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Abstract

In this report we introduce and then study a maximal operator Mj ,, that
generalizes the classical one introduced by Hardy and Littlewood in the rank one case.

More precisely, for £ > 0 and an integer n > 1,

1 k.n .
M @) = 50—z [ ) (i) 1)

r>0 ,U/k,n

where the measure (i, is given by duy,(y) = |y|2k+%_2dy, and 7F" is a certain

translation operator.

The main result is to prove the weak (1,1) inequality and the strong (p, p)
inequality for M, ,,, with 1 < p < oo. The approach uses geometric and analytic tools.
One of the major technical obstacles is the lack of known properties of the translation
operator 7%". The strategy is to introduce an uncentered maximal operator associated
to intervals of type I(x,r) =] max{0, |z|= — ra}", (Jz|= + r=)"[ which controls the
maximal operator M, ,,. To do so, one needs to prove a Vitaly type covering lemma
for the intervals {I(z;, rj)}j together with a sharp estimate for ju,,({(z;,7;)). The
main result generalizes the case n = 1 proved by Deleaval, and the case n = 2 proved

by Ben Said and Deleaval.

Keywords: Hardy-Littlewood maximal operator, Generalized Fourier transform, Vitali
type lemma, Strong and Weak type inequalities, Convolution structure, Translation

operator.
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Chapter 1: Introduction

1.1 Hardy-Littlewood Maximal Operators

In 1930, G. H. Hardy and J. E. Littlewood introduced a maximal operator M,
defined on the space of locally integrable functions f on R [1]. Several years later,
the maximal operator M was generalized by Wiener to functions defined on RY [2].
This continued the revolutionary change in analysis that started around the late 1800’s.
Harold Bohr, a danish mathematician once said “Nowadays, there are only three really

great English Mathematicians: Hardy, Littlewood, and Hardy-Littlewood”.

The Hardy-Littlewood maximal operator is a very important tool in the theory
of differentiation of functions, Fourier analysis (especially in the theory of singular
integrals), in studying Sobolev functions, and also in complex and Harmonic analysis.
Generally speaking, this maximal operator can be thought of as follows. Considering
a certain collection of sets C in RY, and then taking any function f that is locally
integrable, at each x, the maximal average value of f is measured with respect to the

collection C, translated by x. More precisely,

M f(x) = SUTEL |/ y)|dy,

r>0

where B(x,r) is the ball of radius r centred at the point x. The simplest example of

such maximal operator is the one defined on R by

1 T+r
Mi@) =swws- [ 1r |dy—sup— / Irf () Idy,

r>0 2r —_r r>0 2r

where 7, denotes the Euclidean translation operator 7, f(y) = f(z + y). Then, it is of
fundamental importance to obtain certain regularity properties of the operator. Such
as, weak type inequalities and L”-boundness. More precisely, it’s well known by now

that
IMFlize < cillfllre (1.1.1)

forall 1 < p < ocoandany f € LP(RY). Also,

[M[fllpree < el f]lz1 (1.1.2)



for any f € L'(R"). Here L'*° stands for the Lorentz space. It is worth mentioning

that M f is not in L' (R") whenever f € L'(RY).

There are several proofs for the above two fundamental inequalities. The most

well-known uses Fourier analysis associated to the Euclidean Fourier transform

Ff@)=c | fly)evdy.
RN

Some of the applications of these inequalities are in the proof of the Lebesgue
differentiation theorem [3], the Rademacher differentiation theorem, Fatou’s theorem
on nontangential convergence, and fractional integration theorem. See for instance [4],

and [5].

It is interesting to mention that Antonios D. Melas [6] was able to find the
exact value of the best possible constant ¢, for the weak-type (1, 1) inequality for
the one-dimensional centered Hardy-Littlewood maximal operator. It was the first
time anyone ever precisely evaluated the best constant for one of the fundamental

inequalities satisfied by a centered maximal operator.

Along the years, Mathematicians have been working to expand the Hardy-
Littlewood maximal operator to different frame works (more precisely for different
integral transforms). For instance, singular integral operators [7] and [8], fractional
integral operators [9] and Poisson-Szego integrals [10]. See also [11], [12], [13], [14],
[15] and [16].

1.2 Motivation

The Dunkl theory is a significant generalization of the classical Fourier analysis
and the theory of special functions in several variables. In the late 70’s, it became
progressively clear that radial Fourier analysis on flat symmetric spaces and the theory
of special functions in one variable, are closely related. Generally speaking, it turned
out that spherical functions on one-dimensional flat symmetric spaces can be written

in terms of the classical Bessel function.



In the 80’s, several attempts were made to generalize the above connection to
higher ranks. The motivation for this subject comes to some extent from the harmonic
analysis on flat symmetric spaces and the growing interest in the theory of special
functions of several variables. The major breakthrough came with the discovery of
the so-called rational Dunkl operators introduced by Dunkl in [17]. These operators
are commuting differential-reflection operators associated to finite reflection groups on
some finite-dimensional Euclidean space. This discovery have led to a very rich Dunkl
theory. The early contributions to this theory go back to Koornwinder [18], Heckman
[19], Opdam [20], and Dunkl [17]. In a series of papers, Dunkl built up the framework
for a theory of an integral transform in several variables related to reflection groups,
called the Dunkl transform. Since then, this theory has attracted considerable attention
as it embraces in a unified way harmonic analysis on flat symmetric spaces and the

corresponding theory of spherical functions in several variables. See for instance, [21],

[22], [23], [24] and [25].

Beside Fourier analysis and multivariable special functions, the Dunkl theory
also has deep and fruitful interactions with algebra (degenerate Hecke algebras) and
probability (Feller processes with jumps). An equally important motivation to study
Dunkl operators originates in their relevance for the study of quantum many body
systems of Calogero-Moser type. Recently, such models have gained considerable

interest in mathematical physics. A good bibliography is contained in [26].

In 2012, the seminal paper [27] by Ben Said, Kobayashi and @rsted gave a
far reaching generalization of the Dunkl theory (and, in fact, of the entire Hermite
semigroup of operators, of which the Dunkl transform was a part) by introducing a
positive real parameter a as a deformation parameter of the Dunkl theory. See also,
[28]. In particular, a (k, a)-generalized Fourier transform F; , has been constructed
and acting on a concrete Hilbert function space deforming L?(R”Y). The parameter k
is a multiplicity function coming from the Dunkl theory. The case a = 2 gives the
known Dunkl Fourier analysis [17], while the case a = 1 gives a new framework and
it is of particular interest, as it is related to the so-called Laguerre semigroup and the
minimal unitary representations of O(n+1; 2) in the work of Kobayashi and Mano [29]
and [30]. This new setting built up in [27] and [28] by Ben Said, Kobayashi and @rsted

has attracted an increasing interest from international researchers, the literature bears



witness, e.g., [31], [32], [33], [34], [35], [36], [37] and [38]. Several questions were

addressed at length in several papers but many additional problems were left unsolved.

In this thesis, we present a challenging problem which fit into the above
described line of research associated to Fj, , when the dimension N = 1 and the
parameter a = % where n € Nyy. More precisely we will introduce and then study a

generalized Hardy-Littlewood maximal operator M}, , in the rank one case and with

S

a =

1.3 Framework and Results

In this thesis we are concerned with the case N = 1, ¢ > 0, and £ > 0. Assume

that 2k > 1 — a. The (k, a)-generalized Fourier transform Fj, , takes the form
Feaf(4) = [ 50 Brale, )i,
R
for f € L*(R, duy.,), where
de W= 2—1a—((2k—1)/a) |l’|2k+a_2dl'

and

~ 2 Ty ~ 2
— - a/2 z a/2
Byo(z,y) = <J(2k—1)/a <a|$y| > + (ai)?/e J(2k+1)/a (a|xy| )) :
Here jl, denotes the normalized Bessel function

_ o0 — 1)
To(w) =" -

22y (v+ L+ 1)

It is worth mentioning that F, , includes:

* the classical Fourier transform [39] (kK = 0 and a = 2),

the Dunkl transform [17] (k arbitrary and a = 2),

the Hankel transform [29] and [30] (k =0 and a = 1),

the k-Hankel transform [35] (k arbitrary and a = 1).



As the Euclidean translation 7, : f — f(- + x) plays a crucial role in Fourier
analysis, it is natural to define a generalized translation operator by means of the

transform Fy, ,.

In 2020, Boubatra, Negzaoui and Sifi [36] were able to prove the following

product formula for the kernel By, ,(x, &) when a = 2, withn € N

Bk,a (ili', 5) Bk,a <y7 5) = /RBk,a (Za 5) ]Ck,a (*Ta Y, Z) d,uk,a (Z) 5 (131)

where Ky, (z,y, .) is a compactly supported kernel. The above product formula
had been previously proved for n = 1 by Rdosler [40] and for n = 2 by Ben Said
[33]. In view of the given product formula, the appropriate translation operator for the

transform F, > will be

(g /f ) K (2, 2) gt (2)

In particular,

—Fk,a (T§7af) (5) = Bk,a (l’, é) fk,a (f) (’5) .

By the Plancherel theorem for Fy , together with the fact | By ,(z,y)| < C,
we immediately deduce that 7%¢ is bounded on L*(R,dyy,). The LP(R,duy.q)-
boundedness of the generalized translation operator for p > 1 and p # 2 was proved
in [36]. We pin down that for arbitrary dimension (i.e. for R") and for a = 1, the

generalized translation operator was recently investigated in [34].

The main goal of this thesis is to introduce and study the generalized Hardy-

Littlewood maximal operator Mj, ,, defined by

Mo f(x) = sup————

r>0 Uk, n

7' e () d e (Y) | r€eR,

which reduces to the classical maximal operator M when the parameter £ = 0 and

n = 1 (up to an absolute value). The study of M ,, not only contains intrinsic interest



but it opens potentially interesting studies such as singular integral operators associated

with F, ,,, for instance.

