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Abstract 

This thesis is concerned with providing a complete study of non-Gaussianity and entropy 

perturbations that are sourced by multiple fields nonminimally coupled to gravity. The study 

will be performed in the framework of the two important formulations of gravity, namely: 

purely metric (general relativity) and purely affine formulation – where the metrical structure 

results from the dynamics of the spacetime affine connection. We shall employ a covariant 

formalism in our framework and demonstrate that it leads to a curved field space which can 

produce conspicuous departure from the purely metric gravity. This work is expected, not only 

to derive the main quantities such as non-adiabatic pressure and curvature perturbations in each 

formulation, but also to shed light on the frame (in) dependent character of the primordial 

perturbations. The approach will stand on a generic affine spacetime that supports scalar fields 

and requires (by its nature) nonzero potentials. Simply put, this thesis covers a comprehensive 

and systematic study of inflation based on a completely different approach to gravity: the purely 

affine gravity. Primordial perturbations are the most important factor in inflationary cosmology 

and this work will certainly bring out novelty to the field at the theoretical and observational 

levels since it aims at covering the topic in the framework of various formulations of gravity 

which is at the heart of inflation. 

 

Keywords: Inflation, Non-adiabatic Perturbations, Non-gaussianity, Isocurvature modes, 

Minimal and Non-minimal coupling, Anisotropy, Metric formulation, Affine gravity. 
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Title and Abstract (in Arabic) 

 الاضطرابات البدائية خلال نظرية التضخم الكوني 

 الملخص   

يتم  التي  والانتروبيا  الغوسية  غير  الاضطرابات  عن  كاملة  دراسة  بتقديم  الأطروحة  هذه  تهتم 

إطار   في  الدراسة  إجراء  سيتم  بالجاذبية.  محدود  بشكل  مقترنة  غير  مجالات  عدة  من  عليها  الحصول 

حيث    -والصياغة الأفينية البحتة  الصيغتين المهمتين للجاذبية، وهما: القياس المتري البحت )النسبية العامة(  

ينتج الهيكل المتري عن ديناميكيات اتصال الزمكان. سنستخدم شكليات متغيرة في إطار عملنا ونوضح أنها  

تؤدي إلى مساحة مجال منحنية يمكن أن تنتج خروجًا واضحًا عن الجاذبية المترية البحتة. هذا العمل متوقع،  

ة مثل الضغط غير ثابت الحرارة واضطرابات الانحناء في كل صيغة ،  ليس فقط لاشتقاق الكميات الرئيسي 

على   النهج  يقف  سوف  البدائية.  للاضطرابات  التابع  الطابع  )في(  الإطار  على  الضوء  لإلقاء  أيضًا  ولكن 

الزمكان التبادلي العام الذي يدعم الحقول العددية ويتطلب )بطبيعته( إمكانات غير صفرية. ببساطة، تغطي  

لأطروحة دراسة شاملة ومنهجية للتضخم بناءً على نهج مختلف تمامًا للجاذبية: جاذبية التقارب البحت. هذه ا

الاضطرابات البدائية أهم عامل في علم الكونيات التضخمية وهذا العمل سيظهر بالتأكيد الجديد في المجال  

ر صيغ مختلفة للجاذبية التي هي  على المستويين النظري والمراقبة لأنه يهدف إلى تغطية الموضوع في إطا

 في قلب التضخم.

 

التضخم، الاضطرابات غير الكظرية، عدم الانحراف، أوضاع التقوس المتساوي،    :مفاهيم البحث الرئيسية 

 .الاقتران الأدنى وغير الأدنى، تباين الخواص، الصياغة المترية، الجاذبية التقريبية
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Chapter 1: Introduction 

1.1 Overview 

Ever since the proposal of inflation by Alan Guth (1981) as he was trying to solve the 

flatness and horizon problems, and its transformation into a working model by Linde and 

Albrecht, and Steinhardt (Albrecht & Steinhardt, 1982; Linde, 1982), it has been known as the 

most plausible scenario for the early universe – where it serves as a relevant mechanism for the 

origin of structure. Not only does it explain the observed spatial flatness and large-scale 

homogeneity of the universe at the time of recombination and photon decoupling, but it also 

predicts with a high accuracy the Gaussian statistics of the tiny anisotropies in the Cosmic 

Microwave Background (CMB) (Pinol, 2021). Generating primordial perturbations, which can 

be probed directly from the CMB anisotropies, is considered one of the important and 

interesting predictions of the inflationary models currently available (Akrami et al., 2019). 

However, several models exist that fit the current data and it is therefore necessary to determine 

a much more plausible inflationary paradigm. In the simplest model, we have a single scalar 

field called inflaton coupled to Einstein’s gravity whose potential energy drives inflation leading 

to an adiabatic perturbation. In an effort to bridge the currently available models, and motivated 

by Elementary particle and High energy physics, various inflationary scenarios with multiple 

scalar fields have gained much attention in the last few decades (Lyth & Riotto, 1999). In 

general, these multiple fields interact with gravity nonminimally, a fact that necessitates 

studying the predictions in both Einstein and Jordan frames (Kaiser, 2016; Kaiser et al., 2013; 

White et al., 2013).  

Furthermore, the cosmological perturbation in standard cosmology is known to be 

adiabatic and nearly Gaussian. However, measurement of the power spectrum of the 

temperature anisotropies in the CMB radiation expose a deficiency of power in low multipoles 

compared to the predictions from Lambda Cold Dark Matter (ΛCDM) cosmology. These 

deviations might be accounted for by the possibility of isocurvature modes (or non Gaussianity) 

(Schutz et al., 2014). Also, in single field models, isocurvature modes are completely suppressed 

in the long wavelength limits. In contrast, in multiple field models, these isocurvature modes can 

– in principle – amplify the curvature perturbations and alter their evolution well after they have 

crossed outside the horizon. All this, added to the fact that multiple field inflation produces non-

adiabatic (Isocurvature) perturbations that could survive on superhorizon scales (Bassett et al., 

2006; Langlois & Tent, 2012; Langlois & van Tent, 2011; Malik & Wands, 2005; Weinberg, 
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2004), as well as the non-Gaussian distribution of these perturbations, lead to a conclusion that 

Multiple field models should be brought to the forefront in the study of early inflation.  

1.2 Statement of the Problem 

Several studies have been dedicated to investigating multi-field inflation (Bardeen et al., 

1983; Kaiser & Todhunter, 2010; Senatore & Zaldarriaga, 2012; Sfakianakis, 2014) and more 

recently (Carrilho et al., 2018; Martin & Pinol, 2021) have comprehensively demonstrated the 

physics of the early universe driven by multiple fields using a purely metric theory of gravity. 

Furthermore, numerous studies have also gone into studying the features of multifield inflation 

using extensions of GR and also Palatini formalism (Antoniadis et al., 2019; Carrilho et al., 

2018; Tenkanen, 2020).  

Since these studies are based only on purely metric gravity (i.e., GR in the case of 

minimal couplings) then one must treat the above features in different theories of gravity. In 

fact, besides being successful as a relativistic theory of gravity and accounting for various 

astrophysics phenomena, there is no reason to consider GR or even its modifications as the most 

viable theory for the early universe. The goal of this thesis is to study the evolution of the 

primordial perturbations in affine gravity which has not been exhaustively carried out 

previously. Affine gravity with scalar fields has been proposed to explain various phenomena 

(Azri, 2019; Azri et al., 2020; Azri & Nasri, 2021a).   

1.3 Research Objectives 

The objective of this thesis is to study inflation driven by multiple fields purely in the 

context of affine gravity. We shall study the entropy perturbations and discuss how they differ 

from the metric formulation and probe any deviations from Gaussianity that will result from this 

treatment.  

It will be interesting to see the predictions that are obtained from this treatment with 

special focus being placed on both minimal and non-minimal coupling. From this, we shall 

obtain the tensor to scalar ratio 𝑟 and compare it to that predicted by general relativity.  

The results will then be used to make new predictions in the standard model. 
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Chapter 2: Big Bang Cosmology 

2.1 Introduction 

Perhaps the best theory that has survived the test of time in attempting to explain the 

very beginnings of the universe is the Big Bang theory. The Big Bang theory relies on the 

cosmological principle (i.e., the universe is isotropic and homogeneous on large scales) (Stoeger 

et al., 1995). This implies that the metric of the universe must be of the form. 

 

 𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . (1) 

 

 = −𝑑𝑡2 + 𝑎2(𝑡) (
𝑑𝑟2

1 − 𝜅𝑟2
+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2)). (2) 

This metric is called the Friedmann-Lemaître-Robertson-Walker FLRW metric for flat space;  

𝑎 = 𝑎(𝑡) is the scale factor which depends on time; 𝜅 is the global curvature of the universe; 

𝑟, 𝜃, 𝜙 are co-moving coordinates and the Greek indices represent the space time components 

(0,1,2,3). The use of Latin indices will be to denote spatial components (1,2,3). 

The Big Bang is supported by observations that will be discussed in a later subsection. First 

proposed by Georges Lemaître, it advances that about 12 to 14 billion years ago, the universe 

was only a few millimetres across and was in a hot dense state (Soter & Tyson, 2001). Since 

then, it has been expanding according to Einstein’s field Equations 

 𝑅𝜇𝜈 −
1

2
 𝑔𝜇𝜈𝑅 = 8𝜋𝐺𝑁𝑇𝜇𝜈 . (3) 

𝜇, 𝜈 = 0, 1, 2, 3; 𝑅𝜇𝜈 = 𝑅𝜇𝛼𝜈
𝛼  is the Ricci tensor; 𝑅 = 𝑅𝜇

𝜇
 is the Ricci scalar; and 𝑇𝜇𝜈 is the stress-

energy tensor.  We shall use natural units where 𝑐 = ℏ = 1 in addition to adopting the metric 

signature of (−,+,+,+). These Equations can be solved for a homogeneous and isotropic 

universe to obtain the Friedmann Equations which will be represented in Figure 1. 

 
�̈�

𝑎
= −

4𝜋𝐺𝑁
3

(𝜌 + 3𝑝) (4) 

 

 𝐻2 = (
�̇�

𝑎
)
2

= 
8𝜋𝐺𝑁
3

𝜌 − 
𝜅

𝑎2
 (5) 
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From the background metric in Equation (1),  

 �̇� + 3𝐻(𝜌 + 𝑝) = 0 (6) 

This is called the Energy conservation Equation.  

𝜌 is the energy density; 𝑝 is the pressure; 𝐻 =
�̇�

𝑎
 is the Hubble parameter. 

• 𝜅 =  −1 represents a hyperbolic space (open space). 

• 𝜅 =  +1 represents a spherical space (closed space). 

The universe is flat if 𝜅 = 0 or if it has a critical density of (Dodelson & Schmidt, 2020) 

 𝜌𝑐𝑟𝑖𝑡 =
3𝐻2

8𝜋𝐺𝑁
 (7) 

It is also easy to derive these equations using Newtonian Physics.  

The graph below shows the evolution of the scale factor with time for a radiation and a matter 

dominated universe. 

 

Figure 1: The evolution of the scale factor with time 

2.2 Equation of State 

The equation of state for a perfect fluid is characterised by a dimensionless number 𝑤, 

called the Equation of state parameter (Tamayo, 2020). 

 𝑤 =
𝑝

𝜌
 (8) 

𝑤 = 0 represents a matter dominated universe. 

𝑤 =
1

3
 represents a radiation or relativistic matter dominated universe. 
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𝑤 = −1 represents a cosmological constant dominated universe. 

Using Equation (6), we can obtain a relationship between the energy density and the scale factor 

(Tamayo, 2020) 

 𝜌 ∝ 𝑎−3(1+𝑤). (9) 

This implies that:  

𝜌 ∝
1

𝑎3
 for a matter dominated universe.  

𝜌 ∝
1

𝑎4
 for a radiation dominated universe. 

𝜌 = constant for a cosmological constant dominated universe. 

2.3 The Cosmological Constant 

Allusion has been made of the cosmological constant in subsection 2.2 and we should 

formally state its relation to the energy density (Carroll, 2001). 

 𝜌0 = 
3

8𝜋𝐺𝑁
Λ (10) 

𝜌0 is the energy density of empty space (or vacuum energy). 

Λ is the cosmological constant. It does not change with changing 𝑎 since it is a property of 

space. 

For a flat universe with a positive cosmological constant,  

 𝑎(𝑡) ∝ 𝑒√Λ𝑡 = 𝑒𝐻𝑡 (11) 

This is a spacetime called de sitter space. 

For a closed universe with a positive cosmological constant,  

 𝑎(𝑡) ∝
1

√Λ
cosh√Λ𝑡 (12) 

Equation (12) describes a universe which contracts, bounces and expands. We are now able to 

write the full Einstein’s field Equations (3) as 

 𝑅𝜇𝜈 −
1

2
 𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 8𝜋𝐺𝑁𝑇𝜇𝜈 (13) 
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We can also rewrite the Friedmann Equation (5) to include matter (both baryonic matter and 

dark matter), radiation (and relativistic matter), and vacuum energy (García-Bellido, 2015). 

 𝐻2 = 
𝐶𝑀
𝑎3
+
𝐶𝑅
𝑎4
+ Λ −

𝜅

𝑎2
 (14) 

𝐶𝑀 and 𝐶𝑅 are constants associated with matter and radiation, respectively. This can also be 

written as  

 𝐻2 = 𝐻0
2 (
Ω𝑀
𝑎3

+
Ω𝑅
𝑎4
+
Ω𝜅
𝑎2
+ ΩΛ) (15) 

  

 Ωtotal = Ω𝑀 + Ω𝑅 + Ω𝜅 +ΩΛ = 1 (16) 

Today, Ω𝑀 ∼ 0.3089, Ω𝑅 ∼ 0, Ω𝜅 ∼ 0, ΩΛ ∼ 0.6911 (Aghanim et al., 2020) 

The interpretation of this is that when the universe was young, radiation dominated and 

the scale factor, 𝑎(𝑡) increased as 𝑡
1

2. However, over a period, it transitioned into a matter 

dominated universe and 𝑎(𝑡) increased as 𝑡
2

3. It is only recently, on cosmological timescales that 

it has this time transitioned into vacuum energy dominated, with 𝑎(𝑡) evolving as 𝑒𝐻0𝑡 where 

𝐻0 is the Hubble parameter at the present time and it is approximately 70 km/s/Mpc (Bahcall, 

2015). 

