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Abstract

In this thesis, a class of flow quantum Lotka-Volterra genetic algebras (FQLVG-
A) is investigated and its structure is studied. Moreover, the necessary and sufficient
conditions for the associativity and alternatively of FQGLV-A are derived. In addition,
idempotent elements in FQGLV-A are found. Also, derivations of a class of FQLVG-A
are described. Also, the automorphisms of a class of FQLVG-A and their positivity are

examined.

Keywords: Flow quantum Lotka-Volterra genetic algebras, Jordan algebra, associa-
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Chapter 1: Introduction

1.1 Literature review

The history of the quadratic stochastic operators can be traced back to the
work of Bernshtein in 1924 [1]. Many physical systems were investigated by reducing
them to Markov processes which connected with these systems. Quadratic dynamical
systems have been proved to be a rich source of analysis for the investigation of dy-
namical properties and modeling in different domains, such as population dynamics
[1-3], physics [4, 5], economy [6], mathematics [7-9]. However, there are systems that
were not described by Markov processes. Many of these problems involve quadratic
stochastic operators. One of such systems is given by Quadratic Stochastic Operators
(QSO), which is related to population genetics [1]. The problem of studying the behav-
1or of trajectories of quadratic stochastic operators was stated in [9]. Let us describe
this model.

Consider a biological population, that is, a community of organisms closed
with respect to reproduction according to Bernstein [1]. Assume that every individ-
ual in this population belongs to precisely one of the species 1,2,...,n. The scale of
species is such that the species of parents i and j unambiguously determine the proba-
bility of every species k for the first generation of direct descendants. The probability

(the heredity coefficient) is denoted by p;; «. Then,

Pijk =0

n
Zpij,k = 17VZ7]7k
i=1

Assume that the population is so large that frequency fluctuation can be ne-
glected. Then, the state of the population can be described by the tuple x = (x1,x2, ..., X;)
of species probabilities, that is, x; is the fraction of the species i in the population.

In the case of random interbreeding, the parents pairs i and j arise for a fixed state



X = (x1,X2,...,x,) with probability x;x;. Hence,
n
x;c: Z Dij kXiXj (1.1)
ij=1

is the total probability of the species k in the first generation of direct descendants.

The set:

§" = {XZ (01, X2, X0) [x; > 0, ) xj = 1}

j=1

is an (n— 1)-dimensional simplex. Since x’; >0 and }.}_; x; = 1, the quadratic stochas-
tic operator is defined by formula (1.1) maps "~ ! into itself. The concept of quadratic
stochastic operator was introduced by Bernstein [1]. The problem of investigation the
trajectories of quadratic stochastic operator was posted in Ulam [9]. Complicated and
bulky recurrences made it impossible to develop analytical methods. The study of con-
crete quadratic operator involved a lot of calculations, which did not stimulate interest
in this problem.

Let V,W, and X be three vector spaces over the same field F. A bilinear map
is a function:

B:VxW-—=X

such that for all w € W, the map B,,:
v— B(v,w)

is a linear map from V to X, and for all v € V, the map B,:
w — B(v,w)

is a linear map from W to X.

For example, if a vector space V over the real numbers R carries an inner prod-

uct, then the inner product is a bilinear map V xV — R.



An algebra is a vector space equipped with a bilinear product. The multiplica-
tion in an algebra may or may not-associative, leading to the notations of associative
algebra or non-associative algebras. An algebra is unital or unitary if it has an identity
element with respect to the multiplication. For example, complex numbers is associa-

tive and commutative with the bilinear operator:
(a+ib)-(c+id),a,b,c,d € R.

Another example is R? with bilinear operator is the cross product of vectors.

Then, it is neither associative nor commutative. The third example is R* with Hamilton
product as bilinear operator:

I S T S

(ar+bii +c1j+dik)artbri +crj+dok

= (a1a2 — b1b2 — C1C2 — dldz)
-

+(ajcy —bidr+crax+diby) i
ﬁ

+(a1by +bray+crdy —dica) j
_)

+(aidy+bicy —c1by +dian) k

is associative but not commutative.

In mathematical genetics, genetic algebras are (possibly non-associative) used
to model inheritance in genetic. In application of genetic, this algebra often has a ba-
sis corresponding to genetically different gametes, and the structure constant of the
algebra encode the probabilities of producing offspring of various types. There exist
several classes of non-associative algebras (baric, evolution, Bernstein, train, stochas-
tic, etc.), whose investigations have provided a number of significant contributions to
theoretical population genetics. Such classes have been defined different times by sev-
eral authors, and all algebras belonging to these classes are generally called genetic.
In recent years many authors have tried to investigate the difficult problem of classi-

fication of these algebras. The most comprehensive references for the mathematical



research done in this area are [8, 10-13].
Let A be an algebra over a field K. Assume that A admits a basis {ey,...,e,}

such that the multiplication constants p;; ; with respect to this basis, are given by

n
ejoej =Y Pijkek
k=1

We say that A is a genetic algebra if the multiplication constants P;; ; satisfy
L. pijx 20,

2. Y pijk =1

General properties of genetic algebras were investigated in [8]. One of the im-
portant algebras is Lotka-Volterra genetic algebras which emerge in connection with
biological problems and Lotka Volterra systems for the interactions of neighboring in-
dividuals. Lotka-Volterra algebras over the real numbers were introduced in 1981 by
Y. Itoh [14]. These algebras are associated to quadratic differential equations [15, 16]
and they give descriptions of solutions and singularities. These algebras present many
connections with other mathematical fields including graph theory, Markov chains, dy-
namical systems and theory of population genetics, [17, 8]. P. Holgate showed how a
derivation of a genetic algebra can be interpreted in biological terms [18]. In [19-24], a
classification of the derivations of Lotka-Volterra algebras up to dimension 3 has been
given and also the paper [25] gives some examples of derivations of Lotka-Volterra
algebras with dimension 4. However, the classification in dimension 4 is not complete.
More details can be found in [26-28].

A system which has a rule that gives a description of the time dependence
of the state is called a dynamical system. In this thesis, we study a dynamical sys-
tem in which at a specific time it has a state that is a finite-dimensional algebra. A
Kolmogorov-Chapman equation that describes what the states follow for the present
algebra is called the evolution rule of this dynamical system. One can see that any

finite-dimensional algebra can generate a cubic matrix of structural constants. This



matrix produces an evolution quadratic operator. For this reason, dynamical systems
produced by quadratic operators have significant attention and become one of the main
factors to make researchers study the dynamical properties and modeling in many do-

mains, such as population dynamics [1], physics [5], economy [6] or mathematics [29].

In recent work in [30, 31, 32, 33, 34], several chains of evolution algebras were
given and investigated. In each of these papers, the matrices of structural constants
(depending on pair of time (s, t)) are square or rectangular and satisfy the Kolmogorov
Chapman Equation. This means a chain of evolution algebras is a continuous-time dy-
namical system which in any fixed time is an evolution algebra. It is well-known that
any matrix satisfying the Kolmogorov—Chapman Equation is stochastic which gener-
ates a Markov process. Hanggi and Thomas [35] studied time evolution of non-Markov
processes as they occur in coarse-grained description of open and closed systems. Sev-
eral properties of the theory are given for the two-state process and Gauss process. In
[29], they generalized the notion of chain of evolution algebras to a notion of flow of
arbitrary finite-dimensional algebras and their matrices of structural constants are cu-
bic matrices. Due to the general form of the matrix of structural constants in each flow
of algebras, the non-Markov processes of [35] can be derived from structural constant
matrices in chains or flows of algebras. Therefore, they can be applied to biology and
physics.

The purpose of this thesis is to investigate a quantum analogues of genetic al-
gebras, and to discuss in detail many properties of a Flow Of Quantum Lotka-Volterra
Genetic Algebras (FQLVG-A). It is worth mentioning that such types of algebras are
first appeared in this thesis.

A flow of algebras is a particular case of a continuous-time dynamical system
whose states are algebras, the matrix of structural constant of which depending on time
and satisfy an analogue of the Kolmogorov-Chapman Equation (KCE), see [40]. Since
there are several kinds of multiplications between cubic matrices, the multiplication
in this thesis is fixed and then one can study the KCE for this fix multiplication. The

existence of the solution of KCE provides the existence of a flow algebra. The aim



of this thesis is to construct the flow algebras with respect to the given multiplication.

Moreover, some time-dependant behavior properties of such flow algebras are given.

1.2 Objectives

The followings are main objective of this thesis.

1. To construct a class of Quantum Genetic Algebras (QGA) depending on param-

eter¢.
2. To investigate structures of a class of FQLVGA.
3. To describe derivations of a class of FQLVGA.

4. To describe automorphisms of a class of FQLVGA.

1.3 Overview

This thesis consists of six chapters. Chapter 2 contains preliminary facts and
necessary definitions of positive maps. Moreover, positive, trace preserving and unital
operators on M,(C) are described. The quadratic stochastic operators are defined as
well at the end of this chapter, some properties of quantum quadratic stochastic op-
erators on M;(C) are presented. Chapter 3 is divided into three sections. In the first
section, symmetric commutative ¢.q.0.s on the commutative algebra DM, (C) are de-
scribed. In the second one, symmetric quasi q.q.0. on DM, (C) are studied. In the third
section, a quantum analogue of Lotka-Volterra operators on M;(C) is defined. Also,
some properties of these operators are presented. In chapter 4, a flow of quantum
genetic Lotka-Volterra algebras are defined. Moreover, the necessary and sufficient
conditions for the associativity and alternatively of FQGLV-A are derived. Also, the
idempotent elements in FQGLV-A are found. Chapter 5 is devoted to the derivations
of FQGLV-A. In Chapter 6, ten types of automorphisms are derived and necessary

conditions are obtained.



Chapter 2: Preliminaries

2.1 Positive elements in M,,(C)

Let 27 be the n—dimensional Hilbert space C". The inner product between

two vectors x and y is written as (x,y), where
n

(x,y) =Y xivi,
i=1

X = (x1,X2,...,%n),¥y = (¥1,¥2,...,yn). It is noted that inner product is linear in the first
variable and conjugate linear in the second. .2 (7¢) is denoted to be the space of all
linear operators on 7, and by M, (C) or simply M, to be the space of n x n matrices
with complex entries. Every element A of .Z () can be identified with its matrix
with respect to the standard basis {e;} of C". The symbol A is used for this matrix as
well. In what fellows, 1 is denoted the identity operator in 77 (i.e., Ix =x,x € 7). A
matrix A is called positive if

(x,Ax) >0 (2.1)

for all x in .7Z. The notation A > 0 is used to mean that A is positive. There are several

conditions that characterize positivity of matrices. Some of them are listed below.

Theorem 2.1.1 A matrix A is positive if and only if one of the following conditions

holds
(i) A is Hermitian (A = A*) and all its eigenvalues are nonnegative.
(ii) A is Hermitian and all its principal minors are nonnegative.
(iii) A = B*B for some matrix B.

(iv) A = B? for some positive matrix B. Such B is unique. In this case, B = AY? and



call it the (positive) square root of A.

If A, B are Hermitian, it is said that A > B if A — B > 0. Some notations
will be fixed. The polar decomposition of A is written as A = UP. If the factor U
is unitary and P is positive, then P = (A*A)]/ 2. This is called the positive part or the

absolute value of A and is written as |A|. This implies that A* = PU*, and:

A7 = (AA")Y2 = (UP?U™) 2 = UPU™.

A is said to be normal if AA* = A*A. This condition is equivalent to UP = PU,
and to the condition |A| = |A*|. The singular value decomposition of A is written as
A =USV. Here U and V are unitary and S is diagonal with nonnegative diagonal
entries s1(A) > ... > s,(A). These are the singular values of A. The symbol ||A|| will

always denote the norm of A as a linear operator on the Hilbert space 7, i.e.,

|A[l = sup [[Ax]| = sup [|Ax]].

[[x[|=1 [Ix[| <1

It is easy to see that ||A|| = s1(A). Among the important properties of this norm

are the following:

lAB| < [[Al[l[B],
1]} = flA™];
1]} = l[vav ], (2.2)

for all unitary U, V. This last property is called unitary invariance. Finally,

lA*A] = [|A]J*. (2.3)

There are several other norms on M, (C) that share the three properties (2.2).

It is the condition (2.3) that makes the operator norm || - || very special. A matrix A is



called contractive, or A is a contraction, if ||A|| < 1. Next are some known results.

Proposition 1 [41] The operator A is contractive if and only if the operator

A* 1
is positive.

Proposition 2 [41] Let A, B be positive. Then the matrix

is positive if and only if X = Al/2KB1/2 for some contraction K.

Theorem 2.1.2 [41] Let A, B be positive matrices. Then the block matrix

X* B

is positive if and only if A > XB~1X*.

Lemma 2.1.3 [41] The matrix A is positive if and only if

is positive.
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Proof. From
A A A 1/2 0 A 1/2 A 1/2
A A AlZ 0 0 0
one gets the desired assertion. [

Corollary 2.1.4 Let A be any matrix. Then the matrix:

Al AT

A |AY

is positive.

Proof. Use the polar decomposition A = UP to write

Al A* P PU* 1 O P P 1 0
A |AY| UP UPU* 0 U P P 0 U*
and then use the Lemma 2.1.2. L]

Corollary 2.1.5 If A is normal, then

Al A

is positive.
2.2 Positive mappings
A mapping ® : M,,(C) — M;(C) is called linear if for any A, B € M,,,(C) and

A € C one has

(LA +B) = AD(A) + D(B).



11

The symbol @ is used for a linear map from M,,(C) into M(C). When k =1
such a map is called a linear functional, and the lower-case symbol ¢ is used for it.

The norm of ® is

[Pl = sup [|b(A)] = sup [[@(A)]]
lal=1 <1

Definition 2.2.1 A linear mapping ®: M,,(C) — M;(C) is called
(1) unital, if q)(]le((C)) = ]le((C)'
(ii) positive, if ®(x) > 0, whenever x > 0.

Definition 2.2.2 Let A € M,,,(C) be a matrix. Then, trace of A is denoted by 7r(A) and

it is defined by the sum of diagonal elements of A.

Definition 2.2.3 Let ¢ : M,,(C) — M,,(C) be a linear map. Then, ¢ is called trace

preserving if and only if rr(@(A)) =tr(A) for all A € M,,,(C).

Example 2.2.1 (i) ¢:M,,(C) — R, ¢(A) =1trAis apositive linear functional; ¢(A) =

~1rA is positive and unital.

(ii) Every linear functional ¢ : M,,(C) — R on M,,(C) has the form ®(A) = trAX
for some X € M, (C). It is easy to see that ® is positive if and only if X is a

positive matrix; ¢ is unital if 177X = 1.

(iii) The map ®(A) = %]l is a positive map of M,,(C) into itself. (Its range consists

of scalar matrices.)
(iv) Let A” denote the transpose of A. Then the map ®(A) = A" is positive.

(v) Let X be an m x k matrix. Then ®(A) = X*AX is a positive map from M,,(C)

into My (C).

Lemma 2.2.1 [41] Every positive linear map is adjoint-preserving; i.e., ®(T*) =



12
O(T)* forall T.

Proof. First, ®(A) is Hermitian if A is Hermitian is needed to prove. Every Hermitian

matrix A has a Jordan decomposition:

A=A, —A_

where A+ > 0. So,

D(A) = D(AL) — D(A)

is the difference of two positive matrices, and is therefore Hermitian. Every matrix T
has a Cartesian decomposition:

T=A+iB

where A, B are Hermitian. So,

O(T)* = D(A) — iD(B) = D(A —iB) = B(T*).

Theorem 2.2.2 [4]1] Let ® be positive and unital. Then for every Hermitian A,

D(A)? < D(A?). (2.4)

Remark The inequality (2.4) may not be true if ® is not unital [37].
Theorem 2.2.3 [41] If ® is positive and unital, then ||P|| = 1.

Corollary 2.2.4 [4]] Let ® be a positive linear map. Then ||®|| = ||P(1)]].
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2.3 Pauli matrices and their properties

In this section, the algebra M;(C) is considered. In the sequel, 1 is meant an

identity matrix:

and 7 is denoted to be a normalized trace, i.e.

X11 X12 X11 +x22

2
X21  X22

It is known that the positivity of a matrix:

a a2

az; axp

is equivalent to the conditions: aj; > 0 and aj1a2; — |a 12|2 > 0. The Pauli matrices are

denoted by o7, 02, 03 which are defined as follows:

o1 = , 02 = , 03 = . (25)

It is noted that the identity and Pauli matrices, i.e. {1, 0}, 02,03} form a basis
for M,(C). Namely, every matrix A € M,(C) can be written in this basis as A =

wol +w- o with wg € C,w = (w,wz,w3) € C3, here by w- o is meant the following:

W-0 = w101 +w2072 +w303.