The main result is to establish the analogue of the inequalities (1.1.1) and
(1.1.2) for My, ,,. It is worth mentioning that the obscure structure of the translation
operator 75" mainly the kernel Ky, ,, (2, y, 2) in (1.3.1), makes the study of the maximal

operators My, ,, difficult. However, it was proved that for £ > "2—711 where n € N,

,ukn<{x ER: My f(z) > /\}> <N flla (1.3.2)

for every f € L*(R, duy,,) and for every A > 0. This is the so-called weak (1, 1) type

inequality. Further, for every f € LP(R, dyy ) with 1 < p < oo,

IMinfllkp S 11k (1.3.3)

the so-called strong type (p, p) inequality.

Even though we have some information about the translation operator 757,
it was impossible to prove the above main inequalities directly. One way to do it
is to construct a more handy maximal operator M, ,, which will control the Hardy-

Littlewood maximal operator M, ,, in the sense that

M f(x) S My pf(2). (1.3.4)

As we shall see, our strategy of constructing the more convenient maximal
operator M, ,, follows from the fact that we have to bypass some problems occurring
with the structure of the translation operators and preventing us from proceeding

directly by standard techniques.

In order to construct the operator M, ,,, the main idea is to eliminate finely the
translation operator. For the construction, the main idea is to introduce for x € R and

r > 0, the intervals

I(x,r) :} (maw{o, |£E’% o ) , (|x]% —l-T%) {,



and then to prove the following sharp estimate

) )] § Pl

LA A 1.3.5
1on(1(2,7) (13-5)

This result generalizes an estimate proved by Bloom and Xu [41] in the
framework of one-dimensional Bessel-Kingman hypergroups. The above sharp
inequality plays a crucial role since it allowed to construct the maximal operator M, ,,.

More precisely, we are naturally brought to consider the following operator

1
M,nfﬂfzsup—/ JW)ldpnn(y)-
knf (@) r>ouk,n(f(w,7“)) {yER:|y\€](x,r)}| (@)1t (y)

Therefore the inequality (1.3.4) becomes obvious. Hence, the weak-type (1, 1) and the

strong (p, p) estimates for M, follow from the one for M ,,.

The proof of the weak-type (1,1) estimate for My, depends heavily on a
covering lemma of Vitali-type for the intervals I(z,r). We provide a proof of the
lemma to highlight the non-obvious doubling property of the measure fi,, and the

engulfing property of the intervals /(x, ). More precisely, it is proved that
pen(L(2,27)) S puen(L(x, 7)) Vr e R, r>0,

and that if E is a py,-measurable subset in R* and covered by a finite collection
of intervals {I(z;,7;)}1<;<r covering E, then there exists a disjoint subcollection

I(@py s Tmy)s - - L (@, , 7y, ) that satisfies
l
en(B) S (L@, mm,)- (1.3.6)
=1

Finally, by means of Marcinkiewicz interpolation, we get the assertion that

M, ., and therefore My ,,, is strong-type (p, p) forall 1 < p < co.

In Chapter 1 we will recall some basic properties of the LP spaces. For instance,
we will give the proofs of some important inequalities such as Holder’s inequality

and Minkowski’s inequality. Furthermore, we give the proof of the Marcinkiewicz



interpolation theorem since it will be a greatly important tool that will help us in the

process of achieving the main result of our thesis.

Chapter 2 gives a brief introduction to the theory of Dunkl operators. We build
this theory from the foundation of it, that is root systems, finite reflection groups or
(Coxeter groups) and multiplicity functions. Building on these concepts, we define
Dunkl operators. Further, we shall introduce the so-called Dunkl intertwining operator

which is used to define the kernel By, ,(z, y) appearing in the integral transform Fj, ,.

Chapter 3 starts to shed a light on our framework as it introduces the kernel
By o(x,y) and some of its main properties. For instance, the boundedness of By ,(x, y),
which will be of a particular importance to define the (k,a)-generalized Fourier
transform 7, ,. Due to the significant role of ¥, , in the proof of the main result of this
thesis, we list some of its properties including the inversion formula and the Plancherel

theorem for Fy, ..

Our main result relies heavily on what we discuss in chapter 4, where we

will assume that a = % We introduce the generalized translation operator 75", In

particular the boundedness of 7" from LP(R,dpuy,,) into itself. By means of the

generalized translation operator, a convolution structure was defined such that

Fren(f Hkn 9)(A) = Fen(f)(A) Frn(9)(A).

In the last chapter, we will be defining and studying the generalized Hardy—Littlewood
maximal operator My, ,, defined above. One of the main results is the Vitali type
covering lemma 1.3.6. Further, a detailed construction of M, ,, and the sharp inequality
1.3.5 are given. We close this chapter by the weak type (1,1) and the strong (p, p)
inequalities for the uncentered maximal operator M, ,,, which lead to the main goal of
this thesis (inequalities 1.3.2 and 1.3.3). The main result of this thesis was proved by
Deleaval for n = 1 [42] and by Ben Said and Deleaval for n = 2 [35].



Chapter 2: The L” Spaces and the Marcinkiewicz Interpolation
Theorem

2.1 Introduction

In this chapter, we will recall some basic facts about L” spaces as well as
some important inequalities like Holder’s, and Minkowski’s inequalities as well as
their proofs. Further we will give he Marcinkiewicz interpolation theorem and its
proof. This interpolation theorem will play a crucial role in the main result of this

thesis. The main references are [43], [44], and [45].

2.2 [P Spaces

Definition 2.2.1. Consider a measure space (X, M, i) and assume that 0 < p < oc.

Let f : X — R be a measurable function, then we define
£l = ([ 1sac)
X

|| fllLe := esssup | f(z)].
reX

and

Definition 2.2.2. The space LP(X) is the set

20 ={£:X >R |1l < o).

The space LP(X) satisfies the following vector space properties:
Properties 2.2.3 ([44]). (1) Foreacha € R, if f € LP(X) then af € LP(X).

(2) If f,g € LP(X), then f + g € LP(X) since,
(@) +g(@)P <227 (If (@)]” + g(2)I") -
(3) If p > 1, then the triangle inequality

1F + gllze < If11zs + 191z



10

holds.

Definition 2.2.4. Let p > 1 and define g such that

1 1
S+ =1
q P

Then, p and q are called conjugate exponents.

Theorem 2.2.5 (Holder’s inequality [44]). Assume that 1 < p < ococand 1 < g < o0,
and that p and q are conjugate exponents. If f € LP and g € L9, then fg € L*. In fact

we have,

gl < LAl e lgllze-

Note that in the case where p = ¢ = 2, Holder’s inequality becomes exactly

the Cauchy-Schwarz inequality as follows

[1snteriar< ([iswra) ([lwpe)”

To prove this theorem we will need the following two lemmas.

Lemma 2.2.6. For A € (0, 1), the following inequality is true,
2 < (1—\)+ Az
Proof. Consider f(x) = (1 — \) + Az — 2, therefore,
flla)y=A=dMt=X(1-2"")

takes the value zero only in the case that either A € {0, 1}, which is not possible since
A€ (0,1), or (1 — x’\*l) = 0. Which means that x = 1 is the critical point of f.

Specifically, the minimum occurs at z = 1 with the value

f()=0< (1 =\ + Xz —a™.
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Lemma 2.2.7. Let A\ € (0,1), and let us assume that a,b > 0. Then the following
inequality holds
'™ < Aa+ (1= \)b.

Proof. 1t is clear in the case that either a = 0 or b = 0, therefore let us consider the

case thata,b > 0. Let x = %, then, using Lemma 2.2.6 we get

(5) <a-v+a(3)
a*b' N < (1= A)b + Aa,

which is the desiered inequality. [
Now let us prove the Holder’s inequality in Theorem (2.2.5).

Proof. Let

R FC)

A= —5— and

q
@ @)
T

gl
for all x € X. Then,

a)\bl—)\ _ al/pbl—l/p _ al/pbl/q'

Using Lemma 2.2.7, we get,

@) lg(@)] L@ L)t
1A lzellglize = p I a llgllts

Integrating both sides gives us

IR CITICT PR S

x I llzellgllze p AL allglie P oq

O

Theorem 2.2.8 (Minkowski’s inequality [44]). Let 1 < p < oo and assume that
f,g € LP, then,

If+gllee < || fllze + llgllze-
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Proof. If we assume that f + g = 0 a.e., then the statement is trivial. So, let us assume

that f + g # 0 a.e. Then, we consider the following

@) + @) = |f(2) + 9@ f (@) + gl
< (|f@)] + lg(@))If (@) + gla) ",

Now, we integrate both sides over X.

J 5@+ s@pis < [ (17 + @Dl + gl do
< (W e+l glleo) |1f + 9P| L, -
Since ¢ = #,

HU+9WW&«=(Lﬂﬂ@+g@WM0;,

consequently,
1—1
([ 1@+ a@par) <1l + lolon
X
([ @+ gords)” <7l + ol
X
1f =+ gllee <[ fllze + llgllze,
which concludes the proof. O

Corollary 2.2.9. For 1 < p < oo, LP(X) is a normed vector space.

2.3 The Marcinkiewicz Interpolation Theorem

Definition 2.3.1. Recall that (X, M, p) is a measurable space, and f is a measurable

function on X. Let us define the distribution function Ay : (0, 00) — [0, 0o] by
o) = (o 1) > a) ).

Definition 2.3.2. Let 0 < p < oo and assume that f is a measurable function on X.

We define [f], as

a>0

[ﬂpz(wpdﬂﬂw>;
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for 0 < p < o0, and

[floo = 1l ec-

Definition 2.3.3. Consider the set of all f € (X, M, ) where [f(z)], < co. We
denote this set by weak LP.

Notice that:
(1) [f(x)], < ||f|lLe, which implies LP C weak L.

(2) For 0 < p < o0, ] - |, does not satisfy the triangle inequality, therefore is not a

norm.

