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Abstract

The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a viral in-

fectious disease that can be transmitted to humans through interaction with infected ani-

mals or humans. The Middle East respiratory syndrome (MERS) is still one of the main

public health concerns in the Gulf region including United Arab Emirates. The fact that

diseases have been imported into other parts of the world show the possibility of has a

MERS pandemic. In this work, we are aiming to study a mathematical model of the

MERS transmission among the UAE population and camels. The goal is to determine

what are the paths of communication and find out the best way to control the disease

spread. We will calculate the basic reproduction number R0 of the MERS model in the

UAE, and we will compute disease-endemic equilibrium points.The sensitivity analysis

of the basic reproduction number R0 will be performed. Also, we will perform computer

simulations to investigate the MERS model.

Keywords: MERS-CoV infection in the UAE, basic reproduction number, numerical

analysis, sensitivity analysis.
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Title and Abstract (in Arabic) 
 

 راتماكورونا في دولة الإ لفيروسالنمذجة الرياضية 

 صالملخ

تلازمة الشرق الأوسط التنفسية )كورونا فيروس( هو مرض  فيروسي معدٍ يمكن أن ينتقل م

إلى البشر من خلال التفاعل مع الحيوانات المصابة أو البشر. لا تزال متلازمة الشرق الأوسط 

التنفسية واحدة من أهم اهتمامات الصحة العامة في منطقة الخليج بما في ذلك الإمارات العربية 

حدة. وتظهر الحقيقة أن هذا المرض قد تم توريده إلى أجزاء أخرى في العالم تزيد من إمكانية المت

وجود وباء فيروس كورونا. في هذا العمل ، نحن نهدف إلى دراسة نموذج رياضي لانتقال فيروس 

كورونا بين سكان الإمارات والجمال. الهدف هو تحديد ما هي طرق التواصل ومعرفة أفضل 

لسيطرة على انتشار المرض. سنقوم بحساب رقم الاستنساخ الأساسي  لنموذج كورونا طريقة ل

في دولة الإمارات العربية المتحدة ، وسوف نحسب نقاط توازن المرض المستوطنة. وسيتم إجراء 

تحليل الحساسية لرقم الإنجاب الأساسي. أيضا ، سنقوم بتنفيذ عمليات المحاكاة الحاسوبية للتحقيق 

 ذج كورونا.            في نمو

عدوى فيروس كورونا في الإمارات العربية المتحدة ، رقم الإستنساخ : مفاهيم البحث الرئيسية 

 .الأساسي ، التحليل العددي ، تحليل الحساسية
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Chapter 1: Introduction

The Middle East Respiratory Syndrome (MERS) is a new infection that has

emerged in humans which is related to lineage C Betacoronavirus (B CoV) and the sixth

Coronavirus (CoV). It is a virus transmitted to humans [12]. MERS-CoV is a zoonotic

virus [24]. A series of studies have shown that an animal origin and route of acqui-

sition of MERS-CoV [39, 30]. Generally, there are many types of coronaviruses that

naturally infect only one animal species or a small number of closely related species;

MERS-CoV presence was known at the bats [43]. Furthermore, laboratory confirmed

that from the testing sample of a nasal swab of the first cases of MERS, and they found

that people infected by the same virus as bats and be enzootic in dromedary camels in

Arabian peninsula and horn of Africa [39]. According to Mackay [39] there is animal-

to-human transmission, and the camels are considered a major source of human infection

with the Middle East Respiratory Syndrome, happening by close contact and consuming

their product such as drinking raw camel milk, or camel urine and eating meat that has

not been thoroughly cooked [39]. However, many people get MERS disease without

contact with camels, which illustrates that infected humans can also carry the MERS-

CoV and infect others through the air or close contact; that is called human-to-human

transmission [30].

Once the virus infects a person, it takes an incubation period 2-14 days and the

most common that the symptoms within the first five days to appear [73]. The symptoms

of MERS could range from having no symptoms at all, to having severe illness leading to

death. Early symptoms include fever, cough, chills, sore throat, breathing difficulties and

quickly progresses to pneumonia that transforms to acute respiratory distress syndrome,

mostly it leads to the organs failure [39, 7]. The people who are at the most risks of

MERS are older men who have a weak immune system [39].

The First known case of the Middle East Respiratory Syndrome MERS was in

2012 in Jordon. At that time the most human cases of MERS appeared in the Arabian
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Peninsula specifically in Saudi Arabia [39]. The UAE ranked second in the number of

infected cases. MERS-CoV outbreaks have been increasing since 2012 in and around

the Arabian Peninsula. According to the World Health Organization (WHO), 2079 cases

have been reported globally, with 722 cases experiencing death as of September 6th,

2017 [24]. Since the first appearance of the cases of MERS until now, the past two

years have seen outbreaks rapidly increase between humans through human-to-human

transmission. The first cases that were reported outside the Middle East region mostly

are carried a history for visiting the Middle East countries especially the United Arab

Emirates and the Kingdom of Saudi Arabia(KSA) [1].

Recently in the Republic of Korea, there has been a healthcare-associated out-

break [1]. The lack of understanding of the dynamics of MERS-CoV transmission may

lead to fatal dramatic outbreaks. Some factors also would assist in the spread of MERS,

such as crowded gatherings of pilgrims in the holy places in the KSA and global events

such as Expo 2020 which will be in the UAE [42]. These events also might be a factor

of increasing the spread of MERS-CoV around the world. In 2015, there was an out-

break in health-care facilities in Republic of Korea [1]. After this incident, the study of

Chowella et al. [14] showed that the MERS-CoV transmission among hospitalized was

higher than its transmission in the community, so the hospitalized cases must receive

more attention by epidemiologists. So far, there is no antivirus for MERS-CoV infection

to prevent its spread. The only precaution taken to limit the spread of the disease is the

isolation and hospitalization of the infected cases. The visitors coming from the Middle

East area must be investigated and isolated if they are suspected of having any contact

with MERS-CoV cases or having the disease symptoms in them [70].

This thesis is organized in the following way:

Firstly, Chapter 2 presents a definition of zoonotic diseases and factors that influ-

ence the emergence of zoonotic diseases then we introduce a group of diseases that have

emerged in the Middle East region. Chapter 3 followed provides a range of zoonotic

diseases that have appeared in this region with some of the mathematical models that are

designed to study their dynamics.
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As for the fourth chapter it concentrates on presenting the dynamics of MERS-

CoV with various types of mathematical models to get the perfect understanding around

the nature of transmission of this disease among humans and how we can control it.

Chapter 5, introduces a mathematical model of MERS infection with two patches:

human population and camel population. The human population is modeled with an

SEIHR model and the camels population is modeled with SIS model.

Chapter 6, uses a set of others papers to help us estimate the parameters of our

model. Of course, not all the parameter are available since we have lack of camels data

in the Middle East region.

The main result of this thesis is presented in Chapter 6, where a numerical anal-

ysis for our model is performed starting with presenting our well posed basic mathemat-

ical model by proving boundedness and positivity for two models. We next calculate

the basic reproduction number R0 using the next generation method. Hence, we find

the relationship between two thresholds(R01 and R02). Next, we use very well-known

results of the next generation method to give the stability results. Finally, we find the

conditions of existence of possible endemic equilibria which concerning R0.

To illustrate the outcomes of our analytical study, we give, in Chapter 7, time

series simulations of the model using parameters estimation. The simulations confirm

the mathematical finding by showing the results of a possible MERS epidemic in the

UAE. These findings are discussed in this chapter in details. Moreover, we also introduce

the sensitivity analysis of the parameters of the model and investigate in their impact on

our variables; particularly on the burden of infection. All the simulations were done

with R software with different open source packages [18, 60]. We finish this work by

a conclusion in which we cover all aspects of our work. We are present some possible

extension for this work. All the definitions which are used in the model are presented in

Appendix 1. All the codes used in this thesis are presented for the reader in Appendix 2.
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Chapter 2: Zoonotic Diseases in the Middle East

Recently, the world has seen outbreaks of several diseases that constituted a ma-

jor health crisis resulting from zoonotic diseases. Due to the mortality and injuries

caused by these diseases, public health institutions have been interested in studying these

diseases to reduce the fear of rapid infections in different parts of the world.

2.1 Zoonotic Diseases

This section presents the definition of zoonotic diseases and the importance of

highlighting them.

2.1.1 Definition

The World Health Organization (WHO) noted that zoonotic diseases are diseases

that are transmitted from animals to humans in multiple conditions [49]. The possibility

of transmitting diseases to humans are usually related to the human needs for animals as

food or pets. The most way contributing to the invasion of zoonotic diseases around the

world is mostly through animal importing especially the vertebrates [49] where 71.8%

of them originates in wildlife [29]. Furthermore, these animals acquire the infection

through different types of pathogen agents such as bacteria, parasites, fungi, viruses, and

prions [66].

It is Important to point out that studies have found that animals and humans catch

the same zoonotic diseases. However, the ecology of diseases in animals and humans

are different. Therefore, the method of dealing with the two species is different.

Throughout the ages, zoonotic diseases have been considered a significant threat

to human health, causing many human deaths.Therefore, we need measures to protect

human health and fight infections in livestock and other animals, to avoid the spread of

diseases among them and consequently in humans.
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2.1.2 Factors Influencing the Emergence of Zoonotic Diseases

The zoonotic diseases weren’t an example of contemporary diseases, but they

have always existed for decades among a wide range of human diseases. The zoonotic

diseases weren’t an example of contemporary diseases, but they have always existed

for decades among a wide range of human diseases.Recently, those diseases have in-

creased through expansion in the geographical scope of the host or vector. As a result,

the zoonotic diseases in humans have increased significantly over time and reached more

than 70% of human diseases [69]. Global economies and public health have been af-

fected to a large extent by emerging infectious diseases that pose a significant threat for

human future [29].

Despite the development of medical technologies in health, which contributed to

the diagnosis and detection a lot of pathogens but still, there are some of the problems

that face them. For example, some of the pathogens do not cause only a massive out-

break among humans population but also they are high in lethality, where this dilemma

has not been explained yet. There are some Known factors contributing to the emer-

gence of zoonotic diseases such as human practices which lead to climate change and

the destruction of the ecosystem. These excesses are an essential reason to understand

the relationship between hosts and pathogens, including the wildlife, livestock, and hu-

mans. The crisis is continuing when these zoonotic diseases killing many animals and

people, while many unknown factors are still emerging from wildlife reservoir.

1. Trade in Animals and Their Products

The risk of infections transmission increased when humans were interested in

the bushmeat trade which in turn contributed to the transfer of live animals to central

markets to became closely linked to human. Therefore that causing the transmission of

zoonotic diseases between animals then humans [66, 49].

2. Human Movement

The movement of people around the world for tourism, education, commerce, or
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the performance of Hajj and Umrah, has been revealed as a way of transmitting diseases

in sizeable human populations [49].

3. Climate Variability and Ecological Change

Also, climate change has played a significant role in the distribution of vector and

restricted pathogens into the geographical range [66]. As populations have expanded,

people have been forced to deforestation, and the exploit natural land happens for agri-

culture, and building dams. The human intervention in the environment has led to the

formation of potential pathogens and effects the vector born diseases [49].

4. Cultural Standards

In some of the Gulf countries such as the UAE, Saudi Arabia, and Oman people

have the habit of dealing with camel products. For example, drinking unpasteurized milk

directly without boiling, drinking camel urine as Arabian people think it has benefits, so

if these cattle are infected may that contribute to the transmission of diseases to human

[39]. In Kenya, their culture allows dogs and hyenas eat human bodies infected with

worms. This habit leads to a continuous cycle of disease transmission in nature [49].

5. Transportation of Virus Infected Mosquitoes

All transportation such as aircraft, ship, train, motor, and other vehicles may con-

tribute to the transport of infected mosquitoes with viruses into new areas, for example

Yellow Fever, Chikungunya Fever, Dengue Fever, etc [49].
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2.2 The List of Zoonotic Diseases

There is a wide range of zoonotic diseases identified through modern laboratory

techniques. These techniques have found more than 300 of these zoonoses where each

of them have a classification that distinguishes them [49].

2.2.1 Etiological Factors

The Table 2.1 shows the list of zoonoses that based on etiological factors[49].

Bacterial zoonoses
e.g. anthrax, brucellosis, plague,
leptospirosis, salmonellosis,
lyme disease.

Viral zoonoses e.g. rabies, arbovirus infections,
KFD, yellow fever,influenza.

Rickettsial zoonoses e.g. murine typhus, tick typhus,
scrub typhus,Q-fever.

Protozoal zoonoses e.g. toxoplasmosis, trypanosomiasis,
leishmaniasis.

Helminthic zoonoses
e.g. echinococcosis (hydatid disease),
taeniasis, schistosomiasis,
dracunculiasis.

Fungal zoonoses
e.g. deep mycosis - histoplasmosis,
cryptococcosis, superficial
dermatophytes.

Ectoparasites e.g. scabies, myiasis.

Table 2.1: Zoonotic diseases caused by ecological factors
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2.2.2 Method of Transmission

The Table 2.2 shows the list of zoonoses that based on transmission method [49].

Direct zoonoses

It needs a direct connection to transfer it from
the infected vertebrate host to the sensitive host
as (man). During that time the agent may be remain
it self or undergo to changes and developing in time
of transmission e.g. rabies, anthrax, brucellosis, leptospirosis,
toxoplasmosis.

Cyclozoonoses
It needs more than one vertebrate host species but
at that time there are no invertebrate host to
complete the agent life cycle e.g. echinococcosis, taeniasis.

Metazoonoses

In biological methods transmitted by invertebrates, at that
time the agent multiplies or develops, and has
an external incubation period before birth and moving
to another vertebrate host. e.g. plague,
arbovirus infections, schistosomiasis, leishmaniasis.

Saprozoonoses

It needs to vertebrates in addition a non-animal
development site such as soil, plant material and dove
Projectione. e.g. aspergillosis, coccidioidomycosis,cryptococosis,
histoplasmosis, zygomycosis.

Table 2.2: Zoonotic diseases caused by method of transmission

2.2.3 Reservoir Host

The Table 2.3 shows the list of zoonoses that based on reservoir host [49].

Anthropozoonoses
Infections is in lower vertebrate animals
and was transmitted to man from it, e.g. rabies,
leptospirosis, plague, arboviral infections, brucellosis and Q-fever.

Zooanthroponoses

Infections is in man and was
transmitted to lower vertebrate animals from
it, e.g. streptococci, staphylococci,diphtheria,enterobacteriaceae,
human tuberculosis in cattle and parrots.

Amphixenoses Infections is in both man and lower vertebrate animals and
was transmitted between them,e.g.salmonellosis, staphylococcosis.

Table 2.3: Zoonotic diseases caused by reservoir host
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The flowchart in Figure 2.1 represents the most significant type of zoonoses,

where zoonoses that appeared in the Middle East are colored red.

Figure 2.1: The significant type of zoonoses
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2.3 The Origin of Zoonotic Diseases in The Middle East

The zoonotic diseases in the middle east have two type of origin, one of them by

bat and the other by vector, wildlife and livestock.

Figure 2.2: The Origin of Zoonotic Diseases
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2.3.1 Emerging Zoonotic Viruses of Bat Origin

Bats have been discovered as a vast reservoir host for viruses that infect animals

and then transmit to humans causing severe diseases. Bats are considered as the best

reservoir of zoonotic infection due to their ability to live for many years. Also, they

can get flyes on a large scale which allow them to acquire and distribute the pathogens

through this range. In addition, bats are mammalian and contain many species, approx-

imately more than 1,200 species spread around the world. The vast colonies and caves

inhabited by bats for many years constitute the largest gathering of viral pathogens [66].

It is noteworthy that, bats are not affected by these viruses that due to their immune sys-

tem, which is characterized by the interaction with viral pathogens compared to other

animals [53].

According to Ranjan study in the past two decades, the viruses that are present

in the bat are multiple and contribute to the enormous numbers of diseases around the

world. So the risk of zoonotic infections led to alert health institutions to intensifying

studies around them since the studies in this field was scarce [53].

1. Severe Acute Respiratory Syndrome Virus

In late 2002, severe acute respiratory syndrome appeared in southern China

caused by the SARS virus found in bats of the genus Renolovus as a reservoir host.

Also, the palm civets have been infected with the SARS virus. The Chinese government

exterminated these bats to prevent more SARS outbreaks. At the end of 2003, the cases

of infection reached 8,000 casualties by SARS where approximately killed 800 people

[66, 33]. As reported by WHO, Kuwait is the only Arabic country that have received

an instance of SARS. The Table 2.4 summarizes the cumulative number of SARS cases

reported for the period from 16 November 2002 until 7 August 2003 [15]. The Table

2.4 summarizes the cumulative number of SARS cases.
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2. The Middle East Respiratory Syndrome Virus

The Arabian Peninsula has seen some of the zoonotic diseases, such as the Coronavirus,

which causes the Middle East respiratory syndrome(MERS). Usually, the MERS in-

fection is caused by the direct or indirect contact with the camels that carry the same

coronavirus present in the bat [10]. This is especially because some of these camels

are imported from the Horn of Africa, and usually their health history is often unknown

[39]. The most people who infected by MERS are farmers, herders, fishermen, veteri-

narians, and wildlife workers. The spread of the disease was not confined to the local

population but also spread around the world as a result of human movement and the con-

tact with camels and human who are carrying the disease. For example, Hajj in Saudi

Arabia and the habit of the sacrifice of animals with unknown health history is a threat

to the Arabian Peninsula and will be a major challenge to control the spread of MERS

in this region. Moreover, 1,700 people have been infected with MERS where third of

them have died, the infections by MERS-CoV are still continuous. The Table 2.5 shows

the number of laboratory-confirmed MERS-CoV cases reported by Middle East coun-

tries by year since 2012 [67]. The Table 2.5 shows the number of laboratory-confirmed

MERS-CoV cases.
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Table 2.5: The number of confirmed MERS-CoV cases

Because SARS and MERS are two diseases from the same family of the coron-

avirus, we need to compare these diseases to determine the nature of the Coronavirus.

The last studies indicate that both diseases transfer to humans through the intermediate

animals that received the virus from the bats. Furthermore, MERS-CoV targets the older

patients, and they are mostly male, while SARS-CoV focused on younger patients who

were healthy. With regard to SARS outbreak in 2002 which originated from Southern

China and it took eight months to spread SARS with 8,273 cases. In late 2003, there have

been no more cases of SARS disease. On the other hand, MERS Continued to spread

from 2012 until the present day, while the number of infections is still lower than SARS

[38]. However, SARS has been spread very quickly between human in the world com-
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pared to MERS [38]. According to recent researches, the MERS is more fatality than

SARS but appears to be less infectious. Thus The mortality rate in MERS and SARS

was 41%, 10% respectively [20]. Besides that, the incubation period between SARS

and MERS were approximately similar which is 5.5 days and 4.6 days respectively.

The primary cases of infection by MERS reach approximately 61% of all re-

ported cases. This cases of the MERS-CoV, are documented with infected camel [23].

Humans always have been associated with animals to meet their needs for animal pro-

tein and other things but as the population continues to grow, the human needs for will

be greater, as will the risk associated with zoonotic diseases. The Middle East countries

import camels that may be carrying the corona-virus, we need a lot of attention on this

issue. It’s assumed that there are laws governing animals from other environments that

should be subjected to medical tests before they are sent. However, the secondary cases

of MERS which result from contact between infected human with healthy human are a

significant problem that needs consideration.

2.3.2 Emerging Zoonotic Viruses from other Sources

Bats are one of the most common sources of zoonotic diseases. Although, there

are also many zoonotic diseases that threaten health institutions by viruses with other

reservoir hosts.

