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Abstract

Metric dimension, resolving sets and edge metric dimension are very important
invariants for the resolvability of graphs that have been studied and investigated
intensively in the literature the last decades. Their immense utilization is network
topology, master mind games, robot navigation and representation of chemical
compounds make their study very attractive. This thesis is concerned with the graph
theoretic properties of certain families of connected graphs related to their edge
metric dimension. The main objective of this thesis is to study the comparison of
metric dimension ver-sus edge metric dimension of certain families of graphs. The
study investigates the relationship between the metric and edges metric dimension of
flower snarks graphs, hexagonal Mobius graphs, and octagonal Mobius graphs. The
study shows different inequalities results based on the structure of graphs. The
comparison between metric and edge metric dimension of the graph will give a better

understanding of the proper-ties of these investigated families of graphs.

Keywords: Metric dimension, edge metric dimension, flower snarks, hexagonal Mobius,

octagonal Mobius.
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Chapter 1: Preliminaries and Basic Concepts

This chapter provides a brief introduction to the basic concepts and terminolo-
gies of graphs. It consists of different graph-theoretical terms and their illustration
supported with examples. The concepts about connectivity and planarity are discussed.

Some common classes of graphs will be recalled.

1.1 Basic Terminology and Concepts

How can x jobs be filled by x employees with maximum total utility? How
can we design the fastest route structure from the national capital to each state capital?
What is the minimum number of layers does a computer chip need so that wires in the
same layer don’t cross? Can we use four colors to color different regions of the map
so that neighboring regions receive different colors? These and many other real-world

problems involve graph theory.

Definition 1.1.1 A graph Z is made up of a collection of non-empty vertices V (Z) and
a set of edges E(Z). Symbolically, it is represented as Z =(V (Z); E(Z)), where e = uv

is an edge with endpoints u# and v.

A graph is commonly represented by a diagram in the plane where the vertices
are points and edges are indicated by the lines or curves that link any two points in the
plane, as shown in Figurel.1. Two graphs Z and H are equal if V(Z) =V (H) and E(Z)

= E(H), in such case we write Z = H.



Figure 1.1: A graph Z

Definition 1.1.2 [f e=uv be anedge of Z, then u and v are said to be adjacentin Z
and we say that u and v are joined by the edge e. In this case, the endpoints u and v
are also said to be incident with the edge e. Distinct edges incident with a common
vertex are adjacent edges. The set of all vertices that are adjacent to v in Z is called the

neighborhood of v and is denoted by Nz(v).

Definition 1.1.3 The number of vertices in a graph Z is called the order of Z and is

denoted by|Z|, while the number of edges is its size.

For instance, the graph Z in Figure 1.1 has order 6 and size 7.

Knowing that the vertex set of every graph is nonempty, the order of graph is
at least 1. A graph with exactly one vertex is called a trivial graph, so the order of a

nontrivial graph is at least 2.

Definition 1 .1.4 A /oop is an edge whose endpoints are e qual. M ultiple e dges are
edges having the same pair of endpoints. A graph Z with no loops and multiple edges

is called a simple graph.

Definition 1 .1.5 The degree of a vertex v is the number o f e dges i ncident w ith v,

denoted as dz(v). So we can say that dz(v) is the cardinality of Nz(v).

An isolated vertex and an end vertex (or a leaf ) in G are the vertices of degree

0 and 1 respectively. Each loop counts as two edges, so if e is a loop at v then dz(v)



= 2. The maximal and minimal degree is denoted by A(Z) and 6(Z) respectively and

defined as:
A(Z)=max{dz(v):vEV(Z)};
8(2)=min{dz(v) : v € V(2)};
If |Z| = nand v € V(Z), then
0<6(2) <dz(v) <A(Z) <n—1

The next important lemma also known as fundamental theorem of graph theory

describes the relationship between the degree of vertices and size of a graph.

Lemma 1.1.1 Handshaking lemma

If Z is a graph, then Y. cy (z)dz(v) = 2m, where m is the size of Z.

Definition 1.1.6 A graph Z is finite if its vertex set and edge set are finite. Otherwise,

Z is infinite.