Definition 2.3.4. Assume that U and V' are vector spaces. Amap T’ : U — V is

called sublinear if it satisfies

[ T(ef) ()] = el T(f) ()]

forall c € R, and
T(f + g)(@)| < |T(f)(@)] + |T(g)(z)]

Definition 2.3.5. Let T' be a map from some vector space V' of measurable functions
on (X, M, i) to the space of all measurable functions on (Y, N ,v). A sublinear map

T is said to be strong type (p,q), for 1 <p < oocand1 < ¢ < oo, if
(1) 1(X,dp) C V.
(2) T maps L*(X,dp) into LA(Y, dv).

(3) There exists a constant ¢ > 0 so that

IT(H)lg < el fllze

forall f € LP(X, du).
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Definition 2.3.6. A sublinear map T is said to be weak type (p, q), for1 < p < 00,1 <

q < oo, if
(1) 12(X,dp) C V.
(2) T maps L*(X,dp) into weak LA.

(3) There exists a constant ¢ > 0 such that

[T(Nlg < el fllee

forall f € LP(X, du).

Now we will state the Marcinkiewicz interpolation theorem and its proof. For

this purpose, let us denote the set of all u-measurable functions on a vector space U by

M(U, ).

Theorem 2.3.7 ([45]). Let 1 < py < p1 < oo and assume that T : M(U,u) —
M(V,v) is a sublinear map of weak type (po, po) and (p1,p1). Then, for every py <
p < p1, the operator T is of strong type (p, p).

In order to prove this theorem, we will need the following two lemmas.
Lemma 2.3.8. If f € LP, where 1 < p < 0o, we have

(1) Forevery a > 0, A\ satisfies

(2) We may rewrite || |7, as

|umy:pl 7L\ (1) .



Proof. (1) From the definition in (2.2.1) we have

T / (@) Pdu(e

> | @) dula)
{zeX:[f(z)[>a}

> / ofdp(x)
{w€X:|f ()| >a}

- @Pu<{x e X :|f(z)| > @}>

= aP ().

(2)Let A = {(z,s) : | f(x)|P > s}. Then,

[ = [ 77 dsanca
-/ o LA )

//1Axsdu

/0 ({xeX f( )|P>s}>ds
- [Tu(wex s ey e
= [Tt x 1) > 0 )i
:p/oootp_l)\f(t)dt.

Lemma 2.3.9. If f € LP, where 1 < p < o0, then

[ p@Pdne) = Msla)e+p [ oo
{z:|f(z)[>a} o

and

[ @ = e s [0
{a:|f(2)|<a} 0

15



Proof. (1)Let A = {(z,s) : |f(x)|? > s}, then

Then,

[ e
{z:| f(@)|>a}

)

|f(@)[P
:/ / dsdy(x)
{a:|f(z)|>a} /O
a? |f ()P
:/ / dsd,u(x)+/ / dsdp(z)
{a:|f(z)[>a} JO {z:|f(@)[>a} Jar

o | dule)+ [ Laes)dsdu(o)
{z:|f(z)|>a} X X [aP,00)

— (o @) > o) + [ o Tl s

= a’Ap(a)

aP

n / Tl |f@)P > s))ds

@)+ [l F@P > eh e

= aP () +p/ I\ (t)dt.

2 z)Pdu(z
(2) /{x:f(w)|<a}|f( MWedu(z)
f(z)Pdu(z) — /{ - |f(z)[Pdu(z)

[

:p/ I\ (D) dt — aPAp (@) —p/ I\ (t)dt.
0 «@

/ (@) Pdp(z)
{z:|f(z)|<a}

~Ap(a)a? +p/ I\ (t)d.
0

Now, let us prove the Marcenkiewics interpolation Theorem (2.3.7).

Proof. Let f € L” and define

and

if
if

if
if
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To complete the proof we have to prove the following claim.

Claim: g, € LP* and h, € L.

lon @2 = [ Jaalo) ) = o [ 1 #E age)
<ap1/X gaaﬂc) dp()

< 0.
Similarly,
ha T Po
Il = [ o) dute) = o [ 2= g0
X X (6]
h p
< o™ / 2l ()
X (0]

Therefore, f(z) = go(x) + ha(z) and, since 7 is sublinear, we have

T (f(@)) | < T (ga(2)) | + [T (ha(2)) |

Suppose |T'(f(x))| > a. Then

T (ga ()| +|T (ha(2))] > a,

which implies that either 1" (go(z))| > §, or [T (ha())| > §. Therefore,

{2 |T(f(x))| > a} C {x | Tga(z)] > %} U {x | Tha(z)] > 9}.

2

Hence,

e s (5) 0 ()

17



Since T' is weak (p1, p1), there exists a constant ¢ > 0 so that [T"(ga)],,,

in particular,

1/101 1/p1
o) <o i)™
a’>0

therefore we get

(5)" A (5) <1 [ latoauta)

Consequently,

. (§) < (2 ) [ ol duta
- <a> /{I|f(ﬂ?)<a}| ( led,u( )

Similarly, since 7" is weak (po, po), we obtain

@ 2 " Po
AThe (5) < G (a) /{$:|f(x)>a} | f ()| dp(z).

Therefore we have the following

1T =p / o g p(a)do

o0

<o [T, (2) da / o, (&

o0 p 1
< eap2” / / (o) dpu(x)da
APt o= f(z)|<a}

[e’e) p 1
e [0 | o) Pdu(z)da
P e @ |>a}

)da

18

< cllgallzr
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and by Lemma 2.3.9, we get

T < cw [Tt (<atara 4 [t ) da
0
+02p2p°/ ap~Po~l <)\f )Ja® +po/ tpo_l)\f(t)dt) da
0 e
<01p1p2p1/ al~ P 1/ 1IN () dtdo
0 0
+p022p°/ o I\ (a)da
0

—I—pp0022p°/ ap_po_l/ oI\ () dtda.
0 a

That is,

TN = crpip2™ /OO /oo aP PP () dadt 4 c27| f][5,
o Ji
+ ppoc22” /OO /t PP 1o\ (B daudt
o Jo
= 27|\ fII7» + c1p1p2P! /00 I (2) /OO PP dadt
0 ¢
+ ppoc22?° /00 I\ (1) /t aP P~ tdadt
0

0

1IN (2)dt

= D] + eipp2? /
0

+pp0022”°/
o P—Do
= |l fII7e + call fllTs + sl fII%

= o[ f1IZ0-

pP1—Dp
oI\ ; (2)dt

The case when p; = oo is similar by taking

f(z) it [f(z)] < 5
2sign(f(z)) if |f(z)] > &

9a(x) =

and

for some positive constant c. [
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Chapter 3: Dunkl Operators

3.1 Introduction

The main goal of this chapter is to provide an introduction to the theory of
Dunkl operators, and to give some of their properties. The main reference of the
chapter is [40]. General references are [46], [47], [48] and [49]. An introduction
to reflection groups and root systems can be found in [50] and [51]. We do not intend
to give a complete survey, but rather focus on those aspects which will be important in

the context of this thesis.

3.2 Root Systems and Coxeter Groups

N
Consider (RY (-, -)), with the scalar product (z, ) = Z x;y;. We define the
j=1

reflection o, for « € RV\{0} by

oo(r) =12 — 2%

where |a|? = (o, a).
Definition 3.2.1 (Root systems). Let R C RN\{0} be a finite set. Then R is considered
to be a root system, if it satisfies

(1) RNRa = {+xa} forall o € R.

(2) 0,(R) = R forall o« € R.

From now on we assume that R is normalized in the sense that («, ) = 2 for

all & € R; this simplifies formulas, but is no loss of generality for our purposes.

Definition 3.2.2 (The Coxeter group). The reflection group or Coxeter group G is the

finite group generated by all the reflections {0, € R}.

Example 3.2.3 ([40]). Root system of type An_1. Let the symmetric group in N
elements be denoted by Sy. It acts on RN by permuting the standard basis vectors
e1,...,en. Each transposition (ij) acts as a reflection o;; sending e; — e; to its

negative. Sy is a finite reflection group since it is generated by transpositions. A
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root system of Sy is given by

Example 3.2.4 ([40]). Root system of type By. Here G is the reflection group in RY
generated by the transpositions o;; just like in type An_y in the previous example,
together with the sign changes o; : e; — —e;, fori € {1,..., N}. The group of sign
changes is isomorphic to 7., intersects Sy trivially. Thus, G is isomorphic with the

semidirect product Sy x ZY . The corresponding root system is given by

R:{iez,l<Z<N,:|:(€l:i:€j>,1<’l<jgN}

3.3 Dunkl Operators

Let us introduce the multiplicity function where every root is paired with a

certain parameter k.

Definition 3.3.1 (Multiplicity functions). A function k : R — R™ on the root system
R such that k(ga) = k(«), g € G (we say invariant with respect to the Coxeter group)
is called a multiplicity function on R. The vector space containing all multiplicity

functions on R is denoted by K.

Definition 3.3.2. Let k € K. Then for ¢ € RY, the Dunkl operator Ty := T¢(k) is

defined by @) — f(022)
x) — [ (oax

(o, )

Tef(@) = 0cf () + 3 Kla)ia, &)

ac€RL
Here O; denotes the directional derivative corresponding to &, and R, is a fixed positive
subsystem of R. For the i-th standard basis vector ¢ = e; € RY we use the

abbreviationT; =T, .

Notice that if f is GG-invariant then

Tef = Ocf.
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Example 3.3.3 ([40]). In the case N = 1, the root system becomes R = {+1} and
o(x) = —x. The Dunkl operator T := T} associated with the parameter k > 0 is

given by

Example 3.3.4 ([40]). Dunkl operators of type An_1. Suppose G = Sy with root
system of type An_1. As all transpositions o;; are conjugate in Sy, the vector space
of multiplicity functions is one-dimensional. The Dunkl operators associated with the

parameter k > 0 are given by

l—oy .
TS =0+ kY — 9 (i=1,...,N)

r; — X;
i J

Example 3.3.5 ([40]). Dunkl operators of type By. Suppose R is a root system of
type Bn. There are two conjugacy classes of reflections in G, leading to multiplicity

functions of the form k = (ko, k1) . The associated Dunkl operators are given by

1—0'1'

—|—]{,‘ |:1_0ij 1_Tij
0
xT; oy €T; — Zlfj ZT; + {L‘j

TP =0+ ky

where T;; == 0;;0,0;.