2.4 Successes of the Big Bang Model 

Firstly, the Big Bang theory enlightens us that the universe had a beginning (Dodelson & 

Schmidt, 2020). 

Secondly the universe has been expanding from the beginning according to Hubble’s law 

(i.e., 𝑣 = 𝐻0𝐷) – where 𝐻0 is the Hubble parameter at the time of measurement (Mohapatra, 

2021). This demonstrates that the universe was once compact. 

Furthermore, the Big Bang predicts that the universe was initially very dense and hot. In 

1964, radio astronomers Ronald Wilson and Arno Penzias detected the CMB which pervades 

the observable universe and is the remnant of the heat that existed at the beginning of the 

universe (Gawiser & Silk, 2000). 

Lastly, the Big Bang predicts the abundance of light elements like Hydrogen and Helium 

in the early universe, a process called “Big Bang Nucleosynthesis” (BBN). The prediction 

accords with data from observation (Burles et al., 2001; Copi et al., 1995). 
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2.5 Shortcomings of the Big Bang Model 

The first limitation of the Big Bang model of cosmology is the Flatness-Oldness 

problem. To study this problem, we define a density parameter Ω0 (Coles & Ellis, 1997). 

 Ω0 = 
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒
=  

𝜌

𝜌𝑐𝑟𝑖𝑡
 (17) 

From Equations (5), (7) and (16),  

 1 − Ω0 = −
𝜅

(𝑎𝐻)2
 (18) 

Ω0 > 1 implies that the universe is “closed” and will eventually collapse. If Ω0 was above unity 

in the beginning, it would have collapsed early in its evolution before the formation of galaxies. 

Ω0 < 1 implies that the universe is “open” and will expand forever. If Ω0was below unity in the 

beginning, it would have expanded so rapidly that structures would not have formed.  

Ω0 = 1 implies that the universe is “flat” and has critical density.  

From observations by (Bennett et al., 2003), Ω0 ∼ 1, since 𝜌 ∼ 9 × 10−27𝑘𝑔𝑚−3. This 

is strange since Ω0 = 1 is an unstable equilibrium point and the implication is that within 10−43 

seconds of the Big Bang, the density of the universe was within 1 part in 57 of the critical 

density for the curvature to remain this flat after the 13.4 billion years that the Big Bang predicts 

the age of the universe to be.  

The second limitation is the so-called Horizon problem. Observations from the CMB 

radiation exhibit a marked degree of large-scale homogeneity and thermal equilibrium which is 

at odds with the standard Big Bang model. The presence of the cosmological horizon precludes 

any two points – whose distance of separation exceeds the horizon size – from reaching thermal 

equilibrium. This is because they cannot have ever been in causal contact (Kinney, 2004). Given 

that 𝐻0 ∼ 6 × 10
−61𝑀𝑝𝑙 and 𝑇0 ∼ 5 × 10

−31𝑀𝑝𝑙, then  

 
𝑑𝑝𝑙

𝑑𝑐
∼
𝑇0
𝐻0

∼ 1030 (19) 

𝑑𝑝𝑙 is the size of the universe at Planck scales; 𝑑𝑐 is the size of the causal regions; The current 

temperature of the universe 𝑇0 = (2.7 ± 10−5)𝐾 ≅ 2.3 × 10−13GeV. 

This implies that at Planck scales, there are 1090 disconnected regions. If ordinary 

expansion cannot iron out inhomogeneities, it is striking that the universe currently is uniform 
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and that the CMB radiation temperature is the same in all directions, considering that there were 

so many regions that were never in causal contact at Planck scales (de Haro & Elizalde, 2022). 

The last limitation that we shall discuss is the Magnetic monopole problem (also called 

the Exotic-relics problem). The Grand Unified theories predict that the very high temperature of 

the Big Bang should have produced magnetic monopoles. Yet all observations have failed to 

detect their existence (Acharya et al., 2021; Dirac, 1976; Acharya et al., 2019). According to the 

theories, the strong force, the weak force and the electromagnetic force only became 

fundamental forces 10−11s after the big bang, due to spontaneous symmetry breaking. 
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Chapter 3: Inflationary Cosmology 

3.1 Introduction 

 The idea of inflationary cosmology was advanced to solve problems such as those 

discussed in suction (2.5). The shortcomings of the big bang arise from assuming that �̈� < 0, 

implying that Ω0 will tend to always shift away from 1. However, inflationary cosmology 

proposes that �̈� > 0. Inserting this in Equation (4) predicts  

 𝜌 + 3𝑝 < 0 ⟺
𝑑

𝑑𝑡
(𝑎𝐻)−1 < 0  (20) 

Before proceeding further, it will be necessary to define a few terms. 

Firstly, the proper distance is defined as the distance between two simultaneous events A and B 

in an inertial reference frame in which they occur at 𝑡𝐴 = 𝑡𝐵 (Hogg, 1999). The homogeneity 

and isotropy of the metric in Equation (2) allows us to set 𝑑𝜙 = 𝑑𝜃 = 𝑟 = 𝑑𝑡 = 0 in Equation 

and obtain  

 𝑑𝑝 = 𝑠(𝑡) =  ∫ 𝑑𝑠′ = 𝑎(𝑡)∫
𝑑𝑟

√1 − 𝑘𝑟2

𝑟

0

𝑠

0

 (21) 

This yields the following solutions depending on whether k is +ve, 0, or -ve: 

𝑑𝑝 = 𝑎(𝑡) =

{
  
 

  
 
1

√𝜅
sin−1(𝑟√𝜅)                          for 𝜅 > 0

              𝑟                                      for 𝜅 = 0

1

√|𝜅|
sinh−1 (𝑟√|𝜅|)                for 𝜅 < 0

 

However, if we consider the worldline of a light ray connecting the two events, 𝑑𝑠 = 0. Which 

implies 

 
𝑑𝑡

𝑑𝑎
=

𝑑𝑟

√1 − 𝑘𝑟2
⟶ ∫

𝑑𝑡′

𝑎(𝑡′)
=  ∫

𝑑𝑟

√1 − 𝑘𝑟2
=
𝑑𝑝(𝑡0)

𝑎(𝑡0)

𝑟

0

𝑡0

𝑡𝑒

 (22) 

𝑑𝑝(𝑡0) is the proper distance between two co-moving observers at a time 𝑡 = 𝑡0. 

 𝑑𝑝(𝑡0) = 𝑎(𝑡0)∫
𝑑𝑡′

𝑎(𝑡′)

𝑡0

𝑡𝑒

 (23) 

When 𝑡𝑒 → 0, 𝑑𝑝(𝑡0) = 𝑑𝐻.  

𝑑𝐻 is called the Particle Horizon. 
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It is more useful for us to eliminate 𝑡 in the expression by using the expression 𝑑𝑡 =
𝑑𝑎

(𝑎𝐻)
 . We 

end up with 

 𝑑𝐻 = 𝑎(𝑡0)∫
𝑑𝑎

𝑎2𝐻(𝑎)

𝑎

0

= 𝑎(𝑡𝑜)∫
𝑑(ln 𝑎)

(𝑎𝐻)

𝑎

0

 (24) 

We define the Particle horizon as the proper distance between the observer that receives the light 

signal at present and the comoving particle that emitted this light at the very beginning of the 

Universe (Bolotin & Tanatarov, 2014). 

Next, we shall define the Hubble radius 𝑅𝐻 as the distance from the observer, beyond 

which objects recede at a rate greater than the speed of light due to the expansion of the 

universe.  (Seshavatharam & Lakshminarayana, 2012). From Hubble’s law,  

 𝑅𝐻 =
1

𝐻
 (25) 

 

3.2 Solving the Flatness Problem 

During inflation, the Hubble parameter, 𝐻 remains constant and therefore we can see from 

Equation (18) 

 Ω0 − 1 =
𝜅

(𝑎𝐻)2
∝
1

𝑎2
 (26) 

As 𝑎2 in Equation (26) increases rapidly (i.e., 𝑎(𝑡) = 𝑒𝐻𝑡), it is obvious that Ω0 will tend 

rapidly towards 1 at which point, the Big Bang cosmology can take over. (Tsujikawa, 2003) 

3.3 Solving the Horizon Problem 

Let us assume that during inflation, the scale factor rose as Equation (11). In that case, 

we can fine tune the number of e-folds, N necessary to solve the Horizon problem. Equation 

(22) becomes  

 𝑑𝐻 = 𝑒
𝐻𝑡∫

𝑑𝑡′

𝑒𝐻𝑡
≈ 𝐻−1𝑒𝐻(𝑡0−𝑡𝑖)

𝑡0

𝑡𝑖

 (27) 

Since 𝑡0 − 𝑡𝑖 ≫ 𝐻−1 (Hubble radius), 𝑑𝐻 grows as fast as 𝑎(𝑡) as shown in the Figure 2. 
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Figure 2: The evolution of the comoving curvature perturbation with time. Beyond the Hubble 

radius, it remains invariant. Figure from (Baumann, 2012). 

 

During inflation the causally connected region must have become much smaller than it 

was at the onset as shown in Figure 2 (Tsujikawa, 2003). 

 𝑑𝐻
𝑎𝑒𝑛𝑑
𝑎(𝑡0)

< 𝑑𝐻𝑖
𝑎𝑒𝑛𝑑
𝑎𝑖

= 𝑑𝐻𝑖(𝑡𝑖)𝑒
𝑁  (28) 

 𝑎𝑒𝑛𝑑 is the scale factor at the end of inflation; 𝑎𝑖 at the beginning of inflation; 𝑑𝐻𝑖 is the particle 

horizon at the beginning of inflation; 𝑡𝑖 the time at the beginning of inflation and 𝑡0 is the time 

at the end of inflation. According to (Remmen & Carroll, 2014), we need 𝑁 ≥ 60 to solve the 

horizon problem. 

3.4 Solving the Monopole Problem 

Inflation very easily resolves the Magnetic monopole problem since for 𝑁 ≥ 55 the 

magnetic monopoles will be severely diluted to be present in any considerable concentration 

after the inflationary period (Lazarides, 2006). 

3.5 Dynamics of Inflation 

In the simplest single field inflation, the associated field satisfies the so-called slow-roll 

conditions where it evolves slowly along its nearly flat potential. The potential energy of the 

inflaton depends, in general, on various physical quantities like its mass and self-coupling 

parameter, and one can show that to produce an amplitude of density perturbations compatible 
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with observation, one must severely fine-tune some of these physical parameters in most 

models. 

This has opened the possibility to models of inflation with nonminimal couplings such as 

(standard model) Higgs-inflation (Bauer & Demir, 2008; Bezrukov & Shaposhnikov, 2008). In 

these models, the nonminimal coupling parameters play an important role in getting a tiny 

density perturbation that fits the data without adjusting any physical parameter. It is also known 

that nonminimal couplings to gravity are essential at the quantum level where they gain nonzero 

values even if they are absent at the tree-level (Birrell et al., 1984; Buchbinder et al., 1992).  

Various classes of inflation with nonminimal coupling to gravity have been thoroughly 

performed in the context of purely metric gravity where predictions are studied in both Einstein 

and Jordan frames (Kaiser, 2016; Kaiser & Sfakianakis, 2014; Kaiser & Todhunter, 2010; 

Schutz et al., 2014). 

Let us consider the minimally coupled action below (Azri & Demir, 2017; Riotto, 2017) 

 𝒮[𝑔𝜇𝜈 , 𝜙 ] = ∫√−𝑔 (
1

2
𝑀𝑝
2𝑅 −

1

2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 − 𝑉(𝜙)) 𝑑

4𝑥 (29) 

The first term represents the gravitational (also called the Albert-Hilbert) term, 𝒮𝑔; the second 

and third term represent the action of the scalar field, 𝒮𝜙 and 𝑉(𝜙) is the potential energy. 

Variation of 𝒮[𝑔𝜇𝜈 , 𝜙] with respect to the metric, 𝑔𝜇𝜈 yields the Einstein’s Equation (3) in 

which the energy momentum tensor 

 𝑇𝜇𝜈 =
2

√−𝑔

𝛿(√−𝑔𝒮𝜙)

𝛿𝑔𝜇𝜈
= 𝜕𝜇𝜙𝜕𝜈𝜙 − 𝑔𝜇𝜈 (

1

2
𝜕𝜇𝜙𝜕𝜈𝜙 + 𝑉(𝜙)) (30) 

Lowering the indices, and calling up upon Equation (2), we obtain  

 𝑇00 = 𝜌 =
1

2
�̇�2 + 𝑉 +

1

2

(𝛻𝜙)2

𝑎2
 (31) 

 

 𝑇𝑖𝑖 = 𝑝 =
1

2
�̇�2 − 𝑉 −

1

6

(𝛻𝜙)2

𝑎2
 (32) 

For a homogeneous background, 
∇𝜙

𝑎
→ 0 and we end up with  

 𝜌 =
1

2
�̇�2 + 𝑉 and 𝑝 =

1

2
�̇�2 − 𝑉 (33) 
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Where 𝜑 is the background field with only a time dependence. We shall deal with the spatial 

dependence in a later section. 

From Equation (8), the equation of state becomes 

 𝑤 =

1
2 �̇�

2 − 𝑉(𝜑)

1
2 �̇�

2 + 𝑉(𝜑)
 (34) 

Which implies that if 𝑉 ≫ �̇�2, then 𝑤 ≈ −1 < −
1

3
 (i.e., 𝑝 ≈ −𝜌 = −𝑉) which drives inflation 

the same way the cosmological constant does as seen in section (2.2.); and the scale factor 

evolves as 𝑎 ∼ 𝑒𝐻𝑡 as seen in Equation (11). However, if the field dominates the energy, then its 

energy density will dominate both the energy density of radiation and that of matter (Senatore, 

2017). 