Definition 1.1.7 The graph with n vertices and having an empty edge set is called the

null graph and is denoted by N,,.

Example 1.1.1 Consider the graph Z in Figure 1.1, here Z is a multiple graph where
v1 is an isolated vertex, e7 is a loop while e, and e3 are multiple edges. The maximum

degree A(Z) and minimum degree 6(Z) of Z are 4 and 0 respectively.

Definition 1.1.8 A subgraph H of a graph Z is a graph such that V(H) C V(Z), and
E(H) C E(Z).
Definition 1.1.9 A subgraph H of Z with V(H) =V (Z) is called a spanning subgraph

of Z.

Definition 1.1.10 A subgraph B of a graph Z is called an induced subgraph of Z if
whenever a and b are vertices of B and ab is an edge of Z, then ab is an edge of B as

well.

If e is an edge of the graph denoted by Z, we define Z — e as the graph obtained



from Z by removing the edge e. In general, if F is any set of edges in Z, we denote
by Z — F the graph obtained by removing the edges in F. Similarly, if u is a vertex of
Z, we define Z — u as the graph obtained from Z by deleting u and all edges incident
with u. More generally, if R is any set of vertices in Z, we denote by Z — R the graph
obtained by deleting the vertices in R and all edges incident with any of them. We also

define Z\ e as the graph obtained from Z by removing e and contracting its two ends.

i i
- @

indiced
subgraph of Z

spanming
subgraph af £

u
Z
i
U
S
Z-e Z-u Ze
Figure 1.2: Graphs Z, induced subgraph of Z, spanning subgraph of Z, Z — e, Z —u, Z\e

Definition 1.1.11 Given a graph Z, a walk W in Z from vertex v to vertex v,, is a finite

alternating sequence of vertices and edges,
W . V(), 61, Vl, 627 """ Y VM717 emavm,

where ¢; = vi_1v;, 1 <i < m, and vg and v, are the initial and the terminal
vertices of W, respectively. If vo = v,,, then W is closed otherwise it is open. The

length of a walk W is the number of edges in the walk.

If all the edges of a walk W are distinct, then W is called a trail. A trail in
which all the vertices are distinct is called a path. A closed path with at least one edge

is a cycle.

Definition 1.1.12 A graph Z is connected if between any two vertices of Z there is a

path, otherwise Z is disconnected.



Figure 1.3 gives an example for connected and disconnected graphs.

Connected Disconneted
Graph Graph

Figure 1.3: Connected and disconnected Graphs

Definition 1.1.13 A disconnecting set of a connected graph Z is a set of edges of Z

whose removal disconnects Z.

Definition 1.1.14 A cut set of Z is a minimal disconnecting set. A cut set made of only

one edge is a bridge.

Definition 1.1.15 An Edge connectivity of Z is the size of the smallest cut set, denoted

A(Z).

Definition 1.1.16 A separating set of Z is a set of vertices whose removal disconnects

Z.
Definition 1.1.17 A cut vertex of Z is a vertex whose deleting disconnects Z.

Definition 1.1.18 A vertex connectivity of Z is the size of the smallest seperating set,

denoted by x(Z).

Definition 1.1.19 If x is any real number, the floor of x is the greatest integer less than

or equal to x, and is denoted by |x].

Definition 1.1.20 If x is any real number, the ceiling of x is the least integer greater

than or equal to x, and is denoted by [x].



1.2 Some Well-Known Graph Classes

This section contains some common graph classes, namely complete graphs,

cycle graphs, bipartite graphs, and trees.

Definition 1.2.1 A simple graph in which every two distinct vertices are joined by
exactly one edge is a complete graph. We denote the complete graph on n vertices by

K.

Figure 1.4 gives examples of complete graph.

K K K Ky

Figure 1.4: Complete graphs K, K>, K3, K4

Definition 1.2.2 A cycle graph is a simple connected graph in which each vertex has
degree 2. We denote the cycle graph on n vertices by C,. The graph obtained from
C, by removing one edge is the path graph, denoted by P,. The graph obtained from
C,—1 by adding a new vertex v and connect it to all other vertices is the wheel graph,

denoted by W,,.

e o—e o—o—o & o oo
P, P, P; P,

AVERS,
AN &

Figure 1.5: Paths, cycles, and wheels



Definition 1.2.3 A graph Z is k-regular if all vertices have degree k. If k = 3, the graph

is called cubic.