14

For the sake of completeness, let us demonstrate how the coefficients wo, wi, wp, w3

are represented by the matrix entries. Assume that:

A =wol +wi01 +wr0r + w303, (2.6)
where
aip ai
A=
azy a2

Thus, equations (2.5) and (2.6) imply that:

ay ap wo+ws wp—iw
ar; an wi+iwy  wo—ws
which means
.
wo+ws =aiy,
wi —iwp = dj3,
2.7
wi +iwy = apy,
L wo—Ww3 =daj).
Solving System (2.7) one finds:
apr+ax ap+azg
wWp=——-, W= —— 2.8
o = @8)
az| —aiz aip—a
wy = —, W3 = ————. (2.9)
2i 2

Lemma 2.3.1 The following assertions hold true:

(i) A is self-adjoint if and only if wo, w are reals;
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(ii)) A > 0 if and only if wo, w are reals and ||w|| < wo, where

Wl = y/hwi 2+ [wa 2+ s . (2.10)
Proof. (i). Assume A € M,(C) is self adjoint, then A is represented as follows
A=wol+w;0]+wr02 +Ww303 2.11)

S0,

A* =wol +wi0o] + W0, +W303.

Self adjointness of A implies that:
wol +w101 +w202 +w303 = wol +W10) +W20, +W303

hence,

(wo —wo)1 + (w1 —W1)01 + (w2 —W2) 02 + (W3 —Ww3)03 = 0.

Linearly independence of 1, o1, 63, 03 yields:
Wo =Wp, Wi =W, Wy =W2, W3=W3.
Thus, wo and w are real. Conversely, if wg, w;,w,, w3 are real numbers, then:

A* =wol +Wi0] +Wwr0r +W303

=wol +wi01 +wr0, +w303 = A.
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Thus, A is self adjoint.

(ii) Assume that a matrix A € M,(C) is positive. This means that:

ai1 >0, ajaxn > |apl? (2.12)

According to Equations (2.8), (2.9), one gets:

_ (ai2+ax axy—ain ajp—axn
2 ’ 2i 2 ’

Then,

[[wll =\/

:\/(6112+az1)(a12+6121)+(021—a12)(6121—a12)+(au—azz)(au—azz)

2
aip —an
2

2
az1 —dai2
2i

2
ap +azy
2

4 4 4
_ J(ann+az)(a +an) (a1 —ap)(az—ax) (a1 —axn)(an —axn)
- 4 + 4 + 4

1
- E\/a%z +2apaz1 + a3, — (a5, — 2apaz; +a3,) + a3, —2ay1ax +a3,

1

= 5\/(011 +an)? —4(ajjaxn —|anl?)
1 ay +axn

< 5/ (an tan)=—F"=

) wo.

Conversely, assume ||w|| < wg holds. Since wg,w are real numbers, A is self

adjoint. This means wy > 0, which with (2.8) yields:

ar 72La22 >0. (2.13)
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Above calculations imply that:

2
\/(6111 Zazz) — (a11axn — lan|?) < anTan -2Hl22_

Taking square for both sides of last inequality, one has:

2 2
ail+ax air+ax
<T) — (an1az — |apl*) < <T)

hence,

ajaxn —lap* >0

which implies:

ajaxn > |ap|?.

This means a1, as; have the same sign. Due to Equation (2.13), one concludes

ai > 0. The proof is completed. [

Recall that a functional f : M,(C) — C is called a linear functional if

for any A,B € M,(C) and A € C, one has:
f(A+AB) = f(A)+Af(B). (2.14)

A linear functional f is called positive if f(A) > 0 whenever A > 0. A positive

linear functional f is called a state if f(1) = 1. S(M>(C)) denotes the set of all states
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defined on M(C). Let ¢ be a linear functional. Then,

o(x) = @(wol + w01 + w00 +w303)
=wo@(1) +w19(01) +w20(02) +w3¢9(03)

=wofo+wifi +wafo+wif3,

where f; = ¢(0;),i = 1,2,3. Hence, any linear functional ¢ on M,(C) can be repre-

sented by

o(wol +wo) = wofo+ (w,f) (2.15)

where (-,-) stands for the standard scalar product in C3, i.e. if p = (p1,p2,p3),q =
(‘]17(]27(]3) € C37

(P,q) = P11 + 232 + P3G3-

Let x € M>(C), then

Denote

Note that x,x; are self adjoint. Indeed,

. [(x+xX\T X +x xtxt
xl:( 2 ) T2 T2 T
. x—x*\" x—-x x—x*
x2:< 2i ) I TR T

It is known that any self adjoint matrix x € M>(C) can be represented as fol-

lows:

X=Xx;y—Xx_, (2.16)
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where x1,x_ are positive elements of M>(C). Hence, arbitrary x € M,(C) has the

following form:

where x; 1 ,x1,—,x2 ,xp _ are positive elements of M,(C).

Lemma 2.3.2 A linear function @ is a state on M»(C) if and only if
O(wol +wo) =wo+ (w,f), 2.17)

where £ = (f1, f2,f3),f € R3, [l < 1.

Proof. ’only if” part. Assume x € M,(C) is self adjoint, then from Equation (2.16),

one finds

P(x) = @(xy —x-) = @(x1) — @(x-).

It is known that ¢ is a positive functional. Therefore, ¢(x ), (x_) are positive
numbers. Hence, ¢(x) is a real number. So, f; = ¢(0;) are real numbers, i.e. f € R>.
Since ¢ is a state then fo = 1(= ¢(1)) in Equation (2.12). Thus, Equation (2.17) is

derived. Let x € M,(C) be a positive i.e. x =wol +wo, ||w| < wop,wy > 0. Putting

1

v = —Ww, one finds
wo

1 w0
[vll=—|wll<—=1.
wo w

So, x =wp(1 +vo), with ||v|| < 1. Positivity of ¢ implies that ¢(x) > 0. This

means @(wo(1+vo)) =woe(1+vo) > 0. From wy > 0, it follows that:

¢(1+vo) >0 (2.18)
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for every v € R with ||v|| < 1. Therefore, from Equations (2.17), (2.18), one gets

L+vifi+vafa+vifs >0, v=(vi,2,3).

So,
3
- Y vifi<1
i=1
Now changing v; to —v;, implies that:
3
Zvifi <1.
i=1
Hence,
3
Zvifi' <1 forany |v|] <1.
i=1
Put:
N A
V= V1,V2,V3>,V' = —0.
( C A
Therefore, Equation (2.19) implies that
3
Zﬂfi' <1.
i=1
This means
1 3
— Y A<t
£l =
So,
1 2
waH < 1= |[fj<1.

(2.19)

‘if” part. Assume that Equation (2.17) is valid. The task now is to show that ¢
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is a state on M, (C). It is clear that ¢ is a linear functional and ¢(1) = 1. To show ¢
is positive, let x be positive. If x = wol 4+ wo, then ||w|| < wy. The Cauchy-Schwarz
inequality implies that:

[{(w, ) < [Iwll[If]] < wo.

Hence,

wo+ (W, £)| >0 = @(x)=wo+]|(w,f)|>0.

]

By M, (C) ®M,(C) is denoted to be the tensor product M, (C) to itself. Namely,

M (C)@M(C) = { zn: ax & by|ay, by EMZ((C)} ;

k=1

where for A = (a;;), B = (b;;) one has:

byiayy briaiz bixayy bpan

b11A bppA byiax1 briaxn bixazy brpaxn

by1A bpA byrayy brrain bxpayy bpap

baraz1 brrax braz bxpax

For a given state @, the following linear operators are denoted by Eg, : M>(C) ®

Mz(@) — Mz((C) and E(p : Mz(@) ®M2((C) — Mz(@) by

Eo(x®y) = 0(x)y, Eo(x®y)=0(y)x,

where x,y € M,(C). It is known that the defined mappings are positive, see [23].
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2.4 Bistochastic mappings on M,(C)

In this section, the positive, trace preserving and unital operators on M,(C)
will be described. Let @ : M, (C) — M;(C) be a linear mapping. Let us find a matrix
form of @ in {1,0;,0,,03} basis, where as before, 0}, 05,03 denote Pauli matrices.

Thus,

O(1)=M1+1t0]+10,+1303
®(01) =1l +a1101+a202+a3103
CI)(Gz) =M1 +a1201 +a»os +azo;

cI)(Gg,) = M1 +a1301 +ax305 +az303. (2.20)

Therefore, the corresponding matrix of ® is denoted by F, i.e.,

M b A3 A
I apnn arp a3

I az ax»n ax

I3 azy az ass

Lemma 2.4.1 [41] Let ® : M(C) — M,(C) be a linear mapping. Then ® trace pre-

serving (T(®(x)) = t(x) for all x € M»(C)) if and only if

F= : (2.21)

where t = (11,12,13)", T = (a;;);;,0 = (0,0,0).
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Proof. ’only if” part. Using 7(®(x)) = 7(x) and Equation (2.20), one finds:

7(®(1)) =A1(1)+117(01) +1r7(02) +137(03) = A4 =1(1) =1, (2.22)

T(@(Gl)) = QLQT(]I) —|—a11’c(61) —|—a21’1'(62) —I—a31T(G3> =l = T(Gl) =0(2.23)

’L'(q)(Gz)) = 7[.3”5(]1) —|—a12’c(61) —l—azzf(Gz) —|—a32T(G3) =A3 = T(Gz) =0(2.24)

T(P(03)) = 4t(1) +a137(01) +a237(02) +aszt(03) = A4 = 7(03) = 0(2.25)

The reverse implication immediately comes from Equation (2.21) [

Lemma 2.4.2 [41] Let ® : My(C) — M»(C) be a trace preserving linear mapping.
Then one has:

P(wol +wo) = wol + (wot+Tw)o. (2.26)

Proof. According to the matrix representation of @, F will be used instead of

®. Therefore, one gets:

CD(WO') = F(WG) = F(Wl o1 +wr0 +W3G3) =wFo, +w;Fo, +wsFos.  (2.27)

Note, the matrices 1, 01, 03, 03 can be represented in a vector form as follows

(in 1, 01, 03, 03 bases):

1=(1,0,0,0), o1 =(0,1,0,0), o»=(0,0,1,0), o3=(0,0,0,1).



e,
nc
He

— wo
) =woF(1) =
wod(1

= w)
WlF(Gl)

(71) =

chb(

=Wy
W2F<62)
62) =
qu)(

= w3
w3F(03)
63) =
W3CI)(

5]

15}

5]

15}

;3

3|

15}

13

41

13

ain

az]

asi

ai

azl

asi

ai

asz

asy

ai

az

asy

ais
a2

an3s
5¥)

ass
asn

a2

ann

asn

a2

a2

asz

a2

ann

asz

ais

an3s

ass

ais

ans3s

ass

as

ans3

ass

wo

woly

wol

wol3

widi

widzi

widasg

wadi2

wadzn

wadszn

w3dai3

w3daz3

w3ds3




Consequently, one finds:

wiaig
d(wo) =

widzi

widasg

The last one implies:

D (wol +wo) = woP(1) +P(wo) =

=wol 4+ (wot+Tw)o.

The proof is complete.

waai2

wadano

waasz

w3dai3
w3da3

w3dass

wo

W()T
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wiap +waai2 +wsais

wiaz +waan +wsians

wias) +woasp + wsas;

Tw wot+TW

Lemma 2.4.3 [41] Let ® : My(C) — M>(C) be a trace preserving linear mapping.

Then, ® is adjoint preserving if and only if t, T are real.

Proof. ’only if’ part. Let x = w1l + wo then x* = wyl +Wwo. According to Lemma

2.4.2 one has:

®(x) =wol + (wot+Tw)o

(2.28)

P(x*) =wol + (wot+Tw)o. (2.29)
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Hence,

®(x)* =Wyl + (wot + Tw)o = wy®(1) + (wot + Tw)o (2.30)

From the condition, one has ®(x*) = ®(x)*. Therefore,

Wwo® (1) + (Wot+Tw)o = wo®(1) 4 (Wot + Tw)o. (2.31)

So,

(wo(t—1)) + (T—T)w)o =0 (2.32)

where wp € R and w € R? and 0 = (0,0,0). Due to the linear independence of

01, 02,03 one gets:

wo(t—1) + (T —T)w =0. (2.33)

Now arbitrariness of wy and w implies:

This means that t and T are real.

’if” part. Let t and T are real, one can easily see that ®(x*) = ®(x)*. O

Corollary 2.4.4 Let & : My(C) — M>(C) be trace preserving linear mapping. Then ®

is unital if and only if t = 0 and one has:

P(wol +wo) =wpl + (Tw)o. (2.34)
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Proof. ’only if” part. From Lemma 2.4.1, one finds:

®(1) =1+ (t)o.

Now taking into account unitality (®(1) = 1) of ®, one gets t = 0. The reverse

implication is obvious. 0

Proposition 2.4.5 [4]1] Let ® : M>(C) — M»(C) be a unital trace preserving linear

mapping. Then, ® is positive if and only if T is real and | T| < 1.

Proof. ’only if” part. Since @ is positive, then according to Lemma (2.4.3), then T
is real. Take x = wol +wo. Without loss of generality, take wy = 1. From equation
(2.34), one gets:

(1 +wo) =1+ (Tw)o. (2.35)

Ifx=1+wo >0, then

®(x) =1+ (Tw)o > 0. (2.36)

It means that || Tw|| <1 for any ||w|| < 1. Therefore, | T|| < 1.
"if” part. Let T be real and ||T|| < 1. Assume x = wol +wo > 0, that is

||lw|| < |wo|. It enough to show that:

P(x) =wol + (Tw)o > 0. (2.37)

Since T is real, so ®(x) = wol + (Tw)o is self-adjoint element. From ||T|| < 1, one

has || Tw|| < ||w|| < |wo|, which yields that ®(x) is positive. O

Remark It is noted that all positive linear mappings of M, (C) where described in [38].
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2.5 Quadratic stochastic operators

Let I = {1,...,m}. {e;}ics is denoted to be the standard basis in R", i.e.
e; = (&i1,...,0im), where & is the Kronecker’s Delta. Throughout this thesis, consider

the simplex:

m
" ={x=(x)ER":x;>0,Viel,) x;=1} (2.38)
i=1

A quadratic stochastic operator (QSO) is a mapping of the simplex ™! into itself of

the form

m
Vixe= Y pijexixj, k=1,2,....m (2.39)
i,j=1

where p;; ;. are heredity coefficients, which satisfy the following conditions:

m
Pijk =0, Pijx = Pjik Zpij,kzla i,jke{l,2,....,m}. (2.40)
=1

A QSO V defined by Equation (2.39) is called Lotka-Volterra operator [39] if
pijx=0if k& {i,j}, foralli,j kel (2.41)

Equations (2.40) and (2.41) imply that:

Diiji = 1 and Pijitpijj= 1, foralli,jel, (i #* ]) (2.42)

Remark Note that it is obvious that the biological behavior of Condition (2.41) is that

the offspring repeats one of its parents’ genotype (see [26,39]).

Let V be a QSO and suppose that x,y € R™ are arbitrary vectors, a

multiplication rule (see [31]) on R™ is introduced by

(xoy) = Z DijkXiyj (2.43)
ij=1
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where X = (x1,...,%n),Yy = (V1,.--,Ym) € R™. The pair (R™, o) is called genetic alge-
bra. It worth to mention that this algebra is commutative, i.e. Xxoy = yox. Certain
algebraic properties of such kind of algebras were investigated in [8, 14, 20]. In gen-
eral, the genetic algebra is not necessarily to be associative. In [19], associativity of
low dimensional genetic algebras have been studied. If V is a Lotka-Volterra QSO,

then the associated genetic algebra is called genetic Lotka-Volterra algebra.

Remark Let A be a Lotka-Volterra algebra generated by heredity coefficients {p;; « }.

Then, Equations (2.42) and (2.11) imply that

(a) foreveryi,j€ I (i# j),one has

€;o0e; = pjji€ + pij €;. (2.44)

(b) ei2 =e; foreveryicl.

Theorem 2.5.1 [30] Let A be an algebra over R. If it has a genetic realization with
respect to the natural basis e;, ..., e, then A is a (non-associative) Banach algebra with
m m
respect to the norm ||X|| = ¥ |xi| forx =Y x;e; € A.
i=1 i=1
Recall that a derivation on algebra (A, o) is a linear mapping D: A — A

such that D(uov) = D(u)ov+uoD(v) for all u,v € A. It is clear that D = 0 is also a

derivation, and such derivation is called trivial one.
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2.6 Quantum quadratic stochastic operators on M,(C)

In this section, some properties of quantum quadratic stochastic operators are

recalled. One can see that a basis of M, (C) ® M,(C) can be formed by the system:

11, 1®0o, 1®o0,, 1Xo0;,
o ®1, o1®01, 010y, 0]XO03,
0l, p®0), 0L,R®O0,, 0,K03,

o031, 03R0], 03R0y, 03X 03.