Variation of 𝒮[𝑔𝜇𝜈 , 𝜑] with respect to the field, 𝜑 gives us the Klein-Gordon Equation 

 □𝜙 − 𝑉,𝜙= 0;                          □ ≡
1

√−𝑔
𝜕𝜈(√−𝑔𝑔

𝜇𝜈𝜕𝜇) (35) 

 

 �̈� + 3𝐻�̇� −
∇2𝜙

𝑎2
+ 𝑉,𝜙 = 0  (36) 

During expansion, the scalar field rolls down its potential with a gradient 𝑉,𝜙≡ 𝑉′ ≡
𝑑𝑉

𝑑𝜙
. 3𝐻�̇� 

term is the damping term. 

For a homogeneous universe, 
∇𝜙

𝑎
→ 0 and therefore,  

 �̈� + 3𝐻�̇� + 𝑉,𝜑 = 0  (37) 

3.6 Slow-roll Inflation 

In slow-roll inflation, we assume the following conditions (Pozdeeva, 2021) 

 |
�̇�

2
| ≪ |𝑉| and |�̈�| ≪ |3𝐻�̇�|,|𝑉,𝜑| (38) 

Combining Equations (5), (33), (37) and (38) in a zero curvature Friedmann universe, we obtain 

 
𝐻2 ≈

8𝜋

3𝑚𝑝
2 𝑉 =

1

3𝑀𝑝
2 𝑉   

3𝐻�̇� ≈ −𝑉,𝜑 

(39) 

𝑀𝑝
2 = 𝑚𝑝

2/8𝜋 is the reduced Planck mass and 𝑚𝑝
2 = 1/𝐺𝑁  



 20 

From condition (1) of Equation (38), H is nearly constant and �̇� < 𝐻2. This implies that 
�̇�

𝐻2
< 1. 

From this, we shall define the first slow-roll parameter 𝜖 

 𝜖 = −
�̇�

𝐻2
 (40) 

Using Equations (39) and (40), we derive the expression  

 𝜖 =
𝑀𝑝
2

2
(
𝑉,𝜑

𝑉
)
2

 (41) 

We can define our second slow roll parameter as (Liddle, 1999) 

 𝜂 = 𝑀𝑝
2 (
𝑉,𝜑𝜑

𝑉
) (42) 

We define 𝑉,𝜑𝜑≡ (
𝑑2𝑉

𝑑𝜑2
) 

And the last one  

 𝑟 = 16𝜖 (43) 

For slow-roll inflation, |𝜖|, |𝜂| ≪ 1 

Inflation ends when 𝜖 = 1 and the number of e-folds required for it to end is obtained from 

Equation (11) and is given by the expression (Kinney, 2004). 

 𝑁 = ∫ 𝐻𝑑𝑡 =  ∫
𝐻

�̇�
𝑑𝜑 ≈ −

1

𝑀𝑝
2
∫

𝑉

𝑉𝜑
𝑑𝜑

𝜑𝑓

𝜑𝑖

𝜑𝑓

𝜑𝑖

𝑡𝑓

𝑡𝑖

≥ 50 − 60 (44) 

Another important parameter that ought not to be left out is the spectral index 𝑛𝑠. For a universe 

without extreme mass fluctuations, the power spectrum should be a power law 𝒫(𝑘) = 𝐴𝑘𝑛𝑠 

where 𝑛𝑠 is the spectral index obtained from 

 𝑛𝑠 = 1 − 6𝜖 + 2𝜂 + 𝒪(𝜖
2, 𝜂2) (45) 

3.7 Comment about the End of Inflation 

It has been alluded to that inflation ends when 𝜖 = 1 and at this point �̈� from equation 

(37) can no longer be ignored. The field will roll down its potential until it begins to oscillate 

about its minimum. 
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From Equation (33) and (37), we get the rate of the energy density loss which is given by the 

equation  

 �̇� = −3𝐻�̇�2 (46) 

During the oscillation of the field around its minimum potential, the energy density will 

decay in the order of 𝜌 ∼ 𝑎−3. This is like the matter dominated universe seen in section (2.2.). 

And since the field is acting like pressure-less matter, we can re-write Equation (46) as  

 �̇�𝜙 = −3𝐻𝜌𝜙 (47) 

The field will decay into lighter particles which eventually thermalize to a temperature, 𝑇𝑅 in a 

process known as reheating. It should be here noted that during the short period of inflation, the 

universe must expand adiabatically. It is only at the end of inflation, during the transition from 

an inflaton dominated universe to a radiation dominated universe that non-adiabaticity is 

considered. However, let us calculate the decay rate, Γ𝜙 of the inflaton field as shown below 

(Riotto, 2017). 

 𝛤𝜙 =
1

𝜏𝜙
= 𝐻 =

1

√3𝑀𝑝

𝜌𝜙 = 
1

𝑀𝑝

√
𝜌𝑅  

3
 (48) 

We consider that the energy of the inflaton is converted into the energy of the radiation. 

If the reheating temperature is 𝑇𝑅𝐻, then (Cook et al., 2015) 

 𝜌𝑅 =
𝜋2

30
𝑔∗𝑇𝑅𝐻

4 . (49) 

 Where 𝑔∗ is the radiation degrees of freedom. Combining (48) and (49) we get  

Figure 3:  The field evolves along a flat potential but rolls down quite dramatically                                                            
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 𝑇𝑅𝐻 = (
90

𝜋2𝑔∗
)

1
4

√𝛤𝜙𝑀𝑝 (50) 

This is the temperature at which the radiation dominated epoch begins and the standard big bang 

cosmology takes over. 
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Chapter 4: Adiabatic and Non-adiabatic Perturbations during Inflation 

In the previous chapter, we have dealt with inflation in a homogeneous and isotropic 

universe. However, one of the unexpected successes (possibly the greatest success) of the 

inflationary theory is that it explains how large-scale expansion, in effect, “sowed the seeds” of 

structure formation. By structure we mean galaxies and galactic clusters.  During the 

inflationary phase, the quantum fluctuations that are initially present in the cosmic soup are 

amplified to super-Hubble scales ending up as density perturbations which are exhibited in the 

anisotropy of the CMB radiation1.  

For a single scalar field, the fluctuations produced are adiabatic, as shall be seen later, 

and the density perturbations produced are gaussian with 𝑛𝑠 ≈ 1.  

Let us study the perturbations in the Klein Gordon Equation (36). We begin by writing our field 

in component parts as shown below (Kaiser & Todhunter, 2010). 

 𝜙 = 𝜙(𝑥𝜇) = 𝜑(𝑡) + 𝛿𝜙(𝑥𝜇) (51) 

 

𝛿𝜙(𝑥𝜇) is the small linear perturbation term around the homogeneous background, 𝜑(𝑡).  

We use first order perturbations because the density fluctuations in the early universe are too 

small for higher order terms to be significant. The quantum fluctuation of the inflaton is 𝛿𝜙 =

𝑇𝐻 =
𝐻

2𝜋
=  𝐻𝑎𝑤𝑘𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (Bunch & Davies, 1978; Lazarides, 2006; Vilenkin & 

Ford, 1982) and it in turn induces density perturbations given by 𝛿𝜌 = 𝑉,𝜙 𝛿𝜙. 

The density perturbations eventually grow with inflation going beyond super-Hubble 

scales. 

Considering the case with no interactions, inserting Equation (47) into (36), and separating the 

background and first order equations, we obtain Equation (37) and  

 𝛿�̈� + 3𝐻𝛿�̇� −
1

𝑎2
∇2𝛿𝜙 + 𝑉,𝜙𝜙 𝛿𝜙 = 0 (52) 

 

 
1 In the early stages of the hot Big Bang, radiation was undergoing Compton scattering due to interaction with 

electrons. However, as stable nuclei began to form, photons were able to escape, cooling adiabatically as the 

universe continued to expand while retaining a black body spectrum. It is the picture of this last scattering that we 

observe in the CMB radiation. 
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Decomposing the field perturbation using Fourier transform, ∇2𝛿𝜙 = −𝑘2𝛿𝜙. 𝑘 is the 

comoving wavenumber. 

For a case of a scalar field and metric with interactions, we must construct a perturbed 

FLRW metric. To do that, we shall employ the formalism employed in (Bardeen, 1980; Riotto, 

2017; Uggla & Wainwright, 2011). First, we do a Scalar, Vector, Tensor (SVT) decomposition. 

It involves the spontaneous breakdown of the symmetries in GR by the FLRW background to 

𝑆𝑂(3) group of global spatial rotations, performing a Fourier transform to single out a vector �⃗� , 

and then decompose the states into the helicity eigenstates with respect to the 𝑆𝑂(2) rotations. 

For an arbitrary scalar field 𝜒 under rotation 𝜃, 𝜒�⃗� → 𝑒𝑖𝑚𝜃𝜒�⃗� . 𝜃 determines the helicity of the 

state.  

 𝑚 = 0 is a scalar, 𝑚 = ±1 is a vector and 𝑚 = ±2 is a tensor. 

The idea of SVT decomposition can best be demonstrated by decomposing the metric tensor, 

𝑔𝜇𝜈 (Bassett et al., 2006) 

 𝑔𝜇𝜈 = (
𝑔00 𝑔0𝑖
𝑔𝑖0 𝑔𝑖𝑗

) ; 𝑔00 = −(1 + 2Φ) (53) 

 

 𝑔𝑖0 = 𝑔0𝑖 = 0 + 2𝑎(𝜕𝑖𝐵 − 𝑆𝑖); 𝜕
𝑖𝑆𝑖 = 0 (54) 

 

 𝑔𝑖𝑗 = 𝑎2(1 − 2Ψ)𝛿𝑖𝑗 + 2𝜕𝑖𝑗𝐹 + 2𝜕(𝑖,𝐹𝑗) + ℎ𝑖𝑗;  𝜕
𝑖𝐹𝑖 = ℎ𝑖

𝑖 = 𝜕𝑖ℎ𝑖𝑗 = 0 (55) 

 

Counting the components, we get a total of 4 scalars (Φ,Ψ, 𝐵, 𝐹); two vectors (𝑆𝑖, 𝐹𝑗), and one 

tensor ℎ𝑖𝑗   

The scalar component is responsible for structure formation, the tensor component is 

responsible for the production of primordial gravitational waves, and the vector perturbations 

can be ignored because they decay over time. 

The scalar degrees of freedom can then be collected to write the perturbed line element as  

 

𝑑𝑠2 = −(1 + 2Φ)𝑑𝑡2 +  2𝑎(𝜕𝑖𝐵)𝑑𝑥
𝑖𝑑𝑡 

 

          +𝑎2{(1 − 2Ψ)𝛿𝑖𝑗  + 2𝜕𝑖𝜕𝑗𝐹}𝑑𝑥
𝑖𝑑𝑥𝑗  

(56) 

Working in the longitudinal gauge, we set 𝐵 = 𝐹 = 0 and end up with  
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 𝑑𝑠2 = −(1 + 2Φ)𝑑𝑡2 + 𝑎2(1 − 2Ψ)𝛿𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗  (57) 

This is known as the Newtonian Gauge and Φ,Ψ are the gauge invariant Bardeen potentials. 

GR is invariant under diffeomorphisms. So, any physical quantity should be invariant under the 

transformation. 

 𝑥𝜇 → 𝑥𝜇
′
= 𝑥𝜇 + 𝜉𝜇  (58) 

𝜉𝜇 can also be decomposed as was done in (53 – 55) as 𝜉𝜇 = 𝜉0, 𝜕𝑖𝐴 + 𝐵𝑖; 𝜕
𝑖𝐵𝑖 = 0 from which 

we can infer that there are 2 scalars (𝜉0, 𝐴) and one vector 𝐵𝑖 degree of freedom. 

Using Equation (36) and (57) we obtain the gauge-dependent equation of motion  

 𝛿�̈� + 3𝐻𝛿�̇� +
𝑘2

𝑎2
𝛿𝜙 + 𝑉,𝜙𝜙𝛿𝜙 = −2𝑉𝜙Φ+ �̇�(Φ̇ + 3Ψ̇)  (59) 

and the first-order perturbed Einstein Equations give (Brax et al., 2009) 

 3𝐻(Ψ̇ + 𝐻Φ) +
1

𝑎2
𝑘2Ψ = −

1

2𝑀𝑝
2
𝛿𝜌, (60) 

 

 Ψ̇ + HΦ = −
1

2𝑀𝑝
2
𝛿𝑞,  (61) 

 

 Ψ̈ + 3𝐻Ψ̇ + 𝐻Φ̇ + (3𝐻2 + 2�̇�)Φ =
1

2𝑀𝑝
2
𝛿𝑝 +

1

3𝑎2
𝑘2(Φ − Ψ),  (62) 

 

 
1

𝑎2
𝑘2(Φ − Ψ) = 0. (63) 

Where 𝛿𝜌 is the density perturbation obtained from the 00 component of the Einstein’s 

Equations, 𝛿𝑞 is the momentum flow term obtained from the 0𝑖 component and 𝛿𝑝 is the 

isotropic pressure perturbation obtained from the 𝑖𝑗 component. They are defined below as  

 𝛿𝜌 = �̇�𝛿�̇� − �̇�2Φ+ 𝑉𝜙𝛿𝜙 (64) 

 

 𝛿𝑞 = −�̇�𝛿𝜙   (65) 

 

 𝛿𝑝 = �̇�𝛿�̇� − �̇�2Φ− 𝑉𝜙𝛿𝜙 (66) 
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From Equation (63) it can be observed that for the canonical action in Equation (29) the 

anisotropic pressure is absent and therefore, Φ = Ψ 

However, it should be noted that for non-minimal coupling (Kaiser & Todhunter, 2010),  

 𝜕𝑖𝜕𝑗(Φ − Ψ) = −
1

𝑓
𝜕𝑖𝜕𝑗𝛿𝑓; 𝑖 ≠ 𝑗. (67) 

Where 𝑓 is the coupling function. 

