce that P21
k,t −→ 0 and P22

k,t −→ δ as t −→ 0. Hence

lim
t→0

∂tu(x, t) = (δ ⊛g)(x) = g(x).

One of the main problems in the theory of partial differential equations is the uniqueness of

the solution. We claim that the above constructed solution uk(x, t) is unique. To prove our

claim we need the following lemma.

Define the total energy of the solution uk(x, t) at time t by

Ek[uk](t) =
∫
Rn

(
|∂tuk(x, t)|2 + |

√
2∥x∥∆kuk(x, t)|2

)
ϑk(x)dx.

Lemma 5.2. Assume that the Cauchy data ( f ,g) are Schwartz functions. The total energy

Ek [uk] is finite and independent of the time t.

Proof. Using the Plancherel Theorem 3.3. for the Fourier transform Fk and the fact that

Fk

(√
2∥x∥∆kuk(·, t)

)
(ξ ) =

√
2∥ξ∥Fk (uk(·, t))(ξ )
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it follows that

Ek [uk] (t) =
∫
RN

{
|∂tFk (uk(·, t))(ξ )|2 +2∥ξ∥|Fk (uk(·, t))(ξ )|2

}
vk(ξ )dξ

From our construction of the solution

uk(x, t) = P11
k,t ⊛ f (x)+P12

k,t ⊛g(x),

we obtain

Fk (uk(·, t))(ξ ) = cos(t
√

2∥ξ∥)Fk f (ξ )+
sin(t

√
2∥ξ∥)√

2∥ξ∥
Fkg(ξ ), for all t ∈ R,

we conclude that

|Fk (uk(·, t))(ξ )|2 =cos2(t
√

2∥ξ∥) |Fk f (ξ )|2 +
sin2(t

√
2∥ξ∥)

2∥ξ∥
|Fkg(ξ )|2

+
√

2
cos(t

√
∥ξ∥)sin(t

√
∥ξ∥)√

∥ξ∥
Rel
(
Fk f (ξ )Fkg(ξ )

)
,

and

|∂tFk (uk(·, t))(ξ )|2 =cos2(t
√

2∥ξ∥) |Fkg(ξ )|2 +2∥ξ∥sin2(t
√

2∥ξ∥) |Fk f (ξ )|2

−2
√

2∥ξ∥cos(t
√

2∥ξ∥)sin(t
√

2∥ξ∥)Rel
(
Fk f (ξ )Fkg(ξ )

)
.

Then we have

Ek [uk] (t) =
∫
Rn

{
2∥ξ∥|Fk f (ξ )|2 + |Fkg(ξ )|2

}
ϑk(ξ )dξ

=
∫
Rn

{∣∣∣√2∥x∥∆k f (x)
∣∣∣2 + |g(x)|2

}
ϑk(x)dx.

This finishes the proof of the lemma. □

Let us return to the uniqueness of the solution uk to the wave equation

∂ttuk(x, t)−2∥x∥∆kuk(x, t) = 0.

Assume that the wave equation has two distinct solutions, say u(1)k and u(2)k , with the same
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initial data ( f ,g). Therefore, their difference Zk = u(1)k −u(2)k solves the same wave equation

with the initial data

Z(x,0) = u(1)k (x,0)−u(2)2 (x,0) = 0, ∂tZ(x,0) = ∂tu
(1)
k (x,0)−∂tu

(2)
k (x,0) = 0.

Therefore, using the above lemma where we proved that the total energy of a solution of

the wave equation depends only on the initial data, we deduce that

Ek [Zk] (t) = Ek

[
u(1)k −u(2)k

]
(t) = 0.

Using the definition of the total energy, we deduce that ∂t

(
u(1)k −u(2)k

)
(x, t) = 0 for every

t ∈ R. Therefore,
(

u(1)k −u(2)k

)
(x, t) is a constant function with respect to t. Hence,

(
u(1)k −u(2)k

)
(x, t) =

(
u(1)k −u(2)k

)
(x,0) = 0.

This proves that the solutions of the wave equation are uniquely determined by the initial

Cauchy data.

The following main theorem will summarize the above computations.

Theorem 5.1. The solution uk(x, t) to the deformed wave equation is uniquely given by

uk(x, t) =
(
P11

k,t ⊛ f
)
(x)+

(
P12

k,t ⊛g
)
(x),

where P11
k,t and P12

k,t are the tempered distributions on Rn given by

P11
k,t = F−1

k (cos(t
√

2∥ · ∥)), P12
k,t = F−1

k (sin(t
√

2∥ · ∥)/
√

2∥ · ∥).

Before studying the support of the solution uk and of the propagators, let us make some

observations regarding the estimate and the limit of uk(·, t) in the space L2(Rn,υk(x)dx)

of square integrable functions with respect to υk(x)dx. We restrict our attention to the

L2-behaviors because these are the most physically interesting quantities.

Proposition 5.1. The unique solution uk(x, t) to the wave equation satisfies:
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1. For all t ∈ R, we have the following Strichartz-type inequality

∥uk(·, t)∥k ⩽ ∥ f∥k +
∥∥∥(−2∥x∥∆k)

−1/2 g
∥∥∥

k
.

2. As |t| → ∞, the function t 7→ ∥uk(·, t)∥k has a finite limit depending in the initial data

lim
|t|→∞

∥uk(·, t)∥2
k =

1
2
∥ f∥2

k +
1
2

∥∥∥(−2∥x∥∆k)
−1/2 g

∥∥∥2

k
.

In particular, if ∥uk(·, t)∥k → 0 as |t| → ∞, then uk = 0

Proof. 1) Using the Plancherel formula for the generalized Fourier transform we get

∫
Rn

|u(x, t)|2ϑk(x)dx

=
∫
Rn

|Fku(·, t)(ξ )|2ϑk(ξ )dξ

=
∫
Rn

(
cos(t

√
2∥ξ∥)Fk f (ξ )+

sin(t
√

2∥ξ∥)√
2∥ξ∥

Fkg(ξ )

)
ϑk(ξ )dξ(

cos(t
√

2∥ξ∥)Fk f (ξ )+
sin(t

√
2∥ξ∥)√

2∥ξ∥
Fkg(ξ )

)
ϑk(ξ )dξ

=
∫
Rn

cos2(t
√

2∥ξ∥)|Fk f (ξ )|2ϑk(ξ )dξ

+
∫
Rn

sin2(t
√

2∥ξ∥)
2∥ξ∥

|Fkg(ξ )|2 ϑk(ξ )dξ

+
∫
Rn

cos(t
√

2∥ξ∥)
sin(t

√
2∥ξ∥)√

2∥ξ∥
Fk f (ξ )Fkg(ξ )ϑk(ξ )dξ

∫
Rn

cos(t
√

2∥ξ∥)
sin(t

√
2∥ξ∥)√

2∥ξ∥
Fkg(ξ )Fk f (ξ )ϑk(ξ )dξ

≤
∫
Rn

|Fk f (ξ )|2ϑk(ξ )dξ +
∫
Rn

∣∣∣∣∣Fkg(ξ )√
2∥ξ∥

∣∣∣∣∣
2

ϑk(ξ )dξ

+
∫
Rn

|Fk f (ξ )|

∣∣∣∣∣Fkg(ξ )√
2∥ξ∥

∣∣∣∣∣ϑk(ξ )dξ

≤ ∥Fk f∥2
k +
∥∥∥ Fkg√

2∥ξ∥

∥∥∥2

k
+2∥Fk f∥k

∥∥∥ Fkg√
2∥ξ∥

∥∥∥
k
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=

(
∥Fk f∥k +

∥∥∥ Fkg√
2∥ξ∥

∥∥∥
k

)2

.