Definition 1.2.4 The cube Qy is the k-regular graph on 2% vertices corresponding to
the sequences (aj,as,...,a;) where a; is either 0 or 1, and whose edges join those

sequences that differ in just one place. Note that Q1 = P, and O, = (4.

110 111

0 10 11 010 011
1 00 01 000 001
100
Qi 0 s 101

Figure 1.6: The cubes Q1, 02, 03

Definition 1.2.5 A graph Z is bipartite if V (G) splits into two subsets A and B such that
every edge has one end in A and other in B. A complete bipartite graph is a bipartite
graph in which each vertex of A is joined to each vertex in B by just one edge. It is

denoted by K, ; where r is the cardinality of a set A and s is the cardinality of a set B.

It can be seen that a star denoted by k; , is a complete bipartite graph if the

cardinality of a set A or Bis 1.

Now, we will use the concept of a cycle to present a characterization of bipartite

graphs.

K1_3

Figure 1.7: Complete bipartite graphs

Theorem 1.2.1 (Bollods [3]) A graph Z is bipartite if and only if it has no odd cycle.



Definition 1.2.6 (Chartrand [4]) A tree is a connected graph which contains no cycle.

A disjoint union of trees is called a forest.

AN

Tree Forest

Figure 1.8: Tree and forest

Theorem 1.2.2 Let K be a graph on m vertices. The following statements are

equivalent.
1. K is a tree.
2. K has no cycle and has m — 1 edges.
3. K is connected and each edge is a bridge.
4. Any two vertices of K are connected by only one path.

Definition 1.2.7 A spanning tree of a connected graph Z is a tree which contains all

the vertices of Z.

7z Spanning
tree of Z

Figure 1.9: A graph Z and its spanning tree

Definition 1.2.8 Let Z be a simple graph on n vertices. The complement of Z is the
graph Z such that V(Z) = V(Z), and two vertices are adjacent in Z if they are not

adjacent in Z.



The
C
! complement of
Cy

Figure 1.10: The graph C4 and its complement

Definition 1.2.9 The Cartesian product of Z and H is a graph, denoted as Z L1 H,
whose vertex setis V(Z) x V(H). Two vertices (z,h) and (7', /') are adjacent precisely
ifz=7 and hi' € (H), orzZ € E(G) and h = I'. Thus,
V(ZOH)={(z,h)|z€V(Z)and h€ V(H)},
E(ZOH) = {(z,h)(d,W)|z=2 ,hh' € E(H),or z7 € E(Z),h=h'}.

The graphs Z and H are called factors of the product Z [J H.

PsOK>
Figure 1.11: Cartesian product of Ps and K>
Definition 1.2.10 The flower snarks J,, is a connected cubic graph with 6n edges and

4n vertices that consists of three cycles that are induced by the vertices {a;:1 <i <n},

{bl,bz,...,bn}, and {C,'Il <i< I’L}U{diil <i< n}
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Figure 1.12: The flower snarks Js

Definition 1.2.11 A hexagonal Mobius HM,, is defined as the graph obtained from
P, L1 P5,, by removing the edges vo;+1Von42i+1 With 0 < i <n— 1 and adding two new

edges vova,—1 and vy, vy,—1, as shown in Figure 1.13.

Van Vops+q eee Van-1

Figure 1.13: The hexagonal Md&bius graph HM,,

Definition 1.2.12 A linear octagonal chain L,, is a connected graph consists of n

octagons, as shown in Figurel.14.

Vi Vo V3 Vg Van Vap+
s 0 @
s & @

Vin+2 Vanes VapsdVanss Vn Ven+t

Figure 1.14: The linear octagonal chain L,
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Definition 1.2.13 A Mobius octagonal chain M, is a connected graph obtained from

L, by identifying the opposite lateral edges in reversed way.

