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Abstract

Groundwater includes a certain concentration of natural radioactive
isotopes of uranium (U) and its decay products (daughters) like radon (Rn).
Defining the concentration levels, spatial distribution, and possible
environmental impact of these isotopes in groundwater is vital for sustainable
groundwater resources in the United Arab Emirates (UAE). This dissertation
focuses on documenting the distribution and determining the probable
environmental impact and sources of Uranium-235 (**°U), Uranium-238
(¥**U), and Radon-222 (***Rn) in groundwater in the Northern part of the UAE
and specifically in the Wadi Al Bih aquifer in Ras Al Khaimah Emirate. The
sampled wells occur at different distances from the coast, where some are very
close to the coastal line, and some exist in the center of Wadi Al Bih. A variety
of techniques including ICP-MS, ICP-OES, and RAD7, were used for the
analyses. The results reveal comparable activity concentration in the
measured radioactivity in terms of spatial and local variability. All the U,
28U, and **Rn concentrations in the measured groundwater samples are
below the World Health Organization permissible limit for drinking water.
The occurrence of 2*°U, 28U, and **’Rn in the measured samples suggest a
geochemical interaction between the aquifer’s lithology and water. In some
wells, seawater intrusion is expected to be an additional source of uranium
and elevated Total Dissolved Solids (TDS). The calculated radioactivity
annual effective doses of inhalation and ingestion were below the maximum
permissible annual dose limits defined by the WHO. The probable -uranium-
related- cancer mortality and morbidity were also calculated and found to be
not hazardous following the permissible limits determined by the United
States Environmental Protection Agency (EPA) and International

Commission on Radiological Protection (ICRP).

Keywords: Radioactive isotopes, carbonate aquifer, uranium, radon, UAE.
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Chapter 1






Chapter 1: Introduction

1.1 Radioactive Isotopes Significance in Hydrogeology

Radioactive elements occur almost everywhere in the environment.
Their origin might be either natural or man-made (anthropogenic). They are
chemically unstable and releasing different radiation particles upon decay.
Uranium-238 (**®U) decay chain -for instance-, starts with the parent isotope
(¥**U) and continues to produce daughters and different modes of energies
until it reaches the stable isotope of Lead-206 (**°Pb) which marks the end
of this decay chain (Figure 1). The natural radioactive elements are
produced through different pathways such as primordial which are linked to
the creation of Earth, cosmogenic that are generated in the atmosphere, and
those that are forming due to chain-series decay. The decay of natural
daughters’ nuclides brings more than 80% of the entire effective radiation
dose to the environment and is considered the main source of radiation
hazards (Dinh Chau et al., 2011). Some of the anthropogenic radioactive
isotopes are produced through human activities such as nuclear bomb tests,
reprocessing of nuclear fuel, medical uses, and the excess use of fertilizers.
Anthropogenic short-lived radionuclides are of special concern due to their
fast decay and high emitted energy in a short time which might expose the
ecosystem to extreme pollution (EPA, 2022). Natural and anthropogenic
radioactive isotopes in the environment might cross the living organisms’
bodies through inhalation and ingestion (WHO, 2011). It is, therefore,
significant to study these radioactive isotopes in the ecosystem to preserve
the balance of sustainability and to assess the possible negative

environmental impacts.
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Figure 1: Uranium-238 decay chain
(https://www.nachi.org/gallery/radon/uranium-238-decay-chain)



1.2 Natural Radioactive Isotopes and Possible Environmental Impacts
There are three major decay chains producing the natural
radionuclides isotopes, which are 2*®U, 2**U, and ***Th decay chains. The
focus of this study is on the parent >*®*U and its daughter *’Rn (Figure 1).
Uranium has three natural isotopes which are 28U (T1,= 4.468 x 10° years,
abundance: 99.27%), 23U (T2 = 7.04 x 108 years, abundance: 0.72%) and
24U (T2 = 245500 years, abundance: 0.005%) (Rogers & Adams, 1969).
Radon-222 (**Rn, Ty, = 3.8 days) is produced from the decay chain of 2*U
(Baskaran, 2016). The gas form of 2>Rn makes the isotope occurrence in
air, soil, rocks, and water. A high concentration of these isotopes might
affect human health if the quantity exceeds the permissible limits of

ingestion or inhalation (Table 1).



Table 1: Permissible limits for radioactivity level in groundwater
recommended by the World Health Organization (WHO, 2017; WHO,
2011)

WHO permissible limit of WHO permissible

C radionuclides annual effective dose
omponent
concentration in drinking of radionuclides
water (mSvly)
85y 1 BqL! 0.1
B8y 10 BqL! 0.1
ToE) 60 pg L' (60000 ng L) -
22Th 1 BqL! 0.1
222Rn 100 Bq L' 0.1
226Ra 1 BqL! 0.1

Note: Bq L': Becquerel per Liter, ug L™': Microgram per Liter, ng L™': Nanogram per Liter,
mSv/y: Millisievert per year

The radioactive isotopes possible impacts might appear either in the
short or long-term depending on the consumed dose. For example, in the
case of a nuclear accident, the adverse impacts on the environment might be
observed relatively faster due to the higher dose transferred to the
ecosystem, and this negative impact might affect wide areas depending on
the radioactive isotope’s ability to stay in the atmosphere or hydrosphere
and this would negatively affect the biodiversity, ecosystem natural balance,
pollution state, and human health. Thus, the radiological environmental
impact becomes a global concern. Radioactive isotopes are used in tracing

the groundwater quality in aquifers. The isotopes are selected depending on



their half-life, probability of occurrence in certain aquifer lithology, and
significant environmental impact. These isotopes can also be used to trace
the groundwater sources and recharge conditions (Ji et al., 2020; Xiong et
al., 2020). In addition, a relatively high concentration of some radioactive
isotopes in groundwater may cause health hazards, where they might enter
the human body through inhalation or ingestion. Therefore, categorizing the
activity of these isotopes in groundwater will be significant in defining the
environmental effect and its relation to aquifer type, sea-water intrusion, and

farming activities effect (Alshamsi, Hussien, Aldahan, & Murad, 2020).