Therefore, we proved

∥u(x, t)∥k ≤

(
∥Fk f∥k +

∥∥∥ Fkg√
2∥ξ∥

∥∥∥
k

)
=
(
∥Fk f∥k +

∥∥∥Fk((−2∥x∥∆k)
− 1

2 g)
∥∥∥

k

)
= ∥ f∥k +

∥∥∥(−2∥x∥∆k)
− 1

2 g
∥∥∥

k
.

□

2) Below we will use the familiar trigonometric identities for double angles,

∫
Rn

|u(x, t)|2ϑk(x)dx

=
∫
Rn

|Fku(·, t)(ξ )|2ϑk(ξ )dξ

=
∫
Rn

(
cos(t

√
2∥ξ∥)Fk f (ξ )+

sin(t
√

2∥ξ∥)√
2∥ξ∥

Fkg(ξ )

)
(

cos(t
√

2∥ξ∥)Fk f (ξ )+
sin(t

√
2∥ξ∥)√

2∥ξ∥
Fkg(ξ )

)
ϑk(ξ )dξ

=
∫
Rn

cos2(t
√

2∥ξ∥)|Fk f (ξ )|2ϑk(ξ )dξ +
∫
Rn

sin2(t
√

2∥ξ∥)
2∥ξ∥

|Fkg(ξ )|2 ϑk(ξ )dξ

+
∫
Rn

cos(t
√

2∥ξ∥)
sin(t

√
2∥ξ∥)√

2∥ξ∥
Fk f (ξ )Fkg(ξ )ϑk(ξ )dξ

+
∫
Rn

cos(t
√

2∥ξ∥)
sin(t

√
2∥ξ∥)√

2∥ξ∥
Fkg(ξ )Fk f (ξ )ϑk(ξ )dξ

=
∫
Rn

|Fk f (ξ )|2 cos2(t
√

2∥ξ∥)ϑk(ξ )dξ +
∫
Rn

|Fkg(ξ )|2

2∥ξ∥
sin2(t

√
2∥ξ∥)ϑk(ξ )dξ

+
1
2

∫
Rn

sin(t
√

2∥ξ∥)

(
Fk f (ξ )

Fkg(ξ )√
2∥ξ∥

+Fk f (ξ )
Fkg(ξ )√

2∥ξ∥

)
ϑk(ξ )dξ .

Using classical trigonometric identities, we get

∫
Rn

|u(x, t)|2ϑk(x)dx
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=
1
2

∫
Rn

|Fk f (ξ )|2
(

1+ cos(2t
√

2∥ξ∥)
)

ϑk(ξ )dξ

+
1
2

∫
RN

|Fkg(ξ )|2

2∥ξ∥

(
1− cos(2t

√
2∥ξ∥

)
ϑk(ξ )dξ

+
1
2

∫
Rn

sin(2t
√

2∥ξ∥)

(
Fk f (ξ )

Fkg(ξ )√
2∥ξ∥

+Fk f (ξ )
Fkg(ξ )√

2∥ξ∥

)
ϑk(ξ )dξ

=
1
2

∫
Rn

|Fk f (ξ )|2ϑk(ξ )dξ +
1
2

∫
Rn

|Fkg(ξ )|2

2∥ξ∥
ϑk(ξ )dξ

+
1
2

∫
Rn

|Fk f (ξ )|2 cos(2t
√

2∥ξ∥)ϑk(ξ )dξ

−1
2

∫
Rn

|Fkg(ξ )|2

2∥ξ∥
cos(2t

√
2∥ξ∥)ϑk(ξ )dξ

+
1
2

∫
Rn

sin(2t
√

2∥ξ∥)

(
Fk f (ξ )

Fkg(ξ )√
2∥ξ∥

+Fk f (ξ )
Fkg(ξ )√

2∥ξ∥

)
ϑk(ξ )dξ .

Now, since f and g are integrable functions, by Riemann-Lebesgue Lemma for cosine and

sine Fourier transforms, we have

lim
|t|→∞

∥uk(·, t)∥2
k =

1
2
∥ f∥2

k +
1
2

∥∥∥(−2∥x∥∆k)
−1/2 g

∥∥∥2

k
.

Recall that our solution

uk(x, t) =
(
P11

k,t ⊛ f
)
(x)+

(
P12

k,t ⊛g
)
(x),

Hence, if ∥uk(·, t)∥→ 0 as |t| → ∞, then f = 0 and g = 0. Therefore, uk = 0 □

We shall now discuss the strict Huygens principle which will hold only under a condition

involving the dimension n and the multiplicity function k. Our approach uses the representation

theory of the group SL(2,R), following [32, 33].

Our next task is to investigate certain symmetries and invariance of the wave equation under

consideration, which are reflected in symmetries and invariance of the propagators Pi j
k,t . To

do so, we define the 2×2 matrix

Pk =

 P11
k P12

k

P21
k P22

k


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of entryways distributions on Rn+1, where

Pi j
k (ψ1 ⊗ψ2) :=

∫
R

Pi j
k,t (ψ1)ψ2(t)dt, i, j = 1,2,

for ψ1 ∈ S (Rn) and ψ2 ∈ S(R). Here we used the fact that S
(
Rn+1

)
≃ S (Rn)⊗̂S(R).

The following statement follows directly from the construction of the solution uk(x, t).
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Proposition 5.2. We have(
∥x∥∆k −

1
2

∂tt

)
Pi j

k = 0, i, j = 1,2.

Recall that G stands for the Coxeter group associated with the root system R (see Chapter

2). For h ∈ G, ψ ∈ S(Rn+1), and for each t ∈ R, denote by πx the unitary action of G on

ψ(·, t) given by

πx(h)ψ(x, t) := ψ(h−1 · x, t).

By duality, we have the action π∗
x of G on tempered distributions by the rule

π
∗
x (h)(T )(ψ) = T (πx(h)−1

ψ),

for ψ ∈ S(Rn+1) and T ∈ S ′(Rn+1). Further, let τ be the operation of time-reflection

τ(x, t) = (x,−t), and denote by

πt(τ)ψ(x, t) := ψ(x,−t).

Similarly as for π∗
x , we obtain the action π∗

t on distributions.

Begin with a solution uk(x, t) to the Cauchy problem under consideration with Cauchy data

( f ,g). Then πx(h)uk(x, t) solves the wave equation with initial data (πx(h) f ,πx(h)g). The

analogue of the above construction of the solution uk(x, t) reads

πx(h)Uk(x, t) =
{

Pk,t ⊛πx(h)Uk(·,0)
}
(x).

This amounts to

Uk(x, t) = π
∗
x (h)

{
Pk,t ⊛πx(h)Uk(·,0)

}
(x) =

{
π
∗
x (h)Pk,t ⊛Uk(·,0)

}
(x),

which implies

π
∗
x (h)P

i j
k,t = Pi j

k,t , i, j = 1,2.

Plugging this into the definition of Pi j
k , we conclude that

π
∗
x (h)P

i j
k = Pi j

k , i, j = 1,2.
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For the operation of time-reflection, clearly πt(τ)uk(x, t) = uk(x,−t) solves the wave

equation with Cauchy data ( f ,−g). Thus, the analogue of (5.1) reads uk(x,−t)

−(∂tuk)(x,−t)

= Pk,t ⊛

 f

−g

 ,
which we may rewrite as 1 0

0 −1

Uk(x,−t) = Pk,t ⊛

 1 0

0 −1

Uk(x,0). (5.2)

On the other hand, from (5.1), it follows that Uk(x,−t) = Pk,−t ⊛Uk(x,0). Comparing this

with the above identity, we obtain

Pi j
k,−t = (−1)i− jPi j

k,t for i, j = 1,2,

which implies

π
∗
t (τ)P

i j
k = (−1)i− jPi j

k for i, j = 1,2.

