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Abstract  

This thesis is concerned with analysing vitamin A deficiency. Vitamin A is crucial for 

several functions, including vision, growth, and cell differentiation. the main aim is to 

develop and validate an LC-MS/MS method for the determination of vitamin A in 

plasma matrix and use the new method for the determination of vitamin A levels in the 

obese Emirati population. Methods: A positive ion electrospray ionisation (ESI) LC-

MS/MS method was used in the Multiple Reaction Monitoring (MRM) mode for 

quantification. It involved i) LC-MS/MS, ii) a guard column together with C18 

Ascentis Express F5 column iii) Internal standard, 25-Hydroxyvitamin D3 (6, 19, 19-

d3), and iv) identification via ESI and monitoring of three fragmentation of the parent 

ion. To demonstrate the practical value of this method, blood samples were collected 

from 452 Emirati participants (277 obese; 175 healthy). The method was validated 

according to FDA-US guidelines. The method has been applied on a sample of 277 

Emirati obese patients, including 277 baselines, 277 follow-ups, and 175 health 

samples. The characteristics of the sample included: mixed-gender with 73 males in 

the age group of (18–82 years) and 204 females in the age group of (18–65 years). The 

results show that the concentrations of vitamin A for both females and males increased 

after supplementation (372 ng/mL to 440 ng/mL for female sample, and 438 ng/mL to 

540 ng/mL for male sample). This has led to a sufficient level of vitamin A in 

participants. The new method allowed chromatographic separation and quantification 

of vitamin A. The new assay could detect 0.48 ng/mL of vitamin A in serum with the 

calibration curve ranging from 7.8 to 1000 ng/ml. The method validation parameters, 

including intra and inter-day precision, intra and inter-day accuracy, recovery, 

linearity, specificity, and stability, were within range. For example, the recovery 

percentage found were 99%, 96%, and 94% for QCH, QCM, and QCL respectively, 

while the percentage of change in the stability of vitamin A ranges between 0 and 3%. 

The applied LC-MS/MS method was intended to accurately detect Vitamin A in 

human plasma, and has proven to be specific, reliable, and robust. The method can 

detect low levels of vitamin A. This analytical method does not require time-

consuming derivatisation and complex extraction techniques and could prove very 

useful in clinical studies. 

Keywords: Vitamin A, LC-MS/MS, ion dispersion, chromatographic separation. 
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Title and Abstract (in Arabic) 

 

 الإماراتدولة سكان لالتحديد الطيفي الشامل للريتانول 

 الملخص

للعديد من  الذي يعد من أهم العناصر الغذائية  الرسالة معنية بتحليل نقص فيتامين أمقدمة: هذه 

الوظائف ، بما في ذلك الرؤية والنمو وتمايز الخلايا. الأهداف: الهدف الرئيسي هو تطوير والتحقق 

لتحديد فيتامين أ في مصفوفة البلازما واستخدام الطريقة  LC-MS / MSمن صحة طريقة 

الجديدة لتحديد مستويات فيتامين أ في السكان الإماراتيين البدينين. الطرق: تم استخدام طريقة 

LC-MS / MS -  للتأين بالرش الكهربائي الأيوني  - اللوني السائل مع مطياف الكتلة الترادفية

 / LC-MS( 1( للتقدير الكمي. تضمنت MRMعلات المتعددة )الموجب في وضع مراقبة التفا

MS  ،2 عمود حماية مع عمود )C18 Ascentis Express F5 iii ، 25( المعيار الداخلي-

Hydroxyvitamin D3 (6  ،19  ،19-d3 و ، )تحديد عبر 4 )ESI  ومراقبة ثلاثة تجزئة

مشاركًا إماراتياً  452تم جمع عينات دم من للأيون الأصل. لإثبات القيمة العملية لهذه الطريقة ، 

صحياً(. تم التحقق من صحة الطريقة وفقاً لإرشادات إدارة الغذاء والدواء  175سميناً ،  277)

إماراتي مريض يعانون من السمنة  277الأمريكية. النتائج: تم تطبيق الطريقة على عينة من 

ة. اشتملت حعينة صحي 175، و  تم متابعتهم 277، و  عينة أساسية 277المفرطة ، بما في ذلك 

إناث في  204سنة( و  82-18الذكور في الفئة العمرية ) من 73من  خصائص العينة على: عدد

سنة(. أظهرت النتائج أن تركيزات فيتامين )أ( لكل من الإناث والذكور  65-18الفئة العمرية )

نانوغرام  438رام / مل لعينة الإناث ، و نانوغ 440نانوغرام / مل إلى  372زادت بعد المكملات )

نانوغرام / مل لعينة الذكور(. وقد أدى ذلك إلى مستوى كافٍ من فيتامين أ في  540مل إلى  /

المشاركين. مساهمات كبيرة: سمحت الطريقة الجديدة بالفصل الكروماتوغرافي وتقدير فيتامين أ. 

مل من فيتامين أ في مصل الدم مع منحنى نانوغرام /  0.48يمكن للمقايسة الجديدة اكتشاف 

نانوغرام / مل. كانت معلمات التحقق من صحة الطريقة  1000إلى  7.8المعايرة الذي يتراوح من 

، بما في ذلك الدقة داخل وبين اليوم ، والدقة داخل وبين اليوم ، والاسترداد ، والخطية ، 

مثال ، كانت نسبة الاسترداد التي تم والخصوصية ، والاستقرار ، ضمن النطاق. على سبيل ال

على التوالي ، بينما تتراوح  QCLو  QCMو  QCH٪ لـ 94٪ و 96٪ و 99العثور عليها 

 LC-MS / MS٪. تم ملء الفجوة: طريقة 3و  0بين  Aالنسبة المئوية للتغير في ثبات فيتامين 

سان ، وقد ثبت أنها محددة المطبقة كانت تهدف إلى الكشف الدقيق عن فيتامين أ في بلازما الإن
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وموثوقة وقوية. يمكن لهذه الطريقة الكشف عن المستويات المنخفضة من فيتامين أ. لا تتطلب هذه 

الطريقة التحليلية اشتقاق تقنيات استخلاص معقدة وتستغرق وقتاً طويلاً ويمكن أن تكون مفيدة جداً 

 في الدراسات السريرية.

الفصل ، الأيوني بالترذيذالتأين ، LC-MS/MSفيتامين أ،  مفاهيم البحث الرئيسية:

 .الكروماتوغرافي
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Chapter 1: Introduction 

1.1 Background 

Many organisms need limited amounts of organic compounds in their body; one of 

these compounds is vitamins. Vitamins play an essential vital role in the body, like 

activating an enzyme to catalyse a thousand chemical reactions; so, they are considered 

as co-factors in enzyme activity [1]. They play a crucial role as antioxidants and pro-

hormone agents. Moreover, they are necessary for various physiological, biochemical, 

and catalytic functions. Ultimately, they are involved in the metabolism of food 

substances [2]. Vitamins are required in small quantities and, as such, are referred to 

as micronutrients. The body does not synthesise most vitamins except for vitamin D, 

which can be obtained by skin exposure to sunlight [3]. Therefore, diet acts as a 

significant supply source [3]. Each vitamin has its own set of functions; therefore, the 

body requires different amounts of each vitamin [4]. Vitamin deficiency is associated 

with several conditions such as pernicious anaemia, scurvy, pellagra, ariboflavinosis, 

skin conditions, and many others. It is caused by a poor diet, malabsorption, or 

underlying medical disease [4, 5].  Vitamins’ solubility is categorized into two clusters, 

the first group is water-soluble vitamins while the second group is fat-soluble vitamins. 

Vitamins B and C are under the group of water soluble vitamins, while vitamins A, D, 

E, and K are under the group of fat-soluble vitamins [1].  

Vitamin A has an organic structure of an 11-carbon side chain and a 6-membered ring. 

Vitamin A is not a single molecule, it is a name given to a group that contains some 

related compounds, and they include Retinol (primary molecule, vitamin A alcohol), 

Retinal and Retinoic acid [6, 7]. Retinol and other compounds, including retinal, 

retinoic acid, and retinyl esters, have a similar biological activity to vitamin A; 
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therefore, the term vitamin A  is utilised for these compounds as presented in Figure 

number 1 [7]. Retinoids are a group of chemical compounds that are metabolites of 

vitamin A and contain four isoprenoid units. These isoprenoid units linked together in 

a head-to-tail manner to form Vitamin A metabolites as shown in figure number 1 

[7, 8]. 