Therefore, any unital linear operator A : M, (C) — M»(C) @ M;(C) can be rep-

resented as follows:

Al =1®1;
3
Alo) =bi(1o1)+ Y b (100
j=1
S J
+iji (o;@1)+ Z by1,i(0m ® 07), (2.45)
Jj=1 m,l=1

where i = 1,2, 3. Due to Equation (2.45), the operator A has the following form:

A(x) = (wo + (x, W) 1 ® 1

3
+1@BYw.-c+BPw.-c@1+ Y (bu.Wou®0, (2.46)

m,l=1

where b = (b1,b2,b3). byt = (but,1, bt 2,bmr.3). and BO = (6113 k=1,2 are

reals for every i, j,k € {1,2,3}. Here as before (-, -) stands for the standard dot product
in C3.
Definition 2.6.1 [26] A linear operator A : M(C) — M,(C) @ M>(C) is said to be a

quantum quadratic operator (q.q.o0.) if it is unital and positive.
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Definition 2.6.2 [26] A linear operator A : M>(C) — M,(C) @ M»(C) is called sym-
metric if UA = A, where U(x®y) =y®x, x,y€ M(C),

From now on, symmetric q.q.o. will be used.
Let A: M>(C) — M>(C) ® M>(C) be alinear symmetric operator. Then its dual defines

an operator Vj given by

Va(@) =A"(p® ), ¢ € My(C)". (2.47)

This mapping is called quadratic operator. Note that this kind of operators have
been introduced in [24]. Then, due to Equation (2.46), for every state ¢ € S(M,(C)),

the functional A*(¢ ® @) is a state if and only if the corresponding vector:

fA*(‘P 0) — <b1+22b]1fj+ Z blj,lftijb2

i,j=1

+22b12fj+ ZleZflfjvb3+2ZbJ3fj+ Zbl]3flfj) (248)
7] 1 7] 1
satisfies ||fa«(¢, )|l < 1, here the vector f= (f1, f2, f3) corresponds to the state ¢. From

the last expression, one can see that:

Va(@)(ox) = bk+22b]kf,+ Zb,,kf,fj, feB, (2.49)
i,j=1

where B = {p € R*: ||p|| < 1}. This suggests to consider a nonlinear operator V :

B — R3 defined by

V(f)k—bk+22bjkfj+ Zb,jkf,fj, k=1,2,3 (2.50)

i,j=1
where f = (f1, f2,f3) € B. Hence, any unital linear operator A : M,(C) — M(C) ®
M,(C) is a quasi g.q.0. if and only if the corresponding operator V satisfies V(B) C B.

It is noticed that dynamical behavior of quadratic operators has been investigated in
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[26]. In [28], an example has been given of a quasi quadratic operator for which Vy
has chaotic behavior. If A is a g.q.o. then its positivity implies that it is *-preserving,

therefore A is a quasi q.q.0., but the reverse is not true. Consider the following example.

Example 2.6.1 [40] Define a mapping by

Ae(x) =wol ® 1+ ew 0] ® 0] + EW30] ® G2 + EW01 ® O3
+EW30L RO+ EW20, R 07 + EW 107 R O3

+eEwy03 ® 01+ EW103 R 0) + EW303 R 03, (2.51)

where as before x = wol + wo, and € € R. One can find that the corresponding

quadratic operator (see equation (2.50)) is given by

;

Ve(f)1 =e(fE+2155)
Ve(f)2=e(f5 +2/113)
Ve(f)s =€e(f3+211/2)

\

(2.52)

In [40] it was shown that if 1/3 < |&| < 1/+/3, then the operator (2.52) is a quasi q.q.0.,
while the operator A¢ is not positive. Namely, A¢ is not q.q.o.

It is interesting to know for which class of operators A, its quasiness implies
its positivity. Namely, when a quasi q.q.o. is a q.q.o. In the next chapter, the raised

question will be discussed.
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Chapter 3: Quantum Lotka-Volterra Operators

3.1 Quantum quadratic operators on DM, (C)

In this section, symmetric commutative ¢.q.0.s on the commutative algebra
DM;(C) will be described. Here DM,(C) is a commutative subalgebra of M,(C)
generated by {1,03}. In this setting, every element x € DM;(C) can be written as
follows: x = wol 4+ w303, where wg, w3 € C. Let A : DM,(C) — DM, (C) ® DM, (C)
be a unital symmetric linear operator. Then, the operator A in terms of the basis of
DM, (C) @ DM>(C) can be written as follows:

A(W()]l —l—W3G3) :W01®]1+W3A(G3). (3.1
where
A(G3) =h1xl -l-bz(]l X 03 + 03 ®]l) +b3((73 ®G3).

Therefore, from (3.1) one gets

A(X) = (WO +W3b1)]1 QK1+ W3b2(]1 ®03+03Q ]1) +w3b303 ® 03. (3.2)

Theorem 3.1.1 Let A : DM, (C) — DM,(C) ® DM, (C) be a unital, symmetric linear

mapping. Then A is a q.q.o. if and only if

by +2by +b3| < 1, (3.3)

by —b3| < 1. (3.4)

Proof. Let x = wyl + w303 be positive, i.e. wg > 0, |w3| < wp. Without loss of gener-
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ality, assume wy = 1. Let us rewrite A as follows (in the standard basis):

A(x) =11 +w3A

where
b1 +2by+ b3 0 0 0
~ 0 b1 — b3 0 0
A =
0 0 by — b3 0
0 0 0 by —2by+ bs

It is known that the positivity of the matrix A(x) is equivalent to the positivity

of its eigenvalues. Its eigenvalues are given by

M = 1+w3(by +2b +b3),
=1 +W3(b1 —b3),

A3 = 1+W3(b1 —2b2—|—b3).

Using |ws| < 1, one concludes that A1, A, A3 are positive if and only if

’blzl:2b2+b3‘ <1

|b1 —b3| <1.

This completes the proof. ]

Note that any state ¢ on DM, (C) has a form:

p(wol +w303) =wo+ faws, |f3] <1. (3.5)
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By denoting x = (1+ f3) /2, one can rewrite the functional in Equation (3.5) as follows:

o(wol +w303) =wo+ (2x—1)ws, x€0,1]. (3.6)

Hence, there is a one-to-one correspondence between the states of DM, (C)) and [0, 1].

Then, from (3.2), one finds:

PR (Ax)) =0 @(A(wol +w303))
=wol + w30 ® @(A(03))

= wo + w3 (b +b3f2 +2byf3). (3.7)
On the other hand, due to the correspondence (see (3.6)), one has:
PR O(Ax)) =wo+ (2x' — Dws.
The last one together with (3.7) implies
2x' — 1 = by + b3 fi +2bsf3. (3.8)
Keeping in mind f3 = 2x — 1, from (3.8) one finds:
1+by+bz—2by

X' = 2b3x* +2(by — b3)x + 5 : (3.9)

Now, the goal is to reduce the mapping (3.9) to some quadratic stochastic op-
erator (QSO) on the simplex S' = {(x,y) : x,y >0, x+y = 1}. First, recall that any
QSO on S, is given by

X' = Py 12 + 2P xy + P 1y, (3.10)

y =P 1,2x2 +2P1p0xy + Pzz,zyz« (3.11)
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where

Pk >0, Bjx=Pjix, Bji+Pj2=1
forall i, j,k € {1,2}. Due to x+y = 1, it is enough to consider (3.10). So,
X = P1171x2 +2P1271x(1 —X) +P2271(1 —x)z.
Then
X =22 (P11 —2Pia1 +Po) +2x(Pi2g — Pot) + Py (3.12)

Now comparing Equations (3.12) and (3.9), one gets the following result.

Theorem 3.1.2 Let A : DM, (C) — DM, (C) ® DM, (C) be a unital, symmetric linear

operator. Then the following conditions are equivalent:
(i) Aisagq.q.o.;

(ii) the transformation (3.9) is a QSO, where the corresponding coefficients are de-

fined by

b1 +2by+b3+1
Py = > ;
by —2by+b3+1
Py = > )
by —bz+1
Py = >

Moreover, a reverse formula is given by

_ Poat+ Py +2Ppp 1 —2

b
1 ) )
Pii1—Pyg
b2: : D) ;
P11 —2Pi21 + P
by = .

2
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Proof. (i) = (ii) Equalizing the corresponding coefficients of (3.12) and (3.9), one

finds
2b3 = P11 — 2P +Pn

by —b3 =Py — P,

b1 —2by+b3+1
A= =Py

\

After a little calculation, one gets:

b+2by+by+1
Py =5,

by —2by+bs+1
Py = A

)

by—bs+1
Py =—5—.

The positivity of A due to Theorem 3.1.1 yields:

| 2P —1|<1,
12Pp, —1]< 1, (3.13)
| 2P1271 —1 |§ 1.

The last inequalities imply that Py 1, P> 1,Pi2,1 € [0,1], this means that (3.9) is a QSO.

(i) = (i) Assume that we have a QSO is given by {F; ;«}. Let us define

by — Py 1+P1114+2P1 1 —2
1— 2 )

Pii1—Pog
by = ——5—=,

br — Pi1,1—2P1+Pn g
3=~ 72

To show that A is a q.q.0. we need to check the conditions of Theorem 3.1.1.
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One can see that:

by —b3 =2Pp; — 1,
b1 +2by+b3 =2P1 1 — 1,

by —2by+b3 =2P» 1 — 1.

Therefore, due to P;; | € [0, 1], we obtain the required assertion. O

From this Theorem, we infer that any QSO (see (3.12)) defines a q.q.o0. by the

following formula:

P 2P Ppi1-2
Ax) = <W0+ 11,1 20121 + 121 'W3>1®1

2
Pii1—Po)w
RGIR 222") (12034 0501)
Pii — 2P+ Pog)w
L P = 2P+ Pows oo (3.14)

2

3.2 Quasi quantum quadratic operators on DM;(C)

In the pervious section, the conditions on the parameters (by,b;,b3) so that A
becomes a q.q.o are found. In this section, we are going to describe symmetric quasi

q.q.0. on DM,(C). To formulate the result, the following well-known auxiliary fact.
Lemma 3.2.1 Let f(x) = ax? + bx + c. Then the following conditions are equivalent:
(i) f(x) >0 forall x €[0,1];
(ii) ¢ >0, a+b+c > 0 and one of the following conditions is satisfied:
I a>0,

(1) b>0;
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(2) —b>2a;
(3) b* —4ac <0;
II. a<O.
Proof. From f(x) > 0,x € [0,1], we get f(0) >0, f(1) > 0, which yield ¢ > 0,a+

b+ c > 0, respectively. Now, two sperate cases are considered.

I) Assume that a > 0, then to have f(x) > 0, for all x € [0, 1], there are only three

possibilities:
(1) =2 <0;
2) =5 > 1;

(3) b? —4dac <0.

The last conditions imply the assertion .
II. Now, let a < 0 . Then there is only possible case, which is b> — 4ac > 0. Due to
a <0, ¢ >0, the last condition, i.e. b*> —4ac > 0 holds. Therefore f(x) >0, for all

x €10,1], a < 0. This completes the proof . ]

Now, the main result of this section will be stated.

Theorem 3.2.2 Let A: DM(C) — DM,(C) ® DM, (C) be a linear mapping given by
(3.2). Then A is quasi q.q.o. if and only if | by £+ 2by + b3 | < 1 and one of the following

conditions is satisfied:
(i) b3(b3+b2) <0;
(ii) b3(bs —by) <0y

(iii) b3 —b1bs — |bs| < 0.
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Proof. To establish that A 1s a quasi g.q.0. it is enough to show @ ® ¢ o A is a state for

all states @. Thus, due to (3.9), is equivalent to

by —2by+b3+1
L2 2103

0 < 2b3x* 4 2(by — b3)x 5

<1, forall x€[0,1]

The last inequality is equivalent to

2b3x% +2(by — by)x 4 =22tbstl >
(3.15)

—2b3x? —2(by — by )x — 2=2athstl 4 g >,

for all x € [0, 1]. Hence, the assertion of the Theorem immediately follows by applying

Lemma 3.2.1. L]

Now, an example of A which is a quasi q.q.0., but not a q.q.o will be
provided. Let us take by = 0.75, by =0, and b3 = —0.45. One can see that | b} — b3 |=
1.2 which means that the last condition of Theorem 3.1.1 is not satisfied, hence A is
not a q.q.o. Now, the condition of Theorem 3.2.2 will be checked. It is easy to see
that | by +2by + b3 |= 0.3 and b% — |b3| — b1by = —0.1125. Hence, Theorem 3.2.2
(iii) implies that A is a quasi q.q.0. Now, the following question is interested: does a
commutative quasi q.q.o A coincide with a q.q.0.?

First, recall that a QSO (3.12) is called a Lotka-Volterra operator (see [39] for details)

if Pj = 0if k ¢ {i, j}. This condition implies:
Piii=1,Pp1=0, and 0<Pjp; <1.

Therefore, according to (3.14) we obtain,

2P]271 —1

1
Av(X):Wo]l®]1+§W3(]l®G3—|-O'3®]l)—|— 5

W3<]l QX1 —o03 ®C73). (3.16)
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Denoting a = 2Pj 1 — 1, we have |a| < 1 and the corresponding quadratic operator has

the following form:

9@ P(AW) =wo+ (fi+5 (1= 1)ws

where @ is a state.

Theorem 3.2.3 Let A : DM(C) — DM>(C)DM,(C) be a linear operator given by

(3.16). Then, the following statements are equivalent:
(i) |a| < 1;
(ii) Aisaq.q.0.;
(iii) Ais a quasi q.q.o.

Proof. The implication (i)<(ii) follows from Theorem 3.1.2. The implication (ii)=-(iii)

is obvious. It remains to establish (iii)=>(i). For A given by (3.16) one finds:
(3.17)

where a = 2Pj 1 — 1. Assume that A is a quasi q.q.o. Then the triple {by,b2,b3}
satisfies the conditions of Theorem 3.2.2. If b3 > 0, then a < 0. Hence, from (ii) of
Theorem 3.2.2 implies a > —1. If b3 < 0, then a > 0. From (i) of Theorem 3.2.2, one

gets find a > 1. This completes the proof. 0



42

3.3 Quantum Lotka-Volterra operators on M,(C)

In this section, a quantum analogue of Lotka-Volterra operators on M>(C) is

defined. A Lotka-Volterra operator on M (C) is defined as follows [23]:
1 a
Aa(WO]l -l-WG) =wol®1+ §W3(]l ®O03+03Q ]l) + §W3(]l RILT—03® (73), (3.18)

where |a| < 1. Let & : My(C) — DM>(C) denote the standard projection defined by

(g)(W()]l —|—WG) =wol +w303. (3.19)

Denote & = &R &.

Definition 3.3.1 A symmetric q.q.0. A: M,(C) — M,(C) @ M»(C) is called Quantum

Lotka-Volterra operator, if one has
EoA=A, (3.20)

for some a € [—1,1].

Then, using (2.46), the following proposition is obtained.

Proposition 3.3.1 Let A: M>(C) — M>(C) @ My(C) be a quantum Lotka-Volterra op-
erator. Then, it has the following form:
a
A(W()]l —|—WG) = (W() + §W3)]1 ®1

3
+1RBW-6+Bw-c @1+ Y (b, W) @0 (3.21)

m,i=1
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where bml = (bml,labml,Zabml,.%)’ b33 = (0,0, —a/2) and

bi1 b1a b3
B=1| by by by

0 0 1)2

The following particular case will be studied.

Theorem 3.3.2 Let Ay , ,: Ma(C) — My (C) @ Mo (C) be given as follows:

a
Al,u,a(w()]l —i—WG) = (W0+§W3)]1®]1 —l—)LWl(Gl ®]1—|—]1®61)
+uwr (o, @1 +1® 03)

w a
(el i) — w000, (.22
where A, 11 € R and a € [—1,1]. Then the following conditions are equivalent:
(i) one has

11—l

max{ 4], ]} < Y=

(3.23)

(ii) Ap u.q is a quantum Lotka-Volterra operator.

Proof. (i)=(ii) Take any x € M>(C) with x > 0, i.e. x =wol +wo, ||w|| < wp. Without
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lost of generality, assume that wy = 1. Then, from (3.22), one finds:

1+U \% \%4 0
V  1+4aU 0 1%
Al,/.i,a(x) = (3.24)
Vv 0 l4+aU V
0 1% Vv 1-U
where
U=w3, V= ),Wl — i,l.LWz. (3.25)

Now, to verify the positivity of the matrix (3.24), the Silvester criterion will be

used. Itis clear that 1+ U >0 and 1 +aU > 0, since |w3| < 1. One can calculate that:

1+U Vv ,
M, = = (1+U)(1+aU)—|V|?,
V 14+aU
1+U Vv 1%
Mi=| Vv 14+au 0 |=0+aU)((1+U)(1+aU)-2|V[?),
V 0 1+aU
1+U Vv 1% 0
V 1+aU 0 1%
My = =(14+aU)((1-U*(1+aU) —4|V|?).
1% 0 1+aU V
0 Vv Vv 1-U

It is sufficient to show the positivity of My, since it yields the positivity of M3.
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Indeed, keeping in mind the positivity of My and 0 < 1 —U < 2, one gets:

0<(1-UH(14aU)—4V?=(1-U)1+U)1+aU)—-2-2|V|?
<(1-U)1+U)(1+aU) —=2(1-U)|V|?

=(1-U)((1+U)(1+aU) —2|V|?).

To verify the positivity of M3, it is enough to establish (1 —U?)(1 +aU) —

4|V|? > 0 which according to (3.25) is equivalent to:

42w+ uPw3) < (1 —w3) (1 +aw3). (3.26)

By w% + w% +ws < 1, to verify (3.26) it is sufficient to show

4y(1—w3) < (1—w3)(1+aws), (3.27)

where Y = max{A2, u?}. From (3.27), it follows that

(1—w3)(4y—1—aw;) <0, while |w;| < 1.

Clearly, it is true if

1 —|al

4y<l+a & max{A? p’} < 7

which implies the assertion. (i1)=-(1) from (3.22), for every state ¢ (which corresponds



to the vector f = (f1, f>, f3) € R?), one finds:
(Vagua(9))(x) = wo + 24 fiwy + 21 fowa + (f3 + g(l — f3))ws.
Hence, the quasiness condition for A, , , is equivalent to:
QA +@uf + (f+5(1= /)" < 1, forall |[f] <1.

