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Abstract

Petroleum-based plastic cutlery is widely used and due to their non-biodegradable
properties, they cause serious threats to the environment. Therefore, there is a need to
fabricate such products from biodegradable material. Date Palm Rachis (DPR) waste
was used as a filler in three levels of 30 wt%, 40 wt% and 50 wt% for cost-
performance optimization balance and improving the thermal behaviors of the
biodegradable Polylactic Acid (PLA). The preparation of biodegradable PLA/date palm
waste composites was done using melt mixing extruder at 180°C by varying
parameters such as mixing time, the composition of date palm waste biomass,
biomass particle size, plasticizers type and plasticizers composition of 1%, 5% and
10% by weight. Biodegradable cutlery along with testing specimens were
prepared by compression molding. The produced biodegradable composites were
subjected to different characterization and analysis techniques, physical tests,
thermal tests, and mechanical tests.

Scanning electron microscope displayed a uniform dispersion of the DPR of 90
pum in the PLA matrix by the addition of 30 wt% biomass and the esterification reaction
between —OH of the biomass, the carbonyl (C=0), and the terminal -COOH group in the
PLA was observed from Fourier-transform infrared spectroscopy findings. The 30%
DPR-PLA composite was considered as the optimum composite because it exhibited
lower Melt Flow Index (16 ¢g/10 min) compared to the other two bio-composites,
therefore, it will be the best option for processing in large-scale extruders. A slight
increase in tensile strength of 30% DPR-PLA composite from 31.82 MPa to 33.20 MPa
was noticed by the incorporation of 10 wt% Triethyl citrate (TEC). This research
confirmed the superior effect of 10 wt% TEC compared with 10 wt% polybutylene
adipate terephthalate (PBAT) in terms of improving the elongation at break of the 30%
DPR-PLA composite from 1.8% to 4.20%. However, the water absorption of the 30%
DPR-PLA composite for 24 hours was low in saline water (0.25 wt%) and tap water
(1.48 wt%) compared with hot water at 50°C (9.34 wt%). On the other hand, the
biodegradability tests in outdoor soil showed that the 30% DPR-PLA sample that was
placed in the bottom of the watered soil had most color fade off with the highest weight
loss of 3.06% after 4 months. This research will have positive consequences on the UAE

economy and produce valuable green cutlery



viii
products aligned with both 2021 UAE Vision and 2030 Abu Dhabi Vision in terms of

sustainability and innovation in the non-oil sector.

Keywords: Biodegradable, PLA, PBAT, TEC, Date Palm Waste, Cutlery, Green
Composites.
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Chapter 1: Introduction

1.1 Overview and research objectives

Most petroleum-based plastics are non-biodegradable and commonly used in
almost every field. They are manufactured as non-biodegradable based on a business
point of view to improve the quality of plastics by giving them long-lasting effects,
more temperature resistant, and more durable even after use. Most of the inorganic
wastes can be considered as non-biodegradable waste. A non-biodegradable waste
cannot be easily handled as it cannot be dissolved by natural agents or decomposed.
Simply they cannot be broken down by natural organisms, so they act as a source of
pollution in landfills and oceans by remaining on earth for thousands of years without
any degradation. They are the main causes of air, water, and soil pollution and diseases
like cancer. These plastics need to be replaced as soon as possible as they are not eco-
friendly. Scientists have carried many ideas such as biodegradable plastics or
incorporated certain biodegradable components with plastics and made them easily
degradable.

The awareness and interest of the development and study of biodegradable
polymers that could replace petroleum-based plastics in all applications are rising to
reduce the environmental impacts of non-biodegradable polymers or composites and
decrease dependence on petroleum products. Polylactic Acid (PLA) is a good example
of biodegradable polymer with high mechanical properties and biocompatibility. PLA
is produced by fermentation from agricultural products like corn, sugar cane, potato,
and rice. Some disadvantages of using PLA without filler could be the high cost of
production, low thermal stability, and brittleness. To optimize the cost-performance

balance and enhance mechanical and thermal properties; biodegradable fillers like



lignocellulosic biomass could be a good solution instead of synthetic fibers like glass.
The advantages of biodegradable natural fillers are mainly their abundance, high
stiffness, non-abrasiveness to the processing equipment, low density, and low cost [1].
Another example of a biodegradable polymer is starch. Starch films are attractive for
food packaging applications and have the ability to degrade into harmless products by
the microorganisms in the soil [2].

The UAE produces 500,000 tons of date palm waste every year [3]. These are
disposed of in landfills or burned in farms causing environmental pollution which can
lead to global warming and its consequences due to the huge amounts of CO> produced
from burning date palm waste. Date palm biomass is a lignocellulosic material made
mainly from cellulose, hemicellulose, and lignin. However, cellulose is the most
important skeletal component of wood carbohydrate, the polysaccharide cellulose is
an almost inexhaustible polymeric raw material with attractive properties and
structure. Cellulose can be extracted from different parts of date palm waste like
leaflet, rachis, and fiber as displayed in Figure 1. Hence, date palm waste biomass can
be used to reinforce different polymeric matrices like starch, Polylactic Acid,

Polyvinyl Alcohol, and other polymers [4].

Rachis Leaflet

Figure 1: Different parts of date palm waste.



The goal of this research was to develop a new green composite suitable for
cutlery and food packaging applications by replacing petroleum-based materials used
in single-use plastics with a sustainable biodegradable waste material from UAE Date
Palm Rachis (DPR) and Polylactic Acid (PLA) as shown in Figure 2. PLA was
considered to be a suitable polymer that would be compatible with conventional
biodegradable polymers to be used in the preparation of the date palm biomass-
polymer composite. The objectives of this study are the following:

1. Prepare composites of whole DPR with PLA in an extruder.

2. Prepare composites of cellulose extracted from DPR with PLA and to compare
with composites using the whole DPR as a filler.

3. Characterize the fabricated new biodegradable composites for their physical,
thermal, and mechanical properties to be compared with the specifications of
plastic cutlery available in the market.

4. Investigate the effects of parameters such as the composition and particle size of
biomass or cellulose, melting temperature, melt mixing time, and plasticizer type

and amount on the physicochemical properties of the prepared composites.

-1 1 1

DPR or Cellulose PLA+Plasticizer Biodegradable

Compression
Molding

o DPR Preparations Melt Mixing

& Size Reduction Extrusion o Ready for
o Cellulose Extraction Characterizations

Figure 2: The fabrication methodology for the biodegradable DPR-PLA cutlery.



This work utilizes UAE date palm waste for the production and preparation of
green biodegradable composites intended for cutlery and packaging applications with
competitive properties. The possibility of utilizing the whole DPR waste without
extraction as a filler to produce DPR-PLA composite has not been studied before. This
research was focused on the effect of the addition of biomass (30 wt%, 40 wt%, and
50 wt%) to the PLA matrix on the properties of the resulting composite material
including phase adhesion, degradation temperature, glass transition temperature, and
Melt Flow Index. Effect of a maximum of 10 wt% of two food grade plasticizers (TEC
and PBAT) to enhance the mechanical properties of the DPR-PLA composite material
was studied for the first time. Also, water absorption and biodegradation of the

optimum DPR-PLA composites under real local soil conditions were investigated.

1.2 Petroleum-based plastic and corresponding waste problems

The plastic term came from a Greek word called “plastikos” and it means the
ability to maintain its shape to be used in different applications. Plastics are long chains
of polymer molecules that are extracted from petroleum, natural gas, and coal. The
world plastic production has risen from 2 million tons per year in 1950 to 381 million
tons per year in 2015 [5]. The two main types of plastics are thermoset and
thermoplastic. Thermoset plastic cannot melt once it is formed because they are
nonlinear and cross-linked polymers. The most produced and consumed plastics are
thermoplastics. Thermoplastics are linear polymers with the ability to re-melt and
reshape several times [6]. Figure 3 shows the structures of a linear, branch, and cross-
linked polymers [7]. The main advantages of plastics are the low manufacturing cost,

good mechanical performance, and durability [8].



Linear Branch Cross-linked

Figure 3: Representative skeletal structures of a linear, branch, and cross-linked
polymers [7].

Petrochemical-based plastics such as Polypropylene (PP), Polyethylene
Terephthalate (PET) and Polystyrene (PS) have been used as packaging and food
contact materials because they are largely available at low cost and good performance.
However, plastic wastes and their corresponding microplastic contaminants pollute the
world's oceans by 13 million metric tons of plastic per year. They will cause
suffocation, starvation, and drowning for seabirds, marine mammals, fish, and sea
turtles. They are killed by ingesting plastic debris as shown in Figure 4 [9]. Many toxic
chemicals such as dioxins are released from plastics. They cause cancer, chronic
respiratory disorders, neurological damage, and other health problems [10]. Plastics
are non-biodegradable, but they undergo the process of photo-oxidation or UV
radiation or even sunlight [11]. This process will release toxic gases, dioxins,

polychlorinated biphenyls, and furans [12].
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Figure 4: A dead albatross due to ingesting plastic debris in the Pacific Ocean [9].

1.3 Biodegradable polymers as an alternative solution

Recently, the accumulation of trillions of plastic wastes in landfills and oceans
has increased the environmental and health concerns. These concerns strongly shift
the researchers’ attention to the demands for developing biodegradable and renewable
materials in various applications such as medical and food packaging. The application
field of food packaging includes drinking cups, stirrers, plates, cutlery, straws, and
food containers. These items must be fabricated to be in contact with aqueous, fatty,
and acidic foods bellow room temperature or as high as 60°C [13]. A balance between
food protection and other considerations such as good mechanical performance, cost
and energy is highly recommended [14]. Natureworks LLC., the main resin producer,
recorded that bioplastics synthesis produces 60 wt% fewer greenhouse gases when

compared to petroleum-based polymers production [15].

1.3.1 Biodegradability concept

The biodegradability concept is directly related to the chemical structure of the

polymers despite their origin. Biopolymers fabricated from renewable resources are



biodegradable and compostable and can act as a soil fertilizer. On the other hand,
plastics from renewable resources might not be biodegradable or compostable. Many
bioplastics are fabricated from non-renewable materials as illustrated in Table 1. The
degradation in landfills occurs via microorganisms such as fungi and bacteria by an
enzymatic process. But non-enzymatic degradation could break the polymer chains by
chemical hydrolysis. The end products for degradation are CO», water, CHa, biomass,
and other natural substances. The recyclable biological process of biodegradation is
shown in Figure 5. For biopolymers, the plants are grown then polymerization will
take place. The final products will be used by consumers then dumped in landfills to
be composed to end products that will maintain sustainability. The degradation rate
will rely on humidity, temperature (50-70°C), and type and number of microbes. In
general, industrial composting is much faster (around 6 to 12 weeks) compared to the

slow outdoor biodegradation [16].