From the time-reflection action on the propagators, it is clear that time is reversible, except

for a minus sign that may appear when the second Cauchy datum g or its Fourier transform

are involved. So the past is determined by the present as well as the future.

Now,we will investigate the symmetries of the propagators under a dilation operator. As

a result, we can determine the homogeneity of the distribution Pi j
k , with i, j = 1,2. For a

function f = f (x, t) on Rn+1 and λ > 0, let

Sx
λ

f (x, t) = f (λ 2x, t),

St
λ

f (x, t) = f (x,λ t),

where the superscript denotes the relevant variable. Set

Sλ = Sx
λ
◦St

λ
.

where the superscript denotes the relevant variable. By duality, the operators Sλ , Sx
λ

and St
λ

act on distributions in the standard way.
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Observe that if uk(x, t) satisfies the wave equation with initial condition ( f ,g) then Sλ uk(x, t)

solves the wave equation with initial data
(
Sx

λ
f (x),λSx

λ
g(x)

)
. Thus,

SλUk(x, t) = Pk,t ⊛

 Sx
λ

f

λSx
λ

g

 (5.3)

Further,

SλUk(x, t) = Sλ

 uk(x, t)

vk(x, t)

= Sλ

 uk(x, t)

∂tuk(x, t)


=

 Sλ uk(x, t)

∂t {Sλ uk(x, t)}

=

 uk(λ
2x,λ t)

λ {∂tuk}(λ 2x,λ t)


=

 uk

λ∂tuk

(λ 2x,λ t) =

 1 0

0 λ

 uk

∂tuk

(λ 2x,λ t)

=

 1 0

0 λ

Pk,λ t ⊛

 f

g

(λ 2x)

=

 1 0

0 λ

Sx
λ

Pk,λ t ⊛

 f

g

(x)

=

 1 0

0 λ

Sx
λ

Pk,λ t ⊛

 Sx
λ

f

Sx
λ

g

(x)

=

 1 0

0 λ

Sx
λ

Pk,λ t ⊛

 1 0

0 λ−1

 Sx
λ

f

λSx
λ

g

(x).

Hence, by comparing Equation (5.3) with above we deduce that

Sx
λ

Pi j
k,λ t = λ

j−iPi j
k,t , i, j = 1,2.

This result will allow us to find the degree of the homogeneity of the distributions Pi j
k , with

i, j = 1,2. For ψ1 ∈ S (Rn) and ψ2 ∈ S(R), by duality, we have

Sλ

(
Pi j

k

)
(ψ1 ⊗ψ2) = Pi j

k

(
Sx

λ−1 (ψ1)⊗St
λ−1 (ψ2)

)
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=
∫
R

Pi j
k,t

(
Sx

λ−1 (ψ1)
)

St
λ−1 (ψ2)(t)dt

= λ

∫
R

Pi j
k,λ t

(
Sx

λ−1 (ψ1)
)

ψ2(t)dt

= λ

∫
R

Sx
λ

(
Pi j

k,λ t (ψ1)
)

ψ2(t)dt

= λ
1+ j−i

∫
R

Pi j
k,t (ψ1)ψ2(t)dt

= λ
1+ j−iPi j

k (ψ1 ⊗ψ2) .

We summarize the above computations.

Proposition 5.3. Let k ∈ K+ and n ≥ 1.

(i) The distribution Pi j
k satisfies the deformed wave equation, i.e.(

∥x∥∆k −
1
2

∂tt

)
Pi j

k = 0, i, j = 1,2.

(ii) If h ∈ G and τ denotes the operation of time-reflection, then

π
∗
x (h)P

i j
k = Pi j

k , π
∗
t (τ)P

i j
k = (−1)i− jPi j

k , i, j = 1,2.

(iii) For every λ > 0, we have

Sλ Pi j
k = λ

1+ j−iPi j
k , i, j = 1,2.

Next we shall describe the structure of a representation of the universal covering group
˜SL(2,R) of SL(2,R) on S(Rn+1). This structure, together with the above Propositions,

allows to prove that our Cauchy problem satisfies the strict Huygens principle, under a

condition involving n and k. We adapt the method of R. Howe for the classical wave

equation, i.e. when k ≡ 0 (cf. [33]) and Ben Said and Ørsted for the wave equation

associated with the Dunkl Laplacian operator [32].
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Recall that the Lie algebra sl(2,R) is of dimension 3. We take a basis for the Lie algebra

sl(2,R) as

e+ :=

0 1

0 0

 , e− :=

0 0

1 0

 , h :=

1 0

0 −1

 .

The triple {e+,e−,h} satisfies the commutation relations

[e+,e−] = h, [h,e+] = 2e+, [h,e−] =−2e−, (5.4)

where [A,B] := AB−BA. An sl2 triple is a triple of non-zero elements in a Lie algebra

satisfying the same relation with (5.4).

We recall from Chapter 2 that ∆k is the Dunkl Laplacian associated with a multiplicity

function k on the root system, and that

⟨k⟩= 1
2 ∑

α∈R
kα .

Choose x1,x2, . . . ,xn as the usual system of coordinates on Rn. We introduce the following

differential-difference operators on Rn:

E+
k := i∥x∥, E−

k := i∥x∥∆k, Hk := n+2⟨k⟩−1+2
n

∑
i=1

xi∂i. (5.5)

Theorem 5.2. The operators E+
k , E

−
k and Hk form an sl2 triple for any multiplicity

function k.

The proof of the above statement needs the following preparation lemmas.

Lemma 5.3. We write the Euler operator as

E :=
n

∑
j=1

x j∂ j. (5.6)
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1) The Dunkl Laplacian ∆k is of degree −2, namely,

[E,∆k] =−2∆k (5.7)

2) We have
n

∑
j=1

(
x jTj(k)+Tj(k)x j

)
= n+2⟨k⟩+2E. (5.8)

Proof.

1) This statement goes back to G. Heckman [44, Theorem 3.3]

2) Let us write the Dunkl operator as Tj f = ∂ j f + ∑
α∈R+

kα⟨α,e j⟩△α( f ) where △α( f ) =

f (x)− f (rαx)
⟨α,x⟩

. Then,

n

∑
j=1

(x jTj +Tjx j) f = 2
n

∑
j=1

x jTj f +
n

∑
j=1

(Tjx j − x jTj) f

= 2
n

∑
j=1

x jTj f +
n

∑
j=1

∂ j(x j f )+
n

∑
j=1

∑
α∈R+

kα⟨α,e j⟩△α(x j f )

−
n

∑
j=1

x j∂ j( f )−
n

∑
j=1

∑
α∈R+

kα⟨α,e j⟩x j△α( f )

= 2
n

∑
j=1

x jTj f +
n

∑
j=1

f +
n

∑
j=1

x j∂ j( f )−
n

∑
j=1

x j∂ j( f )

+ ∑
α∈R+

kα⟨α,e j⟩ [△α ,x j] f

= 2
n

∑
j=1

x jTj f +n f +
n

∑
j=1

∑
α∈R+

kα⟨α,e j⟩ [△α ,x j] f .

Now, by G. Heckman, we know that

[Rα ,x j] = ⟨α,e j⟩rα . It follows,

n

∑
j=1

(x jTj +Tjx j) f = 2
n

∑
j=1

x jTj f +n f +
n

∑
j=1

∑
α∈R+

kα⟨α,e j⟩⟨α,e j⟩ f (rαx)
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= 2
n

∑
j=1

x jTj f +n f +2 ∑
α∈R+

kαrα

= 2
n

∑
j=1

x j∂ j +2
n

∑
j=1

x j ∑
α∈R+

⟨α,e j⟩Rα f +n f +2 ∑
α∈R+

kα f (rαx)

= 2
n

∑
j=1

x j∂ j +2 ∑
α∈R+

kα△α f ∑
j
⟨x,e j⟩⟨α,e j⟩+n f +2 ∑

α∈R+

kα f (rαx)

= 2
n

∑
j=1

x j∂ j +2 ∑
α∈R+

kα△α f ⟨α,x⟩+n f +2 ∑
α∈R+

kα f (rαx)

= 2
n

∑
j=1

x j∂ j +2 ∑
α∈R+

kα ( f (x)− f (rαx))+n f +2 ∑
α∈R+

kα f (rαx)

= 2
n

∑
j=1

x j∂ j +2 ∑
α∈R+

kα f +n f

= 2
n

∑
j=1

x j∂ j +2⟨k⟩ f +n f .