1. Rabies

Rabies is a severe viral disease caused by the rabies virus (RABV) [63]. The

disease usually spreads due to bites of rabid animal [55]. Dogs are the main reservoirs of

rabies in developing countries, while foxes, raccoons, and coyotes are the main reservoirs

of this disease in developed countries [56]. The infected animals and human with RABV

show encephalitis as a result of infecting the central nervous system which historically

leads to death [63, 55]. In 1992, the first cases of rabies were reported in the United

Arab Emirates specifically in Al Ain [67]. The disease was reported to have been

transmitted from Oman to UAE through red fox bites which considered as a reservoir

host of rabies in these countries, where around 12 dromedaries, five sheep, and four goats
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were infected in Al Ain. After four months, the disease moved to Abu Dhabi and Dubai

and killed 44 animal from four different species. The last rabies case appeared in the

UAE in 2014 [67]. The disease also appeared in Saudi Arabia in 2007, where 48 camel

herders reported infection more than 4,000 animals through bites of wild dogs which is

also considered as a reservoir host of the disease in the KSA and Yemen [67]. The map

in Figure 2.3 shows the risk of Rabies around the world [44].

Figure 2.3: The risk of Rabies in worldwide
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2. Rift Valley Fever

Rift Valley Fever (RFV) is a viral zoonosis that has had a major impact on live-

stock production, food security and human health over the years in the African continent.

Later, in the Arabian Peninsul,a specifically in Saudi Arabia and Yemen, as a result of

the import of infected animals from the African continent [65]. RVF is found in humans

and animals through mosquito bites, which is considered the viral carrier of the fever.

Also, the diseases transmitted to human through blood exposure that carry the disease

and the other body fluids, in addition to drinks the humans to unpasteurized milk of cat-

tle [8]. In 2001, the Saudi Ministry of Health reported that 882 people were infected

by RVF, including 124 people who died. Studies indicate that the RVF epidemiology

remain unclear. However, it seem that the spread of the disease was associated with the

conditions of the wetlands after heavy rainfall, because of the breeding of mosquitoes

and the suitability of these conditions for sheep gatherings in the pastures. So there

are periods of intensive activity of virus and animal behavior during epidemics that we

should know more about it [8, 65].

Figure 2.4: The distribution of Rift Valley fever outbreaks
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The map that shown in Figure 2.4 display the distribution of Rift Valley fever

outbreaks across the African continent and the Arabian Peninsula between 1998 and

2016 as reported by ProMED-mail (blue) and between 2005 and 2016 as reported by

the World Organization for Animal Health (red). Countries affected are highlighted in

salmon and include: Botswana, Burundi, Egypt, Kenya, Madagascar, Mali, Maurita-

nia, Mayotte (France), Namibia, Niger, Saudi Arabia, Senegal, Somalia, South Africa,

Sudan, Tanzania, Uganda, Yemen [65].

3. Crimean-Congo Haemorrhagic Fever Virus

Crimean-Congo Haemorrhagic Fever(CCHF) is a severe disease carried by ticks

[67]. Ticks are considered as the main vector, and natural reservoir of infection in mam-

mals and they show the symptoms of the disease on them, but it doesn’t appear in the

ticks. The primary method of transmission to humans is through tick bites, also through

human contact with tissues or blood of infected animals [66]. The infection has spread

around 30 countries in Asia, the Middle East, Southeast Europe and Africa since 1944.

The disease causes unspecified mild fever and sometimes becomes severe [66]. There

are a lot of regions that affected with CCHF in Arabian Peninsula such as the United

Arab Emirates, Oman, and Saudi Arabia. Hyalomma ticks formed the main cause of the

CCHF outbreak in these areas with high fatalities [67]. The first appearance of CCHF

was in 1979 in Dubai, which is known as a hospital outbreak. No other cases were

reported in the United Arab Emirates until 1994 when the epidemic occurred between

abattoir workers [9]. Additionally, in the mid of 1990s, the human infection also iden-

tified in Oman, and there was study confirmed that the cattle and ticks are spreading the

virus locally. Besides, some cases of CCHF have recently been reported in Iraq [9]. The

Figure 2.5 shows the total number of reported cases of CCHF by countries in 2013 [9].
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Figure 2.5: Total number of reported cases of CCHF

4. Chikungunya Virus

Chikungunya(CHIK) is an infection carried by the Aedes mosquitoes which are

considered as the primary vector. The CHIKV has appeared in the subtropical regions

of Africa, the Indian Ocean islands, and some parts of Asia [66]. In 1658, the first pos-

sible clinical description of the infection was identified in Cairo, Egypt. Previously, the

incidence of the disease at that time was low in the Middle East region until 2011where

CHIK cases are confirmed in the Middle East and North Africa. Also, more than 15,000

cases are suspected outbreaks in Yemen [28]. Recently, the spread of CHIK disease has

appeared in the Arabian Peninsula, where the outbreaks have reported Kuwait and Saudi

Arabia [28]. The Figure 2.6 shows the geographic distribution of human prevalence

studies and reported outbreaks and cases for Chikungunya virus in the Middle East and

North Africa [28].



21

Figure 2.6: The Geographic distribution of CHIK outbreaks

5. West Nile virus

West Nile virus (WNV) is a deadly neurological disease vector born disease.

WNV has emerged by the cycles of infection between mosquitoes and birds [17]. Birds

and more than 100 species of mammals are considered a natural reservoir host to the

WNV [17, 58]. Bats have also been found to be susceptible to infections, and they

are becoming increasingly dangerous because of their closeness to animals and humans

[58]. The WNV disease attacks the central nervous system of infected animals and

humans which often causes death [13]. Its symptoms range from mild fever to severe

neurological illness [66]. The WNV has a history of spreading in the countries in Africa,

the Middle East, Europe and parts of southern Europe [58]. Between 1951 and 1954,

Egypt witnessed many significant outbreaks, which contributed to the understanding

epidemiology of WNV. It was observed that about 75% of human infections with West

Nile Fever (WNF) are mostly asymptomatic and less than 1% of infections developed to

severe stages varying from flu-like to severe neurological symptoms [58]. The WNV

also appears in the UAE. In 2007, a serological survey conducted by all the emirates

of the country except Umm Al Quwain revealed the existence of 144 horses carrying

WNV’s antibodies [68]. The Figure 2.7 shows the serological prevalence of WNV

antibodies in horses tested in the UAE[68].
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Figure 2.7: The WNV in tested horses in the UAE

6. Alkhurma Hemorrhagic Virus

Alkhurma hemorrhagic fever (AHF) is the zoonotic disease caused by Alkhurma

Hemorrhagic virus (AHV), ticks are considered as the main vector for infection. Humans

get the infection through sheep and camels that carry the virus. The ticks were founded

separated from the camels in some countries such as Saudi Arabia, Kuwait, and Yemen

[67]. Alkhurma Hemorrhagic fever (AHF) first appeared in Saudi Arabia in the mid-

1990s. AHF was found specifically in Jeddah in the blood of some butchers aged 24 to

39 years [6]. Later, the infection was seen in many patients in Saudi Arabia, and there

are also rare cases of infection occurred in Egypt [4]. The Figure 2.8 shows the locations

of Alkhurma hemorrhagic fever virus in the Kingdom of Saudi Arabia. Red: confirmed

cases, blue: positive serology [4].
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Figure 2.8: The distribution of AHF in the KSA

7. Influenza

The Arabian Peninsula has seen many types of influenza viruses that have emerged

as a result of mutations of influenza virus circulating in birds population. A devastating

outbreak of H5N1 avian flu occurred in Saudi Arabia in 2005 when an infected falcon

returned from a hunting trip in Mongolia [67]. Also, H9N2 influenza viruses were iso-

lated in the UAE over the last decade from infected avians such as chicken and bustards.

The number of isolates was (8, 10), respectively. Moreover, there are human cases of

the H1N1 in the UAE [67]. The Table 2.6 shows Influenza virus strains isolated from

different avian species over the last 10 years in the United Arab Emirates.
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Species Avian influenza virus Number of isolates
Chicken H9N2 8
Falcon H5N1 3

H7N3 2
H9N2 1
H7N1 1

Bustard H9N2 10
H7N1 7

H1 1
H10 1

Quail H9N2 8
Stone curlew H9N2 3

Plover H9N2 1
Dove H11 1

Pheasant H9N2 2

Table 2.6: Influenza virus in avian species

8. Brucellosis

Brucellosis is a profound health problem, with more than 500,000 new cases

a year [67]. Brucellosis has several types; however, the most two common types are

Brucella melitensis and Brucella abortus. Brucellosis is one of the most critical animal

bacterial diseases that has been observed in the Arabian Peninsula in recent years. The

transmission of the virus to humans is referred to as lousy fever or Malta fever. In the

Middle East, 15 countries reported Brucella Melitensis cases and another 9 reported

Brucella Abortus. Most dangerous type is the first type which can cause orchitis and

epididymitis in men and pregnancy loss in women. And most human cases are caused

by the consumption of unpasteurized milk.

Saudi Arabia is also a significant reservoir for human Brucellosis due to two

reasons. First, climate change has contributed to the multiplicity of regional endemic

disease, the effects of the grazing activities that followed rainy seasons caused a high

incidence of Brucellosis. Second is the uncontrolled massive importation of wild animals

[51]. Saudi Arabia reported around 4,534 human cases in 2003. Brucellosis’s cases were

also detected in the United Arab Emirates. The Brucellosis cases are often reported in

Dubai because it is a popular international travel destination. However, Abu Dhabi is

the biggest emirate where the families in rural areas are interested in the pastoral life in
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"Al-Ezba." Pastoral life includes mixed herds of Goats, sheep, and camels with people

consume animal products in traditional ways, and that led to contribute the spread of

Brucellosis [3]. A total of 480 cases of brucellosis were reported in UAE. The Table 2.7

display the notifications of human brucellosis cases in Abu Dhabi by year and status.

Also, some countries in the Middle East such as Syria, Turkey, Oman, and Saudi

Arabia recorded the highest rate of infection. According to OIE data, the Brucellosis

cases Syria has estimated around 1603 cases per year per million people. In 2004, Turkey

reported approximately 15,000 cases of Brucellosis concentrated in the poor eastern ar-

eas. The southern region of Oman also has an estimated 1,000 cases per year [51].

Brucellosis Cases
N Confirmed Probable

year n percentage (%) n percentage (%)
2010 47 37 78.7 10 21.3
2011 75 61 81.3 14 18.7
2012 135 96 71.1 39 28.9
2013 99 69 69.7 30 30.3
2014 49 26 53.1 23 46.9
2015 75 39 52.0 36 48.0
Total 480 328 68.3 152 31.7

Table 2.7: Brucellosis cases in Abu Dhabi

In Kuwait, the yearly incidence was almost 500 cases per million people. The

Iraqi war thus contributed to a significant reduction in the prevalence of Brucellosis

caused by the loss of many animals during the invasion, but Kuwait is still an endemic

region. The annual rate in Jordan exceeded 300 cases per million, but the Ministry of

Health in an ongoing attempt to control the disease. In Palestine, the yearly rate showed

that the number of reported cases was increasing. In recent years, The State of Lebanon

suffers from an increase in the number of brucellosis cases, which is especially endemic

in the Bekaa region. The Ministry of Health said that most cases of infection observed

among females compared to all international cases which recorded among men [51].

The Figure 2.9 shows the brucellosis cases around the world.
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Figure 2.9: Brucellosis cases in the worldwide

9. Anthrax

Anthrax is a threat to livestock in many African and Asian countries. Rare cases

had been identified in the Arabian Peninsula in ruminants, which get infected by contact

with decomposed animals. The only way to control the disease is through vaccination

and by disposing of rid of the animal’s carcasses. Polluted dust can also lead to Anthrax.

Human infections often result by contact with sick animals [67]. The Figure 2.10 shows

the map of the global Anthrax Distribution as defined by the World Health Organization

[26].

In Brief, we introduced the definition of zoonotic diseases, also we distributed the

diseases according to pathogens. We also discussed some of the factors that are con-

sidered the main reasons for having this type of diseases and they pose a major threat

to human health. Even though there are maybe a vaccine, a treatment, for some of this

diseases but still, there are many fears around this diseases.

The Table 2.8 briefly presents the list of zoonotic diseases and countries of

the Middle East region that have been appeared in it.
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Table 2.8: Map of Zoonotic diseases in the Middle East
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Figure 2.10: Global map of Anthrax distribution
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Chapter 3: Zoonotic Diseases and their Math Models

Zoonotic diseases are a global concern for public health, accounting for approx-

imately 75% of human infectious diseases. For decades the Middle East region was

adversely impressed by zoonoses where it was threatening wildlife and therefore hu-

mans. Mathematical models played an important role in guiding the development of

the control policies for this diseases. This chapter will review some of these models

that have been developed to study Zoonoses, especially those appeared in the Middle

East region. These models are describing the dynamics of these diseases by interpreting

the various assumptions around these diseases and by using the available data of each

disease to gain a better understanding and get better control strategies.

3.1 Mathematical Models for SARS

After the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003, many

studies focused on an understanding of a mathematical model which is related to the

SARS [25]. So, Han’s [25] study provided an overview of some mathematical models

of SARS which was published during the epidemic.

First, a compartmental model was designed to simulate the transition of SARS

in Beijing. As well as, the study used the time series and Bayes method to predict the

number of potential SARS cases and deaths at the Beijing hospital. The data of SARS

was only used for simulation. Also, the study was interested in predicting the SARS

epidemic in the short term. The population of the study was classified into only two

groups: infected or suspected of being infected humans. The study concluded that the

description of transmission of SARS model was better in the deployment period com-

pared to the control period [25]. A Second study of Han’s [25] also used the previous

technique, but to simulate and evaluate the effects of prevention and control measures

in SARS transmission. The study concluded that the model contains an anti-epidemic

parameter factor to measure the effects of isolation measures. Also, a theoretical method
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was created to calculate its value from 0-1 using fuzzy mathematics.

Third, a stochastic compartmental model was used for SARS model to define the

relationship between control methods and their effectiveness [25]. The study found that

the factors that determine the effectiveness of SARS control have been identified through

intervention intensity and timing [25]. Fourth, this type of models was also used for the

population of Vietnam, where the study focused on mimicking the SARS epidemic by

Monte Carlo simulation. The simulation showed that super-spreading events played an

essential role in the spread of SARS [25].

3.2 Mathematical Models for Rift Valley Fever

Many modeling tools have been used to determine the risk of Rift Valley fever(RFV)and

the severity of the epidemic. There is a study s [11] that examine the dynamic model

of transmission RVF among ruminants and took into consideration that sick ruminants

may expose to abortion due to RVFV. The model also was based on a system for vector-

borne diseases, by considering ruminants as hosts and mosquitoes as vectors [11]. The

SIR model was divided into the human compartments are the susceptible (S), infectious

(I), and recovered (R) individual, while mosquitoes compartments represent SIS model

which is divided into the susceptible (U) and infectious mosquitoes (V). A diagram in

Figure 3.1 shows the transmission of RVFv between ruminants and mosquitoes [11].

Figure 3.1: The compartmental model of RVFV
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The following mathematical model shows the dynamics of RVF.

dS
dt

= (p�qN)(S+R)+ r(p�qN)I �apr
SV
N �µS,

dI
dt

= SV
N � (µ +d + g)I,

dR
dt

= gI �µR,

dU
dt

= (1� p)nM�apm
UI
N �nU,

dV
dt

= pnM+apm
UI
N �nV.

(3.1)

The results of this study shows that a virus exists at low levels amongst ruminant

after outbreaks in endemic areas. There is also a possibility of subsequent outbreaks

when new ruminants come into these areas. The study also indicates that the severity

of RVF outbreaks is due to several factors, including high mortality due to infected

ruminant prevalence, a high ratio of mosquitoes, and short lifespan of ruminant which

can contribute to amplification of outbreaks. According to the study the best solution to

reduce the RVF outbreaks is to use the effective vaccination for animals before the onset

of the disease and attention to treatment after the outbreak [11].

The study of Mpeshe et al. [11], depended on a deterministic model with

hosts of mosquitoes, livestock, and humans to obtain some quantitative ideas about the

mosquitoes dynamics. The model is a system of nonlinear ordinary differential equa-

tions.

A flow diagram in Figure 3.2 shows the transmission of RVF virus from vector

to host, host to host, and host to vector [46].
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Figure 3.2: A flow diagram of RVFV transmission
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The following mathematical model shows the transmission dynamics of RVF

between three populations.

• MOSQUITOES

dSm

dt
= Pm � (dm +llm

Il
L )Sm,

dIm

dt
= llm

Il
L Sm � (em +dm)Em,

dRm

dt
= emEm �dmIm,

dMm

dt
= Pm �dmM,

(3.2)

• LIVESTOCK

dSl

dt
= Pl � (dl +

L
Kl
+lml

Im
M )Sl,

dEl

dt
= lml

Im
M Sl � (dl +

L
Kl
+ el)El,

dIl

dt
= elEl � (dl +

L
Kl
+µl + gl)Il,

dRl

dt
= glIl �dl +

Rl
Kl

L,

dL
dt

= Pl �dl +
L2

Kl
�µlIl,

(3.3)
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• HUMANS

dSh

dt
= Ph � (dh +llh

Il
L +lmh

Im
M )Sh,

dEh

dt
= llh

Il
L +lmh

Im
M Sh � (eh +dh)Eh,

dIh

dt
= ehEh � (dh ++µh + gh)Ih,

dRh

dt
= ghIh �dhRh,

dH
dt

= Ph �dhH �µhIh,

(3.4)

The threshold R0 of the study [46] was used in the model to reaches the local

stability of the equilibrium. The study refers to the importance of arriving a specific

measure of the initial transmission of disease. Also, the research acknowledges the

significance of the endogenous balance which was determined by conducting sensitivity

analysis and finding the most sensitive model parameters [46]. The results of this study

show that the natural mosquito death rate dm is considered as most sensitive parameters

for both R0 and the disease prevalence in mosquitoes. The study also found that the

spread of the disease was more sensitive between cattle and humans. So, the study

suggested that the best preventive strategy for human life from outbreaks is through the

isolation of livestock from humans [46].

Since RVF was a significant threat to the USA with massive economic damage

to livestock and food supplies, there was a model that study the dynamics of the spread

of the pathogen of which depended on the movement of humans, cattle, and mosquitoes

[47]. A schema in in Figure 3.3 shows the spatial and epidemiological structure of RVF

[47].
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Figure 3.3: A flow diagram of the RVF model

This study used a system of ODEs to describe the transmission of RVFV among the

three generic species traveling between patches with includes the effects of space. The

populations of each patch is divided into susceptible, incubating, infectious, or immune

to RVF, see reference [47]. The transition of RVFV was horizontal between two species
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of mosquitoes and one species of livestock and transmission of the virus from mother-

to-offspring in one of the mosquito species. The model is based on the division of

geographical regions into small patches with adding the influence of space. Hence the

model focuses on the movement of these species between patch-to-patch. The benefits of

this study lie in understanding the methodology of RVF between patches and analyzing

the probability of entering a pathogen on others region that free from pathogens [47].

3.3 Mathematical Models for Rabies

The rabies disease has been a prominent example of the development of math-

ematical modeling of the emergence and spread of infectious diseases. The dynamical

models of rabies has taken the fundamental "SEIR" system where the populations is di-

vided into particular classes of a susceptible (S), exposed (E), infectious (I), and recov-

ered/removed individual (R) [50]. The rabies structures range from systems of ordinary

differential equations (ODEs) to based computational simulations to the stochastic agent.

The early construction of rabies model illustrates that the R class of "SEIR" compart-

mental model was transfered to the removed category due to no cases of natural recovery

at that time and the vaccinations also weren’t available [50]. The Figure 3.4 shows the

compartment diagram of basic SEIR framework used in early ODE formulations for

rabies [50].

Figure 3.4: The compartment of the Rabies model
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The following compartment model shows the transmission dynamics of Rabies.

dS
dt

= rS� gSN �bSI,

dE
dt

= bSI � (s +b+ gN)E,

dI
dt

= sE � (¿+b+ gN)I,

N = S+E + I,

(3.5)

There have been some descriptive studies that investigated the environmental

factors such as habitats and foxes density that can affect the spatial spread of the virus,

when rabies continued to progress towards neighboring areas [50]. These studies es-

tablish the modeling approach that use reaction-diffusion methods to describe the wave

of the propagation behavior of rabies. The studies also contributed to providing a pre-

dictive model on how to implement a barrier in front of the transmissions wave to stop

the epizootic expansion. The system relied on a framework of the reaction-diffusion

formulation with the following coupled partial differential equations (PDEs) [50].