Next, we employ the spatially flat gauge-invariant Mukhanov-Sasaki variable which has the 

definition (Kaiser et al., 2013; Mukhanov, 1988; Sasaki, 1986) 

 𝑄 ≡ 𝛿𝜙 +
�̇�

𝐻
𝜓 (68) 

which is directly related to the curvature perturbation in the comoving gauge and according to 

the lectures (Baumann, 2011), the momentum density of the comoving gauge will vanish and 

therefore 𝛿𝑇0𝑖 ≡ 0. This implies that from Equation (65), 𝛿𝑞 = −�̇�𝛿𝜙.  

(Lyth, 1985) defines the comoving curvature perturbation as  

 ℛ ≡ 𝜓 −
𝐻

𝜌 + 𝑝
𝛿𝑞 (69) 

Which from Equations (33), (65) and (68) yields  

 ℛ = 𝜓 +
𝐻

�̇�
𝛿𝜙 =

𝐻

�̇�
𝑄.  (70) 

It will now be necessary to write down some definitions that will help us in our study 

1. An adiabatic fluid is one where  (Kodama & Sasaki, 1984), 

 
𝛿𝑝𝑎𝑑
𝛿𝜌

=
�̇�

�̇�
 (71) 

Where 𝑝𝑎𝑑 is the adiabatic pressure perturbation. 

2. For non-adiabatic fluids, especially as will be seen in multi-field inflation (Huston & 

Christopherson, 2012),  

 𝛿𝑝 = 𝛿𝑝𝑛𝑎𝑑 + 𝑐𝑠
2𝛿𝜌 (72) 

Where 𝛿𝑝𝑛𝑎𝑑 is the non-adiabatic pressure perturbation; 𝑐𝑠
2 =

�̇�

�̇�
 is the sound speed for 

the fluid. 
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3. Total entropy perturbation is defined as  

 𝒮 = 𝐻 (
𝛿𝑝

�̇�
−
𝛿𝜌

�̇�
) (73) 

From this expression, if the entropy perturbation, 𝒮 = 0, then we obtain the expression for 

adiabatic perturbation in Equation (71), and Equation (72) becomes  

𝛿𝑝 = 𝑐𝑠
2𝛿𝜌. 

Using Equation (73) we can substitute 𝛿𝑝, 𝛿𝜌, �̇� and �̇� to obtain  

 𝒮 =
2𝑉𝜙(�̇�𝛿�̇� − �̈�𝛿𝜙 − �̇�

2Φ)

9𝐻�̇�3 + 6�̇�2𝑉𝜙
 (74) 

However, we can construct a gauge-invariant density perturbation from (Bardeen, 1980) 

 𝛿𝜌𝑚 ≡ 𝛿𝜌 − 3𝐻𝛿𝑞 (75) 

 

                      = �̇�𝛿�̇� − �̈�𝛿𝜙 − �̇�2Φ (76) 

Substituting this into Equation (74) we obtain 

 𝒮 =  
2𝑉𝜙𝛿𝜌𝑚

9𝐻�̇�3 + 6�̇�2𝑉𝜙
 (77) 

But also combining Equations (60) and (61) yields 

 𝛿𝜌𝑚 = −
2𝑀𝑝

2

𝑎2
𝑘2Ψ (78) 

This implies that our entropy perturbation is given by  

 𝒮 = −
4𝑉𝜙𝑀𝑝

2

𝑎2(9𝐻�̇�3 + 6�̇�2𝑉𝜙)
𝑘2Ψ = −

4𝑉𝜙𝜌

3(9𝐻�̇�3 + 6�̇�2𝑉𝜙)
(
𝑘

𝑎𝐻
)
2

Ψ (79) 

Lastly, let us compute the non-adiabatic pressure from Equation (72) 

 𝛿𝑝𝑛𝑎𝑑 = 𝛿𝑝 −
�̇�

�̇�
𝛿𝜌 (80) 

 

 = −2𝑉𝜙𝛿𝜙 −
2𝑉𝜙

3𝐻�̇�
𝛿𝜌 (81) 
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 =
4𝑉𝜙𝑀𝑝

2

3𝑎2𝐻𝜑 ̇
𝑘2Ψ =

4𝑉𝜙𝜌

9𝐻�̇�
(
𝑘

𝑎𝐻
)
2

Ψ (82) 

It can be concluded from this that on large scales, (i.e., 𝑘 ≪ 𝑎𝐻) the non-adiabatic 

pressure becomes too small (Sasaki & Stewart, 1996). It can also be concluded from Equation 

(79) that the entropy perturbation is also suppressed on cosmologically large scales.  

It would be inadequate to close this section without some mention of the evolution of the co-

moving curvature perturbation (Baumann, 2012).  

 ℛ̇ = −
𝐻

�̇�2
𝛿𝑝𝑛𝑎𝑑 + 𝒪 (

𝑘

𝑎𝐻
)
2

 (83) 

This implies that  

 ℛ̇ = −
4𝑉𝜙𝜌

9�̇�3
(
𝑘

𝑎𝐻
)
2

Ψ+ 𝒪 (
𝑘

𝑎𝐻
)
2

 (84) 

We can conclude that at super-Hubble scales, when 
𝑘

𝑎𝐻
≪ 1, ℛ is conserved. 
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Chapter 5: Non-gaussianity 

5.1 Introduction 

 We have seen in chapter 3 that after the inflationary period, there was a period of 

reheating that the universe became so hot for the photons and electrons that had been formed to 

remain free. The photons were constantly being scattered – in a process called the Thompson 

scattering – by the electrons and therefore were not free to permeate through the dense plasma. 

However, as the temperature cooled, the universe became transparent to photons since electrons 

had started to combine with protons to form stable atoms. This process is called recombination 

(van Tent, 2021). 

The photons released at this period are what we refer to as the CMB radiation and it 

seems to be issuing from a surface beyond which we can observe, which is referred to as the last 

scattering surface. Prodding through the CMB radiation has enabled us to make some interesting 

cosmological observations that enrich us with the knowledge of the conditions of the universe in 

its initial stages. One of the observations that have been made is that the fluctuations of the 

CMB radiation are nearly Gaussian. However, many theories predict some divergence from 

Gaussianity (Hahn et al., 2019; Yadav & Wandelt, 2010). This enables us to eliminate models of 

inflation that do not agree with the observed level of non-Gaussianity. 

5.2 The Power Spectrum 

Following from the Heisenberg uncertainty principle, quantum fluctuations are random 

(though chaotic is possibly the better description). As a result, we cannot – with precision – 

measure the distribution of temperature in the CMB fluctuations in all directions, or even galaxy 

positions. The best we can do is measure the statistical properties of the distribution. For 

Gaussian distribution, all we need is the two-point correlation function defined as  

 〈ℛ𝒌𝑅𝒌′〉 ≡
𝐻2

2𝑘3
(1 + 𝑘2𝜏2), (85) 

Where 𝜏 = ∫
1

𝑎(𝑡′)
𝑑𝑡′

𝑡

0
 is referred to as the conformal time. This is the power spectrum of the 

comoving curvature perturbation.  

However, at super horizon scales, (i.e., 𝑘 ≪ 𝑎𝐻), 𝑘2𝜏2 ≪ 1. This means that the power 

spectrum can be defined as  

 𝒫ℛ(𝑘) = 〈ℛ𝑘𝑅𝑘′〉 = (
𝐻2

2𝑘3
)
|𝑘≪𝑎𝐻

 (86) 
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Since 𝐻 and 𝑘 have dimensions, it is more convenient to define the dimensionless power 

spectrum as (Baumann, 2012) 

 Δ𝑠
2 = Δℛ

2 =
𝑘3𝒫ℛ(𝑘)

2𝜋2
. (87) 

 

                    = (
𝐻

2𝜋
)
2

(
𝐻

�̇�
)
|𝑘=𝑎𝐻

2

. (88) 

It can also be expressed as a power law as  

 
𝑘3𝒫ℛ(𝑘)

2𝜋2
= 𝐴𝑠𝑘

𝑛𝑠−1,  (89) 

Where 𝐴𝑠 is the amplitude of density perturbations which we shall make use of in our results. 

For tensors,  

 Δ𝒯
2 = 2 ×

𝑘3𝒫𝒯(𝑘)

2𝜋2
. (90) 

The 2 is simply to account for the two polarization modes of the spectrum. 

We then end up with  

 Δ𝒯
2 =

8

𝑀𝑝
2
(
𝐻

2𝜋
)
2

 (91) 

From these two, we can define a useful quantity called the tensor-to-scalar ratio 𝑟, which 

incidentally we mentioned in Equation (43). We now formally define it as  

 𝑟 ≡
Δ𝒯
2 (𝑘)

Δ𝑠2(𝑘)
=

8

𝑀𝑝
2
(
𝑑𝜙

𝑑𝑁
)
2

; 𝑑𝑁 ≡ 𝐻𝑑𝑡 (92) 

If we integrate this expression over the whole period of inflation, we obtain  

 
Δ𝜙

𝑀𝑝
= ∫ √

𝑟

8
𝑑𝑁

𝑁𝐶𝑀𝐵

𝑁𝑒𝑛𝑑

. (93) 

  For a single field inflation, since the curvature perturbation ℛ is Gaussian, then all we 

need to calculate is the power spectrum – since it contains all the statistical information required 

(Maldacena, 2003). However, to determine non-Gaussianity, the 3PCF must be determined. In 

𝑘-space, it is also called the Bispectrum. 
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5.3 The Bispectrum 

We define the 3PCF as  

 〈ℛ𝒌1ℛ𝒌2ℛ𝒌3〉 = (2𝜋)3ℬℛ(𝑘1, 𝑘2, 𝑘3)𝛿(𝒌1 + 𝒌2 + 𝒌3) (94) 

The amplitude of non-Gaussianity can be calculated from  

 ℛ(𝑥) = ℛ𝑔(𝑥) +
3

5
𝑓𝑁𝐿
𝑙𝑜𝑐𝑎𝑙{ℛ𝑔(𝑥)}

2
, (95) 

where the first term represents the linear Gaussian part, and the second term represents the non-

linear Gaussian correction at some fixed point 𝑥. 𝑓𝑁𝐿
𝑙𝑜𝑐𝑎𝑙 is the amplitude of non-Gaussianity. 

Plugging Equation (95) into (94) we obtain  

 
ℬℛ(𝑘1, 𝑘2, 𝑘3) =

6

5
𝑓𝑁𝐿
𝑙𝑜𝑐𝑎𝑙{𝒫ℛ(𝑘1)𝒫ℛ(𝑘2) + 𝒫ℛ(𝑘2)𝒫ℛ(𝑘3)

+ 𝒫ℛ(𝑘3)𝒫ℛ(𝑘1)} 

(96) 

 

In (Kaiser et al., 2013), the authors go through the details of the calculation of primordial 

Bispectrum from multifield inflation with non-minimal couplings in the context of GR. We 

should take away from this that multifield inflation always produces some non-Gaussianity 

though the level depends on the model of inflation being studied.  

We are now in position to present the new features of inflation in the context of purely 

affine gravity.  
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Chapter 6: Entropy Perturbations in Affine Gravity 

6.1 Introduction 

Having gone through the formalism of the previous chapters, we can now introduce 

inflationary dynamics of two-field inflation in the context of purely affine gravity. We shall find 

that in this instance, the affine connection does not depend on the metric but rather the metrical 

structure results from the affine connection. We shall use specific non-canonical field kinetic 

terms to flatten the curved manifold.2 In this way, new predictions will be made by virtue of the 

coupling function being solely coupled to the potential.  

Two important cases will be studied. The first one will be when the kinetic terms are 

canonical. In this instance, we shall observe that the induced field space metric will tend to be 

conformal to flat. Next, we shall study what happens if the same coupling function is set on 

𝑹𝜇𝜈(Γ) and 𝛿𝑎𝑏∇𝜇𝜙
𝑎∇𝜙𝑏 and will analyse what happens in the single-field limit using a quartic 

potential and derive the spectral index and the gravitational waves produced. Gravitational 

waves are characterised by a small tensor-to-scalar ratio of the order 𝑟 ∼ 10−6 for a strong 

curvature coupling.  

It should be noted that we shall not be using analytical methods in solving the 

background equations as we did in section 3. We shall instead employ the PyTransport package 

(Mulryne & Ronayne, 2017) to obtain the analytical solutions of the background equations, the 

spectrum of the perturbation, the 3PCF, and also observe the behaviour of the reduced bi-

spectrum 𝑓𝑁𝐿. 

6.2 Dynamics of Multiple Field Inflation in Affine Gravity with Non-minimal Coupling 

From the definition of the curvature tensor, 

 𝑹𝜇𝛽𝜈
𝛼 = 𝜕𝛽Γ𝜇𝜈

𝛼 − 𝜕𝜈Γ𝜇𝛽
𝛼 + Γ𝜇𝜈

𝛿 Γ𝛿𝛽
𝛼 − Γ𝜇𝛽

𝛿 Γ𝛿𝜈
𝛼 , (97) 

from which the Ricci curvature tensor 𝑹𝜇𝜈 and the Ricci scalar 𝑹 are derived, it is based on the 

spacetime connection, Γ which provides us with the rule for parallel displacements and defines 

geodesics for freely falling bodies through a curved manifold. So affine gravity depends on the 

affine connection with no prior notion of the spacetime metric and this symmetric connection 

defines the symmetric Ricci tensor, 𝑹𝜇𝜈(Γ) = 𝑹𝜈𝜇(Γ).  