Retinol can be converted by oxidation to retinal; also, Retinal can be changed to 

retinol; therefore, these two compounds are interconvertible. Retinal is main source of 

Retinoic acid which is derived from by oxidation, which is also at the same time a 

critical signalling molecule; however, retinoic acid cannot be converted to retinal by 

reduction [9]. Plants contain vitamin A in a pro-vitamin form that is known as β-

carotene. β-carotene is derived from carrots because carrots have a rich concentration 

of vitamin A. β-carotene is an antioxidant which can be converted in the body to 

vitamin A by an enzyme called β-carotenoid-15,15′-dioxygenase. For instance, this 

enzyme cleaves β-carotene in a specific region (central region) into two molecules of 

retinal; then, these two molecules are converted into retinol during the reduction 

process catalysed by retinal reductase enzyme as appears in the Figure 1 [7, 10, 11].  
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Figure 1: The metabolic relationships between a group of vitamin A compounds 

including retinal, retinol, β-carotene, retinoic acid, and retinyl ester 

Moreover, this figure illustrates the molecular structure of α-carotene, Isoprenoid unit, 

11-cis-retinal, and 9-cis-retinoic acid. β-carotenoid-15,15′-dioxygenase enzyme 

cleaves β-carotene into two molecules of retinal; then, Retinal converted to retinol by 

retinal reductase enzyme, and there will be interconversion reaction between Retinal 

and Retinol. Retinoic acid considered the most active biological metabolite of vitamin 

A produced irreversibly from retinal by an oxidation process [7].  

Retinol is considered the common active metabolite biologically present in the tissue 

of mammals. Retinol solution has a faint yellow colour, and it can be adversely 
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affected by heat, oxygen, ultraviolet light, and acids [12]. Vitamin A is an essential 

component needed for healthy vision. There is no need for a prescription to take this 

vitamin. In the United States, some foods like cereals have a large amount of this 

vitamin. Undoubtedly, it is proposed that a large amount of vitamin A intake could 

lead to fracture and osteoporosis in some countries like Scandinavia and the United 

States, where vitamin A is often consumed highly in food and supplements [7].  

The human body must have vitamin A in an adequate amount for many functions, 

including physical development and growth, vision, regular gene expression, immune 

function, reproduction, and erythropoiesis [13]. The human body requires a specific 

amount of vitamins depending on age and gender, as well as other factors such as 

health status and pregnancy. The Food and Nutrition Board of the Institute of 

Medicine’s Recommended Dietary Allowance (RDA) ranges from 0.3mg- 0.9 mg per 

day. So the best way to ensure your body gets its daily requirement of essential 

vitamins is to eat a balanced meal containing a wide variety of fruits, vegetables, whole 

grains, and dairy products [14]. 

Various analytical procedures could be utilised in the pre-treatment and determination 

of vitamins. For pre-treatment, ultrasonic-assisted extraction, liquid-liquid extraction, 

solid-phase extraction, and dispersive liquid-liquid microextraction are the most 

common methods. Determination analysis includes chromatography techniques, 

electrophoretic methods, microbiological assays, immunoassays, biosensors, and 

several other methods [15-20]. 
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1.2 Aims and objectives of this study 

1.2.1 Aim  

The aim of this study was to develop and validate an LC-MS/MS method for 

determination of vitamin A in plasma matrix and use the new method for determination 

of vitamin A levels in obese Emirati population. 

1.2.2 Objectives 

1. Develop a sensitive robust, and easy LC-MS/MS-based assay for measuring 

vitamin A in human plasma. 

2. Use the above method to measure plasma vitamin A in healthy and diseased 

Emirati population. 

1.3 Hypothesis  

1. Obese Emirati patients have low levels of vitamin A compared to healthy. 

1.4 The importance of vitamin A for vision  

In the early 1500 BC, vitamin A was significantly important to ancient Egyptians for 

vision health. As reported by papyrus Ebers (ancient herbal knowledge of medicine), 

patients who have night blindness disease or nyctalopia patients who were face 

difficulty in seeing either during the night or in dim light. Those patients were treated 

by using the specific medication as a topical application in their eye. It is called liver 

juice or previously cooked ox liver extract [9, 21, 20]. The drops of this medicine 

contain a large amount of vitamin A (Retinol). They come to the retina through firstly 

getting in the lachrymal duct and then absorbed through blood circulation [9, 22].  
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In Figure 1, it is shown that 11-cis-retinal is a Vitamin A derivative that plays a vital 

role in the rod cells located in the retina of the eye.  Rod cells are the photoreceptor 

cells that have a specific type of vision, which is called scotopic vision; so, it is more 

for dim light or dark light. Rod cells consist of a specific type of visual pigment, and 

this pigment is called Rhodopsin. Rhodopsin is made up of two things. The first thing 

is that retinal, which is 11-cis-retinal, and the second thing is that opsin protein, which 

is sensitive to the light [9, 10].  

When the light rays absorbed by rod cells, they hit the Rhodopsin and change the 

structure of 11-cis-retinal into a different form, which is called all-trans-retinal; 

therefore, the attraction of this molecule toward opsin protein is loosed which lead to 

initiate phototransduction process. In the phototransduction process, the light is 

converted into an electrical signal which is transmitted toward the brain resulting in 

the vision [9, 23-25]. Vitamin A deficiency precedes to night blindness symptoms. For 

example, When the amount of 11-cis-retinal is less, the body cannot make Rhodopsin 

(light-sensitive protein), and a subsequently small amount of light cannot stimulate an 

adequate response at night [7, 26].  

1.5 Dietary sources of vitamin A 

          Vitamin A can be found in the diet either as pro-vitamin A carotenoids or as 

preformed vitamin A. Retinyl ester is a long-chained fatty acids ester of retinol and 

considered as major preformed vitamin A. It can be ingested in foods such as liver, 

milk, butter, eggs, and fortified cereals. Moreover, Vitamin A can be obtained as pro-

vitamin A carotenoids, including β-carotene, α-carotene, and β-cryptoxanthin from 

vegetables such as pumpkins, collards, carrots, squash, and spinach. In the United 

States, the percentage of β-carotene ingestion exceeds more than 75% compared to the 
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other pro-vitamin A carotenoids [27, 28]. “The Recommended Dietary Allowance 

(RDA) for adults for vitamin A is set at 900 ug RAE/day for men and 700 ug RAE/day 

for women. One ug retinol activity equivalent (ug RAE) is equal to 1 ug all-trans-

retinol, 12 ug β-carotene, and 24 ug α-carotene or β-cryptoxanthin” [14]. In the United 

States, the mean of vitamin A intake is approximately 600 ug RAE/day and preformed 

vitamin A intake formed 70 -75% of that concertation [27]. 

1.6 Absorption and transport of vitamin A  

The biologically inactive retinyl esters are broken down via hydrolysis with pancreatic 

and intestinal enzymatic catalysation [29, 30]. The resultant unbound and insoluble 

retinol is then absorbed by enterocytes and converted from its unbound state to binding 

with one of the cellular retinol-binding proteins (CRBP). From the six distinct binding 

proteins, Intestinal Retinol binds preferentially to CRBP type II [31]. In contract to 

preformed vitamin A,  absorption of pro-vitamin A carotenoids occurs either directly 

by intestinal muscoal cells or by conversion through oxidation to Retinal, followed by 

reduction to retinol [32]. Retinol esterification occurs with retinol obtained from 

retinyl esters and pro-vitamin A, through incorporation with long-chain fatty acids. 

The retinyl esters alongside the unmodified carotenoids are packaged with the rest of 

dietary lipids into chylomicrons, which are carried by the lymphatic system [33].  

There is also a notion that some retinol which has not undertaken esterification is 

uptaken directly by the hepatic portal system. 

Dietary fat plays a fundamental role in the absorption of vitamin A. This occurs 

through several processes by stimulation of chylomicron production and improving 

the solubility of retinol and carotenoids in the intestinal mucosa while also initially 
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aiding in the activation of enzymes acting to performs hydrolysis of dietary retinyl 

esters [27].  