Notation 3.3.6. (1) C™ is the space consisting of all continuous functions that are

also m differentiable.

(2) . (]RN ) denotes the Schwartz space of rapidly decreasing functions on RY,

y(RN) = {f€C°° (]RN) : HxBGO‘fHLOO < oo forall a,BEZf}.

The Dunkl operators 7; have the following properties
Properties 3.3.7 ([40)). (1) If f € C™ (RN) withm > 1, then T, f € C™' (RY).
(2) T¢ leaves C° (RY) and .7 (RY) invariant.

(3) If f,g € C* (]RN ) and at least one of them is G-invariant, then

Te(fg) =Te(f) -9+ f - Te(g).
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We state here another important property of the Dunkl operator 7.
Theorem 3.3.8 ([40]). Let wy, denote the weight function on RY defined by
wi(x) = [T [a, 2.
acR
Then,

[ Tt @gtaintads = [ )T

The most interesting property of the Dunkl operators, which is the foundation

for rich analytic structures related with them, is the following

Theorem 3.3.9 ([40]). For fixed k, the Dunkl operators Ty, = T, (k), & € RY,

commute.

We now state the Dunkl Laplacian Ay, which is defined by

N
Ap=) T (3.3.1)
j=1

Theorem 3.3.10 ([40]).

A =A+2 Z k(a)de with  dof(x) = (V{OE%OO - f(a:)<; i)(;ax)

acR
here A and NV denote the usual Laplacian and gradient respectively.

Example 3.3.11. For N = 1, the Dunkl Laplacian is T? and is given by

k

T2 () = f"(a) + 22 () + S5 (F(—) ~ f(@)

where k > 0.
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£+ 5 (1)~ 7 (=) — 2 (F(a) — F-a) + = 5 @)
@) = sy~ e + B ) - )
= (@) ) ) )+ )+ )
Bt - re0) - L) 4 B ) - B )
k k

12

= 110+ )~ )+ )
= ")+ 2P @)+ 5 ((-2) — (&)

Example 3.3.12 ([40]). The Dunkl Laplacian for the type An_1 is given by

1

[Ei—ZCj

k@—@—l‘%,

in—fli'j

A =A+2k

1<i<j<N

where o;; stands for the transposition (ij).

3.4 The Dunkl Intertwining Operator

It first appeared that for multiplicity functions & > 0, the associated
commutative algebra of Dunkl operators is intertwined with the algebra of usual
partial differential operators by a unique linear and homogeneous isomorphism on

polynomials on RY [46].

Theorem 3.4.1 ([40]). There exists a unique linear isomorphism (intertwining

operator) V. such that
TeVi = ViOk.

The following very important theorem is due to Rosler [40].
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Theorem 3.4.2 ([40]). For each v € RY there exists a unique probability measure ji*

on the Borel- o-algebra of RY such that

Vif(@) = | f©)du(€) (34.1)

forall f € .S (RN ) . The representing measures i are compactly supported and they
satisfy

prp(B) = 1 (r'B) . g, (B) = 1y (971(B))
for eachr > 0, g € G and each Borel set B C RY.

Example 3.4.3 (The rank-one case [40]). For k > 0, this amounts to the following

integral representation

Vif(z) = 5((1’“/;—;/(2]{)) /_1 Fat) (1 — F1(1 + 1)kt

For instance,

n
2

where (a), = I'(a 4+ n)/I'(a) is the Pochhammer-symbol.

22V, (x2n+1) _

—|— N
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Chapter 4: The (k, a)-Generalized Fourier Transform

4.1 Introduction

In the following chapter, we will start to shed a light on the framework of the
main result of the thesis as we define the (k, a)-generalized Fourier transform and state
some of its crucial properties. The (k, a)-generalized Fourier transform was introduced

by Ben Said, Kobayashi @rsted in [33] and [27].

4.2 The Kernel By ,(z,y)

First we shall introduce the normalized Bessel function 7, (w).
Definition 4.2.1. Define I,,(w) as

00
w%

- wy A
Iw) = <§) Iw) = ; 20N+ L+ 1)

1 ! w 2—1
:—ﬁF(A+l)/1et(1_t2) 2 dt.
1) J-

Let us also state the re-normalized Bessel function of the first kind J,,.

Definition 4.2.2.

~ . w\ —V B 0 (_1)€w2£
Tolw) = (E) Tolw) = ; 20y (v + L+ 1)

Comparing this definition with the normalized I-Bessel function defined in

(4.2.1) we get
Jo(w) = I(—iw) = I, (iw).

Definition 4.2.3. The Gegenbauer polynomials C¢ (t) are explicitly defined for o > 0
and m € N by

_ PL Z (m __’“ 2+k )O‘) (2t)™2*, 4.2.1)

Let us introduce the function . (b, v; w; t).
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Definition 4.2.4. Let I,(w) be the normalized I-Bessel function defined in (4.2.1), and
CY (t) the Gegenbauer polynomial found in (4.2.1). Consider the following infinite

sum.

F(b,v;w;t) = Low +1) Z(m +v) (%)bm j;)(m-i-u)(w)CTl;L(t)‘ (4.2.2)

Lemma 4.2.5 ([27]). The summation in the left hand side of (4.2.2) is absolutely and

uniformly convergent on any compact subset of
U:={b,rv,w,t) eR, xRxCx[-1,1]:1+bv>0}.

Specifically, . (b,v; w;t) is continuous on U.

Let R be aroot system and k : R — R, a — k,, be a multiplicity function.

Henceforth ¢ > 0.

Definition 4.2.6. For r, s positive real numbers, z € CT\inZ, and t a continuous
function on the interval [—1,1]. hy o(r, s; z;t) is given by
exp (—(1/a) (r* 4+ s*) coth(z))

sinh(z)@H N +a=2)/a

" <2 2(k) + N —2 2(rs)/? 't> |

a’ 2 "asinh(z)’

hio(r, 8525t) =

where (k) is given by

() = ka (4.2.3)

aERT
Here, we give examples for the function /y, ,.

Example 4.2.7 ([27]). For (a = 1) the series expantion of hy, , can be expressed as the

following

exp (—1(r + s) coth(z))
sinh(z)@H+N-1)

x T ((k) + %) T+ (v—3)/2 (m(l + 1)

hia(r,s;z;t) =

[N

sinh z

> 4.24)
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and for the case (a = 2) we have

exp (—(1/2) (r? + s?
sinh(z)((F)+

~—

hio(r,s;z;t) =

) sinh z

coth(z)) exp ( rst ) | 4.2.5)

Nk

Define the kernel function Ay, (x,y; 2) as
Ak,a (T’W, 815 Z) = ‘Zf(hk,a(ra S5 %23 '>><w> 77)

and Vj, is given in terms of the Dunkl intertwining operator by

(Vi) (o) i= (Vb)) = [ BE, )i (©)

RN
where p* is the measure that appears in (3.4.1).

It’s time now to state the kernel B, ,. For a multiplicity function £ > 0, a > 0

and 2(k) + N > maxz(1,2 — a) we introduce the kernel By, ,(£, x) which is given by

Bia(z,y) = mGERTNFRZON, (m v; zg) . (4.2.6)

Example 4.2.8 ([27]). For N = 1,a > 0,k > 0 and 2k > 1 — a, the kernel B, , can

be written in an explicit way as follows

2k +a—1 ~ 2. .
Bia(z,y) =I (—) <J(2k—1)/a (5|$y’ /2>

a
rYy 7 2 a/2
—J ol — .
+(a,i)2/a (2k+1)/ (a|$y| ))

Example 4.2.9 ([27]). By substituting z = wi/2 into (4.2.4) and (4.2.5), we get the

following formulas:

Ni.a <7‘, s; 7T—i; t) =T (<k> + N - 1)6(”/2)(2<k>+N1)

2 2 4.2.7)

Ty (N—3) /2 (\/5(7“3)1/2(1 + t)m)
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fora=1, and

hkﬂ, (7,7 s; %’ t) — e*(ﬂ'i/Q)(<k‘>+N/2)efiT‘St (4.2.8)

for a=2. Using (4.2.7) and (4.2.8) together with the definition of the kernel By, in
(4.2.6), we get the following : For a = 1 the kernel By, ,(x,y) is given by

Byo(rw,sn) =T <(k) + %) Vi <J(k;)+(N—3)/2( 2rs(1+ ))) (w,m)

and for a = 2 it becomes the following

Ba(rw, sn) = Vi (€77 (w,n).

The kernel By, (€, z) satisfies the following differential-difference equations:

E*Byq(&,7) = E*Bra(€,7)
1E1** Ak Bra(€, 2) = = |2 * Bra(€, @),
2] * Ak Bra(é, 2) = —||€]|* Bra(€, z),

where Aj denotes the Dunkl Laplacian operator given by 3.3.1 and F is the Euler’s

operator given by
Ezf = Z [Ej@xj
=0
We shall now shed a light some basic properties of By, the kernel defining the

generalized Fourier transform.

Properties 4.2.10 ([27]). Let By 4(-, ) be the kernel defined in (4.2.6). Then By ,(-, )

satisfies:
(1) Bra(Az,€) = Byao(z, AE) for A > 0.
(2) Bya(gz,9§) = Bia(2,€) for g € G.
(3) Bral§,x) = Bra(z, ).
(4) Bia(0,z) = 1.

Furthermore, it was shown by [52] that the kernel Bj, can be bounded as

follows
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Theorem 4.2.11 ([27]). Letk > 0 and z,y € RN. Then
» Fora={1,2}, |Bru(z,y)| <L

* For N = land a = 2, we have |By, .(z,y)| < C for some positive constant C.

