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Abstract

Fractional calculus has been recently received huge attention from Mathematicians and

engineers due to its importance in many real-life applications such as: fluid mechanics,

electromagnetic, acoustics, chemistry, biology, physics and material sciences. In this the-

sis, we present numerical algorithms for solving fractional IVPs and system of fractional

IVPs where two types of fractional derivatives are used: Caputo-Fabrizio, and Atangana-

Baleanu-Caputo derivatives. These algorithms are developed based on modified Adams-

Bashforth method. In addition, we discuss the theoretical solution of special class of

fractional IVPs. Several examples are discussed to illustrate the efficiency and accuracy

of the present schemes.

Keywords: Fractional initial value problems; Fractional system of initial value problems;

Caputo-Fabrizio derivative; Atangana-Baleanu-Caputo derivative.



Title and Abstract (in Arabic) 

 التحقيقات العددية والنظرية للمعادلات التفاضلية الكسرية 

 الملخص 

حظي حساب التفاضل والتكامل الجزئي مؤخرًا باهتمام كبير من علماء الرياضيات والمهندسين نظرًا لأهميته في العديد من 

. الموائع والكهرومغناطيسية والصوتيات والكيمياء والبيولوجيا والفيزياء وعلوم الموادتطبيقات الحياة الواقعية مثل: ميكانيكا  

في هذه الأطروحة، نقدم خوارزميات عددية لحل مشاكل القيمة الأولية الجزئية ونظام مشاكل القيمة الأولية الجزئية حيث يتم  

. تم تطوير هذه  Atangana-Baleanu-Caputoو  Caputo-Fabrizioاستخدام نوعين من المشتقات الكسرية: مشتقات  

المعدلة. بالإضافة إلى ذلك نناقش الحل النظري لفئة خاصة من مشاكل   Adams-Bashforthالخوارزميات بناءً على طريقة  

 القيمة الأولية الجزئية. تمت مناقشة العديد من الأمثلة لتوضيح كفاءة ودقة المخططات الحالية. 

، Caputo-Fabrizioمشاكل القيمة الأولية الجزئية، نظام مشاكل القيمة الأولية الجزئية، مشتقات  البحث الرئيسية: مفاهيم

 .Atangana-Baleanu-Caputoمشتقات  
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Chapter 1: Introduction

Many researchers and scholars have deeply studied the subject of at fractional calculus

in recent decades. The fact that fractional calculus considers derivatives and integrals of

non-integer orders gives extra degrees of freedom and that owes to the core principle un-

derpinning it. Fractional calculus has also caught the interest of numerous researchers due

to the rapid development and improvement of nanotechnology. We can explore various

real-world problems in more precise and significant ways by using arbitrary order deriva-

tives and integrals. In addition, when compared to classical calculus, fractional calculus

may be used to study the characteristic behaviours, heredity, and memory qualities of var-

ious processes and phenomena [2, 3]. The aforementioned field is more suitable for the

properties of the real-world problems. In a letter to L’Hospital in 1665, Leibnitz proposed

the concept of fractional calculus. The differentiation of order 1
2 was described in the

aforementioned letter [4]. Later, in 1819, Lacroix [5] conducted a thorough investigation

into this concept. For instance, the half order derivative of a function f (t) = t is given by

D
1
2
t [ f (t)] = 2

√
t
π

Following that, several researchers have shown a strong desire to conduct research in this

area [6]. Fourier, Abel, Liouville, Riemann, Grunwald, Letnikov, Hadamard, and others

made significant contributions to fractional derivatives in the early years [7, 8]. Here, we

point out that a derivative with fractional order does not have a unique definition, but can

be defined in a variety of ways. Riemann-Liouville gave the first significant definition in

1832. After that, a modification was made to the fractional operator mentioned. Then,

in 1967, Caputo provided a new definition, which was mostly used in dealing with sev-

eral real-world problems [7]. The authors of [9, 10] show the analysis of various problems

using the Caputo fractional differential operator. It is worthy mentioning herein that Rie-

mann and Liouville were able to define the so-called fractional integral of arbitrary order

as follows:

Definition 1.0.1. [6] The left sided Riemann-Liouville fractional integral operator of or-
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der α is defined by

Iαy(t) =
1

Γ(α)

∫ t

a
(t− τ)α−1y(τ)dτ, α ∈R+, (1.1)

where y ∈ L1(a,b) :=
{

z : [a,b]→R |
∫ b

a z(t)dt < ∞

}
.

Notice that Γ(x) generalizes the factorial n! and allows n to take even non-integer and

complex values. The Gamma function is defined by

Γ(x) =
∫

∞

0
e−ttx−1dt,

for all x ∈ R+, provided that the integral exists. It should be noted that the definition of

Iα given in (1.1), is used by Caputo to define the left sided Caputo fractional derivative,

Dαy(t) for y ∈ L1[a,b] as follows:

( C
a Dαy)(t) = In−αy(n)(t) =

1
Γ(n−α)

∫ t

a
(t− τ)n−α−1y(n)(τ)dτ,

where n = ⌈α⌉ is the ceiling of α .

The Caputo fractional derivative satisfies the following properties for f ∈ L1[0,1] α,β ⩾

0 and n = ⌈α⌉:

1. Dα Iα f (t) = f (t).

2. IαDα = f (t)−∑
n−1
k=0 f (k)(0+)(tk/k!).

3. Dαc = 0, where c is a constant.

4. Dαtγ =

 0 , γ < α, γ ∈ {0,1,2, ...}
Γ(γ+1)

Γ(γ−α+1)t
γ−α , otherwise

 .

5. Dα

(
m

∑
i=0

ci fi(t)

)
=

m

∑
i=0

ciDα fi(t), where c1,c2, ...,cm are constants.