Therefore
n

∑
j=1

(x jTj +Tjx j) f = (n+2⟨k⟩+2
n

∑
j=1

x j∂ j) f

Lemma 5.4. Suppose ψ(r) is a C∞ function of one variable. Then we have

[∆k,ψ (∥x∥)] = ψ
′′ (∥x∥)+∥x∥−1

ψ
′ (∥x∥)((n+2⟨k⟩−1)+2E).

Proof. Take an arbitrary C∞ function f on Rn. Assume that g is a G-invariant smooth

function. By Chapter 2 we have

Tj(k)g = ∂ jg, (5.9)

Tj(k)( f g) = (Tj(k) f )g+ f (∂ jg),

Take an arbitrary C∞ function ψ on R+. Clearly we have

Tj [ψ (∥x∥)] = x j∥x∥−1
ψ

′ (∥x∥) .
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Further,

Tj [ f (x)ψ (∥x∥)] = Tj( f (x))ψ (∥x∥)+ f (x)Tj (ψ (∥x∥))

= Tj( f )ψ (∥x∥)+ f (x)x j∥x∥−1
ψ

′ (∥x∥)

Apply the Dunkl operator Tj again to the above we get

T 2
j [ f (x)ψ (∥x∥)]

= T 2
j ( f )ψ (∥x∥)+Tj( f )Tjψ (∥x∥)+Tj

{
f (x)x j∥x∥−1

ψ
′ (∥x∥)

}
= T 2

j ( f )ψ (∥x∥)+Tj( f )Tjψ (∥x∥)+Tj(x j f (x))∥x∥−1
ψ

′ (∥x∥)

+x j f (x)Tj
(
∥x∥−1

ψ
′(x)
)

= T 2
j ( f )ψ (∥x∥)+∥x∥−1

ψ
′ (∥x∥)x jTj( f )+∥x∥−1

ψ
′ (∥x∥)Tj(x j f )

+x j f (x)∂ j
{
∥x∥−1

ψ
′ (∥x∥)

}
Taking the summation over j, we arrive at

∆k ( f (x)ψ (∥x∥))

= (∆k f (x))ψ (∥x∥)+∥x∥−1
ψ

′ (∥x∥)(2E +n+2⟨k⟩) f (x)

+ f (x)E
(
∥x∥−1

ψ
′ (∥x∥)

)
.

To finish the proof, one may use the following observation: in the polar coordinate x = rω ,

the Euler operator E amounts to r(∂/∂ r), and

r(∂/∂ r)
(
r−1

ψ
′ (r)
)
=−r−1

ψ
′ (r)+ψ

′′ (r) .

Denote by Hm(Rn) the space of k-harmonic homogeneous polynomials of degree m. We set

λk,m := 2m+2⟨k⟩+n−2. (5.10)

We begin with the following lemma.
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Lemma 5.5. For all ψ ∈C∞(R+) and p ∈Hm(Rn), we have

Hk

(
p(x)ψ(∥x∥)

)
=
{
(λk,m +1)ψ(∥x∥)+2∥x∥ψ

′(∥x∥)
}

p(x), (5.11)

∆k

(
p(x)ψ(∥x∥)

)
=
{
(λk,m +1)∥x∥−1

ψ
′(∥x∥)+ψ

′′(∥x∥)
}

p(x). (5.12)

Proof. The first statement is straightforward because the Euler operator E is of the form

r ∂

∂ r in the polar coordinates x = rω . To see the second statement, we apply Lemma 5.4. to

p(x). Now using the fact that E p = mp and since p is a harmonic polynomial, i.e. ∆k p = 0,

then we get the desired formula.

Proof. [Proof of Theorem 5.2] It is clear that the operator E+
k is homogeneous of degree 1,

while, by Lemma 5.5., the operator E−
k is homogeneous of degree −1. Let E =∑

N
j=1 x j∂ j be

the Euler operator. Since Hk is of the form 2E + a constant, the identity
[
Hk,E±

k

]
=±2E±

k

is now clear.

For the brackets
[
E+

k ,E
−
k

]
=Hk, we apply Lemma 5.5. to the function ψ(r) = r in order

to get

∆k ◦∥x∥−∥x∥∆k = (n+2⟨k⟩−1)∥x∥−1 +2∥x∥−1E.

Composing with the multiplication operator ∥x∥, we have

∥x∥∆k ◦∥x∥−∥x∥2
∆k = (n+2⟨k⟩−1)+2E.

In view of the definition of the operator Hk, this means that
[
E+

k ,E
−
k

]
= Hk. Hence,

Theorem 5.2. is proved.

The differential-difference operators E+
k , E

−
k and Hk stabilize C∞ (Rn\{0}), the space

Rn\{0} of smooth functions. Thus, we can define an R-linear map

ωk : sl(2,R)→ End(C∞ (Rn\{0}))

by setting

ωk(h) =Hk, ωk
(
e+
)
= E+

k , ωk
(
e−
)
= E−

k .

Then Theorem 5.2. implies that ωk is a representation of the Lie algebra sl(2,R).
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We use the letter L to denote the left regular representation of the Coxeter group G on

C∞(Rn \{0}).

Lemma 5.6. The two actions L of the Coxeter group G and ωk of the Lie algebra sl(2,R)

commute.

Proof. Obviously L(h) commutes with the multiplication operator E+
k = i∥x∥. It is well

known that L(h) ◦ Te j ◦ L(h) = The j for all h ∈ G. Therefore, L(h) commutes with the

Dunkl Laplacian. Hence, it commutes also with E−
k . Finally, the commutation relation

[E+
k ,E

−
k ] =Hk implies L(h)◦Hk =Hk ◦L(h) for all h ∈ G.

For a complex number λ such that Rel λ >−1, we denote by L(λ )
ℓ the Laguerre polynomial,

L(λ )
ℓ (t) :=

(λ +1)ℓ
ℓ!

ℓ

∑
j=0

(−ℓ) j

(λ +1) j

t j

j!
=

ℓ

∑
j=0

(−1) jΓ(λ + ℓ+1)
(ℓ− j)!Γ(λ + j+1)

t j

j!
.

Here, (a)m := a(a+ 1) · · ·(a+m− 1) is the Pochhammer symbol. Below we will state

some basic properties of Laguerre polynomials.

Theorem 5.3. Assume Rel λ >−1.

1) L(λ )
ℓ (t) is the unique polynomial of degree ℓ satisfying the Laguerre differential

equation (
t

d2

dt2 +(λ +1− t)
d
dt

+ ℓ
)

L(λ )
ℓ (t) = 0.

2) The following recurrence formulas hold:

(ℓ+ t
d
dt

− t +λ +1)L(λ )
ℓ (t) = (ℓ+1)L(λ )

ℓ+1(t),

(ℓ− t
d
dt
)L(λ )

ℓ (t) = (ℓ+λ )L(λ )
ℓ−1(t).

3) The following orthogonality property holds:

∫
∞

0
L(λ )
ℓ (t)L(λ )

s (t)tλ e−tdt = δℓs
Γ(λ + ℓ+1)

Γ(ℓ+1)
.