 

 
2 For an action with canonical fields, the field manifold has a conformally flat shape. 
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Let us consider the action (Azri & Nasri, 2020) 

 𝒮[Γ, 𝜙] = ∫
√|𝑓(𝜙)𝑹𝜇𝜈(Γ) − ∇𝜇𝜙𝑎∇𝜈𝜙𝑎|

𝑉(𝜙)
𝑑4𝑥 (98) 

Where 𝑉(𝜙) ≠ 0; 𝜙𝑎(𝑥) are the scalar fields with 𝑎 = 1,… ,𝑁; 𝑁 represents the number of 

scalar fields and 𝑓(𝜙) is the nonminimal coupling function which reduces to 𝑀𝑝
2 in the case of 

minimal coupling to gravity. We shall discover later that this function will take on the generic 

form 𝑓(𝜙) = 𝑀𝑝
2 + 𝜉𝜙2.  

We can now vary the action infinitesimally with respect to the affine connection. Since 

the scalar fields and the coupling function do not depend on the connection, we obtain  

 𝛿𝒮[Γ, 𝜙] =
1

2
∫
𝑓(𝜙)𝐾−

1
2
 𝛿𝑹𝜇𝜈

𝑉(𝜙)
𝑑4𝑥  (99) 

  

 Where                    𝐾𝜇𝜈(Γ, 𝜙) =  𝑓(𝜙)𝑹𝜇𝜈(Γ) − ∇𝜇𝜙
𝑎∇𝜈𝜙

𝑎 (100) 

Using the palatini identity (Guarnizo et al., 2010) which states that  

 𝑹𝜇𝜈(Γ) = ∇𝛾(𝛿Γ𝜈𝜇
𝛾
) − ∇ν(𝛿Γ𝛾𝜇

𝛾
), (101) 

we obtain  

 

𝛿𝒮[Γ, 𝜙] =
1

2
∫(𝑓(𝜙)

√|𝐾(Γ, 𝜙)|

𝑉(𝜙)
(𝐾−1)𝜇𝜈∇𝛾(𝛿Γ𝜈𝜇

𝛾
)

− 𝑓(𝜙)
√|𝐾(Γ, 𝜙)|

𝑉(𝜙)
(𝐾−1)𝜇𝜈∇ν(𝛿Γ𝛾𝜇

𝛾
))𝑑4𝑥. 

(102) 

Integrating both terms by parts, eliminating the full derivative, and relabelling indices, we obtain  

 

𝛿𝒮[Γ, 𝜙] =
1

2
∫ {∇𝜈 (𝑓(𝜙)

√|𝐾(Γ,𝜙)|

𝑉(𝜙)
(𝐾−1)𝛼𝜇)𝛿𝛾

𝜎

− ∇𝛾 (𝑓(𝜙)
√|𝐾(Γ,𝜙)|

𝑉(𝜙)
(𝐾−1)𝛼𝜎)} 𝛿Γ𝛼𝜎

𝛾
𝑑4𝑥 

(103) 

Using the principle of stationary action,  

 ∇𝜈 (𝑓(𝜙)
√|𝐾(Γ,𝜙)|

𝑉(𝜙)
(𝐾−1)𝛼𝜇)𝛿𝛾

𝜎 − ∇𝛾 (𝑓(𝜙)
√|𝐾(Γ, 𝜙)|

𝑉(𝜙)
(𝐾−1)𝛼𝜎) = 0 (104) 

Taking the trace of the equation, we end up with 
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 ∇𝛾 (𝑓(𝜙)
√|𝐾(Γ,𝜙)|

𝑉(𝜙)
(𝐾−1)𝜇𝜈) = 0. (105) 

What is interesting in this result is that in solving it, the affine connection reduces to the 

Levi-Civita connection and – in essence – we generate the metric tensor 𝑔𝜇𝜈. In other words, 

unlike the metric gravity theories where 𝑔𝜇𝜈 is fundamental to gravity, in our study it can be 

seen clearly that it is simply a solution to Equation (105) as shown below 

 𝑓(𝜙)
√|𝐾(Γ,𝜙)|

𝑉(𝜙)
(𝐾−1)𝜇𝜈 = 𝑀𝑝

2√|𝑔|(𝑔−1)𝜇𝜈 (106) 

Where 𝑀𝑝 is arbitrary. Using the compatibility condition ∇𝜆𝑔𝜇𝜈 = 0, we express the equation 

above as (Azri et al., 2021). 

 𝐾𝜇𝜈(𝑔, 𝜙) =
𝑀𝑝
2𝑉(𝜙)

𝑓(𝜙)
𝑔𝜇𝜈 (107) 

Making use of Equation (100),  

 𝑓(𝜙)𝑹𝜇𝜈 − ∇𝜇𝜙
𝑎∇𝜈𝜙

𝑎 =
𝑀𝑝
2𝑉(𝜙)

𝑓(𝜙)
𝑔𝜇𝜈 (108) 

 

 𝑓(𝜙)𝑹𝜇𝜈 =
𝑀𝑝
2𝑉(𝜙)

𝑓(𝜙)
𝑔𝜇𝜈 + ∇𝜇𝜙

𝑎∇𝜈𝜙
𝑎 (109) 

Multiplying through by 𝑔𝜇𝜈 and then 𝑔𝜇𝜈 we obtain  

 
1

2
𝑓(𝜙)𝑹𝑔𝜇𝜈 =

2𝑀𝑝
2𝑉(𝜙)

𝑓(𝜙)
𝑔𝜇𝜈 +

1

2
𝑔𝛼𝛽∇𝛼𝜙

𝑎∇𝛽𝜙
𝑎𝑔𝜇𝜈 (110) 

Now we can construct the Einstein’s Equations from (109) and (110) 

 𝑓(𝜙)𝑮𝜇𝜈 = ∇𝜇𝜙
𝑎∇𝜈𝜙

𝑎 −
1

2
∇𝛽𝜙𝑎∇𝛽𝜙

𝑎𝑔𝜇𝜈 −
𝑀𝑝
2𝑉(𝜙)

𝑓(𝜙)
𝑔𝜇𝜈 (111) 

Comparing Equation (111) to Equation (3) we do realise that we have recovered 

Einstein’s field Equations where 𝑓(𝜙) = 𝑀𝑝
2 and the energy momentum tensor from which 

spacetime curvature is sourced is given by  

 𝑇𝜇𝜈 =
1

𝑓(𝜙)
( ∇𝜇𝜙

𝑎∇𝜈𝜙
𝑎 −

1

2
∇𝛽𝜙𝑎∇𝛽𝜙

𝑎𝑔𝜇𝜈 −
𝑀𝑝
2𝑉(𝜙)

𝑓(𝜙)
𝑔𝜇𝜈) (112) 

Varying the action in Equation (98) with respect to the fields gives us 
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𝛿𝒮[Γ, 𝜙] = ∫(−
1

𝑉(𝜙)2
𝑉,𝑎𝛿𝜙

𝑎

+
1

2𝑉(𝜙)
√|𝐾(Γ,𝜙)|(𝐾−1)𝜇𝜈{𝑓,𝑎𝑹𝜇𝜈(Γ)𝛿𝜙

𝑎

− 𝛿(∇𝜇𝜙
𝑎∇𝜈𝜙

𝑎) }) 𝑑4𝑥 

(113) 

Where for any function 𝑓(𝜙), 𝑓,𝑎 =
𝜕𝑓(𝜙)

𝜕𝜙𝑎
. 

Using integration by parts on the last term and using the principle of least action, we get  

 

𝜕𝛼 (
√|𝐾(Γ, 𝜙)|

𝑉(𝜙)
(𝐾−1)𝜇𝜈𝜕𝛽𝜙

𝑎) +
1

2
𝑓,𝑎
√|𝐾(Γ,𝜙)|

𝑉(𝜙)
(𝐾−1)𝜇𝜈𝑹𝜇𝜈(Γ)

−
√|𝐾(Γ,𝜙)|

𝑉(𝜙)2
𝑉,𝑎 = 0 

(114) 

Which by using Equation (106) transforms to  

 

𝜕𝛼 (
𝑀𝑝
2√|𝑔|

𝑓(𝜙)
(𝑔−1)𝜇𝜈𝜕𝛽𝜙

𝑎) +
1

2
𝑓,𝑎 (

𝑀𝑝
2√|𝑔|

𝑓(𝜙)
(𝑔−1)𝜇𝜈𝑹𝜇𝜈(𝑔))

− 𝑉,𝑎
𝑀𝑝
4√|𝑔|

𝑓(𝜙)2
= 0 

(115) 

The equation ultimately takes the form 

 □𝜙𝑎 − 𝑉,𝑎 +
1

2
𝑓,𝑎𝑹(𝑔) + (1 −

𝑀𝑝
2

𝑓(𝜙)
)𝑉,𝑎 −

𝑓,𝑎
𝑓(𝜙)

∇𝛼𝜙𝑏∇𝛼𝜙
𝑏 = 0  (116) 

Looking at this equation, we observe that only in the case of minimal coupling where we 

set 𝑓(𝜙) = 𝑀𝑝
2, would the last two terms vanish. This is contrary to what would be observed in 

the metric treatment of gravity where the 2 last terms are absent even in the case of nonminimal 

coupling. To proceed, we expand the fields 𝜙𝑎(𝑥𝜇) around a homogeneous background 𝜑𝑎(𝑡) 

as was done in Equation (51). 

 𝜙𝑎(𝑥𝜇) = 𝜑𝑎(𝑡) + 𝛿𝜙𝑎(𝑥𝜇) (117) 

And for first order expansion, 

 
𝑓(𝜙𝑎) = 𝑓(𝜑𝑎) + 𝑓,𝑏(𝜑

𝑎)𝛿𝜙𝑏;  

𝑉(𝜙𝑎) = 𝑉(𝜑𝑎) + 𝑉,𝑏(𝜑
𝑎)𝛿𝜙𝑏 . 

(118) 

In what follows, we may – for simplicity – set 𝑀𝑝
2 = 1. We shall derive the background 

equations for the flat FLRW metric in a homogeneous universe. 
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The background evolution equation obtained from Equation (116) is  

 �̈�𝑎 + 3𝐻�̇�𝑎 +
1

𝑓
𝑉,𝑎 − 3(�̇� + 2𝐻

2)𝑓,𝑎 −
1

𝑓
(�̇�𝑏)2𝑓,𝑎 = 0 (119) 

Let us again make an observation. Firstly, if 𝑓 = 1, the fourth and fifth terms will disappear, and 

we shall end up with �̈�𝑎 + 3𝐻�̇�𝑎 + 𝑉,𝑎 = 0. Note that this is the background equation we 

obtained in Equation (37) where we had minimal coupling for a single field. In the case of non-

minimal coupling for metric gravity, we would have ended up with �̈�𝑎 + 3𝐻�̇�𝑎 + 𝑉,𝑎 − 𝑓𝑎, 𝑹 =

0.  

From Equation (112),  

 𝑇00 = 𝜌 =
1

𝑓(𝜑)
(
1

2
(�̇�𝑎)2 +

𝑉(𝜑)

𝑓(𝜑)
) (120) 

 

 𝑇𝑖𝑖 = 𝑝 =
1

𝑓(𝜑)
(
1

2
(�̇�𝑎)2 −

𝑉(𝜑)

𝑓(𝜑)
) (121) 

We use Equation (111) to derive the gravitational field equations  

 3𝐻2 = 𝜌 =
1

𝑓(𝜑)
(
1

2
(�̇�𝑎)2 +

𝑉(𝜑)

𝑓(𝜑)
) (122) 

 

 2�̇� + 3𝐻2 = −𝑝 = −
1

𝑓(𝜑)
(
1

2
(�̇�𝑎)2 −

𝑉(𝜑)

𝑓(𝜑)
) (123) 

In what follows, we study the case of a scalar fields and metric with interactions. We 

revert to the metric in Equation (57) to obtain the first-order perturbed energy-momentum 

equations below (Azri & Nasri, 2020) 

 

𝛿𝜌 =
1

𝑓(𝜙)
(�̇�𝑎𝛿�̇�𝑎 − (�̇�𝑎)2Φ+

1

𝑓(𝜙)
𝑉,𝑎𝛿𝜙

𝑎)

−
𝑓,𝑎

𝑓(𝜙)2
((�̇�𝑏)2 +

2𝑉(𝜙)

𝑓(𝜙)
)𝛿𝜙𝑎 

(124) 

 

 

𝛿𝑝 =
1

𝑓(𝜙)
(�̇�𝑎𝛿�̇�𝑎 − (�̇�𝑎)2Φ−

1

𝑓(𝜙)
𝑉,𝑎𝛿𝜙

𝑎)

−
𝑓,𝑎

𝑓(𝜙)2
((�̇�𝑏)2 −

2𝑉(𝜙)

𝑓(𝜙)
) 𝛿𝜙𝑎 

(125) 



 44 

 

 𝛿𝑞 =  −
1

𝑓
(�̇�𝑎𝛿𝜙𝑎) (126) 

Inserting Equation (124) into (60), and (126) into (61) we obtain  

 

3𝐻(Ψ̇ + 𝐻Φ) +
1

𝑎2
𝑘2Ψ = −

1

2
{𝛿𝜌}.

= −
1

2
{
1

𝑓(𝜙)
(�̇�𝑎𝛿�̇�𝑎 − (�̇�𝑎)2Φ+

1

𝑓(𝜙)
𝑉,𝑎𝛿𝜙

𝑎)

−
𝑓,𝑎

𝑓(𝜙)2
((�̇�𝑏)2 +

2𝑉(𝜙)

𝑓(𝜙)
)𝛿𝜙𝑎}. 

(127) 

 

 Ψ̇ + HΦ =
1

2𝑓
 (�̇�𝑎𝛿𝜙𝑎). (128) 

The 𝑖 ≠ 𝑗 term issuing from the anisotropic pressure in Equation (111) becomes 

 𝜕𝑖𝜕𝑗(Φ − Ψ) = 0; 𝑖 ≠ 𝑗 (129) 

 Combining Equation (127) and (128), we can get the compact equation  

 𝛿𝜌 +
3𝐻�̇�𝑏𝛿𝜙𝑏

𝑓(𝜙)
= −

2

𝑎2
𝑘2Ψ (130) 

Let us compare this result with Equation (67). We notice that in this case even if we have 

non-minimal coupling, the anisotropic pressure is non-existent and therefore Φ = Ψ just like we 

had for a single field with minimal coupling. 