It is clear that the last one is satisfied if

a2

(45 + (=) +all51(10= ) + 3 < 1, forall [f] <1.

Now, due to f12 + f23 <1-— f32, from (3.28), one obtains

2 a 242

(I—/f3) | 4r+ Z(l —f3) +lallfzs]=1) <0, forall [f3] <1

which is equivalent to

a? a?

53— lallfs| +1—4y—"->0, forall [f3] <1.
Hence, Lemma 3.2.1 implies that (3.29) is satisfied if and only if

2

4y<1-lal, dy<1-7.

This, due to |a| < 1, yields:
1—|q|

TN
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(3.28)

(3.29)



47

which together with ¥ = max{?tz, uz} implies (3.23). The proof is completed. [

By E : M(C) ® Mp(C) — M;(C), a conditional expectation is denoted and
defined by
E(x®y)=1()x, xy€M(C), (3.30)

where 7 is a normalized trace, i.e. T =tr/2. It is well-known that E is positive [27].
By means of A ,, 4, let us define a mapping ®; ,, , : M2(C) — M>(C) by

Dy pa=E0A) g (3.31)
It is evident that @, ,, , is unital, but not trace preserving. Its positivity is given in the
next result.

Theorem 3.3.3 Let A) ,, , and @, ,, , be given by (3.22),(3.31), respectively. Then the

following statements hold:

(i) if A, 1, and a satisfy (3.23), then both maps A, , , and @, , are positive;

(ii) if

V1-[d] V5—a+Va* —10a2+9
~—— < max{|A][, <
5 {IA L [l Ve

(3.32)

then Ay, 4 is not positive, but @, , , is positive.

Proof. The statement (i) is immediate consequence of Theorem 3.3.2. Therefore, only
(i) will be established. Again Theorem 3.3.2 implies under (3.32) the mapping A; , ,

is not positive. Now, the mapping ®; , , will be examined. From (3.22) and (3.31)
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one gets:
a w
D palx) = (wo+ §W3)]l +Awi01 + Uwr0p + 7303

To establish the positivity of @, , , it is enough to prove the positivity ¢ o®, ,, , for

all states ¢. Therefore, one have:

a
O ( Py (X)) =wo+ 73 +Awifi+uwafo+ §W3
a+ f3

= wo +Awi fi + Uwrfr + 5

w3

here the vector f = (f1, f2, f3) corresponds to ¢.

The positivity of ¢ o P, ,, , is equivalent to

a+ f3

2
(Af1)*+ (uf)* + < ) <1, forall |f]|] <TI.

The last one is satisfied if
1
YR+ 53)+ (@ +2all s+ £3) <1, forall [|f] <1, (3.33)

where, as before, ¥ = max{A2, u?}. Now, due to f12 +f23 <1 —f32, from (3.33), one

finds:

4y(1— 1) +a® +20al| 5|+ f3 <4, forall |f3] <1
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which is equivalent to

(4y— Du* —2lalu+4—a*—4y>0, forall 0<u<1. (3.34)

Now, applying Lemma 3.2.1 to (3.34). Necessary conditions of the lemma implies:

a2

T a®+2la| -3 <0.

y<l1-

Due to |a| < 1, the second one is satisfied. Hence,

2

a
<]—-—. .
y<l1 1 (3.35)

Now, two cases (i.e. 4y —1 > 0 and 4y — 1 < 0) are considered separately.
Case (I). Let4y—1 >0, i.e. y> 1/4. Since —2|a| < 0, then, due to Lemma 3.2.1, we

need to analyze two possibilities:

(@) 2la| > 2(47—1);

(b) 4a® —4(4y—1)(4—a*—4y) <0.

The case (a) yields that

(3.36)

From (b), it follows that

a®—(4y—1)(4—a*—4y) <0
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which implies

497 +y(a®> —5)+1<0.

This yields

2 A 2 2 T 2
5—a a8 10a +9§}/§5 a+\/a8 10a +9' (3.37)

Since

5—a?>—+a*—10a>+9 < la] +1
8 - 4

and combining both cases (3.36) and (3.37), one obtains

1 2 4 _ 1042
Z<7’§5 a +\/a8 Oa —1—9‘ (3.38)

Case (IT). Let 4y—1 < 0, i.e. ¥ < 1/4, then Lemma 3.2.1 implies that (3.34) is true.

Hence, combining both (I) and (II) cases and

5—a?++vVa*—10a2+9 <1_a2
8 - 4

then infer that if

_ 42 41042
y< 5—a ~|—\/a8 Oa +9' (3.39)

then @, ,, , is positive. The following inequality is pointed

1 —|a _ 5—a’++a*—10a%+9
4 8

is true. Therefore, under (3.32) the assertion is obtained. This completes the proof. [
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Chapter 4: Flow of Quantum Genetic Lotka-Volterra Algebras

4.1 Definition of quantum genetic Lotka-Volterra algebras

In this section, a flow of quantum genetic Lotka-Volterra algebras will be

defined. Before that, some axillary preparations are needed. Recall that:

a
Al,u,a(wo]l +WO') = (W() + §W3)]l ®1 +7LW1(0'1 & ]l) +1® Gl)

w a
+HW2(62®]I+]1®62)+73(63®]l+]l®63) — §W3(G3®G3)
where A,u € Randa € [—1,1]. Let

a w
©1.a(¥) = (Wo+ 5 w3) 1+ Aw101 + uwr0y + 7303.

For the sake of simplicity, in what follows, A, , , and ¢, , , are de-

noted by A and ¢, respectively. The calculation of ¢" is given in the following lemma.

Lemma 4.1.1 For every n > 1, one has:

1 w
cIDH(W()]I —I—W.G) = [W()—l-a(l — i)wﬂ]l 4+ A"wi 07 —l—/.LnW262—|— 2—263. “4.1)

Proof. Let x =wol +w.o. For n = 1, the statement is obvious. Assume that it is true
forn ==k, i.e.

w3

K O3.

1
DF(x) = [wo +a(l - ?)wﬂ]l + Ay o1 + prwaon +

Then, for n = k+ 1, one gets:



52

O (x) = B(PF (Wl +w.0))

1
= ®([wo+a(l — Z)W3]1L+?Lkw161+u w205+ 22 53)

2k
1 aw
= [wo+a(l— o W +§2—Z]1+7L7Lkw161+u,u W202+22k 3
1 w
=[wo+a(l— 2k+1) w3] L+ A5 w0y + 1w oy + ijl 03.

By mathematical induction, the result is true for any n > 1. This completes the proof.

O

Using ®", one may define

1 w
Cpt( ) [Wo—f—a(l——)wﬂ]l +AIW161+;L[W262+—3

5 50 120 (42)

The positivity of @ implies the positivity of ®”", correspondingly one can infer that &’

is also positive mapping for every ¢ > 0 under the condition (3.23) (see (3.32)).

Theorem 4.1.2 The family {®'} satisfies @' = ®' o ®*, Vt,5 > 0.

Proof. Let

w3
O3.

1
a1+ A" w0y + p' P waon + S+

() = o +a(l - 5
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Now, simple calculations imply that:

(CI)Z OCI)S)<)C) = q)t<V()]l +Vi01+V20n + V3G3)

1
=[vo+a(l— —)v3]]1 +A'viop +Fu'voo 4+ —03

1
1 I w3 s
= [wo+a(l— 2)W3+a(1—§)2s]]l+/1),w161+,u/.LW262+2[+S
1 1 t+s
[W0+aW3(1—§+§—2t+3)]1+l wioy +u't W262—|—2[+S

1
a1+ A w0y + 1w + 3

= [wo+a(l - Sits Si+s

03

which yields & +5(x) = (¥ 0 @) (x). Here it was used Vo = wo +a(l — 5 )ws, Vi =

lswl,VZ ,LL wo and V3 = 25 . O

Let us define A; = Ao @', i.e.

1
Awol+w-0)=wo+a(l—)ws+-—w3]lxl+A T 'wi (o @l+1®0))

2t 2t+1
t+1 w3 a
+u W2(62®]l—|—]l®62)+2t+1 (31+1®03)— 2H_]W3(G3®G3). 4.3)

Let A; be given by (4.3). By means of A;, one may introduce the following binary

operation on M, (C) as follows:

(forp)(x) = (F@p) (A (x)),f,p € Ma(C)",x € My (C)* (4.4)

where, as before M, (C)* is the dual of M,(C).
The triple (M>(C)*,0,,A;) is called a flow of quantum genetic Lotka-Volterra algebras

(FQGLV-A). This flow is denoted by Ay, i.e. A, = (M(C)*, 01, A;).



From (4.4) and (4.3), one immediately finds:

fo,p = (fopo, A" (fipo+ for1), ' (fapo + for2),

a

a 1 a
fopola— o5+ 57) + 5 (fspo + fors) = 557 (f3p3))

where f = (fo, f1,./2, f3) and p = (po, p1, p2, p3)-
Recall that A, = (M, (C)*, o, A;) is associative if

(fo;p)osth=1fo,(po;h)

for all f,p,h € M,(C)*.
For the sake of simplicity, FQGLV-A is denoted by (A;, o).

54

4.5)
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Theorem 4.1.3 A FOGLV-A (A;,0;) is associative if and only if t > 0,|a| = 1, and

A=u=0.

Proof. Due to the conditions of the associativity of (A;,o;) one has to compute (fo,

p) o h and fo, (p o, h) and compare the corresponding coordinates. Hence, one gets:

((forp) orh)1 = fopoho,

(for (porh))1 = fopoho.

Thus, the first component does not produce any condition. The second component

implies that:

((Forp) orh)a = AT (A (fipo+ fop1))ho + fopohi]
= A2*2 f1poho + AH 2 foprho + A" fopohy
(For (porh))a = A" [(fipoho) + fo(A" T (p1ho + poh1))]

= A fipoho + A2 2 foprhg + A2 fopoh .

Hence,

AZH—Z — )LH_I



The third components yield:

((Forp) orh)s = W ("™ (fapo+ fop2))ho + fopoha)]
= w2 fpoho + ¥ 2 fopaho + 1w fopoha
(For (porh))s = u'[(fapoho) + fo(u' T (p2ho + poha))]

= w't frpoho + w2 fopaho + 12 fopoha.

So,
‘u2t+2 _ ‘ut+1.
The fourth components imply:
a a
((fot p) o h)y = fopoho(a— 5 + ﬁ)
1 a a 1
+omrl(fopola — o+ 57) + 5 (fapo + fops)
a 1
— 51 f3p3)hol + Sy (fopohs)
a a a 1 a
—srlalforola—5; + o) + 5 (fspo+ fors) — 5 n 1 /3p3]
a a a a a
= fopoho(a — ot T F) +f0p0h0(2t+1 T 221 + 22t+2)

1 1 a
+oaa f3poho + 555 (fopsho) = 35 (f3p3ho)

1 a’ a’ a’
+Fh3fopo - WfOPO}B + Wfopofw - mfopoiw

a a a?
—f3P0h3W - mfopﬂl:s + mﬁmh%

56



and
a a
(for (porh))s = fopoho(a— 5 + F)
1 a a 1
ot lf3poho+ folpoho(a — 5+ 27)) + 5 (P3ho + pohs)
a a a a
bYEs| (p3h3)] — F[ﬁ(ﬂoho(a o + F)
1 a
+F(P3ho + pohs) — il (p3h3)]
a a 1
= (a—5; + 1) fopoho + 51 f3poho
a a a 1
+f0p0h0(21+1 T2+l T 22t+2) +f0p3hom
1 a a’ a’
"‘WPO}BJCO - mp3h3f0 - FfSPOhO + W]%poho
2 2
a a a a
— 272 /3P0h0 = 3z hof3ps — Sy fapohs + 555 f3pshs
which yields:

1 1 a? a? a?
22142 i+l + 22i+1 B 22t+2 B o+l

Finally, one gets the following system of equations:

2t4+2 _ qt+1
A =A",

242 _ 141

u utt

1=2"1(1-d%) +d°

Hence,

1=(1+d*)(1-d*) +d°,

57
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which yield |a| = 1 and 7 > 0. The first two conditions imply that u> = p or u = 0, 1

and A2 = A or A = 0, 1. By using the fact that:

1 — ]

max {|A], |u[} < ~—

This completes the proof. 0

A commutative algebra (A, o) is called alternative if (xox) oy =xo(xoy), for

all x,y € A.

Theorem 4.1.4 A FOGLV-A (A;,o;) is alternative if and only if t > 0,]a| = 1, and

A=u=0.
Proof. One can find

a a 1 1
forf = (f, 2 AA 1 20/l (at 5 = 505 + 5 fofs = 5 afi). (4.6)

Now, it is need it to find all coordinates of (fo,f) o, p and fo; (fo, p) The first

components are:

((For£) o p)1 = f3 Po

(for (Forp))1 = f§po
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which do not produce any condition. The second components are:

((For£) o p)a = AT (210 AL po) + fop1] = 2A% T2 fo fipo + A" f5 b1
(For (Forp))a = A fo firo + foAd " (fipo + fop1)]

= A" fifopo + A7 fofipo+ A7 fopi

which yield that:

AH—I — 121—0—2

Similarly, the third components are given by

((For£) o p)3 = (2 fo okt T po) + fopa) = 2u* 2 fofopo + ' fy 2
(For (For p))s = W [foforo + for' ' (fapo + fop2)]

= 't fopo + w2 2 fo fopo + 2 T f5 Do

which give the following ones:

t+1 2t+2

't =u

The fourth components are calculated as follows:

a a 1 a a
((fol f) Or p)4 = f(%p()(a_ 5 + yi+1 ) + 21+1 ((a+ ot+1 o E)f(%po

1 1 a a a
+5:fofspo — Fafgpo +fop3) — st (@t 50 = E)fozm

1 1
torfofsps— @aﬁzm)



and

a a 1 a
(fOt (fot p)>4 = f()2P0(a - E + ZIT) + F[]%f()po —|—f0(f0p0(a - — 4
1 a a a a
+F(f31’0+f01’3) - Fﬁps)] - Ffs[fopo(a— 7+ F)

1
+o (f3po+ fops) = %(fﬂ?s)]

which imply that:

—1
22t+2

(=142 (=144 =0.
Finally, under the assumption ¢ > 0, one finds:
 The condition on second components implies that A =0 or A = 1.
* The condition on third components implies that 4 =0 or u = 1.
* The condition on fourth components implies thata = —1 ora = 1.
The condition max {|A], |u|} < @ yields |a| =1and A = u =0.

An algebra (A,0) is called Jordan algebra if (xoy) o x?

X,y € A.

21

a
1)
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O

= xo (yox?), for all

Theorem 4.1.5 A FOGLV-A (A;, ;) is Jordan algebra if and only if either one of the

followings hold:
e laj=1,A=pu=0,t>0,

«a=0,A,u€{0,5},t=0



Proof. One can find:

po 2 = (fapo, AT (fop1+2fofipoA ),

a a
wH (fgpa+2fofapon'™), (a— Tl W)fgpo

a a a o, 1 a
—grr (@ =5+ 5 fo + 5 fofs = 551 f3)p3
1 a a 1 a
o ((la—5+ F)fgﬂL sifofs— Ff%)l?o +fgp3))-

Now, it is need it to find all coordinates of (fo, p) o, f> and fo, (p o, £2).

The first components are:

((Forp) o )1 = £3 po,

(for (po:2))1 = f3 po,

which do not produce any condition. The second components imply that:

((Forp) or )2 = AT A (fipo + fop1) 3 + foro(2fo fid ™)
=A% 2 fipofy + A* 23 p1 4+ 245 2 £ po fi

=302 fipofs + A7 f3pu,

(For (por )2 = A [fifg po+ fo(A (f5 p1+2fofipoA™™ )]

= A" fipofd + AR T2 1+ 2433 o 1,

which yield that:

32’2t+2 _ )Lt—ﬁ-l —|—2;L3t+3.
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Similarly, the third components are give by

((Forp)or )3 = ™! (W (fopo + fop2) /i + foro2fo fopt' ™))
= W fapofs + 0T fo pa+ 267 f5 po 2

=3u* fapofy + 12 f3 pa,

(For (por2))3 = W' [fafgpo+ fo(W ™ (fop2+2fo frrom'™))]

= w' M Hpofs + 22 £ pa 21 fEpo fo,

which give the following one:

3‘LL2l+2 — ‘ut+1 +2‘u3t+3'

The fourth components are calculated as follows:

a a

((forp) o f)a = fy pola— > T 5¢1)
1
2t+1f0 [foro(a §+2il) W(ﬁpo + fops) — azjzpf]

2
) a a 1 afs
+Ff0p0(f0 (a—§+ﬁ)+§—ﬁ)
a a 1 af3p3
2t+1 [(fOPO( 2 +25+]) F(f?’po—i_fop?’) 2;_’_1 ]
a 1 af?