In 2015, Caputo and Fabrizio introduced a new definition, the Caputo-Fabrizio (CF)

derivative by replacing the singular kernel in the prior definition with a non-singular one
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[11]. This definition is given by

( CF
a Dα f )(t) =

M(α)

(1−α)

∫ t

a
f ′(τ)e−

α

1−α
(t−τ)dτ

where M(α)> 0 is a normalization function such that M(0) = M(1) = 1.

Later, in 2016, Atangana and Baleanu broadened the CF-derivative to include ABC type

derivative given by The ABC derivative of a function G(t) under the condition G(t) ∈

H 1(0,T ) is defined as follows:

ABC
0Dα

t G(t) =
1

1−α

∫ t

0
G′(τ)Eα [

−α

1−α
(t− τ)α ]dτ,

where, Eα represents the special function known as Mittag-Leffler function. This new

fractional operator has proven to be quite useful in a variety of mathematical modeling

and real-world problems [12]. Fractional order differential equations (FODEs) have been

proven to be more realistic than integer order in studies of mathematical models connected

to physical and biological problems [13]. As a result, FODEs are increasingly being used

in fields of science and engineering, such as blood flow, electrodynamics of complex

media, signal and image processing, control theory, economics with management, chem-

istry with polymer rheology, physics and its subbranches such as aerodynamics, and so

on [14, 15, 16]. In [17], for example, the study of the fractional order linear triatomic

molecules model was investigated. Recently, a fractional order mathematical model of

measles with the best control method was studied [18]. From the perspective of medical

engineering, mathematical models of fractional order derivative for several infectious dis-

eases, as well as their examination for stability, optimization, approximate solution, and

qualitative analysis, have proven particularly interesting [19].

As a result, scholars have focused their efforts on studying FODEs from a variety of

perspectives, including qualitative, numerical, and stability analysis. For finding the semi-

analytical, analytical, and series solutions to FODEs, different techniques have been used

[20]. Predictor-corrector methods have been utilized extensively, just like Runge-Kutta

methods of various orders, modified Euler methods, and Adams-Bashforth methods, (see
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[21]). For the semi-analytical solution of FODEs, transform methods such as Laplace,

Laplace Adomian decomposition, Fourier transform, Z-transform, differential transform,

double and triple Laplace transform, and Sumudu transform have been used [22]. For

series solution, as well as stability and convergence analysis of FODEs, the Homotopy

perturbation, improved homotopy perturbation, Homotopy analysis, and Taylor’s series

methods were used (for instance, see [23]).

Different methodologies were used to examine the FODEs for stability. Keeping in mind

that several types of stabilities, such as exponential, Mittage-Lefiler, Laypunove, and Lo-

cal asymptotic stability of equilibrium points, global stability, stability by first approxima-

tion approach, stability by Routh-Hurwitz criteria, and so on, are available in the literature

[24]. Ulam-Hyers stability, named after Ulam in 1940, is one of the most important types

of stability studied recently for linear and non-linear FODEs. Hyers used Banach spaces

to explain the said stability in 1941.

In this thesis, we have taken a single and general system of three fractional differential

equations under the non-singular and non-local fractional differential operators known

as CF and ABC, as described in the article in [25]. Many research publications have

simplified the process of determining the existence and uniqueness of a solution, system

stability, and numerical analysis by converting various models and systems to a single

equation. We compared nine fractional order outcomes to integer order results in the nu-

merical simulation part. As fractional orders are increased (approaches 1.0 ), the solution

curves tend to the curves of integer order 1. As a result, it can be concluded that for integer

order systems, only one discrete curve of order 1 can be obtained, whereas in fractional

analysis, continuous spectrum curves between 0 and 1 can be obtained. Furthermore, this

is a general system of fractional order analysis, and using the same method, we can take

many specific systems or models representing various real-world phenomena under differ-

ent fractional operators in order to check their dynamics at a non-integer order as studied

in [26, 27, 28].

The knowledge of the entire spectrum for each dynamical system lying between any two
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integer values has been offered by modern calculus [29]. Various real-world problems,

such as mathematical fractional order model for small-organism population, logistic non-

linear model for human population, tuberculosis model, disease models like hepatitis B,

C, and the basic Lotka-Volterra models, have been studied using arbitrary order differen-

tial or integral equations [30, 31]. Using various methodologies, the FODEs were also

examined for numerical, semi-analytical, and analytical solutions. Euler, Taylor, Adams-

Bashforth, predictor-corrector, and numerous transformation approaches are some of the

well-known methods that have been employed so far (see [32]). We discovered certain

areas that require further exploration and discussion after reviewing the existing literature

on FODEs. We also get numerical findings using Adam’s Bashforth’s fractional order

approach and exhibit them graphically using Mathematica. To support the entire study,

interesting examples are offered. We should also mention that while exponential laws

are a typical approach for studying the dynamics of population densities in diverse phe-

nomena/processes, the dynamics in certain systems can be quicker or slower. The use of

fractional calculus is the best solution in such situations where anomalous changes in the

dynamics occur. Recently, some well-organized results in this area have been reported

(see [33, 34, 35]).

The rest of the thesis is organized as follows:

In chapter 2, we present preliminary results and main theorems related to the Caputo-

Fabrizio fractional derivative and integral.

In chapter 3, we discuss in details the numerical and theoretical solutions of fractional

initial value problems with the Caputo-Fabrizio fractional derivative sense of the form

( CF
a Dαy)(t) = f (t,y(t)) , y(0) = y0 t ∈ (0,T ].

More precisely, we discussed the quadratic and cubic fractional logistic models.