∂S(x,t)
∂ t = r(1� N

K )S�bSI,

∂E(x,t)
∂ t = bSI � (s +b+ N

K )E,

∂ I(x,t)
∂ t = sE � (¿+b+ N

K )I +D ∂ 2I
∂x2 ,

N = S+E + I,

(3.6)

Models formed by Anderson et al. (1981) and Murray et al. (1986), which used

the deterministic ODE and PDE frameworks, to understand the essential ideas about the

dynamics of rabies virus in wildlife [50]. These models relied on ideal conditions to un-

derstand the behavior of dynamic systems. Also, these early deterministic models looked
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at the homogeneous landscape with constant rates and the events were continual during

the time. That model led to ask significant questions about the nature of environmental

interactions. Landscape heterogeneity is likely to be an essential factor to understand

the ecological interactions it wasn’t taken consideration in deterministic models [50].

For example, data have indicated that fox rabies movement throughout Europe, has been

characterized by rapid movement in valleys, and the transmission of the virus was slow

in the areas near to these valleys. Later, it was concluded that rivers were practical bar-

riers to the transmission of the disease and contributed to delaying the progress of the

epidemic. Recently, most studies resorted to applying network models to study the en-

vironmental heterogeneity [50]. The diagram in Figure 3.5 shows the network model

that used for rabies. The landscape is subdivided into N populations. The parameters

µi and li, j are rates for processes that connect populations; here µi describes the rate at

which long distance trans-location occurs in a particular population i, and li, j describes

local movement of the virus from population i to j. The flowchart (a ! f ) illustrates the

sequence followed for iterating and updating the model over time. [50].
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Figure 3.5: The diagram of the Rabies model

The stochastic impacts were explored in the model behavior by using a variety of tech-

niques with some of the distributions to describe the process rate in an ODE and PDE

approach. The approach was executed algorithmically with processes rates as birth (a) or

death (d). For example, the first equation of model (3.5) the expected number of new sus-

ceptible individual in the interval dt could be implemented using a Poisson distribution

with parameter rate [rS(t)]dt [50].

Panjeti et al. [50], have introduced a system of stochastic SEIR model which

contribute in the approach of simulation of discrete changes in the number of susceptible,

exposed, infectious, and vaccinated individuals produced by births, deaths, infections,

and movement within all subpopulations [50]. This model is more detailed than previ-

ous models, providing a high degree of biological realism depend on current knowledge

about rabies virus infection. In this model, the spatial component is integrated, consider-
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ing that the index i is present in all classes. This compartmental model consists of, Si, Ei,

Ii, and Ri are the number of susceptible, exposed, infectious, and vaccinated individuals

at location i, respectively. And Ai is the total number of non-infectious individuals, Ni is

the local population size [50]. The flowchart in Figure 3.6 illustrating the interactions

in model of rabies.

The following Compartment model shows the transmission dynamics of Rabies.

dS
dt

= aAi �bNiSi �b IiSi �uSi � (F+FLDT )Si +S(FKi j +FLDT K̂i j)S j,

dE
dt

= b IiSi �bNiEi �sEi � (F+FLDT )E j,

dI
dt

= sEi �¿Ii � (Y+YLDT )Ii +S(YKi j +YLDT K̂i j)I j,

dR
dt

= uSi �bNiRi � (F+FLDT )Ri +S(FKi j +FLDT K̂i j)R j,

Ai = Si +Ei +Ri,

Ni = Si +Ei + Ii +Ri,

(3.7)
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Figure 3.6: Flowchart of rabies model

The flowchart in Figure 3.6 illustrating interactions in the model. A "Movement" is

represented as a class, but simply indicates how the process allows for the rearrangement

of individuals spatially [50].

3.4 Mathematical Models for CHIKV

Mathematical modeling has contributed to the understanding of the biological

history of Chikungunya infection [71]. Therefore, the study of Yakob et al. [71] used

the data of the Chikungunya outbreak in 2006 in Reunion Island were used to construct

a simple and deterministic mathematical model for virus transmission between humans

and mosquitoes [71]. The compartmental model showed the fundamental "SEIR" sys-

tem where the populations were subdivided into particular classes of susceptible hu-

mans (S), exposed to infection (E) before becoming infectious (Ia asymptomatically) or

(I symptomatically) and then recover (R). The populations of mosquitoes subdivided

to Susceptible mosquitoes (X) exposed to infection (Y) before becoming infectious

(Z) [71]. The igure 3.7 shows the compartmental construction of the epidemiological

model for Chikungunya transmission.
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Figure 3.7: The diagram of the CHIKV model

The following Compartment model shows the transmission dynamics of Chikungunya

among human and mosquitoes.

dS
dt

= b1SZ,

dE
dt

= b1SZ �l1E,

dI
dt

= fl1E � gI,

dIa

dt
= (1�f)l1E � gIa,

dR
dt

= g(I + Ia),

(3.8)
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dX
dt

= µ �b2X(I + Ia)�µX ,

dY
dt

= b2X(I + Ia)�l2Y �µY,

dZ
dt

= l2Y �µZ,

(3.9)

The model has contributed to providing an approximation for peaks of the preva-

lence of an epidemic and final epidemic size. The study applied the model with Monte

Carlo simulation for sensitivity analysis which in turn demonstrated the strong influence

of both the latent period of infection in humans and the pre-patent period. The study

also explained the importance of separating variables to obtain a precise and appropriate

model as well as its importance in reporting control [71].

Another study focused on the formation of a dynamic stochastic model of climate-

based mosquitoes population to determine the time periods that may pose epidemiolog-

ical risks and to plan different intervention measures [57]. The Figure 3.8 provide a

graphical representation of the Chikungunya model.
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Figure 3.8: The Compartment model of the CHIKV

The diagram 3.5 shows the graphical representation of the Chikungunya model Squares

and circles represent the dynamic model for humans and mosquitoes, respectively. Hu-

man population is divided into susceptible (S), exposed (E), symptomatic (IS) and asymp-

tomatic (IA) infective, and recovered (R) individuals. The mosquito population is di-

vided into immature eggs (G), larvae (L) and eggs under a diapause (D) state, and mature

susceptible (S), exposed (E) and infected (I) states. Full arrows represent the transition

from one state to the other. Lines with parallel end represent natural mortality. Dotted

lines represent infection dynamics. for more information around the model see [57].

This model was based on temperature data from different locations of Chikun-

gunya cases in the United States to study the geographical sensitivity of the epidemic

potential [57]. The study noted that the season’s changes followed with the risk of the

epidemic sites.This risk was shown in temperature changes and its periods also during

the period when the population of mosquitoes was growing. The way of identifying

those periods contributes to the effectiveness of resorting to a strategy to control the size

of the population of mosquitoes. For other sites that show a yearly change in temper-
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ature where that leads to develop the population size of mosquitoes and pose an active

epidemiological threat. Human proportions had been reduced the likelihood and mag-

nitude of outbreaks of sites that experience different temperatures throughout the year.

This model can apply to other vector-borne diseases [57].

3.5 Mathematical Models for WNV

The study of malik et al. [40], provide a deterministic model which was devel-

oped for studying the dynamics of West Nile virus transmission through mosquitoes be-

tween two groups of domestic and wild birds. During this time, multiple effective com-

munication rates were established between vectors and the two populations of birds [40].

The Figure 3.9 shows the compartmental construction of the epidemiological model for

WNV transmission [40]. The digram in Figure 3.9 shows the compartment model of

WNV among mosquitoes, domestic birds and wild birds.

Figure 3.9: The compartment model of the WNV
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The following Compartment model shows the transmission dynamics of WNV.

dSv

dt
= lv �bbvwSvIw,

dIv

dt
= bbvwSvIw +bbvdSvId � (µv +dv)Iv,

dSw

dt
= lw �bbwvSwIv �µwSw,

dIw

dt
= bbwvSwIv � (µw + gw +dw)Iw,

dRw

dt
= gwIw �µwRw,

(3.10)

dS
dt

= ld �bbdvSdIv �µdSd,

dI
dt

= bbdvSdIv � (µd + gd +dd)Id,

dR
dt

= gdId �µdRd,

(3.11)

The analysis of this model was based on the system of ordinary differential equa-

tions. The system indicates that the epidemiological threshold which is known as the

reproduction number was less than one that means the disease is free and stable globally

[40]. Also, the disease uniformly persists and was associated with small variations in

the parameters of the model when the reproduction number was higher than one. Un-

der certain conditions, the model shows that the equilibrium was endemic and unique as

the numerical simulation indicates that this equilibrium was asymmetrically stable. The

study found that the optimal way to control the WNV in the two populations of birds is

to reduce the density of mosquitoes [40].
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3.6 Mathematical Models for Brucellosis

Recently, great efforts have been made to control the Brucellosis disease and reduce its

transmission among pets and then to human [37]. However, the infection persists in

some countries, including in the Middle East. Therefore, a mathematical model was

developed for the dynamics of brucellosis transmission, which includes seasonal effects.

The Figure 3.10 shows the flowchart of brucellosis model [37].

The following system of ordinary differential equations present the model of

transmission dynamics of brucellosis:

dS
dt

= A�b1[E(t)+ I(t)]S(t)�b2B(t)S(t)� (µ + t)S(t)+ kH(t),

dH
dt

= tS(t)� gb1[E(t)+ I(t)]H(t)� gb2H(t)B)(t)� (µ + k)H(t),

dE
dt

= b1[S(t)+ gH(t)][E(t)+ I(t)]+b2[S(t)+ gH(t)]B(t)� (s +µ)E(t),

dI
dt

= sE(t)� (µ + c)I(t),

dB
dt

= b3(E + I)� (d +d )B,

(3.12)

Figure 3.10: Flowchart of brucellosis model
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The model in Figure 3.10 provides a clear picture of the transmission of the

underlying disease and searches for the strengths and weaknesses of previous preven-

tion and control strategies. So, the basic reproduction number associated with the time-

periodic for this model was analyzed, and the results were determined from the threshold

dynamics. The system of ODEs shows the dynamics of brucellosis in a time-periodic

environment [37].

dS
dt

= A�b1[E(t)+ I(t)]S(t)�b2B(t)S(t)� (µ + t)S(t)+ kH(t),

dH
dt

= tS(t)� gb1[E(t)+ I(t)]H(t)� gb2H(t)B(t)� (µ + k)H(t),

dE
dt

= b1[S(t)+ gH(t)][E(t)+ I(t)]+b2[S(t)+ gH(t)]B(t)� (s +µ)E(t),

dI
dt

= sE(t)� (µ + c)I(t),

dB
dt

= b3(E + I)�d(t)+dB(t),

(3.13)

Also, the study conducted an optimal control on the use of animal vaccination

and environmental disinfection as measures to control diseases against brucellosis infec-

tion [37].

Depending on both spatial and seasonal variations, a nonlinear model was con-

structed to investigate the dynamics of brucellosis transmission. The spatial model of

that system was adopted to the structure patches and for the seasonal effects which were

based on the use of time-periodic model parameters [72]. This framework was achieved

by a two-patch model, as well as a detailed analysis of cases with and without sea-

sonal fluctuations, respectively. The following system of ordinary differential equations

(ODEs) describe the brucellosis transmission dynamics [72].
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dS
dt

= A1 � (¿1I1 +b1B1)S1 � (qS+µ1)S1,

dH
dt

= (¿1I1 +b1B1)S1 � (q I + c1 +µ1)I1,

dE
dt

= f1I1 �d1B1,

dI
dt

= A2 � (a2I2 +b2B2)S2 �µ2S2 +qSS1,

dB
dt

= (a2I2 +b2B2)S2 � (µ2 + c2)I2 +qII1,

(3.14)

The basic reproductive numbers contributed to the results of the threshold dy-

namics through different constructed scenarios. The results indicate the importance of

integrating spatial and seasonal heterogeneity in the development of strategies to control

brucellosis [72].

3.7 Mathematical Models for Anthrax

This study presents a deterministic mathematical model that includes migrations,

births, and death from other diseases to trying to study the effects of anthrax transmis-

sion. The study focuses on the consequences of ingestion of carcasses, environmental

pollution resulting from it and the role of migration rates in the persistence and extinc-

tion of animal populations [22]. The epizootic siac anthrax model with animal migration

is described by the following system of four partial differential equations in (x,t) 2 w

⇥[0,•] :
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∂ s
∂ t = d 52 S+ rn(1� n

K )�as�hcsc�hi
si
n �µs,

∂ i
∂ t = d 52 i+as+hcsc+hi

si
n � gi�µi,

∂a
∂ t = �aa+bc,

∂c
∂ t = (g +µ)i�d (s+ i)c,

(3.15)

The study also was concerned with the calculation of the basic reproduction num-

ber R0 of the anthrax model taking into account the concentration on the animal migra-

tion R0(d)and without inclusion it R0, respectively. The study found that when R0 < 1

that lead to the extinction of epizootic anthrax then the animal population persists with-

out the disease. In contrast when R0 > 1 it is possible to have a catastrophic extinction

for both susceptible animals and infected animals with anthrax [22]. When R0(d) > 1,

that means the estimation for anthrax region was obtained and some special conditions

of existence of diseases have been found in this region. The study shows that the process

of reducing levels of ingestion of carcasses by removing carcasses from reserves dosen’t

always leads to a reduction in the proportion of infected animals with anthrax. As a

result, the high levels of environmental carcasses caused by anthrax often result in the

catastrophic extinction of animal populations [22].

3.8 Mathematical Models for Chikungunya Fever

The Chikungunya virus, which transmitted to humans by mosquitoes, is a severe

tropical disease that first appeared in 1953. The mathematical models based on differ-

ential equations for the transmission of the Chikungunya virus developed for mosquito

populations and virus transmission to the human population. The first model uses SI

and SIR models while the second model depends on a stage structure model [45].These

models are an essential tool for studying vector-borne infections. The model also takes
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into account the dynamics of the vector when the size of the population not constant as

well as contact rate, which depends on the size of the vector population. Furthermore,

the global analysis of the equilibrium is founded by uses the Lyapunov functions also by

providing results on the theory of competitive systems and periodic stability [45].

In another study, a new model of Chikungunya was developed focusing on time-

varying parameters with three types of control. The conditions for ensuring eradication

or continuation of the disease have been provided in this model either for periodic model

parameters or for changing general parameters. By switched systems theory the study

focuses on using multiple Lyapunov functions in order to demonstrate sufficient results

for removal and destruction of breeding sites and reduced contact rate schemes. The

analytic results found for disease removal by pulse vaccination utilized methods from

Floquet theory. Numerical simulation was used to obtain effective analysis of control

schemes [36].

3.9 Mathematical Models for Influenza

Since its first outbreak in Hong Kong, avian influenza has caused numerous hu-

man infections to spread all over the world. The disease, caused by the transmission of

avian influenza A to humans, is a zoonotic disease such as H5N1 and H7N9. Avian in-

fluenza A H5N1 infected more than 500 people, where the mortality rate reached about

60%of reported cases. Also, the mortality rate from avian influenza A H7N9 reached

about 35% of confirmed cases in China [35]. To understand and analyze the dynamic

behavior of the transmission of avian influenza to humans, a mathematical model of

SI-SIR was constructed with some assumptions. The Model was based on the logistic

growth for the avian population; also another model was built on the Allee effect. More-

over, a study obtained a threshold value for the spread of avian influenza by finding the

equilibrium points of the two systems to examine the local or global asymptotical sta-

bility for each point. The asymptotical stability examination was done by resorting to

use some of the techniques like linear analysis technique, combining Liapunov function

method and Lasalle’s invariance principle [35].
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dSa

dt
= g(Sa)�baSaIa,

dIa

dt
= baSaIa � (µa +da)Ia,

dSh

dt
= ph �bhShIa �µhSh,

dIh

dt
= bhShIa � (µh +dh + g)Ih,

dRh

dt
= gIh �µhRh,

(3.16)

In 2009, the influenza A / H1N1 virus swept across the world, spreading to

more than 214 countries. The majority of cases were confirmed by 2010, with 18,449

deaths [31]. During that period, the Republic of Korea was interested in developing

a mathematical model for the dynamics of transmission of influenza A / H1N1. Based

on government strategies, the simulation period was divided into three periods [31].

The first period was using the non-pharmaceutical strategy. In the second period, non-

pharmaceutical and antiviral strategies were implemented. During the third period, the

vaccine strategy is added. Period 1 indicated a significant reduction in the transmission

rate due to government policies applied, such as the difference between the fitted data

and the uncontrolled transmission rate obtained from theR0 basic reproduction number

of the model without intervention [31]. Thus, the rate of decline in transmission is used

as an upper bound in non-pharmaceutical control which is interested in the study of opti-

mal control strategies, as the new approach contributes to the creation of a realistic upper

bound of control. The study also obtained a real-time prediction for injury by referring

to the mathematical modeling of early stages of the epidemic as well as, investigating

the impact of vaccination coverage and timing associated with cumulative events. The

conclusion refers to the importance of early vaccination and its useful role in the preven-

tion of the epidemic [31]. The Figure 3.11 shows the flowchart of the 2009 A / H1N1
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influenza model. Note that the antiviral factor is not included in Period 1 and vaccination

is not considered in Period 1 and Period 2 [31]..

The transmission model of the 2009 A/H1N1 influenza is then governed by non-

linear differential equations as follows:

dS
dt

= �b S
N L�nS,

dE
dt

= b ( S
N + U

N + V
N )L� kE,

dI
dt

= pkE �aI �aI,

dA
dt

= (1� p)kE �hA,

dR
dt

= aI +aI +hA,

dA
dt

= �b U
N L+(1� e)ns,

dR
dt

= �b U
N L+ enS�wV,

dR
dt

= wV

(3.17)
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Figure 3.11: Flow chart of A/H1N1 influenza model

This study introduces the SEIR epidemic model with time delay system. By con-

sidering (DDEs) which is a model of delay differential equations to find a more realistic

description of the dynamics of influenza A (H1N1) [32].The study starts with investigat-

ing the positivity and boundedness of the model solution. Depending on the Lyapunov

LaSalle invariance principle of the system to provide sufficient conditions to show the

global stability of both equilibria (disease-free equilibrium and endemic disease equi-

librium). Also, to maintain stability behavior, they estimate the length of delay beside

conducteding the bifurcation analysis.The threshold dynamics is founded in detail by the

basic reproduction number, where R0 < 1 shows that the infectious population will dis-

appear, which mean the disease will die out, but if R0 > 1 the infectious populations will

persist [32]. Finding the importance of sensitivity analysis by showing which parame-

ter values have a significant impact on the model dynamics of the influenza A (H1N1)

model. Also, numerical simulations with application to H1N1 infection are given to

verify the analytical results [32].
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dS
dt

= A�b (I(t)+hE(t))S(t)� (f +µ)S(t),

dV
dt

= fS(t)� (1�s)b (I(t)+hE(t))V (t)�µV (t),

dE
dt

= beta(I(t)+hE(t))S(t)+(1�s)beta(I(t)+hE(t))V (t)� k1E(t)�µE(t),

dI
dt

= k1E(t)�dI(t)�d I(t)�µI(t),

dR
dt

= d I(t)�µR(t),

(3.18)

dS
dt

= A�b I(t)S(t)�µ1S(t),

dV
dt

= b I(t)S(t)� k1E(t � t)�µ2E)(t),

dE
dt

= k1E(t � t)�dI(t)�d I(t)�µ3I(t),

dI
dt

= d I(t)�µ4R)(t),

(3.19)

In conclusion, we have discussed different types of mathematical models for

each disease to monitor and predict outbreaks of zoonotic diseases. In general, epi-

demiological models can be classified into three categories: statistical, mechanical, and

automated. Public health organizations around the world use such models to assess the

development of disease outbreaks and emerging epidemic policies. The Figure 3.12

presents an overview of mathematical models for infectious diseases [59].
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Figure 3.12: Classification of infectious diseases
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Chapter 4: Mathematical models of MERS-CoV

Between 2012 and 30 June 2018, 2229 laboratory-confirmed cases of MERS-

CoV infection were reported to WHO [48]. The disease takes two methods in transmis-

sion among human either by animal-to-human or human-to-human. The second method

constitutes the majority of cases of infection in the worldwide [39]. So we need to

study different types of mathematical models which is essential to reach the outcomes

that contribute to MERS control. In this chapter, we present various types of mathemati-

cal models that explain the dynamic of transmission of MERS-CoV and optimal control

strategies.