4.3 The (k,a)-Generalized Fourier Transform

Let us begin by introducing the normalization constant ¢y ,, that is given for

a > 0 and a multiplicity function & by

] —1
- ( [ e (——uxua) ﬁk,a@c)dx) ,
RN a

where the density function ¥ ,(z) on R¥ is given by

ra(z) = |27 ] ] e, ).

a€ER

We define the following integral transform using the kernel By ,, that was given in
(4.2.6), as well as the normalizing constant ¢ ,. The generalized transform F, , can

be expressed on L? (RY, 9y, ,(2)dx) as

Fraf(€) = cha / Bral€, 2) f (2)0ha()dz,

RN

Example 4.3.1 ([27]). The (k,a)-generalized Fourier transform reduces to the
Euclidean Fourier transform for (a = 2,k = 0),[39], to the Dunkl transform for
(a =2,k > 0)[17], to the generalized Hankel transform by Mano and Kobayashi [29]
for (a =1,k = 0), and to the k-Hankel transform [33] for (a = 1,k > 0).

Example 4.3.2 ([27]). For N = 1,a > 0, k > 0 and 2k > 1—a, the integral transform

Fi..n, takes the following form

Fral@) =2 @000 [ g ( ( |xy|a/2)

A ~ _
( )yz/aj2k+1 (—\wy\m)) |2,
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Let us now state a collection of formulas and properties of the (k,a)-

generalized Fourier transform.

Theorem 4.3.3 (Plancherel’s formula [27]). Let k be a multiplicity function on the
root system R that is non-negative, a > 0 and let a and k satisfy the inequality a +
2(k) + N > 2.Then, Fy, is a unitary operator on L* (RN 9, ,(x)dz) . That is, the

(k, a)-generalized Fourier transform is a bijective linear operator satisfying

H]:,yg’a(f)HL2 = ||fllz2  forany f € L* (RN,ﬂk’a(lL’)dZE) )

In addition to the Plancherel’s formula, there are some interesting properties of
the (k, a)-generalized Fourier transform that are worth mentioning and that will later

prove to be beneficial for the purpose of this thesis. Let us state here

Theorem 4.3.4 (Inversion formula [27]). Let k be a multiplicity function on the root

system R with k > 0.

(1) Let r > 0 and r € N. Then, suppose the inequality 2(k) + N > 2 — a with
a = 2/r is satisfied. Then F, 5, is a unitary operator on L? (RN, ﬁk,l/r(x)dx) :

specifically, the inversion formula is given by
(Fibd) () = (Fuopf) (@)

(2) Now, letr € N, r > 0 and a = T%A and suppose the following inequality

holds 2(k) + N > 2 — a. Then Fy, 52,41 is a unitary operator of order 4 on

L? (RN, 19k72/(27+1)(x)dx) . In fact, the inversion formula is given as
<]:;;§/(2T+1)f> () = (Froyerin f) (—2).

We now state the following important properties of Fy, ,

Theorem 4.3.5 ([27]). The unitary operator Fy, , satisfies the following intertwining

relations on a dense subspace of L* (RN , ﬁk,a(x)dx).

(I) ‘Fk,aoE:_(E+N+2<k>+a_2)ofk,a'



(2) Fraollzl® = —[lz]*~*Ax 0 Fyq-
(3) Fraollzl*~*A = —[|z[|* © Fya-

Here E denotes the Euler operator

Ef == i xj&,ﬁj
j=0

and Ay, denotes the Dunkl Laplacian operator (3.3.1).

32
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Chapter 5: A Convolution Structure in the Rank-One Case

5.1 Introduction

In this chapter we will restrict our self to the rank-one case. We define and
study a translation operator 75, and a convolution structure associated to the (k,a)-
generalized Fourier transform Fj , for a = % The translation operator and the
convolution structure share many important properties with their analogous in the

classical Fourier theory. The main references are [36], [35]

5.2 The Translation Operator

From now on we will assume that a = % where n is an integer, and the

dimension N = 1. Here the parameter £ > 0. Recall the (k, a)-generalized Fourier

transform denoted by F;, , = F; 2 , and defined for f € L'(R, dug.n), by

Funf (V) = / F(2) Bon (2, Ndjipn(2), ) € R

where By, ,, is the generalized Hankel function, defined by

(5.2.1)

() D ).

The function j, is the normalized Bessel function of first kind and order o > ’71, and

is given by

jal2) = T(a + 1) (g)ﬂ Ju(z) = D(a + 1) f m!r(g:); - (g)zm .

m=0

The measure dyu, , () is defined by
dpon () = (Mye ) a2 ~2d, (5.2.2)

where
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Recall from 4.2.11 that the kernel By, ,, is bounded by a constant C'.

Notation 5.2.1. Forz,y € R*,z € R,n € N*and k > 51, let

w el Lyl — 2l

x7y72

’

1
2|zy|»

and

_ nlsgn(zy) gn-z2
gk,n(x7y7 Z) - (an . n)n Cn (Uz,y72> :

Furthermore let us define

Mk,n kn—f
Kinle,y,2) = 2K (Jol . ol 1217

X {1 + (_1)n€k,n<$’ Y, Z) + gk’,n(za :L‘,y) + fk,n<y7 Z, {lf)} .

(5.2.3)

Here K%, and CY} are defined as

N[

K ) — -2t {000 ) = (= )"

(uvw)2e ’

B 1 m/ L'(m — k‘—i-Oé) 2

Let us state some important properties that will prove to be crucial later in this

section:

Properties 5.2.2 ([36]). Let n € N* and k > "1, then
(i) The mapping (v,y, z) — oy, is homogeneous of degree 0.
(ii) We have

em(z,y,2)| <1, z,y,z€R* (5.2.4)

(iii) The kernel Ky, ,, satisfies

K:k,n(xayv Z) = ’Ck ’VL(y?x?Z)
Kk,n<x7ya ) Ickn(( ) T,z y)
lck,n(x7 Y, Z) = Kk,n (27 (_1)ny’ I)
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Theorem 5.2.3 ([36]). For \,z,y € R, we have

Bk,n()\al')Bk,n()Vy):/Bk,n()VZ)dVZ:g(Z)a
R

where
Kien(z,y, 2)dpen(2) if axy#0
vy (2) = dé,(z) if y=0 , (5.2.5)
ddy(z) if =0

where 0 is the dirac measure and dyy, ,, is as in 5.2.2.

Here we have some properties of the measure v, Y that was given in 5.2.5.

Properties 5.2.4 ([36]). Forn € N*, k > "L and x,y € R, we have
(i) supp (I/Zg) (R) c I, = {z eR/
vid(R) = L. (iii) ||vp ]| < 4

l l .o
2% = lyl7| < JzI* <lal7 + Iyl } - (i)

5.3 The Convolution Structure

Let the space of bounded continuous functions on R and the space of
continuous functions on R with compact support be denoted by C,(R) and C.(R)

respectively.

Recall, the generalized Fourier transform F ,, is defined by 5.2 for n € N* and

k > ”2—;1 ]-"k_i can be defined as
Finl9)(@) = Franlg) (D)"z), zeR.

Let us denote the even part of a function f by f., and the odd part by f,.

Proposition 5.3.1 ([36]). Let A > 0, n € N*, k> =L and f € Cc(R). Then

Funl IO = oy (G (1) (11F)

2n
AV !
+ %Hl@n—g (Jn (fo)) <|)‘|Z> ;

nl2mn
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where H,, is the Hankel transform defined by

+o0

Ha(f)(A) F@®)ja(tA)e*e*at,

T 20 ly(a+1) J,

and g, and J, are the functions defined on R by

GAﬁJu>=f;((%)"),
nw=["n((2)) @2 e

Now, we define an important operator that will be appearing in many theorems

and proofs in this thesis.

Definition 5.3.2 ([36]). Let x € Rand f € Cy(R). Forn € N*and k > "2—;1 we define

the translation operator 7';’" by

hnf(y) = / fRdY(z), yeR, (5.3.1)
R

where dv;) is given by 5.2.5.
We state here the properties of this translation operator.

Properties 5.3.3 ([36]). Letn € N*, k > "= x € Rand f € Cy(R). Then
(i) 5" f(y) = 75" ().
(i) 73" f = [.

(iii) Tf’"rf’” = Tf’”rf’".

If we suppose also that [ € C.(R), then

(iV) Jrk,n (T;C,nf) ()‘) = Bk,n ()‘7 (_1>nx) Fk,n(f)()‘)

Proof. 1) is a consequence of the property Ky (2, vy, 2) = Kin(y, z, 2).
ii) follows from the fact that By, ,(\,0) = 1.
iii) follows from 1).

iv) Assume f € C.(R), then from the definition of the translation operator 7% in 5.3.1
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together with Fubini’s theorem, we get

Fion (TE"F) (N) = /R 70" F(y) B\, y) dpin o (y)
:/R {/Rf(z)le,n(x,y,z)duk,n(Z)} BN, y)dpin(y)
= /R f(z) { /R ICk,n(l’,y,z)Bk,n()‘vy)d,uk,n(y)} Ao (2)-

The property Ky (2, y, 2) = Kk ((—1)"2, 2, y), gives

Fin (72" f) (V)

:/Rf(z) [/R/cm((—l)”x,z,y) Bk,n()‘vy)dﬂk,n(y)} dpgn(2)-

Using Theorem 5.2.3, we obtain

Fien (72" ) (A) = Brw (A, (=1)"2) Fin(f)(N)-

]

Definition 5.3.4. We define L? (R, dyuy ) as the space of real valued functions f that

are iy n-measurable such that

(f |f<x>|pduk,n<x>>’l’ < o0

[f[k.00 := esssup | f(z)].
z€R

and

Lemma 5.3.5 ([36]). Letn € N*and k > %+, 1 < p < oo, f € LP (R, dpy,,) and
z € R. Then
Il < 41 leps = € B