1.3 28U and *?Rn Occurrence in Groundwater

The major sources of 2**U and ?*’Rn in groundwater are through
natural processes (due to rock-water interaction) or anthropogenic such as
fertilizers infiltration in soil or industrial by-products wastes. Additional
factors that may affect the 22U and ?*?Rn occurrence in groundwater are
aquifer lithologic type, water residence age, aquifer depth, and annual
recharge conditions. Uranium concentrations vary in different rocks: in
shale (3.7 ppm), granite (3.0 ppm), and carbonate rocks (2.2 ppm) (Faure,
1998; Dinh Chau et al., 2011). Also, the annual rainfall might influence the
concentration of uranium, particular in shallow aquifers, and this is observed
more clearly when comparing these concentrations between arid and humid
regions (Alshamsi, Murad, Aldahan, & Hou, 2013), where the rainfall could
dilute the concentration of radioactive isotopes. The radioactive isotopes
concentration in water depends also on their half-life and the contact time
of the source rocks to the water which is called residence time in the aquifer.
In general, as half-life and contact time increases the concentration of
radioactive isotopes increases, and as the radioactive decay proceeds more
decay products (daughters) of the original radioactive isotope will be found

in the groundwater particularly if soluble in the existing conditions



(Adithya, Chidambaram, Keesari, Mohokar, & Prasanna, 2019). The pH
(hydrogen ions activity) of groundwater may change due to the aquifer’s
lithology, vadose zone soil composition, and organic matter content
(Jardine, McCarthy, and Weber, 1989). The interplay between pH and
solubility of uranium is indicated by the formation of uranyl ions in natural
alkaline waters (pH> 7), resulting in elevated uranium solubility, especially
in oxidizing conditions where uranium exists in the hexavalent state U(VI)
(Guerrero et al., 2016; Qiao, Hansen, Hou, Aldahan, & Possnert, 2012). The
uranyl-carbonate complexes generally stay in the liquid state rather than
adsorbed to rock grains surfaces. Therefore, these uranyl-carbonate
complexes might raise the concentration of dissolved uranium in

groundwater (Elless & Lee, 1998).

1.4 Research Objectives

There is no doubt that isotope technology represents a vital tool for the
tracing of natural and anthropogenic processes in the Earth’s surface
archives (sediment, soils, and water). Among these isotopes, the naturally
occurring radioactive isotopes such as 23U and ?*’Rn provide significant
tools for information related to the rock-groundwater interaction and the
consequent impact on the environment. The applications of these isotopes
to explore recharge sources, environmental impact and effects of climate
have been used in the UAE (Alshamsi et al., 2013; Murad et al., 2014; Zheng
etal., 2016). New investigations are needed to expand the understanding of
processes with respect to the UAE’s different aquifers and recharge
pathways. Among regions that are depending on groundwater as a natural
water resource is the Ras Al Khaimah Emirate. Evaluation of natural
radioactivity in groundwater of this region is lacking and the data from this
study will provide new information to decision-makers. Consequently, in

the thesis presented here, analyses of natural radioactivity and other



parameters of the groundwater were performed with the following

objectives:

1- Acquisition of data on the major sources of radioactivity including
238U and 222Rl’1.

2- Identifying spatial variability of the radionuclides and their
distribution patterns.

3- Establishing factors that control the interplay between
physiochemical and geological parameters and their effects on the
radionuclide’s distribution.

4- Estimating possible environmental-ecological effects of the

radionuclides in different uses of groundwater.
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Chapter 2: Sampling Sites and Analytical Techniques

2.1 Study Area

The study area is in Ras Al Khaimah Emirate in the northern part of
the UAE. Most of the groundwater samples have been collected from the
Wadi Al Bih area. While only two samples have been collected from the
Sham area in the northern part of Ras Al Khaimah Emirate nearby the
coastal line (Figure 2). The Wadi Al Bih Aquifer in Ras Al Khaimah is
considered the main source of groundwater for drinking water, agricultural
activities, and domestic uses. Overexploitation, fewer rainfalls, climatic
conditions, and seawater intrusion, all these factors led to the decline of the

water table and the quality of the groundwater in terms of salinity.
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Figure 2: The sampled wells in the study area




The Wadi Al Bih Aquifer consists of two main units. The upper unit
is a gravel layer that contains loose, coarse, and high permeable alluvial of
carbonate origin. While the lower unit is mainly fractured limestone (Murad,
2014). The age of limestone ranges from Permian to Triassic. The area of
recharge catchment of the limestone aquifer is 475 km? at an elevation of

about 1,050 m above sea level (Abu Al Enien, 1996).

© ! Arabian Gulf

Ras Al Khaimal

26"10'N

Saudi United Arab Emirates

Arabia

0 Km100
 ——

] ]
52°E 54° E

Arabian Gulf

'@ Sampled Wells |
Study Area

Figure 3: The groundwater flow direction (white arrows) showing the
south-east (recharge zone) towards the north-west ends in Arabian Gulf
(discharge zone).

15



16

The study area in the Wadi Al Bih is part of Ru’us Al Jibal Massif
of the Oman Mountains, which are located on the southeast edge of the
Arabian Peninsula. According to Glennie et al. (1974), the Ru’us Al Jibal
Group (the age from Permian to Middle Triassic) is located on the bottom
of the Hajar Supergroup, overlaid by the Elphinstone Group (the age from
Middle to Upper Triassic) in middle, and Musandam Group (the age from
Early Jurassic to Lower Cretaceous) on the top. The thickness of these three
groups is about 3500 m and forms the surface and subsurface of the Wadi
Al Bih drainage basin. The Ru’us Al Jibal Group consists of Bih, Hagil, and
Ghail formations (Figure 3). The structural nature of the Wadi Al Bih
contains thrust faults and folds that allow surface water to move horizontally
or percolate to subsurface layers (Figures 2-3).

The area of the Wadi Al Bih covers 483 km? which gives credit to
this wadi being the largest drainage basin in the United Arab Emirates
(UAE). Thin soil and little plants are covering the surface of the Wadi Al
Bih. The topography is rugged with sharp slopes, so the risk of flash flood
hazards is high (Al Assam, Al Matari, Garamoon, & Suwaid, 2005).
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Figure 4: Geological map of the study area
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2.2.1 Sampling and Field Measurements

Groundwater was sampled from thirty wells in the study area
(Figure 2). Each well was left to pump for at least 20 minutes before
sampling to ensure representation of the aquifer water. The amount of water
sampled for each analytical procedure is described in the measurement of
the entities. Temperature, pH, and Total Dissolved Solids (TDS) were
measured directly in the field using WTW-COND-3301 (Figure 5). The

error was not exceeding 5% and the accuracy was + one digit.