6.3 Entropy Perturbations 

In Equation (72), we defined the source of pressure perturbations, and it included the 

adiabatic and non-adiabatic contribution. This culminated in the definition of non-adiabatic 

pressure in Equation (80) as 𝛿𝑝𝑛𝑎𝑑 ≡ 𝛿𝑝 −
�̇�

�̇�
𝛿𝜌  

Since 𝛿𝑝, �̇�, 𝜌 ̇ and 𝛿𝜌 are known, we can substitute them into the equation and obtain  

 𝛿𝑝𝑛𝑎𝑑 = (
2�̇�𝑎𝛿𝜌

3𝐻(�̇�𝑏)2𝑓(𝜙)
+
2𝛿𝜙𝑎

𝑓(𝜙)2
) (
2𝑉𝑓,𝑎
𝑓(𝜙)

− 𝑉,𝑎). (131) 

Substituting Equation (130) into (131) we obtain 
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𝛿𝑝𝑛𝑎𝑑 = (
4𝐻�̇�𝑎

3(�̇�𝑏)2𝑓(𝜙)
) (𝑉,𝑎 −

2𝑉𝑓,𝑎
𝑓(𝜙)

) (
𝑘

𝑎𝐻
)
2

Ψ

−
2𝑉,𝑎
𝑓(𝜙)2

(𝛿𝜙𝑎 −
�̇�𝑎

(�̇�𝑐)2
�̇�𝑏𝛿𝜙𝑏)

+
4𝑉𝑓,𝑎
𝑓(𝜙)3

(𝛿𝜙𝑎 −
�̇�𝑎

(�̇�𝑐)2
�̇�𝑏𝛿𝜙𝑏). 

(132) 

It is interesting to see the implication of Equation (132). We saw the case of metric 

gravity with minimal coupling of a single field in chapter 4 and concluded that when 𝑘 ≪ 𝑎𝐻, 

the 𝛿𝑝𝑛𝑎𝑑 ∼ 0 (i.e., non-adiabatic pressure is suppressed at super-Hubble scales). However, for 

nonminimal coupling, in our affine case, we still retain two terms which are sources of our 

nonadiabatic pressure perturbation despite the first term being supressed. We can say that in the 

unsuppressed terms, one term represents the non-adiabatic pressure perturbation component due 

to the presence of multiple fields, 𝛿𝑝𝑛𝑎𝑑
𝑚𝑢𝑙𝑡𝑖𝑓𝑖𝑒𝑙𝑑

 and the other is the non-adiabatic term arising out 

of non-minimal coupling, 𝛿𝑝𝑛𝑎𝑑
𝑛𝑜𝑛𝑚𝑖𝑛𝑖𝑚𝑎𝑙. Let us define them as  

 

𝛿𝑝𝑛𝑎𝑑
𝑚𝑢𝑙𝑡𝑖𝑓𝑖𝑒𝑙𝑑

= −
2𝑉,𝑎
𝑓(𝜙)2

(𝛿𝜙𝑎 −
�̇�𝑎

(�̇�𝑐)2
�̇�𝑏𝛿𝜙𝑏) 

𝛿𝑝𝑛𝑎𝑑
𝑛𝑜𝑛𝑚𝑖𝑛𝑖𝑚𝑎𝑙 =

4𝑉𝑓,𝑎
𝑓(𝜙)3

(𝛿𝜙𝑎 −
�̇�𝑎

(�̇�𝑐)2
�̇�𝑏𝛿𝜙𝑏) 

(133) 

Let us now limit our case to two fields where 𝜙𝑎 = (𝜙, 𝜒) Equation (111) can be written 

transforms to 

 

𝑮𝜇𝜈 =
1

𝑓(𝜙)
( ∇𝜇𝜙∇𝜈𝜙 −

1

2
∇𝛽𝜙∇𝛽𝜙𝑔𝜇𝜈 +  ∇𝜇𝜒∇𝜈𝜒 −

1

2
∇𝛽𝜒∇𝛽𝜒𝑔𝜇𝜈

−
𝑀𝑝
2𝑉(𝜙, 𝜒)

𝑓(𝜙, 𝜒)
𝑔𝜇𝜈) 

(134) 

 We now adapt these equations to a flat FLRW spacetime. By using the 00 components of the 

Einstein’s Equations, we can see that the time evolution of the background fields 𝜙 = 𝜙(𝑡) and 

𝜒 = 𝜒(𝑡) obey the equation  

 3𝐻2 =
1

𝑓(𝜙, 𝜒)
(
�̇�2

2
+
�̇�2

2
+
𝑉(𝜙, 𝜒)

𝑓(𝜙, 𝜒)
) (135) 

And using the 𝑖𝑖 components of the Einstein’s Equations, we obtain 

 2�̇� + 3𝐻2 = −
1

𝑓(𝜙, 𝜒)
(
�̇�2

2
+
�̇�2

2
−
𝑉(𝜙, 𝜒)

𝑓(𝜙, 𝜒)
). (136) 
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Our intention is to derive an expression for non-adiabatic pressure perturbation for the 

two fields, 𝜙 and 𝜒. Since we have already established that the non-adiabatic perturbation will 

have two components in the case of multiple fields that are nonminimally coupled, we simply 

use our definitions in Equation (133) to come up with  

 𝛿𝑝𝑛𝑎𝑑
𝑚𝑢𝑙𝑡𝑖𝑓𝑖𝑒𝑙𝑑

=
2�̇��̇�(�̇�𝑉,𝜙 − �̇�𝑉,𝜒)

(�̇�2 + �̇�2)𝑓(𝜙, 𝜒)
(
𝛿𝜙

𝜙 ̇
−
𝛿𝜒

�̇�
 ) (137) 

 

 𝛿𝑝𝑛𝑎𝑑
𝑛𝑜𝑛𝑚𝑖𝑛𝑖𝑚𝑎𝑙 =

4𝑉�̇��̇�(�̇�𝑓,𝜙 − �̇�𝑓,𝜒)

(�̇�2 + �̇�2)𝑓(𝜙, 𝜒)3
(
𝛿𝜙

�̇�
−
𝛿𝜒

�̇�
 ) (138) 

We can make some observations from these two components. Firstly, if we set 𝑓(𝜙, 𝜒) = 1 (i.e., 

for minimal coupling), the first component becomes  

 𝛿𝑝𝑛𝑎𝑑
𝑚𝑢𝑙𝑡𝑖𝑓𝑖𝑒𝑙𝑑

= 
2�̇��̇�(�̇�𝑉,𝜙 − �̇�𝑉,𝜒)

(�̇�2 + �̇�2)
(
𝛿𝜙

𝜙 ̇
−
𝛿𝜒

�̇�
 ) (139) 

This is what would be expected in the metric treatment with minimal coupling of both 

fields to gravity. Furthermore, the second component would completely disappear (i.e., 

𝛿𝑝𝑛𝑎𝑑
𝑛𝑜𝑛𝑚𝑖𝑛𝑖𝑚𝑎𝑙 = 0. leaving us with only one source of non-adiabatic perturbation. Next, if we 

have one field, both the components are going to vanish, which agrees with the metric treatment 

we covered in chapter 4. Of course, there are no surprises in this case since we can always 

transform a non-minimally coupled action to a minimally coupled action and therefore lose any 

adiabatic perturbation contribution. This is a case in which the affine treatment shines. One 

should expect the same results to be obtained despite a change in frames for example from the 

Jordan to the Einstein frame. If the results are not the same, then we ought to ask ourselves 

whether it is in order for us to talk about frame equivalence. There is no confusion with the 

affine treatment as we shall see in the following subsection as we transition from the non-

minimal coupling to the minimal coupling case. For more on this, reference must be made to 

(Faraoni et al., 1998; Maeda, 1989; White et al., 2013). 

6.4 Transition from Non-minimal Coupling to Minimal Coupling 

Another way in which affine treatment of gravity shines brighter than the metric gravity 

is in the transition from non-minimal coupling to minimal coupling. In the metric formalism, we 

go through the tedious process of conformal transformations (Kamenshchik et al., 2016) in order 

to move from the Jordan to the Einstein frame. In our case, however, we perform the transition 

by simply redefining the potential as we shall see presently.  



 
47 

First, let us restate our action in Equation (98) 

 
𝒮[Γ, 𝜙] = ∫

√|𝑓(𝜙)𝑹𝜇𝜈(Γ) − 𝒌𝑎𝑏(𝜙)∇𝜇𝜙𝑎∇𝜈𝜙𝑏|

𝑉(𝜙)
𝑑4𝑥 

(140) 

Where the fields are non-canonical and are coupled to 𝒌𝑎𝑏(𝜙) which we refer to as the non-

Euclidean field space metric.  

The Einstein field Equations have already been derived in Equation (111). Next, we shall 

redefine the potential as  

 𝑉(𝜙) → 𝑈(𝜙) =
𝑀𝑝
4

𝑓(𝜙)2
𝑉(𝜙) (141) 

This naturally gives rise to a new curved metric defined as 

 𝓖𝑎𝑏(𝜙) =
𝑀𝑝
2

𝑓(𝜙)
𝒌𝑎𝑏(𝜙) (142) 

Our action then transitions to  

 
𝒮[Γ,𝜙] = ∫

√|𝑀𝑝
2𝑹𝜇𝜈(Γ) − 𝓖𝑎𝑏(𝜙)∇𝜇𝜙𝑎∇𝜈𝜙𝑏|

𝑈(𝜙)
𝑑4𝑥 

(143) 

We vary the action with respect to the spacetime connection as was done in Equations (99) to 

(105) and obtain the simple form of the action shown below. 

 ∇𝜆 (
𝑀𝑝
2√|�̅�(Γ, 𝜙)|

𝑈(𝜙)
(�̅�−1)𝜇𝜈) = 0 (144) 

Where 

 �̅�(Γ, 𝜙) = 𝑀𝑝
2𝑹𝜇𝜈(Γ) − 𝓖𝑎𝑏(𝜙)∇𝜇𝜙

𝑎∇𝜈𝜙
𝑏 . (145) 

We have already discovered that in this instance, we do not have a generic spacetime metric. 

The metric will be a solution to our equations derived from Equation (144). (i.e., our spacetime 

depends on the affine connection). So, solving (144) yields,  

 
𝑀𝑝
2√|�̅�(Γ, 𝜙)|

𝑈(𝜙)
(�̅�−1)𝜇𝜈 = 𝑀𝑝

2√|𝑔|(𝑔−1)𝜇𝜈 . (146) 

And since ∇𝜆𝑔𝜇𝜈 = 0, we get  

 �̅�𝜇𝜈(𝑔, 𝜙) = 𝑈(𝜙)𝑔𝜇𝜈 , (147) 
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from which we derive the Einstein Equations below by employing Equation (145) and following 

the steps in Equations (108) to (111). 

 𝑀𝑝
2𝑮𝜇𝜈 = 𝓖𝑎𝑏∇𝜇𝜙

𝑎∇𝜈𝜙
𝑏 −

1

2
𝓖𝑎𝑏∇

𝛽𝜙𝑎∇𝛽𝜙
𝑏𝑔𝜇𝜈 − 𝑈(𝜙)𝑔𝜇𝜈 (148) 

By switching back to 𝑉(𝜙) and 𝐾𝜇𝜈(Γ, 𝜙), it can be observed that the metric generated in 

Equation (147) coincides with that we generated in Equation (107) for the case of non-minimal 

coupling. We here confirm what we stated at the beginning of this subsection. The case of non-

minimal coupling and minimal coupling are related to each other simply by the transformation 

of the potential.  

This is in stark contrast to the metric formulation where the rigorous process of 

conformal transformation must be performed to transition from one frame to the other. 

Moreover, the potential and field redefinitions we made in Equations (141) and (142) to 

transition from (111) to (148) have no effect on the spacetime metric and consequently, the 

Hubble parameter. This is interesting because both the gauge invariant curvature perturbation ℛ 

in (69) and the number of e-folds 𝑁 in (44) are intrinsically dependent on 𝐻. So, the inflationary 

dynamics are not changed by the change of frame in the purely affine treatment – unlike the 

metric gravity treatment. 

Varying the action (143) and following the steps gone through in Equations (113) to 

(116), we arrive at the equation  

 

𝜕𝜇 (
√|�̅�(Γ, 𝜙)|

𝑈(𝜙)
(�̅�−1)𝜇𝜈𝜕𝜈𝜙

𝑏𝓖𝑎𝑏(𝜙))

−
1

2

√|�̅�(Γ, 𝜙)|

𝑈(𝜙)
(�̅�−1)𝜇𝜈∇𝜇𝜙

𝑏∇𝜈𝜙
𝑐𝓖𝑏𝑐,𝑎 −

√|�̅�(Γ, 𝜙)|

𝑈(𝜙)2
𝑈,𝑎

= 0, 

(149) 

Where 𝓖𝑏𝑐,𝑎 =
𝜕𝓖𝑏𝑐(𝜙)

𝜕𝜙𝑎
  

Making use of Equations (146) and (147), we obtain  

 
𝜕𝜇 (

√|𝑔|

𝑈(𝜙)
(𝑔−1)𝜇𝜈𝜕𝜈𝜙

𝑏𝓖𝑎𝑏(𝜙)) −
√|𝑔|

2
(𝑔−1)𝜇𝜈∇𝜇𝜙

𝑏∇𝜈𝜙
𝑐𝓖𝑏𝑐,𝑎 −√|𝑔|𝑈,𝑎

= 0. 