The formation of chylomicron remnants in the bloodstream where retinyl esters are 

contained occurs as a result of hydrolysis with a function of the enzyme lipoprotein 

lipase, accompanied by the addition of apolipoprotein. This facilitates hepatic retinol 

uptake through endocytosis, followed by hydrolysis [31]. It has been proposed that the 

enzyme lipoprotein lipase (LpL) performs this function in peripheral tissues, 

facilitating hepatic retinol uptake through endocytosis followed by hydrolysis [34]. 

Retinol surplus to the body's need is re-esterified and transferred to the hepatic stellate 

cells for storage. 

With 70% storage, the liver is the main tissue site of vitamin A storage in the body. 

This is in addition to the extrahepatic uptake of chylomicron and remnants, where 

small portions of retinyl esters and carotenoids are transferred for usage and storage 

[31] (Figure 2).  Once retinol has formed in liver stellate cells from its storage structure 

of retinyl esters, it binds to a specific transport protein known as Retinol binding 

protein (RBP) at the hepatocytes. The exact mechanism of which has been the subject 

of much research. The resultant compound of retinol-RBP then binds to transthyretin 

in the circulation [35]. This process prevents the renal clearance of retinoids [36]. 

Immediately following consumption of a meal, retinoid is found in a significant 

proportion within the circulation in the form of chylomicron retinyl esters while 

retinol-RBP complex constitutes for the vast majority present in fasting conditions 

[37]. 
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Figure 2: The absorption and transport of vitamin A highlighting the uptake pathway 

from dietary sources (Dietary uptake and transport of vitamin A) [7] 
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Research studies in-vivo have found that chylomicrons deliver vitamins to bone-

building cells known as osteoblasts making the bone an essential organ in the uptake 

of chylomicron remnants [38].  

Peripheral tissue uptake of chylomicron retinyl esters occur following the hydrolysis 

of chylomicron retinyl esters by the action of lipoprotein lipase. The uptake Retinol-

RBP complex, on the other hand, occurs predominantly via a specific cell surface 

receptor known as STRA6, which is a multi-transmembrane retinoic acid-responsive 

gene. Furthermore, the active form of all-trans-retinoic acid (ATRA) is found albumin-

bound in small amounts in serum, contributing to tissue uptake of ATRA [39].  
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Figure 3: Receptor-mediated cellular uptake of retinoids as well as the signalling by 

Retinol and its serum binding protein 
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Immediately post the uptake of retinol by cellular tissues, it is transformed into the all-

trans-retinal by oxidation with the action of dehydrogenases within the cytosol. It then 

binds with CRBP. Following this, the biologically active complex ATRA is formed as 

all-trans-retinal is oxidised in a process regulated by retinal dehydrogenase. Cellular 

retinoic acid-binding protein (CRABP) selectively binds ATRA, the most active 

retinoid metabolite. Retinoids exert their effects through the binding to nuclear 

receptors, mainly retinoic acid receptors (RAR) and retinoid X receptors (RXR), 

alongside the action of response elements and multiple core regulators [26] (Figure 3). 

Both RAR and RXR families exhibit three receptor isotypes (α, β, γ) with at least two 

different isoforms present for each isotype [40].  

Retinoid receptors bind to retinoids in the form of dimers leading to the activation of 

retinoic acid response elements (RAREs) in the promoter parts of genes at the target 

site. RARs only work in the form of heterodimers with RXRs (RAR/RXR), with RXRs 

able to also function as only homodimers (RXR/RXR). RXRs also possess the ability 

to form heterodimers with various nuclear receptors like vitamin D, demonstrating the 

involvement of retinoids in various cellular pathways. Research has shown that RARs 

activation is mediated by ATRA and the isomer9-cis retinoic acid (9-cis RA) in vitro, 

while RXRs bind to 9-cis RA, resulting in its activation. The majority of cellular retinol 

signaling is believed to occur with the binding of ATRA to RAR in RAR/RXR 

heterodimers [41]. 

Active RARs act as ligand transcription factors, binding RAREs in the promoters of 

target genes [40, 41]. RAREs are made up of hexameric motifs organised as 1, 2, or 5 

palindrome pairs DRs or inverted repeats. RA can be shuttled to the nucleus by cellular 

CRABP-II, which facilitates the movement of ATRA to RARs. Retinoic acid receptors 
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serve an essential role in the regulation of this pathway through the recruitment of co-

activators and corepressor proteins controlling the transcription of target genes 

depending on the presence of the retinoic acid ligand. In the absence of the ligand, the 

RAR/RXR complex represses the transcription process by recruiting corepressors, 

while the binding of ATRA to the RAR/RXR dimer leads to the recruitment of co-

activators. Examples of co-activators include steroid receptor co-activator (SRC)/p160 

family and p300/CREB-binding protein (CBP) while corepressors include nuclear 

receptor corepressor (NCoR), silencing mediator of RAR and thyroid hormone 

receptor (SMRT), mSin3A, and histone deacetylases (HDACs) [40, 42-44] (Figure 3). 

It has been found that RAR-mediated gene repression is essential in skeletal progenitor 

differentiation signalling pathways to regulate the emergence of the chondroblast 

phenotype [45, 46]. 

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated 

transcription factors of the nuclear hormone receptor with three subtypes PPARα, 

PPARγ, and PPARβ/δ. PPARs dominate the capability to produce heterodimers with 

RXR, as well as RARs and RXRs. Following heterodimerisation with RXR, PPARs 

function as a sequence-specific target factor in the promoter region of target genes [47, 

48] (Figure 3).  

As well as functioning as a ligand RARs, it has been found that ATRA can also bind 

to PPARβ/δ [43]. The fatty acid-binding protein 5 (FABP5) mediates this pathway by 

shuttling ATRA to the nucleus, enabling PPARβ/δ activation, allowing the subsequent 

binding to PPAR response elements (PPREs) to take place [49, 50]. The notion that 

dual transcriptional activities from alternate activation of two different nuclear 

receptors (CRABPII/RAR or FABP5/ PPARβ/δ) underlie opposing effects of RA on 
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cell growth has been shown in keratinocyte proliferation and carcinomas, with a 

paucity of evidence in bone cells.   

Retinoid-related orphan receptors, mainly RORα and RORβ, represent another group 

of transcription factors that have been found to bind to retinoids [51]. While RARs and 

PPARs bind RXR is a heterodimer binding mode, RORs undertakes monomeric DNA 

binding to specific ROR response elements (ROREs) [52]. Recent studies have shown 

that RORβ has resulted in the failure of mineralisation and osteoclast differentiation 

[53]. 

The impact of retinoids at a  genomic level can, therefore, be demonstrated through 

the regulation of multiple physiological processes through the retinoic acid receptor-

dependent transcription pathway encompassing the ligation of ATRA to different 

types of nuclear receptors and the binding to the relevant response elements. In 

addition to this classical genomic-based mechanism, retinoids can also exert non-

genomic effects. These nongenomic effects could either be facilitated by RARs or 

without RARs involvement.  

Non-genomic effects mediated by RARs include RARs inhibitory effect as an RNA-

binding protein within the cytoplasm of neuronal cells [54, 55]. The regulation of 

ERK1/2 kinase phosphorylation is an example where non-genomic effects are 

displayed independent of RARs. Phosphorylated ERK1/2 leads to phosphorylating 

various microtubule-based proteins, and it also translocates to the nucleus resulting in 

the activation of various transcription factors such as cAMP response element-binding 

(CREB) protein which is important for axonal growth [56] (Figure 3). This action is 

not only exerted by ATRA but also by retinol [57]. 
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Adipose tissue is a major storage area for retinol, where it has shown a potent inhibitor 

activity of adipocyte differentiation, as well as inhibiting of PPAR activity, and 

improves sensitivity to insulin [55]. This finding highlights that retinal could be a 

further compound derived from vitamin A, which is essential in facilitating a 

biological function. Unlike Retinol, ATRA acts as a paracrine factor due to its ability 

to pass through hydrophobic membranes, which is attributed to its partial water 

solubility. These acts display retinoic acid immersion and engagement acting as a 

morphogen in early embryonic development.   

1.8 Vitamin A deficiency 

Safe and optimal vitamin A supplementation has shown a considerable positive 

influence on improving several physiological functions, including the immune system. 

With the exception of developing countries where there have been high levels of 

vitamin A deficiency, this simple and cost-effective approach has had a detrimental 

impact on reducing mortality worldwide [58]. The application of therapeutically used 

retinoids extended to reducing acne outbreaks. It has also been integrated into the 

management of different cancers, including acute promyelocytic leukemia, squamous 

cell carcinoma of the head and neck as well as ovarian cell carcinoma [59].  