= e—————

S Multi-Parameter for

| Measuring the

| Physio-Chemical
Parameters in Situ

Figure 5: WTW-COND-3301 portable instrument to measure
physiochemical parameters in-situ




2.2.2 ?2Rn Measurements

The radon-222 activity was measured in-situ for the collected water
samples from 30 wells in Wadi Bih and Sham areas in Ras Al Khaimah,
using Rad7 (an electronic portable radon detector, from Durridge Co., USA)
(Figure 6). The samples were filled in a 40mL vial and then analyzed at the
same time by connecting the vial by a Rad7 H,O accessory. The Rad7 was
placed in the car bag where air conditioning is turned on, to keep the
humidity in the permissible range of analysis which must be less than 10%.
The measurements were performed in four cycles besides one cycle for
purging. After that, the average value of radon concertation was recorded
for the four cycles in Bg/m® and then converted into Bq L™ in order to be
compared with World Health Organization (WHO) standards. Also, decay
correction was applied based on the period between the time of sampling
and actual measurements. The analytical accuracy of the measurement was

calculated using three executive measurements and estimated at 5%.

\

Figure 6: Configuration of the 2Rn measurement in-situ cabin and the
Rad7 instrument
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2.2.3 U and U Measurements

The measurement of 2*°U, **U, and CI" was performed at the Center
for Nuclear Technologies of the Technical University of Denmark. The
procedure was described in Alshamsi et al. (2013) and includes the addition
of 0.20 mL of 100 mg m L' in (1II) (as InCl5) as internal standard and 10
times dilution with 3% HNOs3 (super pure). The preparation of standards
was done by using a similar method as samples by dilution of uranium and
chloride standard solutions (purchased from National Institute of Standard
Technology, USA) with 3% HNOs3 (super pure). Indium solution, as an
internal standard, was also added to the standard solution. The
concentrations of requested analytes (e.g. 28U, 2*°U, and CI') and internal
standard (!"*In) in the samples and standards were measured using an
inductively coupled plasma mass spectrometry (ICP-MS) system (X
Series'), Thermo Fisher Scientific, Waltham, MA) equipped with an Xt-
skimmer cone and a concentric nebulizer under hot plasma conditions. The
concentrations of 23U, 2%U, and CI in the water samples were computed by
correlating with standard and then corrected for introduction efficiency
using indium internal standard. The detection limits calculated as three
times the standard deviation (36) of the processing blank are 0.21 mg L™! for
Cl, 0.37mBq L, for 2*°U, and 0.95 mBq L' for 2*U. A 0.5 mol/L HNO:s
solution was used as a washing solution among consecutive assays. The

accuracy estimate is +2.5%, and the precision is around 0.5%.



2.2.4 Na" and K™ Measurements

The analyses of Na® and K were performed using inductively
coupled plasma optical emission spectroscopy (ICP-OES-Varian 715
instrument) in the laboratories of Geosciences at UAE University. Each
water sample was injected into the nebulizer and spectral analysis of every
element was standardized by a multi-element standard solution GSC-CAL-
8 offered by Inorganic Ventures. The analytical error of the measured
samples is <5%, and the detection limit ranges between 0.001 and 0.017 mg

L.

2.2.5 CI Measurements

The Cl" was determined using ICP-MS at the Center for Nuclear
Technologies of the Technical University of Denmark, where it was injected
into the plasma, at a temperature of a few thousand Kelvin, and the chloride
was atomized and ionized to cation, and at last measure. The detection limits
of the ICP-MS range at (0.01 — 0.6) ng L' (Becker, 2003), The accuracy

estimate 1s £2.5%.

2.2.6 SO/ Measurements

The anion of sulfate was measured by high-performance ion liquid
chromatography (HPILC) at the Center for Nuclear Technologies of the
Technical University of Denmark. Measurement’s error calculated at 1
standard deviation is <5%, and the detection limit ranges at (0.01 to 0.2) mg

L.

2.2.7 Statistical and Mapping Techniques

Pearson linear correlation and factor analysis statistical techniques were
used for finding relationships between the different parameters. The ArcGIS

software has been used for mapping of data distribution.
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Chapter 3: Results

3.1 General Properties of Groundwater

The pH, temperature, TDS, Na, K, CI, and SO4* for the analyzed
water samples are presented in Table 3.1. The pH shows a range covering
neutral to slightly basic values (7.1 - 8.5). The temperature of the water
varies from about 29.9°C to 40°C (average 34.7°C), while the TDS values
span between 143 mg L' and 10040 mg L' (average 2320.5 mg L). The
distribution of groundwater TDS in the investigated area is illustrated in
Figure 7. Variability in Na* spans between 20.9 mg L' and 938.4 mg L!
(average 329.9 mg L), while the K* range at (2.88 — 31.09) mg L' with
averages of 10.49 mg L. The CI" and SO4* range at (33.1 - 3834) mg L"!
and (0.5 — 1862.4) mg L' with averages of 953.09 mg L' 581.21 mg L,

respectively.
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Figure 7: The TDS distribution in the investigated area




Table 2: Sampling location and groundwater features including pH, temperature, TDS, Na™,
K", CI" and SO.*.