4.1 Models of Controlling MERS-CoV

Since the onset appeared of MERS cases in 2012, researchers have been inter-

ested in designing mathematical models to explain the nature of the disease. According

to Al Asuoad study [2], the MERS model was provided a compartmental structure sim-

ilar to SARS model. Both models consist of combined systems, of nonlinear ordinary

differential equations (ODEs). The model forecasts were equipped with data from Saudi

Arabia outbreaks during 2013-2016 [2].

The study also dealt with a model of the population of one city while neglecting

their spatial spread. They assumed that the populations is large enough to justify the

use of a continuous description based on ordinary differential equations. The study also

indicated that the presence of the geographical distribution of the disease in one city

requires models with partial differential equations, which may complicate the model and

thus making it more difficult to understand the disease [2]. As shown in Figure 4.1, the

study demonstrate the model dynamics by five sub-population groups: susceptible (S),

exposed or asymptomatic (E) (individuals who carry the virus and can infect others but

have no symptoms), infected (I), isolated (J), and recovered (R) individuals. The flow

diagram of the model is depicted [2].
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Figure 4.1: The Compartmental structure MERS model

The following mathematical model shows the dynamics of MERS.

dS
dt

= P� S(b I+eE bE+eJbJ)
N �µS,

dE
dt

= S(b I+eE bE+eJbJ)
N � (k+µ)E,

dI
dt

= kE � (g +n1 +d1 +µ)I,

dJ
dt

= gI � (n2 +d2 +µ)J,

dR
dt

= n1I +n2I � (µ)R.

(4.1)

Where the initial conditions are S(0)= S0,E(0)=E0, I(0)= I0,J(0)= J0,R(0)=

R0.

The predictions of the MERS model are fitted to data from the outbreaks in

Riyadh (Saudi Arabia) during 2013-2016. The model simulation results indicated that

the MERS disease would finally be contained in the city [2]. The study also shows that

the outbreak risk and the containment time depend entirely on first-hand contact coeffi-

cients and the constant rate of the isolation. The previous result was observed through
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simulations after adding the randomness to the coefficients of the model, which is sen-

sitive to the scaled contact rate between people and isolation rate. The analysis of the

model refers that the usage of the stability theory for the ODEs showed that the isolation

was the only way to control the disease [2]. Also, the stability theory illustrates the

endemic steady state which was locally stable. The study highlighted the importance of

the analytical results and the typical behavior demonstrated by the numerical simulation

with the estimated parameters in the city of Riyadh. The estimated parameters indicated

significant implications for the subsequent containment of the disease in the city. Also,

the study points out that the mathematical model emphasizes the importance of isolation

of infected individuals to avoid future MERS outbreaks. Besides that, the model was

generic which can be used to analyze epidemics in different parts of the Middle East and

other countries [2].

The model has been designed to study the dynamics of transmission of two

groups of (MERS-CoV) patients, where the first group consist the residents of Mecca

while the another group pilgrims who are visiting Mecca.Additionally, the model was

used to assess the effect of quarantine on susceptible individuals, as well as to know

the impact of a possible anti-MERS-CoV vaccine during the dynamics of transmission

it among individuals [41]. This study considers quarantine as the temporary removal

of susceptible individuals (those who fear infect with the MERS) from the general pop-

ulation. The study suggested two hypothesis that the quarantine-exposed individuals

are presumed to have no infection during quarantine and the second is that don’t detect

infected cases without the appearance of symptoms during quarantine [41].

The study divided the population into two groups: where the group 1 Include the

total population N1(t) at time t, it’s divided to seven mutually-exclusive compartments of

un-vaccinated non-quarantined susceptible (S1(t)), un-vaccinated quarantined suscepti-

ble (S1Q(t)), vaccinated susceptible (S1V (t)), non-quarantined exposed (i.e., latently-

infected, and showing no clinical symptoms of MERS-CoV) (E1(t)), non-quarantined

symptomatic (i.e., infected with clinical symptoms of MERS-CoV) (I1(t)), non-quarantined

hospitalized (isolated) (H1(t)) and recovered (R1(t)) individuals [41].
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Similar to group 2, the total population N2(t) at time t it is divided into un-

vaccinated non-quarantined susceptible (S2(t)), un-vaccinated quarantined susceptible

(S2Q(t)), vaccinated susceptible (S2V (t)), exposed (E2(t)), symptomatic (I2(t)), hospi-

talized (H2(t)) and recovered (R2(t)) individuals. Thus, the total population at time t,

N(t), is given by N(t) = N1(t)+N2(t), [41].

A flow diagram in Figure 4.2 display the model for the transmission dynamics of

MERS-CoV during a mass gathering, in the presence of quarantine and mass vaccination

[41].

Figure 4.2: Flow diagram of MERS model

The following mathematical model shows the dynamics of MERS.
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dS1

dt
= p1 +r1S1Q +m21S2 � (l1 +l2)S1 �x1S1 �w1S1 �m12S1 �µ1S1,

dS1Q

dt
= w1S�1�r1S�1Q�µ1S1Q,

dS1V

dt
= x1S1 +a21S2V � (1� e)(l1 �l2)S1v �a12S1V �µ1S1V ,

E1

dt
= (l1 �l2)S1 +(1� e)(l1 �l2)S1v �a1E1 �µ1E1,

dI1

dt
= a1E1 � g1I1 �k1I1c�µ1I1 �d1I1,

dH1

dt
= g1I1 �s1H1 �µ1H1 �d1hH1,

dR1

dt
= k1I1 +s1H1 �n21R2n12R1 �µ1R1,

dS2

dt
= p2 +r2S2Q +m12S1 � (l1 +l2)S2 �x2S2 �w2S2 �m21S2 �µ2S2,

dS2Q

dt
= w2S�2�r2S�2Q�µ2S2Q,

dS2V

dt
= x2S2 +a12S1V � (1� e)(l1 �l2)S2v �a21S2V �µ2S2V ,

E2

dt
= (l1 �l2)S2 +(1� e)(l1 �l2)S2v �a2E2 �µ2E2,

dI2

dt
= a2E2 � g2I2 �k2I2 �µ2I1 �d1I1,

dH2

dt
= g2I2 �s2H2 �µ2H2 �d2hH2,

dR2

dt
= k2I2 +s2H2 �n12R2n21R2 �µ2R2

(4.2)
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The model is subject to a backward bifurcation, which appears to arise because of the

assumption that the vaccine provides incomplete infection protection. The model can

contain one or more endemic equilibria when the number of reproduction associated

with it exceeds the unity [41]. Uncertainty and sensitivity analyzes are performed to

determine the impact of uncertainty in parameter estimates of the model, as well as to

identify critical milestones that drive the transmission of the disease. The study of malik

el at. [41],reformulated the model and it used as an optimal control problem, also the

resulting model is used to assess the impact of different control strategies [41]. Numer-

ical simulations of the optimal control model indicate that if the cost of implementing

quarantine and vaccination strategies are high, then both strategies can be managed by

using their maximum possible levels for a relatively shorter period (i.e. "hit-hard and

hit-early"), then reduce the coverage gradually in the next few days afterward. More-

over, the global strategy, based on the joint use of quarantine and vaccination strategies,

has proved to be more efficient than applying each of them individually [41].

4.2 Models of Transmission MERS-CoV

4.2.1 Deterministic Model

The year 2015 saw the first and most massive epidemically outbreak of the MERS

outside the Middle East particularly in the Republic of Korea [70]. Subsequently, the

Republic of Korea described the deterministic SEAIHR model among humans popu-

lation only because there are no zoonotic infections of MERS-CoV. The model was

divided into compartments the susceptible (S), exposed (E), asymptomatic(A), symp-

tomatic infected(I), hospitalized (H), and removed (R) individual, the total number of

human population in the Republic of Korea (N) [70].
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A flow diagram in Figure 4.3 shows the compartmental model of MERS in the

Republic of Korea [70].

Figure 4.3: The model of MERS in the Republic of Korea

The following mathematical model shows the dynamics of MERS.

dS
dt

= �b1
SA
N �b2

SI
N �b3

SH
N

dE
dt

= �b1
SA
N �b2

SI
N �b3

SH
N �nE

dA
dt

= (1� g)nE � k1A

dI
dt

= gnE �l I

dH
dt

= l I � k2H �dH

dR
dt

= k1A+ k2H +dH

(4.3)

Based on detailed patient data, two dynamic models were designed to simulate

deployments from May 20 to June 8 and from June 9 to July 10, respectively. The model

of Republic of Korea indicates that the basic reproduction number R0 was 4.422 [70].
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The rapid spread of MERS cases mostly due to the lack of targeted protection and control

measures as was shown by the numerical analysis. The partial correction also determined

by the fact that the parameters b1 and g have strong links with R0, which means that the

infection and the proportion of symptomless cases have a significant role in the spread

of the disease [70]. By sensitivity analysis, the study concluded that the most effective

measures to control the disease are strengthening the ability of self-protection against

the risk of infection and the rapid isolation of confirmed cases. In addition, monitoring

the close contacts of a human with infected cases is important as well [70].

4.2.2 Stochastic Model

Most studies have provided a dynamic transmission of the MERS outbreak with a

deterministic model, although it is unrealistic. In order to arrive at a more realistic model,

the stochastic model was used in the study of Chowell el at [14]. This type of model also

contributes to the provision of information that could help evaluate the real progression

of MERS-CoV during the 2013 year, and response to changes in disease surveillance,

control interventions, or viral adaptation. Also, the importance of the stochastic model

lies in helpfully correcting the decisions and strategies of health institutions and explains

policies more than deterministic models [14].

The study was directed by the stochastic model, which contains a transmission

model of SEIR compartmental that includes the main epidemiological characteristics of

the outbreak of MERS-CoV. The model consists of the transition settings between three

stages (first, the transmission of the virus to animals from another unspecified animal

reservoir, as well as the transition from human to human in the community and the

hospital). According to Chowell et al. [14], the importance of the stochastic models is

evident especially when the rate of infection is low.
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Schematic representation in Figure 4.4 shows the transition of MERS cases (in-

dicated by arrows) among the different epidemiological states in model [14].

Figure 4.4: The stochastic model of MERS
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The following mathematical model shows the dynamics of MERS.

dS
dt

= �bS (Ii+Is+iH)
N �a

dEi

dt
= �a �kEi

dEs

dt
= bS (Ii+Is+iH)

N �kEs

dIi

dt
= krc,iEi � gaIi � gI,iIi

dAi

dt
= k(1�rc,i)Ei

dIs

dt
= krc,sEs

dAs

dt
= k(1�rc,sEs)

dH
dt

= gaIi + gaIs � grH

dR
dt

= grH + gI,iIi � gI,sIs

dCi

dt
= krI,iEi

dCs

dt
= krI,sEs

dCEH

dt
= bS iH

N �kCEH

dIH
dt

= krc,sCEH

(4.4)
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The study also seeks to understand the difference in values derived from Roverall

and Ri. This difference is sometimes due to secondary cases being less transmissible

than index cases or due to biological differences during the disease transition, and con-

trol measures for index cases may be less efficient than secondary cases [14]. To obtain

a clear result on the disorders caused by the outbreak of the MERS-CoV, the study de-

veloped a stochastic transition model that identifies the transmission of both index and

secondary cases. The model also includes different case reporting scenarios where case-

control has consistently linked disease, with both severe illness conditions being hospi-

talized from those who treated in the community. Using the Markov-Shin-Monte-Carlo

estimation technique to match the MERS data in 2013 with the model, and providing

new estimates for reproduction number with considering previous estimations. There is

also a need to review other gaps in the data, which in turn contributes to the clarification

of the disease transition process for 2014 and beyond [14].

As a result of the significant uncertainty about the nature of the virus and the

severity of human-to-human transmission, the study developed a stochastic transition

model that understands the transmission of disease among index cases (who get infect

from camels ) and secondary cases (who get infect from infected human ) [14]. In

2013, from April to October, the secondary cases of the infected human with MERS

in KSA received strong support from the control authorities compared to primary cases

[14]. The model shows that the percentage of infection in the secondary cases was less

than of the cases of infection on the primary case which didn’t receive such support.

Besides, the study also shows the importance of monitoring viral adaptations that may

have portability to crossing the border as all zoonotic diseases. The study also showed

the role of bias in observation (especially the difficulty of observing asymmetric and less

severe index cases) which leads to distortion of the reasoning and interpretation of the

parameters of transmission [14].



68

4.2.3 Spatiotemporal Heterogeneity Model

The cases of the Coronavirus, which causes the respiratory syndrome in the Mid-

dle East, indicate that there have been discrepancies in time and geography since their

inception in the Middle East. So, a range of models was used to estimate case generation

rates along animal and human transport routes and spatiotemporal heterogeneity. And

by using the stochastic model along with the time series of incidence in the region to

estimate the zoonotic and human to human transmission parameters associated with tim

[52]. The model also shows that secondary transmission cannot be determined between

the reported cases. Besides, this approach was linked to the analysis of cases imported

from the region to assess the rate of underreporting. Among all these potential models

with different parameters and scenarios, the most appropriate model is characterized by

significant heterogeneity in time and space and is referred to both the transmission of

animals and humans-humans [52]. By the spring of 2014, the time variance contributed

to an increase the spreading disease 17 times and three times among both humans and

camels, respectively, that made the reproductive rate higher than 1 in all areas under

study. The model shows that the cases of the MERS, which represents the secondary

cases (human to human), reach a high rate around 75% while the cases associated with

an epidemiological link with another case are 34% [52]. Overall, the estimated report-

ing rate was 0.26. The importance of the environmental component and the substantial

impact on the epidemic are evident, with high levels of spatial heterogeneity in the trans-

mission of zoonoses compared to humans. Expectations indicate that the proportion of

interrupted formed a small percentage of reported cases and is responsible for the sec-

ondary transfer. Thus, the ideal solution to reduce the spread of the epidemic requires a

more comprehensive understanding of the source of animal origin and their transmission

path [52].

In this study, the researchers worked on two-step to estimate the porting rate r ,

the sporadic generation rate for non-human cases pr
s p(t) and the reproduction ratio Rr(t)

as a function of time t in each region r. The first step depended on modeling the time

series of incidence in the Middle East, where this step has been used to import the cases
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and the stochastic data-driven model of the spatial diffusion of the epidemic around the

world [52].

Figure 4.5: The scheme of MERS with 2-step approach

The scheme in Figure 4.5 contains a 2-step approach which is illustrated by

model A B and C. Model A which is Step 1 depends on the t of 20 imputed epidemic

curves for 17 regions in the Middle East (there is one curve shown for the sake of vi-

sualization corresponding to the region experiencing with the largest number of cases).

It allows model selection and estimation of Rr(t) and qr
sp(t) = r pr

sp(t). Model B which

is Step 2 shows the t of imported cases from Western Europe and North America and

allows estimating r . The scheme (Model B) of the functional forms assumed for R(t)

and qsp(t) when temporal heterogeneity (either for one of the parameters or both) is con-

sidered in the model. Parameters qsp,1, qsp,2, R1, R2, R3 are estimated. Model C: which

shows the combination of parameters yielding the 32 models for exploration.

According to the transmission scenario, the study was concerned with the cal-

culation of transmissions between each region in view of the possibility of notification
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cases, including those involving sr(t) the transmission from human-to-human:

P(dr
s p(t) = Dr(t)sr(t)&ds(t) = sr(t))

The ds p(t) are reported cases of intermittent generation. By requiring that Dr(t),

assuming the same reporting rate r for both secondary and primary cases, the dr
s(t) was

binomial with the probability of brR(t�1)Dr(t�1)
E(Dr(t)) , whereas

(dr
s p(t) = Dr(t)� sr(t)&ds(t) = sr(t))

= eE(Dr(t))
(brR(t�1)Dr(t�1))sr(t)

sr(t)!
(Nrarqs p(t))Dr(t)�sr(t)

(Dr(t)�sr(t))!

(4.5)

For the partial information on transmissions scenario, we computed

(dr
s(t) = D(t)� sr(t) and ds p(t)sr(t))

= eE(Dr(t)) (pbrR(t�1)Dr(t�1))sr(t)
sr(t)! ⇥ (1�p)brR(t�1)Dr(t�1)+Nrarqs p(t)Dr(t)�sr(t)

(Dr(t)�sr(t))!

(4.6)
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In the end, this chapter shows that all studies of the MERS-CoV models concen-

trate their effort in studying the disease transmission only among the human population

see Table (4.1). We Know that MERS-CoV is coming from an animal source where

it includes bats and camels. Later, the humans got the infection. We don’t know for

certain how is the cycles of the virus in these animals. MERS-CoV has been found in

camels in several countries. It appears that some people became infected after contact

with camels, so more information is needed to Figure out the possible role that camels

and other animals may play in the transmission of MERS-CoV. However, we should

consider the model of the camel population in those countries that showcase infection

by camel-to-human.

Table 4.1: The most models of MERS-CoV
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Chapter 5: Mathematical Model of MERS in the UAE

In this chapter, we study two population model of the MERS-CoV. It is clear

that the cases of infection in the UAE resulted by contact with infected camels or hu-

man, so we investigate on the model contain two patches camels and human. The two

patches will explain the dynamic of MERS-CoV among camel population and human

population.

5.1 Presentation of the Model

In this section we develop and investigate a mathematical model of MERS infec-

tion with two patches: human population and camels population. The human population

is modeled with an SEIHR model which is similar approach to the SARS. The camels

population is modeled with SIS model, where the I compartments in the camels popula-

tion model will be divided into two sub-compartments of the unaware I1
c and the aware

infected camels I2
c . The reason we consider SIS model for the camels because there is no

clear definition of the diagnosis process for the camels and we don’t Know if the camel

can have chance to recover but what we know that the camels have tolerant to the virus.

The flowchart (5.1) represents the compartments of my model where the human

population is divided into susceptible SP, the EP represents the population of the infected,

and possibly infectious but with no symptoms, the infected and infectious that show

symptoms represented by IP, the infected hospitalized is HP, and the recovered RP. The

total human population is Np = SP +EP + IP +HP +RP.

The camels population is divided into susceptible Sc, unaware infected camels I1
c

and aware infected camels I2
c , with Np = Sc + I1

c + I2
c .

The time frame of the infection starting with infected camels getting in contact

with healthy (susceptible) people and also with health camels (susceptible). There are

several evidence that show that the same strain MERS-CoV exist in bats. For this rea-
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son virus, we assume that the susceptible camels population becomes infected after the

bats transfer the MERS-CoV to them. Then the unaware infected camels became aware

infected camels after symptom appears.

The direct contact between camels and humans lead to infection with some prob-

ability. Moreover, we assume that a portion of the infected people are possible infectious

but does not show symptoms until after an incubation period. Furthermore, we assume

that hospitalized people are also a source of infection, since several cases of the infection

happen in hospitable setting.

Recently, mathematical models have been developed to analyze MERS outbreaks

in an effort to better understand the disease transmission and determine the strength and

weakness of current prevention and control strategies. In particular, we proposed the

following system of differential equations to model the transmission dynamics of MERS:

Figure 5.1: Flowchart of the MERS dynamics.

5.1.1 Variables

We define first the variables that describe the dynamic of the Corona-MERS virus,

which are as follows:
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Sc/Sp : Camels/Human susceptible populations

I1
c /I2

c /I1
p : Unaware infected vector/aware infected vector /infected Human, respictivily

Ep : Infected populations and possible infectious but does not show symptoms

Hp : Hospitalized populations

Rp : Recovered populations

5.1.2 Human Transmission

The equations of human population are given by

dSp

dt
= Lp �µ1Sp �

(b2Ip +b3Ep +b4I1
c +b5Hp)Sp

Np
+dpR

dEP

dt
=

(b2Ip +b3Ep +b4I1
c +b5Hp)Sp

Np
� (µ1 +qp)Ep

dIp

dt
= qpEp � (µ1 + gp +x 1

p)Ip

dHp

dt
= gpIp � (ap +µ1 +x 2

p)Hp

dRp

dt
= apHp � (dp +µ1)Rp

(5.1)

5.1.3 Camels Transmission

The equations of the transmission of the disease among the camel are given below
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dSc

dt
= Lc �µ2Sc �

b1Sc

Nc
(I1

c + I2
c )+(d1I1

c +d2I2
c )

dI1
c

dt
=

b1Sc

Nc
(I1

c + I2
c )� (x1 + g +µ2 +d1)I1

c

dI2
c

dt
= gI1

c � (x2 +µ2 +d2)I2
c

(5.2)

5.2 Human and Camels Parameters Description

We explain in this section the parameters of the human models and the camels

model.