V301 Va9 Vanes Vanes Vanes Vaneg' 377

Figure 1.15: The Mobius octogonal chain M,

Definition 1.2.14 The circulant graph C,(1,m) is a simple connected graph that has
the following vertex set V(C,(1,m))= {v,v2,...,v,} and the edge set E(C,(1,m))=
{vvig1 : 1 <i<n—1}U{vi} U{vivigm: 1 <i<n—m} U {vp_pmyivi: 1 <i<m}
[7].

So, any vertex v; is adjacent to the 2 vertices that follow v; and 2 vertices that

precedes v;, 1.e., v; will join v;;1,v;1» and v;_1,v;_> [8], as depicted in Figure 1.16.

Vs

Figure 1.16: Circulant graph Cg(1,2)
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1.3 Distance in Graphs

Over the past few decades, metric dimension has been used in robot naviga-
tion, optimization, and pharmaceutical chemistry. Our discussion in this section will
focus on some graph-related parameters such as radius, diameter, eccentricity, etc, and
defines some main concepts as the resolving set and metric dimension for a connected

graph.

Definition 1.3.1 The distance between any two vertices u# and v in a connected graph
Z is the lenght of a shortest u — v path in Z and is denoted by d(u,v). Such a u — v path

of length d(u,v) is called a u — v geodesic.

Definition 1.3.2 Let Z be a simple connected graph. The distance function d is a

metric on vertices of Z, if it satisfies the following conditions.

d(u,v) > 0 for all u,v € V(Z).

* d(u,v) =0if and only if u = v.

* d(u,v) =d(v,u) forall u,v € V(Z).

* d(u,z) <d(u,v) + d(v,z) for all u,v,z € V(Z).
The pair (V(Z),d) is called a metric space.

Definition 1.3.3 The diameter of a connected graph Z is the greatest distance between

any two vertices u and v in Z, and is denoted by diam(Z).

Definition 1.3.4 Let Z be a connected graph and v € V(Z). The eccentricity of v, e(v)

is the distance between v and a vertex farthest from v in Z, and is defined as,
e(v) = max{d(v,x) :x € V(Z)}.

Definition 1.3.5 The radius rad(Z) of a connected graph Z is defined as follows
rad(Z)=min{e(v) : v € V(Z)}. In other words, the minimum eccentricity among the

vertices of Z.

Moreover, the maximum eccentricity among all vertices of Z is the diameter.
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Example 1.3.1 Consider the connected graph Z in the Figure 1.16.

Vi V4

Figure 1.17: A connected graph Z

The distance between any two vertices in Z is d(vy,v2)=1, d(v,vs)=1,
d(v1,v3)=2,d(vi,v4)=2,d(v2,v3)=1, d(v2,vs)=1, d(v2,v4)=2, d(v3,v4)=1,
d(v3,vs)=1, d(v4,vs)=1. So, diam(G) = 2. Since that e(v|)= 2, e(v2)= 2,
e(v3)=2, e(v4)=2, e(vs)=1, then rad(Z)= 1.

Definition 1.3.6 Given a connected graph Z. Let W = {wy,wy,....,wy} be an ordered
set of vertices of Z and let v be a vertex of Z. The representation r(v|W) of v with
respect to W is the k — tuple (d(v,w1),d(v,w3),....,d(v,wy)). If distinct vertices of
Z have distinct representations with respect to W, then W is called a resolving set or

locating set for Z.

Definition 1.3.7 A resolving set of minimum carddinality is called a basis for Z and

this cardinality is the metric dimension of Z, denoted by dim(Z).

Example 1.3.2 For the graph Z of Figurel.17, let W; = {v{,v,,v3}. The representa-
tions of the vertices of Z with respect to Wy are r(vi|W;) = (0, 1,2), r(vo[W;) = (1,0,1),
r(v3|Wh) = (2,1,0), r(va|Wy) = (2,2, 1), r(vs|W;) = (1,1, 1). Since the vertices of Z
have distinct representations with respect to Wy, it is a resolving set. For W, = {v{,vs},
r(v3|Wa) = r(v4|Wa) = (2,1); so Wy is not a resolving set. However, W3 = {vp,v3} is

a resolving set and a basis for G and its metric dimension is 2.