4) {L(λ )
ℓ (t) : ℓ∈N} form an orthogonal basis in L2(R+, tλ e−tdt) if λ is real and λ >−1.
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For ℓ,m ∈ N and p ∈Hm(Rn), we introduce the following functions on Rn,

Φℓ(p,x) := p(x)L
(λk,m)

ℓ

(
2∥x∥

)
exp
(
−∥x∥

)
. (5.13)

Here, λk,m = 2m+ 2⟨k⟩+ n− 2, and L(λ )
ℓ (t) is the Laguerre polynomial. Hence, for x =

rω ∈ Rn (r > 0, ω ∈ Sn−1), we have

Φℓ(p,x) = p(ω)rmL
(λk,m)

ℓ

(
2r
)

exp
(
−r
)
.

We define the following vector space of functions on Rn by

Dk(Rn) := C-span
{

Φℓ(p, ·) | ℓ ∈ N,m ∈ N, p ∈Hm(Rn)
}
. (5.14)

Proposition 5.4. Assume that 2⟨k⟩+n−1 > 0. For ℓ,s,m,n ∈ N, p ∈ Hm(Rn) and q ∈

Hn(Rn).

1) Φℓ(p,x) ∈C(Rn)∩L2(Rn,ϑk(x)dx).

2) We have the following orthogonality

∫
Rn

Φℓ(p,x)Φs(q,x)ϑk(x)dx = δm,nδℓ,s
Γ(λk,m + ℓ+1)

21+λk,mΓ(ℓ+1)

∫
Sn−1

p(ω)q(ω)ϑk(ω)dσ(ω).

3) Dk(Rn) is a dense subspace of L2(Rn,ϑk(x)dx).

Proof. The function x 7→ Φℓ(p,x) is continuous at x = 0. Therefore, it is a continuous

function on x ∈ Rn of exponential decay. On the other hand, in polar coordiantes the

measure ϑk(x)dx take the form r2⟨k⟩+n−2ϑk(ω)dω, which is locally integrable under our

assumptions on the multiplicity function k. Therefore, Φℓ(p,x) ∈ L2(Rn,ϑk(x)dx). Hence

the first statement is proved.
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To see the second and third statements, we use the polar coordinates x = rω to rewrite the

left-hand side of the integral as

(∫ ∞

0
L
(λk,m)

ℓ

(
2r
)
L
(λk,n)
s

(
2r
)

exp
(
−2r

)
rm+n+2⟨k⟩+n−2dr

)(∫
Sn−1

p(ω)q(ω)ϑk(ω)dσ(ω)
)
.

Since ∆k-harmonic polynomials of different degrees are orthogonal to each other, the

integration over Sn−1 vanishes if m ̸= n.

Suppose that m = n. By changing the variable t := 2r, we see that the first integration

amounts to
1

21+λk,m

∫
∞

0
L
(λk,m)

ℓ (t)L
(λk,m)
s (t) tλk,me−tdt. (5.15)

By the orthogonality relation for the Laguerre polynomials, we get

1
21+λk,m

∫
∞

0
L
(λk,m)

ℓ (t)L
(λk,m)
s (t) tλk,me−tdt = δℓs

Γ(λk,m + ℓ+1)

21+λk,mΓ(ℓ+1)
.

Hence, the second statement is proved. The third statement follows from the completeness

of the Laguerre polynomials.

We pin down the following statement which is already implicit in the proof of the above

Proposition.

Proposition 5.5. For fixed m ∈ N and a multiplicity function k such that 2m+2⟨k⟩+n−

1 > 0, we set

fℓ,m(r) :=
(2λk,m+1

Γ(ℓ+1)
Γ(λk,m + ℓ+1)

)1/2
rmL

(λk,m)

ℓ

(
2r
)

exp(−r). (5.16)

Then { fℓ,m(r) : ℓ ∈ N} forms an orthonormal basis in L2(R+,r2⟨k⟩+n−2dr).

For each m ∈ N, we take an orthonormal basis {h j,m} j∈Jm of the space Hm(Rn)|Sn−1 . Here

Jm is a finite set of integers. A basis of Hm(Rn) is constructed in [10, Corollary 5.1.13].

Proposition 5.4. immediately yields the following statement.

Corollary 5.1. For ℓ,m ∈ N and j ∈ Jm, we set

Φℓ,m, j(x) := h j,m

( x
∥x∥

)
fℓ,m(∥x∥).
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Then, the set
{

Φℓ,m, j | ℓ∈N,m∈N, j ∈ Jm

}
forms an orthonormal basis of L2

(
Rd,ϑk(x)dx

)
.

Let (ϖ ,X) be a representation of the Lie algebra sl(2,R). A non-zero vector v ∈ X is a

lowest weight vector of weight µ ∈ C if v satisfies

ϖ(e−)v = 0, and ϖ(h)v = µv.

We say (ϖ ,X) is a lowest weight module of weight µ if X is generated by such v. For each

λ ∈ C, there exists a unique irreducible lowest weight sl(2,R)-module, to be denoted by

ϖ(λ ), of weight λ +1.

Theorem 5.4. (See [16]) Suppose k is a non-negative root multiplicity function satisfying

the inequality 2⟨k⟩+n−1 > 0. The representation (ωk,Dk(Rn)) is decomposed into the

direct sum as follows:

Dk(Rn)≃
∞⊕

m=0

Hm(Rn)∣∣Sn−1 ⊗ϖ(λk,m). (5.17)

Here, λk,m = 2m+2⟨k⟩+n−2. The Coxeter group G acts on the first factor, and the Lie

algebra sl(2,R) acts on the second factor of each summand in (5.17).

Let

En,1 := i
(
∥x∥− 1

2
t2
)
,

Fn,1 := i
(
∥x∥∆k −

1
2

∂tt

)
,

Hn,1 := n+2⟨k⟩− 1
2
+2

n

∑
ℓ=1

xℓ∂ℓ+ t∂t .

Using the fact that E+
k , E

−
k and Hk form an sl2 triple, we deduce easily the following

commutation relations hold

[En,1,Fn,1] =Hn,1, [Hn,1,En,1] = 2En,1, [Hn,1,Fn,1] =−2Fn,1. (5.18)

These are the commutation relations of a standard basis of the Lie algebra sl(2,R). Equation

(5.18) gives rise to a representation ωk,n+1 of the Lie algebra sl(2,R) on the Schwartz space
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S(Rn+1) by setting

ωk,n+1(h) =Hn,1, ωk,n+1(e+) = En,1, ωk,n+1(e−) = Fn,1. (5.19)

where {e+,e−,h} is a basis for the Lie algebra sl(2,R),

e+ :=

0 1

0 0

 , e− :=

0 0

1 0

 , h :=

1 0

0 −1

 .

Recall that the solution to the wave equation

∂ttuk(x, t)−2∥x∥∆kuk(x, t) = 0

is given by

uk(x, t) =
(
P11

k,t ⊛ f
)
(x)+

(
P12

k,t ⊛g
)
(x).

Recall also that the Huygens’ principle is equivalent to the fact that the propagators P11
k and

P12
k are supported on the set z

Proposition 5.6. A distribution T is supported on the set

{
(x,y) ∈ Rp+q | r2

p,q :=
p

∑
i=1

x2
i −

q

∑
i=1

y2
i = 0

}
if and only if we can find an integer m ≥ 1 such that

T
((

r2
p,q
)m

f
)
= 0, ∀ f ∈C∞

c
(
Rp+q) .