(150) 

 



 
49 

 𝓖𝑎𝑏□𝜙
𝑏 + (𝓖𝑎𝑏,𝑐 −

1

2
𝓖𝑏𝑐,𝑎)𝑔

𝜇𝜈∇𝜇𝜙
𝑏∇𝜈𝜙

𝑐 − 𝑈,𝑎 = 0 (151) 

The second term can be manipulated to produce the Levi-Civita field space connection, and the 

final equation will be  

 □𝜙𝑎 + Γ𝑏𝑐
𝑎 𝑔𝜇𝜈∇𝜇𝜙

𝑏∇𝜈𝜙
𝑐 − 𝓖𝑎𝑏𝑈,𝑏 = 0 (152) 

This is the evolution equation of motion in (Kaiser et al., 2013) for metric gravity in the Einstein 

frame. However, we should take note of the manifold’s metric in Equation (142). It is quite 

different from that obtained for the metric case which is defined as 

 𝓖𝑎𝑏 =
𝑀𝑝
2

2𝑓(𝜙)
(𝒌𝑎𝑏(𝜙) +

3

𝑓(𝜙)
𝑓,𝑎𝑓,𝑏) (153) 

The first term is like our manifold’s metric; however, the second term has additional 

terms which consist of derivatives of the non-minimal coupling function which bring about 

kinetic terms for the scalar fields in the Einstein frame which are absent in the purely affine 

formulation.  

We shall now employ the covariant formalism to study the perturbations present during 

inflation and the dynamics of (143). In what follows, we shall use the approach developed in (Di 

Marco et al., 2003; Easther & Giblin Jr, 2005; Kaiser et al., 2013; Langlois & Renaux-Petel, 

2008; Nibbelink & van Tent, 2002). 

We first employ Equation (117) to expand each scalar field around its classical 

background 𝜑𝑎(𝑡) and use Equation (56) to expand the spacetime metric to first order 

perturbation in a spatially flat FLRW metric. The field displacements and derivatives of the 

fields will appear as vectors in the manifold (Kaiser, 2016). We define the covariant derivative 

as  

 𝑫𝑐𝛿𝜙
𝑎 = 𝜕𝑐𝛿𝜙

𝑎 + Γ𝑏𝑐
𝑎 𝛿𝜙𝑏 (154) 

From (Peterson & Tegmark, 2011a, 2011b, 2012) we use the covariant derivative with respect to 

cosmic time as  

 𝑫𝑡𝛿𝜙
𝑎 ≡ �̇�𝑐𝑫𝑐𝛿𝜙

𝑎 = 𝛿�̇�𝑎 + Γ𝑏𝑐
𝑎 𝛿𝜙𝑏�̇�𝑐  (155) 

Where Γ𝑏𝑐
𝑎  are the Christoffel symbols obtained from the metric 𝓖𝑎𝑏 

The background part of the Einstein Equations (148) yield  

 𝐻2 =
1

3𝑀𝑝
2
(
1

2
𝓖𝑎𝑏�̇�

𝑎�̇�𝑏 + 𝑈(𝜙)) (156) 
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 �̇� = −
1

2𝑀𝑝
2
𝓖𝑎𝑏�̇�

𝑎�̇�𝑏 (157) 

We re define the Mukhanov-Sasaki variable in Equation (68) for multiple fields as  

 𝑄𝑎 ≡ 𝛿𝜙𝑎 +
�̇�

𝐻
𝜓 (158) 

Using Equations (154), (155) and (158), Equation (152) separates into the background and first 

order expressions  

 𝑫𝑡�̇�
𝑎 + 3𝐻�̇�𝑎 + 𝓖𝑎𝑏𝑈,𝑏 = 0 (159) 

And  

 𝑫𝑡𝑄
𝑎 + 3𝐻𝑫𝑡𝑄

𝑎 + {
𝑘2

𝑎2
𝛿𝑏
𝑎 +ℳ𝑏

𝑎 −
1

𝑀𝑝
2𝑎3

𝑫𝑡 (
𝑎3

𝐻
�̇�𝑎�̇�𝑏)}𝑄

𝑏 = 0, (160) 

Where  

 ℳ𝑏
𝑎 ≡ 𝓖𝑎𝑐𝑫𝒃𝑫𝒄𝑈(𝜙) − 𝑹𝑐𝑑𝑏

𝑎 �̇�𝑐�̇�𝑑 (161) 

is the effective mass-squared matrix written in terms of the Riemann tensor of the curved 

manifold. 

It is now necessary to simplify our equations by introducing the following quantities. 

First, we have the length of the background fields’ vector, 

 |�̇�|2 ≡ �̇�2 = 𝓖𝑎𝑏�̇�
𝑎�̇�𝑏, (162) 

with a unit vector defined as 

 �̂�2 ≡
�̇�𝑎 

�̇�
. (163) 

Next, we introduce the turn-rate of the background field defined as  

 𝜔𝑎 ≡ 𝑫𝑡𝜎
𝑎 , (164) 

and has a magnitude 𝜔 = |𝜔𝑎|. Lastly, we introduce the vector perpendicular to the motion of 

the fields, �̂� ≡ 𝜔𝑎 =
𝜔𝑎

𝜔
. We are now in position to decompose the vector fluctuations into the 

adiabatic and non-adiabatic perturbation components which will be given respectively by  

 
𝑄𝜎 = �̂�𝑎𝑄

𝑎 

𝑄𝑠 = �̂�𝑎𝑄
𝑎 

(165) 



 
51 

  We now split Equation (160) into an adiabatic and non-adiabatic component, 

respectively as shown below 

 

�̈�𝜎 + 3𝐻�̇�𝜎 + {
𝑘2

𝑎2
+ℳ𝜎𝜎 − 𝜔

2 −
𝑎−3

𝑀𝑝
2

𝑑

𝑑𝑡
(
𝑎3

𝐻
�̇�2)}𝑄𝜎

= 2
𝑑

𝑑𝑡
(𝜔𝑄𝑠) − 2(

𝑉,𝜎
�̇�
+
�̇�

𝐻
)𝜔𝑄𝑠  

(166) 

 

 �̈�𝑠 + 3𝐻�̇�𝑠 + {
𝑘2

𝑎2
+ℳ𝑠𝑠 − 3𝜔

2}𝑄𝑠 =
4𝑀𝑝

2𝜔

�̇�

𝑘2

𝑎2
Ψ.  (167) 

Where  

 
ℳ𝜎𝜎 = �̂�𝑎�̂�

𝑏ℳ𝑏
𝑎. 

ℳ𝑠𝑠 = �̂�𝑎�̂�
𝑏ℳ𝑏

𝑎. 
(168) 

6.5 Canonical Kinetic Terms 

To transform the action from non-canonical to canonical form is done by simply 

transforming the field space metric 𝒌𝑎𝑏 to a factor of 𝜹𝑎𝑏. In other words, we end up with  

 𝓖𝑎𝑏(𝜙) =
𝑀𝑝
2

𝑓(𝜙)
𝜹𝑎𝑏(𝜙) (169) 

We say that the metric is conformally flat. This is a very simple process and does not require the 

manipulation that one has to inevitably go through to transform Equation (153) into a 

conformally flat field space metric.  Restricting ourselves to two fields (i.e., 𝜙𝑎 = (𝜙, 𝜒), we 

calculate the non-zero components of the connection from Equation (142) and obtain  

 

Γ𝜙𝜙
𝜙
= Γ𝜒𝜙

𝜒
= Γ𝜙𝜒

𝜒
= −Γ𝜒𝜒

𝜙
= −

𝑓,𝜙

2𝑓(𝜙, 𝜒)
 

Γ𝜒𝜒
𝜒
= Γ𝜙𝜒

𝜙
= Γ𝜒𝜙

𝜙
= −Γ𝜙𝜙

𝜒
= −

𝑓,𝜒

2𝑓(𝜙, 𝜒)
 

(170) 

Generally, for a field space to be flat, it is necessary that 𝑹𝑐𝑑𝑏
𝑎 (𝓖) = 0. However, since 

we have limited ourselves to two fields, it is sufficient that 𝑹(𝓖) = 0. And from the definition 

of the Ricci scalar, 𝑹  

 
𝑹𝑐𝑏 = 𝑹𝑐𝑎𝑏

𝑎 = 𝜕𝑎Γ𝑐𝑏
𝑎 − 𝜕𝑏Γ𝑐𝑎

𝑎 + Γ𝑐𝑏
𝑑 Γ𝑑𝑎

𝑎 − Γ𝑐𝑎
𝑑 Γ𝑑𝑏

𝑎  

𝑹 = 𝑹𝑏
𝑏 = 𝓖𝑐𝑏𝑹𝑐𝑏, 

(171) 

We obtain  
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 𝑹(𝓖) =
1

𝑀𝑝
2
(𝑓,𝜙𝜙 + 𝑓,𝜒𝜒 −

𝑓,𝜙
2 + 𝑓,𝜒

2

𝑓(𝜙, 𝜒)
). (172) 

It is obvious from this expression that generally Equation (172) cannot be zero except if 

restrictions are placed on the coupling parameters. This is because we cannot transform our 

fields in such a way as to change their kinetic terms from non-canonical to canonical form 

simultaneously. In the following discussion, we put the restrictions on the coupling function so 

that 𝑹 vanishes and therefore transform the field space metric 𝓖 to Euclidean form. 

6.6 Flattening the Field Space and the Consequences to the Inflationary Dynamics 

To do this, we let 

 𝒌𝑎𝑏(𝜙) =
𝑓(𝜙)

𝑀𝑝
2
𝜹𝑎𝑏 (173) 

It can be seen from Equation (169) that this implies that 𝓖𝑎𝑏 = 𝜹𝑎𝑏 and the potential remains 

the same as in (141). We shall restrict ourselves to the single field case with non-minimal 

coupling and then study the multiple field case (restricting ourselves to two fields).  

6.7 Non-minimal Coupling with a Single Field 

The non-minimal coupling function we shall use is  

 𝑓(𝜙) = 𝑀𝑝
2 + 𝜉𝜙𝜙

2. (174) 

The non-canonical coupling term from Equation (173) is  

 𝒌(𝜙) =
𝑓(𝜙)

𝑀𝑝
2
, (175) 

And the potential will be  

 𝑉(𝜙) =
𝜆𝜙𝜙

4

4
 (176) 

The background evolution equation will take the form 

 �̈� + 3𝐻�̇� + 𝑈,𝜙 = 0 (177) 

The slow-roll conditions from Equation (38) are restated as  

 |
�̇�

2
| ≪ |𝑈(𝜙)|;                        |�̈�| ≪ |3𝐻�̇�|, |𝑈,𝜙| (178) 

Which implies that  

 3𝐻�̇� ≃ −𝑈,𝜙 (179) 
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And since  

 𝐻2 =
1

3𝑀𝑝
2
(
1

2
�̇�2 + 𝑈(𝜙)), (180) 

We obtain  

 3𝑀𝑝
2𝐻2 ≃ 𝑈(𝜙), (181) 

 Where the new potential in this case – following from Equation (141) and (176), is  

 𝑈(𝜙) =
𝑀𝑝
4𝜆𝜙𝜙

4

4(𝑀𝑝
2 + 𝜉𝜙𝜙2)

2. (182) 

To calculate the number of e-folds, N, we restate Equation (44) 

 𝑁 = ∫ 𝐻𝑑𝑡 =  ∫
𝐻

�̇�
𝑑𝜑 ≈ −

1

𝑀𝑝
2
∫

𝑈(𝜙)

𝑈,𝜙
𝑑𝜙

𝜙𝑓

𝜙𝑖

𝜙𝑓

𝜙𝑖

.
𝑡𝑓

𝑡𝑖

 (183) 

But 

 𝑈,𝜙 =
𝑚𝑝
6𝜆𝜙𝜙

3

(𝑀𝑝
2 + 𝜉𝜙𝜙2)

3. (184) 

This means that if we use the limit 𝜙2 ≫
𝑀𝑝
2

𝜉
,  

 𝑁 ≃ −
𝜉𝜙

4𝑀𝑝
4
∫ 𝜙3𝑑𝜙.
𝜙𝑓

𝜙𝑖

 (185) 

Since the field at the beginning of inflation is much higher than at the end of inflation (i.e., 

𝜙𝑓 ≫ 𝜙𝑖), then  

 𝑁 =
𝜉𝜙

16𝑀𝑝
4
𝜙4. (186) 

 From this, the value of the field at the horizon crossing is  

 
𝜙∗
𝑀𝑝

= (
16𝑁∗
𝜉𝜙

)

1
4

. (187) 

 

The first order slow-roll parameters are calculated from Equations (41) and (42). 

 𝜖 =
𝑀𝑝
2

2
(
𝑈,𝜙

𝑈(𝜙)
)
2

=
8

(16𝑁∗)
3
2√𝜉𝜙

. (188) 

To calculate 𝜂, we must first get 𝑈,𝜙𝜙 by differentiating 𝑈,𝜙.  
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 𝑈,𝜙𝜙 =
3𝑀𝑝

6(𝑀𝑝
2 − 𝜉𝜙𝜙

2)𝜙2𝜆𝜙

(𝑀𝑝
2 + 𝜉𝜙𝜙2 )

4 . (189) 

Substituting this into (42) yields,  

 𝜂 = 𝑀𝑝
2 (
𝑈,𝜙𝜙

𝑈(𝜙)
) = −

3

4𝑁∗
. (190) 

The spectral index, 𝑛𝑠, can then be calculated by using Equation (45) and it gives us  

 𝑛𝑠 ≃ 1 −
3

2𝑁∗
−

48

(16𝑁∗)
3
2√𝜉𝜙

, (191) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The larger the 𝜉, the lower the 𝑁 that is required for 𝑛𝑠  to fall  

within the observed range. A smaller 𝜉 coincides with the usual 𝑁 = 50 − 60. 