Sample#  SampleID  UTM () UTM (N pH :_Mcm._v :.Mﬁ._v EN._V :..M_w._v :”M M_v
1 R-KHO1 403711 2850942 8.4 35.40 1510 413.60 10.07 834.3 1862.40
2 R-KH02 403589 2849530 7.8 35.70 6600 170.67 5.71 170.4 88.30

3 R-KHO03 402635 2849717 7.1 34.60 6400 46.88 31.09 3834 163.20
4 R-KH04 403887 2851103 7.6 35.70 1330 416.50 10.54 887.5 345.60
5 R-KHO05 404577 2851081 7.5 36.20 1800 453.86 11.22 994 518.40
6 R-KHO06 404555 2851588 7.2 35.00 1690 558.49 13.31 1242 12.00

7 R-KHO07 405098 2851144 7.6 36.80 1596 522.75 11.92 1278 950.40
8 R-KH08 408561 2853735 8.0 33.40 238 38.00 3.45 46.15 76.80

9 R-KH10 403377 2850866 7.7 36.40 1268 398.49 9.76 880.4 497.30
10 R-KH11 403196 2851429 7.8 35.60 1564 475.97 11.53 986.9 1555.20
11 R-KH12 405935 2850976 7.1 36.20 1099 347.84 9.00 717.1 460.80
12 R-KH13 405233 2851739 7.3 35.20 2730 654.02 18.00 1491 878.40
13 R-KH14 405789 2852053 7.7 36.50 2200 595.66 13.01 1420 86.40

14 R-KHI15 406728 2853143 8.1 35.20 310 107.18 4.94 106.5 104.60
15 R-KH16 406153 2853900 7.5 33.60 900 162.24 10.33 319.5 1065.60

16 R-KH17 407252 2852160 7.8 35.80 414 133.49 545 156.2 197.80
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Table 2: Sampling location and groundwater features including pH, temperature, TDS, Na",
K*, CI" and SO* (continued)

17

18

19

20

21

22

23

24

25

26

27

28

29

30

NM: not measured

R-KH18

R-KH19

R-KH20

R-KH21

R63

R70

R72

R65

R76

R93

R94

R95

RBih

R117

409690

411196

411668

402764

404728

405990

406319

408736

411850

408506

409157

405333

410041

400011

2854120

2855958

2858249

2854872

2851372

2851987

2853673

2853509

2858004

2880284

2879677

2863166

2863022

2832455

7.5

79

79

7.3

79

8.3

8.2

8.4

8.5

7.75

7.87

7.69

7.74

34.10

38.40

33.90

32.40

35.20

36.90

33.00

34.20

35.00

30.03

29.93

30.50

31

40

143

155

229

3955

2840

1707

1049

295

438

10040

5714

9105

900

1395

22.08

20.90

71.73

983.42

NM

NM

NM

NM

NM

NM

NM

NM

NM

NM

18.88

NM

NM

NM

NM

NM

NM

NM

NM

NM

NM

NM

120.7

2591

NM

NM

NM

NM

NM

NM

NM

NM

NM

NM

NM

0.50

1084.80

1094.40

NM

NM

NM

NM

NM

NM

NM

NM

NM

NM
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3.2 222Rnp, 25U, and 2¥U Measurements

The results of radon and uranium isotopes as an activity are
presented in Table 3.2. The **’Rn activity values in groundwater samples in
the investigated area show high variability with ranges of 2.65 — 66.12 Bq
L' (average: 23.25 Bq L"). The distribution of *?Rn concentration in the
groundwater of the investigated area is illustrated in Figure 7. The activity
values of 23U are slightly low between 0.37 mBq L and 6.94 mBq L with
an average of 2.17 mBq L', while the activity values of 2**U show high
variability with ranges of 7.79 — 147.75 mBq L™! (average: 46.09 mBq L The
Figures 8 and 9 show the distribution of 2**U and ***U respectively in the
investigated area. The calculated Pearson correlation coefficient (R)
between 23U and 2*U is almost equal to one indicating the natural

abundance of uranium.
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Figure 8: The distribution of ???Rn concentration in groundwater of the
investigated area
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investigated area



Table 3: Radon and Uranium concentrations in groundwater samples

SMP
#

10

11

12

13

14

15

16

17

18

19

Sample
ID

R-KHO1
R-KHO02
R-KHO03
R-KH04
R-KHO05
R-KHO06
R-KHO07
R-KHO08
R-KH10
R-KH11
R-KHI12
R-KH13
R-KH14
R-KHI15
R-KH16
R-KH17
R-KH18
R-KH19

R-KH20

UTM
(E)

403711

403589

402635

403887

404577

404555

405098

408561

403377

403196

405935

405233

405789

406728

406153

407252

409690

411196

411668

UTM
™)

2850942

2849530

2849717

2851103

2851081

2851588

2851144

2853735

2850866

2851429

2850976

2851739

2852053

2853143

2853900

2852160

2854120

2855958

2858249

222Rn

(Bq L™

40.96

53.56

24.35

38.77

17.11

24.21

29.33

20.76

13.38

25.69

66.12

4431

13.48

43.35

29.48

8.89

13.25

24.61

40.92

235U

(mBq L)

1.47

1.63

1.71

1.59

1.60

3.07

1.78

0.86

1.53

1.50

1.61

6.88

6.94

1.55

2.28

1.68

0.37

0.53

1.19

238U
(mBq L)

31.10
34.31
35.85
34.01
33.84
65.64
37.82
18.26
32.26
31.79
34.27
146.30
147.75
32.78
48.33
35.73
7.80
11.09

25.30
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Table 3: Radon and Uranium concentrations in groundwater samples

(Continued)
20 R-KH21
21 R63
22 R70
23 R72
24 R65
25 R76
26 R93
27 R94
28 R95
29 RBih
30 R117

NM: not measured.

402764

404728

405990

406319

408736

411850

408506

409157

405333

410041

400011

2854872

2851372

2851987

2853673

2853509

2858004

2880284

2879677

2863166

2863022

2832455

10.44

9.91

5.72

20.05

13.60

31.33

2.65

5.90

12.52

7.51

5.27

3.66

NM

NM

NM

NM

NM

NM

NM

NM

NM

NM

77.68

NM

NM

NM

NM

NM

NM

NM

NM

NM

NM
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Chapter 4: Discussion

4.1 Correlations and Factor Analyses

4.1.1 Radon-222, Uranium-235 and Uranium-238

In order to quantify the level of the relationships between all measured
parameters, a correlation analysis was made using Minitab software
(Figures 11-12). The correlation was calculated twice; the first round
includes 20 samples and measures the correlation coefficient between 22’Rn,
235U, 28U, pH, Temperature (Temp.), Total Dissolved Solids (TDS), sodium
(Na"), potassium (K*), chloride (CI'), and sulfate (SO4*). Whereas in the
second round all the 30 samples were included and tested for correlation
coefficients between 2*2Rn, pH, Temperature (Temp.), and TDS only due to
the lack of measurements. Thus, the second round represents a wider range
of samples and might point at different values of correlation coefficients. In
both correlation rounds, ??Rn shows no correlation with any of the
parameters, because radon behaves independently (Figure 12-13). The
correlation coefficients between radon and other parameters were very low,
mostly less than £0.15, except for Cl" in the first round (R= -0.26), and
temperature in the second round (R= 0.26). In general, this pattern may
relate to the nature of radon (gas form) that creates independent behavior
with respect to the (soluble) measured parameters in groundwater. Such
behavior was also described in other studies (e.g. Cho & Choo, 2019;
Grolander, 2009).