[fO( 2z+1)+§_21+1]
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and
a a 1 a a
(for (porf))a = f3 pola— 5 + F) + W[fafozpo + fola— 5 + F)fozpo
a a a . fof3 af32 1 a a | .-
—F((G— it F)fo T T )p3+ T (((a— xt ﬁ)fo
fofs  af3 > a a a . .,
T T 2,31 o+ fop3))] = 5 flla— 5 + 5 fopo
a a a fofs af? 1 a a
—ﬁ((a— RS ) fo + T 2,31 )p3 + TEs] (((a— xt F)fo2
fofs afi
which imply that:
—a a a a’ a’ a’
21 ¥ T T 533 Tl T il 53s 0,
3 1 1 a? 3a® a’
22 T 2342 il T 32 522 Tyt 0
3 3
—a a a a
et T T s 0.

Now, one has the following conditions:

* The first condition —A/T! +31%+2 _223+3 = ( yields:

A,H_l(l —22,t+1)(1 —AH—I) —0.

* The second condition can simplify as:

,LLtH(l _2H1+1)(1 _[uz—H) —0.
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The third condition yields:

—a a a 613 613 Cl3 .
221+1 + 21+1 T 23143 + 22i+1 11 23143 T :
which implies:
22+’(a — a3) — 22’+2(a — a3) —(a— a3) =0.
So,
(2% —1)%a(a—1)(a+1) = 0.
From the fourth condition, one gets:
3 1 1 a? 3a> &
+ =0

22+2 D342 il + 23i+2 9242 " i+l

which gives that:

" 12 - 1)(1—a)(a+1) =0.

The fifth condition yields:

—a a Cl3 613

T ST Ry T B TR 0.

So,

2" —Da(a—1)(a+1)=0.
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One can summarize the obtained conditions as follows:

)Lt+l<1 _thJrl)(l —A[+1) =0,
‘LLI+1(1 _2ul‘+1)(1 _ul‘+1) — O7
@ 1)@ —1)(1—a)(a+1) =0,

2" —a(a—1)(a+1)=0.

These conditions can simplified by considering the following cases:

Case 1 Let a = 0. Then, (2'*! —1)(2' — 1) = 0 which gives r = 0. Then, A =0,

or 1 =24 =0, or 1 —A = 0. Since max{|A[,|u|} < ¥ 1;|a|, then A € {0,1}.

Similarly, u € {0,3}.

Case2 Leta=+1ands>0. Then, A’™1 =0, or 1 =241 =0, or 1 — A'+1 = 0.

Since max{|A|, ||} < Y7, then A = 0. Similarly, u = 0.

This completes the proof. 0

Remark If a =0and A = u = 0,7 = 0, the algebra is Jordan, but not alternative. More
information about Jordan and alternative algebra can be found in [42].
4.2 Idempotents

This section is devoted to the description of idempotents of the flow quantum

genetic Lotka-Volterra algebras. Recall that an element q € A is called idempotent if

qoq=q.

Theorem 4.2.1 Let (A;,0;) be a FQGLV-A. Then, q € A, is an idempotent if and only

if one of the followings hold:

1. q = (0,0,0,0),
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2. q=(0,0,0,=Z%) ifa #0,

2a

o 1
(1,0,0,0) ifa= OaVL"?“’L’ <z

4. q

5. q=(1,91,0,¢3) ifa=0,t =0,|A| = 1, |u| < L.

(1,0,42,q3) ifa=0,t =0,|4| < §,|u| = }.

6. q

7. q= (1761176127613) l:fa:()at:oa|2'| = |uu| = %

Proof. Let q = (qo0,91,92,93) be an idempotent vector in A,. Then, q o, ¢ = q which

implies that:

Q093 443
2t 2f+ 1

a a
<q3,2qoq17t’“,2qoqzut“, (a5 + 57 )40+ ) = (40,91,92:93)-

21

By comparing the components, one finds the following system of equations:

4 = 40, (4.7)
q1(2goA" Tt —1) =0, (4.8)
a2 (2qou' ™ —1) =0, (4.9)
agi + A a5 40ds 95 _ 4. (4.10)

Y Nt 2+l

Equation (4.7) yields that go = 0 or go = 1. Thus, two cases should be considered,

separately.

Case 1. Let go = 0. Then, Equation (4.8) implies that g; = 0. Also, Equation (4.9)

2
—aq3 __

yields g> = 0. Finally, Equation (4.10) gives that -1 = ¢3. Hence, g3 = 0 or

q3 = %t“ provided that a # 0. Thus, q can be either q = (0,0,0,0) or q =
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(0,0,0, =27, Note that if a = 0, then q = (0,0,0,0).

Case 2. Let go = 1. Assume that a # 0, and ¢ > 0. Thus, g; = 0 provided that 24! £
1 by Equation (4.8) (since |A| < % , see (3.23)). Also, Equation (4.9) gives that

g> = 0 provided that 2u/*! £ 1 (since |u| < % see (3.23)). Then, Equation (4.10)

. —ag? 1
yields %‘l‘(%— 1)613+a(1—2t1ﬁ) =0. Hence, c[%-i—(zt+ g3+ (1—2h) =

a

0. Thus,
2 ottl L\ QT2 i3 L 4 — 42 4 A2t ]
q3 = '
2a
Hence,
2 ot+l 1\ QT2 o113 L 4 — 42 1 A2t ]
q=(1,0,0, )-

2a

Assume that # = 0. If |A|,[u| < 3. This case is similar to the one
considered above. Now, suppose that a = 0 and # > 0. Then, due to |A| #
%, lu| # %, one has if g; = 0,9, = 0, then by the same argument as above, one
finds ¢ = (1,0,0,0). Let7=0. If || < ,|u| < 3, then q = (1,0,0,0). Let

A| = 1,|1| < 4, then q1 # 0,¢2 = 0, and g3 = 4 which imply g3 is arbi-

trary. So, q = (1,41,0,g3). Let |A| < ,|u| = 5. Then, one similarly finds

q= (170742743)- Let |)L| = |IJ| = %’ then q= (1741742743)-

Remark If A; is not positive, then one can find, in addition to the seven idempotents

in Theorem 4.2.1, three more idempotents which are given by

L q=(1,q1,0,£1)ifa# 0,6 =0,|A| = 3, |u| < 5.
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2.q= (1,0,6]2,:|:l) lfa#07t:07|l| < %7“’” = %

3. q= (17q17q27i1) ifa 7£ 0,r=0, |A’| = |nu| = %

Let x € A;. Denote Py = {Ax|A € C}. Now, it is natural to know when P is a
subalgebra, which means there exists T € C such that x o, X = 7X.
Theorem 4.2.2 Let (A;,0;) be a FOGLV-A and let x € A;,x # 0. Assume thatt > 0 and

a # 0. Then, Py is a 1-dimensional subalgebra of A; if and only if one of the followings

hold:

() x=(0,0,0,~27) 1€ C

a

o _ot+1 204272 _ot43 72 2_ 44272 29t+1 72
(i) x=(z,0,0, 2721 74V/22 42722 x +412—4a2712 4442217 ),7 € C.

Proof. To show that the set Py = {ax|a € C} C A; is subalgebra, it is enough to prove

xo;x € Py . If xo,x =1x where T € C, 7 # 1, then

a 2 X0X3 ax%

(x%,Zxoxlﬂ,’H,Zxoxg,LL’“,(a—%—i—ztﬂ)x(ﬁ— ot 2z+1) = T(x0,X1,X2,X3).
Now, comparing the coordinates, one gets:

2 = o, (4.11)

2o AT = 1, (4.12)

2xpxa 't = Txy, (4.13)

ax% — ;)f)l - azi[% + x(;? — ;—iﬁ = Tx3. (4.14)

Equation (4.11) yields that xo = 0 or xo = 7. Thus, two cases should be considered.



69

1. Letxg =0. Then, x; = 0 provided that T # 0 by Equation (4.12). Also, Equation

(4.13) gives that x, = 0 provided that T # 0. Finally, Equation (4.14) implies

—ax2 1
that 2,?13 = 7x3. Thus, x3 =0 or x3 = ’ZIJ t where a # 0. Hence, x = (0,0,0,0)

which will be rejected since x # 0 or x = (0, 0,0, %HT)

2. Let xo = 7. Then, x; = 0 provided that 2A'*! = 1 by Equation (4.12). Equations

(4.13) gives that x, = 0 provided that 2u’*! # 1. Finally, Equation (4.14) yields

that:
, at?  at?  txy axi
S R TR T e B
or
2t+1 T 2t+1 ’L'2
2
X3 — a (E_T)x3_ a(T_ZH—l): )
2+l 21
x5+ ( )xz+ (12 —2112) =0
Hence,

20 —2Mlp /224202 2372 + 472 — 44272 4+ 402211 12
B 2a '

X3

Thus, the vector x is given by

o — 2’+1‘C + \/22t+21-2 —2i+372 + 472 — 44272 + 4q22t+172

=(7,0,0
X (1777 261

Remark From the proved theorem with Theorem 4.2.1, one infers that 1-dimensional

subalgebras are generated only by idempotents.
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4.3 An algebra generated by the idempotents

In this section, it is investigated an algebra generated by the idempotents given
by Theorem (4.2.1). Throughout this section, it is assumed that 7 > 0 and a # 0. Then,
by Theorem (4.2.1), one concludes that the idempotents of FQGLV-A are given by

_2t+1 t“—a,

_nt+1 —
1 =(0,0,0,72), qo = (1,0,0,22,%), g5 = (1,0,0,2-2=%) where

0y = /2242 — 243 L 4 4a2 4+ 4422141 £ 0.

Proposition 4.3.1 Lett > 0 and a # 0, and q1,q2,q3 be idempotents of A, then the

following statements hold:
(i) The vectors {q1,q2,q3} are linearly dependent,

(ii) Each two idempotents are linearly independent.

Proof. (i) Let A1qq + A2q2 + A3q3 = 0. Then,

_)L 2t+1 2_2t+1 2_2t+1 —a
(12—1-13,0,0, ! + A +at+l3—t):0.
a 2a 2a
Thus, A, + A3 = 0 which yields that A3 = —A,. Also,
—l 2t+1 2_2t+1 a 2_2t+1 o
0=—" 42 T g, i
a 2a 2a
_)’ 2t+1 2_21+1_|_a 2_2t+l_a
— 1 +A‘2( t _ l)
a 2a 2a
_ —112t+1 + oA
P .

Then, —A;2' "1 4+ 04 A, = 0 which gives that 1; = g’,—ff, where A, € C. Thus, {q1,q2,93}

are linearly dependant.
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(i1) Now, the remaining of the proof is to check that each two idempotents are linearly

independent. Let A;q; + A2q2 = 0. Then,

_A’lzt—i-l

2_21—0—1
(1270507 +A‘2 o
a

2a

)=0.

Thus, A, = 0. Also,—)”zt+1 = 0 which implies that A} = A, = 0. Thus, {q;,q>} are

a

linearly independent. Using similar argument, one can show that {q;,qs3} are linearly
independent. Let A;q» + A3q3 = 0. Then,

2_2t+1 2_21+1_a
+OQ+)L3 t

A+ 23,0,0, A
(2+37772 2a 2%

) =0.

Thus, A, + A3 = 0 which gives that A3 = —A,. Also,

2_2t+1_i_oct—+_)L 2_21+1_at
2a 3 2a

2_2t+l+at_2_21+1_at

0=A2A
2 2a 2a

_ — %
= o )=Ap".

Then, A, = 0 which implies that Ay = A3 = 0. Thus, {q2,q3} are linearly independent.

]

Let F = {Aq; + uqz|A,u € C} be an algebra generated by the following two

idempotents, where

_2t+1 2_21+1 a
qi = <070707—> yq2 = (170707#> .
a 2a
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Now, let us calculate q; o; q». Using (4.5), one gets:

1 _2t+1 a _2t+1 2_21+1+%
qiorqx = (070707 2t+1 ( a > - 2t+1 ( a . 24 )> (415)

) 2_2[+1
- (0,0,0,— + J)

2a 2a

_ nt+l1
_ (0,0,0,u) .
2a

Now, the task is to study some properties of the subalgebra F. Let x = A,q; +

u1qz and y = A,q; + Uaqa, where x,y € F. Then, using (4.15), one finds:

xo;y= AA2 qio; qi+ Ao qros Qo+ Ax o g+ il 2o @
=M A qi+( Ao+ u A2) qior 2 + Ui q2
=M A q—(A+u A2) (% B q1) + it q2

242 _At+l
2 2

where 3, = 52 % and y; = — 5t Then, F is subalgebra of A.

Remark It is noted that the subalgebra F is not ideal. Indeed, let x = (xg,x1,x2,x3) € A.

Then,

Xor(qr = (0,0,0,CIX() +X3),

2141l 4 o a2t —1 22t 4 ¢
Xorq2 = (XO,WHXI;NHIXLW (2t—+1t) X0 ( 21+1 + a2l +1 t)) :

As a special case, let x = (0,1, 1,0). Then,

;(/Ot qQ = (07At+la.ut+l70)

which does not belong to F since the second and third components of all elements in

F are zeros. Thus, F is not ideal.
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Theorem 4.3.2 An algebra F = {Aq; + uqz|A,u € C} is associative if and only if

la|=1orae (%,#)

Proof. Let x = A1q1 + U192,y = Aaq1 + U2q2,Z = A3q) + Uzqz. Then, by equation

4.5)
xory = (MA2 — (A2 + 1 A2) B yi)qu + i U2,
and
(xory)orz=[(MAr — (Ao + i do) By ) Az (4.16)
—(MA2 — (M2 + 1 A2) By ) 3 + Az i o) Br vl qn + M o 3 Q.
Now,
yorz = (A3 — (Aalis + U2A3) B ) a1 + U2 13q2,
and

xo; (yorz) = [(A (2243 — (Aaltz + 12 A3) B 1)

—(Mpaps + pi (A3 — (Aops + 12 A3) B yi) ) Brvan + M popizqe. - (4.17)

Comparing the coefficients in equations (4.16) and (4.17), one gets:

MAA3 — M A3Br Y — A3 By — MAa s By
FA 3B + A3 By — Ast 2B = M AoAs — A Ao s B

M A3 B — M a3 By — iAo As By + i Ao s B 4 1 oAz B



74

Simplify the last equation, one find:

Motz (B + Bey) — Ast 2 (BE + Bey) =0

or

(B + Biy) (Mpalts — Az ity 1) = 0.

Hence, B, =0or By, = —1. Let ;% = 0, then

B 22t+2_2t+1at —a B at_2t+1 0
B = 22 ) T T g

Thus,

2t+2 _2t+3 +4_4a2 _'_4a221+1 — 221+2
4> —1)+4(1 -2 =0

42 - 1)@ -1)=0.

Hence, a® = 1 since 2't! — 1 #£0.
Let B;7; + 1 = 0, by substituting the values of ; and ¥; and simplifying the last equation

one has

2t+1_al .
2a o

or

oG = 2l+1 —2a.
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Square both sides and simplify the result to get
2!(2a® 4+2a—2)+ (1 —24°) =0,

or

2a% —1

e —
2a24+2a—2

Taking logarithm base two for both sides yields:

t=1 2a° ~ 1 >0
=[O _—
82\ 22 124—2

which implies that

2a% —1

=l
22+ 2a-2°

Solving the last inequality gives a € <%, #) One can see that the range of the

/ 2a% —1 50
082 2a24+2a—2

; _1§ﬁ> is (0,0). This completes the proof. o

function:

(Sl

0na€<

Remark Comparing Theorems (4.1.3) and (4.3.2), one can see that if the algebra

which is generated by the idempotents of the FQGLV-A is associative if |a| = 1 or

ac (%, _“2”5> while the FQGLV-A itself is associative if |a| = 1. This shows the

influence of the idempotents on the associativity property.
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Chapter 5: Derivations of Flow Quantum Genetic Lotka-Volterra
Algebras

5.1 Derivations in M,4(C)

Let (A;,o;) be a flow quantum genetic Lotka-Volterra algebra. Then, recall

that for f = (f07f17f27f3) andp = (PO,PI;P%PS); one has:

fo,p = (fopo, A" (fipo+ for1), '™ (fapo + for2),

1
fopo + 57 (fspo+ fops) = 577 (fp3)) (5.1)

_ a a 2+
where?j—a—y%—zﬁ—a(z,T :

Definition 5.1.1 A linear mapping d : A — A is called derivation if

d(xo;y) =d(x) o y+xo,d(y),Vx,y €A (5.2)

Proposition 5.1.1 Let ey = (1,0,0,0),e; =(0,1,0,0),e, =(0,0,1,0), and e3 = (0,0,0, 1).

Then, d is derivation if and only if

d(ejo; ej) = d(e;) oej+ e o d(ej) (5.3)



Proof. (<) Letx = Z?:Oxiei and y = Z;ZO y;jej. Then,

e (go)- ()

=d Z leyj €; O; € )

i=0j=0
3 3
= Z inyjd(ei 0 €j).
i=0 j=0
From (5.3), one gets:
3 3
d(xosy) ZZx,yJ (e oeﬁ—e,otd(ej))
i= 0] 0
3 3
_szly] el oej)‘l’z inyj(eiotd(ej))
i= 0] i=0j=0

3 3
= d(;)xiei) o (;)yjej> + (;)x,-ei) Otd(;)yjej)

=d(x)o,y+xo;d(y).

Thus, d is derivation.

(=) Follows directly from the definition.