Table 1: Classifications of polymers based on resource types and end of life option
[17].
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Figure 5: Cyclic biological process of biodegradability [18].

1.3.2 Durability and cost

Petroleum-based polymers are durable compared to biodegradable polymers
since petroleum-based polymers start to decompose after 500 years. Some
biodegradable polymers such as PLA can degrade after 10 to 20 years in indoor
conditions. However, it is totally biodegradable at industrial compostable conditions
in a much shorter time. The price of bio-based and biodegradable polymers is high on
a weight basis compared to petroleum-based polymers because of the high density of
bio-based polymers. There are some exceptions for biodegradable polymers such as

PLA. The high stiffness of PLA compared to PS will help to reduce its thickness and



therefore its cost. Unfortunately, petroleum-based polymers' prices are not stable due
to the fluctuations in oil prices. In this case, the price of biopolymers is more stable

and may drop due to the effect of the economy of large scale and conversion [19].

1.3.3 Biodegradable polymers classification

The biodegradable polymers are classified according to their sources to
biopolymers from renewable resources and polymers from petrochemical resources
such as Polycaprolactone (PCL) as shown in Figure 6. The biopolymers from
renewable resources are subclassified according to their source and synthesis process.
The first category is directly from biomass such as polysaccharides and proteins, the
second category consists of synthetic biopolymers from biomass like Polylactic Acid
(PLA), and the last category contains those obtained by microorganisms by microbial
fermentation like Polyhydroxy Alkanoates (PHA). PLA and starch-based polymers are
common bio-based polymers to be used in food packaging applications. Figure 7
presents the structure of common biodegradable polymers. The characteristics of

selected biodegradable polymers will be introduced as the following.



Biodegradable
polymers
|
| I
Biopolymers Polymers
(renewable resources) (petrochemical resources)
I
I I 1
From From From m PCL
biomass microorganisms  biotechnology
: |
: ! —  PGA
Proteins Polysaccharides PHA PLA
PHB
] PBSA
Whey protein|_| Starch

= Casein L Cellulose

Gluten |_Carrageenan

Figure 6: Representative biodegradable polymers based on two resources [12].

CH3 o CHj3
o OH
(o} H
o CH3 n o

PLA PHB
CH20H CH,0OH CH,OH CH,0H
(o} o)
H OH HY o (OH
(o] (o) o]
OH
OH n OH OH o
Starch Cellulose
(o] H OH
(o]
n n
PCL PGA

Figure 7: The structure of common biodegradable polymers [18].
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Starch is classified as one of the most abundant polysaccharides biopolymer
from plants [20]. Amylopectin and amylose are the main glucose constituents of native
starch. Starch as a biodegradable polymer can be processed in large quantities to form
films with low oxygen permeability due to its low cost. Starch can be used in plastic
bags and food packaging [21]. Unfortunately, starch as a biopolymer has many
limitations regarding processing due to its brittleness and hydrophilic characteristics.
To resolve these drawbacks and improve its flexibility, starch needs to be converted
into thermoplastic starch (TPS) by extrusion shearing processes [22, 23].

Cellulose is another highly polar biopolymer composed of glucose units based
on renewable polysaccharides in plants. Cellulose has stronger mechanical properties
and hydrolysis resistance when compared to starch. It forms stronger hydrogen bonds
due to its mixed morphology and different polymer chain configuration than those in
starch. On the other hand, cellulose extraction is more expensive than starch, especially
due to the expensive pre-treatment stages in the case of cellulose [24]. The resultant
pure cellulose could be further chemically modified to produce cellulose derivatives
with enhanced properties. However, these modifications are costly [25, 26].
Furthermore, films produced from uncoated cellulose are highly permeable to water
vapor and suitable barriers to bacteria, aromas, and flavor [26].

PLA is a biodegradable readily available and cheap polyester produced from
Lactic Acid by the fermentation of crops like corn. PLA exhibits accepted properties
for packaging and applications that involve food contact. Transparency,
biocompatibility, processability, and stiffness are the main reason to use PLA in such
applications. Table 2 shows different examples of biodegradable polymers and
petroleum-based polymers with their characteristics and possible natural filler

reinforcement. PLA shows better thermal processability when compared with other
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biodegradable biopolymers such as Polycaprolactone (PCL), Polyhydroxy Alkanoates
(PHA), and Polyethylene Glycol (PEG). This special characteristic allows the PLA to
be processed in wide methods such as melt mixing extruder, injection molding,
compression molding, fiber spinning, blow filming, thermoforming, and cast film [27].
However, PLA is brittle with less than 10% elongation at break which means it will
not be suitable for applications that require plastic deformation at high levels of stress.
To address this limitation, PLA needs to be blended with other biopolymers or natural
fillers that have specific properties to decrease its brittleness and enhance its
mechanical properties.

Polyhydroxy Alkanoates (PHA) are mostly thermoplastic biodegradable
polymers obtained naturally by bacterial fermentation of lipids or sugars. The melting
point of these polymers ranges from 40°C to 180°C according to the used monomer
and they are excellent for packaging films [28] . Polyhydroxy Butyrate (PHB) is the
most well-known type of these polymers. PHB has similar properties to Polypropylene
(PP) but more brittle and stiffer. Polyhydroxy Butyrate-Valerate (PHBV) is less brittle
and can be used as a packaging material that can degrade within 6 weeks in industrial
composting conditions, however, it is costly. PHB is a good additive for PLA to
improve its mechanical properties. The MARGIN project in Poland allowed the
production of thermoformed biodegradable food packaging from PLA with an atactic

PHB additive.
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Table 2: Biodegradable polymers and petroleum-based polymers with their characteristics and possible natural fillers reinforcement.

Biodegradable Polymers

Petroleum-based Polymers

(Food Grade a

pproved by FDA)

Tensile Strength (MPa)

PLA (2003D) PCL PHB PET PS PP
-Packaging and -Long-term items; | -Bottles, bags, | -Carbonated soft -Disposable -Bottle caps.
paper coatings. mulch and other | and wrapping drink bottles. cups. -Drinking straws.
-Sustained release | agricultural films. film. -Processed meat -Packaging -Medicine bottles.
Application ? systems for -Containers; slow- | -Controlled Packages. materials. -Car seats
pesticides. release systems for | drug release -Peanut butter -Laboratory and batteries.
-Mulch films, and drugs. carriers. jars. ware. -Carpet
compost bags. -Sleeping bags. | -Electronic uses. backings.
Cost (€/kg) 0-2 - 4-12.02 1.71-1.8 2-2.4 1.71-2
Melting point (°C) ¢ 120-170 60-65 180 245-265 - 160-208
Glass Transition (°C) ¢ 55-56 —60 55 69-115 97 -18
Onset Thermal
Degradation 278.5°¢ 234 ¢ 272.7° 401 369 336-366°
MFI (g/10 min) 69 145" 21.2" 28.94 11.57 5.9/
Impact Strength (J/cm) © 0.20 1.20 0.22 - 19.7 0.3-2
51.38£1.19 ™ 40.60£3.06 ™ 36.4+2.8" 59.6+£2.9° 25-69° 26-41.4°

a: [29], b: [30], c: [31], d: [32], e: [33], T: [34], 9: [35], h: [36], i: [37], |:

[38], k: [39], I: [40], m: [41], n: [42], 0: [43], p: [44]

€T



Table 2: Biodegradable polymers and petroleum-based polymers with their characteristics and possible natural fillers reinforcement (Cont.).

Biodegradable Polymers

| Petroleum-based Polymers

(Food grade polymers that approved by FDA)

of PLA matrix."

applications. "

PLA (2003D) PCL PHB PET PS PP
Modulus (GPa) 1.09+0.03719™ 0.22+0.0052™ 2.99+0.209" 2.467+1.99° 4-5°P 0.95-1.77°
Elongation (%) 6.64+0.46 ™ 1996+221 ™M 2.1+0.3" 5.2+1.6° 1-2.5P 15-700°
Water Absorption after 24
hours (wt%) 0.125¢ 0.01' 0.3° 05" 0.03-0.10° 0.01-0.02°
Incorporation of 5 Addition of 50 Addition of up | Incorporation of | Agave leaves | Addition of 30 wt%
wt% MCC wit% cocoa shell to 5 wt% CNC up to 20 wt% (2 wt%) hemp fiber increased
enhanced waste to 3D improved treated moringa reinforced the ultimate tensile
the thermal printed PCL gas barrier and oleifera fiber Polystyrene strength and
stability but showed a migration increased the showed good | Young’s modulus by
Reinforcement Effects reduced the good adhesion and properties of mechanical interfacial more than
elongation and fine resolution for PHB. " properties of adhesion.” 50% and 143%,
tensile strength biomedical PET.* respectively.?

m: [41], n: [42], o: [43], p: [44], q: [45], r: [46], s: [47], t: [48], u: [49], v: [50], w: [51], x: [52], y: [53], z: [54]
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Polycaprolactone (PCL) is a biodegradable polymer obtained from
petrochemical resources by the polymerization of e-caprolactone. PCL is a quite
expensive thermoplastic polyester. It has a low melting point (60-65°C) [25], and good
thermal processability. Due to its low melting point, PCL alone is not a good option
for food packaging applications. PCL is mostly blended with other polymers such as
cellulose acetate butyrate and cellulose propionate to enhance adhesion and stress

crack resistance [55].

1.3.4 Main processing of biodegradable polymers

Melt mixing extrusion is a large capacity manufacturing process in which one
type or more of raw granular polymer is melted and mixed to form a continuous
homogenous profile. The polymer granular pellets and other additives are gravity-fed
through a hopper on the top into the barrel of the extruder as shown in Figure 8.
Additives, such as antioxidant, plasticizer, compatibilizer, and colorants could be in
liquid or solid pellets form. These additives are mixed either in separate mixer prior to
arriving at the hopper or directly at the hopper. The mixture of polymer pellets and
other additives is pushed through the barrel to be melted and mixed taking into
consideration to avoid overheating and polymer degradation. Then the molten plastic
enters the die which defines the final product's continuous profile shape. Finally, the

product is cooled by air or pulling the extruded part through a water bath.
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Figure 8: Extrusion machine layout [56].