The factor analysis, which provides a measure of multi-correlation
behavior between variables, shows no significant loading of ***Rn, where
the highest loading reaches only -0.208. This feature confirms that >*Rn is
behaving independently in the groundwater system, most likely due to its
gaseous form. The 2*°U and 2**U show a good correlation with sodium (R=

0.62) where and potassium (R=0.41). The factor analysis (Figure 14) shows
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also that uranium and sodium might be traced from a common source. The
factor analysis suggests that around 41 % of the variation in the data is
explained by factor 1, and 16 % is explained by factor 2 (Table 4).

In factorl, the large positive loadings are found in uranium isotopes
(U, #8U), sodium (Na") and potassium (K*), where 23U and #*U fit 0.74
and 0.74, respectively, while sodium (Na") and potassium (K*) fit 0.69 and
0.88, correspondingly. So, factor 1 might describe in general the paragenesis
of uranium, (Na") and potassium (K*). They might be sourced partially from
the chemically weathered feldspars in the Northeast. In factor2, 2*°U and
28U fit 0.58 and 0.58, successfully, which shows large positive loadings on
factor 2. Thus, factor 2 is probably describing a source of uranium isotopes,
which might be dissolution from carbonate rocks in the aquifer body to form
uranyl complexes. The sulphate (SO4>) has no correlation with uranium,
however, it has large positive loading on factor 3 where it fits (0.87), so
factor 3 may describe gypsum occurrence and dissolution in the aquifer

body.
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Figure 11: Correlation coefficients between the measured parameters in the collected water samples

(from sample #1 to sample #20), calculated using Minitab 19
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Correlations
22Rp 35y B3y pH Temp TDS Na* K+ cl
35y -0.048
38y  -0.048 1.000
pH 0.021 -0312 -0312
Temp 0.124 -0031 -0.032 0.154
TDS 0.134 0268 0265 -0374 -0.121
Na*  -0.118 0.642 0.642 -0326 -0.064 0232
K* -0.104 0.450 0.447 -0.604 -0.178 0.668 0.445
Cl -0.257 0362 0359 -0.617 -0.238 0.651 0448 0.973
so,2- 0107 0001 -0000 0210 -0270 -0.091 0366 0.119 0.084

Figure 12: Correlation matrix between the groundwater parameters and
good correlation coefficients values (in bold) were considered in the
outcome
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Figure 13: Correlation coefficients between the measured parameters in the collected
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Figure 14: The factor analysis loading plot, including samples #1 to #20




Table 4: Unrotated factor loadings and communalities (Samples #1 to
#20), bold values represent the significantly loading parameters in that
factor

Variable Factorl Factor2 Factor3 Factord FactorS Factor6 Factor7 Factor8 Factor9

Rn-222 -0.208 -0.106 0.031 0.959 0.035 0.088 0.048 0.121 0.000

U-235 0.737 0.576 -0.239 0.118 0.161 -0.127 0.109 -0.034 0.006
U-238 0.735 0.578 -0.240 0.118 0.162 -0.125 0.109 -0.033 0.006
pH -0.697 0.304 0.245 -0.098 -0.041 -0.565 0.026 0.174 -0.012
Temp -0.286 0.123 -0.608 0.088 -0.720 -0.061 0.052 -0.043 0.002
TDS 0.618 -0.514 -0.053 0.241 0.003 -0.440 -0.288 -0.132 0.001
Na* 0.692 0.466 0.206 -0.017 -0.245 0.184 -0.387 0.133 -0.017
K* 0.878 -0.367 0.093 -0.053 -0.135 -0.028 0.238 0.052 -0.072
Cr 0.863 -0.383 0.096 -0.143 -0.174 -0.043 0.125 0.165 0.065

(SO4)* 0.092 0.261 0.871 0.160 -0.311 -0.018 0.123 -0.165 0.013
Variance ~ 4.0768 = 1.6147 13654 1.0716 = 0.7780 = 0.5929  0.3496 = 0.1409  0.0102

% Var 0.408 0.161 0.137 0.107 0.078 0.059 0.035 0.014 0.001

4.1.2 TDS

For samples, #1 to #20; TDS and the other measured physiochemical
parameters and major ions were tested for correlation. The variables most
strongly correlated with TDS were potassium (K*) and chloride (CI°), where
correlation coefficients of both are R= 0.65. It is worth mentioning the
correlation between (K*) and chloride (C1") where R=0.97, which is the most
significant value in the whole correlation between all parameters tested in
this study. This feature might indicate that the TDS is sourced mainly from
potassium chloride. The TDS is not correlated to Na* (R=0.23), and Na" is
also weakly correlated to ClI° (R=0.45), which indicates lower
concentrations of sodium chloride but a higher concentration of potassium
chloride. To determine possible sources of lower sodium and higher
potassium, the Na®/Cl" ionic ratio and molar ratios in groundwater were
calculated in 19 samples, and it ranges at (0.01- 1.01) for the ionic ratio and