In chapter 4, we discussed the numerical solutions of system of fractional initial value
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problems of the form

ABC
0 Dα(x(t)) = G1

(
t,x(t),y(t),z(t)

)
,

ABC
0 Dα(y(t)) = G2

(
t,x(t),y(t),z(t)

)
,

ABC
0 Dα(z(t)) = G3

(
t,x(t),y(t),z(t)

)
,

x(0) = x0, y(0) = y0, z(0) = z0, t ∈ [0,T ], 0 < α ≤ 1,

(1.2)

where Gi : [0,T ]×R3→ R are continuous functions and i= 1,2,3. Note that dynamical

systems involve ABC fractional order derivative suffer from initialization. In order to

solve this, we assume that functions on the right side vanish at t = 0. In other words, if

t = 0, we have Gi(t,x(t),y(t),z(t)) = 0, for i = 1,2,3.
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Chapter 2:Caputo-Fabrizio Fractional Derivative and Integral

In this chapter, we discuss in details the Caputo-Fabrizio fractional derivative and its prop-

erties. Several theoretical results will be discussed.

Among the several definitions of fractional derivative; the most well-known one is Ca-

puto fractional derivative (CFD) summarized by the following definition.

Definition 2.0.1. For a function f ∈H1(a,b), with b> a, α ∈ (0,1); the left-sided Caputo

fractional derivative (CFD) is given by

( C
a Dα f )(t) =

1
Γ(1−α)

∫ t

a

f ′(τ)
(t− τ)α

dτ (2.1)

It should be noted that the integral (2.1) involves a singular kernel k(t,τ) = (t− τ)−α at

t = τ .

Caputo and Fabrizio [36] defined a new fractional derivative by changing the kernel

(t− τ)−α with the function e−
α

1−α
(t−τ) and 1

Γ(1−α) with M(α)
(1−α) in (2.1) as follows:

Definition 2.0.2. For a smooth function f (t) : [a,∞) → R with b > a, α ∈ [0,1]; the

Caputo-Fabrizio fractional derivative is given by

( CF
a Dα f )(t) =

M(α)

(1−α)

∫ t

a
f ′(τ)e−

α

1−α
(t−τ)dτ (2.2)

where M(α)> 0 is a normalization function such that M(0) = M(1) = 1.

Notice that, the kernel of Caputo-Fabrizio fractional operator given in (2.2) is nonsin-

gular. To better understanding of the differences between, integer and Caputo-Fabrizio

derivatives; we constructed the below example.

Example 2.0.1. Consider the function f (t) = t3 + 2t, a = −3 and M(α) = 1. Then, the
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C-F derivative is given by

CF
−3Dα(t3 +2t) =

(1−α)

∫ t

−3
(3τ

2 +2)e−
α

1−α
(t−τ)dτ

=
α2(3t(t +2)+8)−6α(t +2)− (α(17α +6)+6)e

α(t+3)
α−1 +6

α3 .

t

Figure 2.1: Graphical representation f ′(t) (−−−) of C-F fractional derivatives at: α = 0.8 (—);
α = 0.9 (—) and α = 0.99 (· · · ) for example 1.

It is clearly seen that the C-F operator ( CF
a Dα f )(t) converges uniformly to f ′(t) for all

t ̸= a.

2.1 Properties of Caputo-Fabrizio Fractional Operator

In this subsection, we discuss the properties of Caputo-Fabrizio fractional operator CF
a Dα .

First we will recall the definition of the delta function.

Definition 2.1.1. The Dirac delta function is defined by

δ (t− τ) =

 ∞, if; t = τ

0, O.W.

Lemma 2.1.1. [36] For a smooth function f (t) : [a,∞)→ R,

lim
α→1

( CF
a Dα f )(t) = f ′(t).
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Proof. Using the definition 2.2,

lim
α→1

( CF
a Dα f )(t) = lim

α→1

M(α)

(1−α)

∫ t

a
f ′(τ)exp

(
−α(t− τ)

1−α

)
dτ

=
∫ t

a
f ′(τ) lim

α→1

M(α)

(1−α)
exp
(
−α(t− τ)

1−α

)
dτ

=
∫ t

a
f ′(τ)δ (t− τ)dτ

= f ′(t)(θ(a− t, t−a)+δ (a)−2θ(a− t)+1)

= f ′(t)

Notice that θ is Heaviside theta function.

Lemma 2.1.2. [36] For a smooth function f (t) : [a,∞)→ R,

lim
α→0

( CF
a Dα f )(t) = f (t)− f (a).

Proof. Using the definition 2.2,

lim
α→0

( CF
a Dα f )(t) = lim

α→0

M(α)

(1−α)

∫ t

a
f ′(τ)exp

(
−α(t− τ)

1−α

)
dτ

=
∫ t

a
f ′(τ)dτ

= f (t)− f (a).

The higher-order Caputo-Fabrizio fractional derivative of order β = α + n > 1 where

n ∈ N and α ∈ (0,1) is defined as:

( CF
a Dβ f )(t) = ( CF

a Dα+n f )(t) = CF
a Dα (Dn

t f (t)) ,

where Dn
t =

dn

dtn represents the integer derivative of order n.

Theorem 2.1.3. [36] If the function f (t) is such that

f (s)(a) = 0, s = 1,2, ...,n
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then, we have

Dn
(

CF
a Dα

t f (t)
)
= CF

a Dα (Dn
t f (t)) .

Lemma 2.1.4. For a smooth function f (t) : [a,∞) → R, consider the simple Caputo-

Fabrizio fractional differential equation

( CF
a Dα f )(t) = 0 if and only if f (t) = constant. (2.3)

Proof. (←−) If f (t) is constant then showing that ( CF
a Dα f )(t) = 0 is trivial.