From (5.1), one gets:

€0 0r €0 = (1707075) = e0+§e37
egore; = (0,A7,0,0) = A"y

€00 €2 = (0707.ut+170) = ,Ll,t+lez,

1 1

€) Oy €3 = (0 O 0 Zl-l—l) Fe}
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Similarly, other terms can be computed and they summarized in the following Table.



Table 5.1: ejo, ¢; for i, j € {0,1,2,3}

Or €0 €l ) €3
) 6()—|—563 7LH_161 ‘LLH_lez Zt—Le3
er Atle; 0 0 0
e2 pley; 0 0 0
e3 2,%83 0 0 27—+a1€3

Letd : A — A be a derivation. Then, one has
3
d(ei) = Z diyjej.
Jj=0
The goal now is to find the conditions on d; ; such that
d(ejo; ej) = d(ej) o, ej + ejo; d(ej)
fori, j €{0,1,2,3} and i < j. To explain the procedure, let us assume that
d(ego;ep) = d(eg) or €9 +ego; d(e).
Then, from Table (5.1) and since ey o, €y = € + Ees, one gets
d(eg) +Ed(e3) = d(eo) oreg+eg o, d(eg).
By comparing the components, one finds:

doo + Edso = 2doo, dot + Edzp = 22" dp,

1
dop + & dza = 2u" " doa, do3 + Edzz =2 (de + 50700) :

78



These equations can be simplified as follows:

—doo+ Edzo =0,
doy —2A" " dg + Edsy =0,
dop — 20" dop + Edp =0,

1
doz — Ed% —2Edpo+Edzz = 0.
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(5.4)
(5.5)
(5.6)

(5.7)

Using similar argument, one can generate the following system of equations for the

cases d(ejo, ej) = d(e;j) o, ej+ejo;d(ej) for i, j € {1,2,3} withi < j.

—dy + A =0,
dooA' T =0,

d1211+1 _dlzul‘+1 — 07

d
_2;_1+31 +diA™t —dio§ =0,
2d10A T =0,

—dpo+daou' ™ =0,
—dpo+dapou' ™ =0,
—d21)Lt+l _|_d21‘ut+1 — O,

doopt' ™! =0,

dx3

ol 4'6123.’1thl —dy& =0,

(5.8)

(5.9)
(5.10)
(5.11)
(5.12)
(5.13)
(5.14)
(5.15)
(5.16)

(5.17)
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daoA' T =0, (5.18)
diop' ™ =0, (5.19)
doop! 1 =0, (5.20)
%—dm:o, (5.21)
% —dy A =0, (5.22)
%a%z —dpu'! =0, (5.23)
_dog:ladm dyE =0, (5.24)
dyoA' T =0, (5.25)
—dyo+adyz =0, (5.26)
dzop' ™1 =0, (5.27)
—day +ady; =0, (5.28)
adsy =0, (5.29)
adz; =0, (5.30)
—2d30+ads3 = 0. (5.31)

Equations (5.13) and (5.20) give:
—dpo+ daout' ! = 0,dpou"! =0

which imply that d>p = 0. Hence, Equation (5.21) yields that:

d3() 1
—d30+ﬁ :d3() (W_l) =0.

Since t > 0 and % — 1 # 0, one finds d3gp = 0. Equation (5.4) gives dyg = 0, since

d3p = 0. Moreover, Equations (5.8) and (5.12) yield —do; +A'*djg = 0 and 2d;oA" ! =
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0. Hence, dy; = 0. Thus, Equations (5.4-5.31) are reduced to the following ones:

Edy =0, (5.32)
dop(1 —2u"™) + Edsp =0, (5.33)
do3(1—%)+5d33 =0, (5.34)
dip (AT — 'ty =0, (5.35)
diz(AT! —%)—dmg =0, (5.36)
diopA' T =0, (5.37)
—dy (A =) =0, (5.38)
doz(u' ™! — %) =0, (5.39)
diop'™! =0, (5.40)
d;;l(zi1 — At =o, (5.41)
ds (5 —uth=o, (5.42)
adyz = 0, (5.43)
—dyo+ad;3 =0, (5.44)
ady; =0, (5.45)
adsy =0, (5.46)
ady = 0. (5.47)

(I) Leta# 0. Then, & = a (2’;‘51> £ 0. Thus, Equations (5.43) and (5.45-5.47) give

that do3 = dr3 = d3p = d33 = 0. Moreover, due to d3 = 0 and 1 —2u’*! #£0,

Equation (5.33) implies that dy, = 0. Since & # 0 Equation (5.32) yields that
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dz1 = 0. Hence, Equations (5.32-5.47) can be reduced to the following system.

dip(AT — 'ty =0, (5.48)
diz(ATT — %) —dp€ =0, (5.49)
dipA' 1 =0, (5.50)
—dy (A =t =0, (5.51)
diop' ' =0, (5.52)
—djp+adiz =0. (5.53)

Thus, four cases should be considered separately.

Case 1.1 Let A # 0 and A # u. Then, Equations (5.48) and (5.51) imply that
dia = dr; = 0. Also, Equation (5.50) gives djp = 0. Since djp = 0 and
a # 0, Equation (5.53) yields d;3 = 0. Therefore,

0O 0 0 O

0 d; 0 O
g 1

0 0 dyp O

0O 0 0 O

Case 1.2 Let A # 0 and A = u. Then, Equations (5.50) implies that do = 0.
Since djgp = 0 and a # 0, Equation (5.53) yields di3 = 0. Therefore,

0 0 0
diy dia 0O
dy dy O

o o o O

0 0 O

Case 1.3 Let A =0 and u # 0. Then, Equations (5.48) and (5.51-5.52) imply
that d1p = dp1 = dyjp = 0. Since dj9p = 0 and a # 0, Equation (5.53) yields
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di3 = 0. Therefore,

0 O 0 0

0 d; 0 O
d=

0 0 dy O

0O O 0 0

Case 1.4 Let A = u = 0. Then, Equations (5.53) gives that —do + ad|3 =
0 which implies that diy = ad;3. Equation (5.49) yields % —dp& =
dy3 (2,% +a§> = 0 which implies that d;3 <2,—£rl + a? (21;—51)) Thus,
di3(a@®>(2*' —1)4+1)=0. Sincet > 0and a # 0, a®>(2'T1 = 1) +1 > 0.

Thus, d13 = 0 which gives djop = 0 since d1o = ady3. Therefore,

0O O 0O O

0 din dip O
d p—

0 dyy dn O

0 O 0O O

2t+1_1

(I) Now, let @ = 0. Then, & = a (zT) — 0. Thus, Equations (5.4) and (5.26)
yield that: doy = dj9 = 0. Equations (5.13) and (5.20) give that dyg = 0. Since
# — 1 #£ 0, Equation (5.21) implies that d3p = 0. Equations (5.8) and (5.12)

yield that dg; = 0. Thus, Equations (5.4)-(5.31) can be reduced to the following



system:

d21 (‘UH—I A{l‘-i—l) _ O,
1
do3 (lJtJrl - W) =0,
d 1 Al+l =0
31 2t+l - — Y
1

Hence, ten cases should be considered, separately.

Case 2.1 LetA =u= %,t = 0. Then,

0O O 0 dops
0 di dip diz
0 dy dyp dp

0 d31 dzx dis
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(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

Case 2.2 LetA =u +# %,t = 0. Then, Equations (5.56) and (5.58-5.60) give that

d13 = d23 = d31 = d32 =0. Hence,

0 0 do
diy dip O
dy dyp O

U
I
©c o o o

0 0 ds;

Case 2.3 Let A = 3,1 # 3, = 0. Then, Equations (5.55), (5.57)-(5.58), and
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(5.60) imply that: d1p = dy1 = d3p = dr3 = 0. Hence,

0 O 0 do

0 diin 0 di3
d—

0 0 dn O

0 d3s1 0 dss

Case 2.4 Let A # 1, u = 1.t =0. Then, Equations (5.55-5.57) and (5.59) yield

that dip = d»; = d3; = 0. Hence,

0 0 0 dpy
0 d;y 0 O

0 0 dyp dx

Case 2.5 Let A # 1,1 # 3,4 # p1,t = 0. Then, Equations (5.55-5.60) give that
dip = d13 = dp1 = dp3 = d31 = d3 = 0. Hence,

0 0 O dos

0 d 0 O
d— 11

0 0 dpn O

0 0 O dss

Case2.6 Let A = u = %,t # 0. Then, Equations (5.54) implies that: dyz; = 0.

Hence,
0O O 0 0

0 di dip diz
0 dy dyp dp

0 d31 dz ds3
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Case 2.7 Let A = u # %,t # 0. Then, Equations (5.56) and (5.58-5.60) yield

that dy3 = dp3 = d31d3p = 0. Hence,

0 0 0
diy dip O
dy dyp O

U
I
©c o o o

0 0 ds3

Case 2.8 Let A = J,u # 3,t # 0. Then, Equations (5.54-5.55), (5.57-5.59) give
that dyz = dip = dr1 = d3p = dr3 = 0. So,

0O 0 O 0

0 dii 0 dis
d =

0 0 dn O

0 dsi 0 ds;

Case 2.9 Let A # 1, = 1,1 # 0. Then, Equations (5.54-5.57) and (5.59) imply

that dyz = d1p = di13 = d>»1 = d31 = 0. Hence,

0 O 0 0
0 dg O 0
0 0 dy dy

0 0 dsn di

Case 2.10 Let A # 4,10 # 1,4 # u,t # 0. Then, Equations (5.54-5.60) yield
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that dys = d1p = di3 = d21 = dr3 = d31 = d3p = 0. Hence,

0O 0 0 o
0 diy 0 O
0 0 dpnp O
0 0 0 d3

The obtained results are summarized in the following theorem.

Theorem 5.1.2 Let (A,o;) be a FOGLV-A. Then, its derivations are given in the fol-

lowing Tables (5.2-5.4).

Table 5.2: The first five derivations of the given flow

Conditions derivation
0 O 0O O
0 d; 0 O
a#()?l;é()?l?é.u' 0 0 d22 0
0 O 0 O
0 O 0 O
_ 0 diy dio O
a#0,A#£0,A=pu 0 doy drr 0
0 0 0O O
0 O 0O O
B 0dy 0 0
a7£07)'_071u%0 O O d22 O
0 O 0 O
0 O 0 O
o 0 dy di O
a0, A=u=0 0 doy du O
0O O 0 0
0O O 0 dy
0 d d d
_ g1, 1 dip diz
a=0A=p=71 0 dy dy dn
0 d31 dyx di33
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Table 5.3: The second five derivations of the given flow

Conditions derivation
0 0 0 dy
0 dyp d 0
_ _ 1, 1 4
a=0,A=pu#5,1t=0 0 doy doy O
0 0 0 dx
0 0 0 doy
0 d 0 d
_ 1 1, _ 11 13
a_07)“_27.u%27t 0 0 O d22 0
0 d3i 0 ds;
0 0 0 dy
0 d 0O 0
. 1,1 . _ 11
a_ovl%za.u 27t O 0 0 d22 d23
0 0 dsp di
0 0 0 doy
0 d 0O 0
. 1 1, 11
a=0,A#UA#5,u#5,1t=0 0 0 dy 0
0 0 0 ds3
O 0 0 O
0 dyy dip d
_ I | 11 di2 a3
a=0A=p=5170 0 dy dy dr
0 d31 dx ds3

Remark It is notice that subalgebra I (see Section 4.3) has the following form (a #
0,r > 0):

F ={(2,0,0,u): A, € C}.

It is interesting to know about d(IF') for derivation d. Taking into account the formula:

d(X) = XT(d,'j).

Using Table (5.2), one immediately finds that d(IF) = {0}. Indeed, let g € I, i.e.,



g = (4,0,0,u). Then, by Table (5.2) (case a # 0,4 # 0,A # 1), one gets:

0O 0 0 O
0 dg 0 O
d(g) =(4,0,0,u) = (0,0,0,0).
0 0 dyp O
0O 0 0 O

Using the same argument, one arrives at the required equality.

Table 5.4: The last four derivations of the given flow

Conditions derivation
0 0 0 O
0 diy d 0
_ _ 1 1 an
a_()’l_‘u'%z?t;éo 0 d21 d22 0
0 0 0 ds3
0O 0 0 O
. _1 1 0 di 0 d13
a_07l_27.u7£27t7é0 0 0 d22 0
0 d3i 0 ds;
0O 0 0 O
0 d 0 O
_ 1,1 11
a_()?A’#Znu 27t%0 0 0 d22 d23
0 0 dyp d3
0 0 0 O
_ [ 0dy 0 O
a_07a’7éu72’#27u#27t#0 0 0 d22 0
0 0 0 ds3




90

Chapter 6: Automorphisms of FQGLVA

6.1 Preliminaries facts on unital maps

Recall that {1, 07, 0,03} is a basis for M,(C). For any x € M,(C) one has,

x=wpl+ow-o (6.1)

where @ - 0 = w01 + @, 0> + w303. Correspondingly, for any linear functional ¢ :
M;(C) — C, one has ¢(x) = Y3, fi- @ where f; = ¢(0;), fo = @(1). Then, ¢ can be

written in terms of its coordinate vector (fy, f1, f2, f3) € C*. Recall that

1. ¢isastateif (1) =1.
2. @ >0 (positive) if |@|> = |@1|> + |@2]* + |@3]> < 1 and @1, @2, @5 are real.

Thus, there is one-to-one correspondence between all functionals on M;(C) and C*
LetA =M;(C). By S, it was denoted the set of all states on M, (C). Now, it is interested
to describe a mapping « : A — A such that @(S) C S. Since A has a dimension four,

then the mapping « in the standard basis is represented as follows:

app 4o axo aso
apr 4ail a1 asg

aopr a2 ax dazp

apz a4z a4z ass

Therefore, o acts on ¢ as follows:

3 3 3 3
a(e) = (Z ap;®j, Z ayje;, Z a2 Q;, Z a3j(Pj>
Jj=0 Jj=0 Jj=0 Jj=0

= (a(@)o,a (@)1, a(@)2, ct(9)3).



Now, using duality representation, one gets:

where 0 = (@, @, @, ®3) and

app dor 42 4ao3
T app air a2 a3

arp 4zp 4z azs

asp dzp aszz dass

Remark If o preserve all states, i.e; a(S) C S, then

app ai Ao aso 1 1
apy app az as 0 B 0
apr ap axp am 0 0
ap3 apz a3 asz 0 0
which implies that:

ano 1

aol 0

ao 0

aps3 0

91
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Thus, aopg — 1,a01 =dap = aps = 0. Therefore,

I 0 0 O
aip apl a2 4z

azp azp a4z azs

aszp asp a4z ass

Now, automorphisms of flow of quantum genetic Lotka-Volterra algebras are going to

be considered.

Definition 6.1.1 An automorphism of (A;,o;) is a map o : A; — A, such that
* o is homomorphism, a(a o, b) = o (a) o, a(b) for all a,b € A;.
* (¢ iS one-to-one map.
Using the argument of Proposition (5.1.1), one can prove the following fact.

Theorem 6.1.1 « is an automorphism of (A, o) if and only if ci(e;o; e;) = a(e;) o
o(ej) foralli,je {0,1,2,3} where {ej}320 is the standard basis.

6.2 Automorphisms of FQGLVA
From the previous section, o can be written as follows:
1 O 0 O

ap a4l a2 a3

azp 4azp a4z azs

asp d3z] 4z d4dss

In this section, the necessary conditions on the matrix & and on A, 1, a are investigated,

when

o(ejoe;) =of(e)ool(e;)
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fori, j € {1,2,3}. Now, a(e;) fori =0, 1,2,3 are going to be computed. Then,

1 0 0 0 1 1
aypp air dr as 0 aio
a(ey) = = = €ept+ajoe; +azper +azpes,
axy a1 axp a4 0 a
az) a1 asy asz 0 azo
1 0 0 0 0 0
aijp ail di2 a3 1 ar
ofe) = = =ajie| +azex+azes,
axy a1 axp a3 0 asy
az) az| asp asz 0 asy
1 0 0 0 0 0
aypp ail app d 0 ap
o(ey) = = = ajpze| +axner+axnes,
ax) a1 axp a; 1 a»
azp a4zl asxp as 0 asp
1 0 0 0 0 0
aijp ail dp a3 0 as
06(63) = = = ajze] + axzer + azzes.
axy az; axp a3 0 a3
az) az| as asz 1 asz

The next step is to compute a(e;) o, o(e;) for i, j € {0,1,2,3}.

2
a—aa _
oep) or oc(ep) = (1;261107V+1,2a20/.tt+1,a—|— 30 . 430 a)

21+1 1!
2
a—aa az)—a
=eo+2a101" s +2axu' ey + <a T 2t+130 21 ) €3,

t+1 +1 431 —aazopdsj
a(eo) or cx(er) = (0761117L Lanu S TEE

asp —aazopdsi

141 11
=anA e tay e+ —— e,



o(eg) o or(er) = (Oyalzlm ,an i

Y

41 r+1
=apA' el fanu e+

a(ep) oy xx(e3) = (0,6113”“,(123#

’

1 1
= a137tt+ (3] +a23ut+ e+

a(er)o; or(ep) = (07a117tt+1,a21li

I

41 r+1
=apA' e +aypu' ey +

(X(01>0,0t(el) = (0,0,0,
o(er)o,afey) = (0,0,0,

OC(el) op a(e3) = (0,0,0,

o(ey) o or(ep) = (07a127tt+1,azzﬂ

+1 432 —aaszpdas

2[+1 )

aszpz — aaszpds?