There are several factors affecting retinol levels within the body, with increased levels 

associated with an increase in age as well as high body mass index in children [60, 61]. 

This could be attributed to increased intestinal uptake and reduced clearance. It has 

also been found that the level of retinyl esters in the serum is higher in females than 

males and in those who self-medicate with vitamin supplements [63-66]. Normal 

values range from 1-3 µmol/L, with suboptimal vitamin A status at <1.05 µmol/L and 

a deficiency diagnosis with <0.7 µmol/L [60, 61].  
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Measuring vitamin A levels in the human body has been the subject of much research. 

Serum retinol and retinyl ester concentrations have been used as commons methods in 

order to assess the status of vitamin A. However, with the controlled release of vitamin 

A from its liver storage reserves only when needed, this method is only beneficial at 

extreme amounts of vitamin A, when these are either dangerously low or high [62]. 

While serum retinyl esters have been found to be beneficial for chronic cases, other 

sensitive biochemical methods to marginal changes in vitamin A storage are necessary 

in order to ascertain clinically significant levels with relevance to toxicity [63]. These 

encompass dose-response tests and isotope dilution assays [62].  

Serum retinyl ester concentrations of 0.2 µmol/L, or more than 10% of total serum 

vitamin A, including both retinol and retinyl esters, provide an indication of 

abnormally high and potentially toxic concentrations. The scale of an increased 

vitamin A level has been highlighted by the Third National Health and Nutrition 

Examination Survey, where cases of more than 10% of total vitamin A has been 

significantly high, showing an increased incidence [64].  

While a high intake of preformed vitamin A or retinoid derivatives can lead to 

hypervitaminosis A, pro-vitamin A carotenoids such as B-carotene do not cause 

hypervitaminosis A, even when consumed in large quantities. This is due to the 

negative feedback regulation, which limits the conversion of B-carotene to Retinol in 

order to align with the actual need of the body [65]. Excessive dietary carotenes can 

cause carotenemia, yellowing of the skin, which is a reversible medical condition on 

stopping the ingestion of beta-carotene [66]. 

Evidence suggests that hypervitaminosis A existed a very long time ago with a partial 

Homo erectus skeleton displaying pathological bony alternations in the outer cortex of 
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the tibial shaft, corresponding with chronic hypervitaminosis A [67]. It has been 

suggested that this was a result of the change in the Homo erectus diet at the time to 

include animal liver, which is a rich source of vitamin A, leading acutely to vertigo, 

vomiting, diarrhea, headache, seizures, patchy hair loss, and even mortality in some 

cases. The earliest known description of this illness in the West was documented by 

Gerrit de Veer, an early Dutch explorer on a 1596 voyage with William Barentsz to 

find the Northwest Passage [68]. De Veer's diary describes a sickness that occurred 

after his crew ate polar bear liver—which contains a high concentration of vitamin A. 

Similarly, in the 1850s, Arctic explorer Elisha Kent Kane initially thought that the 

widespread caution about polar bear liver was a "vulgar prejudice," but he 

subsequently changed his mind: "The cub's liver was my supper last night, and today 

I have the symptoms of poison in full measure-vertigo, diarrhea, and their 

concomitants" [69]. In the Far Eastern Party of the 1911-1914 Australasian Antarctic 

Expedition, acute hypervitaminosis A may have caused sickness and death among 

many polar explorers who ate the livers of Greenland husky sled dogs [70]. 

Hypervitaminosis A is a rare condition with higher incidence found in children 

generally attributable to therapeutic retinoids or candy-like chewable vitamin 

supplements [71]. The rise in misconceptions related to the safe use of vitamins 

without realisation of the need to ensure consumption is within the recommended daily 

limit makes this disease of importance in terms of severity and the potential increase 

in incidence. The highest risk is believed to be related to emulsified, water-soluble, 

and solid preparations, such as tablets [71].    

Hypervitaminosis can lead to skeletal lesions as evident in studies showing a 

characteristic thinning of the cortex and a decrease in the diameter of the long bones 
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(Figure 4). Findings have also shown a strong association between excessive vitamin 

A intake and an increased risk of fracture as exposure to toxic doses of retinoids 

resulted in spontaneous fractures in rats [72]. A further indication of the skeletal 

changes associated with hypervitaminosis A reduced endosteal/marrow blood flow 

accompanied by a higher degree of mineralisation has been shown in rats with 

hypervitaminosis A. Furthermore, the bone marrow of rats ingested with retinol 

displayed a high level of osteogenic genes [73].  

While most studies have been undertaken on retinoid-treated rats with exposure to 

excessive amounts that do not lead to toxic levels in humans, mature rats that received 

considerably lower doses of vitamin A still displayed long thin bones and decreased 

biomechanical strength [74]. This supports the notion that humans with subclinical 

elevations in vitamin A are at an increased risk of fractures and osteoporosis. 

The skeletal effects studied in humans with an abundant consumption of retinoids 

found there to be periosteal bone formation characterised by hyperostosis in 

metatarsals, metacarpals, and the long bones in the body. Other skeletal effects were 

found comprised of premature epiphyseal closure, skeletal and joint pain, and 

increased cortical bone resorption [75, 76]. 

In one microradiography study of a human rib, large consumptions of vitamin A 

displayed six times more cortical bone resorption as well as suboptimal bone formation 

(Figure 4) [77]. Even after the restoration of normal vitamin A consumption, humans 

who previously consumed too much vitamin A had evidence of new subperiosteal 

bone, particularly in the tibial and fibular shafts [78]. 
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It is worth noting that hypercalcemia has been linked with hypervitaminosis A in 

numerous case reports, likely because retinoids directly promote bone resorption 

[79, 80]. This hypercalcemia can be addressed with glucocorticoids, which have been 

shown in vitro to reduce hypercalcaemia by activating the monomeric glucocorticoid 

receptor and thus opposing bone resorption of ATRA [79-82]. 

Figure 4 shows that increased vitamin A intake leads to decreased cortical bone mass 

by increasing the number of osteoclasts on the periosteal surfaces as shown in part A. 

Part B highlight the controversy of the role of Vitamin A  on trabecular bone some 

studies showing effects on bone mass. In contrast, others provide evidence otherwise.  

Part C shows the role Vitamin A plays in inhibiting adipocyte differentiation, as shown 

in vitro studies. 
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Figure 4: Association of Hypervitaminosis A with reduced cortical bone mass 
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Table 1 shows examples of HPLC-MS/MS methods for the detection of vitamin A. 

Pre-treatment and determination methods of vitamins have increasingly been a subject 

of research interest over the years. Analytical techniques include a pre-treatment 

process in order to minimise interference of other components and as such enhance the 

analytical performance.  Pre-treatment approaches are varied and include liquid-liquid 

extraction (LLE), ultrasonic assisted extraction (UAE) and super critical fluid 

extraction (SFE) alongside other processes (Table 2). Each of these techniques have 

specific advantages and disadvantages which have been discussed in many studies 

(Table 3). Depending on the type of sample, UAE, SFE and reflux are the most widely 

used for solid preparations while LLE, solid-phase extraction (SPE) and Dispersive 

Liquid–Liquid Microextraction (DLLME) are the techniques of choice in the liquid 

phase formulations. SFE offers a good efficiency of extraction despite its expensive 

instruments when compared with UAE. In discussing column passing, processes like 

SPE can be complex. Nonetheless, SPE provides an ability to prepare several samples 

at the same time, significantly reducing the total time of the process. In addition, SPE 

could be coupled with LC to provide analysis within an online platform [20, 83, 84]. 

As well as the various types of pre-treatment methods, there are many analytical 

approaches and these include chromatography techniques, electrophoretic methods as 

well as microbiological and immune assays. The most widely used techniques in the 

determination of vitamins are those that are based on High-Performance Liquid 

Chromatography-Tandem Mass Spectrometry (HPLC–MS) or (HPLC-MS/MS) 

(Table 1). Advances within this technique have led to the development of ultra-high-

performance liquid chromatography (UHPLC) which utilises sub-2-μm particle 

columns with a subsequent enhancement of the chromatographic performance, 
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particularly within resolution, sensitivity and speed. Combining UHPLC with MS 

detectors has also shown several advantages [17, 18, 85].  