Proof. Let us consider the following cases:
Case 1: p = oo is obvious.
Case 2: If p = 1, the assertion follows from Fubini-Tonelli’s theorem, the property

Kin(x,y,2) = Kin ((—1)"x, 2z,y) and iii) of Properties 5.3.3
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Case 3: Let 1 < p < 400 and g the conjugate exponent of p. Then by Holder’s

inequality, we have

Q3

W < [ P Va2 dia2) ( / |/ck,n<x,y,z>|duk,n<z>)
R R
Therefore

it < 4% [ [ 1RGP (e )] dia ()i 0)
RJR

Invoking the property Ky, (z,y,2) = Kin((—1)"x,z,y) and Fubini’s

theorem, we get

I, < 4% [P | Ko (=120 din ()2
= VU7,

Thus,

7" fll <40 llks

which is the desired inequality. [

Definition 5.3.6. The convolution product of two functions f and g on R is defined by

f i () = / F) 75" (1)) dtion(y)

for suitable functions f and g.
The following are properties of the convolution product x .
Properties 5.3.7 ([36]). (i) f *kn g = g *kn f-

(”) (f *k.n g) *k.n h = f *k.n (g *k.n h)
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Proof. (i) By using Fubini’s theorem and the property

Kin(x,y,2) = Kin ((—1)"z, 2, y), we obtain

P9 = [ 1060 | [ Vi (0170 2) i) | i)
= [0 | [ 10 (1702010 din) | o).

So, using the property i, ,, ((—1)"x, z, (—1)"y) = Ky (z, (—1)"2,y), we get

Frinale) = [ o2 [ [ 1K o (1720 duk,n@)} din(2)
- / 9T F (~1)2) dpgn(2)
= g *kn f(.%‘)

]

Proposition 5.3.8 (Young inequality [36] and [35]). For p,q,r such that 1 < p,q,r <
00 and%—i—%— 1 =1 andfor f € L” (R, dug,) and g € L? (R, djiy. ), the convolution

ot

product f xj, g is a well defined element in L" (R, dyy. ,) and

1S %k 9l < A Fllkpllglli -

For every R > 0, let us denote by C5y'(R) the space of smooth functions on R

which are supported in [— R, R]. Then

Proposition 5.3.9 ([36]). For f € CZ (R) and g € CZ, (R), then f x;n g € C%  ,(R)

and we have

Fk,n (f *k,n g) = Fk,n(f>fk,n(g)

Proof. Using Fubini’s theorem, we have

Fra (f Hkn 9) (A)

:\/RB]C,TL()\,-T)f*k,n g(:p)d,uk,n(x)

_ / 1(2) / o(v) / B0 2)Kin (2, (— 1), 2) it () dptin(y) dpin(2).
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Using the property Ky, (z, (—1)"y,2) = Kin(y,2z,2) along with Theorem 5.2.3,

leads to
Fien (f *kn 9) (N)

- ( /R f(Z)Bkm()\,Z)de,n(Z)) ( /R g(y)Bk,n(A,y)duk,n(y))
= Fen () (X) Frn(g)(A)-
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Chapter 6: The Generalized Hardy-Littlewood Maximal
Operator

6.1 Introduction

In this chapter, we will define and study the generalized Hardy-Littlewood
maximal operator M, associated with the one-dimensional generalized Fourier
transform F}, ,. For this operator to which covering methods do not apply, we will
construct a geometric maximal operator M, ,, which controls pointwise the maximal
operator M, ,, and for which we can use the machinery of real analysis to obtain
a maximal theorem. Therefore, proving the above mentioned conjecture reduces to

proving the same conjecture for the geometric maximal operator that will control My, ,.

6.2 A Covering Lemma of Vitali-Type

In this section we are going to be stating and showing a covering lemma of
Vitali-type. This lemma is essential for us in order to be able to reach the proof of the
main result of this thesis. From now on, we will be using the symbol (<) which can be
read as ’less up to a constant”, meaning the left hand side is bounded by some scalar

multiple of the right hand side of the inequality.

Definition 6.2.1. For x € Rand r > 0, let

I(z,7) ::] (max{o, ]x\% — r%}) : (]w\% + r%) [,
where 1(x,1) comes from the previously-stated support of the measure V,fg 5.2.4.

Lemma 6.2.2. The measure i, ,, is doubling for the intervals I(x,r) such that:
(1)0 < pugen(I(x,7)) < oo forall I(x,r).
(2) pren(L(2,2r)) S pon(L(x,7)) forall z € R and r > 0.

Proof. Part (1). The measure /i, is a positive measure and therefore p. ,(1(x,r)) is
positive. Any continuous function on a closed interval is Riemann-integrable and thus

finite.
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The proof of part (2) will consider three cases.

(i) assume |z|n < = < (2r)n then

(jal 7 +2r)m )"
Mk,n(l(xa ZT)) = / dﬂ!k,n(z)
0
Ly (2] (2r) )2kt
(2k+2—1)
S (o] + (2)rm )2k
|z
(2)n

< ((2)7 (Ja|7 + ra))Zk+2on

= (Mk,n)

+ ’l“% ) ) 2nk+2—n

= ((2)7(

()
therefore we obtain the following,

pn(I(2,2r)) S p(I(z, 7).

(ii) Now assume that 7= < |x|% < (2@%.

Then, in those circumstances the measure of the interval becomes as follows,

(| ™ +(2r)m )
e (120)) = [ A (2)
0

Ly (Ja] o (2 )2ekien
(2k+2-1)

,S (2(2)%7’% )2nk+27n

= (Mkn)

5 (7“% )2nk+27n

2
_ ,,,,Qk—&-;—l.



On the other hand,

1 1
(|4

i (I(2,7)) = / T den2)

1
(|7 —rm )™

(2rm)n
> / dyiin(2)
((

o) —r i)
1

( )2k+%—1 _ (7“((2)5 _ 1)n)2k+%71

= (M,
(Mica) ™ (2k+ 2 1)
122nk+2—n7n2k+%71 _ r2k+%71<<2)% _ 1)2nk+2—n
= (Mk n)_ 2
’ (2k+=-1)
= (Mgn) ™" 22k — ((2)w — 1)k s

(2k+2—1)

So we will arrive again at the result,
fen(L(2,2r)) < p(l(2,7)).

(iii) For the last case let |z|= > (2r)w, then,

(2| % +(2r)7)"
(1 20)) = [ dpin(2)

(Ja| 7 —(2r)m)n

/<2|xn> .
d:uk,n z
(|7 —rm )n

/N

1 _ 1 1
(2fa] =)+ 2mm — (o] — )

= (Mk,n)_l

and,

11
(Jzm 4rn)™

i (I, 7)) = / At (2)

1 1
(| —r )

1
rn )2nk+27n

(2k+2—1)

—(len—r

)2nk+2 n

_ N
= (M) (2k+ 2 -1)

Futhermore, since the following statement is true,

2|7+ > |zl

2(|zx +r7) > 2l
l

:\H

] + 7% 2 2]

43
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then,
tn (I (,2r)) S p(l(z,7)).

O]
Here, we state the Vitali-Type covering lemma that will shed a light on the

engulfing property of the intrvals I(x,r). For the purpose of proving this lemma we

will denote the diameter of an interval I(x,y) by diam(I(x,r)).

Lemma 6.2.3. Assume that I is a ju, ,-measurable subset of R’,, and that there exists a

finite collection of intervals {1 (x;,7;)}, ;. covering E. Then, there exists a disjoint

subcollection I (T, Ty ) s - -y L (T, Tm, ) Of the intervals I(x;,r;) that satisfies the
following.
¢
(E) S i (I (T, 7)) 6.2.1)
i=1

Proof. We follow a regular selection method. The interval with the biggest diameter
in the collection would be selected first, let it be denoted as I (z,,, 7'y, ), then all other
intervals that have an intersection with this interval should be removed. Repeat this
procedure until all intervals are either selected or removed. After this greedy algorithm,

we end up with a subcollection of disjoint intervals I (p,,, im, ) 5 - - - L (Timy, Ty )-

To get the desired inequality, we will invoke the doubling property that was
proved previously in Lemma 6.2.2. In addition, we must prove that every removed
interval I (z;,r;) is included in some dilated version of a selected interval, precisely,

I (2, crm,), 1 < i < (¢, for some positive constant ¢ > 1.

To do so, let us assume that one of the removed intervals is given by [ (z;, ;).
Thus, due to our selection method, there exists a smallest 7,1 < 7 < £, such
that the intersection [ (x;,7;) N I (%4, 7m,;) is nonempty, and diam (I (x;,7;)) <

diam (I (zp,,70,)) -

Then, there exists some constant ¢ > 1 such that I (x;,7;) C I (T, ¢ Tm,) -

We divide the proof of this statement into two cases.