Injection molding is a common industrial process in which the plastic is melt
mixed then forced into a mold of specific cavities by a reciprocating screw. The
homogenous molten plastic is injected at high-pressure to fill the closed mold cavity
of a certain shape. The mold plates must be closed by hydraulic or mechanical
clamping force during the injection. This force should oppose the separating force of
the injection of the molten plastic. The mold is cooled to allow the solidification of the
final plastic product. The two plates of the mold are separated to allow the collection

of the final product. Figure 9 presents the layout of the injection molding machine.

Hopper Heater Mold cavity  Mold

Screw Barrel Nozzle Moveable platen

INJECTION UNIT CLAMPING UNIT

- - -

Figure 9: Injection molding machine layout [57].
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1.4 Natural fibers

Natural fibers are usually abundant throughout the world as waste material.
The increase in environmental concerns directed the awareness of the use of
biodegradable environmentally friendly materials and lignocellulosic natural fibers.
Natural fibers are usually classified with respect to their origins: animal, vegetable
(or lignocellulosic), or mineral as shown in Figure 10. The date palm, oil palm,
hemp, sisal, kenaf, pineapple leaf, and jute are the most common lignocellulosic
natural fibers [58]. Natural fiber may be used as an alternative filler instead of
synthetic fiber to reinforce thermoplastic and thermoset polymer composites to
enhance their thermal, physical, and mechanical properties. Some advantages
of natural fibers, when compared to synthetic fibers, are fast biodegradation,
low cost, low density, low energy consumption, and non-abrasive
characteristic [59, 60]. The surface modification of natural fiber is mandatory to
clean and purify the fiber from impurities or undesired components for better

adhesion between the polymer and the fiber [61].

Natural Fibers

v \J 4
Animal Lignocellulosic Mineral
(Vegetal)
v v
Wool, cashmere, hair, tussah silk, black silk... Asbestos....

v

Sisal, date palm, bamboo, jute...

Figure 10: Natural fibers according to their origins [62].
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1.4.1 Chemical composition of lignocellulosic fibers

Cellulose, hemicellulose, and lignin as presented in Figure 11 are the major
constituents of lignocellulosic fibers with different percentages depending on the fiber
age, climatic conditions, humidity, and origin [63]. Cellulose is the major component
in lignocellulosic fibers with a weight percent varying from 40% to 60% as shown in
Table 3. Hemicelluloses are the second major constituent with a weight percent
varying from 20% to 40%. However, lignin comes in third place from 10 to 25% by
weight percent [64, 65]. Other components such as waxes, inorganic salts, proteins,
and pectin go from 4 to 10 % weight percent and they are characterized by their ash
content [61]. Lignocellulosic fibers are hydrophilic due to the hydroxyl groups
presented on the surface of the fibers, thus resulting in poor adhesion between the
fiber and the polymer matrix and poor mechanical performance. This limitation can
be addressed during the fiber processing prior to reinforcement by removing
hemicellulose through hydrothermal treatment and increasing cellulose crystallinity

[66].

Lignin

Hemicelluloses

Figure 11: The main structure of the lignocellulosic fiber [67].



Table 3: The chemical composition and mechanical properties of various types of

lignocellulosic fibers [59].
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Lignocellulosic fibers | Date palm | Ramie Sisal Hemp Jute
Cellulose (%) 32-35.8 68-91 | 47-78 57-77 64.4
Hemicelluloses (%) 24.4-28.1 5-16.7 10-24 14-22 12
Lignin (%) 26.7-28.7 0.6-0.7 7-11 3.7-13 11.8
Other components (%) 2-7 - 1-10 — 5-11
Density (g/cm®) 1.4 1.5 1.5 1.4 1.4
Tensile strength (MPa) 150-230 500 511-635 | 550-900 | 400-800
Young modulus (GPa) 2-15 44 9.4-22 70 10-30
Elongation (%) 5-10 3.6-3.8 2-2.5 1.6 1.8

1.4.2 Mechanical properties and thermal stability of natural fibers

The mechanical properties of the natural fiber reinforced polymer composites
generally depend on the mechanical properties of the fibers such as fiber density and
microfibril angle. For example, fibers with low density show higher stiffness and
strength when compared to high-density fibers [68]. The tensile strength of fibers is a
main mechanical test in which a stretching force is applied, and the maximum tensile
stress amount is recorded before breaking. A study on different fibers revealed that
palm fiber had the highest tensile strength of 160 MP compared with all the studied
fibers [69]. The chemical, physical and mechanical characteristics of the
lignocellulosic fibers are controlled by the spatial adjustment of cellulose and the
chemical treatments such as coupling agent addition, mercerization, or acetylation.
The amorphous region of cellulose is more affected by chemical reagents compared
with the crystalline region [70]. The mercerization for 72 hours to 96 hours was applied
to coconut fibers with 5 wt% NaOH at 28°C by [71]. The mercerization improved
elongation and tensile strength by 40% and 15%, respectively.

On the other hand, the high processing temperature of natural fiber reinforced

polymer composites can negatively affect the corresponding mechanical properties,



20
color, and odor [64, 65]. Natural fiber degrades between 100°C and 300°C due
to  dehydration, oxidation, depolymerization, hydrolysis, discoloration,
decarboxylation, and recrystallization [74]. The thermal stability and degradation
degree of natural fibers depend on cellulose, hemicellulose, and lignin
composition. Figure 12 represents the temperature ranges of typical natural fiber
degradation [75]. Researchers recommend the use of natural fibers with low
concentration of hemicellulose to avoid the degradation at lower temperatures [76].
Another recommendation for high thermal stability was associated with the use of
natural fiber with high cellulose crystal size and crystallinity index [72]. Some
fibers started to degrade immediately within short exposure of high processing
temperatures. Flax fibers degrade above 170°C and show a drop in mechanical

performance and polymerization [74].
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Figure 12: The decomposition temperature ranges of natural fibers constituents [77].
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1.4.3 Date palm waste

The Middle East and North Africa regions are famous with the presence of date
palm as a main agricultural product. The Arab world contains 84 million date palm
trees out of 120 million date palm trees in the whole world. Date palm trees are
concentrated in Egypt, Saudi Arabia, Irag, Iran, Morocco, and the United Arab
Emirates. A typical date palm tree produces 20 kilograms of waste in the form of dry
leaves per year. The UAE produces 500,000 tons of date palm waste every year [3].
These are disposed of in landfills or burned in farms causing environmental pollution
which can lead to global warming and its consequences due to the huge amounts of
CO2 produced from burning date palm waste.

Date palm wastes are excellent natural fillers to reinforce polymers because
they are low in moisture content, high in volatile solids, and rich in polysaccharides
cellulose reaching up to 40% by weight, and less than 10 weight percent of wax, pectin,
fat and inorganic substances. Moreover, the world annual production of date palm trees
is higher by 42% when compared with coir, and higher by 20% and 10% when
compared with hemp and sisal, respectively. The polysaccharide cellulose is an
inexhaustible  polymeric raw material with attractive properties and
structure. Cellulose can be extracted from different parts of date palm waste like fiber,
rachis, and leaflet. Extracted cellulose from date palm waste can be used to reinforce
different polymeric matrices like starch, Polylactic Acid, Polyvinyl Alcohol, and other

polymers [4].

1.5 Polylactic Acid (PLA)

Polylactic Acid or Polylactide (PLA) is the maximum notably researched and

utilized biodegradable and renewable aliphatic polyester. PLA has a demonstrated
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potential both to substitute petrochemical-based polymers for packaging applications
and as a main biomaterial for several applications in medicine [70, 71]. The
constituent unit of PLA is Lactic Acid (2-Hydroxypropionic Acid, LA), found as two
enantiomers, L-and D-Lactic Acid as shown in Figure 13. Lactic Acid can be
produced by fermentation of sugars acquired from sustainable agriculture products
like corn starch or sugarcane [80]. PLA has stereoisomers, for example, Poly D-
Lactide (PDLA), Poly L-Lactide (PLLA), and Poly DL-Lactide (PDLLA) [78].
PLA is a non-toxic eco-friendly polymer and can be used in the human body
because it is light and less hazardous. It is classified as safe for cutlery and food
ware applications according to the United States Food and Drug Administration

(FDA) [81].

Figure 13: The chemical structure of L-and D-Lactic Acid enantiomers [82].

Low molecular PLA was synthesized by Carothers at DuPont Chemical
Company in 1932 [81]. High molecular weight PLA was achieved by ring-opening
polymerization. There are different approaches of PLA synthesis, none of them is
straightforward or simple to execute, because its synthesis requires accurate control of
polymerization period, weight, temperature, pH and the utilization of catalyst [82].
The polymerization of PLA as displayed in Figure 14 can take different processes such

as, ring opening polymerization, direct methods of enzymatic polymerization and
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azeotropic dehydration [83]. Direct and ring opening polymerization are the most

utilized synthesis methods of PLA.
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Figure 14: Synthesis techniques of PLA from Lactic Acid [82].

1.5.1 PLA compared to other biopolymers

The synthesis of PLA has various points of interest compared to other
biopolymers [81]. PLA is mainly obtained from renewable resources such as corn,
which makes it recyclable, biodegradable, and compostable [71, 76]. The synthesis of
PLA requires the consumption of CO> [85]. PLA is highly recommended in biomedical
applications because it is a biocompatible material in which it will not produce
carcinogenic or toxic effects in nearby tissues. The thermal processability of PLA is
better than other biopolymers like Poly Caprolactone (PCL), Polyhydroxyl Alkenoate
(PHA) and Polyethylene Glycol (PEG). PLA can be processed by wide range of
processes including injection molding, blow molding, thermoforming, film extrusion

and fiber spinning [86].
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The production of PLA requires 25-55% less energy compared to the
production of petroleum-based polymers and predictions stated that the production
energy of PLA will be reduced to 10% less energy in the future [27]. Semicrystalline
PLA has higher mechanical properties than amorphous polymers by showing a tensile
strength of 50-70 MPa, and flexural strength of 100 MPa [79, 80]. Table 2 shows that
the tensile strength and elongation at break of PLA are similar to those of Polyethylene
Terephthalate (PET). Despite the positive highlights, PLA has limitations too such as
being brittle with less than 10% elongation at break [18], the slow degradation rate
upon disposal in ambient outdoor conditions from 3 to 5 years [21] and relatively
hydrophobic characteristics with no reactive side-chain groups for easy surface
modifications and adhesion with other polymers. However, the thermal degradation,
glass transition, and melting temperature of PLA are 200°C, 55°C and 175°C,
respectively. The processing of PLA requires high temperatures of up to 190°C [88].
The degradation of PLA starts with the hydrolysis of backbone ester groups and its

rate is affected by PLA crystallinity, molecular weight, and sterecisomeric content.