(−→) Applying the definition of C-F Fractional Derivative, we obtain

( CF
a Dα f )(t) :=

1
1−α

e−
α

1−α
t
∫ t

0
e−

α

1−α
s f ′(s)ds = 0, t ≥ a. (2.4)

Differentiating Equation (2.4) with respect to t; one may obtain

−α( CF
a Dα f )(t)+ f ′(t) = 0, t ≥ a.

Therefore, f ′(t) = 0 for t ≥ a, which means that f (t) is constant for t ≥ a.

2.2 The Laplace Transform

Unfortunately, the Laplace transform of Caputo-Fabrizio fractional derivative is valid only

when a = 0. Therefore, we will discuss briefly this transform.

L
{
( CF

0 Dα f )(t)
}

= L

{
M(α)

(1−α)

∫ t

0
f ′(τ)e−

α

1−α
(t−τ)dτ

}
=

M(α)

(1−α)
L
{

f ′(t)
}

L
{

e−
α

1−α
t
}

(Convolution Theorem)

=
sL { f (t)}− f (0)

s+α(1− s)
.
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The above results can be easily generalized for higher-order derivatives such as

L
{
( CF

0 Dα+n f )(t)
}

=
1

(1−α)
L
{

f (n+1)(t)
}

L
{

e−
α

1−α
t
}

=
sn+1L { f (t)}− sn f (0)− sn−1 f ′(0)...− f (n)(0))

s+α(1− s)
.

2.3 Caputo-Fabrizio Fractional Integral

Let f (t) : [a,∞)→ R be integrable function. Then, it is well-known that the first order in-

tegral is F(t)=
[
I1 f
]
(t)=

∫ t
0 f (s)ds. However, the definition of fractional integral associ-

ated with the fractional derivative was not easy task. In fact, several mathematicians such

as Euler [37], Laplace [38], Lacroix [39], Fourier [40], Liouville [41] and Rienmann [42]

defined different types of fractional derivatives. For example, the Rienmann-Liouville

fractional derivative of order α ∈ (0,1) which is defined by

RL
0 Dα f (t) =

1
Γ(α−1)

d
dt

∫ t

0
(t− s)α f (s)ds (2.5)

suggested by the relation

RL
0 Dα f (t) = [D1I1−α ] f =

d
dt

I1−α f .

Therefore, it was suggested that the Riemann-Liouville integral can be defined by

Iα f (t) =
1

Γ(α)

∫ t

a
f (τ)(t− τ)α−1 dτ, Real(α)≥ 0,

where Γ is the gamma function.

In the twenty century, Caputo introduced new definition of fractional derivative defined

by

C
0 Dα f (t) =

1
Γ(α−1)

∫ t

0
(t− τ)α f ′(τ)dτ. (2.6)
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In fact, it can be easily shown that the relation C
0 Dα = I1−α ·D1 is implemented.

The Caputo-Fabrizio fractional integral associated to Caputo-Fabrizio fractional deriva-

tive was determined by [44] which is given by the following lemma.

Lemma 2.3.1. For a smooth function g : [a,∞)→ R, the C-F fractional integral of order

α ∈ (0,1) associated with the C-F fractional derivative is defined by

( CF
a Iαg)(t) = (1−α)[g(t)−g(0)]+α

∫ t

0
g(s)ds

with g0 =
∫ 0

a e−
α

1−α
s f ′(s)ds. In addition, the following two properties are satisfied

(a) ( CF
a Dα CF Iα) f (t) = f (t)− f (a)e

−α(t−a)
1−α

(b) ( CF Iα CF
a Dα) f (t) = f (t)− f (0).

Note that, if a = 0, then g0 = 0 and ( CF
a Iαg)(t) = (1−α)g(t)+α

∫ t
0 g(s)ds.

Proof. See [44].
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Chapter 3:Numerical and Theoretical Investigating of Fractional
Initial Value Problems: Caputo-Fabrizio Derivative Sense

In this chapter, we discuss the numerical and theoretical solutions of fractional initial

value problems with the Caputo-Fabrizio fractional derivative sense of the form

( CF
a Dαy)(t) = f (t,y(t)) , t ∈ (0,T ]. (3.1)

Below we establish existence results.

Lemma 3.0.1. Let x ∈ L[0,T ] and y ∈ A⊂ [0,T ], then the solution of
CF
a Dαy(t) = x(t), 0 < α ≤ 1 t ∈ [0,T ],

y(0) = y0,

(3.2)

is

y(t) = y(0)+(1−α)(x(t)− x(0))+α

∫ t

0
x(τ)dτ. (3.3)

Proof. The proof is direct by applying the Caputo-Fabrizio fractional integral of order α

on both sides of (3.2).

3.1 Numerical Solution of (3.1)

Applying the Caputo-Fabrizio fractional integral of order α; i.e.

( CF Iαg)(t) = (1−α)(g(t)−g(0))+α

∫ t

0
g(τ)dτ

on Equation (3.1), we obtain

( CF Iα CF
a Dαy)(t) = CF Iα f (t,y(t)) (3.4)

y(t)− y(0) = (1−α)( f (t,y(t))− f (0,y(0)))+α

∫ t

0
f (τ,y(τ))dτ. (3.5)

The domain [0,T ] is divided into N−subintervals with the grid points tn = nh, n =

0, · · · ,N. Here h represents a uniform step size; h = T/N. At t = tn, Equation (3.4)
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has the form

y(tn) = y(0)+(1−α)( f (tn,y(tn))− f (0,y(0)))+α

∫ tn

0
f (τ,y(τ))dτ, (3.6)

or in the following form

y(tn) = y(0)+(1−α)( f (tn,y(tn))− f (0,y(0)))+α

n−1

∑
k=0

∫ tk+1

tk
f (τ,y(τ))dτ. (3.7)

The integral in right hand side is approximated by a Lagrange polynomial using the nodes

tk and tk+1; i.e.

f (τ,y(τ)) = Pk(τ) =
(τ− tk+1)

−h
f (tk,y(tk))+

(τ− tk)
h

f (tk+1,y(tk+1))

+
f ′′(ξ (τ))

2!
(t− tk)(t− tk+1).