1\ "N
(i) For the first case, let us assume that I (z;,r;) = } 0, (‘Ij|% + T]?l) [ . Here, we have

two possible subcases.
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1 1 \T
(a) First consider that I (z,,,, 7,,) = }O, (\wm\ﬁ + 7“;711.) [

1
. 1 = .
That is, |2,,,|» < 75,. Since

diam(I(zj,7;)) < diam(I(zp,;, Tm,))
then, it is clear to see that

(L(zj,715)) © (L(@mis Tm,))-

1
(b) Now, let us consider the case where 7, < |l‘m1|% Consequently, the interval

I(xp,,, T, ) takes the form

1 1\" 1 LA\™
s tm) = | (Jml® =) (Jam 7 +75) |-
then, by the diameter property we obtain the following
1 A\T 1 1\" 1 1\N
(Izsl% +77)" < (loml 7+ 7)) = (lemls =)

Moreover, since I (2, 7m;) N I(x;,7;) # ¢, then,

and from the above inequalities we get

1 1" 1 1 \" 1 1 \"
(loml* =7i) < (ol +78) = (Jom* =7 )
1 1" 1 L1 \"
2 <|(pml|ﬁ - rﬁlz) <|5L‘mllE + 7"777112>
1 1 \" 1 LN
@ (Joml* = 78) )% < ((lomd 7 +78,) )
1 1
(2) 7 |7 — (2)77,

N

3l
NN

N

1 =

. n
|Imz|" + T'm;
1 L1

ri (27,

1
n

N

(2)7 [ |7 — [T,

(@ = 1)l s < (@F+1) 7,
[T |7 < <(2)—+1§rm (6.2.2)
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which implies that the form of the interval / (:z:mi, <E2)T—H> rml) will be given by

(o (@) )= o (o) |
(2)» =1 (2)7 —1

Due to the form of I(z,,,, rm,) together with the inequality (6.2.2),

(2)w +1 1

1 1

and from the inequality obtained by the diameter property
1 1\ 7 1 LA\™
(lasl 7 +77) < (lamal 47 )

then,

2)7 —1

It is clear from the above inequality and the forms of the two intervals that

2% + 1Y
([(xj,rj)) C [ ('xm” (ﬁ) TmZ') .

(ii) For the second case, let us now assume that ]a:j]% > (rj)%. Then, the interval is

1 n
1 INT 1 2)n +1 2
<’g;]|711 _|-rj") < (‘gjml i + Lr;ﬁz>

given by
1 Lyn 1 INm
[(:L'j7/r])::|(|l‘]|n —ij’”) 7<|x]|n —}—’I"J’."> |:

. 1 i .
Now, consider the case where |z, |= < r/j,. That is,

Iz, ;) = ]O, <|xml|% + rﬁll) [

If we assume that

1 1 \7 1 1\ T
Fri) 2 (el rp)
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Then, it is clear from the forms of the two intervals that [ (x;,7;) C I(Zy,, 7'm,)-

If not, then from the fact that I(z;,7;) N I (@, Tm,) # 0 we get

1\"n
(Il =77)" < (Iom,

and from the diameter property

1 L\7 1 ER N
5—1—79%2.) < (y:cj\mrr;l) , 6.2.3)

1 ER 1 1\ " )
(|le5 —l—?“f) = (\xj]n —7’}) + diam (I (z;,75))

1 1\ 7
< <|xj]5 — r]?‘) + diam (I (X, Tm,))

Fogn) Yrn)
|x]| ri )+ (e rm )

By the inequality 6.2.3 and from the form of I(z,,,, r.,,) we get the following

ERN 1\N
(mﬁ+@)<2wmﬁ+%J

1\7n

< (@7 am|* + ()77,

()

2n+1 % "
|'Tmz rmi) )

and since

1
| |7 < Tty < (27, )

(3

Then, the form of the interval [ (z,,,, 2""'r,,.) would be given by

(e 2 r) = (0, (fo 5+ @24 )%)")
Therefore, it is clear from the forms of the two intervals and the diameter property that

I(z;,7j) C ](xmi,2"+17"mi).

1
Now, consider the case where |z,,, %>

7"

Which leads to the Interval I(x,,,, 1, ) taking the form

1 1 1
- 7"7%1')717 (’xmz’; + T#li)n

1
(@, ) = [ ([T, |



Here, we have three possible cases, the first being the case where
> n
) n

T ()7 )

S|=

(1 l* = 0m)*)" < (hesl* = (1)

1
< <|37j|" + (1)

S=

< (|xmz

Then, clearly,

I(zj,7;) C (X, T, )-

In the second case consider

= rm) ) < (It = )F)

then, by the diameter rule,

(lzsl" + ()7)”
< (Jom
=2 (Jom|* + ()7 )" = (o]
=2>" (7]?) |Zm,;
=5 ()b
91 () [E T

1 1 \T
= (|xml|" —|—3r7§3i) .

n—k
o T,

Sl
]
VRS
> 3
N——
B
3
—‘:
?E‘

3

|7 (2 = (1))

%)k

1
Note that we have two possible sub-cases here, one being that |z, |"

Then,

1
I(@me 377m,) = (0, ([, |7 + 31",

hence,

I(l’j, Tj) C I(ZL’mZ, ?)nTml)

4 n)t) = (Joml T = ) 7)ol = (1)

48

=
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Conversely, if |a:m|% > 3(r, ), then

1

v = 3ri)" ([, [+ 3 )"),

(T, 3"m,) = ((|Zm,

and
I(z;,75) C L(@m,, 3" ;)
follows consequently.

The last possible case is

1 1
which is to say that |z, |* > 77, = 0. Then there must be a constant C big

i

< C(rm,)" and thus the interval would be I(z,,,, C"ry,) =

enough to get |z, "
]0, <|a:m|% + ('rmi)%) [ consequently, I(z;,7;) C I(xp,, C"ry,).
Now, we have accomplished the proof of the claim which is that every interval

we haven’t selected (/(x;,7;)) is contained in some inflation of a selected interval

I(xp,, Tm,)- This, as well as the doubling property produce the following

1 (E) < i (U I (25, 75))
,U/kn(uf 1](xm17ormz))

S Nk‘n( L (Tm,, Criy))

= Z (I(Zmy;s Tm,))

N

2

which concludes the proof of Lemma 6.2.3. U

6.3 A Sharp Estimate for the Generalized Translation Operator

In the following section, a control of the translate of the characteristic function
X of the interval | —r, r[, where > 0 will be proved. This estimate will have a critical

role in the proof of the main result of this thesis.



The following theorem is in fact the main result of this section.

Theorem 6.3.1. For every x € R* and for almost every y € R*,we have

< /LkJL(] -7 TD

The proof of this theorem depends mostly on the proposition below.

Proposition 6.3.2. For every x € R* and almost every y € R*, we have

| . ( )|<(T)2k—1+;
T{L’7 X'f‘ y ~ T .
7|

In order to prove Proposition 6.3.2 we need the following three lemmas.

Lemma 6.3.3. forall x,y € R*,
1 1
| Bin(2,y)| S |y~ 72 %2
Proof. By the Definition 5.2.1 of By, ,,(x, y) we have

Bk,n(‘rv y)

1\ —knt%
=D(kn—5+1) <”'“’§’"> Jon—y (nlyl*)

+ (=) <E>n I'(kn — g + 1)zy (n!x2y|rlz ) o Ttz <n|g:y %)

2

1
Jin—z (n]ay|»)
)kn—ﬂ

= T(kn — 2 4 1)2tn~3 :
2 (nlzy|=)™ 2

1

Jin+2 (nfzy|™)

(nfay] )75

4 (i) (g) D(kn — g +1)2F+E gy

50
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and by using sup u'/?|.J, (u)| < 400, we get,
u>0

) < Ll

il
(Jzy|)km=3

1,1
CTE

Bk,n I7y n
o (jayl»)n+s

N

= Jay| 72 oy |42 + oy|oy| 2 |y
= |ay| "2 R 4 |ay| TR
= 2|wy| F+2mm

|—k+l =

27 2n,

< |zy

]

Lemma 6.3.4. The generalized Fourier transform of the characteristic function X,

satisfies the following

| Fron ) (@) S 724571 Vo e R 6.3.1)
and
N AT .
|FenXr) (@) S —5—=5, VzeR (6.3.2)
xk 2+2n

Proof. let us recall that

Fonfy) = /R F(2) Bun(z, 0)dpiin(), yE€R.

Since ., (z) < 1 and | By ,(x, )| < C then,

’Fk,n(XT)<y)’ = ‘/ XT($)Bk,n(x>y)dﬂk,n($)
R
< C’/ dpten ()
0
_ 20T2k+%—1

Now, from Proposition 5.3.1 we have,

Fion(F)(@) = FrnGn(fe) (@) + Frndu(fo) (@),



and since x,(y) is an even function, thus,

Fren(Xr)(N)
= Hpn—2(Gn (X)) ()

= [T ((5) ) sy
—/ Xr(Tn)]knfg(nT)\%>nT2knin+1dT
0
1

</ jkn_g(nT)\%)nT%”_”“dT
0

& 1
< /T Jkn_%l(nTAn ) T2kn—n+1dT
o (TAw)kn—2
1 ! Jkn—% (n)\%T%U) 2kn—nt1
=Trn 1 1 n n r "
0 )\kfir;(knff)Uknfi

U2knfn+1dU

1
1 11 kel gyl 141 — - n
:rn/ Jin—z (AT U)NT R T2 p= b2t grknmntd bt gy
0

1

1
= pathmi TR / Jon—z (nAnr U) U3 +1qU
0

1 1
rk=3+a

T\t

Here we have used

1
/ J(zy)y" T dy = 27 Jpa(2)
0

and sup u'/?|.J, (u)] < +o0.
u>0

Definition 6.3.5. Fort > 0, and x € R, let

kn—2+1 2

2 2 n —lz|n

q(z) = <_ e T
n

The third lemma needed to prove Proposition 6.3.2 is the following:

Lemma 6.3.6. fort > 0, q; satisfies

laellen =1

and

2
—t|\| 7 n?
4

Frn(@)(X) = e
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forall z € R.

Proof. Since

Frnlfd)N) = ¢ [ fol@hiins (nlAa]®)]af* 5 2dz.