1.5.2 Plasticizers used to improve the ductility of PLA

Plasticizers are generally used to enhance processability, ductility, and
flexibility of polymers. For semi-crystalline polymers such as PLA, a good plasticizer
within 10 to 20 weight percent is needed to reduce the glass transition temperature,
melting temperature and crystallinity [81, 82]. It is not preferred to use low molecular
weight plasticizers due to their high mobility and migration within the PLA matrix.
Another recommendation might be the use of non-toxic and biodegradable plasticizers

for food ware applications. To enhance the ductility and elongation of PLA, it can be
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blended with other less brittle polymers such as Polybutylene Succinate (PBS),
Polycaprolactone (PCL) and Polybutylene Adipate-co-Terephthalate (PBAT) [91, 92].

PBAT is a completely biodegradable aliphatic-aromatic co-polyester with the
ability to enhance the flexibility and reduce the brittleness of PLA. Because of the high
cost of PLA and PBAT, other plasticizers, which are more efficient at relatively lower
cost such as citrate esters have been suggested [93]. Citrate esters are nontoxic and can
be used in medical, cutlery and food ware plastic applications. Also, the polar
interactions among the ester groups of PLA and the citrate esters lead to good
solubility of citrate esters within PLA matrix [94]. Triethyl Citrate (TEC) and Acetyl
Tributyl Citrate (ATBC) are good candidates to successfully plasticize PLA, decrease
glass transition temperature and improve the ductility. The effect of using TEC and
ATBC with various compositions of up to 30 wt% on thermal, rheological and

migration properties of PLA have been reported [95].

1.5.3 Natural fiber reinforced PLA composites

A group of researchers fabricated and studied a system of biodegradable
composites from extrusion grade PLA (INGEO 2003D) and (3 wt% - 6 wt%)
hemp fibers for use in automotive, construction, and packaging applications[96].
Whereas, a group of researchers developed a bio-composite from 20 wt% wood
pulp fiber reinforced PLA [97]. PLA and wood fibers were processed by twin-
screw extruder, then pelletized and used for injection molding. A multifunctional
bio-additive called bioadimide was used to improve the composite heat distortion,
fiber-matrix adhesion, flexural strength along with tensile modulus.

Moreover, Nuthong and co-authors examined the effect of the addition of three

different abundant natural fibers up to 40% by weight to reinforce PLA to work as a
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sustainable alternative to petroleum-based plastics in a variety of applications in
Thailand [98]. The three natural fibers used in this investigation were bamboo fiber,
coconut fiber and vetiver grass fiber. One weight percent of flexible epoxy was used
as a surface treatment to the fiber prior to twin extruder processing and injection
molding. Results revealed that the increase in the fiber content decreased the impact
strength. The minimum reduction in impact strength was assigned to bamboo fiber-

PLA when compared with the combinations of the two other types of fibers.
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Chapter 2: Materials and Research Methods

2.1 Materials

The Polylactic Acid (PLA) used in this research was a general purpose Ingeo
biopolymer (2003D) which was supplied by Nature Works LLC, Minnesota, USA as
presented in Figure 15. This PLA is a high molecular weight of 181744 g/mol
thermoplastic extrusion grade polymer that is made from renewable resources to be
used in food packaging applications [35]. It is transparent with a specific gravity of
1.24, Melt Flow Index of 6 g/10 min at 210°C and tensile strength of 53 MPa based
on the datasheet of Nature Works for Ingeo™ Biopolymer 2003D in 2018. The
Triethyl Citrate (TEC) was supplied by Sigma-Aldrich and used as a plasticizer.
Polybutylene Adipate-co-Terephthalate (PBAT) was supplied by Natur-Tec®, India
and used as an alternative plasticizer to enhance PLA ductility, flexibility, and

processability. Also, tap and saline water (37 ppt) were used in water uptake tests.

Figure 15: Pure PLA.
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The date palm waste used in this study was obtained from Al Foah Farm in Al

Ain which is managed by UAEU. The date palm waste (Figure 16) was collected as
large pieces and classified as fiber, rachis, and leaflet. The rachis parts, which
contained the highest amounts of cellulose compared with fiber and leaflets, were
selected for this study. Rachis was washed to remove sand, dust, and other particles,
followed by shredding to few-centimeter chips using a high-speed shredder (TEEBA,
Date Seed Grinding Machine) as shown in Figure 17. The shredded rachis was further
chopped using a lopper then dried in a laboratory oven at 80°C for 24 hours. The
sample was then ground using (AJH, electric grain grinder SUS304) and sieved to 90-
and 53-micron particle size using the corresponding sieve mesh with an electric shaker

(MATEST, Auto Sieve Shaker).

Figure 16: Mixed date palm waste from the UAEU Al Foah Farm in Al Ain.
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Figure 17: Date Palm Rachis preparations and size reduction. (a) rachis collection,
(b) rachis shredding, (c) further chopping using a lopper, (d) size reduction by
grinder, and (e) ground sample ready for sieving.

2.2 Cellulose extraction from date palm biomass

A weighed amount (10 grams) of the sieved biomass from rachis was placed in
extraction thimble and inserted in the Soxhlet extraction apparatus as shown in Figure
18. About 150 ml of benzene and ethanol in a 2:1 ratio was used as the extraction
solvent over a four to five hours period at the boiling point to remove any waxes,
inorganic salts, proteins, and pectin using the method described by [91, 99]. At the end
of the extraction, the solvent was evaporated from the extraction thimble. The dried
sample after extraction was weighed and the amount of volatile compounds removed

from the original biomass was determined.
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The dried sample after extraction in the form of a solid mixture containing
cellulose, hemicellulose, and lignin was transferred to a 250 ml beaker. Then 200 ml
of 0.1 M HClI was gradually added. The beaker was placed on a heater at a temperature
of 100°C for two hours with continuous magnetic stirring. After hydrolysis, the
solution was filtered. At the end of the filtration step, the solution contained
hemicellulose; keeping wet cellulose and lignin on the filter paper which was
transferred to a petri dish for drying. In the last stage, the dried filtrate in the form of
a solid mixture containing lignin and cellulose was transferred to a 250 ml beaker.
Then 200 ml of 0.1 M NaOH was gradually added. The beaker was placed on a heater
at a temperature of 100°C for two hours with continuous magnetic stirring. After
NaOH treatment, the solution was filtered. At the end of the filtration step, the solution
consisted of lignin; keeping wet cellulose on the filter paper which was transferred to
a petri dish to dry and used later as a filler in the formation of the biodegradable

composite.

Figure 18: Soxhlet extraction apparatus.
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2.3 Fabrication of composite samples

Sieved Date Palm Rachis (DPR) sample (53- and 90-microns) was added as a
filler to the biodegradable polymer of Polylactic Acid (PLA) in three different
compositions of 30%, 40% and 50% by weight. The DPR was not subjected to any
chemical treatments or surface modifications to avoid the use of chemicals in food
grade applications, reduce the production cost and save the energy used in cellulose
extraction. Whereas 30 wt% of extracted cellulose were used to reinforce PLA. Melt
mixing was performed using a two-screw extruder (MiniLab HAAKE Rheomex
CTWS5, Germany) at a screw speed of 140 rpm (Figure 19a). The control sample was
prepared by blending pure PLA under the same conditions. Different parameters were
varied including melting temperature, plasticizer type and mixing duration. It was
observed that if biomass stays in a closed system for a long time, it undergoes partial
pyrolysis. Different extruder mixing trials for 30% DPR-PLA composite shows that
the best composite color with a recovery of 79.9 wt% and output thickness of 0.15 cm
was produced by the melting of PLA at 180°C for 7 minutes followed by the addition

of DPR to be mixed with PLA for 3 minutes.
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Figure 19: 30% DPR-PLA composites fabrication using two screw extruders with
different mixing times. (a) 7 min PLA, 3 min biomass, (b) 5 min PLA, 5 min
biomass, and (c) 3 min PLA, 7 min biomass.

The produced composite was distributed in a cutlery mold and hot pressed for
15 minutes using a Carver’s press machine (Carver Lab Presses, mode 14386) under
5000 psi pressure at the same temperature (180°C) used in the melt mixing extruder to
prepare biodegradable cutlery such as a knife. However, the extruded bio-composite
was re-melted via (HAAKE MiniJet Pro, Injection Molding Machine) in which the
homogenous molten plastic was injected at high-pressure of 500 bars to fill the 80°C
closed mold cavity of certain shape in 15 seconds to produce lab test specimens such
as dumbbell-shaped specimens (Figure 20) for use in tensile testing. The prepared
DPR-PLA composites were subjected to different thermal, mechanical, and physical

tests based on ASTM or ISO.
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(a) \

Figure 20: Dumbbell-shaped test specimens of (a) PLA and (b) 30% DPR-PLA
composite prepared by (c) injection molding.

2.4 Physical and morphological characterization

2.4.1 Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (JEOL-JCM 5000 NeoScope) was used to
observe the surface morphology of the DPR biomass, PLA, and prepared
biodegradable composite samples. Using double sided carbon tape, the composite was
placed on an aluminum pin mount adapter. The sample was sputter coated with gold
using a sputter coater to avoid electrostatic charging during examination. The SEM
images of the filler particles in the polymer matrix were recorded at different
magnifications and developed at a high vacuum mode with an acceleration voltage of

5kV.