at (0.019- 1.55) for the molar ratio, where 13 samples have Na*/Cl" molar
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ratio less than 0.86, 4 samples have Na*/Cl" molar ratio >1 and two samples
are between 0.86 and 1. It is expected that when this molar ratio is less than
0.86, then the groundwater is probably mixed with seawater (Naily, 2018),
whereas fresh water will have a molar ratio >1, and the values between 0.86
and 1 will represent the transition zone (Vengosh & Rosenthal, 1994). The
mixing with seawater might be before the aquifer recharge, especially if the
aquifer area was close to the coastal area, and this will also cause a similar
effect of sea intrusion, and the Na*/Cl the ratio will be less than unity
(Srivastava, 2019). Relatively lower sodium and higher potassium and
chloride concentrations in Wadi Bih aquifers were also previously reported
in the literature and assigned to seawater mixing (Rizk, Alsharhan, & Wood,
2007). Potassium and chloride in general might be sourced from
groundwater interaction with the aquifer body and specifically feldspars and
clay minerals whose surface commonly includes K* and CI- (Khan, 2018;
Murad, Mahgoub, and Hussein, 2012). Sodium (Na*), chloride (CI'), and
potassium (K*) were selected to be focused on when analyzing the
correlative parameters with TDS as they are significant in identifying the
source of salinity in the groundwater. By looking at factor analysis, the TDS
fit 0.62, sodium (Na") fit 0.69, potassium (K™) fit 0.88, and chloride (CI") fit
0.86, that indicates TDS, sodium (Na"), potassium (K"), and chloride (CI")
together have large positive loadings on factorl. This loading effect is
attributed to the salinity sources like evaporites. For samples #21 to#30, the
TDS was mostly correlated to the temperature (Figure 13) and the largest
positive loading on factor 1 (0.83) occurs in the temperature, and the largest
negative loading on factor 1 (-0.84) occurs in the TDS. The largest negative
loading on factor 2 exists in the pH (-0.827), and the largest positive loading
occurs in 222Rn (0.67). So, factor 1 might describe the effect of temperature
(degassing) and factor 2 probably points at the source of >*2Rn.



4.1.3 pH

TDS, Sodium (Na®), chloride (CI), and potassium (K") were
negatively correlated with pH, indicating that as pH increases, the TDS, Na*,
Cl  and K" will likely decrease. The most highly correlated parameters with
pH were K" (R=-0.66) and CI" (R=-0.64). The pH seems to be controlled
by a thermodynamic equilibrium which is related to CaCOs saturation
(Banks, Frengstad, Midtgard, Krog, & Strand, 1998). The factor analysis
shows negative loadings of pH with measured uranium isotopes (**U, **U),
sodium (Na") and potassium (K*), and chloride (CI). This might be
attributed to the dissolution of feldspars and clay minerals from which these

elements are partially sourced.
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Table 5: Unrotated factor loadings and communalities (Samples #21 to
#30); bold values represent the significantly loaded parameters in that

factor
Variable Factorl Factor2 Factor3 Factor4
Rn-222 0.460 0.696 -0.551 0.027
pH 0.282 -0.827 -0.454 0.173
Temp 0.831 0.081 0.347 0.427
TDS -0.843 0.183 -0.110 0.493
Variance 1.6931 1.2081 0.6428 0.4560
% Var 0.423 0.302 0.161 0.114
Loading Plot
Rn-222
0.5
TDS
g e _ Temp
3 00
©
[
S
A
-0.5
pH
-1.0
-1.0 -0.5 0.0 0.5 1.0
First Factor

Figure 15: The factor analysis loading plot, including samples #21 to #30




4.2 Environmental Impact

4.2.1 Radon-222

The *’Rn concentration in all tested water samples is below the
maximum permissible limit of WHO, which is 100 Bq L". To reach a more
accurate view, the annual mean effective doses of *Rn groundwater
samples due to ingestion and inhalation have been calculated by using the
parameters established in the reference (Mittal, Rani, & Mehra, 2016), as
shown below:

1- Ingestion could be calculated by the following equation:

Evw.ig (USv/y) =CRny, x Cw % (EDC) /1000................... (Eq.1)

Where E, i is the effective ingestion dose, CRn, is the activity
concentration of Radon in water (Bq L), Cw is the weighted estimated of
water consumption (730 L y'), and EDC is the ingestion Effective Dose
Coefficient 3.5 nSv/Bq

2- Inhalation could be calculated by the following equation:

Euwin (1SV/y) =CRny X Ry X FX O X (DCF) ..o, (Eq.2)

Where Ew is the effective inhalation dose, CRny is the activity
concentration of Radon in water (Bq L"), Rq.w is the ratio of radon in the air
to radon in tap water (10%), F is the equilibrium factor between radon and
its decay products (0.4), O is the average indoor occupancy time per person
(7000 h/y), and (DCF) is the Dose Conversion Factor for radon exposure 9
nSv/h /(Bg/ m?).

3- Eq. 1.+ Eq. 2. = Annual mean effective dose (uSv/y)
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The calculated total annual effective dose of all sampled water is found
to be less than the permissible limit which is 0.1 mSv/y (Table 1),
recommended by WHO (2004).

4.2.2 Uranium-235 and Uranium-238

The equations in this section were sourced from (Pintilie-Nicolov,
Georgescu, Iticescu, Moraru, & Pintilie, 2021; Ajay et al., 2016; Singh et
al., 2014; the United States Environmental Protection Agency, 2000; ICRP,
1995).

The U ranges at (0.37- 6.94) mBq L'and this is far below the
permissible limit recommended by WHO which is (1 Bq L' = 1000 mBq L
1. Also, the 38U in all tested water samples falls below the limit (10 Bq L
= 10000 mBq L"), where it ranges at (7.80- 147.75) mBq L. For further
radiological risk estimations, the annual radioactivity dose to humans due to

uranium isotopes was calculated using the following equation:

Annual radioactivity dose (mSv/year) = U, x Wi X (DCF) x

Where, U, is Uranium activity in water (Bq L), Wi, is Annual
Consumption of water (L), and (DCF) is Radioactivity Dose Conversion
Factor (Sv Bq'). The (DCF) is (4.7 x 10 Sv Bq!) for 2*°U and (4.5 x 10
Sv Bq") for 2%U. We assumed an intake of 2 liters per capital daily, which
is equal to 730 liters per year. The multiplication by 10° is added to convert
Sv/year to mSv/year. It is also worth mentioning that the activity units of
uranium isotopes shall be converted to Bq L' before inserting in the above
equation to avoid mistakes. In our table, the uranium activity concentration
in the water samples was in mBq L', so we didn’t need to multiply by 10°
for the conversion from Sv/year to mSv/year. The calculated annual

radioactivity dose for 23U and #**U ranges at (1.27 x 10 — 2.38 x 10*)



mSv/year and (2.56 x 10— 4.85 x 10”°) mSv/year, respectively. So, all the
water samples fall below 0.1 mSv/year in terms of the uranium isotopes
annual radioactivity does and are below the maximum permissible dose

limit recommended by WHO.