In discussing advantages, Liquid Chromatography (LC) offers a wide variety of 

qualitative and quantitative analytical benefits in various matrices, including foods and 

biological preparations, particularly when used with MS. The use of other techniques 

such as ultraviolet (UV) and Fluorescence Detectors (FLD), has been limited by 

overlapping peaks with complex samples [17, 18, 85]. 

The key favourable characteristics of  LC-MS/MS is the increased specificity and 

sensitivity in comparison to other methods. This is because it can easily distinguish 

between various metabolites through chromatographic separation and mass transition 

variation. LC-MS/MS methods can separate samples with different polarities and mass 

to charge (m/z) ratios. In addition, this method posses very Low Limits of Quantitation 

(LOQ), subsequently providing a higher sensitivity. Therefore, LC-MS/MS provides 

accuracy and precision [15]. 

HPLC-MS/MS can also act as a confirmatory technique in the identification of 

vitamins leading to easily identifying the sample’s molecular structure. Utilising 

MS/MS provides flexibility as complete HPLC separation of the sample constituents 

would not be essential for selective detection. Key drawbacks for HPLC-MS/MS 

includes high costs and matrix effects. In essence, matrix effects are when high 

contents of organic components, from extracts of various matrices, affect the 

evaporation and ionisation of the analytes [15]. 

Measuring vitamins in different samples was carried out successfully in many studies 

utilizing methods based on HPLC-MS/MS. With reference to vitamin A, Midttun and 
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Ueland [17] quantified three types of vitamins in a small amount of human plasma at 

the same time. The LOD for trans-retinols were 0.10 μM  for 25-OH D2  while 25-OH 

D3 showed 3.3 nM. Therefore, HPLC-MS/MS can meet the requirements for 

measuring vitamins and can be applied to preparations of biological nature. The main 

key advantages involve simplicity with minimal preparation, pace (analysis time does 

not take longer than 5 min) and high sensitivity [20, 83, 84].

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6099991/#B64-molecules-23-01484
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Table 1: Examples of HPLC-MS/MS methods for the detection of vitamin A 

Instrument Analysis Methods 
Limit of Quantification 

(LOQ) 

Limit of Detection 

(LOD) 
Mobile Phase Column 

Analysis 

Time 

(min) 

Ref. 

High Performance Liquid 

Chromatography–Ion Trap Mass 

Spectrometry (HPLC–Msn) 

0.1 μg/100 mL for all trans-

retinol and α-tocopherol and 

1 μg/100 mL for β-carotene 

no report A: water; B: methanol. Gradient Polaris C18 column (2.1 × 150 mm, 5 μm) 26 min [83] 

Liquid 

Chromatography/Tandem Mass 

Spectrometry 

no report 

0.1 μM for all-trans 

retinol, 3.3 nM for 
25-OH VD2 and 

25-OH VD3 

A: Ammonium formate in MeOH; B: H2O. 
Gradient 

Ascentis Express C18 column (4.6 × 50 mm, 
2.7 μm) 

6 min [17] 

HPLC-MS/MS 0.2–520 ng/mL 0.07–170 ng/mL 

A: 10 mM ammonium acetate solution (pH 

4.5); B: MeOH with 0.1% acetic acid; C: 
MeOH with 0.3% acetic acid. Gradient 

ACE-100 C18 (2.1 × 100 mm, 3 μm) 30 min [18] 

LC-DAD-MS/MS 2.7–46.8 μg/L 0.9–15.6 μg/L 
A: Methanol; B: isopropanol/hexane 

(50:50, v/v). Gradient 

a Supelcosil C18 (4.6 mm × 50 mm, 5 μm) 

and an Alltima C18 (4.6 mm × 250 mm, 5 
μm) for fat-soluble vitamins, ProntoSIL 

C30 column (4.6 × 250 mm, 3 μm) for 

carotenoids 

30 min [85] 

LC-MS/MS n.d. n.d. 
A: 20 mM ammonium formate (pH 4.0); B: 

methanol. Gradient 
Cadenza CD-C18 stationary phase (4.6 × 250 

mm, 3 μm particles) 
45 min [86] 

SPLC-MS/MS n.d. n.d. 
(retinol-d6 and α-tocopherol-d6) in 70% 

methanol in acetonitrile 

Cyclone P (5 × 50 mm) TurboFlow™ 

column (Thermo-Scientific, Waltham, MA). 
Shimazu, Kyoto, Japan) equipped with a 

Brownlee Spheri-5 RP-18 (4.6 × 250 mm) 

column. 

7 min [87] 

LC-MS method 1.4 ng 1.6 ng 

Mobile phases A and B for fat-soluble vitamin 

method were 9:1 (v/v) ACN/water and 100% 

MeOH, both containing 5 mM ammonium 
formate 

Fat-soluble vitamins and their ISs were 

retained in the chromatography column 
18 min [88] 

LC–MS/MS 0.00972 mg/L n.d. 

Mobile phase A contained water with 0.1% 

formic acid, and phase B consisted of 

methanol. 

BEH Phenyl column (2.1 mm × 100 mm, 
1.7 μm). 

4.5 min [89] 

LC–MS/MS 0.1 μmol/L 0.1 μmol/L 
Mobile phases A (MpA) 0.1% formic acid and 

2% methanol in milli-Q water 

column (Pursuit Pentafluorophenyl (PFP) 

(150 mm × 2 mm × 3 μm, Cat no. 

A3051150 × 020) 

10 min [90] 

LC-MS/MS n.d. n.d. 

Mobile phases B (MpB) 0.1% Formic acid in 
methanol 

A Restek Raptor Biphenyl (2.7 µm dp, 

2.1 mm ID, 100 mm length; Bellefonte, PA) 

analytical column and a Shim-pack MAYI-
C4(HP) (10 mm × 4.6 mm, 50 µm dp) high 

pressure restricted access media trap column 

from Shimadzu were used 

12 min [91] 
Mobile phase additives, formic acid and 

ammonium formate, LC-MS grade water and 

methanol, Acetone. 
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Table 2: Pre-treatment methods, sample matrices and targets of the recent articles 

Pre-

treatments 
Determination 

Methods 
Sample Matrix Analytes Ref. 

liquid-liquid 

extraction 

(LLE) 

liquid 

chromatography-

ultraviolet 

detection (LC-

UV) 

Human serum 

Vitamins A (retinol, 

retinyl esters), E (α- and 

γ-tocopherol) and D (25-

OH vitamin D) 

[92] 

LLE LC-UV Human serum 
All-trans-retinol, retinyl 

acetate, a-tocopherol, a-

tocopheryl acetate 

[93] 

UAE LC-UV Vitamin tablets 
10 vitamins (7 water-

soluble and 3 fat-

soluble) 

[94] 

LLE LC-UV 
Pharmaceutical 

formulations 
Fat-soluble vitamins [95] 

UAE LC-UV 
Food samples, human 

plasma and human 

adipose tissue 

Retinol, tocopherols, 

coenzyme Q10 and 

carotenoids 

[96] 

LLE LC-MS Bovine milk 
Vitamins A, E and b-

carotene 
[83] 

LLE LC-MS Human plasma Vitamins A, D and E [97] 

UAE LC-DAD-MS Green leafy vegetables 
Fat and water-soluble 

vitamins 
[18] 

UAE LC-MS 
Nutritional 

formulations 

Fat- and water-soluble 

vitamins 
[85] 

UAE MEKC 

Commercial 

multivitamin 

pharmaceutical 

formulation 

Water- and fat-soluble 

vitamins 

[86] 

UAE MEKC 
Multivitamin 

formulation 

Water- and fat-soluble 

vitamins 
[98] 

LLE MEKC 

Multivitamin tablets 

and vitamin E soft 

capsules 

Fat-soluble vitamins 
[19] 

Dilute and 

shoot 
Spectrofluorimetry 

Multivitamin drugs, 

food additives and 

energy drinks 

Fat- and water-soluble 

vitamins 

[99] 

Centrifugation HPLC, ELISA Serum Vitamins A, C and D [100] 
SPE LC-UV Plasma Retinol and α-tocopherol [19] 
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Table 3: Determination methods advantages and disadvantages 

Determination 

Methods 

Advantages  Disadvantage  

LC-UV 

[94] 

• Nondestructive, very 

reliable, and easy to use. 

• Near-universal detection of 

organics at low UV 

wavelength; compatible 

with gradient analysis. 

• Analytes must have 

chromophoric activity. 