Since C is the locus of zeros of ∥x∥− 1
2t2, then, P11

k and P12
k are supported on C if and only

if

Em
n,1 ·P

i j
k = 0 (5.20)

for some positive integer m (see [33]). Moreover, in the light of Proposition 5.3. we deduce

that Pi j
k is an eigen-distribution for Hn,1. The above facts amount to saying the distribution

Pi j
k generates a finite-dimensional ω∗

k,n+1 for sl(2,R) on S ′(Rn+1). Thus, the qualitative

part of the Huygens principle holds.
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Theorem 5.5. The Huygens principle holds if and only if P11
k and P12

k are supported on

the set C if and only if P11
k and P12

k generate finite-dimensional representations ω∗
k,n+1 for

sl(2,R) on S ′(Rn+1).

Theorem 5.6. The Huygens principle cannot hold when

2⟨k⟩− 1
2
̸∈ Z.

Proof. The spectrum of the element k := i(e−− e+) acting on S ′(Rn+1) via the dual

representation ω∗
k,n+1 is 2Z++2⟨k⟩+n− 1

2 , whereas, it is well known, the spectrum of k

in finite-dimensional representations of sl(2,R) is contained in Z.

The above theorem leaves the likelihood that the wave equation may satisfies Huygens’

principle when 2⟨k⟩− 1
2 ∈ Z.

Now, using Proposition 5.3., we get

{
2

n

∑
ℓ=1

xℓ∂ℓ+ t∂t

}
Pi j

k = (1+ j− i)Pi j
k .

Therefore

Hn,1Pi j
k =−

(
n+2⟨k⟩− 1

2
+ i− j−1

)
Pi j

k , i, j = 1,2.

That is Pi j
k is an eigen-distributation for Hn,1 with eigenvalue −(n+2⟨k⟩− 3

2 + i− j). Thus,

if we assume n+2⟨k⟩− 3
2 + i− j ∈ N, with i, j = 1,2, and keeping in mind that

Fn,1 ·Pi j
k = 0,

we can conclude that each distribution Pi j
k , with i, j = 1,2, generates a finite-dimensional

ω∗
k,n+1(sl(2,R)) on S ′(Rn+1) of highest weight n+2⟨k⟩− 3

2 + i− j. We now summarize

all the above computations and discussions.

Proposition 5.7. Under the assumption

n+2⟨k⟩− 3
2
+ i− j ∈ N, (5.21)
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the tempered distribution Pi j
k generates an sl(2,R)-module of dimension

di, j(k) = n+2⟨k⟩− 3
2
+ i− j+1, i, j = 1,2.

By taking into account the condition (5.21) for both P11
k and P12

k , we obtain:

Theorem 5.7. (Strict Huygens’ Principle) Assume that k ∈ K+ and n ≥ 1. The unique

solution uk(x, t) to the Cauchy problem

∂ttuk(x, t)−2∥x∥∆kuk(x, t) = 0, u(x,0) = f (x), ∂tu(x,0) = g(x)

depends only on the values of τx(k) f and τx(k)g (and their derivatives) for ∥x∥= 1
2t2 if

and only if

n+2⟨k⟩− 5
2
∈ N.

The above theorem finishes the question asked in this chapter.
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Chapter 6: The Integrability of the Representation ωk

6.1 Introduction

In the previous chapter we constructed the representation ωk of the Lie algebra sl(2,R) on

the Schwartz space S(Rn). This infinitesimal representation ωk was used to investigate the

validity of the Huygens principal for the wave equation ∂ttuk−2∥x∥∆kuk = 0 with the initial

data uk(x,0) = f (x) and ∂tuk(x,0) = g(x). In this chapter we will answer to the question

of the integrability of the representation ωk to give raise to a representation of a simply

connected Lie group with Lie algebra sl(2,R). Our approach uses a famous theorem due to

E. Nelson [34]. Note that the integrability fact is not obvious, since in infinite dimensions,

the existence of a group representation is not guaranteed from the existence of a Lie algebra

representation.

6.2 The Integrability of the Representation ωk

Our exposition will center around the three dimensional Lie algebra

sl(2,R) =

X =

a b

c −a

 ;a,b,c ∈ R

 .

A basis for sl(2,R) can be chosen as {h,e+,e−}, where

h :=

1 0

0 −1

 , e+ :=

0 1

0 0

 , e− :=

0 0

1 0

 ,

with the commutation relations

[h,e+] = 2e+, [h,e−] =−2e−, [e+,e−] = h.

Of course, the above three equations characterize the Lie algebra sl(2,R) completely.

Recall from the previous chapter the following operators on Rn:

E+
k := i∥x∥, E−

k := i∥x∥∆k, Hk := n+2⟨k⟩−1+2
n

∑
i=1

xi∂xi,
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where ⟨k⟩= ∑α∈R+ kα . We proved in the previous chapter that the operators E+
k , E

−
k and

Hk form an sl2-triple. For k ≡ 0, {E+
0 ,E

−
0 ,H0} is the sl2 triple introduced in Kobayashi

and Mano [17, 18] where the authors studied the L2-model of the minimal representation of

the double covering group of SO0(n+1,2). (To be more precise, the formulas in [18] are

given for the sl2-triple for {2E+
0 ,

1
2E

−
0 ,H0} in our notation.)

Finally, recall the representation ωk of g= sl(2,R) on the Schwartz space S(Rn) defined

by

ωk(h) =Hk, ωk(e+) = E+
k , ωk(e−) = E−

k .

Our goal is to study whether the representation ωk of sl(2,R) is integrable or not. Our

approach uses essentially a famous result due to Nelson [34]. This approach was used first

by Ben Said in [45]. Let us recall Nelson’s theorem.

Theorem 6.1. Let u1, u2, . . ., ur be a basis of a Lie algebra g of dimension r, and let ω be

a densely defined representation of g on a Hilbert space H. Then ω is the derivative of

some continuous unitary representation of a Lie group G with Lie algebra g if and only if

(i) For every X ∈ g, ω(X) is a skew-symmetric operator on H,

(ii) The operator ω(u1
2 + . . .+ur

2) is essentially self-adjoint.

To study the structure of the representation ωk of sl(2,R), we will consider a second

sl2-triple which spans the Lie algebra

su(1,1) :=

X ∈ sl(2,C) : X∗

1 0

0 −1

+

1 0

0 −1

X = 0

 .

The Lie algebra su(1,1) is another real form of sl(2,C). It is worth mentioning that su(1,1)

is isomorphic to the Lie algebra sl(2,R). Indeed, if we consider the Cayley unitary matrix

c :=
1√
2

−i −1

1 i

 ,

then, Ad(c) : sl(2,R) → su(1,1) defined by Ad(c)X = cXc−1 induces a Lie algebra

isomorphism. It is convenient to use either one or the other suitable form of the two
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isomorphic Lie algebra according to the problem at hand.

We set {k,n+,n−} := c{h,e+,e−}c−1. Then

k = i(e−− e+),

n+ =−1
2
(−ih+ e++ e−),

n− =−1
2
(ih+ e++ e−).

One checks easily that {k,n+,n−} is an sl2-triple. Using the relations between the two

standard basis {k,n+,n−} and {h,e+,e−} via the Cayley transform, we obtain

ωk(k) = ωk(i(e−− e+))

= ∥x∥−∥x∥∆k := H̃k,

ωk(n+) = ωk(−
1
2
(−ih+ e++ e−))

=
i
2

(
2E +(n+2γk −1)−∥x∥∆k −∥x∥

)
:= Ẽk

+
,

ωk(n−) = ωk(−
1
2
(ih+ e++ e−))

= − i
2

(
2E +(n+2γk −1)+∥x∥∆k +∥x∥

)
:= Ẽk

−
.

where E = ∑
n
i=1 xi∂xi is the Euler operator.

For m ∈ N, we set

λk,m := 2m+2⟨k⟩+n−2.

The following lemma is needed for later use.