5.2.1 Human Parameters

Lp is the human population increase by immigration or new born, µ1 is the death

rate human, b2 is the infection rate of infected people, b3 the infection rate of exposed

people camel, b4 the infection rate of infected unaware camels, b5 the infection rate of

hospitalized people.dp represent the recovery rate of the human. The detection rate of

infected people is represented by qp. x 1
p represents the death rate due to the infection. x 2

p

represents the death rate due to the hospital. The rate of hospitalization of the infected

human is represented by gp. Finally, this population have also recovery rate given by ap.

5.2.2 Camels Parameters

Lc is the population increase by immigration or new born, µ2 is the death rate

camel, b1 is the infection rate by camel to camel, d1 andd2 represent the recovery rate of

the unaware and the aware infected camels, assuming that some camel can recover from

the infection. x1 and x2 represent the death rate due to the infection of the unaware and

the aware infected camels. Finally g represents the rate of detecting a sick camel.

we conclude that all parameters of the camel population and human population
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reflects natural of disease in this region. So, the model takes into consideration the

lifestyle of people in the UAE by considering the contact between camels and human.

Each parameter has a particular definition in this model contribute to explain the nature

of the disease among human population and camels population and between the two

communities.
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Chapter 6: Parameters Estimation

In this chapter, we will use a set of papers [41, 70, 14, 34, 5] to estimate the

parameters of our model. Of course, not all the parameter are available since there is a

lack of camels data in the Middle East. For examples, it is very difficult to estimate the

parameters of the death related to the infection, the infection rate among the camels, and

the recovery rate of the camels. However, the best way to have reasonable estimates of

camels parameters is by approximating them and setting their ranges with other zoonatic

diseases.

Table 6.1: Description of the model parameters

Parameters Description Dimension for
the Core Model

Lp Birth Rate of human and New Immigration Rate Human⇥Days�1

Lc Birth Rate of camels and New Immigration Rate Camel ⇥Days�1

µ1 Death rate of human Human⇥Days�1

µ2 Death rate of camel Camel ⇥Days�1

b1 Infection rate by camel to camel Days�1

b2 Infection rate of infected people Days�1

b3 Infection rate of exposed people Days�1

b4 Infection rate of infected unaware camels Days�1

b5 Infection rate of hospitalized people Days�1

dp Recovery rate of the human Days�1

d1 Recovery rate of the unaware infected camels Days�1

d2 Recovery rate of the aware infected camels Days�1

ap Recovery rate of hospitalized human Days�1

qp Detection rate of infected people Days�1

gp rate of hospitalization of the infected human Days�1

g rate of detecting a sick camel Days�1

x 1
p Death rate due to the infection Days�1

x 2
p Death rate due to the hospital Days�1

x1 Death rate due to the infection of the unaware infected camels Days�1

x2 Death rate due to the infection of the aware infected camels Days�1

6.1 Parameters Estimation of Human

My work concerns the MERS-CoV situation in the UAE, and since the collected

data on the disease was insufficient. To estimate the parameters for the human population
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we used studies that contain data focused on patients reported in The Kingdom of Saudi

Arabia done in South Korea and Saudi Arabia. The unit in Model is taken as days�1.

To estimate the birth rate and immigration rate of the UAE, we need to find the

total population which was estimated in 2018 to be about 9,790,857 persons. According

to country matter website, the births and deaths for this year are approximately 83,675

and 11,430, respectively [16]. By using birth rate formula [61], and other equations

to find the desired birth rate (see Appendix). Hence the birth rate Lp is 47.97 per day.

Also, the normal death rate of human is µ1 = 3.198399⇥10�6 per day (see Appendix).

The infection rate of infected people b2, exposed people b3, hospitalized people

b5 are unknown. According to a study be conducted in South Korea by Xia and others,

and by depending on the data of MERS-CoV reported cases. The researchers used the

method of least-squares to estimate the values of these parameters where they found that

b2 = 0.7833, b3 = 0.8756 and b5 = 0.4568 [70]. Also, the incubation period which

is the time until exposed people showed the symptoms and became infected, and that

refer to the rate of exposed people to become infected qp = 0.2. Referred to the rate of

hospitalization of the infected human gp = 0.2 [70].

As for the rate of recovery of the infected human showed by dp = 0.125 and the

recovery rate of hospitalized human ap = 0.2, where this values of parameters refer to

confirmed cases of Saudi Arabia which done by the study of Malik and others [41]. In

addition, The number of death cases due to the infection was 12 from 134 case [15].

Then by using the death rate formula (6.1) I estimated that the death for both infected

and hospitalized individuals would be x 1
p = 3.36⇥10�6 , x 2

p = 3.36⇥10�6 respectively.

The Table 6.2 provide the values and ranges of the parameters of the human model (5.1).

Birth/Death rate = (number of birth/death)
(total population) (6.1)
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Parameters Baseline value(per day) Range (per day) Reference
Lp 47.97 [7500/365,4000/365] calculated
µ1 3.198399⇥10�6 [3.198399⇥10�3,1/3.198399⇥10�11] calculated
b2 0.7833 [0.5925,0.8592] [70]
b3 0.8756 [0.853,0.9324] [70]
b5 0.4568 [0.3839,0.6751] [70]
dp 0.125 [1/9,1/7] [41]
ap 0.2 [1/6,1/4] [41]
qp 0.2 [1/6,1/4] [70]
gp 0.708 [0.4,0.8] [14]
x 1

p 3.36⇥10�6 [6⇥10�7,5⇥10�3] calculated
x 2

p 3.36⇥10�6 [6⇥10�7,5⇥10�3] calculated

Table 6.2: Parameters of the human model

6.2 Parameters Estimation of Camels

Almost all the studies on the MERS-CoV focused on the transmission of the

disease among humans. Fewer studies focused on the disease aspect on the camels. To

my knowledge, there is no study on the camel population which makes estimating of the

parameters of the camel model very challenging.

According to FAO data, the birth rate of camels in the United Arab Emirates has

been increasing during the current period compared to previous years. Indeed, the sta-

tistical year book in Abu Dhabi in 2015 and 2016 shows that the total camel population

was 383887, 394224, respectively. And the death rate of camel population in these two

year was 28269, 34963, respectively [19]. We calculated the birth rate of camels per

day, and found to be Lc = 97.1925, and the death rate is µ2 = 2429813⇥10�4 per day

(see Appendix).

The study of Lin el. at, focused on the spread of the disease among camels as the

primary host of the virus, and it is essential to know the nature of transmission among

camels at a lower rate compared to humans. Where the infection rate by camel to camels

show that b1 = 0.15 [34]. Also, d1 and d2 represent the rates at which infected camels

become recovered [34].

Another study conducted on a camel’s farm in Egypt, where it was found that the

percentage of detection MERS-CoV in local camel sick less than those imported (12%
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, 21% respectively). The g = 0.12 refer to the rate of detecting the sick camels [5].

Since we don’t have data of the death camels, we assumed that the death rate due to the

infection of (unaware, aware) infected camels are x1 = 0.33 , x2 = 0.9, restrictively. The

Table 6.3 provide the values and ranges of the parameters of the camel model (5.2).

Parameters Baseline value(per day) Range (per day) Reference
Lc 97.1925 [130,54] calculated
µ2 2429813⇥10�4 [0.2429813,2429813⇥10�7] calculated
b1 0.15 [0.25,0.04] [34]
b4 0.34 [0.2,0.46] assumed
d1 0.25 [1/6,1/2] [34]
d2 0.25 [1/6,1/2] [34]
g 0.12 [1/10,1/5] [5]
x1 0.33 [1/5,1/3] assumed
x2 0.9 [1/5,1/3] assumed

Table 6.3: Parameters of the human model

The Table 6.4 shows the confirmed MERS-CoV cases in Arabian Peninsula and

Infected rate of camels per country in the Arabian peninsula [27, 21].

Country Camel populations by FAOstat 2015 Confirmed MERS-CoV cases Infected Rate of Camel Unit
Saudi Arabia 301717 977 3.238133748⇥10�3 Days�1

UAE 430372 50 1.161785618⇥10�4 Days�1

Qatar 84216 7 8.311959723⇥10�5 Days�1

Oman 252660 4 1.583155228⇥10�4 Days�1

Kuwait 7718 3 3.887017362⇥10�4 Days�1

Bahrain 1055 0 0 Days�1

total 1077738 1041 9.659119378⇥10�4 Days�1

Table 6.4: Infected rate of camels per country

This chapter concludes how the disease affects the population of camels in the

Arabian Peninsula as shown in Table (6.4). The infection rate by MERS-CoV among

camels is highest in Saudi Arabia followed by UAE. The Food and Agriculture Or-

ganization (FAOstat) shows that the population of camels continuous in increasing so

the probability of infection by MERS among camels may increase. Animal models for

MERS-CoV infection of humans are needed to elucidate MERS pathogenesis and to

develop vaccines and antivirals [27, 21].
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Chapter 7: Mathematical Analysis

In this chapter we discuss qualitative properties of the solution, such as positivity

and boundedness. Then we define the basic reproduction number R0 from the models

5.1-5.2 in page 74. which is an important parameter in mathematical epidemiology.

The value of R0 determines the stability of the disease free equilibrium (DFE). Also, we

analyze the endemic equilibria of the model system 5.1-5.2 in page 74.

7.1 Boundedness and Positivity

In this section, we prove the positivity and the Boundedness for the models of

camels and human.

7.1.1 Positivity

Theorem 7.1.1. suppose that initial conditions are all positive that is Sp(0)> 0,Ep(0)>

0, Ip(0)> 0,Hp(0)> 0 and Rp(0)> 0. The solution (Sp(t),Ep(t), Ip(t),Hp(t),Rp(t)) of

the model is positive for all time t � 0, and uniformly bounded.

We use the Theorem 7.1.1 from [62] to prove the positivity of solution of the

human model system.

Here, we suppose that the differential equations of the human population are

equal to the function fn(Sp,Ep, Ip,Hp,Rp) as given below .
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dSp

dt
= Lp �µ1Sp �

(b2Ip +b3Ep +b4I1
c +b5Hp)Sp

Np
+dpR = f1(Sp,Ep, Ip,Hp,Rp),

dEP

dt
=

(b2Ip +b3Ep +b4I1
c +b5Hp)Sp

Np
�µ1Ep �qpEp = f2(Sp,Ep, Ip,Hp,Rp),

dIp

dt
= qpEp � (µ1 + gp +x 1

p)Ip = f3(Sp,Ep, Ip,Hp,Rp),

dHp

dt
= gpI1

c +(ap +µ1 +x 1
p)Hp = f4(Sp,Ep, Ip,Hp,Rp),

dRp

dt
= apHp � (dp +µ1)Rp = f5(Sp,Ep, Ip,Hp,Rp).

(7.1)

Proof. From equations (7.1) and by applying the Theorem 7.1.1 we obtain that Sp(t)�

Lp +dpR > 0, which is similar to the following equations:

f1(0,Ep, Ip,Hp,Rp) = Lp +dpR > 0,

f2(Sp,0, Ip,Hp,Rp) =
(b2Ip +b3Ep +b4I1

c b5Hp)Sp

Np
> 0,

f3(Sp,Ep,0,Hp,Rp) = qpEp > 0,

f4(Sp,Ep, Ip,0,Rp) = gpI1
c > 0,

f5(Sp,Ep, Ip,Hp,0) = apHp > 0.

(7.2)
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We conclude that the remaining equations show that (Sp(t),Ep(t), Ip(t),Hp(t),Rp(t))

they are always positive for all t > 0.

The camels model system, We use the same approach which is firstly start with

this theorem 7.1.2.

Theorem 7.1.2. Let the initial condition satisfy that Sc(0) > 0, I1
c (0) > 0, I2

c (0) > 0.

Then, the solution (Sc(t), I1
c (t),0, I2

c (t)) of model is positive for all time t � 0 and uni-

formly bounded.

Here, we suppose that the differential equations of the camels population are

equal to the function fn(Sc, I1
c , I2

c ) as given below.

dSc

dt
= Lc �µ2Sc �

b1Sc

Nc
(I1

c + I2
c )+(d1I1

c +d2I2
c ) = g1(Sc, I1

c , I2
c )

dI1
c

dt
=

b1Sc

Nc
(I1

c + I2
c )� (x1 + g +µ2)I1

c �d1I1
c = g2(Sc, I1

c , I2
c )

dI2
c

dt
= gI1

c +(x2 +µ2)I2
c �d2I2

c = g3(Sc, I1
c , I2

c )

(7.3)

Proof. From equations (7.3) and by applying theorem 7.1.2, we obtain that Sc(t)� Lc+

(d1I1
c ,d2I2

c )> 0 which is similar to the following equations:
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g1(0, I1
c , I2

c ) = Lc +(d1I1
c ,d2I2

c )> 0,

g2(sc,0, I2
c ) =

b1Sc

Nc
(I2

c )> 0,

g3(Sc, I1
c ,0) = l I1

c > 0.

(7.4)

Hence, we conclude that the remaining equations shows that (Sc(t), I1
c (t), I2

c (t))

are always positive for all t > 0.

7.1.2 Boundedness

Now, the second step shows the boundedness of the solution which depend on

the previous result that shows the positivity of the solution.

The total human population denoted as Np.

Np = Sp +Ep + Ip +Hp +Rp. (7.5)

By adding the five equations of the human model and using (7.5), we get the rate

of change of the total living population Np(t) as:

dNp

dt
= Lp �µ1(Sp +Ep + Ip +Hp +Rp) = Lp �µ1N.

Thus, we get that the rate of change of the total living population Np(t)
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dNp

dt
= Lp �µ1N,

which lead to

limsup
t!•

Np(t)<
Lp

µ1
.

That means Np(t) is positive and uniformly bounded.

Also, since Np(t)> 0 and each one of Sp,Ep, Ip,Hp and Rp is positive, it follows

that they all are uniformly bounded.

We call Nc the total camels population, where

Nc = Sc + I1
c + I2

c (7.6)

By using the previous approach, we add the three equations of the camels model

with (7.6), we get the rate of change of the total living population Nc(t).

dNc

dt
= Lc �µ2(Sc + I1

c + I2
c ) = Lc �µ2N,

thus, we get that the rate of change of the living population Nc(t),

dNc

dt
= Lc �µ2N,

which lead to

limsup
t!•

Nc(t)<
Lc

µ2
.

That means Nc(t) is positive and uniformly bounded. Also, since Nc(t) > 0 and

each one of Sc, I1
c and I2

c is positive, it follows that they all are uniformly bounded.
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7.2 The Basic Reproduction Number

It is obvious to see that the system (7.7) has the disease free equilibria E0, where

E0 = (
Lp

µ1
,0,0,0,0,

Lc

µ2
,0,0).

To calculate the basic reproduction number, we use the Next Generation Method

[64], as follows:

dxi

dt
= Fi(x,y)�Vi(x,y), i = 1, ...,n

dyi

dt
= g j(x,y), j = 1, ...,m

where

x =

0

BBBBBBBBBB@

Ep

Ip

Hp

I1
c

I2
c

1

CCCCCCCCCCA

,y =

0

BBBB@

Sp

Rp

Sc

1

CCCCA

Indeed, Fi the rate of secondary infections increases the i-th disease compart-

ment and Vi viewed the rate of disease progression [64]. In matrix form, the dynamical

system (7.7) is written as :

Fi =

0

BBBBBBBBBBBB@

(b2Ip +b3Ep +b5Hp +b4I1
c )Sp

Np

0

0
b1Sc

Nc
(I1

c + I2
c )

0

1

CCCCCCCCCCCCA

, Vi =

0

BBBBBBBBBB@

(µ1 +qp)Ep

�qpEp +(µ1 + gp +x 1
p)Ip

�gp1p +(ap +µ2 +x 1
p)Hp

(x 1 + g +µ2 +d1)I1
c

�gI1
p +(x 2 +µ2 +d2)

1

CCCCCCCCCCA

.
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The linearizion of the disease compartment x is x0 = (F �V )x with F =
dF
dxi

(E0), V =

dF
dxi

(E0), we get:

F =

2

66666666664

b3 b2 b5 b4 0

0 0 0 0 0

0 0 0 0 0

0 0 0 b1 b1

0 0 0 0 0

3

77777777775

.

and

V =

2

66666666664

(µ1 +qp) 0 0 0 0

�qp (µ1 + gp +x 1
p) 0 0 0

0 �gp (ap +µ1 +x 1
p) 0 0

0 0 0 (x1 + g +µ2 +d1) 0

0 0 0 �g (x2 +µ2 +d2)

3

77777777775

.

let

A = (µ1 +qp), B = µ1 + gp +x 1
p , C = ap +µ1 +x 1

p

E = x1 + g +µ2 +d1, F = x2 +µ2 +d2

and the next generation matrix is

K = F ⇤V�1
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where

V�1 =

2

66666666664

1
A 0 0 0 0
qp
AB

1
B 0 0 0

qpgp
ABC

gp
CB

1
c 0 0

0 0 0 1
E 0

0 0 0 g
EF

1
F

3

77777777775

.

Hence,

K =

2

66666666664

b3
A +

b2qp
AB +

b5qpgp
ABC

b2
B +

b5gp
(CB

b5
C

b4
(E + b1g

EF

0 0 0 0 0

0 0 0 0 0

0 0 0 b1
E + b1g

EF
b1
F

0 0 0 0 0

3

77777777775

.

By taking spectral radius of K we find R0

R0 = r(K) = max(R01,R02) ,

where

R01 =
b3

(µ1 +qp)
+

b2qp

(µ1 +qp)(µ1 + gp +x 1
p)

+
b5qpgp

(µ1 +qp)(µ1 + gp +x 1
p)(ap +µ1 +x 1

p)
,

and

R02 =
b1

(x1 + g +µ2 +d1)
+

b1g
(x1 + g +µ2 +d1)(x2 +µ2 +d2)

.

Proposition 7.2.1. The basic reproduction number R0 of the System 7.7 is define by the

maximum of R01 and R02.

It is easy to see that (7.7) has a unique disease free equilibrium E0 defined by
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E0 = (
Lp
µ1
,0,0,0,0, Lc

µ2
,0,0).

Hence, using the result of [64], we have the following result:

Proposition 7.2.2. The disease free equilibrium E0 is locally asymptotically stable if

and only if R0 < 1 and it is unstable if R0 > 1.

7.3 Endemic Equilibria

In this section we try to find the possible endemic equilibria of studied model.

dSp

dt
= Lp �µ1Sp �

(b2Ip +b3Ep +b4I1
c +b5Hp)Sp

Np
+dpRp,

dEP

dt
=

(b2Ip +b3Ep +b4I1
c +b5Hp)Sp

Np
� (µ1 +qp)Ep,

dIp

dt
= qpEp � (µ1 + gp +x 1

p)Ip,

dHp

dt
= gpIp � (ap +µ1 +x 2

p)Hp,

dRp

dt
= apHp � (dp +µ1)Rp,

dSc

dt
= Lc �µ2Sc �

b1Sc

Nc
(I1

c + I2
c )+(d1I1

c +d2I2
c ),

dI1
c

dt
=

b1Sc

Nc
(I1

c + I2
c )� (x1 + g +µ2 +d1)I1

c ,

dI2
c

dt
= gI1

c � (x2 +µ2 +d2)I2
c ,

(7.7)

we assume that I1
c 6= 0 and I2

c 6= 0. Then
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Lc �µ2Sc +(d1I1
c +d2I2

c ) = (x1 + g +µ2)I1
c +d1I1

c .

thus, we have Sc,Nc, I2
c as function of I1

c

I2
c = kI1

c

Sc =
Lc

µ2
+YI1

c

Nc =
Lc

µ2
+FI1

c ,

(7.8)

with

k =
g

x2 +µ2 +d2
,

Y =
1
µ2

[
d2g

x2 +µ2 +d2
� (x1 + g +µ2)]< 0,

and

F = Y+k +1.