 

The tensor-to-scalar ratio which is defined as 𝑟 = 16𝜖 becomes,  

 𝑟 =
128

(16𝑁∗)
3
2√𝜉𝜙

. (192) 

We can constrain 𝜉𝜙 by using the definition of the amplitude of scalar density perturbation 𝑨𝑠,  

 𝑨𝑠 ≡
𝑈∗

24𝜋2𝜖∗
. (193) 
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Substituting for 𝑈∗ and 𝜖∗, one gets 

 𝑨𝑠 ≃ 8 × 10−3𝜆𝜙 (
𝑁

𝜉𝜙
)

3
2

. (194) 

However, from the CMB radiation observation (Alimi et al., 2010), 𝑨𝑠 ≃ 2.1 × 10−9. This fixes 

the 𝜉𝜙 at  

 𝜉𝜙 = 2.5 × 104𝜆
𝜙

2
3𝑁∗. (195) 

Remarks on these results:  

Looking at the standard model Higgs potential, 𝜙 → ℎ, the parameter 𝜆ℎ ∼ 𝒪(1), the 

observed 𝑨𝑠 would require the coupling parameter 𝜉ℎ ≃ 10
4𝑁∗. This would mean 𝑛𝑠 ≃ 1 −

3

2𝑁∗
 

since the third term becomes negligible. Substituting the observed value 𝑛𝑠 ≃ 0.9626 would 

give us 𝑁 ≃ 40 < 50. The tensor-to-scalar ratio 𝑟 ≃ 8 × 10−6. According to (Tristram et al., 

2021), the current CMB measurements give an upper bound of “𝑟 < 0.069 when Planck EE, 

BB, and EB power spectra are combined consistently, and it tightens further to 𝑟 < 0.056 when 

the Planck TT power spectrum is included in the combination and finally combining Planck 

with BICEP2/Keck 2015 data yields an upper limit of 𝑟 < 0.044”. 

6.8 Non-minimal Coupling with Multiple Fields 

We restrict ourselves to two fields and consider a quartic potential as shown below 

 𝑉(𝜙, 𝜒) =
1

4
(𝜆𝜙𝜙

4 + 2𝜆𝑖𝑛𝑡𝜙
2𝜒2 + 𝜆𝜒𝜒

4), (196) 

Where 𝜆𝜙, 𝜆𝑖𝑛𝑡, 𝜆𝜒 are dimensionless coupling constants. We also use a non-minimal coupling 

function,  

 𝑓(𝜙, 𝜒) = 𝑀𝑝
2 + 𝜉𝜙𝜙

2 + 𝜉𝜒𝜒
2, (197) 

Where 𝜉𝜙 and 𝜉𝜒 are also dimensionless coupling constants. 

Substituting this into Equation (141), we get the redefined potential,  

 𝑈(𝜙, 𝜒) =
𝑀𝑝
4

4
 
(𝜆𝜙𝜙

4 + 2𝜆𝑖𝑛𝑡𝜙
2𝜒2 + 𝜆𝜒𝜒

4)

(𝑀𝑝
2 + 𝜉𝜙𝜙2 + 𝜉𝜒𝜒2)

2 . (198) 

The single field limit is the one we have studied in the previous subsection. It must be noted that 

there is no symmetry that imposes 𝜆𝜙 = 𝜉𝜙 or 𝜆𝜒 = 𝜉𝜒 and therefore, it becomes hard to write 
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the potential in terms of a single radial field. For a strong field, the flatness of the potential can 

be observed in a particular direction as  

 𝑈(𝜙) ≃
𝑀𝑝
4𝜆𝑎

4𝜉2
{1 + 𝒪 (

𝑀𝑝
2

𝜉(𝜙𝑎)2
)}, (199) 

 Where 𝜙𝑎  = (𝜙, 𝜒). 

From Equations (156) and (159), we derive the background evolution equations below 

 3𝑀𝑝
2𝐻2 =

1

2
{�̇�2(𝑡) + �̇�2(𝑡)} + 𝑈(𝜙, 𝜒) (200) 

 

 
�̈� + 3𝐻�̇� + 𝑈,𝜙 = 0 

�̈� + 3𝐻�̇� + 𝑈,𝜒 = 0. 
(201) 

Notice that we have reduced the field space metric to a flat metric leading to the connection 

coefficients vanishing. It should also be noted that again, only the potential has been redefined. 

At this point, we cannot proceed with solving these equations along with Equation (160) without 

applying some numerical technique. It is for this reason that we make use of the open-source 

PyTransport code (Mulryne & Ronayne, 2017) to compute the necessary predictions.  

The PyTransport code uses the 𝛿𝑁 formalism and uses the method described in (Dias et 

al., 2016; Ronayne & Mulryne, 2018) to solve the background evolution and displays the 

evolution of the fields in terms of 𝑁, and also the spectral index as shown in the Figures below. 

 

 

 

 

 

 

 

 

Figure 5: Evolution of the background fields in terms of 𝑵 and the the numerical solution for the 

scalar tilt for the same field’s initial values and model parameters used in the background 

evolution.  

a b 
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Figure 6: The evolution of the power spectrum of the curvature perturbation 𝜁 

Figure 7: The two-point correlation function 
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Figure 8: The evolution of the three-point function 

 

 

 

 

 

 

 

 

 

 

Figure 9: The reduced bispectrum 𝑓𝑁𝐿 
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The values used for the couplings are 𝜆𝜙 = 2.4 × 10−3, 𝜆𝑖𝑛𝑡 = 2 × 10
−4 and 𝜆𝜒 = 3 × 10

−2 

for the potential in Equation (186), and the non-minimal coupling constants are 𝜉𝜙 = 1.8 × 10
5 

and 𝜉𝜒 = 10
3. The 𝑓𝑁𝐿 indicates non-gaussianity for low values of 𝑁. 

The potential parameters 𝜆𝑎 and the non-minimal coupling parameters 𝜉𝑎 are set in such 

a way that the predicted spectral indes falls within the bounds of the measured value 𝑛𝑠 ≃

0.9626. These settings induce a tensor-to-scalar ratio 𝑟 ≃ 2.5 × 10−4. For now, the observed 

temperature distribution of the CMB follows a nearly Gaussian distribution. 

In Figures 6 and 7, the plots show the evolution of the power spectrum, 𝑃𝜁 and the 

correlation function 〈𝜁𝜁〉 with respect to the number of e-folds 𝑁. It should be noted that we 

have set the same pameter constants for the Figures 5, 6, 7, 8 and 9. The power spectrum 

contains all the characteristics of the perturbations. 

In general, multifield inflation predicts a non-Gaussian distribution of the primordial 

pertubations – including the two field case – to which we have restricted ourselves. We observe 

from the plots of Figure 7 that deviation from non-Gaussianity is observed in low values of 𝑁. 

In order to determine deviations from Gaussianity, we observe the possible non-zero three point 

field correlation function and the 𝑓𝑁𝐿 amplitude. For large 𝑁, 𝑓𝑁𝐿 ∼ 0 and the distribution is 

largely Gaussian. From (Acharya et al., 2019), the 𝑓𝑁𝐿
𝑙𝑜𝑐𝑎𝑙 = −0.9 ± 5.1; 𝑓𝑁𝐿

𝑒𝑞𝑢𝑖𝑙 = −26 ± 47; 

and 𝑓𝑁𝐿
𝑜𝑟𝑡ℎ𝑜 = −38 ± 24 (68%, CL, statistical). The results are obtained by combining 

temperature and polarisation analysis and include low multiploe (4 ≤ ℓ < 40) polarisation data.  

Comments about the Two-field Higgs Inflation in the Affine Treatment 

The model we have used could be improved upon by requiring that all the minimal 

coupling parameters be equal. (i.e., 𝜉𝜙 = 𝜉𝜒 = 𝜉 for both scalar fields. In this way, the potential 

will be redefined to  

 𝑈(ℎ, 𝜒) =
𝜆𝑀𝑝

4(ℎ2 + 𝜒2 − 𝑣2)

4 (𝑀𝑝
2 + 𝜉(ℎ2 + 𝜒2))

 (202) 

Where ℎ is the standard model scalar Higgs boson, 𝜒 is the single Goldstone mode and 𝑣 is the 

vacuum expectation value whose numerical value is 𝑣 ≃ 246 GeV (Rajantie, 2018). With the 

standard model self coupling term 𝜆 ∼ 𝒪(1), the 𝑨𝑠 will require a big value of 𝜉 and this would 

shift the predicted 𝑛𝑠 from the observed value. We may therefore require that 𝓖𝑎𝑏 ≠ 𝜹𝑎𝑏 

(i.e.,We need a curved field space). We could achieve that by using 𝒌𝑎𝑏 = 𝜹𝑎𝑏. In this way, 
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both fields will be canonical while non-minimally couples to gravity as the action in Equation 

(98). Of course this will affect the slow-roll assumptions and the predictions will deviate from 

those of the case we have studied.  
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Chapter 7: Conclusion 

The Big Bang theory makes good predictions which are consistent with observations 

from the CMB radiation – which confirms that the universe is largely homogeneous on 

cosmologically large scales – and the abundance of elements. However, we have observed that it 

suffers from some drawbacks which necessitate the introduction of the theory of inflation. What 

makes the theory of inflation interesting is that it overcomes the problems of the big bang 

model, namely, the horizon and flatness problems, while it leads to the small fluctuations which 

are at the origin of the structure in the universe.  

In this thesis, we have been interested in inflation driven by multiple fields and the 

associated features, namely, the isocurvature (entropy) perturbations and the deviation from 

Gaussianity.  

First, we have reviewed the theory of inflation in its standard form where only a single 

field is considered. We have used the single field inflation paradigm to explain the dynamics of 

inflation, and derived the slow-roll parameters, (𝜖, 𝜂)  that govern how many e-folds, 𝑁 are 

required for inflation to stop so that the Big Bang cosmology can take over. Some mention has 

been made about reheating and the however, some parameters are still unknown which would 

help us pin down the exact temperature at which reheating occurs. 

Next, we reviewed the cosmological perturbations that are responsible for the 

anisotropies that are observed in the CMB radiation. The density perturbations are a result of 

quantum fluctuations that exist in the scalar fields before the beginning of inflation and are 

stretched beyond superhorizon limits leading to the formation of structure. We prodded through 

the single field limit and concluded that the entropy perturbations and non-adiabatic pressure 

perturbations are suppressed at 𝑘 ≪ 𝑎𝐻 distances. The comoving curvature perturbation 

remains constant at these scales, (i.e., ℛ̇ = 0 for 𝑘 ≪ 𝑎𝐻). 

  We extended our study to include multiple fields, with nonminimal coupling, but 

restricted ourselves to the two-field régime. We discovered that at superhorizon distances, we 

have two sources of non-adiabatic perturbations: one coming from the presence of multiple 

fields and the other coming from the non-minimal coupling. This implies that the entropy 

perturbations are not suppressed through the whole inflationary period. It should be noted that 

though our study was restricted to the purely affine theory of gravity, the presence of entropy 

perturbations is intrinsic in the metric theory and in the Palatini treatment (Kaiser & Todhunter, 

2010). Furthermore, having concluded that for a single field we produce a Gaussian distribution 
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in the density perturbations, we found that in multiple fields, we have deviation from 

Gaussianity is observed in the lower values of 𝑁.  

Since gravity is an aspect of spacetime curvature, which depends on the spacetime 

connection, we have considered that the affine connection should be introduced first instead of 

having the concept of the metric appearing first from which to derive the connection. In our 

study, we have shown how the metric is a solution to the equations of motion. Moreover, we 

have gone on to exhibit the differences between this formulation and the standard metrical 

gravity in the following ways. Firstly, the transformation from non-minimal coupling to minimal 

coupling is performed by a simple redefinition of the potential – without the need for conformal 

transformations as is necessarily the case with the metrical treatment, or even in the Palatini case 

as one transforms from the Jordan to the Einstein frame (Gialamas et al., 2020). The metric in 

our case is kept unchanged and this feature enables us to overcome the frame ambiguity that is 

suffered by the other two formulations. As displayed in our study, the notion of adiabaticity is 

invariant as we transition from non-minimal to minimal coupling. Secondly, our treatment leads 

to a simple conformally flat field space metric, expressed only in terms of the non-minimal 

coupling function, when the fields are canonical. This is a result of the linearity of the curvature 

in the connection. Lastly, another useful feature is that we can impose equal interactions for the 

non-minimal coupling and the canonical kinetic terms. We let 𝒌𝑎𝑏(𝜙) = (
𝑓(𝜙)

𝑀𝑝
2 )𝜹𝑎𝑏  and 

discover that the potential retains its redefinition. This feature is absent in the GR treatment and 

simplifies the inflationary dynamics while not affecting the effects of the non-minimal coupling 

on the potential. 

In the application of multifield affine inflation, we restricted ourselves to the two field 

dynamics and have used a potential with fields having quartic powers. We have studied the 

inflationary dynamics by flattening the field manifold and have shown how the single field limit 

leads to observations that deviate from those predicted in Metric gravity. Our potential produced 

a tensor-to-scalar ratio 𝑟 ≃ 8 × 10−6. This prediction falls between that made by the Metric 

formulation and the palatini formulation (Bezrukov & Shaposhnikov, 2008; Mulryne & 

Ronayne, 2017). 

We have used the PyTransport code to numerically evaluate the solution for our two-

field limit, choosing the initial conditions for the fields, as well as the potential parameters. With 

these parameters, the scalar tilt of the perturbations reads𝑟 ≃ 2.5 × 10−4 ≪ 0.069 which is the 

upper bound limit from the CMB radiation measurements. In addition, we have solved for the 
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three-point correlation function using the code and tracked the possible deviation from 

Gaussianity through the reduced bi-spectrum.  

In conclusion, more interesting features are expected to be predicted as this formulation 

is developed further than what has been achieved in this thesis – especially as more information 

gets gathered. Also, we have considered a symmetric part of the spacetime Ricci tensor, which 

is sufficient in describing our gravitational theory since only two fields were considered. 

However, it would be interesting to see what predictions can be made if the (symmetric) 

character of the spacetime Ricci curvature is relaxed (Azri & Nasri, 2021b). 
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