Lemma 6.1. For all f ∈C∞(R+) and p ∈Hm(Rn), we have

Hk

(
p(x) f (∥x∥)

)
=
{
(λk,m +1) f (∥x∥)+2∥x∥ f ′(∥x∥)

}
p(x),

∆k

(
p(x) f (∥x∥)

)
=
{
(λk,m +1)∥x∥−1 f ′(∥x∥)+ f ′′(∥x∥)

}
p(x).

Proof. The first statement is straight forward because the Euler operator E is of the form

r ∂

∂ r in the polar coordinates x = rω .
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To see the second statement, we will proceed as following: Take an arbitrary C∞ function

f on Rn. Assume that g is a G-invariant smooth function.We have

Tj(k)g = ∂ jg, (6.1)

Tj(k)( f g) = (Tj(k) f )g+ f (∂ jg),

Take an arbitrary C∞ function ψ on R+. Clearly we have

Tj [ψ (∥x∥)] = x j∥x∥−1
ψ

′ (∥x∥) .

Further,

Tj [ f (x)ψ (∥x∥)] = Tj( f (x))ψ (∥x∥)+ f (x)Tj (ψ (∥x∥))

= Tj( f )ψ (∥x∥)+ f (x)x j∥x∥−1
ψ

′ (∥x∥)

Apply the Dunkl operator Tj again to the above we get

T 2
j [ f (x)ψ (∥x∥)]

= T 2
j ( f )ψ (∥x∥)+Tj( f )Tjψ (∥x∥)+Tj

{
f (x)x j∥x∥−1

ψ
′ (∥x∥)

}
= T 2

j ( f )ψ (∥x∥)+Tj( f )Tjψ (∥x∥)+Tj(x j f (x))∥x∥−1
Ψ

′ (∥x∥)

+x j f (x)Tj
(
∥x∥−1

ψ
′(x)
)

= T 2
j ( f )ψ (∥x∥)+∥x∥−1

ψ
′ (∥x∥)x jTj( f )+∥x∥−1

ψ
′ (∥x∥)Tj(x j f )

+x j f (x)∂ j
{
∥x∥−1

ψ
′ (∥x∥)

}
Taking the summation over j, we arrive at

∆k ( f (x)ψ (∥x∥))

= (∆k f (x))ψ (∥x∥)+∥x∥−1
ψ

′ (∥x∥)(2E +n+2⟨k⟩) f (x)

+ f (x)E
(
∥x∥−1

ψ
′ (∥x∥)

)
.
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If we assume that f = p is a homogeneous harmonic polynomial of degree m. Then

∆k (p(x)ψ (∥x∥))

= (∆k p(x))ψ (∥x∥)+∥x∥−1
ψ

′ (∥x∥)(2E +n+2⟨k⟩)p(x)

+p(x)E
(
∥x∥−1

ψ
′ (∥x∥)

)
= ∥x∥−1

ψ
′ (∥x∥)(2m+n+2⟨k⟩)p(x)

+p(x)E
(
∥x∥−1

ψ
′ (∥x∥)

)

To finish the proof, one may use the following observation: in the polar coordinate x = rω ,

the Euler operator E amounts to r(∂/∂ r), and

r(d/dr)
(
r−1

ψ
′ (r)
)
=−r−1

ψ
′ (r)+ψ

′′ (r) .

We consider the following linear operator:

αm : Hm(Rn)⊗C∞(R+)→C∞(Rn \{0})

defined by

αm(p⊗ f ) = p(x) f (∥x∥).

Using Lemma 6.1 and the definition of the operators Hk, E+
k , and E−

k , we can prove that

the opera Hk, E+
k , and E−

k act only on the radial part f when applied to those functions

p(x) f (∥x∥) for p ∈Hm(Rn).

Lemma 6.2. The operators Hk, E+
k , and E−

k take the following forms on Hm(Rn)⊗

C∞(R+) :

Hk ◦αm = αm ◦
(

id⊗
(

2r
d
dr

+(λk,m +1)
))

(6.2 a)

E+
k ◦αm = αm ◦

(
id⊗ir

)
(6.2 b)

E−
k ◦αm = αm ◦

(
id⊗i

(
r

d2

dr2 +(λk,m +1)
d
dr

))
(6.2 c)
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We define an endomorphism of C∞(R+) by

M : C∞(R+)
∼→C∞(R+), g(t) 7→ (Mg)(r) := exp(−r)g(2r).

Composing with αm, we define the following linear operator βm by

βm := αm ◦ (id⊗M).

That is, βm : Hm(Rn)⊗C∞(R+)→C∞(Rn \{0}) is given by

βm(p⊗g)(x) := p(x)exp
(
−∥x∥

)
g
(

2∥x∥
)
. (6.3)

In view of the above lemma, we get the following forms of Hk, E+
k , and E−

k on Hm(Rn)⊗

C∞(R+).

Lemma 6.3. Let

Pt := t
d2

dt2 +(λk,m +1− t)
d
dt
. (6.4)

Then,

Hk ◦βm = βm ◦
(

id⊗
(

2t
d
dt

+(λk,m +1− t)
))

,

E+
k ◦βm = βm ◦

(
id⊗ i

2
t
)
,

E−
k ◦βm = βm ◦

(
id⊗i

(
2Pt +

t
2
−λk,a,m −1

))
.

Proof. Immediate from the above Lemma 6.2 and the following relations:

d
dr

◦M = M ◦
(

2
d
dt

−1
)
,

r ◦M = M ◦ t
2
.

Using the relations between {k,n+,n−} and {h,e+,e−}, and therefore the relations between

the operators Hk, E+
k and E−

k and H̃k, Ẽk
+

and Ẽk
−
, we obtain the following actions:
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Lemma 6.4. Through the linear map βm, the operators H̃k, Ẽ+
k and Ẽ−

k take the following

forms on Hm(Rn)⊗C∞(R+),

H̃k ◦βm = βm ◦
(

id⊗
(
−2Pt +λk,m +1

))
,

Ẽk
+
◦βm = βm ◦

(
id⊗

(
− i
(

Pt − t
d
dt

+ t −λk,m −1
)))

,

Ẽk
−
◦βm = βm ◦

(
id⊗

(
− i
(

Pt + t
d
dt

)))
.

Now we are ready to exhibit the action of the sl2-triple {k,n+,n−} on the functions Φℓ(p, ·)

from the previous chapter. We recall from above that

ωk(k) = H̃k, ωk(n+) = Ẽk
+
, ωk(n−) = Ẽk

−
.

Recall also that for ℓ,m ∈ N and p ∈Hm(Rn), we have the following functions on Rn,

Φℓ(p,x) := p(x)L
(λk,m)

ℓ

(
2∥x∥

)
exp
(
−∥x∥

)
. (6.5)

Here, λk,m = 2m+ 2γk + n− 2, and L(λ )
ℓ (t) is the Laguerre polynomial. Hence, for x =

rω ∈ Rn (r > 0, ω ∈ Sn−1), we have

Φℓ(p,x) = p(ω)rmL
(λk,m)

ℓ

(
2r
)

exp
(
−r
)
.

Finally, recall from the previous chapter the vector space of functions on Rn defined by

Dk(Rn) := {Φℓ(p, ·) | ℓ ∈ N,m ∈ N, p ∈Hm(Rn)} . (6.6)

Theorem 6.2. The space Dk(Rn) is stable under the action of sl(2,C). More precisely,

for each fixed p ∈Hm(Rn), the action ωk is given as follows:

ωk(k)Φℓ(p,x) = (2ℓ+λk,m +1)Φℓ(p,x),

ωk(n+)Φℓ(p,x) = i(ℓ+1)Φℓ+1(p,x),

ωk(n−)Φℓ(p,x) = i(ℓ+λk,m)Φℓ−1(p,x).
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Proof. Let Pt = t d2

dt2 +(λk,m + 1− t) d
dt . By the formula Φℓ(p, ·) = βm(p⊗L

(λk,m)

ℓ ) (see

(6.5)) and by Lemma 6.4, it is enough to prove the following identities

(−2Pt +(λk,m +1))L
(λk,m)

ℓ = (2ℓ+λk,m +1)L
(λk,m)

ℓ ,

(−i(Pt − t
d
dt

+ t −λk,m −1))L
(λk,m)

ℓ = i(ℓ+1)L
(λk,m)

ℓ+1 ,

− i(Pt + t
d
dt
)L

(λk,m)

ℓ = i(ℓ+λk,m)L
(λk,m)

ℓ−1 .