For simplicity, assume that fk = f (tk,y(tk)) and yn = y(tn). Therefore, neglecting the error

term, Equation (3.7) can be rewritten as

yn = y0 +(1−α)( fn− f0))+α

n−1

∑
k=0

(
h
2

fk +
h
2

fk+1

)
,

= y0 +

(
α−1+

h
2

α

)
f0 +

(
1−α +

h
2

α

)
fn +α

n−1

∑
k=1

h
2

fk

In the proceeding subsections we discuss, respectively, the numerical and theoretical so-

lutions of two well-known examples: quadratic and cubic logistic models.

3.2 Numerical Solutions of Logistic Models

Example 3.2.1.

( CF
a Dαy)(t) = ry(t)(1− y(t)/K), t > 0, y(0) = y0, (3.8)

with r = 0.5 and K = 2. The targets of this example are to discuss the effects of the

parameters y0 and α on the solution trajectories.

It is clearly observed that Equation (3.8) has two equilibria given by y1 = 0 and y2 = 2.

Figure 3.1 shows the solution trajectories as the initial point, at y0, changes in the set
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{1,3} for α = 0.7− 1.0. One can clearly see that the solution trajectories converge to

y2 = K = 2 asymptotically for any y0. Thus, we conclude that y2 = 2 is asymptotically

stable equilibrium solution whereas y1 = 0 is unstable equilibrium solution. It is also

noted that the effect of increasing α will slow the required time for solution trajectories

to reach the equilibrium solution. It is worthy mentioning that as α → 1, the solution of

the problem converges smoothly to the classical problem at α = 1.

Figure 3.1: Graphs of the the solution trajectories for Example 1 at y0 = 1.0, y0 = 3.0 for different
values of α .

Example 3.2.2.

( CF
a Dαy)(t) = ry(t)(1− y(t)

K
)(y(t)−m), t > 0, y(0) = y0, (3.9)

with r = 0.5, m = 1 and K = 2. The targets of this example are to discuss the effects of

the parameters y0 and α on the solution trajectories.

It is clearly observed that Equation (3.9) has three equilibria given by y1 = 0, y2 = 1 and

y3 = 2. Figure 3.2 shows the solution trajectories as the initial point, at y0, changes in

the sets {0.5,1.5,3} for α = 0.7− 1.0. One can clearly see that the solution trajecto-

ries converge to y3 = K = 2 asymptotically for any y0. Thus, we conclude that y3 = 2 is

asymptotically stable equilibrium solution whereas y1 = 0 and y2 = 1 are unstable equi-

librium solutions. It is also noted that the effect of increasing α will slow the required

time for solution trajectories to reach the equilibrium solution. It is worthy mentioning
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that as α→ 1, the solution of the problem converges smoothly to the classical problem at

α = 1.

Figure 3.2: Graphs of the the solution trajectories for Example 2 at y0 = 1.0, y0 = 3.0 for different
values of α .

3.3 Theoretical Solutions of Logistic Models

In this section, we solve theoretically the quadratic and cubic fractional logistic models

where the derivative is considered in Caputo-Fabrizio sense.

Example 3.3.1. Consider the following quadratic fractional logistic model

( CF
a Dαy)(t) = ry(t)

(
1− y(t)

K

)
, t > 0, y(0) = y0. (3.10)

If α = 1, the fractional equation is simplified to the classical differential equation with

exact solution given by

y(t) =− y0K
y0 +(K− y0)e−rt

and we can observe that as t→ ∞, y(t)→ K.

Applying the fractional operator, CF Iα , on equation (3.10); one obtains

( CF Iα CF
a Dαy)(t) = CF Iα

(
ry(t)

(
1− y(t)

K

))
,
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or

y(t)−y(0)= (1−α)

(
ry(t)

(
1− y(t)

K

)
− ry(0)

(
1− y(0)

K

))
+α

∫ t

0
ry(τ)

(
1− y(τ)

K

)
dτ.

(3.11)

Sorting out (3.11), we get

y(t) = y0+(α−1)ry0+(1−α)

(
r(y(t))+ r

y2
0− y(t)2

K

)
+α

∫ t

0
ry(τ)

(
1− y(τ)

K

)
dτ.

(3.12)

Taking the first derivative of (3.12) gives

y′(t) = (1−α)ry′(t)+(α−1)
2ry(t)y′(t)

K
+αry(t)

(
1− y(t)

K

)
. (3.13)

Simple operations will help in writing Equation (3.13) in the following separable form

(K((α−1)r+1)−2(α−1)ry(t))
y(t)(K− y(t))

dy = αrdt, (3.14)

or in the following form

(
αr− r−1
y(t)−K

+
αr− r+1

y(t)

)
dy = αrdt. (3.15)

Integrating (3.15) gives

A1 ln |y(t)|+A2 ln |y(t)−K|= αrt +C, (3.16)

where A1 = αr− r+1, A2 = αr− r−1 and C is an arbitrary constant can be found using

the initial condition y(0) = y0. Hence, we obtain

C = A1 ln |y0|+A2 ln |y0−K| . (3.17)

Therefore, combining (3.16) and (3.17) leads to implicit solution of the quadratic frac-
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tional logistic model (3.13).