2 kn_%+1 n —|z|%
() o
400 92 kn—g+1 . _m% 1 2
= c/ <ﬁ> t*kn+§*le T jknfg(n|/\x|5)|x\2k+5*2dx_
0

Lety = ', then,

2 kn_%+1 n —\z|%
n
o kn_%—’—l n 71;2 1
= c/ ) t*kn+§*1e'T jknfg(n|>\|5y)y2"k+2f2" n y"’ldy
0

o kn—35+1 . 1
— c/+ ((2) tkn+g1€—ty2> szfé(n])\| Y) g
0 n

(|A[7g)k—3

2 kn—3+1 400 ; 2 1 )
_) / <tkn+216t) Jknfg(n!)\ﬁy) n ynk—§+1dy’
n 0

let b = n|\|w, v =nk — 2 and a* = 1. Then,

2\ n_y —leln

_ 2 v+l 400 -
— |>\‘T <E> / (a2(u+1)efy a ) J,,(by) n qurldy.
0

— [\

To find the value of the integral one needs to use the following formula

/+OO J (b ) y+1e—y2a2d . b—ve_bQ/(4a2)
0 v\0Y)Y Y (2a2)u+1
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Which gives us,

2 kn_%-i_l n —\x\%
Fin (—) i) ()
n

kn—5+1 N o
= |)\|—k+% (2) n—2 t—kn+%—1e#ﬁn2n(n‘)“”)kn 1

2
—t|\| 7 n?
= € 4 ,

which is what needed to be proven for Lemma 6.3.6. [

Proof of Proposition 6.3.2. We have to consider two cases.

(1) First, assume that |:v|% < 27“%, then, by Lemma 5.3.5 we have

2k—1+1
T n
75 ()] < 75 O My S el < (H)

(i1) Secondly, assume that
1 1 1 1\"
|z|» > 2r= and (|:1:]n - yn) <,

so that
5" (y) # 0

due to the support of the translation operator, and from the Young inequality found in
5.3.8, we conclude that: x, *;, ¢ € L'(R, diig ) and that the translation operator is
bounded.

Therefore,

TR (e xkem @) € LHR, dpigen), (6.3.3)

for every x € R.



55
Now, using Holder’s inequality 2.2.5 and Plancherel’s theorem 4.3.3, we get

||-7:k,n(Xr *hon Gt) k1 = ||fk,n(XT)fk7n(qt)||k,1
S I Fkn O ) k2l Frem (@) 1,2

= [Dxrllr.2llgellx.2

< 00,
thus,
fk,n(Xr *k,n Qt) S Ll (R7 dﬂk,n) (634)
and,
-Fk,n(Tf’n(Xr X Qi3 7)) € L'(R, dtin)- (6.3.5)
From 6.3.4, 6.3.5 and 6.3.3, together with the inversion formula given in 4.3.4
we get:

TR (X ke @15 Y)

2
—t|A|n n2

=14fnm«—n%a@Bmxvaw%zw14x»@w 2 g (2)

=W 4 1@

where

2
—t|\| 7 n?

I = / Bin((=1)"2,2) Ben((=1)"y, 2) Fron(Xe) (2)e™ 7 dptgn(2)
{zeR:|zl<1}

2
—t|\| 7 n?

b= [ B0 B0 ) P () (e ()
{ZER:|Z|2%}
By Lemma 6.3.3 and the inequality 6.3.1 we get

|zy|Ft a3

—1 2
T ,’,,Qk-‘r%—l lil
kt+a—3
0 |[L‘y| 2n 2

2k+£—1

1 2
L op+21
T T n _ _1 2_
’11’5/ Py 2k+1 nz2k+n 2dZ
0

r

1

a2
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. 1 1
and since |x|» > 2rn then,

T 1_
‘[1‘ < (l |)2k+n 1
Now,
oo kfl+in
|]2| < Lﬁd | k+3— 2nZ—2k+1—%22k+%_2dZ
T eyl
o0 k_l_A'_L
= —r i ‘Z‘ k_i_anZ
L faylFtae
. 1+ 1 <T _§+2n7"k_§ %
B 2 2n |xy|’“+i—%
7421c71+l

thus,

Consequentially, for all £ > 0

. p\ 2l
|7—x7 (X'r *k,n qt; y) 5 11

and since X, *;n ¢t — Xr as t — 0, then

’ . ( )| _ ( r )Qk—‘ri—l
Tac, XT y ~ T
|z

Proof of Theorem 6.3.1.

pn(] = 1, 7]) = 2(Mi ) / o243

2k+2—1

— UM ot
(Mica)™ 2% +2 1



if |z]n < rw

1
(\$|"+rﬁ .
HenlI(z, 7)) = / Mk,nrl!z\%*z*?d,z

/ 1‘Z|2k+7_2dz

JTW“%l

= (M, n)”
(M) S 7
92nk+2—n )
= M n _1— 2k+z—1
( k, ) ok T % — 17’

— 2k ()

so, we can choose a constant (), large enough so that

hiwwg@%mmm

andif |z|» > 7=, then

(|| ™ +r%)

pion (1(,7)) = / 1

(\x|ﬁ77«ﬁ)n

|$|ﬁ+r%
= <Mk,n>1/ ) t2kn+272ntn71dt
|z| 7 —rn

1
|| 7 47
e (Mk,n)_l/ ) t2kn+1_ndt
|

1 1
z‘"—T‘n

- 2
(Mk,n) 1|Z|2k+n 2d2

1
n

1
[z 7 +r

|| % —r

5 (Mk,n)_1(|x|% + T}L)Qk”—n-l—l/ 5

S (Mk,n)_lf/“%(|q;|% + T%)an—n_t,_l
| " " —1r2k+%*1
and since |x|» > rw, and py (] —r,7[) = 2(Mgn) then

2k+2-1

e (I(z,7)) S (Mk,n)_lr%|x|2’€+%—1

:<k+%—§>(u> ] = mor)

That is,
1_
(L)2k+" C (=)
] ™ e (7))
Using proposition 6.3.2 the proof is concluded.
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6.4 Hardy-Littlewood-Type Maximal Theorem

We now define the generalized maximal function My, f(z) in terms of the

generalized translation operator 757",

Definition 6.4.1. For a locally integrable function f on R we define

Minf(z) = sup————

YT (Y)d i ()|, @ € R. (6.4.1)
T>0Hl~cn

The following maximal theorem of Hardy-Littlewood-type for My, is

actually the main result of this thesis.

Theorem 6.4.2. Let f € L}, (R, duy.,), then,

loc

(1) (weak-type (1,1) estimate) if f € L*(R, duy.,), then for every X\ > 0,

({2 € B Meat@) >0} < Hslens 642)

where ¢y, is a constant independent of f and ).

(2) (strong-type (p,p) estimate) if f € LP(R,dux,) with 1 < p < +oo, then
Mnf € LP(R, dpu, ) and

M fllep < Crpll fllkp: (6.4.3)

where the constant cy, ;, does not depend on f.

In order to achieve the proof of the above theorem, we must come up with a

more convenient maximal operator M, ,,.

Definition 6.4.3. We define the maximal function My, ,, f by

Mo f(x) = sup

r>0 Uk, n(I(x T)) /{vyER:y|€I(z,r)} |f(y)| fih (y) ( )

for every x € R, and every function f that is locally integrable on R with respect to
M-

First, we have to prove that M, ,, f(x) is bounded up to a constant by M, ,, f ().
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Proposition 6.4.4. Let [ be a locally integrable function with respect to the measure

g n- Then, for every real number x, we have the following

Minf(x) S Mg f(2) (6.4.5)

Proof. The statement is clearly true in the case of z = 0 since 70" (f;y) = f(y) and
I(0,7) =0, 7]. So, let us consider that z # 0. As a consequence of the support of 77",

we have the following

yl & [(z,r) — 7""x:(y) = 0.

The above fact together with Theorem 6.3.1 give us

ik ftal] = 1,71
)| S B [ 1) daty)

The point-wise inequality follows. 0

Now that we proved inequality 6.4.5, to get Theorem 6.4.2 we have to find its
analogue for the new maximal operator M, ,,. The covering Lemma 6.2.3 will play an

important role here.
Theorem 6.4.5. Let f € L} (R, duy.,)

(1) (Weak-type (1,1) estimate) If f € L' (R, duy ), then for every X\ > 0,

i ({2 € R - My f(2) > A}) < ~[1f e

(2) (Strong-type (p,p) estimate) If f € LP(R,duy,,) with 1 < p < +oo, then
My, f € L? (R, dpy.,n) and

M Sl S N Nk

Proof. Simply, we can see that M, ,, is bounded on L> (R, dji ). For 1 < p < oo,

we use the weak-type (1, 1) estimate, the L*>°-boundedness, and the Marcinkiewicz
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interpolation Theorem 2.3.7. Then, to achieve the proof we just need to show the first

statement.

Let us define the following set for A > 0,
Rf == {z e R, : My, f(z) > A}

From the definition 6.4.4 of M ,,, it follows that V = € R;\r dr, > 0 such that

1
(I ) < 5 [ 7(0)ldpan(v) (646
{yeR:|ylel(z,rz)}

Let K be a compact subset of RY. Since K C Uexl (z,7,),
then, by compactness there exists a finite subcover [ (zq,71),...1 (Zpm,7m) of
K. Using Lemma 6.2.3 we find a subcollection of pairwise disjoint intervals

I (T, Tmy;) s« I (T, T, ) such that
pen(K) St (I (2,7, ) (6.4.7)
=1

Invoking the disjoint property of the intervals (I (,,,7,));/<;> and using the

fact that for every x,,,, fgn (I (T, m,)) satisfies 6.4.6, then we may rewrite 6.4.7 as

) 553 | £ )ldpeals)

/=1 {yER:|y|eI(I"”Z’T"nZ>}
1

A /{yGIR:y|€Ué_II(gcm(Z ,rme)}
1Nk

| f ()| dpinn(y)

S

> =

Since this inequality holds for every compact subset K C R, the inner regularity of

the weighted Lebesgue measure gives us

1
tirn (RY) S <11l
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Finally, since the following fact holds.

Mk,n({$ ceR: Mkmf(x) > A}) < Hin (Rj) + Hi.n (R;) )

where

Ry = {z € R® : My, f(z) > A}

and since

Mk,nf<_x) = Mk,nf(x)u

is true. Consequently, we have

1
u({w ER: My, f(z) > A}) < 2t (BY) < L1f

Now, the first statement is proved. Therefore, Theorem 6.4.5 is proved.

On the other hand, Theorem 6.4.2 is a direct consequence from Proposition

6.4.4 together with Theorem 6.4.5.
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