To expand our view on the possible radiological risk from uranium
isotopes occurrence in groundwater, the cancer risk was quantified using the

equation below:
Cancer Risk=U, xRF................... (Eq.4)

Where, U, is Uranium activity in water (Bq L"), and RF is a Risk
Factor (per Bq L!). The RF is calculated as the following:

RF = Reoettin X IRw X ET....oooooiiiiiit. (Eq.5)

Where Reoern 1 the risk coefficient for ingestion, IRy is the
ingestion rate (730 liters per year), and ET is the exposure time which is
assumed to be 65 years for adults in this study. The coefficients for cancer
mortality due to ingestion are (6.2 x 10! Bq') and (7.5 x 10'!! Bq') for
25U and 28U, respectively. The coefficients for cancer morbidity due to
ingestion are (9.8 x 107! Bq') and (1.2 x 10'° Bq!) for 25U and 2*U,
respectively. The calculated cancer risk of mortality of 2*°U and 2*®*U in the
collected samples ranges at (1.09 x 10° —2.04 x 10®) and (2.77 x 10 -5.26
x 107"), respectively. Whereas the cancer risk of morbidity 2*°U and 2**U in
the collected samples ranges at (1.72 x 10 -3.23 x 10"®) and (4.44 x 107 —
8.41 x 107), successively. Hence the calculated cancer risk of mortality and
morbidity in both #**U and **®U are considered very low compared with the
maximum radiological risk acceptable guideline level which is 10~ (Shin et

al., 2002).
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Table 6: Calculated values of effective ingestion dose, effective inhalation
dose, 22?Rn annual effective dose, and Na*/Cl  ratio

22Rp
SMP | Sample | Ewg | B | il | Vorke | molar
dose ratio ratio

(uSvly)
1 R-KHO1 104 103 207 0.49 0.76
2 R-KH02 = 137 135 272 1.00 1.54
3 R-KHO03 62 61 124 0.01 0.02
R-KHO04 99 98 197 0.47 0.72
5 R-KHO5 44 43 87 0.46 0.70
6 R-KHO06 62 61 123 0.45 0.69
R-KHO07 75 74 149 0.41 0.63
8 R-KHO08 53 52 105 0.82 1.27
9 R-KH10 34 34 68 0.45 0.70
10 R-KH11 66 65 130 0.48 0.74
11 R-KHI2 = 169 167 336 0.49 0.75
12 R-KHI3 | 113 112 225 0.44 0.68
13 R-KH14 34 34 68 0.42 0.65
14 R-KH15 = 111 109 220 1.01 1.55
15 R-KH16 75 74 150 0.51 0.78

16 R-KH17 23 22 45 0.85 1.32



Table 6: Calculated values of effective ingestion dose, effective inhalation
dose, ?’Rn annual effective dose, and Na+/Cl- ratio (continued)

17 R-KH18 34 33 67 NM NM
18 R-KH19 63 62 125 0.63 0.97
19 R-KH20 105 103 208 0.64 0.99
20 R-KH21 27 26 53 0.38 0.58
21 R63 25 25 50 NM NM
22 R70 15 14 29 NM NM
23 R72 51 51 102 NM NM
24 R65 35 34 69 NM NM
25 R76 80 79 159 NM NM
26 R93 7 7 13 NM NM
27 R94 15 15 30 NM NM
28 R95 32 32 64 NM NM
29 RBih 19 19 38 NM NM
30 R117 13 13 27 NM NM

NM: Not measured
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Table 7: Calculated possibilities of cancer mortalities and morbidities
linked to Uranium consumption

235U 238U 235

U 238U 235U 238U

S. Smp r;:::il:ijiltv r;z::il::ilty Cancer = Cancer = Cancer | Cancer
# ID dose dose Risk Risk Risk Risk

(mSv. /y) (mSv /y) Mortality | Mortality | Morbidity = Morbidity

1 R- 5.06 % 1 % 103 434 x  1.11x  6.87x 1.77x
KHO1 107 10° 107 10° 107

) R- 5.59x 1.13x | 479x  122x | 7.58x  195x
KHO02 10° 1073 10 107 10 107

3 R- 5.87 x 1.18 x 503x  128x  7.96x @ 2.04x
KHO03 10 1073 10 107 10 107

4 R- 547 x 1.12x 469x | 1.21x  741x | 194x
KHO04 107 103 10 107 10 107

5 R- 5.50 x 1.11x | 472x 120x  745x 193x
KHO5 10 1073 10 107 10 107

6 R- 1.05 x 2.16 x 9.04x  234x 143x  3.74x
KHO06 10+ 1073 10 107 108 107

7 R- 6.11 x 1.24 x 524x  135x  829x @ 2.15x
KHO07 10 1073 10 107 10° 107

8 R- 295x 6.00x | 253x 650x | 400x 1.04x
KHO08 107 104 10 108 10 107

9 R- 5.26 x 1.06 x 451x  1.15x  7.13x  1.84x
KH10 107 103 10° 107 10° 107

10 R- 5.14 x 1.04x | 440x  1.13x  696x 1.81x
KHI11 107 103 107 107 10 107

1 R- 5.54 x 1.13x  475x  122x | 7.51x  195x
KH12 10 1073 10 107 10 107

12 R- 2.36 x 4.81 x 202x | 521x  320x  8.33x
KH13 10 103 108 107 108 107

13 R- 2.38x 485x  2.04x  526x  323x  84lx
KH14 10 103 108 107 108 107

14 R- 531x 1.08x | 455x  1.17x 0 7.19x  187x
KH15 107 1073 10 107 10 107

15 R- 7.81x 1.59 x 6.69x  1.72x 1.06x 2.75x
KH16 107 103 10 107 108 107

16 R- 5.75x 1.17x | 493x  127x | 7.80x @ 2.03x
KH17 107 103 10 107 10 107
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Table 7: Calculated possibilities of cancer mortalities and morbidities
linked to Uranium consumption (continued)