• The mobile phase must be 

transparent to UV to have 

acceptable sensitivity and 

linearity 

LC-MS 

[97] 

• Simultaneous multianalyte 

analysis 

• The ability to detect 

sensitivity, mass accuracy, 

and resolution  

• Good capability of 

separating complex samples 

• Expensive  

• Not portable  

• Requires an experienced 

technician  

MEKC 

[98] 

• limited elution time means 

relatively short separation 

time at high efficiencies  

• high separation power  

• separates ionic and neutral 

compounds 

• Only requires a few 

nanoliters of sample  

• Can separate small 

molecules 

• limited elution time limits 

peak capacity of technique  

• generally limited to 

compounds which are 

reasonably soluble in the 

mobile phase  

• low sensitivity in low 

concentrations  

 

HPLC, ELISA 

[100] 

• Simple procedure 

• High specificity and 

sensitivity Easy to perform 

with simple procedure 

 

• It required effort and time 

and expensive to prepare 

antibody 

• The used culture media is 

expensive as well as it 

requires sophisticated 

techniques.  

• High possibility of false 

positive/negative 

• Antibody instability 
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Chapter 2: Materials and Methods 

2.1 Materials 

Standard metabolites and other chemical solvents for this project were obtained from 

different sellers’ company. Vitamin A standard in the form of Retinol, 25-

Hydroxyvitamin D3 (6, 19, 19-d3), Albumin from human serum was purchased from 

Green Oasis Medical Equipment Installation and maintenance (Gomet). Phosphate 

buffered saline, and other solvents such as methanol, deionised water, hexane, ethyl 

acetate, formic acid, ammonium format, LC-MS-grade water, and LC-MS-grade 

methanol were purchased from Emirates Scientific and Technical Supplies L.L.C in 

Abu Dhabi (ESTS).  Ascentis Express F5 column (dimensions: 150 mm x 2.1 mm x 

2.7 um) was purchased from LABCO LLC.   

2.2 Methods 

2.2.1 Preparation of standard solutions 

The ethanol has been used to prepare the stock solution of Vitamin A (Retinol) and 

25-Hydroxyvitamin D3 (6, 19, 19-d3) (Internal Standard) at a concentration of 1mg 

/ml (1000 ug/ml). Amber vials have been used to store the stock solutions at -20°C to 

avoid degradation. The diluting and mixing stock solutions in methanol solvent have 

been used to prepare the working solutions of Vitamin A and Internal Standard by 

using the methanol solvent to reach a desired concentration for the analysis. The 

preparation of working solutions was protected from exposure to the light during the 

laboratory process to minimise vitamin degradation. 
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2.2.2 Collection of blood samples  

Blood samples (1 mL) were attained from 277 Emirati individuals from obese Emirati 

patients including 277 baseline, 277 follow-ups, while the study covered additional 

175 healthy participants. The characteristics of the sample as follows: mixed-gender 

with 73 males in the age group of (18–82 years) and 204 females in the age group of 

(18–65 years). While in the health sample the number of males is 8 while the number 

of females is 167. A centrifugation process to separate serum with a scale of 1500x 

has been implemented for the collected blood samples, and the resulting serum was 

extracted. Afterwards, a freezing process was completed by freeze the serum samples 

individually in labelled plastic amber vials. The ethics approval has been granted and 

approved by UAEU research ethics committee under ethics approval of Protocol 

number (AAHEC-3-17-055) for recent Vitamin D study samples. 

2.2.3 Extraction method  

The human plasma samples were stored in the refrigerator at -80oC.  Once the analysis 

of these samples begins, they were thawed to room temperature. 500 µl of serum 

samples were treated into Culture Tube, Borosilicate Glass, 16 x 100mm, 14mL. 

Subsequently, A 20 µl of Internal Standard were added with a concentration of 1 µg/ml 

to spike the samples. After that, Internal Standard and an aliquot of plasma sample 

solution were vortexed for 1 minute. Then, 1.0 mL of hexane: ethyl acetate (9:1) 

mixture has been added in the process to extract vitamin A and Internal Standard in 

the plasma samples and later vortexed for a few seconds. After vortexing the samples, 

they were centrifuged at 4000 rpm (round per minute) for 20 minutes at regular 

conditions. After that, the resulting supernatant was separated using Pasteur pipettes 

into a new set of a borosilicate culture tube glass. The remaining lower layer was 
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further extracted twice by repeating the same steps mentioned above, starting from 1.0 

mL of hexane: ethyl acetate (9:1) mixture. A further and additional extraction has been 

conducted in which the resulted extracts were combined together into a new test tube; 

then dried using room temperature under a flow of air in a sample concentrator. The 

dried samples were then re-concentrated by adding 100 µl of LC-MS/MS grade 

methanol. Finally, the samples were transferred into LC-MS/MS amber vials and 

placed in an autosampler where the samples were kept at 4°C. A 5 ul in LC-MS/MS 

instrument has been set under the injection volume of sample extract.  

2.2.4 Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) 

The Chromatogram of vitamin A was achieved with the Nexera ultra-high-pressure 

liquid chromatography (UHPLC) system (Shimadzu, Japan) on a reversed-phase 

column Ascentis Express F5 column (dimensions: 2.7 µm particle size, L x I.D. 15cm 

x 2.1 mm). The F5 column for physical filtration has been connected to the guard 

column. The temperature for the column was kept at 30°C with the mobile phase flow 

rate of 0.5 ml/min in the UHPLC system. There are two mobile phases that were 

utilised in the system (Figure 5):  

• Mobile phase A is the LC-MS/MS grade water with 0.1% formic acid or 5 mM 

ammonium format. 

• Mobile phase B is LC-MS/MS grade methanol with 0.1% formic acid or 5 mM 

ammonium format.  
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Figure 5: Mobile phase gradient elution profile used for the LC-MS experiments 

Mobile phase A and B are presented in the upper and lower line, respectively. The 

amount of Mobile phase A presented in water with 5mM ammonium format, while the 

amount of Mobile phase B presented in methanol with 5mM ammonium format. As 

shown in the figure, the upper line begins at 80% of the composition and steadily 

increases to 100% before decreasing to 80% at the time of 16:10. At the same time, 

the lower line begins at 20% and steadily decreases down to 0% before increasing to 

20% at the time of 16:10. 

The mobile phase gradient was set as follows: The mobile phase B was set at 75% for 

11 min, while mobile phase A was set at 25%. Afterwards, the mobile phase B was 

increased to 100% from 11-15 min and retained the same percentage up until to 16 

min whereas mobile phase A reduced to 0% for the duration of that period. Then, the 
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percentage of mobile phase A increased to 25% while the percentage of mobile phase 

B was reduced to 75% from 16:00 to 16:10 min and maintain the percentage of both 

mobile phases consistent to 20:00 min, where the mobile phase gradient ends. The 

mass spectrometry analysis was conducted on Shimadzu, model 8060, with a triple 

quadrupole mass spectrometry system that is operated in positive electrospray 

ionisation (ESI) mode (Figure 6). 

 

Figure 6: LC-MS/MS - Shimadzu, model 8060 - UAEU laboratory 

The Nebulising gas flow was set at 2 L/min while drying, and heating gas flow was 8 

L/min at 300°C of interface temperature (Table 4). It has been shown that the increased 

flow rate results in reduced signal intensities. This decrease in signal intensity could 

be attributed to the loading of plasma with the gas which may change its nature through 

various reactions eventually leading to interference with the signal intensity [15]. The 

positive electrospray ionisation (ESI) mode has been used to function the mass 
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spectrometer (MS); it was beneficial due to the achievement of enhancement of ion 

signal intensity and reducing noise. The favour goes to the newly developed UF-

Qarray ion guide technology that increases sensitivity. A new level of sensitivity is 

presented in the used instrument of LCMS-8060, where data is controlled, functioned 

and analysed using the Shimadzu’s Lab Solutions software. 

Table 4: MS parameters for nebulising, drying, and heating gas flow, followed by 

interface and heating block temperature 

Ms Parameters Ms Conditions 

Nebulising gas flow  2 L/min 

Drying gas flow  8 L/min 

Heating gas flow  8 L/min 

Interface temp.  300°C 

Heating block temp.  400°C 

 

2.2.5 Validation method 

The validation has been implemented based on the requirements and recommendations 

of the US Food and Drug Administration (FDA) guidelines for method validation. 