2.4.2 Fourier Transform Infrared Spectrometry (FTIR)

Fourier Transform Infrared Spectrometry (ASTM E168, E1252) was used for
identifying samples by their ability to absorb infrared light at different frequencies to

produce a unique "spectral fingerprint”. The DPR biomass, PLA and PLA-based
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composites were scanned in the frequency range of 500 to 4000 cm™ at a resolution of

4 cm™ [100].
2.4.3 Water uptake test

Water absorption tests are carried out for PLA and DPR-PLA optimum
composite samples in saline water with 37 ppt [101], tap water at room temperature
and hot water according to ASTM D-570-98. Three specimens for each water type
were tested. Tensile specimen was used with a thickness of 2 mm, a length of 73.5 mm
with variable width to mimic the cutlery shape and to be able to fairly compare the
biodegradation in tap and sea water with that in soil after 4 months. In the Long-Term
Immersion tests in tap and seawater at room temperature, the specimens were removed
from the water beakers at the end of the 24 hour, wiped off with a dry cloth, weighed
to the nearest 0.001 g immediately using an accurate digital balance and then returned
back in the water. The weighing was repeated after the first week, then every two
weeks. While in the immersion at 50°C, the water beakers were kept in a hot water
bath to maintain the water temperature at 50°C for 48 hours as presented in Figure 21.
The water retention percentages (weight gains) were calculated as a function of initial

weight (W,) using the following expression:

L W= W
W(/O)_TX 100
0
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Figure 21: Water uptake of DPR-PLA composite during the immersion (a) at room
temperature tap water and (b) at 50°C in hot water bath for 48 hours.

2.4.4 Biodegradability test

Biodegradation of the optimum DPR-PLA composites under real soil
conditions was carried out at the experimental soil located in the UAEU garden. The
percentage of weight loss of PLA based composites and commercial samples during
the burial in soil were recorded after 4 months. Figure 22 shows the burial of composite
samples in a depth of 5 cm and 22 cm of dry and watered soil. The wet soil was
periodically watered to imitate the real natural soil while the other soil was kept dry as

environmental control media.

22 cm

30.5cm

ed ~ 4

Figure 22: Burial of DPR-PLA composites in 5 cm and 22 cm depth of dry and
watered soil.
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2.5 Thermal characterization

2.5.1 Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was used to determine the degradation
temperature of the DPR biomass, PLA and PLA-based composites in a
thermogravimetric analyzer (Q-50, TA Instruments, USA). Under nitrogen
atmosphere supplied as 100 mL/min, the samples of 10-15 mg were heated from 20°C

to 800°C at a heating rate of 10°C/min.

2.5.2 Differential Scanning Calorimeter (DSC)

DSC (Discovery DSC 25, TA Instruments, USA) was used to determine the
melting temperature of about 5 to 7 mg sample of PLA and PLA-based composites.
The samples were heated up to 200°C in an inert nitrogen atmosphere. However, the
melting temperatures (Tm), glass transition (Tg), and cold crystallization temperature

(Tec) were recorded from the second heating from 25°C to 200°C at 10°C/min.

2.6 Mechanical characterization

2.6.1 Melt Flow Index (MFI)

The change in Melt Flow Index (MFI) of PLA with the addition of Date Palm
Rachis biomass waste was measured using XRL-400 series Melt Flow Index. MFI is
simply the mass flow rate expressed in grams per 10 min under a constant load of 2.16
kg according to ISO 1133 at the melting point of 180°C. A weight of 5 g from the
extruder output was broken into small pieces to be inserted in the barrel of the MFI
machine. The re-melted bio-composite was ejected discontinuously in an

approximately equal amount from the MFI die using an automatic cutter when the
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cycle time of 10 seconds was completed. Finally, the melted samples shown in Figure
23 were measured using a digital balance and the average was calculated in grams per

10 seconds. Then MFI of PLA and DPR-PLA composites was then calculated in grams

per 10 minutes.

)

Figure 23: Extruded DPR-PLA composite was broken into small pieces to be
inserted in the barrel of the MFI machine.

2.6.2 Tensile strength test

Shimadzu Universal Testing Machine was used to determine the tensile
properties of the PLA and the optimum biodegradable composite after plasticization
as shown in Figure 24. In order to perform this test, dumbbell-shaped test specimens

were prepared by re-melting the extruded bio-composites using HAAKE MiniJet Pro,

Injection Molding Machine.
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Figure 24: Tensile properties determination of the PLA and the Plasticized PLA-
based composites using dumbbell-shaped specimens. The sample dimensions are:
T=2 mm, wo=12 mm, w=4 mm, L=30 mm, D=45 mm and Lo=73.5 mm.
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Chapter 3: Results and Discussions

3.1 DPR-PLA composites

3.1.1 Thermogravimetric Analysis (TGA)

In order to avoid possible thermal degradation, the thermal characterization of
any pure materials and their composites is a critical step before polymer processing.
Figure 25 shows the derivative weight changes versus temperature curves of PLA,
DPR and their fabricated three bio-composites (with a biomass content of 30 wt%, 40
wit% and 50 wt%) and their corresponding weight losses. The first weight loss for DPR
and the three bio-composites is between 60°C and 100°C which corresponds to water
vaporization from the wall structure, void space and the interfacial bonding between

biomass and PLA matrix [102].
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Figure 25: Derivative weight change and TGA plots of Pure PLA and DPR-PLA
composites.
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The DPR exhibits two phases of degradation as presented in Figure 25. The

first phase has a weight loss of 27.4% at approximately 300.5°C. This phase is
classified by the decomposition of pectin, cellulose, and hemicellulose at the same
time [103]. The second phase has additional weight loss of 25.8% at around 353.9°C
which can be explained by the decomposition of lignin. The derivative weight change
and TGA plots of PLA, cellulose and 30% cellulose-PLA composite are presented in
Figure 26. The extracted cellulose shows one phase of degradation at 306.1°C, thus
confirming the agreement with the previous TGA findings regarding phase one of the
DPR degradation. The DPR biomass indicates a good thermal stability by showing the
highest final remaining residue of about 23 wt% at 800°C. On the other hand, the
extracted cellulose shows less thermal stability compared with full Date Palm Rachis

biomass by exhibiting a final remaining residue of about 4.8 wt%.
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Figure 26: Derivative weight change and TGA plots of PLA, cellulose and 30%
cellulose-PLA composite.
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Figure 25 shows that the weight loss of 5% of PLA occurs at about 338.9°C
while the DPR exhibits a 5% weight loss at about 206.3°C. Figure 26 shows that the
extracted cellulose has a 5% weight loss at 57.0°C which is not preferable in extruder
processing. This is due to the fast-partial pyrolysis and the undesired color change.
Based on these results, the processing temperature was held below 200°C to prevent
the thermal degradation of DPR in the PLA matrix. Figure 25 clearly proves that the
pure PLA has no weight loss at 100°C, indicating the relative absence of water
molecules. PLA presents 75.4% weight loss at 379.285°C and a final remaining
residue of 0.3 wt% as shown in Figure 25, which is in agreement with the results
obtained by [104]. In addition, the thermal degradation process of pure PLA can be
explained by two steps, beginning with dehydration followed by chain scission [105].
Moreover, the three bio-composites demonstrated an intermediate level of thermal
stability that is noticeably lower than that of pure PLA and higher than the thermal
stability of DPR.

The increase of the biomass content in the PLA-composite matrix shifts the
degradation temperatures of the bio-composites to lower regions towards the biomass
degradation temperature. The bio-composites of PLA with a biomass content of (30
wit%, 40 wt% and 50 wt%) have degradation temperatures of 355.762°C, 346.750°C
and 335.998°C, respectively whereas their corresponding weight losses are 83.6%,
71.1% and 52.4%, respectively as shown in Figure 25. In addition, Figure 25 shows
that the derivative weight loss of the pure PLA was significantly higher than all DPR-
PLA composites, while DPR revealed a minimum derivative weight loss. The
observed derivative weight loss trend agreed with other researchers [106]. The 30%

cellulose-PLA composite shows relatively lower degradation temperature of 312.3°C
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with a lower weight loss of 60.9% as presented in Figure 26 when compared to 30%

DPR-PLA composite.

3.1.2 Differential Scanning Calorimetry (DSC)

The DSC curves of PLA and PLA based composites with DPR content of 30
wit%, 40 wt% and 50 wt% are presented in Figure 27 and their corresponding phase-
transition data are recorded in Table 4. The heating range was chosen to be from 20°C
to 200°C according to the TGA results that suggested the fabrication of the bio-
composites below 200°C to avoid thermal degradation. However, the second heating
curves were recorded due to the existence of obvious thermal peaks, while the first
heating scan played an essential role in removing the thermal history of the polymer.
When polymers are cooled below their glass transition temperature, they are observed
to be hard and brittle like glass as clarified in Figure 28. Figure 27 shows that the glass
transition temperature of the amorphous phase of pure Polylactic Acid (PLA2003D)
is 59.1°C which agrees with other researchers as they obtained it as 59.5°C upon the
second heating [107]. The cold crystallization peak at 122.05°C and the melting peak

at 149.93°C were also in agreement with the reported values in the literature [104].
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The glass transition temperatures of the PLA based composites with a biomass
content of 30 wt%, 40 wt% and 50 wt% shifted to slightly lower temperatures of
56.39°C, 55.50°C and 54.07°C, respectively as shown in Figure 27. Also, the cold
crystallization temperatures of the bio-composites reduced insignificantly compared
to pure PLA. This reduction indicates the nucleation activity of the biomass as a filler
[109]. Moreover, the decrease in T is followed by a slight drop in the melting
temperature (Tm) of the PLA with the addition of 50 wt% biomass from 149.93°C to
145.83°C. The slight decrease in Ty, Tcc and Tm of the PLA upon the increase in
biomass content is explained by the resultant weaker interactions. This can lead to the
increase in mobility that promotes the increase in the degree of crystallinity [110].
Furthermore, Table 4 clearly displays that the range of melting enthalpy was equal to
the cold crystallization enthalpy. This indicates that the DPR-PLA matrix was
amorphous before heating in the DSC [111]. The 30% cellulose-PLA composite
showed a quite similar Ty, Tcc and Tm but relatively higher AHc, and AHm when

compared to 30% DPR-PLA composite as displayed in Figure 27 and Table 4.

Table 4: The calorimetric data for PLA and PLA based composites with a DPR
content of 30 wt%, 40 wt% and 50 wt% and with cellulose content of 30 wt% upon
the second heating at 10°C min .