Definition 1.3.8 Let Z be a connected graph; the distance between the vertex u € V(Z)

and the edge e = vw € E(Z) is given by dg(u,e) = min{dg (u,v),dg(u,w)}.
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We say that a vertex v € V(Z) distinguishes two edges ey, ex € E if dg(v,e1)

7& dE(V,ez).

Definition 1.3.9 Let W = {w,w»,....,w} be an ordered set of vertices in a connected
graph Z, then W is called an edge metric generator for Z if every two edges of Z are

distinguished by some vertices of W.

Definition 1.3.10 The edge metric dimension is the smallest cardinality of an edge

metric generator for Z and is denoted by edim(Z).

Definition 1.3.11 An edge metric generator for Z of cardinality edim(Z) is called an

edge metric basis for Z.

Example 1.3.3 For the following graph G, let W; = {v;,v,}. Since dg(vi,ez) =
dg(vi,eq) and dg(vp,er) = dg(va,es), then Wy is not an edge metric generator. How-
ever, W, = {v1,v3} is an edge metric generator and an edge metric basis for G and its

edge metric dimension is 2.

Figure 1.18: A connected graph G
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Chapter 2: Metric Dimension and Edge Metric Dimension of
Graphs

In this chapter, we discuss the metric dimension and edge metric dimension of
some known class of graphs as complete graphs, cycle graphs, path graphs, complete
bipartite graphs, and wheel graphs. We also study the metric dimension of some classes
of regular graphs, namely the flower snarks, and the edge metric dimension of the

family of circulant graphs C,(1,3).

2.1 Metric Dimension and Edge Metric Dimensions of Common Graphs

This section presents the different cases of equality and inequality of the metric

and edge metric dimensions for some known graphs.

Theorem 2.1.1 (8) Forn > 2, dim(P,) = edim(P,) = 1, dim(C,) = edim(C,) = 2 and
dim(K,) = edim(K,) = n—1.[4]

Generally, G is a path graph P, if and only if edim(G) = 1.

Theorem 2.1.2 (8) Let K,; a complete bipartite graph such that r,t 1, dim(K,;)=
edim(Ky;)=r+t—2.[4]

Theorem 2.1.3 (8) Let T be a tree. dim(T )=edim(T) = Y ,cy 1,1 (I, —1).

In the preceding remarks, we notices that graphs that have dim(G) = edim(G).

But, there are graphs with dim(G) < edim(G), as the following wheel graph.

For the wheel graph W,,, dim(W,,) < edim(W,). The metric dimension of W,, as

computed in [8] is

dim(Wy,) = q 2, n=4,5,




16

Theorem 2.1.4 (8) Given a wheel graph W,,,

The proof of this theorem is shown in [8].
Now, we give an example for the third case where the dim(G) > edim(G).

For some particular cases of the tours graphs( the cartesian product of two

cycles) C; L C;, the metric dimension was obtained and proved in[5], that

4, ifi,jare even,

dim(C,- O Cj) =

3, otherwise,

Theorem 2.1.5 (8) For any positive integers i, j, we have edim(C4; 0 C4;)= 3.
The proof of the theorem was established in[8].

So, it is clear from above discussion that we have families of graphs for which
we have dim(G) = edim(G), dim(G) > edim(G) and dim(G) < edim(G). The prob-
lems of determining whether dim(G) < k or edim(G) < k are NP—complete problems.
Therefore, we study certain families of graphs where dim(G) = edim(G) or dim(G) <

edim(G).

2.2 Metric Dimension of Flower Snarks

In this section, we present the study of the metric dimension of the flower
snarks J,, that are regular graph with constant metric dimension. Flower snarks have
been widely studied as 3-regular graphs in optimization, identifying the shortest, cheap-

est round trips, and routing internet data packets.
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Figure 2.1: The flower snarks J5 and J7

The flower snark J,, is a connected cubic graph with 4n vertices and 6n edges.

The flower snarks J5 and J; are sketched in Figure 2.1[7].