17

18

19

20

21
22
23
24
25
26
27
28
29
30

R-
KH18
R-
KH19
R-
KH20
R-
KH21

R63

R70

R72

R65

R76

R93

R9%4

R95
RBih

R117

1.27 x

107

1.81 x

10°

4.07 x

10°

1.26 x

10+
NM

NM
NM
NM
NM
NM
NM
NM
NM

NM

NM: Not measured

4.2.3 TDS, pH, and Ilons

2.56 x
10*
3.64 x
10+
8.31x
10+
2.55x
103

NM
NM
NM
NM
NM
NM
NM
NM
NM

NM

1.09 x
10
1.55x
10
3.49 x
10
1.08 x
108

NM
NM
NM
NM
NM
NM
NM
NM
NM

NM

2.77 x
10°®
395x
10°%
9.00 x
10°®
2.76 x
107

NM
NM
NM
NM
NM
NM
NM
NM
NM

NM

1.72 x
10
2.45x
10
5.52x
10°
1.70 x
108

NM
NM
NM
NM
NM
NM
NM
NM
NM

NM

4.44 x
10°®
6.31x
10°%
1.44 x
107
4.42 x
107

NM
NM
NM
NM
NM
NM
NM
NM
NM

NM

Total dissolved solids (TDS) in the tested samples range at (142.5 -

10040) mg L', where ten samples out of thirty include TDS less than 1000

mg L', and eight samples of these ten include TDS less than 500 mg L.

World Health Organization reports considered drinking water including

TDS less than 600 mg L' as preferable and those with TDS less than 1000

mg L' as within the permissible limit of TDS (World Health Organization,
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2017). Therefore, one-third of the collected samples are below the
maximum permissible limits of drinking water in terms of TDS, and more
than two-thirds (21 samples out of 30) contain less than 2000 mg L' which
is the maximum permissible limit for irrigation water for some crops (Ayers
& Westcot, 1985). The pH has no harmful effect on health in drinking water,
however, it might affect the general taste and increase corrosion possibilities
as it rises. In the collected water sample the pH ranges at (7.1- 8.5) which is
acceptable in terms of taste and corrosive issues during water distribution.
Note that the optimum values of pH in water to avoid corrosive effect in
pipes during water distribution falls between 6.5 and 8.5 (World Health
Organization, 2017). The sodium (Na*) ranges at (20.9- 983.42) mg L', and
eleven measurements out of twenty exceed 200 mg L', which is the limit of

sodium taste detection as proposed by WHO.

The chloride (CI) ranges at (33.1- 3834) mg L', where thirteen
samples out of nineteen contain chloride of more than 300 mg L' which is
the maximum limit to detect salty taste in drinking water as mentioned by

WHO in 2017.

4.3 Radon-222 Concentration in Groundwater from Different
Countries

The measured radon concentrations in groundwater from the study
area compared with that in other countries around the world (Table 8 and
Figure 16) shows that the average value of radon concentration is in a middle
position compared to other countries, and this is probably due to the
lithology composition in the UAE which is relative with lower content of
222Rn and it is series parent 28U. Also, most of the sampled wells in our
study are from shallow aquifers which might be a reason behind the radon

gas escaping quicker when it is in touch with the atmosphere.



Table 8: Comparison of 2?Rn concentration in groundwater (in Bq L-1),
measured in Ras Al Khaimah, UAE with those in other regions reported in

the literature

Country

UAE

Iraq, Erbil

India (Northern
Rajasthan)

South Korea

Tunisia
Nigeria
(Southwestern

part)

U.S (California)

Saudi Arabia
(Najran)

China (Hetao
Basin)

Oman

Italy

*’RnBqL"
(Average)

23.2
7.92
4.42
86.6
867
8.8
35.39
0.024
19.8
0.256

4.98

22 1
Rn Bq L Reference
(range)

2.65- 66.1 This study
Qadir et al.,
4-12.18 2021
Mittal &
o2z Mehra, 2016
0.1-2393.5 | Choetal., 2019
Telahigue et al.,
0- 2860 2018
8.2-12.9 Oni et al., 2019
Grande &
U=l Moran, 2021
Al-Naggar &
0.012-0.032 Abdalla, 2017
7.67-40.0 Guo et al., 2018
Nasser et al.,

0.140- 0.363 2019

14-12.7 Koztowska et

al., 2009
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Chapter 5






Chapter 5: Conclusion

5.1 Concluding Summary
Based on the investigation results and discussion above, the

following main conclusions can be drawn:

1. The ?**U, 28U, and **’Rn concentrations in the investigated
groundwater (in the Wadi Al Bih aquifer in Northern UAE)
are below the WHO permissible limits for drinking water

in all the groundwater analyzed here.

2. The *2Rn concentrations in the investigated groundwater
are comparable with other countries in arid regions and
considered relatively low compared with other countries

around the world.

3. The calculated annual effective dose resulting from the
consumption of 2°U, #**U, and ?*’Rn in the investigated
groundwater here is below the WHO permissible limits
which indicate that radiation in the measured samples will
not add a sufficient amount to the maximum permissible

annual dose.

4. The calculated possibilities of cancer mortalities and
morbidities linked to uranium consumption were below the
hazardous limits determined by the United States
Environmental Protection Agency (EPA) and the
International Commission on Radiological Protection

(ICRP).
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235U, 28U, and ?*’Rn in the groundwater of the UAE are
mainly sourced from aquifer geochemical interaction and

possible seawater intrusion in the coastal aquifers.
According to statistical analyses:

o Na*, K, CI, #°U, and ?**U are more likely to be
derived partially from a common source which might

be feldspar.

o U, and **U might be also partially derived from the

carbonate rocks in the body of the aquifer.

o SOs? shows a unique trend which might point to

sourcing from gypsum.

o 22Rn looked to behave differently from all the above-
mentioned geochemical parameters, however, it is

believed that 2*2Rn is a decay product of 2*8U.



5.2 Prospect for Future Research

The results of this research propose several issues for future studies
that will expand our understanding of the sources and geochemical
interactions of natural radioactivity in the UAE aquifers. Among these
issues, conducting regular sampling in groundwater wells for complete
major ions analysis and radioactivity measurements in the different seasons.
Another issue is sampling rocks from aquifers and starting empirical tests in
the lab to estimate the extent of rock-water interaction in different ranges of
contact time and different oxidation states. Finally, conducting complete
natural radioactive isotopes measurements to understand the decay

processes and the isotopes disequilibrium in the UAE’s different aquifers.
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