Sample Tg Tec Tm AHece AHm

W) ) ) (J/g) J/g)

Pure PLA 59.13 122.05 149.93 21.21 22.86

30% Cellulose - PLA 57.76 119.96 147.04 | 23.591 | 23.87
30% DPR - PLA 56.39 122.19 148.46 14.30 14.99
40% DPR - PLA 55.50 121.89 147.73 14.18 17.06
50% DPR - PLA 54.07 118.55 145.83 14.10 14.74
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3.1.3 Fourier Transforms Infrared Spectroscopy (FTIR)

FTIR analysis was performed on pure PLA and the composite samples after
the addition of Date Palm Rachis biomass to PLA. The infrared spectrum obtained for
the DPR is shown in Figure 29. The DPR exhibits typical vibration bands of various
chemical functional groups that are found in cellulose, hemicellulose, and lignin. The
vibration of the OH bond in the biomass spectrum is directly related to the broad and
strong absorption band between 3200 and 3500 cm™ as shown in Figure 29. The peak
at 2916.324 cm™ is assigned to the vibration of the asymmetrical stretching of the CH
bond in the biomass [112]. The absorption band at around 1735.138 cm™ can be
attributed to the carbonyl group (CO) and the ester group with stretching vibration in
hemicellulose [113]. In addition, the lignin bands at 1247.236 cm™ to 1400 cm™ are
indicative of OCH3 and CC bonds respectively [67]. At 1423.691 cm™, the absorbance
is due to the existence of CH deformation in lignin, and the symmetrical bending of
CH> in cellulose [114]. However, the bending vibration of the CH group on the

aromatic ring at 1371.14 cm™ is assigned to the hemicellulose and cellulose [113] .
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Figure 29: FTIR spectra of DPR.

To investigate the presence of potential interfacial interaction between PLA
and DPR biomass, FTIR experiments were conducted and compared with those of pure
PLA as shown in Figure 30. The O—H peak in PLA is observed at 3295.268 cm™'. The
bands observed at 2916.32 cm™! and 2848.35 cm™! can be linked to the stretching of
symmetric and asymmetric C—H in CHs. However, three main FTIR spectra regions
can be observed for PLA and PLA-based composites. The first region at 1744.298 cm’
Lis linked to carbonyl (-C=0) stretching peak in PLA. The second region is assigned
to the -CH-O- group (—C-O- stretching bond) in PLA at 1180.704 cm™. The last region
consists of three distinctive peaks, which are attributed to the stretching vibrations in
-O-C=0 group (-C-O-) at 1128.153, 1081.870 and 1039.444 cm™. The bands at
866.846 cm™ and 752.584 cm™ are related to the PLA amorphous and crystalline
phases. These FTIR results are consistent with the findings of Popa and co-authors

[115]. The O—H peak in PLA at 3295.268 cm™! became broader and shifted towards
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marginally lower wavenumbers in the three DPR-PLA composites as shown in Figure
30. This change may be attributed to the "free" groups of hydroxyls, which bind with

hydrogens [105, 106].
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Figure 30: FTIR spectra of PLA and PLA based composites.

The most important changes in the bio-composites compared with pure PLA
are found in the carbonyl (C=0) stretching vibration at 1744.298 cm™'. This peak
slightly shifted towards low wavenumbers by the increase in the biomass content of
the DPR-PLA composite. Cellulose possess a higher number of -OH groups compared
with other biomass components such as hemicellulose, pectin and waxy substances.
Due to this characteristic, the C=0 bond in the PLA can develop cellulose hydrogen
bonds by its carboxyl and terminal hydroxyl groups [118]. This interaction causes a

sudden decrease in intensity of the C=0 peak in 30% DPR-PLA composite [119, 117].
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However, the increase in the biomass content from 30 wt% to 50 wt% causes the
gradual rise in the intensity of C=0 stretching peak as shown in Figure 30. This is
because of the esterification reaction between —OH of the biomass, the carbonyl (C=0)

and the terminal -COOH group in the PLA [120].

3.1.4 Scanning Electron Microscopy (SEM)

The morphology and phase adhesion in the PLA matrix, DPR, and fractured
surfaces of their bio-composites produced by injection molding were studied. Figure
31 (a) shows SEM micrographs of PLA resin, presenting brittle nature with continuous
phase and smooth exterior with several stream-like waxy cracks. Analogous SEM
images were observed for PLA and cellulosic fibers by [121]. The rachis biomass was
grinded to 53 um (Figure 31 (b)) and 90 um (Figure 31 (c)). It can be seen that biomass
appears as aggregates of entities with some nanofibrils on the surfaces of the biomass
particles. These observations could be an indication that the biomass particles are

agglomerations of thousands of individual biomass nanofibrils.
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Figure 31: SEM images of (a) pure PLA, (b) DPR (53 um), (c) DPR (90 um), (d)
30% DPR (53 um)-PLA, and (e) 30% DPR (90 um)-PLA composite.
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SEM was used to explore the surface morphology and distribution of the
biomass filler in the PLA matrix. A uniform dispersion of the 30 wt% DPR filler with
the particle size of 53 um (Figure 31 (d)) and 90 um (Figure 31 (e)) in the PLA matrix
was observed. Another finding was that the biomass still existed as thin fibril bundle
aggregates with a good fiber orientation, and no real bundle separation occurred during
the extrusion stage. Since both particle sizes of the biomass gave similar morphology
and adhesion in the PLA matrix, the 90 um biomass was used in the fabrication of
PLA based composites as larger size particles require less energy for particle size
reduction. On the other hand, the SEM image in Figure 32(b) revealed relatively better
adhesion of the extracted cellulose (90 um) to the PLA matrix compared to the
untreated DPR shown in Figure 31(e). The extracted cellulose seems to be uniformly

distributed in the PLA matrix.

5KV X250 100pm s

Figure 32: SEM images of (a) cellulose (90 um) and (b) 30% cellulose (90 um)-PLA
composite.
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The SEM micrographs of 40 wt% and 50 wt% DPR-PLA composites are
presented in Figure 33. Both bio-composites show that the fibril bundles surface in the
biomass are covered by the PLA. However, the extent of coverage for 40 wt% and 50
wt% composite is lower than that of 30% DPR-PLA composite. The addition of 40
wt% and 50 wt% biomass to the PLA develops a slightly rougher and coarser surface.
This may lead to a noticeable increase in brittleness and the absence of ductility nature,
which could be worse for the 50% DPR-PLA composite due to the extra accumulation
of the biomass in certain points and voids within the bio-composite and the insufficient
quantity of PLA to offer real wettability when biomass is increased to 50 wit%.
Furthermore, the observed voids on the SEM images may be due to the existence of

water that might be formed during the fabrication process [122].
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Figure 33: SEM images of (a) 40% DPR 90 um-PLA composite and (b) 50% DPR
90 um-PLA composite.
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3.1.5 Melt Flow Index (MFI)

The changes in Melt Flow Index (MFI) with the addition of Date Palm Rachis
is illustrated in Figure 34. The MFI of PLA was obtained to be 7.09 g per 10 min,
which agrees with the reported values by Nature Works LLC and other researchers
[123] . The addition of the biomass (30 wt%, 40 wt% and 50 wt%) to PLA causes a
gradual increase of the MFI to 16, 31.57, and 54.78 g/10 min, respectively. This
indicates the growth of extrusion throughput because a greater mass of the bio-
composite flows through the extruder die at a particular time. A significant increase in
the MFI from 14.15 to 68.60 g/10 min was observed in the PLA matrix with the
addition of 30 wt% of ground chestnut shell [124]. On the other hand, the 30%
cellulose-PLA composite showed an undesirable MFI of 79.15 g/10 min, which is five

times that of the 30% DPR-PLA composite as presented in Figure 34.
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Figure 34: Melt flow index of PLA and PLA based composites at 180°C (g/10 min).
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When the amount of biomass is increased in the PLA based composite, small
particles of the biomass can penetrate and accumulate in the PLA matrix as displayed
in the SEM images in Figure 33, thus developing easer slip and flow of the PLA
matrix. The results of the Melt Flow Index are well correlated with the previous DSC
findings as well. DSC results showed a slight decrease in Tg, Tccand Tm of the PLA
by the increase of the biomass content because of the resultant weaker interaction that
leads to the increase in the mobility. The 30% DPR-PLA composite showed lower
MFI when compared to the other two PLA based composites with 40 wt% and 50 wt%
of DPR. For easier cutlery fabrication and processing in large scale extruders and
injection molding machines, 30% DPR-PLA composite was selected and tested in one

of the plastic production industries in China as shown in Figure 35.

Figure 35: Industrial fabrication of cutlery from 30 wt% DPR-PLA composite. (a)
mixed PLA and DPR, (b) melt mixing extrusion, (c) two plates with mold cavity of
spoons shape ready for injection molding, and (d) spoons collection after the two
plates separation of the mold.
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3.2 DPR-PLA composites with plasticizers

3.2.1 Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was carried out on the plasticized 30% DPR-PLA
composites to investigate the effect of the addition of Triethyl Citrate (TEC) and
Polybutylene Adipate-co-Terephthalate (PBAT). Three levels of these plasticizers (1
wit%, 5 wt% and 10 wt%) were used and the results are shown in Table 5 and Figure
36. TGA analysis revealed that the maximum decomposition temperatures of all the
plasticized composites are lower than both neat PLA and unplasticized 30% DPR-PLA
composite. The degradation temperatures of the plasticized composites at maximum
weight loss were shifted from 355.8°C (30% DPR-PLA) to 336.7°C and 332.9°C with
the addition of 10 wt% TEC and 10 wt% PBAT, respectively. A similar trend was
observed by Mounira Maiza and co-workers after plasticizing PLA with TEC up to 30
wit% [95]. All plasticized composites with TEC and PBAT show good thermal stability
and their thermal degradation temperatures are higher than the controlled processing

temperature of 180°C.

Table 5: Thermogravimetric analysis of the plasticized 30% DPR-PLA composites
with three levels of TEC and PBAT.