The flower snarks consist of an inner cycle that is induced by the vertices
{ai:1 <i < n}, the set of central vertices {b;,by,...,b, }, and the outer cycle {c;:1 <

i<n}U{di:l <i<n}.

The following theorem shows that the flower snarks J,, form a class of cubic

graphs with constant metric dimension 3.

Theorem 2.2.1 ( Imran [7]) Let J,, be the flower snark. For every odd positive integer
n>5, dim(J,)=3.

The proof of this theorem was illustrated in [7].

2.3 Edge Metric Dimension of Family of Circulant Graphs

Circulant graphs have important applications in computer sciences manely in
designing of network topologies and local area networks. In this section, we will study

the edge metric dimension of family of circulant graphs Cy,(1,2).

The circulant graph C,,(1,m) is a simple connected graph that has the following
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vertex set V(C,(1,m))= {vy,va,...,v, } and the edge set E(C,,(1,m))={vivi;1:1 <i<
n—1} U} U{viviem : 1 <i<n—m} U{v,_pyvi: 1 <i<m} [7]. So, any vertex
v; is adjacent to the 2 vertices that follow v; and 2 vertices that precedes v;, i.e., v; will

join vii1,viy2 and v;_1,v;_2 [8], as depicted in Figure 2.2.

Vs

Figure 2.2: Circulant graph Cs(1,2)

The following theorem gives the metric dimension of C,(1,2).

Theorem 2.3.1 [7,16] Let C,(1,2) be a circulant graph with n > 5, then

3, ifn=02 3 (mod4),
dim(Cy(1,2)) =

>4, otherwise.

Now, we will discuss the edge metric dimension of Cy,(1,2).

Theorem 2.3.2 Let C,(1,2) be a circulant graph with n > 5, then



5, ifn=1,2(mod4),
edim(Cy(1,2)) =

4, otherwise.

Note that the proof of this theorem was done in [1].

19
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Chapter 3: New Results

3.1 Edge Metric Dimension of Flower Snarks J,

In this section, we will study the edge metric dimension of the flower snarks
graphs J,,. The flower snarks J, is a connected cubic graph that has 6n edges and 4n
vertices that consists of three cycles that are induced by the vertices {a;:1 < i < n},

{b1,by,...,by}, and {c;:1 <i<n}U{d;:1 <i<n}, as mentioned in Chapter 1 and 2.

Studies of flower snark graphs have been extensively conducted in optimiza-

tion, routing internet data packets, and identifying shortest path.

Figure 3.1: The flower snarks J5 and J;

Theorem 3.1.1 Let J, be the flower snark. For every odd positive integer n > 5,

edim(J,) < 4.

Proof. We will prove the above inequality edim(J,,) < 4. Let[ =i — [5],
k=i—([5] +1),and j=i+1,forn>5.
Let W = {ay,c1,d2,d; }. We must show that W is an edge metric generator for J,,. For

this we give representations of the edges of E(J,,).



r(aia;|W) =

and,

p

r(a,‘b,‘|W) =4

\

and,

r(bici|W) =

and,

r(bid;|W)

and,

( (0,2,2,2), i=1,
(i—2,i+1,i,i+1), 2<i<[5],
k(i—2l,i—(2k+1),i—2l,i—(2k+1)), i>[5]
(1,1,2,1), i=1,
(i—2,i,i—1,i), 2<i<|[3
(i—Qk+1),i—(2k+1),i—2k,i—(2k+1)), i>[5]+1
(i—2,i—1,i—1,i—1), i=[53]+1
(2,0,2,1), i=1,
(i—1,i—1,i—1,i), 2<i<[3],
(i—1,i—1,i—1,i—2), i=[5]+1,
\(i—2k,i—(2k+1),i—(2k+1),i—21), i> 4.
r
(2,1,1,0), i=1,
(i—1,i,i—2,i—1), 2<i<[5],
: (i—1,i—2,i—2,i—1), i=[5]+1,
(i—2k,i—21,i—2k,i—(2k+1)), i>[5]+1

21
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(2,2,0,0), i=1,
(i,i+1,i—2,i—1), 2<i<[5],
r(did;|W) =
(i—1,i—2,i—1), i=[5],
(j—Qk+1),i—(20+1),i—2,i—(2k+1)), i>[2].

and, r(d,c1|W) = (3,0,3,2), and,

(

(2,0,2,2), i=1,
(iyi—1,i,i+1), 2<i<[3],
r(cicj|W) =
(i,i—1,i,i—1), i=[1],
(j— (k41),i— (2k+1),i—2L,i— (21 +1)), i> [2].
\

and, r(c,d;|W) = (3,2,1,0).