By plugging Sc,Nc, I2
c in equation

dI1
c

dt
, we have :

0 =
b1(

Lc

µ2
+YI1

c )

(
Lc

µ2
+FI1

c )
(kI1

c + I1
c )� (x1 + g +µ2)I1

c �d1I1
c . (7.9)
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Since I1
c 6= 0, then

b1(
Lc

µ2
+YI1

c )

(
Lc

µ2
+FI1

c )
(k +1)� (x1 + g +µ2)�d1 = 0

therefore,

b1(
Lc

µ2
+YI1

c )(k +1) = (x1 + g +µ2 +d1)(
Lc

µ2
+FI1

c )

b1

(x1 + g +µ2 +delta1)
(k +1)(

Lc

µ2
+YI1

c ) =
Lc

µ2
+FI1

c

R02(
Lc

µ2
+YI1

c ) =
Lc

µ2
+FI1

c

Lc

µ2
(R02 �1) = (F�R02Y)I1

c

Thus,

I1
c =

Lc

µ2
(R02 �1)

F�YR02
. (7.10)

After simplifying F�YR02 (see Appendix) we found that

I1
c =

Lc

µ2
[R02 �1]

Y[1�R02]+k +1
(7.11)

I1
c > 0 if and only if :
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• R02 > 1 and y[1�R02]+k +1 > 0

then, we have

k +1 > y[R02 �1]

k+1
Y > [R02 �1]

hence,

I1
c > 0 if 1 < R02 <

k+1
Y +1

• R02 < 1 and y[1�R02]+k +1 < 0 which is impossible.

Proposition 7.3.1. The endemic equilibrium I1
c > 0 if and only if 1 < R02 <

k+1
Y +1

The third equilibrium point found when Ip, Ep, Hp, Rp 6= 0.

We have

Lp �µ1Sp +dpRp = °

° = (µ1 +qp)Ep

thus,we have Sp,Np,Ep,Hp,Rp as functions of Ip
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Ep =
µ1 + gp +x 1

p

qp
Ip,

° =
(µ1 + gp +x 1

p)(µ1 +qp)

qp
Ip,

Hp =
gp

ap +µ1 +x 2
p

Ip,

Rp = (
ap

dp+µ1
)(

gp
ap+µ1+x 2

p
)Ip,

Sp =
Lp
µ1

+k1Ip,

Np =
Lp
µ1

+k2Ip,

(7.12)

with

k1 =
1
µ1

[
apdpgp

(dp +µ1)(ap +µ1 +x 2
p)

�
(µ1 +qp)(µ1 + gp +x 1

p)

qp
] (7.13)

k1 =
(µ1 +qp)(µ1 + gp +x 1

p)

qp
[

qpapdpgp

(µ1 +qp)(µ1 + gp +x 1
p)(dp +µ1)(ap +µ1 +x 2

p)
�1]

(7.14)

since:

qp

µ1 +qp
< 1,

gp

µ1 + gp +x 1
p
< 1,

dp

dp +µ1
< 1,

ap

ap +µ1 +x 2
p
< 1

Then, it is easy to show that k1 < 0
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k2 = k1+(
µ1 + gp +x 1

p

qp
)+1+(

gp

ap +µ1 +x 2
p
)+(

ap

dp +µ1
)(

gp

ap +µ1 +x 2
p
) (7.15)

Now, we investigate the sign of k2. We have

k2 = k1+(
µ1 + gp +x 1

p

qp
)+1+(

gp

ap +µ1 +x 2
p
)+(

ap

dp +µ1
)(

gp

ap +µ1 +x 2
p
) (7.16)

By simplifying k2 , Then we have:

k2 =
gp

(ap +µ1 +x 1
p)
[1+

ap

dp +µ1
(

dp

µ1
+1)]+

(µ1 + gp +x 1
p)

qp
[1�

µ1 +qp

µ1
]+1

=
gp

(ap +µ1 +x 1
p)
[1+

ap

µ1
]�

(µ1 + gp +x 1
p)

µ1
+1

=
gp(ap +µ1)

µ1(ap +µ1 +x 1
p)

�
(µ1 + gp +x 1

p)

µ1
+1

= 1
µ1
[

gp(ap+µ1)
ap+µ1+x 1

p
�µ1 � (gp +x 1

p)+µ1]

= 1
µ1
[

gp(ap+µ1)
ap+µ1+x 1

p
� (gp +x 1

p)]< 0

From the equation Ep at the equilibria, we have :

0 =
Sp(b2Ip +b3Ep +b4I1

c +b5Hp)

Np
� (µ1 +qp)E

therefore
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(
Lp

µ1
+k1Ip)(b2Ip +b3k5Ip +b4I1

c +b5k4Ip) = (
Lp

µ1
+k2Ip)(µ1 +qp)(k5Ip)

we define the k’s, where

k3 = (
ap

dp+µ1
)(

gp
ap+µ1+x 2

p
)

k4 = (
gp

ap+µ1+x 2
p
)

k5 = (
µ1+gp+x 1

p
qp

)

therefore ki < 0 when i = 1,2 and ki > 0 when i = 3,4,5.

Then we find quadratic equation as a function of the variable Ip.

as

P(Ip) = AI2
p +BIp +C (7.17)

where

A = �k2k5(µ1 +qp)+k1(b2 +b3k5 +b5k4),

B = k1b4I1
c +

Lp
µ1
[b2 +(b3 � (qp +µ1))k5 +b5k4],

C =
Lp
µ1

b4I1
c .

(7.18)

Since I1
c > 0, then C > 0.

By substituting k4 and k5 in R01, then
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R01 =
qp

(µ1 +qp)k5
[
b3

k 5
+b2 +b5k4],

by re-arranging the form of A we get

A = (qp +µ1)k5(R01 �k2) (7.19)

Since k2 < 0, then A > 0 and we conclude the following result.

Proposition 7.3.2. There is either two feasible endemic equilibrium or none.

Two feasible Solution 
No feasible Solution 

Two Non-Feasible Solution 
No feasible Solution 
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7.4 Jacobian Method-Routh-Hurwiz Criteria

7.4.1 Block Matrix

The Jacobian matrix can be written as

J =

2

64
A B

C D

3

75

The sub-matrices of the Jacobian matrix J are shown below.

B =

2

66666664

dp 0 �Spb4
(Np�I1

c )
(Np)2 0

0 0 Spb4
(Np�I1

c )
(Np)2 0

0 0 0 0

0 0 0 0

3

77777775

, C =

2

66666664

0 0 0 ap

0 0 0 0

0 0 0 0

0 0 0 0

3

77777775

,and
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Define sp =
Sp
Np

,ep =
Ep
Np

,ip =
Ip
Np

,hp =
Hp
Np

,sc =
Sc
Nc

,i1c =
I1
c

Nc
,i2c =

I2
c

Nc
,

and by (7.7) we assume that
dSp

dt
= 0 then I get

Lp �µ1Sp +dpRp =
(b2Ip +b3Ep +b4I1

c +b5Hp)Sp

Np
.

let (b2Ip +b3Ep +b4I1
c +b5Hp) =~ then,

~=
Np(Lp �µ1Sp +dpRp)

Sp

here we want to reduce the Jacobian matrix J, then by taking the first term of sub-matrix

A and multiplied with ~

then ~⇥ Np�Sp
N2

p
= (

Np
�Sp

�1)(Lp �µ1Sp +dpRp)

Also for
dSc

dt
= 0, I get that :

Lc �µ2Sc +(d1I1
c +d2I2

c ) =
b1Sc

Nc
(I1

c + I2
c )

let F= (Lc�µ2Sc+(d1I1
c +d2I2

c )Nc
Sp

)

then Nc�Sc
N2

c
⇥F= (Nc

Sc
�1)(Lc �µ2Sc +(d1I1

c +d2I2
c ))

then, the Jacobian matrix J after reduced shows below

B =

2

66666664

dp 0 �spb4(1� I1
c

Np
) 0

0 0 spb4(1� I1
c

Np
) 0

0 0 0 0

0 0 0 0

3

77777775

, C =

2

66666664

0 0 0 ap

0 0 0 0

0 0 0 0

0 0 0 0

3

77777775
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with

a = �µ1 � (b2i1p +b3ep +b4
I1
c

Np
+b5hp)(1� sp)

a = �µ1 � (Lp �µ1Sp +dpRp)(
Np
Sp

�1)
(7.20)

b = �spb3(1� ep) (7.21)

c = �spb2(1� ip) (7.22)

d = �spb5(1�hp) (7.23)

e = µ1 � (b2i1p +b3ep +b4
I1
c

Np
+b5hp)(1� sp)

e = (Lp �µ1Sp +dpRp)(
Np
Sp

�1)
(7.24)

f = spb3(1� ep)� (µ1 +qp) (7.25)

g = spb2(1� ip) (7.26)

h = spb5(1�hp) (7.27)

z = gp (7.28)

i = �(ap +µ1 +x 2
p) (7.29)

j = ap (7.30)

k = �(dp +µ1) (7.31)

l = dp (7.32)

m = �spb4(1� I1
c

Np
) (7.33)

n = spb4(1� I1
c

Np
) (7.34)

y = qp (7.35)
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p = �(dp +µ1) (7.36)

q = �µ2 �b1(i1c + i2c)(1� sc)

q = �µ2 � (Nc
Sc
�1)(Lc �µ2Sc +(d1I1

c +d2I2
c ))

(7.37)

s = �scb1(1� i1c)+d1 (7.38)

v = �scb1(1� i2c)+d2 (7.39)

r = b1(i1c + i2c)(1� sc)

r = (Nc
Sc
�1)(Lc �µ2Sc +(d1I1

c +d2I2
c ))

(7.40)

t = scb1(1� i1c)� (x1 + g +µ2 +d1) (7.41)

w = scb1(1� i2c) (7.42)

u = g (7.43)

x = �(x2 +µ2 +d2) (7.44)

the matrix(7.4.1) with the coefficients signs:

J =

2

666666666666666666664

� � � � + 0 � 0

? ? + + 0 0 + 0

0 + � 0 0 0 0 0

0 0 + � 0 0 0 0

0 0 0 + � 0 0 0

0 0 0 0 0 � ? ?

0 0 0 0 0 + � +

0 0 0 0 0 0 + �

3

777777777777777777775

.
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The eigenvalues of the matrix(7.4.1) are the solution of the equation

det(J�l I) = det

�������

A�l I B

C D�l I

�������
= 0. (7.45)

Note that

det(J�l I) = det(A�l I)det(D�l I �C(A�l I)�1B)

= det(A�l I �B(D�l I)�1C)det(D�l I)

where

(D�l I)�1 =

0

BBBBBBBBB@

1
p�l 0 0 0

0 x(t�l )�wu
|

vu�sx
�

lv�vt+sw
�

0 � rx
|

x(q�l )
|

vr�w(q�l t)
|

0 ru
| � u(q�l )

| � sr�(q�l )(t�l )
|

1

CCCCCCCCCA

and

|= u(vr�w(q�l ))� x(sr� (q�l )(t �l ))

�= u(�w(�l +q)+ vr)� x(�(�l +q)(�l + t)+ sr)

Then we have

A�l I �B(D�l I)�1C =

2

66666664

a�l b c d � ly
p�l

e f �l g h

0 z i�l 0

0 0 j k�l

3

77777775
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and

det(A�l I �B(D�l I)�1C) =

�������������

a�l b c d � ly
p�l

e f �l g h

0 z i�l 0

0 0 j k�l

�������������

= jz[(a�l )h� e(d � ly
p�l )]+(k�l )[(a�l )[(i�l )( f �l )�gz]+ ecz� eb(i�l )].

Then the determination is

= �l 5 +a1l 4 +a2l 3 +a3l 2 +a4l +a5 = 0.
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Also

det(D�l I) =

��������������������������

p�l 0 0 0

0 q�l s v

0 r t �l w

0 0 u x�l

��������������������������

= (p�l )

��������������������

q�l s v

r t �l w

0 u x�l

��������������������

(7.46)

= (p�l )[(q�l )[(t �l )(x�l )�uw]� r[s(x�l �uv)]]

Then the determination is

= (p�l )[�l 3 +b1l 2 �b2l �b3] = 0.

Here

b1 = (x+ t +q)

b2 = (�uw� sr+ tx+qx+qt)

b3 = (qtx�qwu� srx+ vur)

Hence, the characteristic polynomial is a product of two 4th degree polynomials
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with

det(A�l I �B(D�l I)�1C) =�l 5 +a1l 4 +a2l 3 +a3l 2 +a4l +a5

and

det(D�l I) = (p�l )[�l 3 �b1l 2 �b2l �b3].
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Chapter 8: Numerical Simulations

To visualize the dynamics of MERS infection in the UAE population, we run

simulations of the MERS model using R software [54] and the open source packages

[18, 60]. Using parameter values listed in Table (8.1) with initial conditions given in

Table (8.2).

8.1 Time Series Simulation

This section shows the simulation of different values of basic reproduction num-

ber R0, to clarify the results of our model and analytical results. First, we will simulate

the case R0 < 1. Then, we will simulate the case R0 > 1 based on the values of the basic

reproduction numbers for the subgroups of R01 and R02, including the

R0 = r(K) = max(R01,R02) ,

with

R01 =
b3

(µ1 +qp)
+

b2qp

(µ1 +qp)(µ1 + gp +x 1
p)

+
b5qpgp

(µ1 +qp)(µ1 + gp +x 1
p)(ap +µ1 +x 1

p)
,

and

R02 =
b1

(x1 + g +µ2 +d1)
+

b1g
(x1 + g +µ2 +d1)(x2 +µ2 +d2)
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So we chose our parameters in order to study the epidemic equilibria shown

below:

I Case 1: R01 < 1 and R02 < 1

I Case 2: R01 > 1 and R02 < 1

I Case 3: R01 < 1 and R02 > 1

I Case 4: R01 > 1 and R02 > 1

Some of the parameters were calculated to suit with a description of my model

while others were assembled from other papers of MERS-CoV. Where Lp is considered

as human populations in UAE which is calculated from [16]. Also Lc represent camels

populations in UAE are calculated from [19]. The simulation below shows the outcomes

of our model in the case of R0 < 1 for the following parameters. The Table 8.1 display

the parameters that used in the simulation at case Disease Free Equilibrium.

The parameters value and unit are presented in Table (8.1).

Parameters Values unit References
Lp 47.97 Human⇥Days�1 calculated
Lc 97.1925 Camel ⇥Days�1 calculated
µ1 3.198399⇥10�6 Human⇥Days�1 calculated
µ2 2429813⇥10�4 Camel ⇥Days�1 calculated
b1 0.15 Days�1 [34]
b2 0.7833 Days�1 [70]
b3 0.8756 Days�1 [70]
b4 0.34 Days�1 assumed
b5 0.4568 Days�1 [70]
dp 0.125 Days�1 [41]
d1 0.25 Days�1 [34]
d2 0.48 Days�1 [34]
ap 0.2 Days�1 [41]
qp 0.2 Days�1 [70]
gp 0.708 Days�1 [14]
g 0.12 Days�1 [5]
x 1

p 3.36⇥10�6 Days�1 calculated
x 2

p 3.36⇥10�6 Days�1 calculated
x1 0.33 Days�1 assumed
x2 0.9 Days�1 assumed

Table 8.1: The parameters values and units
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Parameters Value
Sp 300000
Ep 205
Ip 21
Rp 31
Hp 25
Sc 30000
I1
c 7

I2
c 0

Table 8.2: Initial conditions

8.2 Simulation of the Disease Equilibrium

8.2.1 Simulation of the Disease Free Equilibrium

To have better understanding of my model in the case of free equilibria, we plot

the figures for the one case per each population as we mentioned previously. The case

are as follow:

I Case 1: R01 < 1 and R02 < 1

For simplicity, we will give all the parameters without unit since the same pa-

rameters were given in the previous Table with units.

In the case 1, we choose the following parameters:

Lp = 47.97;Lc = 96.8; µ1 = 3.198399e⇥10�6; µ2 = 242⇥10�4;b1 = 0.58;b2 =

0.7833;b3 = 0.36;b4 = 0.34;b5 = 0.4568;dp = 0.125;d1 = 0.17;d2 = 0.25;ap = 0.2;qp =

0.4;gp = 0.708;g = 0.36;x 1
p = 3.36⇤10�6;x 2

p = 3.36⇤10�6;x1 = 0.25;x2 = 0.9;

Compartment of humans and camels population when R0 < 1: the simulation of

the model of the case 1 when R0 < 1 shows that the susceptible human population goes

down in the begin of the time course, but gradually converges to the equilibrium pointLp
µ1

.

So, the population of susceptible human decreased sharply from 3,500,000 and stood at

506713.4 then it rise slowly to settle between 1000000. Also, the exposed population get

established and rise sharply after 17 days (time) and peak around 793082. The infected

population also increases and peaks around 426939.5 and time series simulation show
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that the disease pick at value 111.9821 infected people within 20 days. The infected

population at final stage reach to the value 0.04357758. The recovered and hospitalized

population appear with super high in increasing, where theses two population take a

more time before to reach a peak. For more illustration see Figure (8.1).

The simulation of the infected camel compartment does not get to established

for the (Aware infectious camels and Unaware infectious camels ) population while the

susceptible camels population is grow. So, compared to the human dynamic there is no

peak occurs in camels population before the human peak.
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Figure 8.1: Case 1: disease free equilibrium ( when R0 < 1 )
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we conclude that the Case 1 appears with slight infections to human while there

was a fewer burden to camels.

8.2.2 Simulation of the Endemic Equilibrium

To have better understanding of our model in the case of endemic equilibria, we

plot each Figure of the three cases per each population . The cases are as follow:

I Case 2: R01 > 1 and R02 < 1

I Case 3: R01 < 1 and R02 > 1

I Case 4: R01 > 1 and R02 > 1

For simplicity, I will give all the parameters without unit since the same param-

eters were given in the previous Table with units.

In the case 2, I choose the following parameters: Lp = 47.97;Lc = 96.8; µ1 =

3.198399e ⇥ 10�6; µ2 = 242 ⇥ 10�4;b1 = 0.76;b2 = 0.1;b3 = 0.09;b4 = 0.34;b5 =

0.08;dp = 0.125;d1 = 0.14/2;d2 = 0.25;ap = 0.2;qp = 0.2;gp = 0.708;g = 0.12/2;x 1
p =

3.36⇤10�6;x 2
p = 3.36⇤10�6;x1 = 0.13/2;x2 = 0.9/2;

For the case 3, I used these parameters : Lp = 47.97;Lc = 96.8; µ1 = 3.198399e⇥

10�6; µ2 = 242⇥10�4;b1 = 0.76;b2 = 0.1;b3 = 0.09;b4 = 0.34;b5 = 0.08;dp = 0.125;d1 =

0.14;d2 = 0.25;ap = 0.2;qp = 0.2;gp = 0.9912;g = 0.12;x 1
p = 3.36⇤10�6;x 2

p = 3.36⇤

10�6;x1 = 0.13;x2 = 0.9;

Finally, For the case 4 I have: Lp = 47.97;Lc = 96.8; µ1 = 3.198399e⇥10�6; µ2 =

242⇥10�4;b1 = 0.55;b2 = 0.5833;b3 = 0.43;b4 = 0.34;b5 = 0.3568;dp = 0.125;d1 =

0.14;d2 = 0.25;ap = 0.2;qp = 0.4;gp = 0.708;g = 0.14;x 1
p = 3.36⇤10�6;x 2

p = 3.36⇤

10�6;x1 = 0.1;x2 = 0.9;
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Figure 8.2: Case 2: disease endemic equilibrium ( when R0 > 1 )
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Figure 8.3: Case 3: disease endemic equilibrium ( when R0 > 1 )
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Figure 8.4: Case 4: disease endemic equilibrium ( when R0 > 1 )
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By analyzing the igures corresponding to the cases, the Case 2 when R01 > 1

shows that the susceptible human population (Sp) decreases sharply from 3000000 to

500000 within 40 days then it increasing slowly and settle at 685110. Also, in Case

4 when R01 > 1 the Sp was decline more sharply compared to case 2 (see cases in

Figure(8.2) and (8.4)). While Sp in Case 4 appear with a slight change whereas it mostly

stabilized around 482006.4, that actually because R01 < 1.The population of Ep, Rp, Hp

presented with the same pattern in Cases 2 and 4, which is increasing rapidly and the

increase in Case 4 was earlier than case 3 withe similar scale time. The same population

in Case 3 shows a little growth on the scale time compared to Case 1 and 3. When

R01 > 1 , the Case 2 and Case 4 shows a high infection in human population where the

peak of the infection reached to 252529.7,337893.9 respectively, while Case 3 shows the

less infection and peak at value 8170.837 infected case. That means Case 1 and Case 3

are more endemic equilibria when the disease is endemic in the human population. In

fact when R02 < 1 the endemic equilibria lower in the human population compared to

when R02 > 1. That shows the protecting the human population from possible camel

infection is beneficial to the overall infection in the UAE.