Tow (°C) | Tmax (°C) | Toow (°C) | Stability (%)
PLA 3389 | 3793 370.4 98.1
30% DPR+PLA 2019 | 3558 347.8 93.8
30% DPR+PLA+1% TEC | 2567 | 342.0 332.7 92.3
30% DPR+PLA+5% TEC | 207.6 | 333.0 324.6 85.7
30% DPR+PLA+10% TEC | 2051 | 336.7 326.8 85.4
PBAT 3649 | 4039 400.0 99.0
30% DPR+PLA+1% PBAT | 2433 | 3303 324.4 92.1
30% DPR+PLA+5% PBAT | 2469 | 3303 324.4 92.1
30% DPR+PLA+10% PBAT | 252.8 | 3329 328.4 92.6
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Figure 36: Derivative weight change and TGA plots of the plasticized 30% DPR-
PLA composites with three levels of (a) TEC and (b) PBAT.
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3.2.2 Differential Scanning Calorimetry (DSC)

The glass transition temperatures (Tg) of the plasticized 30% DPR-PLA
composites with TEC and PBAT were obtained from the second heating of the DSC
curves and presented in Figure 37. The T4 of the 30% DPR-PLA composite shows
insignificant reduction with the addition of 1 wt% PBAT, then it remains constant with
increasing PBAT content (Figure 37 (a)). Similar observations were attained by [125].
The glass transition temperatures of the 30% DPR-PLA composite shifts to lower
temperatures with increasing TEC content and it diminishes by the addition of 10 wt%
TEC (Figure 37 (b)). The reduction is due to the increase in the plasticizing effect of
the low molecular weight TEC, which occupies intermolecular spaces and leads to
poor interaction between PLA, DPR filler and TEC. This will probably increase the
polymer molecular mobility, which in turn reduces the glass transition temperatures
[95]. Analogous reduction in glass transition temperatures was observed for PLA and

Chitin nanocrystal nanocomposites with increasing TEC content by [126].
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Figure 37: The glass transition temperatures (Tg) from DSC thermograms of the
plasticized 30% DPR-PLA with (a) PBAT and (b) TEC.

3.2.3 Fourier Transforms Infrared Spectroscopy (FTIR)

The interaction identification after the addition of three levels of two
plasticizers (TEC & PBAT) to 30% DPR-PLA composite was investigated with FTIR.
The infrared spectrum obtained after the incorporation of the first plasticizer (TEC) is
shown in Figure 38. The main differences are linked to fingerprint region from 1850
cm™! to 600 cm™. In the plasticized composites with TEC, low intensity peaks were
observed between 3660 and 3475 cm™! due to —OH stretching. A slight increase in the
intensity of the bands observed at 2916.32 cm™! and 2848.35 cm™! that attributed to
the stretching of C—H in CH3z was seen with increasing TEC content. In Figure 38, all
composites displayed a sharp peak at 1751 cm™ that attributes to the distinctive
carbonyl peak in the PLA chemical structure. The —C=0 peak intensity of 30% DPR-

PLA composite raised sharply by the addition of 1 wt% TEC. Then it shifted slightly
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from 1751.4 cm™! to 1748.8 cm™! with increasing TEC content to 10 wt%. A similar
increasing behavior in intensity was observed at 1180.704 cm™ due to the -CH-O-
group (—C-O- stretching bond). Also, similar behavior is displayed at the three
distinctive peaks 1128.153, 1081.870 and 1039.444 cm* as shown in Figure 38. These
findings agree with the research work conducted on PLA based composites with 10

wt% TEC [127].
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Figure 38: FTIR spectra of the plasticized 30% DPR-PLA with TEC.

The FTIR spectra of PBAT and the plasticized 30% DPR-PLA composites
using PBAT are presented in Figure 39. The peaks at about 2945.5 cm™! resulted from

the vibrations of C—H indicating the existence of alkyl chains. The PBAT spectrum
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clearly shows sharp intense peaks at 1750 cm™! corresponding to the —C=0 groups.
The intensity of -C=0 peak of 30% DPR-PLA composite increased sharply by the
addition of 1 wt% PBAT, then it gradually decreased with increasing PBAT content.
For pure PBAT and the plasticized composites with PBAT, antisymmetric C-O-C
stretching vibration bonds were observed at 1250 cm™!. Since the DPR was held at 30
wit% in the three plasticized composites, no significant changes, and no considerable
chemical interactions between PLA and PBAT were noticed. The only changes were
in the sudden increase in the relative transmittance (%) after the incorporation of 1
wt% PBAT. This finding was confirmed when referring to the identical PLA glass
transition temperatures in the three plasticized composites with PBAT (Figure 37(a)),
indicating immiscibility between PLA and PBAT. Similar results were observed in the
literature during the fabrication of (PLA-Babassu-PBAT) films for mulch application

[128].
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Figure 39: FTIR spectra of the plasticized 30% DPR-PLA with PBAT.
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3.2.4 Scanning Electron Microscopy (SEM)

Scanning Electron Microscopy (SEM) analysis was used to observe the surface
morphology of the plasticized 30% DPR-PLA composites fracture surfaces after
tensile testing. SEM was used to investigate the effect of the addition of 1 wt% and 10
wit% of two plasticizers (TEC and PBAT) on the morphology and phase adhesion of
the composite. Figure 40(a) shows the micrograph of PBAT resin, presenting ductile
fracture with higher continuous smooth phase compared with neat PLA (Figure
40(b)). Analogous SEM images were observed for PLA and PLA-PBAT by [114].

The addition of 1 wt% TEC (Figure 40(d)) shows slightly higher biomass
coverage when compared to the plasticized 30% DPR-PLA composite with 1 wt%
PBAT (Figure 40(c)). However, the incorporation of 10 wt% PBAT in the 30% DPR-
PLA composite resulted in a smooth surface and exhibited well-dispersed biomass in
the PLA matrix as shown in Figure 40(e). Also, some PBAT presence of less than 5
um in size was observed in the PLA matrix, which might be due to the
transesterification reaction between PBAT and PLA. A high co-continuous phase and
adhesion might be formed between the two phases at higher composition of PBAT
[125]. Moreover, the addition of 10 wt% of TEC in Figure 40(f) enhanced the
dispersion of the biomass in the composite and reduced large agglomeration of the
biomass filler. Similar observation of well-dispersed chitin nanocrystals in the PLA

matrix after the use of about 7.5 wt% TEC was reported [126].
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Figure 40: SEM images of (a) pure PBAT, (b) pure PLA, (c) 30% DPR (90
um)+PLA+1% PBAT, (d) 30% DPR (90 um)+PLA+1% TEC, (e) 30% DPR (90
um)+PLA+10% PBAT, (f) 30% DPR (90 um)+PLA+10% TEC.
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3.2.5 Tensile strength

A polymer matrix is generally designated to be suitable for a specific form of
natural fiber. The date palm fiber (DPF) has the highest tensile strength compared with
other frequently used fibers such as bamboo, sisal, and coir. This is due to the high
cellulose content of the DPF [69]. PLA is considered as one of the relatively brittle
biodegradable polymers with an acceptable tensile strength to be used in packaging
and medical applications. Biodegradable plasticizers such as Triethyl Citrate (TEC)
and Polybutylene Adipate-co-Terephthalate (PBAT) are utilized to enhance PLA
ductility, flexibility, and processability. But this will be done at the expense of the
reinforcing feasibility and tensile strength. Mechanical tests were performed for PLA
and 30% DPR-PLA composites to demonstrate the effect of the addition of three levels
of two plasticizers (TEC and PBAT) on the mechanical properties of the composite
material.

Figure 41 shows that the tensile strength of pure Polylactic Acid (PLA 2003D)
is 68.88 MPa, which agrees with other researchers’ findings [129]. The incorporation
of 30 wt% of DPR filler clearly decreased the tensile strength of the PLA by 46% as
shown in Figure 41. This significant decrease can be explained by the development of
biomass agglomerates, micro-voids, and porosity during the composite fabrication.
Therefore, these developments in the PLA matrix will minimize the reinforcing
feasibility of the DPR filler for carrying such applied stress. The tensile strength is
improved from 31.82 MPa to 46.49 MPa by the addition of 1 wt% Triethyl Citrate
(TEC) to the 30% DPR-PLA composite during fabrication. A clear decrease by more
than 10 MPa in tensile strength is observed by further increase in the TEC composition

up to 10 wt%.
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Figure 41: The tensile strength of PLA and its 30% DPR -PLA composites with three
levels of TEC (1 wt%, 5 wt%, 10 wt%).

The addition of 1 wt% PBAT to the 30% DPR-PLA composite as an alternative
plasticizer to TEC increased the tensile strength from 31.82 MPa to 43.65 MPa as
displayed in Figure 42. A minimal decrease in the tensile strength to 39.06 MPa was
noticed by the addition of 5 wt% PBAT. A significant reduction in tensile strength to
21.80 MPa was noticed by the incorporation of 10 wt% PBAT to the 30% DPR-PLA
composite. This reduction was predicted due to the low tensile strength of the PBAT

(21 MPa) compared to that of pure PLA [130].
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Figure 42: The tensile strength of PLA and its 30% DPR-PLA composites with three
levels of PBAT (1 wt%, 5 wt%, 10 wt%).

Figure 43 displays the tensile strength of the plasticized 30% DPR-PLA
composites with the three levels of TEC compared with PBAT as an alternative
plasticizer. As expected, both plasticizers enhanced the tensile strength of 30% DPR-
PLA composite at lower composition. A similar decreasing trend in the tensile strength
is noticed by the addition of 10 wt% from the two plasticizers. The addition of 1 wt%
and 5 wt% of both plasticizers to the 30% DPR-PLA showed a similar effect on the
tensile strength. The incorporation of 10 wt% PBAT showed a much lower tensile

strength (21.80 MPa) compared to 10% TEC (33.20 MPa).
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Figure 43: The tensile strength of 30% DPR-PLA composites with three levels of
two plasticizers.

3.2.6 Elongation at break

The elongation at break of PLA (2003D) as a rough and brittle polyester is 5%
as shown in Figure 44. This agrees with the research work that is investigated by
[131]. The addition of 30 wt% of DPR (90 um) caused a significant decrease in the
elongation at break to 1.80%. This is because of the absence of a total random
uniform distribution of DPR in the PLA matrix, resulting in higher tendency of the
bio-composite to break. Other researchers have demonstrated a decline in elongation

at break as well with the increase in natural filler [132]. The 30% DPR-PLA

composite needs to be plasticized to overcome rigidness and brittleness challenges.
The results revealed that the 30% DPR-PLA composite's ductility could be enhanced
by incorporating just 1 wt% TEC, which improved the elongation at break from
1.80% to 3.23%. A minimal increase to 3.48% in elongation at break of the 30%

DPR-PLA composite was observed by the
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addition of 5 wt% TEC while the elongation increased to 4.20% when 10 wt% TEC

was used.

Elongation at break (%)
N

Samples

Figure 44: The elongation at break of PLA and its 30% DPR-PLA composites with
three levels of two plasticizers (TEC and PBAT).