It is clearly seen that there are no two edges having the same representations.

This implies that edim(J,,) < 4. O

3.2 Metric Dimension and Edge Metric Dimension of Hexagonal Mobius Graphs
HM,

In this section, we will study the metric dimension and edge metric dimension

of the hexagonal Mobius graphs HM,,. A hexagonal Mobius HM,, is defined as the

graph obtained from P, L1 P, by removing the edges vy 1vou+2ir1 With0 <i<n—1

and adding two new edges vov4,—1 and v2,v2,—1, as shown in Figure 3.2.

This hexagonal Mobius graph has been used in many fields, including
chemistry since it is embedded into the Mobius strip in hexagonal form, and

physics, as mentioned in [11].
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Figure 3.2: Hexagonal Mobius Graph

Theorem 3.2.1 Let HM,, be the hexagonal Mibius graph. Then, dim(HM,) = 3,

where V(HM,) ={vi:0<i<4n—1}.

Proof. Suppose that dim(HM,) < 3. The set W = {v;,viy1,Viton+3} for a chosen
index i (0 < i < 4n—1) is the resolving set. The codes of the vertices V(HM,)\W
with respect to W are r(v2|W) = (2,1,2), r(v3|W) = (3,2,3), r(Vizn+1|W) = (n,n,n—
D), r(igns2lW) = (n=1,n,n), r(vigons1|W) = (2,3,2), r(vizons2|W) = (3,2,1),
r(viz3n|W) = (n,n,n—3) and in the given Table 3.1.

Table 3.1: Codes for the outer vertices of HM,,

d(..,.)

Vi

Virl

Vit2n43

Vijin: 0< j<n—4

n—j

n—j—1

n—j—2

Vitjnt3:0<j<n-3

n—j—2

n—j—1

n—j

Vitjtonta 1 0<j<n—5

J+5

j+4

J+1

Vitjtant1 1 0<j<2

n—j—1

n+j—2

Vitjtdnta :0<j<n—5

n—j—4

n—j—3

n—j

Conversely, suppose that dim(HM,) > 3. Without loss of generality, we can

suppose that W = {v;,v;1;} is a resolving set where 1 < j < 4n — 1. But then we get:

If j=2n+1, then r(viy1|W) = r(vigan—1|W) = (1,3).

If 1 <j<n—1,then r(vizon|W) = r(vigan—1|W) = (1,j+1).
If n < j <2n—2, then r(vizon|W) = r(vizan—1|W) = (1,2n— j).

If 2n—1 < j <2n, then r(vis1|W) = r(vigan—1|W) = (1,2n— j+2).
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e If2n+2 < j<3n,then r(vip|W) = r(vizon|W) = (1,j —2n).
e If3n+1<j<4n—1,then r(vi i |W) =r(viyon|W) = (1,4n— j+1).

A contradiction. Hence dim(HM,,) = 3. O

Theorem 3.2.2 Let HM,, be the hexagonal Mébius graph. Then, edim(HM,) < 3,
where V(HM,) ={vi:0<i<4n—1}.
Proof. We will prove the above inequality edim(HM,,) < 3.

LetW = {v,_1,v24—1,V3n}, we need to show that W is an edge metric generator

for HM,,. For this we give representations of each edge of HM,;:
L rivivmW)=mn—1—-mm+1,n—k),1 <m<n—1and0 <k <n-2.
2. r(vovan—1|W)=(n—1,2,n—1).
3. r(vgvm|W) = (Jn— 1 —k|,2n— 1 —m,2), when either k or m = n.