Example 3.3.2. Consider the following cubic fractional logistic model

( CF
a Dαy)(t) = ry(t)

(
1− y(t)

K

)
(y(t)−m), t > 0, y(0) = y0. (3.18)

It should be noted herein that in the case of α = 1, equation (3.18) reduces to the classical

cubic logistic model with the following exact solution

−m ln(y(t)−K)+K ln(y(t)−m)+(m−K) ln(y(t))
m(K−m)

= rt +
−K ln(y0)+m ln(y0)−m ln(y0−K)+K ln(y0−m)

m(K−m)
.

To find the solution, y(t), of (3.18) for 0≤ α < 1, we have to apply the operator CF Iα on

both sides of the equation

( CF Iα CF
a Dαy)(t) = CF Iα

(
ry(t)

(
1− y(t)

K

)
(y(t)−m)

)
,

which can be rewritten using (3.4) in the following form

y(t) = y0 +(1−α)

(
ry(t)

(
1− y(t)

K

)
(y(t)−m)− ry0

(
1− y0

K

)
(y0−m)

)
+ α

∫ t

0
ry(τ)

(
1− y(τ)

K

)
(y(τ)−m)dτ, (3.19)

where y0 = y(0). Taking the first derivative with respect to t for both sides of (3.19), we

obtain

y′(t) =
(α−1)ry′(t)

(
−2(K +m)y(t)+Km+3y(t)2)+αry(t)(K− y(t))(y(t)−m)

K
,

which can be written in the following separable form

(
A1
y(t)

+
A2

y(t)−K
+

A3
y(t)−m

)
dy = αrm(K−m)dt, (3.20)

where A1 = (K−m)(αmr−mr− 1), A2 = αKmr−Kmr−αm2r+m2r−m and A3 =
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αKmr−Kmr+K−αm2r+m2r. Integrating 3.20 can be obtained

A1 ln |y(t)|+A2 ln |y(t)−K|+A3 ln |y(t)−m|= αrm(K−m)t +C,

where C is an arbitrary constant that can be determined using the initial condition y(0) =

y0; its value is

C = A1 ln |y0|+A2 ln |y0−K|+A3 ln |y0−m| .
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Chapter 4:Numerical Investigation of Fractional Initial Value
Problems: ABC Derivative Sense

In this chapter, we implement a modified definition of Caputo-Fabrizo differential opera-

tor called the ABC fractional derivative [48] given by.

Definition 4.0.1. The ABC derivative of a function G(t) under the condition G(t) ∈

H 1(0,T ) is defined as follows:

ABC
0Dα

t G(t) =
1

1−α

∫ t

0
G′(τ)Eα [

−α

1−α
(t− τ)α ]dτ, (4.1)

where, Eα represents the special function known as Mittag-Leffler function. Further, it is

to be noted that, for a constant C,

ABC
0Dα

t [C] = 0.

Definition 4.0.2. [48] Let G(t) ∈ L[0,T ], then the associated fractional integral, ABC0Iα
t ,

in ABC sense is given by:

ABC
0Iα

t G(t) = (1−α)G(t)+
α

Γ(α)

∫ t

0
(t− τ)α−1G(τ)dτ. (4.2)

In this chapter, we focus on theoretical and numerical solutions to the following proposed

system of fractional differential equations:

ABC
0 Dα(x(t)) = G1

(
t,x(t),y(t),z(t)

)
,

ABC
0 Dα(y(t)) = G2

(
t,x(t),y(t),z(t)

)
,

ABC
0 Dα(z(t)) = G3

(
t,x(t),y(t),z(t)

)
,

x(0) = x0, y(0) = y0, z(0) = z0, t ∈ [0,T ], 0 < α ≤ 1,

(4.3)

where Gi : [0,T ]×R3→ R are continuous functions and i = 1,2,3. The below lemma

ensures the existence of a solution for the above system (4.3).

Lemma 4.0.1. [Existence Result: Proposition 3, [48]] The solution of the given problem
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for 0 < α ≤ 1

ABC
0Dα

t G(t) = Ψ(t), t ∈ [0,T ],

G(0) = G0,

keeping in mind that right side vanish at t = 0 is given by

G(t) = G0 +(1−α)Ψ(t)+
α

Γ(α)

∫ t

0
(t− τ)α−1

Ψ(τ)dτ.

For more theortical results related to the ABC fractional derivative; the reader is referred

to [45, 46, 47, 48, 49, 50, 51, 52].

4.1 Numerical Solution

In this section, we are going to approximate the solutions of problem (4.3) using the so-

called Adams-Bashforth (AB) iterative technique. We will derive the scheme for the first

equation of (4.3), while the remaining equations can be discretised by the same manner.

Upon integration of the first equation of (4.3) as

x(t)− x(0) =(1−α)

[
G1

(
x(t),y(t),z(t), t

)]
+

α

Γ(α)

∫ t

0
(t− τ)α−1G1

(
x(τ),y(τ),z(τ),τ

)
dτ.

Set t = t j+1 for j = 0,1,2 · · · ,

x(t j+1)− x(0) = (1−α)

[
G1

(
x(t j),y(t j),z(t j), t j

)]
+

α

Γ(α)

∫ t j+1

0
(t j+1− τ)α−1G1

(
x(τ),y(τ),z(τ),τ

)
dτ,

= (1−α)

[
G1

(
x(t j),y(t j),z(t j), t j

)]
+

α

Γ(α)

j

∑
ℓ=0

∫ tℓ+1

tℓ
(t j+1− τ)α−1G1

(
x(τ),y(τ),z(τ),τ

)
dτ.