On the other hand, the addition of 1 wt% PBAT showed relatively no effect
regarding the elongation at break of the 30% DPR-PLA composite as displayed in
Figure 44. However, the elongation at break enhanced to 2.25% after the addition of 5

wt% PBAT and remained the same even by increasing the plasticizer to 10 wt% PBAT.
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Deng and co-author showed a significant increase in the elongation at break above 10
wt% PBAT with different zones and possible mechanism for different ranges of PBAT
content [133]. The results for up to 10% plasticizer proved the superior effect of TEC
compared with PBAT in terms of improving the elongation at break of the 30% DPR-
PLA composite as shown in Figure 44. This might be due to the penetration of TEC
molecules within the interface between the PLA and the granules of biomass, thus
reducing the binding force, and making it possible for molecular chains to move and

slip, thereby enhancing the elongation [134].

3.2.7 Water absorption behavior

The key drawback of natural fiber reinforced polymers is their hydrophilic
nature which is highly responsive to water. This limitation affects their physical,
thermal, and mechanical performance. Water absorption tests were carried out for
DPR-PLA optimum composite in seawater (37 ppt) and tap water at room temperature
for 2500 hours immersion while hot water immersion was done at 50°C for 48 hours.
Figure 45 represents the water retention percentage versus soaking time in seawater,
tap water and hot water for the first 24 hours. The maximum water absorption of 9.34
wit% was attained for the hot water after 24 hours. The same composite absorbs water
in a lower rate in the first 24 hours of soaking in room temperature tap water, and
seawater with a water retention percentage of 1.48 wt% and 0.25 wt%, respectively.
Also, the most color fade off after 48 hours was observed for the hot water as shown

in Figure 46.
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Figure 45: Water retention (wt%) versus soaking time of 30% DPR-PLA samples in
hot water, tap water and seawater for the first 24 hours.

Figure 46: Change of the color of (a) 30% DPR-PLA specimen after soaking in (b)
hot water (50°C), (c) tap water and (d) saline water after 48 hours.

The water uptake curves of 30% DPR-PLA specimens that were immersed in
in hot water, tap water and seawater are shown in Figure 47. The major water uptake
was 12.00 wt% after 48 hours of immersion in hot water. In both tap water and

seawater, the water uptake of the specimens increased with the immersion time at early
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stage to reach a maximum of 2.68 wt%, and 1.83 wt%, respectively. Then it fluctuated
until it reached a water absorption of 1.80 wt% and 0.039 wt% after 2500 hours of
immersion in tap water and seawater, respectively. A group of researchers found that
the water absorption by PLA (2003D) in tap water was up to 1 wt% after 50 days and
achieved a point of equilibrium, where the weight of the PLA sample remained
constant [45]. Then they observed that the water uptake increased with the addition of
cellulose from durian rinds compared with pure PLA, due to the rise of hydroxyl
groups in the PLA based composite [135]. On the other hand, non-biodegradable
cutlery from pure Polystyrene available in market showed water absorption of 0.03—

0.1 wt%, which is lower by 10% compared with PLA [44].
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Figure 47: Water uptake (wt%) versus soaking time of 30% DPR-PLA composite in
(a) hot water, (b) tap water, and (c) sea water.

Figure 47 also shows that the overall water absorption for 30% DPR-PLA

composites immersed in tap water is higher than those immersed in seawater with a
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slight noticeable color change in the water. This is because of the presence of salt
molecules in the seawater which decreases the activity of H>O molecules. The partial
coverage of the surface of the specimen by salt molecules can inhibit water uptake
[136]. Another observation was the loss of the sample original weight by more than 1
wit% in seawater immersion at the first 300 hours (12.5 days). A group of researchers
suggested that the hydrolysis of cellulose within the biomass may favors the seawater

[137].

3.2.8 Biodegradability test

The percentage weight loss of PLA based composites and commercial samples,
which were buried in soil were recorded after 4 months and the final appearance are
shown in Figure 48. The burial was done at 5 cm and 22 cm depth of dry and watered
soil. It can be seen from Figure 48 that the size of all bio-composite samples become
smaller (up to 3.06% weight loss) with a burial time of 4 months compared with 0.15%
weight loss for the commercial samples. This is attributed to the digestion of the
samples by the microorganisms such as bacteria and fungi. After 4 months, 30% DPR-
PLA samples lost their integrated appearance, illustrating that their degradation
speed is faster than those of 15% DPR-PLA samples. All samples that were placed at
soil depth of 22 cm had their original color fade more than those placed 5 cm deep

from the top of the bucket.



[b]

- 3.06%

Bottom! 4= Watered

Top !

0.15%
0.15%

0% Watered

Bottom!{

72

Figure 48: Percentage weight loss after 4 months burial of (a) 15% DPR-PLA in dry
soil, (b) 30% DPR-PLA in dry soil, (c) 30% DPR-PLA composites in watered soil,
and (d) commercial samples in watered soil at two heights.

The anaerobic conditions of soil at 22 cm soil depth were more favorable for

the biodegradation of PLA-based samples that were watered. The 30% DPR-PLA

sample that was placed in the bottom watered soil had most color fade off with a weight

loss of 3.06%. This observation indicates that watered soil favors faster degradation

when compared with dry soil. But the case was different when comparing the weight

loss of 30% DPR-PLA samples at the top of the bucket in dry soil with that of watered

soil as shown in Figure 48 (b) and Figure 48 (c), respectively. The weight loss was

slightly higher and the sample surface was rougher in the case of the sample placed in

the top region of the dry soil, which could be due to the erosion effects as reported by

[138].
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Chapter 4: Conclusion

In this study, the new green composite material was developed from Polylactic
Acid (PLA) mixed with 30%, 40%, and 50% by weight rachis biomass from UAE date
palm waste (DPR) for cutlery and food ware applications. The DPR was used without
any chemical treatments or surface modification to avoid the use of chemicals in food-
grade applications, save energy and reduce production cost. Melt mixing was
performed at 180°C followed by the extrusion of DPR-PLA composites, which were
then re-melted via Injection Molding machine to fill the closed mold cavity of a certain
shape. The prepared DPR-PLA composites were subjected to different thermal,
mechanical, and physical tests.

To prevent possible thermal degradation during processing, TGA revealed that
the weight loss of five percent of PLA occurs at about 338.9°C while the DPR biomass
demonstrates a five percent weight loss at approximately 206.3°C. The DPR biomass
had good thermal stability by showing a final residue of 23 wt% at 800°C. The bio-
composites of PLA with a biomass content of 30%, 40%, and 50% by weight showed
degradation temperatures of 355.8°C, 346.8°C, and 335.9°C, respectively. The glass
transition temperature of PLA was obtained to be 59.13°C while the glass transition
temperature of DPR-PLA composites shifts to slightly lower temperatures (54.1°C)
with a filler content of 50% by weight, thereby improving the ductility and
processability of the PLA.

FTIR results indicated potential interfacial interaction between PLA and DPR
biomass. One of the changes could be the esterification reaction between —OH of the
biomass, the carbonyl (C=0), and the terminal -COOH group in the PLA, causing a

gradual increase in the intensity of the C=0 stretching peak, when the biomass was
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increased in the composite sample. Moreover, SEM results indicated that the DPR is
in particulate form, which appears as aggregates of some nanofibrils on the surfaces
of the biomass particles. Similar uniform dispersion of the filler with the particle size
of 53 um and 90 um in the PLA matrix was observed by the addition of 30 wt%
biomass. The addition of 40 wt% and 50 wt% biomass filler made the surface slightly
rougher and coarser when compared with 30% DPR-PLA composites.

The MFI of PLA was measured to be 7.059/10 min, while the addition of 50
wt% DPR to the PLA, increased the MFI to 54.78g/10 min, which might be due to the
increase in the mobility of the PLA chain and the reduction of composite viscosity.
The 30% DPR-PLA composite was considered as the optimum composite composition
for processing in large scale extruders due to its lower MFI (16 g/10 min) when
compared to the other bio-composites. The tensile strengths of pure PLA (2003D) and
30% DPR-PLA composite was found to be 68.88 MPa and 31.82 MPa, respectively.
The incorporation of 10 wt% PBAT showed much lower tensile strength (21.80 MPa)
compared with that of 10 wt% TEC (33.20 MPa). Finally, the results proved the
superior effect of 10 wt% TEC in terms of improving the elongation at break of the
30% DPR-PLA composite from 1.8% to 4.20%.

A maximum water absorption of 9.34 wt% was obtained after soaking the
optimum 30% DPR-PLA composite in hot water after 24 hours of immersion. The
same composite in the first 24 hours of soaking in room temperature tap water, and
seawater showed a water absorption of 1.48 wt% and 0.25 wt%, respectively. In
addition, the 30% DPR-PLA sample that was placed in the bottom of the watered soil
had most color fade off with the highest weight loss percentage of 3.06% after 4
months. The industrial composting is expected to be much faster (around 6 to 12

weeks) due to the more favorable biodegradability conditions.
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To sum up, this green composite will play an essential role in decreasing the
environmental concerns caused by the land and ocean pollution from petroleum-based
plastics and their serious consequences. This research focused on developing a
biodegradable composite material made from date palm waste to replace single-use
cutlery plastics used in homes, parks, restaurants, coffee shops, and air flights. The
optimum plasticized 30% DPR-PLA composite is believed to be suitable for cutlery
application since it showed comparable properties to petroleum-based plastics
especially in terms of tensile strength, elongation at break, and cost as shown in Table
2. The main limitation of the DPR-PLA composite is its slightly hydrophilic nature,
which is more responsive to water compared to petroleum-based plastics.

For future work, a group of food-grade biodegradable plasticizers and other
additives (compatibilizer, anti-caking, and antioxidant agent) are recommended to be
studied in the formula in order to optimize the final composite characteristics in terms
of tensile strength, flexural strength, Melt Flow Index, and cost. Also, the
determination of the crystallographic structure using XRD (X-Ray Diffraction)
analysis will be useful in dictating the mold-opening time versus the economics of the
whole process. However, this study can target different applications such as straws,
food packaging, iceboxes, and insulated containers by varying the processing
techniques, composite formula, and conducting the required testing. Furthermore, it is
recommended to develop a real composting soil system similar to the industrial one
with controlled humidity, temperature (50—70°C) and type and number of microbes to
study the rate of degradation and check the rate of production of CO,, water, CHa,

biomass, and other natural substances.
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