4. r(vvm|W) = (In—1—k|,|m—2n+1|,ln—k|), k={ 2r| r=0,1,2, ..., 5L }. m
= {2n+k}.

5. rvivm|W) = (In—1—k|, |k—2n+1|,|n—k|), k={ n+ (2r+1)| r=0,1,2, ...,
(51=1) }, m = {2n+k}.

6. r(Vprivnrk1|W)=(k+1l,n—k—2,k+1),1 <k<n-—2.
7. r(von—12xVonk|W) = (n—k,kyn—k),0 <k <n-—1.
8. r(vau—1van|W) = (1,n,0).
9. r(van—ovan—1|W) = (n,2,n—2).
10. r(v3paxvanwre1|W) = (k+2,n—k—1,k),0 <k <n-3.

It is clearly that there are no two edges having the same representations. There-

fore edim(HM,,) < 3. O
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3.3 Metric Dimension of Mobius Octogonal Chain M,

In this section, we will study the metric dimension of the M&bius octogonal
chain M,,. A Mobius octagonal chain M, is a connected graph obtained from the linear
octagonal chain L, by identifying the opposite lateral edges in reversed way, as
mentioned in Chapter 1. Chemists and physicists use the Mdbius octagonal graph in

many ways as stated in [9].

Vian+7

V3™ Va0 V3ne3 Vaned Vanss Vansg

Figure 3.3: M&bius octogonal chain

Theorem 3.3.1 Let M, be the Mobius octogonal chain. For n > 3, and V(M,)= {v;

1 <i < 6n}, then dim(M,) < 3.

Proof. We will prove that dim(M,,) < 3.

LetW = {vl,v%n] ’VLST”J+3"+3}’ we need to show that W is a resolving set for
M,,. For this, we give representations of any vertex of V(M,). Consider the following

one in the Table 3.2 :



Table 3.2: Representations of each vertex of V(M,,)

r(vi|W)

Conditions on i

(=13 =i, [F]-3+i)

1<i<2

3<i<2n—[2]+1

3n
2

(=103 =i [3]—i+3)
(131.1,2)

i=[3+1,

Bn—i+2,i—[3],i—[3]-1)

[ +2<i<3n+1

(i—3n,6n—i—32],[3]+3n+3—i)

3n+2<i<3n+ |3

3n+ 2] +1<i<3n+ |2 42

(6n—i+1,i—[2]+3-3n,| 2| +3n+3-1i)
(6n—i+1,i—[2]=3n+1,i— 3] —-3n-3)

3n+ |2 +3<i<6n

Since there are no two vertices having the same representations,

dim(M,) < 3.

26
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Chapter 4: Comparative Analysis and Conclusion

In this chapter, we will compare metric dimension with edge metric dimension

of flower snarks graph, hexagonal Mobius graph and M&bius octogonal chain.

Table 4.1: Metric dimension and edge metric dimension of J,,, HM,,and M,

Graph Metric dimension | Edge Metric dimension
Flower snarks J,, n > 5 dim(J,)=3 edim(J,) < 4
Hexagonal Mobius HM,, dim(HM,)=3 edim(HM,) <3
MGobius octogonal chain M, dim(M,) <3

The above table compares the metric dimension and edge metric dimension of
flower snarks graph, hexagonal Mobius graph and Mobius octogonal chain. In this
study we noticed that the metric dimension of this class of graphs is constant. The
inequality of edge metric dimension edim(G) < K has been proved . For the flower
snarks graph, we found that edim(J,) < 4, so the edge metric dimension will be either
4 or same as the dimension 3, or less. So, edim(J,) > dim(J,). However for the
hexagonal Mobius graph edim(HM,) < dim(HM,), since we proved that the edge
metric dimension is equal or less than 3. In addition, we proved one inequality for
the metric dimension of Mobius octogonal chain which is dim(M,) < 3, and we are
expecting to have similar result for edge metric dimension as for hexagonal Mobius

graph.

In conclusion, we notice that the edge metric dimension for both hexagonal

Mobius graph and Mobius octogonal chain is at the most as the metric dimension.
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