Next, we interpolate the function G1 on [tℓ, tℓ+1] for ℓ= 1,2,3... using Lagrange interpo-

lation as follows

G1 ∼=
G1

h
(t− tℓ−1)−

G1

h
(t− tℓ),
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x(t j+1)− x(0) = (1−α)

[
G1

(
x(t j),y(t j),z(t j), t j

)]

+
α

Γ(α)

j

∑
ℓ=0

(G1

(
x(tℓ),y(tℓ),z(tℓ), tℓ)

h

∫ tℓ+1

ℓ
(t− tℓ−1)(t j+1− t)α−1dt

−
G1

(
x(tℓ−1),y(tℓ−1),z(tℓ−1), tℓ−1

)
h

∫ tℓ+1

ℓ
(t− tℓ)(t j+1− t)α−1dt

)
,

or

x(t j+1) = x(0)+(1−α)

[
G1

(
x(t j),y(t j),z(t j), t j

)]

+
α

Γ(α)

j

∑
ℓ=0

(G1

(
x(tℓ),y(tℓ),z(tℓ), tℓ)

h
Iℓ−1, α

−
G1

(
x(tℓ−1),y(tℓ−1),z(tℓ−1), tℓ−1

)
h

Iℓ, α

)
. (4.4)

Computing Iℓ−1, α and Iℓ, α , we get

Iℓ−1, α =
∫ tℓ+1

ℓ
(t− tℓ−1)(t j+1− t)α−1dt

= − 1
α

[
(tℓ+1− tℓ−1)(t j+1− tℓ+1)

α − (tℓ− tℓ−1)(t j+1− tℓ)α

]
− 1

α(α−1)

[
(t j+1− tℓ+1)

α+1− (t j+1− tℓ)ℓ+1
]

and

Iℓ, α =
∫ tℓ+1

ℓ
(t− tℓ)(t j+1− t)α−1dt

= − 1
α

[
(tℓ+1− tℓ)(t j+1− tℓ+1)

α

]
− 1

α(α−1)

[
(t j+1− tℓ+1)

α+1− (t j+1− tℓ)α+1
]
,
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put tℓ = ℓh, we get

Iℓ−1, α = −hα+1

α

[
(ℓ+1− (ℓ−1))( j+1− (ℓ+1))α − (ℓ− (ℓ−1))( j+1− ℓ)α

]
− hα+1

α(α−1)

[
( j+1− (ℓ+1))α+1− ( j+1− ℓ)α+1

]
,

=
hα+1

α(α−1)

[
−2(α +1)( j− ℓ)α +(α +1)( j+1− ℓ)α − ( j− ℓ)α+1 (4.5)

+( j+1− ℓ)α+1
]
,

=
hα+1

α(α−1)

[
( j− ℓ)α(−2(α +1)− ( j− ℓ))+( j+1− ℓ)α(α +1+ j+1− ℓ)

]
,

=
hα+1

α(α−1)

[
( j+1− ℓ)α( j− ℓ+2+α)− ( j− ℓ)α( j− ℓ+2+2α)

]
(4.6)

and

Iℓ, α = −hα+1

α

[
(ℓ+1− ℓ)( j+1− (ℓ+1))α

]
(4.7)

− hα+1

α(α−1)

[
( j+1− (ℓ+1))α+1− ( j+1− ℓ)α+1

]
,

=
hα+1

α(α−1)

[
− (α +1)( j− ℓ)α − ( j− ℓ)α+1 +( j+1− ℓ)α+1

]
,

=
hα+1

α(α−1)

[
( j− ℓ)α(−(ℓ+1)− ( j− ℓ))+( j+1− ℓ)α+1

]
,

=
hα+1

α(α−1)

[
( j+1− ℓ)α+1− ( j− ℓ)α( j− ℓ+1+α)

]
, (4.8)

substituting the values of (4.5) and (4.7) in (4.4), we get

x(t j+1) =



x(0)+(1−α)

[
G1

(
x(t j),y(t j),z(t j), t j

)]

+
α

Γ(α)

j

∑
ℓ=0

(G1

(
x(tℓ),y(tℓ),z(tℓ), tℓ

)
h

× hα+1

α(α−1)

[
( j+1− ℓ)α( j− ℓ+2+α)− ( j− ℓ)α( j− ℓ+2+2α)

]

−
G1

(
x(tℓ−1),y(tℓ−1),z(tℓ−1), tℓ−1

)
h

hα+1

α(α−1)

×
[
( j+1− ℓ)α+1− ( j− ℓ)α( j− ℓ+1+α)

])
.

(4.9)
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Similarly the other two compartments y(t) and z(t) can be computed by the same numer-

ical scheme as

y(t j+1) =



y(0)+(1−α)

[
G2

(
x(t j),y(t j),z(t j), t j

)]

+
α

Γ(α)

j

∑
ℓ=0

(G2

(
x(tℓ),y(tℓ),z(tℓ), tℓ

)
h

× hα+1

α(α−1)

[
( j+1− ℓ)α( j− ℓ+2+α)− ( j− ℓ)α( j− ℓ+2+2α)

]

−
G2

(
x(tℓ−1),y(tℓ−1),z(tℓ−1), tℓ−1

)
h

hα+1

α(α−1)

×
[
( j+1− ℓ)α+1− ( j− ℓ)α( j− ℓ+1+α)

])

(4.10)

and

z(t j+1) =



z(0)+(1−α)

[
G3

(
x(t j),y(t j),z(t j), t j

)]

+
α

Γ(α)

j

∑
ℓ=0

(G3

(
x(tℓ),y(tℓ),z(tℓ), tℓ

)
h

× hα+1

α(α−1)

[
( j+1− ℓ)α( j− ℓ+2+α)− ( j− ℓ)α( j− ℓ+2+2α)

]

−
G3

(
x(tℓ−1),y(tℓ−1),z(tℓ−1), tℓ−1

)
h

hα+1

α(α−1)

×
[
( j+1− ℓ)α+1− ( j− ℓ)α( j− ℓ+1+α)

])
.