Accordingly, the validation has been conducted for the purpose of stability, recovery, 

accuracy, specificity, precision, and linearity [101]. There are four control limits have 

been stated (QCs) in four different concentrations as following: higher quality control 

limit (QCH) with a concentration of 800 ng/mL, (QCM) medium quality control limit 

with 400 ng/mL and (QCL) lower quality control limit with a concentration of 200 

ng/mL, and finally, (LLOQ) with a concentration of 100 ng/mL. The stated quality 
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controls have been analysed to calculate the linearity, intra-day and inter-day 

precision, and accuracy of the vitamin A assays. The analysis, in each validation, 

includes the six controls at each concentration level (QCH, QCM, QCL, and LLOQ) 

together with a calibration curve. A blank serum has been used to prepare the 

calibration curves and all quality control samples. A published recipe has been used to 

make the blank serum, in which the human serum albumin is mixed with phosphate-

buffered saline at a concentration of 50 g/L [102]. The recovery was calculated in the 

recovery experiment, where the six quality control samples at four different 

concentrations (800 ng/mL, 400 ng/mL, 200 ng/mL, and 100 ng/mL) were spiked with 

methanol. A repeated experiment with four similar concentrations was used, with 

blank serum samples spiked with quality controls, and the recovery was calculated and 

compared using the peak area results (or area under the normal curve). Then a stability 

experiment was measured and checked by examining six controls at each 

concentration level (800 ng/mL, 400 ng/mL, 200 ng/mL, and 100 ng/mL), executing 

three freeze/thaw cycles of the spiked quality controls at 0 h, 24 h, 48 h, and 72h. 

The representative chromatogram of vitamin A is spiked and taken out using the 

retention time and multiple reaction monitoring (MRMs) for the accurate 

quantification of small molecules in serum. As mentioned above in the validation 

approach followed in the study there are six QC samples were analysed at four 

different levels of concentration (QCH = 800 ng/mL, QCM = 400 ng/mL, QCL = 200 

ng/mL, LLOQ = 100 ng/mL). These standards, as shown in Table 5, are used to gauge 

the average, intra/inter-day accuracy, specificity, recovery, linearity, stability, 

intra/inter-day precision. Each value in those parameters was calculated based on 

approved equations. The equation of [(mean value/nominal value)×100] has been used 
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to calculate the percentage of intra/inter-day accuracy of the assay of the QC values. 

While the equation of [(standard deviation/mean)×100] has been used to calculate the 

percentage of intra/inter-day precision (% CV) values from QC values. The equation 

of [(mean unextracted QC values/mean extracted QC values)×100] has been used to 

calculate the percentage of absolute recoveries. The lower limit of detection (LOD), 

which is LOD is the lowest analyte concentration can be reliably detected from the 

limit of blank and at which detection is feasible. It is calculated based on the Signal-

to-Noise approach by correlating the signal-noise ratio to the analytes lowest 

concentration, decided by reducing the analyte concentrations until a response 

equivalent to three times “3x” the detected  background level. The generally acceptable 

detection limit for the single/noise ratio equals 3 “three”. 
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Chapter 3: Results and Discussion 

3.1 Validity results 

The favourable linear range for all the analytes was 7.8125–1000 ng/mL, with a very 

good regression value (R2 = 0.999). Finally, as appearing in Figure 7, the specificity 

of the validation was calculated by coating the peaks to check for any interfering/co-

eluting peaks at the particular retention times of the analytes. The specificity 

calculation based on the outcomes achieved by extracting and analysing many blank 

serum QC samples. 
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Figure 7: A spiked and extracted representative chromatogram of vitamin A along 

with the retention time and multiple reaction monitoring (MRMs) with internal 

standard 25-Hydroxyvitamin D3 (6, 19, 19-d3) 
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Shimadzu 8060, which represents a novel instrument that has been found to offer a 

high degree of sensitivity, was selected to ensure accurate detection of analyte ions 

over a 20-min run. The MRM transitions were selected from the [M+H]+ protonated 

molecules in the electrospray ionisation source. The MRM mode was used to monitor 

the most sensitive precursor ions, which were predominantly seen after the retinol 

Vitamin molecule lost a water molecule and the most sensitive product ions. A direct 

infusion of standard compound mixtures and individual solutions was used to optimise 

the MRM parameters of each analyte. The selected MRM transitions were confirmed 

using the Shimadzu 8060 optimiser.  

• Calibration Curve 

A blank serum has been used to prepare the calibration curve and all quality control 

samples. The human serum albumin is mixed with phosphate buffered saline at 

concentration of (50 g/ml). The favorable linear range for all the analytes was 7.8125–

1000 ng/mL with a very good regression value (R2 = 0.999) (Figure 8). 

 

Figure 8: Calibration curve to determine the quality of the samples 

Concentration (ng/ml) 

A
re

a 
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Table 5: The values of method validation parameters for each quality control level 

N Analytes 
Conc. 

(ng/mL) 
Intra-day Inter-day 

% 

Recovery 

LOD 

(ng/m) 

Linear 

range 

(ng/mL) 

   Precision 

(% CV) 

% 

Accuracy 
SD 

Precision 

(% CV) 

% 

Accuracy 
SD 

   

1 

 

 

 

Vitamin 

A 

 

 

 

QCH 

800 
0.07 100.09 0.52 0.09 100.09 0.69 99 0.488 

7.81-

1000 

QCM 

400 
0.09 100.09 0.38 0.06 100.09 0.23 96 0.488 

QCL 

200 
0.17 100.28 0.35 0.06 100.24 0.12 94 0.488 

LLOQ 

100 
0.29 100.73 0.3 0.27 100.81 0.27  0.488 

 

Table 5 shows the names of the analytes and concentrations at the four quality control 

levels (QCH, QCM, QCL, LLOQ), the criteria presented: the intra-day and inter-day 

precision and accuracy results with the standard deviation, per cent recovery, the limit 

of detection (LOD) values, and linear range in ng/mL. Table 5 presents an overview 

of the selected MRM transitions together with their respective parameters. The 

validation method parameters are in acceptable range for the three QC levels. For 

example, the accuracy and precision indicators signify that the goodness of the method 

used to analyse vitamin A metabolites for intra and inter-day, with accuracy 

significantly close to 100% and precision ranged from 0.07 to 0.29 for the four 

concentration. Increasingly, as presented in Table 5, the calculated recovery 

percentage shows that the extraction method is efficient in extracting vitamin A 

metabolites from serum samples.  The literature has shown different values in terms 

of the LOD and LOQ values. For example, Plozza et al. reported the LOQ for 0.1 

μg/100 mL for all trans-retinol and α-tocopherol and 1 μg/100 mL for β-carotene [83]. 

Furthermore, Midttun and Uelan reported the LOD  0.1 μM for all-trans retinol [97]. 

In another study for Santos et al., the LOD and LOQ were reported 0.07–170 ng/mL 

and 0.2–520 ng/mL respectively [18]. Moreover, Gentili et al. have reported for LOD 
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0.9–15.6 μg/L and 2.7–46.8 μg/L for LOQ [85]. Table 5 shows the values of LOD and 

LOQ for vitamin A by LC-MS/MS 8060, which explain that the method is extremely 

sensitive. The table also presents the intra and inter-day coefficient of variation and 

accuracy marks among four quality control level. The recovery percentage were 

calculated by comparing areas under the normal curve in the chromatogram for the 

extracted and unextracted quality control samples. The LOD was concluded from the 

lowest concentration of vitamin A metabolite that can be detected by the instrument.  

Many blank serum QC samples have been used to calculate the specificity of the 

validation. This calculation has been done by the extracting and analysing the blank 

serum QC sample. The peaks were overlaid to check for any interfering/co-eluting 

peaks at the respective retention times of the analytes, as shown in the following 

Figure 9. 
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Figure 9: An overlay of six chromatographic peaks showing the specificity of the 

assay. No interfering co-eluting peaks were found for vitamin A. 