2t+1

t+1 433 —aazopdss
Zl—i-l

ass — adzpdss

o1+

(41 431 —aazpasi

o)

asp —aazopdsi

o+l
2l ) T i &%
—aaziaxn )\ _ —ad3ax;
21+1 AR 35
—aaszpass o _aa31a33e
y+1 T ol 35

Y

41 r+1
=apA' e +anu' e, +

t(e2) or cx(er) = (o,o,o,

(0,0,0,

06(82) op a(e3) = (0,0,0,

a(e2) or cu(ey)

(41 a32—aazpas;
2l+1

aszpz —aaszpds

21+1
—aa31ay | _ —443an
y1+1 T ol 35
2 2
S+l ) T okl o3
—aaszpass o —adaszpass
1+1 o

€3,

€3,

€3,

€3,
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41 141 433 —aazass
o (e3)o; a(e) = (O aiA'™a '™ N TEE

A+ g, 933~ aa30a3

=apA e tapsll e+ S €3,

—aaszaszs —daasass
(X(e3> Ot (X(el) = (070707 ) = €3,

2t+1 2i+1
—aaszpaszs —Aadasnaszs
(X(e3) O[(X(ez) = (07070; i+l ) = o+l 3,

2 2
—daa —daa
Ot(e3) o (x(e3) = (0,0,0, 2H—f3> = 2t+i)3 e3.

Hence, the multiplications of & of basis vectors are reported in Tables (6.1)
and (6.2). Finally, one can compute o(e; o; e;) for i, j € {0,1,2,3}. The results are

presented in Table (6.3).

Table 6.1: Multiplication of o of the basis vectors - part (a)

O¢ ((30) a(E])
a— ua —
ofeg) ep+2aiA e +2axu e + (a+ e + A5 “) e; apiAtle +a21I~l’+le2+%e3
ae;) apA*le +azlu’“e2+we3 ;f?lez
aley) apAitle; +a22#’+102+%e3 s,
1 T a aa a —
ofe3) apAtle; +anu e+ M% 2r3+1] He,

Table 6.2: Multiplication of o of the basis vectors - part (b)

o o(e2) o(e3)
afeo) apd'Tle+anu'tle,+B20%e;  a13A ey +ayu' ey + B0y
—aaz1a —aaz1a
(X(el) 23:1 32 €3 ztill 33 €3
76{&%2
a(ez) ol €3 0
—daazyd —dadazoa
a(e3) zrizl = €3 2r3+21 = €3
Table 6.3: a(e;o;e;) fori, j € {0,1,2,3}
i/j 0 1 2 3
3 t+1 z 1 1 3
0 () —l—Zl_l (a,'() —|—aai3§0)e,- ALt Zl_] a;1€; + Zl_] ap€i T Zi:l ai3e;
1 AHIYS ane 0 0 0
2 H'l Z 1 ai2€; 0 0 0
—a 3
3 2t+_1 Zizl a;3€; 0 0 PRl Zi:l a;i3€;
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Now, two main cases will be considered, namely, a = 0 and a # 0.

(I) Let a =0. Comparing Tables (6.1) and (6.2) one yields the following set of equa-

tions:

aio (=14+2A"1) = 0,az0 (=1 4+2u") =0,
_1+_) :0,6121 (_;Ll-i-t_{_‘ul—l-t) :07

—0,ap (_)‘1+t+ul+t) —0,

—1
,a13 <W —}—A«H_t) =0,

82
s
|
-:N
=
~ o N~
I
(]

In addition, note that det(a) # 0. Hence, one has the following cases.

I 0 0 O

ap air a4z a3
Case 1.1 Leta=0,4 =pu = 3,t =0. Then, a0 =

arp dzr Az azs

aszp asp 4z ass

Case 1.2 Leta=0,u = 3,t #0,|A| < 3. Then,

ajp =az) =asz; = a3 =ay =ay =ap =0,

1 0 0 O

0
0 0 ajry ajj
0 0 a3xn aszy

Case 1.3 Leta= 0,4 = 3, #0,|u| < 3. Then,

ajp =ago = aszy =az1 = app =az =day =0,



1 0 0 0

0 a1 0 a3
o =

0 0 a»n O

0 az; 0 as;

Case 14 Leta= 0,1 # 3,1 #0,u # 3,4 # p1,|A| < 1,|u| < 1. Then,

ajp=ax) =az =ay| =as| =dajp =azxn =aj3 =ay =0,

1 0 0 O
0 all 0 0
o= ,det(a) # 0.
0 0 axn O
0 0 0 asjy

Case 1.5 Leta=0,t #0,A = p,|A| < 1,|u| < 1. Then,

ajp = ax) = azo = a3| = azx =aj3 =ax =0,

1 0 0 O

ajpn app 0

0
0 ayy a»n O
0 0 0 asjy

Case 1.6 Leta=0,f #0,A = u = 1. Then,

ajp =ax) = az = a3| = az = a3 =ax =0,

1 0 0 O

0 a1 an O
o =

0 ayy a»n O

0 0 0 asjy

97



Case 1.7 Leta =0, =0, = 4,|A| < 1. Then,

a0 = az1 = az = ap = a3 =0,

ap 0 axp ax

azo 0 azxn as;

Case1.8 Leta=0,r=0,1 = %,|u| < % Then,

ax = az = app = az = ax =0,

1 0 0 0
ap an 0 aj3

0 0 ann 0

azo az1 0 as3

Case 1.9 Leta=0,t =0,1 # u,|A| < 1,|u| < 3. Then,

ajp=ax =a =az =app =azx =a;3 =ay =0,

1 0 0 O
0 a3 0 O

S}
I

0 0 ann 0

ay O 0 asj3

Case 1.10 Leta=0,r =0, = pu,|A| < 1,|u| < 1. Then,

ajp=ax =az =azx =ayj3 =a3 =0,
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1 0 0 0
0 an an O

0 ay a»n O

aso 0 0 assy
It is wroth mention that the following condition is used in the previous cases.

1_
0 < max{|A], Jufy < Y19 _ ]

2 2

(IT) Let a # 0. Then, the following equations can be generated.

—aa13§o+a1o( 14221 =0, —aax &y +axn(—1+2u"*") =0,
—a30+ 507 2t+1 % (2~ aa) +a&y — aazz€o = 0,ax (— A" + p't1) =0,
ﬁ(%l —aaszpazy) —an AT =0 zl—itaagl =0,

2_1+1t aazjazy =0, 2_111 aa3, =0,

—1

21+taa13 07a12(_ll+t+.ut+l) :07

1
I _
i1 (@32 —aazaz) —anp ™ = 0,413

—1 1
(2t+1 —l—[,L ) 0, 2t+1aa3oa33 =0,

21_'_1(1(131(133 0 2t+1aa32a33 —0
—1 —1
2Z+1aa23 0, 2t+1a33(1+a33) 0,

where §g = 1+ 2,% — % Thus, a3 = ax3 = azy = az; = 0. Hence, the previous
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system of equations can be reduce to the following seven equations.

al()(—l +2ll+[) = O, t+1aa30a33 = 0,

az
—aso+ 5,7 (2~ aaz) +ao — aazso =0,

yrraa33(1+a33) = 0,a0(~1 +ou'ty =o,

azl(—llﬂ _I_‘u1+1) _ 0,012(—ll+t _'_‘ul+t> —0.

Thus, the following five cases can be reported.

Case 2.1 Letasz =0,A = pu,t #0. Then,

2—21+’:|:\/(—2+21+t)2+23+’a2§0
2a ’

ayjo =ax = 0,a3) =

I 0 O

0 anr an :
. Due to the fact that det(a) # 0 and since

0 ay ax

oo o o O

azp 0 O
det(a) = 0, this case can not be considered.

Case 2.2 Letasys =0,4 # u,A = %,t # 0. Then,

2—21+t:|:\/(—2+21+’)2+23+ta2§0
2a ’

axo =az = ajp = 0,a3) =

1 0 0 O
ap a;i; 0 0
o =
0 0 ann 0
aso 0 0 0

Due to the fact that det(ct) # 0 and since det(oa) = 0, this case can not be

considered.
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Case 2.3 Letas; =0,4 # u,u = 3,t = 0. Then,

2_21+t:|:\/(_2+21+z)2+23+ta2€0
2a ’

ajpo=az =ajpp =0,a3) =

1 0 0 O
O a7 0 O
o =
ao 0 axpn 0O
azg O 0 O

Due to the fact that det(ct) # 0 and since det(o) = 0, this case can not be

considered.

Case 2.4 Letas; =0,4 # 1, A # 5,4 # %,t =0. Then,

2_21+t:|:\/(_2_|_21+t)2+23+za2§0
2a ’

ayp=ax) =az; =aypx =0,a3 =

1 0 0 O
0 a; 0 O
o =
0 0 ann 0
aapp 0 0 O

Due to the fact that det(or) # 0 and since det(oa) = 0, this case can

not be considered.

Case 2.5 Let azz # 0. Then,

a3 =ax = az = az; = 0 =azp.
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Thus, the following system of equations can be generated.
1+t —1
alo(—l—{—Zl )=0,a§0—aa33§0:0 —aa33(1+a33)=0,

?ot+1

ax(—1+2p"") = 0,a01 (=2 + ') = 0,a12(-A" + ') = 0.

Since s > 0and & = 1 — 51 #0, a&y —aazs& = 0 yields that azz =
1. Thus, 2,_—+11aa33(1 + a33) = 0 implies that a = 0 which is a contradiction.

Thus, this case is impossible.
Finally, the following possibilities for & can be obtained.

. Leta=0,A=u= %,t = 0. Then,
1 0O 0 O
aijp app ap2 a4

azp dazp dzp aAz;

asp dzp asz2 dass

. Leta=0,u= %,t#0,|ﬂ,| < % Then,
1 0 0 O
0 aqg 0 O

0 0 ax ax

0 0 a3 az

. Leta=0,A = 1,1 #0,|u| < 5. Then,
1 0 0 0

[\S]]

0 al 0 als

0 0 axn O

0 az; 0 as;

. Leta=0,4 # 3,6 0,1 # 3,4 # u,|A| < 3, |u| < §. Then,



1 0 0 O

0 al 0 0
o =

0 0 axn O

0 0 0 assy

. Leta=0,t #0,A =y, |A| < %, |u| < 1. Then,
1 0 0 O

0 aily apn 0

0 ay axn O

0 0 O a3z

) Leta:O,t%O,l:u:%. Then,
1 0 0 O
0 aip anp O

. Leta=0,r=0,u

1 0
0 an
o=
ap O
aso 0

. Leta=0,r=0,A
1 0
ayjp aii

0 O

asp asi

. Leta=0,t =0,A # p,|A| < 3,|u| < 5. Then,

1 0

0 an
o=

0 0

ayo O

0 ajyr an 0

0 0 0 a3

= 1,|A| < 3. Then,

0O O

0 O

axp ax

aszxy as3

= 1,|u| < 3. Then,
0 O

0 a3
a»n 0

0 a3

0O O

0O O
an O

0 as;

103
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10. Leta=0,t =0,A = p1,|A| < 1,|u| < 3. Then,
1 0 0 0
0 aip an O

0 ay ax»n O

aso 0 0 asy

6.3 Positivity of automorphisms of (4,,0,)

Assume that

ap ap as S aio
T=1 ay an ap | d=| £ |a=] axn |
az|1 az as; f3 azo
and T = a+ T(f). Let
1 0 0 0

ap a4l a2z a3

azp azp a4z Az

asz) azy a4z ass
It is noted that ¢ is positive if and only if o (S) C S. Take ¢ € S, then f =

(17f17f27.f3) and

1 0 0 0 1
aypp ai app as fi
a(p) =
axy az1 axp a3 f
azyp a4zl asxp ass /3

3 3 3
= (Law+Z_a1fj a0 + X a2 fj,a30 + X a3 f;

= (1,a+T(£)).
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The positivity condition for ¢ is equivalent to

la+TE)[ < 1LV[f]| < 1. (6.2)

Now, some sufficient conditions to satisfy Equation (6.2) will be provided.

Theorem 6.3.1 If |[a+T(f)| < 1, then

IT||*+|a]* < 1. (6.3)

Proof. Due to the parallelogram equality and |[a+ T(f)|| < 1,|la—T(f)|| < 1, V£, ||f]| <
1, then 2(||a||?> + || Tf||?>) < 2 which implies that | Tf||> + ||a||> < 1. Hence, ||Tf||* <

1— ||a||?, V£, |[f]| < 1. Thus, || T||> < 1— ||a||*> which gives || T||>+ ||a]|> < 1. O

Remark We stress that condition (6.3) is necessary condition but not sufficient. In-

deed, consider the following example. Let

1 1
300 1 :
T 01 o0 |f 0 |2 !
00 3 0 :

Then,

2
111))\? 1 1 1
TP+ fal = (max{ 5,55 }) +< z*z*z) 1<t
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but
2 2
1 1
! 1 1
3
2 1 - 1 -
|la+ Tf|| Tf+] o ! 2>1.
1 1
2 0 2

Corollary 6.3.2 If a =0, then,

a+ Tf|| <1 ifand only if |Tf|| < 1,V||f|| < 1 which
is equivalent to ||T|| < 1. Hence, Theorem (6.3.1) will be necessary and sufficient

Statement.

a b
Theorem 6.3.3 Let A = with a,b,c,d € R. Then,

1
Al = E\/a2+b2+c2+d2+ \/(a2+b2+c2+d2)2+4(ad—bc)2.
Proof. It is clear that:

r a’+c* ab+cd
A'A=

ab+cd b*+d?

is symmetric matrix and its eigenvalues are nonnegative real numbers. Thus,

a+ct—2 ab+cd
0=det(ATA — A1) = det

ab+cd bE+d*—A

= A2 — (P + P+ +d)A+ (@ + ) (b + d?) — (ab+cd)?.

Hence,

az—l—bz—i—cz—l—dzi\/(a2+b2—l—c2+d2)2—|—4(ad—bc)2
2

A, Ay = A > Ag.
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Thus,

1
A] = E\/az—i—bz—i—cz—f—dz—k\/(az—|—l)2—|—cz+a'2)2+4(aa’—bc)2.

Theorem 6.3.4 Let f: Q — R be a function that is defined by
f(u,v) =Au+Bv+C

where C > 0and Q = {(u,v) € R:u>0,v>0,u+v < 1}. Then, the maximum value
of fonQis

max f(u,v) =max{A+C,B+C,C}.
(u,v)eQ

Proof. Since g—i: = A and g—{ = B, then the critical numbers of f is all (u,v) € Q if
A =B=0. If |A| + |B| # 0, then f does not have critical point in the interior of Q.

Hence, the maximum of f is on the boundary. Three cases should be considered.

Case 1 Letv=0. Then, f(u,v) =Au+C,0 < u < 1 which yields that

max f(u,v) =max{A+C,C}.
(u,v)eQ
v=0

Case 2 Letu =0. Then, f(u,v) = Bv+C,0 < v < 1 which gives that

max f(u,v) =max{B+C,C}.
(u,v)€Q
u=0

Case3 Let u+v=1. Then, f(u,v) = g(u) =Au+ (1 —u)B+C,0 <u < 1. Hence,
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g'(u) = A—B. Thus,

max{g(0),g(1)} A7 B,
i )=
utv=1 max{g(0),g(1),A+C} A=B,

or

max{B+C,A+C} A#B,

(g?ggf (u,v) =

utv=1 max{B+C,A+C} A=B.

Combining all cases, one can get:

max f(u,v) =max{A+C,B+C,C}.
(u,v)eQ

]

Now, the positivity of the ten matrices in the previous section will be
investigated. Now, using Theorem 6.3.1 with a = 0, one provides necessary and suffi-

cient conditions for the positivity of C.

1 0 0 O

al 0 0

Case 1.2 Letax = . Then, it follows from Theorem (6.3.1) that

0
0 0 axn ax
0 0 asz aszs

« is positive if

+lan* <1

2
azz azs
asy dass

which yields by Theorem (6.3.3),

2 2 2 2 2 2 2 2
ass + ass -+ az, + aszs + \/(022 + ays + az, + a33)2 + 4((122‘133 - a23a32)2

5 +lan * < 1.
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1 0 0 O
0 al 0 als .
Casel.3 Leta = . Then, it follows from Theorem (6.3.1) that
0 0 ap O
0 a1 0 a3

« is positive if

2
ail ais
+lan|* <1

asp ass

which yields by Theorem (6.3.3),

2 2 2 2 2 2 2 2
an +(113 +a31 +a33 + \/(all +a13 +a3] —|—a33)2—|—4(a11a33 _a13a32)2
2

+lan < 1.

1 0 0 O
0 all 0 0 . . .
Case 14 Let o = . Then, « is positive if
0 0 an O
0 0 0 asjs
max{|ai|,|az|, lazs|} < 1.
1 0 0 O
0 ail aln 0
Case 1.5 Letax = . Then, it follows from Theorem (6.3.1) that
0 arr ajp 0
0O 0 O uas
« is positive if
2
ap ap )
+ |a33\ <1
az1 an

which yields by Theorem (6.3.3),

2 2 22
ay taptay +an+ \/(a%l +ajy +a3) +a3,)? +4(anan — anax)?