The analysis of the time series of Case 2 shows that the susceptible population of

camels (Sc) displayed an increasing trend when the time increased. Conversely, I1
c and

I2
c is decreasing because R02 > 1 which means the disease in camels die out. The Case

3 is opposite to the previous case, where that the decrease in Sc is very sharply during 40

days at the same time the increase of I1
c was rapid which reach peak beyond 9798.482

cases of an infected camel. The number of infected camel converged to 431.3864. The

I2
c was rise slowly at that time, and it reaches close 1000 case of an infected camels.

The disease after 50 days shows a scenario of persists disease in a low number of in

cases of infected camels. The last case mostly was similar to case 3, but with less rate of

infectious between camels whereas the value of the peak was 7157.172 of infected cases

and this number converted to 460.5257.
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8.3 Sensitivity Analysis

Here we show the index estimation of R0 with respect to the parameters and we

do the uncertainty analysis

8.3.1 For Infected Population (Ip)

We looking at the sensitivity analysis of all parameters of our model with respect

to the variable of infected humans, we find certain parameters have more impact on

human infection population than others. This impact could be either positive or negative.

1. Case 1: R01 < 1 and R02 < 1

In Figure (8.5), we see that parameters Lp, µ1, qp, x 1
p , x 2

p , Lc, µ2 have

almost no effect on Ip. The variables b1, b4, g , d1, d2, x1, x2 have slight effect on Ip.

More precisely, g , d1, d2, x1, x2 have the same negative sign which means the increase

of the parameter will result in a decrease of Ip. On the other hand, b1, b4 are affecting

positively Ip. That is the increase of these variables will slight increase Ip. The remaining

variables are of significance to Ip; particularly ap, qp,gp. These variables have a high

impact on Ip, and their effects are described as follows: the parameters have the opposite

sign to Ip. It is normal because the increase in the recovery rate of hospitalized humans,

the long period of incubation for an exposed individual until becoming infected, and the

increase in the rate of hospitalization of infected humans, means we will not have an

infected population.

The parameters that have positive effect on Ip are b2, b3, b5 the infection rates

of infected individuals, infection rate of exposed individual and infection rate of hospi-

talized human, respectively. It make sense that increasing the values of these parameters

will result in more infectious individual.
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Figure 8.5: Parameters sensitivity to Ip in case 1
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2. Case 2: R01 > 1 and R02 < 1

The Figure (8.6) encompassed parameters Lp, µ1, x 1
p , x 2

p , Lc, µ2, b1, b4,

g , d1, d2, x1, x2 which have almost low effect on Ip. The variables Lp, µ1, b1, b4 , g , have

slight effect on Ip, while the other remaining parameters have no effect on Ip. Regarding

to other parameters as b2, b3, b5, ap which have a medium effect on Ip with positive

sign which means the increase of the parameter will result a increase of Ip. The remain

parameters also are significant for Ip; especially dp, qp, gp. The variable gp has a high

negative effect on Ip. Contrarily, qpand dp are affecting Ip in positive way. That means

the increase of these variables will sharply increase Ip.

The Figure (8.6) shows the variation of the parameters such as dp, qp and ap by

10000, while the variation of the other parameters by lower than that. The sensitivity

analysis which is shown in this case refer to the parameters of human such as b2, b3, b5

with more sensitive in Ip than camel parameters such as b1, b4. All previous parameters

have a positive effect on Ip. gp is also of the human parameters but with significant

negative effect on Ip and its means more recovered people hospitalizes leads to less

infected in human population. Both dp and qp positively effecting Ip, which explain the

more rate of detecting people who are infected will increase the number of sick people.
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Figure 8.6: Parameters sensitivity to Ip in case 2
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3. Case 3: R01 < 1 and R02 > 1

The parameters Lp, µ1, x 1
p , x 2

p , µ2, b1, g , d2, x2 almost have a low effect

on Ip. Besides, the parameters b1, g , dp, x2 have slight effect on Ip, while the remain

variables have no effect on Ip. Differently, the dp, Lc, b4, d1, x1 have an average effect

on Ip. Whilst the first three variables have a positive sign which means the increase of

the parameter will result a increase of Ip. The last two parameters have a negative effect

on Ip. The remain parameters raised major effect to Ip; particularly ap, qp, gp have

the opposite sign to Ip. The effects of theses parameters are described as follows: the

increase in the recovery rate of hospitalized humans, the long period of incubation for an

exposed individual until they become infected the increase in the rate of hospitalization

individual of infected humans, means we will not have an infected population. In this

case, the parameters with high significant effect on Ip are similar to parameters in case

1 when R01 < 1, but Figure (8.7) indicates that, the rate of hospitalization individual of

infected humans are less than case 1. That follow as the increasing of infectious between

camels when R02 > 1. The parameters that have a positive influential on Ip are b2, b3, b5.

The first three parameters are the infection rates of infected individual(which is shows a

low rate), infection rate of exposed individual and infection rate of hospitalized human.

And the increase in the value of these parameters will result more infection.

This case shows that the infection is dominated on camels. By looking at the

camel parameters with highest effect on Ip such as b1 and b4 where b1 which is describe

the infection rate among camels and it show lower infection to human compared to b4

which is show the infection among human. The surprise result is that b1 doesn’t affect Ip.

The disease persists in the camels population but the transmission of the disease among

the human is the most dominate. The sensitivity analysis of our parameters when R02 >

1 which mean the disease persists in the camel population shows that the parameter of

transmission of the disease among human lower sensitive to Ip and that indicates the

crucial wish out the human transmission, not the camel transmission.
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Figure 8.7: Parameters sensitivity to Ip in case 3
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4. Case 4: R01 > 1 and R02 > 1

In Figure (8.8), we see that parameters, x 1
p , x 2

p , Lc, µ2, g , d1, d2, x1, x2

have almost low effect on Ip. More precisely, the Lp, µ1, b1, b4 have an average effect

on Ip. The Lp, b1, b4have positive sign which means the increase of the parameter will

result a increase of Ip while µ1 has a negative sign which the increase of this parameter

will result a decrease of Ip. The remain of the variables are significance to Ip; particularly

b2, b3, b5, dp, qp, gp. The variable g p has a high negative effect on Ip. On the other hand,

the remain are affecting Ip in positive way. That means the increase of these variables

will sharply increase in Ip.

The Figure (8.8) shows the variation of the parameters such as dp, qp and ap by

20000, while the variation of the other parameters by lower than that. The sensitivity

analysis which is shown in this case refer to the parameters of human such as b2, b3, b5

with more sensitive in Ip than camel parameters such as b1, b4. All previous parameters

have a positive effect on Ip. In this case only gp effect Ip negativity, while the remain

parameters has positive effect. The in the value of gp means more recovered people hos-

pitalizes leads to less infected in human population. Both dp and qp positively effecting

Ip, which explain the more rate of detecting people who are infected will increase the

number of sick people. Also, we should also note the effect of increasing the birth rate

of human Lp in the spread of the disease, as any increase in the number of human will

cause in the future increased the likelihood of the spread of the epidemic.

This case shows that the infection persists among the population of camels and

humans, but it is clearly the infection dominance on the human is highest. By looking

to the camel parameters with highest effect on Ip such as b1 and b4 where b1 which is

describe the infection rate among camels and it show higher infection to human com-

pared to b4 which is show the infection among human. So in this case b1 will affect

in Ip positively and contributes to the spread of the epidemic among humans, but with

small percentage. The disease persists in the camels population but the transmission of

the disease among the human is the most dominate. The sensitivity analysis of our pa-

rameters when R02 > 1 which mean the disease persists in the camel population shows
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that the parameter of transmission of the disease among human lower sensitive to Ip and

that indicates the crucial wish out the human transmission, not the camel transmission.

The Cases 2 and 4 are similar when R01 > 1 to some extent.
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Figure 8.8: Parameters sensitivity to Ip in case 4
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8.3.2 For Hospitalized Population (Hp)

The sensitivity analysis of hospitalized population was performed in the same

style as for the infected humans population. Figure (8.9) show a general look for the

human sensitivity of parameter with respect to infectious human population. The Figure

shows the different effects of parameters on Hp that may be positive or negative.

1. Case 1: R01 < 1 and R02 < 1

Parameters Lp, µ1, dp, x 1
p , x 2

p , Lc, µ2 have no significant sensitive to

the Hp. Furthermore, parameters b1, b4 have an average positive effect on Hp and g ,

d1, d2, x1, x2 have an average negative effect on Hp. These parameters which has an

average effect on Hp have a slight ability to change the Hp size. This differs for the

rest of the parameters where an increase or decrease will effect the infected Hp. The

three parameters b2, b3, b5 are positively sensitive to Hp in descending order where

an increase in one of them would rise number of infection in Hp. The remain of the

parameters are of significance to Hp; particularly ap, qp, gp. These variables have a high

impact on Hp, and its effects are described as follows: the variables have the opposite

sign to Hp. This is normal because the increase the recovery rate of hospitalized humans,

the long period of incubation for an exposed individual until they become infected and

the increase in the rate of hospitalization individuals of an infected human, which means

we will not have more infection in Hp. So, as we take R01 < 1 and R02 < 1 then there

is no infection so ever until that time. This is practically the case when the diseases

doesn’t increase and the persist in the human. The Figure (8.9) shows the variation of

the parameters such as dp, qp and ap by 100, while the variation of the other parameters

by lower than that. What happen is the recovery rate, the rate of hospitalization and the

rate of detection actually negatively infect Hp.
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Figure 8.9: Parameters sensitivity to Hp in case 1
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2. Case 2: R01 > 1 and R02 < 1

The second case of analysis indicates a high infection in hospitalization popu-

lation as shown in Figures (8.10). Whereas, most of parameters contribute an effect on

Hp but with different measures. The first Figure (8.10) illustrated that the sensitivity of

parameters are varies in sign where they may have positive or negative effect on Hp. Pa-

rameters Lp, µ1, gp, b1, b4, g have a low simple sensitive to the Hp. Where the parameter

x 1
p , x 2

p , Lc, µ2, d1, d2, x1, x2 are not sensitive at all to Hp. Furthermore, parameters b2,

b3 have an average positive effect on Hp which are have a slight ability to change the

Hp size. This differs for the rest of the parameters where an increase or decrease will

effect the infected Hp. The three parameters b5, d , qp are positively sensitive to Hp in

descending order where an increase in one of them would rise the number of infected

population in Hp. The remain of the parameter is significance to Hp; particularly ap

which has a high negatively effects Hp.

If the persistence of the dp increased ,that means we will have more individuals

who lose their immunity then more people will getting sick. The remain parameters

particularly have the same rate except the Lp, offcours is gonna effect everybody else.

b2 and b3 are medium sensitive inHp.
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Figure 8.10: Parameters sensitivity to Hp in case 2
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3. Case 3: R01 < 1 and R02 > 1

This case shows that the sensitivity analysis of all parameters has either

a positive or negative impact on Hp. In Figure (8.11), I see that variables Lp, µ1, x 1
p , x 2

p ,

µ2, b1, g , d2, x2 have almost low effect on Hp. The variables b1, g , dp, x2 have slight

effect on Hp, while the remain variables have no effect on Hp. On the other hand, the dp,

Lc, b4, d1, x1 have an average effect on Hp. Where the first three variables have a positive

sign which means the increase of the parameter will result a increase of Hp. The last two

variables have a negative effect on Hp. The remain of the variables are of significance

to Hp; particularly ap, qp, gp. These variables have a high impact on Hp and its have

opposite sign to effects Hp . In this case the remain variable have high significant impact

on Hpwhen R01 < 1. The three parameters b2, b3, b5 are positively sensitive to Hp in

descending order where an increase in one of them would rise the number of infected Hp

population. The remain of the parameters are also significant to Hp; particularly ap, qp,

gp. These variables have a high impact on Hp, and they have a opposite sign to Hp.

The camel parameters in this case show the same effect as case 1, accepted the

more transmission between human can be responsible around the infection. This case

shows the same situation as when R0 < 1 accept the variation is highest in this case.
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Figure 8.11: Parameters sensitivity to Hp in case 3
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4. Case 4 : R01 > 1 and R02 > 1

The fourth case of analysis indicates a high infection in hospitalization

population as shown in Figures (8.12). The most of parameters are contribute an effect

on Hp but with different measures. The first Figure (8.12) illustrated that the sensitivity

of parameters are varies in sign where they may have positive or negative effect on Hp.

Parameters Lp, µ1, gp, b1, b4, g have a low simple sensitive to the Hp. Where the

parameter x 1
p , x 2

p , Lc, µ2, d1, d2, x1, x2 are not sensitive at all to Hp. Furthermore,

parameters b2, b3 have an average positive effect on Hp which are have a slight ability

to change the Hp size. This differs for the rest of the parameters where an increase

or decrease will effect the infected Hp. The three parameters b5, d , qp are positively

sensitive to Hp in descending order where an increase in one of them would rise the

number of infected population in Hp. The remain of the parameter is significance to Hp;

particularly ap which has a high negatively effects Hp.
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Figure 8.12: Parameters sensitivity to Hp in case 4



135

8.3.3 For Unaware Infected Camel Population (I1
c )

The sensitivity analysis of unaware infected camels was performed in the same

style as for the infected humans population. Figure (8.13) show a general look for the

camel sensitivity of parameters with respect to infectious camel population. The previ-

ous figure shows the different effects of parameter on I1
c that may be positive or negative.

1. Case 1: R01 < 1 and R02 < 1

The parameters of the camel populations in this case as you see in Figure

(8.13) are slightly effective on I1
c . The I1

c may increase as a result of increasing /beta1

which has a slight positive effect on I1
c . Other parameters such as g , d1, d2, x1, x2, have

a little effect on I1
c which they contribute to reducing I1

c whenever they increase since it

shows a high negative effect on I1
c . The remain parameters Lp, µ1, b2, b3, b5, dp, ap,

qp, gp, x 1
p , x 2

p , Lc, µ2, b4 doesn’t show any effect on I1
c as shown in Figure (8.13).

This case shows that humans have nothing to do with camels when there is no

infectionR0 < 1. In this case, it is clear that there is no infection in camel population

where the infection based on the value of b1 which show slight effect on I1
c . x1 and g

have a high role in camels sensitivity, where detecting more infected camels and rising

the died in infected camels will decrease the rate of disease spread between camels then

between camels to humans.

The important thing that we must highlight that the human does not cause in-

fection to the camel in this disease and that illustrated by Figures (8.13-8.14) of camels

sensitivity.
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Figure 8.13: Parameters sensitivity to I1
c in case 1

2. Case 2: R01 > 1 and R02 < 1

The parameters of the camel populations in this case as you see in Figure

(8.14) are highly effective on I1
c . The I1

c may increase as a result of increasing b1 which

has a high positive effect on I1
c . As for other parameters such as g ,x2, that contribute to

the reduction of the height I1
c since it shows a high negative effect on I1

c . The parameters

d1, d2, x1, appears with an medium negative effect on I1
c .The remain parameters Lp, µ1,

b2, b3, b5, dp, ap, qp, gp, x 1
p , x 2

p , Lc, µ2, b4 doesn’t show any effect on I1
c as shown in

Figure (8.14).

In this case the disease persists in the camel population where the value of b1

increases double the value compared to case 1. Also, x1and g have a high role in camels

sensitivity. In this case the detecting infected camels has a high rate compared to the

deaths of infected camels. These parameters will increase the rate of disease spread

between camels then between camels to humans. The parameters of medium effective

such as d1, d2, x1, which are describe the recovery rate of camel and death rate of infected

camel contribute to reduced I1
c .
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Figure 8.14: Parameters sensitivity to I1
c in case 2

3. Case 3: R01 < 1 and R02 > 1

This case shows how the parameters as g , x1 and x2 control I1
c . The

previous parameters shows a high negative effect on I1
c which is lead to decrease the

number of infected camels. However, the parameters b1, d1 and delta2 shows medium

effect on I1
c while other parameters doesn’t effect I1

c at all.

In this case, it is clear that there is an infection in camel population where the

infection based on the value of b1 which show slight effect on I1
c . x1 and g have a high

role in camels sensitivity, where detecting more infected camels and rising the died in

infected camels will decrease the rate of disease spread between camels then between

camels to humans.
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Figure 8.15: Parameters sensitivity to I1
c in case 3

4. Case 4: R01 > 1 and R02 > 1

It is clear that, in this case I1
c is greatly effected by the parameters with

high positive effect such as Lc. Also, the parameters as d1 and d2 has a slight and average

impact on I1
c . The other parameters such as b1, g , x1, x2, that contribute to the reduction

of the height I1
c since it shows a high negative effect on I1

c . The remain parameters Lp,

µ1, b2, b3, b5, dp, ap, qp, gp, x 1
p , x 2

p , Lc, µ2, b4 dont show any effect on I1
c as shown in

Figure (8.16).

The case 4 shows the scenario when the disease persists among camel population.

It is surprising in this case is thatbeta1 negatively affect I1
c . The detecting rate of sick

camel has also a negative effect in I1
c .
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Figure 8.16: Parameters sensitivity to I1
c in case 4

8.3.4 For Aware Infected Camel Population (I2
c )

The sensitivity analysis of aware infected camels was performed in the same style as

for the infected humans population. Figure (8.17) show a general look for the camel

sensitivity of parameter with respect to infectious camels population. The figure shows

the different effects of parameters on I2
c that may be positive or negative.

1. Case 1: R01 < 1 and R02 < 1

It is noticeable that the variable I2
c have been impacted with parameters a slight

negative impact as result of increase in the value of g , d1, d2, x1, x2 would decrease

I2
c . The parameter b1 has a slight positive impact on I2

c and increasing of this value will

increase the rate of I2
c on camels population. Parameters Lp, µ1, b2, b3, b5, dp, ap, qp,

gp, x1p, x2p, Lc, µ2, b4 have no impact on I2
c .

The pattern of the sensitivity analysis for Case 1 of unaware infected camels is

similar to the pattern of Case 1 for infected aware camels, but the effect of the parameters,

in this case, is decidedly smaller.
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Figure 8.17: Parameters sensitivity to I2
c in case 1

2. Case 2: R01 > 1 and R02 < 1

Figure (8.18) in case 2 shows a general look of the camel sensitivity by

parameters with respect to I2
c . The first Figure (8.18) shows that the parameters b1,g ,x1,

has the highest impact on I2
c . The parameter b1 has a positive effect on I2

c and usually

increasing in the value of this parameters would increase I2
c . besides, the parameters

g ,x1has the negative effect on I2
c which is contribute to decrease I2

c .The remains param-

eters Lp, µ1, b2, b3, b5, dp, ap, qp, gp, x1p, x2p, Lc, µ2, b4 almost have no effect on I2
c .