(4.11)

4.2 Numerical Examples

In this section, we discuss two numerical examples that are solved by using the above-

discussed numerical scheme.
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Example 4.2.1. The first example is

ABCDα
t (x(t)) =

(√
x(t)+ y(t)+ z(t)

)
,

ABCDα
t (y(t)) =

e−πt

10+t

(
x(t)+ t cos(y(t))+ z(t)

)
,

ABCDα
t (z(t)) =

e−t

5+t

(
x(t)+ y(t)+ sin(z(t))

)
,

x(0) = 0, y(0) = 0, z(0) = 0, t ∈ I := [0,1], 0 < α ≤ 1.

(4.12)

Figures (4.1), (4.2) and (4.3) show the effect of changing α ∈ [0.9,1.0] on functions x, y

and z, respectively. It is clearly seen that the solutions, as α approaches 1.0, converge

to the solution at α = 1. It is worth mentioning herein that the convergence to the exact

solution as α approaches 1.0 is faster and smoother when using the Caputo fractional

derivative case. It can easily seen that the solution is getting larger as α decreases.

t

x(
t) α = 0.9,0.95,0.99,1.0

Figure 4.1: Graphs of the approximate solutions and the exact solution, x, at various values of α

for Example 1.

Notice that, the exact solution of this problem is unknown, therefore, we measure the

bound of the error using the residuals as follow:

Rx(t) =ABC Dα
t (x(t))−

(√
x(t)+ y(t)+ z(t)

)
,

Ry(t) =ABC Dα
t (y(t))− e−πt

10+t

(
x(t)+ t cos(y(t))+ z(t)

)
,

Rz(t) =ABC Dα
t (z(t))− e−t

5+t

(
x(t)+ y(t)+ sin(z(t))

)
.

(4.13)
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t

y(
t)

α = 0.9,0.95,0.99,1.0

Figure 4.2: Graphs of the approximate solutions and the exact solution, y, at various values of α

for Example 1.

t

z(
t)

α = 0.9,0.95,0.99,1.0

Figure 4.3: Graphs of the approximate solutions and the exact solution, z, at various values of α

for Example 1.

Hence, the error is

E(t) = max
t∈I

{
|Rx(t)|, |Ry(t)|, |Rz(t)|

}
. (4.14)

Table (4.1) displays the error bounds E(t) at the points t j = 0.1 j, for j = 1, · · · ,10 when

α = 0.9 which clearly indicates the accuracy of the present algorithm.
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Table 4.1: Error bounds for Example 1 at α = 0.9

t j E(t j)

0.1 3.55949×10−4

0.2 4.48364×10−4

0.3 9.63994×10−4

0.4 1.95481×10−4

0.5 2.35699×10−4

0.6 5.93055×10−3

0.7 4.19320×10−3

0.8 3.94933×10−3

0.9 5.42097×10−3

1.0 9.52593×10−3

Example 4.2.2. The first example is

ABCDα
t (S(t)) = Λ−βSI−λSA− d̄S+ψI,

ABCDα
t (I(t)) = βSI− (ψ +α + d̄)I,

ABCDα
t (A(t)) = µI−φA,

S(0) = 13512, I(0) = 1, A(0) = 100, t > 0, 0 < α ≤ 1.

(4.15)

The model takes into account the following clue

1. The population N(t) is generally split into three compartments; the general susceptible

population S(t), and the infective population I(t). The cumulative density of the aware-

ness programs is given by A(t). The growth rate of the density of the awareness program

is assumed to be proportional to the number of Infectives, while the parameters is well

explained in the given table below:

Table 4.2: Description of the parameters.

Parameter Description
Λ = 400 recruitment rate

β = 0.0000157 infection contact rate
λ = 0.0002 Dissemination rate of awareness

α1 = 0.03275 Death rate due to infection
d̄ = 0.03275 natural death rate

ψ = 0.169788 Rate of transfer of aware individuals to susceptible class
µ = 0.05 Rate of implementation of the awareness program

φ = 0.0005 Rate of depletion of the program due to
social problems and ineffectiveness
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t

S(
t)

α = 0.9,0.95,0.99,1.0

Figure 4.4: Graphs of the solution trajectories, S(t), at various values of α for Example 2.

t

I(
t)

α = 0.9,0.95,0.99,1.0

Figure 4.5: Graphs of the solution trajectories, I(t), at various values of α for Example 2.

t

A
(t
)

α = 0.9,0.95,0.99,1.0

Figure 4.6: Graphs of the solution trajectories, A(t), at various values of α for Example 2.
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Chapter 5:Summary and Conclusions

The present thesis deals with numerical treatment of classes of nonlinear fractional ini-

tial value problems with CF fractional derivative and ABC fractional derivative. We used

numerical algorithms based on modified Adams-Bashforth method to handle these prob-

lems. In addition, we discuss the theoretical solution of special class of fractional IVPs.

The efficiency and accuracy of the present scheme is discussed via solving several exam-

ples and compare with other researchers.
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Fractional calculus has been recently received huge attention from 

Mathematicians and engineers due to its importance in many real-life 

applications such as: fluid mechanics, electromagnetic, acoustics, chemistry, 

biology, physics, and material sciences. In this thesis, we present numerical 

algorithms for solving fractional IVPs and system of fractional IVPs where two 

types of fractional derivatives are used: Caputo-Fabrizio, and Atangana-

Baleanu-Caputo derivatives.  
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