5 +|a33|2§1.
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1 0 0 O
0 ail apn 0 .

Case 1.6 Letx = . Then, it follows from Theorem (6.3.1) that
0 a1 app O
0 0 0 assy

2
o a ap 5 L
o is positive if + |as3|* < 1 which yields by Theorem (6.3.3),
azy ax

2 2 L2 2 2 2 2 g2
ay taptay +ayp+ \/(‘111 +aj, + a3 +ay)’ +4(anan —anan)?
2

—Ha33]2 <1.

In the next cases, by using (6.2), the positivity of o will be investigated.

1 0 0 O

0 ar 0 0 . . .
Case 1.7 Let o = . Then, o is positive if

a 0 ax»n ax

azo 0 azxn as

al 0 0 0
0 azxn as; azo

To find sufficient conditions for the positivity of o, one should examine ||a +

Tf||?. Thus,

la+TE|* = ai, f7 + (|azo| + |axa| f2 + |azs|f3)* + (|azo| + |az2| fo + |az3| f5)°
2 2 2 2 2 2 2 2 2 2

= ai\ fi +ay + a5 fr +axsf3 +2|ax||axn|f2 +2|ax||axs| f3 +2|ax||axs| f2.f3
+a3o + 2|azol|aza| fo + 2lazo| |azs| 3+ ado f3 + 2laz||ass| fofs + 35 fh

<ai i +a5fs +2(|ax||an| + |azollax|)| f] +2(|asolaz3]) | f3]
+2(|ax|lazs| + |aza||ass|) | || f3] + (a33 + a33) £5 + (a3y + aFg)

)
+az f;-
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Since 2| /|| f3| < f2 + fF and 2| o] < 1+ f2,

la+TH|> < af) ff + (a3, + a3, + lax||axs| + |as||azs]) 5

+(|azo||aza| + |asol|az2|) (L + £3) + (a33 + a33 + |axa| x| + |aa||az3]) 5
+2|azo||ass|| f5| + (a3, + a3p)

2 2 2 2 2
= aiy fi + (ax + a3, +|ax||as| +|asz||asz| + (Jax||az| + |asol|asz2|) f
+(a33 + a3 + |an||ax| + |as||az3|) 3

+2]azol|azs| | f3] + (a3, + a3o + |azo| || + |azo||az2]).-
Let

B = max{af,a3, + a3, + lan|lazs| + [asz|ass| + [axlaz| + azo[las|}.

Then,
la+TE|> < B(ff+f7) + (a53 + a33 + |ax||ax| + )f3
a < B(fi +f5)+ (a53 + a3z + |axn||as| + |az||asz3]) f3
+2|azo||az3| | f3] + (a3, + a3y + |azo| |axa| + |azo| |az2])
< B(1— f3) + (a33 +a3s + |axn||ax| + |ax||ax|) f3
+2|azo||az3| | f3] + (a3, + a3y + |azo| |axa| + |azo| |az2])
— A’ +Bu+C<1,

where

A = a3+ a3+ |an||ax| + |az||ass| — B,
B =2|azo||azs|,u = |f3],

C = B+ a3, + a3y + |azl|ax| + |azo| ).



Hence,

(1—C) —Bu—Au® > 0.
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Leta = —A,b = —B, and ¢ = | —C. Then, f(u) = au® +bu+c > 0 for all

u € [0,1]. By Lemma 3.2.1, « is positive if

1 — B — a3, — a3y — |ax||az| — |azol|azz| >0,

and

—a33 — a3 — |an||ax| — |ax||ass| + B — 2lazo| |as3)|

+1— B — a3, — a3y — |azo| x| — |azo||az| > 0

which gives that

1 —a33 — a33 — a3, — a3y — |an||axs| — |asz||azs| — 2|azo|as3|

—|aao||az| — |azo||asz| > 0.

In addition, either conditions (6.6)-(6.9) or (6.10) hold.

B — ar3 =33 —lanllaz| — |as||ass| > 0

2azpa33 < 0

|azol|az3| + 33 + 33 + |ana||ans| + azz||azs| — B > 0
a3y + a33 +4(ar3 + a3z + |anl|ax| + |asa|ass| — B)(1— B

2 2
—a5, — a3+ axoax +azpaz) <0

or

a3y +a3s + |ax||ax| + |az||ass| — B > 0.

(6.4)

(6.5)

(6.6)
(6.7)
(6.8)

(6.9)

(6.10)
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and one of the following conditions is satisfied. Finally, the following conditions

are founded.

1. 1—B —a3, — a3y — |azo||az| —|aso||az| > 0,

| —a3; —a33 — a3, — a3y — |an||axs| — |asa||ass| — 2|azo|ass|

—|azo||azz| — |asol|azz2| > 0.

and one of the following conditions is satisfied.
L B> a%3 ~|—a%3 + |ax||ax| + |az||ass].
a. azpazz <0

b. |aso||azs| +a3; +a3; + |az||azs| + |as||ass| > B

4a30a3; +4(ad; + ads + |an||azs| + |az||ass| — B) (1 - B

2 2
—asy — azg — axoaxn —azpaz) < 0.

IL B < a3;+a3;+ |axn|las| + |ax|lass).

I 0 0 O

aio
aip air 0 a3
Case 1.8 Let o = . Then, a = 0 and

0 0 axn O
aso

azo a3 0 as3

aip 0 a3
T= 0 a»pn O

azp 0 as;
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Now, the goal is to reduce this case to case (1.7). Define the matrix U by

010
U=]1100
0 01
fi 12
Then, U~' =U,f=U =1 A | and
f3 f3

010 al Oa13 010

T,=UTU'=]| 1 0 0 0 an O 100
0 01 aso 0 assy 0 01
a»n 0 0

= 0 ap ais

0 a3 as;

Thus, T = U‘l’ﬁ‘7U. Then,

la+Tf| = [|[U~'Ua+U"'"T;Uf]| = U (Ua+T,Uf)|| = ||a+ T

0

where a =Ua = ayo | - Therefore, from Case (1.7), one obtains the follow-

aso
ing conditions.

1. 1—B—aj, —a3y—|aiollai| — |asol|as1| > 0,

1 —aj; —a33 —ai) —a3p — |ai||ai3| — |asi||azs| —2]azo|as3]

—laiol|ar1| — |azollazi1] > 0.
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and one of the following conditions is satisfied.

L B> a}y+ak +|an||ais| + |asi||ass).

a. azpaszz < 0.

b. |azol|ass|+ai; +a3; +|an||aiz] + |azi||ass| > B.

4a30a3; +4(ats +ads +|an||ais| + |asi||ass| — B) (1 - B

2

2
—ay, —azg—ajoar; —azoaszr) < 0.

IL B <aly+a3;+|an|las| +|as|azs).

Case 1.9 Let o =

1
0
0

aso

0
ary
0
0

0
0

an

0

0
0
0

ass

. Then, « is positive if and only if

max{|aso|* + |a11|* + |axn|* + |az3]*} < 1.

Let us check conditions of case (1.7). Then,

Then,

0
0

aso

0
ari
0
0

0
0

ann

0

0
0
0

ass

1 1

A ai fi
/2 ax f2
/3 az+assf3

I=aj\f{+a5f5 + (Jaso| +|ax|f3)?

< ai\ff + a5 fi +aig+ a3 f3 +2lazol|azs]| f3.
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Let B = max{a?,,a3,}. Then,

1< B(ff + f3) +a33 /5 +2lazo||ass || 5] + a3
2 2 2 2
< B(1— f3) +az3f3 +2lasol|ass|| f3] + a3

= (a33 — B)f3 +2|aso||azs|| f3] + B +a3y < 1.

Then, f(u) = au® +bu+c,u € [0,1], where u= | f3|,a = —a35,b = —2|azo||az3|,

andc=1-f— a%o. By Lemma (3.2.1), « is positive if

1—B—a3y>0 (6.11)

1 — a3z —2|aso||azs| — a3y > 0 (6.12)

and either conditions (6.13-6.16) or (6.17) hold.

B—a3;>0 (6.13)
|azollazs| <0 (6.14)
2l|azo||ass| +2(a3; — B) >0 (6.15)
4a3gass +4(az3 — B)(1 =B —azy) <O (6.16)
or
a3;— B >0. (6.17)

Since condition (6.13) can be satisfied, so the conditions become

1—B—a3>0 (6.18)
1 — a3y —2|aso||azs| —ajy > 0 (6.19)

a3z — B > 0. (6.20)



0 an an O
Case 1.10 Let o = . Then, a = 0 and

0 ay a»n O

asp
aso 0 0 assy

aig a0
T=1 ay an 0
0 0 ass

Now, the goal is to reduce this case to case (1.7). Define the matrix U by

0 01
U=]1010
1 00
h VE!
Then, U~' =U.f=U A =1 £ | and
VE! h
0 01 aj; app 0O 0 01
T;=UTU'=| 0 1 0 a an O 010
1 0 0 0 as 1 00
azz 0 O
=1 0 axn ay
0 ap an

Thus, T = U‘l’ﬁ‘7U. Then,

la+Tf| = |U 'Ua+U""T,Uf|| = |U " (Ua+T7Uf)|| = |]a+ T+f|

117



118

aso

where g =Ua= 0 . Therefore, from Case (1.7), one obtains the follow-

ing conditions.

1. 1-B—d3, >0,

1 — a3, —at) —az, — |axn||ax | — |an||aii| > 0.

and one of the following conditions is satisfied.
L B > a3 +af, +|anllax| +|az|ai].

a. a} +ai, +l|axnl|ax|+|az||ai| > B.

4(a3) + a1, + |axn||azi |+ |aia||ai| — B)(1— B —a3,) <0

IL B <d}, +af, +|axn|lax |+ |ai||ai].

Let us check conditions of case (1.7). Then,

1 0 0 0 1 1
0 an an O fi | | enfitans
0 axy axn O i ax1f1+anf

ap 0 0 az3 /3 azo+azz f3



Then,

I'=(lan|fi+lanlf)* + (laxlfi +lax| f2)* + (laso| + |ass|f3)*
< ai fi +ata f3 +20anllac|lfill ol + a3, ff +anfi

+2laz [laxl fif2 + a3 + a33.f5 + 2lazol |azs || 3

<aq fi +ataf3 +lanllan|(f + 13) + a3 /i +anfi

+az [|aza| (fE + f3) + a3o +a3s f5 +2|aso||azs]| f3]
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= (a1, + |a11||a12| + a3; + |azi||aza|) fE + (@ + @] |ar2| + a3, + |a21||aa|) £5

+a33 f3 + 2|aso||ass| f3 + a3

Let B = max{af, +|ai1||ai2| + a3, +|az1|lax|, a}, +|ar||aiz] + a3, + azi | aza|}-

Then,

1< B(fE+ f2) + a3 /5 +2lazol|azs| | f3] + a3

< B(1—f3) +a33f5 +2|asol|azs|| f5]| + a30 < 1.

Then, f(u) = au® +bu+c,uc[0,1], where u = | f3|,a = B —a%3,b: —2lazol|asz

and ¢ = 1 — 8 —d3,. By Lemma (3.2.1), & is positive if

1-B—a3,>0

1 — a3; —2|aso||azs| — a3y > 0

and either conditions (6.23)-(6.26) or (6.27) hold.

B—a33>0
]a30]|a33] <0
2|aso||azs| +2(a33 — B) > 0

4a3yazz +4(a3; — B)(1— B —ajy) <0

(6.21)

(6.22)

(6.23)
(6.24)
(6.25)

(6.26)

’



or

Cl%3—ﬁ>0

Since condition (6.27) can be satisfied, so the conditions become:

I—B—Cl%() ZO
1 — a3z —2|aso||azs| — a3y > 0

a%3—ﬁ >0

120

(6.27)

(6.28)
(6.29)

(6.30)

From these calculations, one can summarize the previous work in the following table.
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Table 6.4: Conditions for the positivity of & - part (a)

Cases « Conditions for positivity
1 0 0 0
11 o= | G0 @ anas e, L) < 1,V)f) < 1
ay azl axp ax;
azy as; aszp as;
1
(1) aO 8 8 3 (6, +a3; +a3, + a3
_ 11 2 2 2 2
12 a=1 4 ay an + \/ (a3, +ay;+az,+ 433)22 +4(axas; — az3a32)2)
0 0 axp as +|a]1| <1
1(.2 2 2 2
(1) aO 8 aO 7 (af) +af; +a3, +a3s
B 11 13 2 2 2 2
1.3 o= 0 0 an 0 +\/(a11+a13 +a31+a33)22+4(a11a33—a13a32)2)
0 a1 0 asz; +|322| <1
1 0 0 0
0 a O 0
. = <
14 o 0 0 ax 0 max{|a11],|a22|,]a33\} < 1
0 0 0 asj3
1(2 2 2 2
(1) aO aO 8 3 (af) +af, +a3, +a3,
B 11 an 2 2 2 2
LS e=1, @ an 0 +\/(“11 +ap tay +azz)22 +4(anax _a12a21)2)
0 0 0 ax +laz|* <1
1
(1) aO aO 8 3 (at) +a, +a3, +d3
_ 11 12 2 2 2 2
1.6 a=1 4 a0 +\/(a11 +ap, a3 +a22)22—|—4(a116122—a12021)2)
0 0 0 asj3 +lass|” <1
1. 1—B — a3, — a3, — |axllax| — |aso||az| >0,
2. 1 —a3; — a3y — a3, — a3 — |an||azs| — |as2]as3)|
—2|azol|az3| — |axol|az| — |aso||asz| >0
and one of the following conditions is satisfied.
1 0 0 0 ;e
0 ay 0 0 L. B > ay +a33+\a22|\a23|+\angagg\.
1.7 o= a 0 a a a) azpassz < 0
20 22 a3
e 0 b) azo||ass| + a3z + a3; + |ax|lazs| + |az|lazs| > B
30 @32 433 ¢) dadyat; +4(ad; + a3; + |ax||axs|
30933 23T 33T ) 2 223
+lasz||asz| = B)(1 =B — a3, —az
—axoaxn — azpazy) <0
IL B < a%3 +a§3 + |a22]|a23] + \a32|\a33|.
L. 1B —aj| —az, —|aiolla| —|aso|laz1| >0,
2.1 —a%3 —a%3 —a%l —a%o — lani||ais] —|as1ass|
—2|azol|az3| — |aollaii| — |aso||azi| >0
and one of the following conditions is satisfied.
1 0 0 0 o
L3> ajz+az;+ ‘a11Ha13‘ + \anga33\.
aip air 0 a3
1.8 o= a) azpazz <0
O a2 U ) Jagollass| + s+ lan|ass| + Jasi]ass| > B
azp az1 0 as3

c) 4a§0a§3 +4(a%3 +a%3 +lain||as]
+|azi[|azs| — B)(1 =B —ai, — a3,
—ajpar —azpazr) <0

IL B < 0%3 —I—a§3 +lan||ais| + |asi||ass)-
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Table 6.5: Conditions for the positivity of ¢ - part (b)

Cases «o Conditions for positivity
1 0O 0 O
/ 0 ap 0 O \ 21—/3—61%0202
422 a3, —B >0
\ ap 0 0 ax 33
/ 1 0O 0 O 1—B—a2 >0
0 ail arn 0 2 30 = o)
1.10 o= l1—a —2|a30Ha33|—a >0
0 a 0 33 30
21 a2 2. —B>0
\ asp 0 0 ass / 33
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Chapter 7: Conclusions

In this thesis, a class of flow quantum Lotka-Volterra genetic algebras (FQLVG-
A) is investigated. The structures of this class of FQLVG-A are presented. Also, the
derivation of a class of FQLVG-A are described. In addition to the automorphisms of
a class of FQLVG-A and their positivity are presented and proven.

In chapter two, the basic preliminaries which are used in this thesis are given.
The space of all linear operators on n-dimensional Hilbert space C" is defined. Then,
every linear operator is represent as n X n matrix. Several conditions that characteristic
the positive matrices are given. In addition, special types of maps are presented such
as linear, positive, unital, and completely positive and their properties are given. Pauli
matrices and their properties are investigated. Then, positive, trace preserving and uni-
tal operators on M,(C) are described. The quadratic stochastic operators are defined.
At the end of this chapter, some properties of quantum quadratic stochastic operators
on M, (C) are recalled.

In Chapter 3, symmetric commutative q.q.0.s on the commutative algebra DM, (C)
are described and formulated. Interesting results that are equivalent to the symmetric
quasi g.q.0. are proven. Moreover, a quantum analogue of Lotka-Volterra operators on
M, (C) are defined and some properties of these operators are presented.

In chapter 4, a flow of quantum genetic Lotka-Volterra algebras are defined.
Moreover, the necessary and sufficient conditions for the associativity and alterna-
tively of FQGLV-A are derived. In addition, the idempotent elements in FQGLV-A are
found.

In Chapter 5, the derivation of FQGLV-A are investigated in details . First, the
definition of the derivation and its properties in M4(C) are discussed. Then, fourteen
derivations on M4(C) are derived and the necessary conditions to guarantee that these
are derivations are given and proven.

In Chapter 6, automorphisms of FQGLV-A are studied. Ten types of automor-

phisms are derived and necessary conditions are obtained. Their positivity are dis-
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cussed in details. Necessary and sufficient conditions for their positivity are presented

and proven.
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