This case also shows a similar pattern of sensitivity analysis to case 2 of I1
c , but the effect

of the parameters in this case was smaller.
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Figure 8.18: Parameters sensitivity to I2
c in case 2

3. Case 3: R01 < 1 and R02 > 1

This case shows a slight effect of parameters on I2
c which is shown in

Figures (8.19). The highly sensitive of the parameters on I2
c result from the impact of

Lc, g , x1, x2. The first two parameters Lc,g contribute in the increase of I2
c because this

parameter has a positive effect. The last two parameters x1,x2 have a negative effect on

I2
c , whereas increasing this parameter lead to decrease I2

c . The remain parameter such as

Lp, µ1, b2, b3, b5, dp, ap, qp, gp, x1p , x2p, µ2, b4 almost have no effect on I2
c but the

parameterb1, d1, d2 are obvious with very slight effect on I2
c .

The parameters sensitivity of the I2
c in case 3 when R0 has the same pattern of

case 3 of the unaware infected camels, but the scale of the parameters here are small.

The g shows the positive effect which means increase the rate of detecting a sick camels

will increase the rate of infection in camels and this is contrary to what happened in other

cases.
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Figure 8.19: Parameters sensitivity to I2
c in case 3

4. Case 4: R01 > 1 and R02 > 1

This case shows a higher effect of parameters on I2
c compared to previous

case. Figure (8.20) shows the highly camel sensitivity in case 4 resulted from the impact

of Lc, b1, g , d1, d2, x1, x2,. The first two parameters Lc,g ,d1 effect I2
c positively which

is increase this parameter will also increase I2
c . While the parameter b1, x1, x2, d2 shows

negative effect on I2
c . The remain parameter such as Lp, µ1, b2, b3, b5, dp, ap, qp, gp,

x1p, x2p, µ2, b4 almost have no effect on I2
c .

This case shows that when detecting more infected camels that means we will

have more death cases between camels, this is often because the population of camels

does not have the vaccine also the rate of recovery from the disease is usually few.
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Figure 8.20: Parameters sensitivity to I2
c in case 4

8.4 Discussion

The sensitivity analysis of Cases 1 and 3 shows the same pattern when R01 < 1

where the parameters such as gp, qp, ap affect negatively on Ip. The parameters of

human infection rate such as b2, b3,b5 show the positive sensitivity to Ip. Case 1shows

the parameters when there is no disease. However, Case 3, shows the parameter when

disease persist and the main path of transmission of diseases to human population is via

direct infection from camels. The variation of parameters in Case 3 is higher than Case

1, where it increases to more than 30000 time compared to Case 1.

The same thing for the camel population, Case 1 The sensitivity analysis of Cases

1 and 3 shows the same pattern. In Case 2 when the disease persists among camel

population the parameters such as g , x1 increased as result of an increase in the rate of

infection among camels population.

As well as, Cases 2 and 4 taking a same approach when they show a similar pat-

tern. The variation of the parameters in Cases 2 and 4 show a slight difference between

them approximately. The parameters such as dp, qp, ap, b2, b3, b5, all of them effect

positively on Ip when R01 > 1. However, the only parameter with the negative effect

these two Cases are gp, which is the rate of hospitalization of an infected human.
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Chapter 9: Conclusion

As the MERS-CoV cases are still reported in the Middle East, there are concerns

that this disease will eventually become pandemic the region. The fact there is a long list

of unanswered questions, about the origin of the virus, the transmission pathways from

bat to camels, camels to camels, camel to human and human to human, leave researchers

in a big dilemma in understanding the dynamic of the disease and explaining the possible

impact of the disease on the public health if an outbreak happen.

The similarity between the MERS-CoV and SARS, as the two viruses are from

the same category of Coronaviruses which can be helpful to use the same approaches

where it was successful in controlling the SARS, and may be useful control the MERS-

CoV. In fact, the zoonotic aspect of the MERS-CoV contribute to the complexity of

understanding the dynamic of the disease and hence developing the right controlling

strategy of the diseases. Moreover, sociocultural factor that accompanied the progress of

the disease had contribute to the difficulties ,that authorities are facing and could facing

more, in contain the MERS-CoV.

For example, this complexity is augmented by the fact that there is the event

Hajj, every year, that could cause a large transmission among the pilgrims from around

the world. In addition, there are cases of super-spreaders, which makes the scenarios of

spreading the disease in a big gathering, like Hajj, very concerning.

The UAE had reported cases of MERS-CoV, which makes it among the coun-

tries that is concerned by the possible transmission of this disease it is population. Add

to that, the Arabic culture, that dominate the life style in country, makes the possible

infection from the camels directly . Although the government of the UAE had make

an expectational efforts to protect the population from this disease . There is a need

of more efforts to understand the depth of the dynamic of this virus and pathways of it

transmission.
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In this thesis, we aimed to study a mathematical of the MERS-CoV in the UAE.

This model took in consideration not only the human transmission but also the transmis-

sion among the camels. To our knowledge, this is the first approach that combined these

two populations in one model.

The human population is considered to SEIRS model and camels is modelled by

an SIS. The choice of such models can be explain as follow:

The SEIRS reflect the similarity between the SARS and MERS-CoV. In fact, we

included in this model the hospitalized people as they are responsible of recent trans-

mission in health care facilities in KSA. Moreover, there are cases of recovery from the

infection, which was also carried out this model. We have also considered the death rate

due to the infection as many infected people died because of this infection.

For the camel population, we opted for SIS model because the reports on the

camels tolerance of the infection and reoccurrence. The infected population is divided

two aware and unaware because there is a complete ignorance of symptoms of the disease

in the camels. Moreover, we assume the human populations is infected by the unaware

camels population.

Our mathematical analysis showed the possibility of having three transmission

scenarios in the human population.

1. No infection : this is the case where the basic reproduction number R0 < 1

2. Low persistence of infection: this is the case where the infection is high among

the camels R02 > 1 but the infection among the human is low R01 < 1. In this

case, the main path of transmission of the disease to the human population is via

direct infection from the camel.

3. High persistence of infection: this is the case where the infection is high among

human R01 > 1. Regardless the level of the infection in the camel population. If

the virus can become transmitted from human-to-human then the infection lead to

pandemic.
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In fact, the time series simulations of these cases shows clearly the existence of

these two levels of the infection : The simulation of the low persistence case shows the

number of the infected people reach 6000 individual, whoever in the High persistence

of infection it reach 175000 individual. This huge increase in the number of the cases

(almost 30 times more cases) should give us an idea on the possible burden of the such

case on the public health.

Figure 9.1: Scenarios of MERS transmission among human

The sensitivity analysis of the infected classes with respect to the parameters of

the model showed that :

In the case of no infection, the infected population is mildly sensitive negatively

to the hospitalization rate gp, the recovery rate ap and the rate of showing symptoms qp.

Other hand, the infected population is positively sensitive to the three human infection

rates: b2, b3 and b5.

In the case of the High persistence of infection, the parameters the infected pop-

ulation is highly sensitive to the hospitalization rate, the recovery rate and the rate of

showing symptoms. The sensitivity gp is negative, However, ap and qp is positive.

In the case of R01 > 1, the sensitivity analysis show that there are patterns of
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the sensitivity Ip when the persistence of infection case is similar to the no infection but

with higher range of the variations of the parameters.

The variable I2
c is not sensitive to the human parameters of transmission of the

disease. This is very well expected as the the model somehow discopled. We also

noticed that when the disease is extinct, the I2
c has a very low sensitivity with respect to

all parameters of transmission among the camel population.

When the disease persist in the camel population, we see clear patterns of sim-

ilar sensitivity of I2
c with respect to the parameters of transmission among the camels

population, with high range of sensitivity when R01 > 1 and R02 > 1.

The most dominant parameters in this sensitivity are the infection rate among the

camel population b1 and the death rate among the aware and unaware camels: x1 and x2

As this worked showed the possible scenarios of MERS-CoV the UAE, there are

perspectives of this work that need to be pursued :

• The global stability analysis of the each endemic equilibria seems to achieved as

R01 > 1 or R02 > 1. This need to be proving analytically.

• The bifurcation analysis should perform to find the parameter that could lead to a

switch of stability from low endemicity to high endemicity.

• The investigation of the possible control measures, such as isolation and quaran-

tine, that could reduce the impact of the disease on the public health and among

the animal stocks.

• The investigation of the effect of possible vaccination as the international commu-

nity are initiating efforts to develop it.
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Appendix

In this Appendix,we will introduce some calculation:

Finding Condition of F

Proof. we need to prove that F < 0 by contradiction try and assume that the statement

is false, proceed from there and at some point you will arrive to a contradiction.

when

k =
g

x2 +µ2 +d2
,Y =

1
µ2

[
d2g

x2 +µ2 +d2
� (x1 + g +µ2)]< 0,

since k and Y are negative.

Then Y = d2
µ2

k � (x1+g+µ2)
µ2

F = Y+k +1,=
d2

µ2
k +k +1� (x1 + g +µ2)

µ2
.

Since (x1+g+µ2)
µ2

> 1then 1� (x1+g+µ2)
µ2

< 0.

Let’s assume that assume F > 0 then

(
d2

µ2
+1)k >

(x1 + g +µ2)

µ2
�1

hence

(d2 +µ2)k > x1 + g
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which

k >
x1 + g

d2 +µ2

Using the the fact that
g

x2 +µ2 +d2
, we have

g
x2 +µ2 +d2

>
x1 + g

d2 +µ2

, we deduce that

g(d2 +µ2)> (x1 + g)(x2 +µ2 +d2)

0 > x1(x2 +µ2 +d2)+ gx2, which is impossible, then by contradiction F < 0

Find Condition for I1
c > 0

We have that

k =
g

x2 +µ2 +d2
.

Then
Y = 1

µ2
[ d2g

x2+µ2+d2
� (x1 + g +µ2)

Y = 1
µ2
[d2k � (x1 + g +µ2)]

and
F = d2

µ2
k +k � (x1+g+µ2)

µ2
+1

F = k( d2
µ2

+1)+1� (x1+g+µ2)
µ2

.
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Hence
R02 = b1

(x1+g+µ2+d1)
(1+ g

x2+µ2+d2
)

R02 = b1
(x1+g+µ2+d1)

(1+k)
.

I1
c =

Lc

µ2
(R02 �1)

F�YR02
.

Next, we simplify F�YR02

F � YR02=k( d2
µ2

+ 1) + 1 � x1+g+µ2
µ2

� b1
x1+g+µ2+d1

(1 + k)[ 1
µ2
[d2k � (x1 + g +

µ2)]]

k( d2
µ2

+1)+1� x1+g+µ2
µ2

� b1(1+k)
x1+g+µ2+d1

[ d2
µ2

k � (x1+g+µ2)
µ2

]

kd2
µ2

[1� b1(1+k)
x1+g+µ2+d1

]+k +1� (x1+g+µ2)
µ2

[1� b1(1+k)
x1+g+µ2+d1

]

kd2
µ2

[1�R02]+k +1� (x1+g+µ2)
µ2

[1�R02]

kd2
µ2

[1� (x1+g+µ2)
µ2

][1�R02]+k +1

Y[1�R02]+k +1

we need to show that I2
c > 0, when I2

c =
Lc
µ2

[R02�1]
y[1�R02]+k+1 . The numerator and de-

nominator of I2
c should have a similar sign to be > 0. It is clear that Lc

µ2
[R02�1]> 0 that

because R02 > 1. Now we should prove that y[1�R02]+k +1 > 0.

I1
2 > 0 if and only if

R02 > 1 and y[1�R02]+k +1 > 0

k +1 > y[R02 �1] k+1
Y > [R02 �1] 1 < R02 <

k+1
Y +1

R02 < 1 and y[1�R02]+k +1 < 0 which is impossible.

Simplify k2 and Finding their Condition

When

k2 = k1 +(
µ1 + gp +x 1

p

qp
)+1+(

gp

ap +µ1 +x 2
p
)+(

ap

dp +µ1
)(

gp

ap +µ1 +x 2
p
) (1)
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By simplify k2 , Then we have:

k2 =
gp

(ap +µ1 +x 1
p)
[1+

ap

dp +µ1
(

dp

µ1
+1)]+

(µ1 + gp +x 1
p)

qp
[1�

µ1 +qp

µ1
]+1

=
gp

(ap +µ1 +x 1
p)
[1+

ap

µ1
]�

(µ1 + gp +x 1
p)

µ1
+1

=
gp(ap +µ1)

µ1(ap +µ1 +x 1
p)

�
(µ1 + gp +x 1

p)

µ1
+1

= 1
µ1
[

gp(ap+µ1)
ap+µ1+x 1

p
�µ1 � (gp +x 1

p)+µ1]

= 1
µ1
[

gp(ap+µ1)
ap+µ1+x 1

p
� (gp +x 1

p)]

The conditions of positivity and negativity of k2 :

since k2 =
1
µ1
[

gp(ap+µ1)
ap+µ1+x 1

p
� (gp +x 1

p)]

Then gp(ap +µ1)> (gp +x 1
p)(ap +µ1 +x 1

p)

and 0 > x 1
p(ap +µ1 +x 1

p)+ gpx 1
p , which is Not Possible.

hence k2 < 0

Finding k3,k4,k5, and their Condition

k3 = (
ap

dp+µ1
)(

gp
ap+µ1+x 2

p
)

k4 = (
gp

ap+µ1+x 2
p
)

k5 = (
µ1+gp+x 1

p
qp

)

its easy to see that, ki, i = 3,4,5 > 0
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P(l ) =�l 3 � [b3 +(µ1 + gp +x 1
p)+(ap +µ1 +x 2

p)+(µ1 +qp)]l 2

+[(µ1 + gp +x 1
p)[b3 � (µ1 +qp)� (ap +µ1 +x 2

p)](ap +µ1 +x 2
p)[b3 � (µ1 +qp)]+b2qp]l

+(ap +µ1 +x 2
p)(µ1 + gp +x 1

p)[b3 � (µ1 +qp)]+qp[b2(ap +µ1 +x 2
p)+b5gp]

(2)

so, we multiply P(l ) by (�1) then I get

P(l ) = l 3 +[b3 +(µ1 + gp +x 1
p)+(ap +µ1 +x 2

p)+(µ1 +qp)]l 2

�[(µ1 + gp +x 1
p)[b3 � (µ1 +qp)� (ap +µ1 +x 2

p)](ap +µ1 +x 2
p)[b3 � (µ1 +qp)]+b2qp]l

�[(ap +µ1 +x 2
p)(µ1 + gp +x 1

p)[b3 � (µ1 +qp)]+qp[b2(ap +µ1 +x 2
p)+b5gp]]

(3)

P(l ) = l 3 +a1l 2 +a2l +a3
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by using block matrix, we have

J =

2

64
A B

C D

3

75

where

A=

2

66666664

a b c d

e f g h

0 0 i 0

0 0 j k

3

77777775

,B=

2

66666664

l 0 m 0

0 0 n 0

0 0 0 0

0 0 0 0

3

77777775

,C =

2

66666664

0 0 0 y

0 0 0 0

0 0 0 0

0 0 0 0

3

77777775

and D=

2

66666664

p 0 0 0

0 q s v

0 r t w

0 0 u x

3

77777775

The eigenvalues are the solution of the equation

det

�������

A�l I B

C D�l I

�������
= 0 (4)

note that

det

�������

A�l I B

C D�l I

�������
= det(A�l I)det(D�l I �C(A�l I)�1B)

= det(A�l I �B(D�l I)�1C)det(D�l I).
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(D�l I)�1 ⇥C =

2

66666664

0 0 0 y
p�l

0 0 0 0

0 0 0 0

0 0 0 0

3

77777775

,

B⇥ (D�l I)�1 ⇥C =

2

66666664

0 0 0 ly
p�l

0 0 0 0

0 0 0 0

0 0 0 0

3

77777775

,

(A�l I)�B⇥ (D�l I)�1 ⇥C =

2

66666664

a�l b c d(p�l )�ly
p�l

e f �l g h

0 0 ip�l 0

0 0 j kp�l

3

77777775
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det

�������

A�l I B

C D�l I

�������
= det(A�l I �B(D�l I)�1C)det(D�l I).

det(A�l I �B(D�l I)�1C) =

�������������

a�l b c d(p�l )�ly
p�l

e f �l g h

0 0 i�l 0

0 0 j k�l

�������������

(5)

=�(l � i)(l � k)((a�l )(l � f )+ eb)

which is equal

= [l 4 + ãl 3 + b̃l 2 + c̃l + d̃]

let

ã = (�a� f � k� i),

b̃ = (a f � eb+ak+ k f +ai+ i f + ik),

c̃ = (�ak f + ekb�ai f + eib�aik� ik f ),

d̃ =�eikb+aik f .
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det(D�l I) =

��������������������������

p�l 0 0 0

0 q�l s v

0 r t �l w

0 0 u x�l

��������������������������

(6)

= (p�l )(u(w(l �q)+ vr)� (sr� (l �q)(l � t))(x�l ))

which is equal

= [l 4 + āl 3 + b̄l 2 + c̄l + d̄]

let

ā = (�p� x� t �q),

b̄ = (�uw+ px+ pt + pq� sr+ tx+qx+qt),

c̄ = (puw+uwq�uvr+ psr� ptx� pqx� pqt + srx�qtx),

d̄ = puvr� puwq� psrx+ pqtx.
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Proof.

1 > ( g+x2+µ2+d2
x2+µ2+d2

)R02

x2+µ2+d2
g+x2+µ2+d2

> x2 +µ2 +d2

x2+µ2+d2
g+x2+µ2+d2

⇠ 1+ x2+µ2+d2
x1+g+µ2+d1

1
g+x2+µ2+d2

⇠ x2 +µ2 = d2 +
1

x1+g+µ2+d1

suppose x = (x2 +µ2 +d2) and c = (x1 +µ2 +d1)

then 1
g+x ⇠ x+ 1

c+g

f (x) = x� 1
g+x +

1
c+g > 0

f 0(x) = 1+ 1
(g+x)2 > 0

(7)

x� 1
g+x +

1
c+g = 0

x+ 1
c+g = 1

g+x

x(g + x)+ g+x
c+g �1 = 0

x2 +(g + 1
c+g )x+

g
c+g �1 = 0

(8)

4 = (g � 1
c+g )

2 �4( g
c+g )

= (g � 1
c+g )

2 > 0

(9)

4= (g � 1
c+g )

2 �4( g
c+g )

x =
�(g+ 1

c+g )±(g� 1
c+g )

2

2

x =
�(g+ 1

c+g )
2+(g� 1

c+g )

2

(10)
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If x >
�(g+ 1

c+g )+
q

(g� 1
c+g )

2

Then f (x)> 0

2(x2 = µ2 +d2)>�(g + 1
x1+µ2+d1

)+ g � 1
c+g it is true g > 1

c+g

x2+µ2+d2
g+x2+µ2+d2

< 1+ x2+µ2+d2
x1+g+µ2+d2

If Not

(11)

2(x2 +µ2 +d2 + g)>� 1
x1+µ2+d1

+ 1
x1+µ2+d1

2(x2 +µ2 +d2 + g)> 0
(12)

The Coefficients of the Characteristic Equation Corresponding to Diseases Trans-

mission among Human Matrix

The characteristic equation corresponding to diseases transmission among human matrix

J1 is

P(l ) = l 3 +a1l 2 +a2l +a3

where the coefficients are
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F1 = µ1 +qp,

F2 = µ1 + gp +x 1
p ,

F3 = ap +µ1 +x 2
p ,

a1 = F1(1�R01)+F2 +F3

a2 = F2F1(1�R01)�F3F1[(1�R01)]�F3F2 �b2qp

a3 = F2F3F1(1�R01)�qp[b2F3 +b5gp]

a1a2 = (F1)2F2(1�R01)2 +((F1)2)F3(1�R01)2 �F1F2F3(1�R01)2 �b2qpF1(1�R01)

+(F2 +F3)[F2F1(1�R01)+F3 +F1(1�R01)�F3F2 �b2qp]

a1a2 �a3 = (F1)2(1�R01)2[F3 +F2]�b2qpF1(1�R01)

+(F2 +F3)[F2F1(1�R01)]+F1F3(1�R01)�F3F2 �b2qp +qp[b2F3 +b5gp]
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