Checking the internal standard response of each sample within a batch is also a useful 

way of picking up problems with individual samples. The precursor and product ions 

of vitamin A and internal standard with their collision energies are illustrated in Table 

6.   The table shows optimum MS/MS parameters: precursor ion (m/z) 269.25, product 

ion 93.05 at collision energy -22 V, 91.10 m/z at -43.0 V and 95.15 at a collision energy 

of -15.0 V. The table also presents the chemical structure of the retinol with a retention 

time of 6.720 minutes and mass of 286.45 g/mol.  
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Table 6: Names, structure, mass, precursor and product ions along with collision 

energies 

Name Structure 
Retention 

time 

Mass 

(g/mol) 

Precursor 

ion (m/z) 

Product 

ion (m/z) 

Collision 

energy 

(eV) 

 

Retinol (Vitamin A) 

 

C20H30O 

 

6.720 

 

286.45 

 

269.25 

93.05 

91.10 

95.15 

-22.0 

-43.0 

-15.0 

 

 

25-Hydroxyvitamin 

D3 (6, 19, 19-d3) 

 

C27D3H41O2 

 

 

6.482 

 

 

403.66 

 

 

386.35 

 

 

368.25 

 

257.2 

 

95.2 

 

-15 

 

-183 

 

-35 

 

As shown in Figure 10 Stability tests were operated over 24 h, 48 h, and 72 h, where 

the outcomes were compared with time zero. The percentage of change from time = 0 

is presented in the figure for the four used concentration levels of 800 ng/mL, 400 

ng/mL, 200 ng/mL, and 100 ng/mL, where they are used for gauging the stability for 

Vitamin A. As appearing in the graph, Vitamin A shows a percentage of change up to 

0.08% in 24 h of the freeze/thaw cycle, while the % change was within 0.16% for 48 

and 0.50% for 72 h in a concentration level of 400 ng/mL. While in the concentration 

level of 800 ng/mL the % change has fluctuated between -0.05% in 72 h and 0.02 in 

48 h and -0.02 in 24 h. The % of the change in the concentration level of 100 ng/mL 

has shown -0.15% in 24 h, -0.13% in 48 h, and 2.96% in 72 h. It appears from the 

figure that the Vitamin A is stable when exposed to continuous freezing and thawing 

cycles. The LC–MS/MS method has proven its reliability, accuracy, reproducibility, 

specificity and robust.  
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Figure 10: The stability of vitamin A in serum after three freeze/thaw cycles  

The blue, orange and grey bars represent the % change in concentration of a particular 

vitamin A at 24 h, 48 h, and 72 h’ intervals, respectively, with the use of quality 
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controls at four different concentration levels, LLOQ-100 ng/ml, QCL-200 NG/mL, 

QCM-400 ng/ml, and QCH-800 ng/ml. The percentage of change in the stability of 

vitamin A ranges between 0 and 3%. The error bars in the graph represent the standard 

errors of the mean. 

3.2 Results of obese Emirati samples 

 

Figure 11: A comparative account of vitamin A concentration in Emirati female 

blood samples 

From left to right, baseline concentrations of vitamin A, and follow-up, and healthy 

volunteers are shown by blue and orange and green bars, respectively. Vitamin A 

deficiency is a clinical condition (dryness in the eyes, poor growth of bones, and some 

specific skin conditions, etc.). In the laboratory, vitamin A deficiency is defined as a 

level below 20 micrograms/dL (.7 micromole/L). The upper limit of normal vitamin 

A is 60 micrograms/dL. 
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Table 7: Vitamin A indicators 

Condition  ng/ml 

Deficient  < 200 

Optimal  ≥ 200 to ≤ 600 

High  ≥ 600 to < 1000 

Hypervitaminotic  ≥ 1000 

 

Table 7 [103] shows the vitamin A range guideline from the literature. This range has 

been followed in the result and discussion part by comparing the achieved findings 

with these indicators.  

 

Figure 12: The comparative accounts of vitamin A concentrations in Emirati male 

blood samples. From left to right, the concentrations of vitamin A in baseline and 

follow-up, and healthy volunteers are shown by blue and orange and green bars, 

respectively. 

Figures 11 and 12 show the analysis of blood samples from a sample of the Emirati 

population in the UAE for both female and male patients, respectively using the 

developed and validated LC–MS/MS method. The proportion of female sample to 

male sample is (2.8:1) in baseline and follow sample, as also the female patients 
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usually return for follow-up sessions compared to the male patients. The level of 

vitamin A deficiency appears in the baseline volunteers in the female sample which 

presented in the blue bar in the female results, which is higher than the lower 

acceptable value of (600 ng/mL >372 ng/ mL > 200 ng/ mL). This result has increased 

upon supplementation in the follow-up samples to reach 440 ng/mL. On one hand, the 

male results were within the acceptable upper and lower limits (600 ng/mL> 438 

ng/mL > 200 ng/mL, 200 ng/mL< 540 ng/mL < 600 ng/mL). The healthy sample has 

achieved an extremely high number for male to achieve 1045 ng/mL, while in female 

this reached 702 ng/mL. The healthy sample size is lower than the baseline and follow-

up sample with 175 participants whom age rages between (18:65 years). The results 

clearly show that the concentrations of vitamin A for both females and males increased 

after supplementation (372 ng/mL to 440 ng/mL for female sample, and 438 ng/mL to 

540 ng/mL for male sample). The result shows a sufficient level of vitamin A in the 

participants.  

Table 8: A comparative account of the vitamin A in the baseline, and follow-up 

samples. The average concentration of vitamin A is given in the last column (in ng/ml) 

along with the standard deviation (SD). N signifies the number of samples analysed in 

this study from baseline and follow-up. 

Vitamin  Sample Type N Mean ± SD 

 

Vitamin A 

Baseline 277 389±215 

Follow Up 277 466 ± 232 

Healthy  175 1054±344 
 

As appears in Table 8 for vitamin A with a total sample of 277, including the male and 

female, the calculated mean for the baseline is 389 plus and minus the standard error. 

This increased in the supplementations to achieve 466 plus and minus the standard 
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error. Surprisingly, the healthy sample has shown a dramatic increase to reach 1054 

plus and minus the standard error. 

 

Figure 13: A comparative account for vitamin A concentration at baseline, follow-up 

and healthy samples. The error bars in the graph represent the standard errors of the 

mean. 

Figure 13 shows the combined results for both female and male participants where the 

baseline samples for obese Emirati patients were above the optimal levels of vitamin 

A (389 ng/mL > 200 ng/mL), and, similarly, the follow-up sample results showed 

higher and acceptable results for vitamin A (200 ng/mL > 466 ng/mL > 600 ng/mL). 

While the healthy sample has achieved 7018 ng/mL. The result from the current 

analysis shows that vitamin A is present in the blood with acceptable limits according 

to the approved guidelines (Figure 7).  Additionally, the perceived results also suggest 

that the current supplementation strategy for vitamin A in the UAE for the Emirati 

population may is acceptable and favourable. 
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Chapter 4: Conclusions 

In summary, the current research intended to develop a LC-MS/MS-based assay for 

quantifying vitamin A in human plasma in healthy and diseased Emirati population. 

The reached findings show the suitability and robust LC-MS based assay for the 

simultaneous quantification of vitamers in human plasma where the stability of 

vitamin A ranges between 0 and 3%, and optimum MS/MS parameters: precursor ion 

(m/z) 269.25, product ion 93.05 at collision energy -22 V, 91.10 m/z at -43.0 V and 

95.15 at a collision energy of -15.0 V. The research methodology has followed the 

preparation procedures of standard solutions, and collection of blood samples and 

ethical approval number. The MRM-based LC-MS/MS method has been used to 

extract and analyse the vitamin A from the human plasma. The method has been 

applied on a sample of 277 Emirati obese patients for the baseline and the patients 

have been followed-up, while new 175 healthy control volunteers participated. The 

characteristics of the sample as follows: mixed-gender with 73 males in the age group 

of (18–82 years) and 204 females in the age group of (18–65 years). The level of 

vitamin A appears in the baseline volunteers in the female sample which is higher than 

the 200 ng/ mL and less than the 600 ng/mL. This perceived result has increased upon 

supplementation in the follow-up samples to reach 440 ng/mL. While the male results 

are within the acceptable limits upper and lower limits for the (600 ng/mL> 438 ng/mL 

> 200 ng/mL, 200 ng/mL< 540 ng/mL < 600 ng/mL). The healthy sample showed 718 

ng/mL combining the female and male. The results clearly show that the 

concentrations of vitamin A for both females and males increased after 

supplementation (372 ng/mL to 440 ng/mL for female sample, and 438 ng/mL to 540 

ng/mL for male sample), this increase has made the values become within the optimal 
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range as shown in the Table 6. The result shows a sufficient level of vitamin A in the 

participants.  
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