However, since the Laguerre polynomial L
(λk,m)

ℓ (t) satisfies the Laguerre differential

equation

PtL
(λk,m)

ℓ (t) =−ℓL
(λk,m)

ℓ (t),

the first assertion is now clear. The remaining identities and are reduced to the recurrence

relations in 5.3 , respectively.

By using the orthonormal basis { fℓ,m(r)}, we may normalize the functions Φℓ(p,x) as

following

Φ̃ℓ(p,x) := fℓ,m(r)p(ω)

=
(2λk,m+1

Γ(ℓ+1)
Γ(λk,m + ℓ+1)

) 1
2
Φℓ(p,x)

for x = rω (r > 0, ω ∈ Sn−1). Then, Theorem 6.2 is reformulated as follows:

Theorem 6.3. For any p ∈Hm(Rn), we have

ωk(k)Φ̃ℓ(p,x) = (2ℓ+λk,m +1)Φ̃ℓ(p,x),

ωk(n+)Φ̃ℓ(p,x) = i
√
(ℓ+1)(λk,m + ℓ+1)Φ̃ℓ+1(p,x),

ωk(n−)Φ̃ℓ(p,x) = i
√
(λk,m + ℓ)ℓΦ̃ℓ−1(p,x).

For f ,g ∈ L2
(
Rn,ϑk(x)dx

)
, we write its inner product as

⟨⟨ f ,g⟩⟩k :=
∫
Rn

f (x)g(x)ϑk(x)dx.
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Proposition 6.1. The representation ωk of sl(2,R) on Dk(Rn) is infinitesimally unitary

with respect to the inner product ⟨⟨ , ⟩⟩k, namely,

⟨⟨ωk(X) f ,g⟩⟩k =−⟨⟨ f ,ωk(X)g⟩⟩k

for any X ∈ sl(2,R) and f ,g ∈ Dk(Rn).

Proof. We already knew that the Dunkl operators are skew-symmetric with respect to

the measure ∏α∈R+ |⟨α,x⟩|2kα dx. In view of the definitions E−
k = i∥x∥∆k, we see that E−

k

is a skew-symmetric operator with respect to the inner product ⟨⟨·, ·⟩⟩k. Likewise for E+
k .

Further, the commutation relation Hk = [E+
k ,E

−
k ] shows that Hk is also skew-symmetric.

Thus, for all X ∈ sl(2,R), ωk(X) is skew-symmetric.

Recall that an operator O is called essentially self-adjoint, if it is symmetric and its closure

is a self-adjoint operator. Let O be a symmetric operator on a Hilbert space H with domain

D(O), and let { fn}n be a complete orthogonal set in H. If each fn ∈ D(O) and there exists

µn ∈ R such that O fn = µn fn, for every n, then O is essentially self-adjoint.

Let G be the simply connected covering Lie group with Lie algebra g= sl(2,R). Now we

are ready to apply Nelson’s theorem to the representation ωk.

Theorem 6.4. The infinitesimal representation ωk exponentiates to define a unique unitary

representation of G on L2(Rn,ϑk(x)dx).

Proof. Let u1 = e+− e−, u2 = e++ e− and u3 = h. Since {e+,e−,h} is a basis for the

Lie algebra g= sl(2,R), it follows that {u1,u2,u3} is also a basis for sl(2,R). Now,

−u1
2 +u2

2 +u3
2 = h2 +2e+e−+2e−e+ = k2 +2n+n−+2n+n−

and

u1
2 =−k2.

Therefore

u1
2 +u2

2 +u3
2 =−k2 +2n+n−+2n+n−.
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By Theorem 6.3,the orthonormal basis
{

Φ̃ℓ,m, j | ℓ ∈ N,m ∈ N, j ∈ Jm

}
of the space

L2(Rn,ϑk(x)dx) are eigenvectors for the action

ωk(u1
2 +u2

2 +u3
2) = ωk(−k2 +2n+n−+2n+n−)

with real eigenvalues. More precisely,

ωk(u1
2 +u2

2 +u3
2)Φ̃ℓ,m, j(x)

= ωk(−k2 +2n+n−+2n+n−)Φ̃ℓ,m, j(x)

=
{
− (2ℓ+λk,a,m +1)2 −2(λk,a,m + ℓ)ℓ−2(ℓ+1)(λk,a,m + ℓ+1)

}
Φ̃ℓ,m, j(x).

Thus, the symmetric operator ωk(u1
2 +u2

2 +u3
2) on the Hilbert space L2(Rn,ϑk(x)dx)

is indeed essentially self-adjoint. Moreover, since ωk(X) is skew-symmetric for every X ∈

sl(2,R), it follows from Nelson’s theorem that ωk exponentiates to define on L2(Rn,ϑk(x)dx)

a unique unitary representation of the simply connected Lie group G with Lie algebra

sl(2,R).

The above theorem finishes the question asked in this chapter.
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Chapter 7: Conclusion

One of the most intriguing aspects of the theory of partial differential equations is the wave

equation ∆u(x, t)−∂ttu(x, t) = 0. A remarkable fact about wave equations, called Huygens’

principle, states that the solution u(x, t) is supported in the set {(x, t) ∈ Rn ×R : ∥x∥= |t|}

if and only if the dimension n is odd and greater than 3. The classification of all second

order differential equations satisfying the Huygens’ principal is still an open problem,

known under the name of Hadamard’s conjecture. In this thesis we proved that this

conjecture is far from being solved. More specifically, we considered the wave equation

2∥x∥∆kuk(x, t)−∂ttuk(x, t) = 0, with uk(x,0) = f (x) and ∂tuk(x,0) = g(x). Here ∆k is the

Dunkl Laplacian operator. The first main result of the thesis consists of showing that our

wave equation satisfies the Huygens’ principle under some conditions. More precisely, the

support of the unique solution uk(x, t) is contained in the set {(x, t)∈Rn×R : 2∥x∥2 = |t|2}

if and only if 2n+2∑α∈R kα −5 is an even integer. Our approach is essentially based on

the representation theory of the Lie algebra sl(2,R) by the construction of the infinitesimal

representation

ωk(h) = n+ ∑
α∈R

kα −1+2
N

∑
i=1

xi∂i, ωk
(
e+
)
= i∥x∥, ωk

(
e−
)
= i∥x∥∆k,

where {h,e+,e−} is the canonical basis of sl(2,R).

The second main result of the thesis consists of the integrability of the representation ωk.

The integrability fact is not obvious since in infinite dimensions, the existence of a Lie

group representation is not guaranteed from the existence of a Lie algebra representation.

However, we proved that ωk integrates to a unique unitary representation of the universal

covering Lie group of SL(2,R).
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In this thesis, a non-trivial wave equation is introduced. The main aim is to find under 

which conditions the unique solution to the deformed wave equation is supported on 

the light cone.The approach is based on the representation theory of the Lie algebra 
sl(2,R), where a new representation ωk of sl(2,R) is constructed. Further, we prove 

that ωk lifts to give raise to a unitary representation of a simply connected Lie group 

with Lie algebra sl(2,R).
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