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Abstract

Nowadays, renewable energy sources become a significant source of energy in the
new millennium. The continuous penetration of dispersed resources of the reactive
power into power systems is predicted to introduce new challenges. Power loss
mitigation and voltage profile development are the major investigation challenges
that recently attracted the attention of researchers in the field of power systems.
Distributed generation (DG) is widely preferred because it is a highly effective
solution that strengthens the performance of power system networks. This multi-
objective function study aims to minimise power losses in the feeders, sustain
voltage levels and reduce the application cost of DGs by adapting the atom search
optimisation simulated on MATLAB software. Two different IEEE power test
systems, namely, a 33 bus radial distribution system (RDS) and a 14-bus power
system that hosts 1, 2 and 3 DGs in both systems, are demonstrated in this research.
Correspondingly, backward—forward sweep and Newton-Raphson power flow
methods are used for each system. The proposed technique is compared with genetic
algorithm particle swarm optimisation (GA-PSO) method. Results depict the
effectiveness of the proposed method in minimising system power losses and in
regulating the voltage profile where the power loss reduction is 25.38% in the 33 bus
RDS using 2 DGs. By contrast, the power loss reduction percentages in the 14 bus
system are 0.316% and 0.169% in systems with 1 and 2 DGs, respectively. The
voltage profile has been enhanced compared with those in the original case and the
results obtained from the GA-PSO method.

Keywords: Distributed Generation, Voltage Profile, Power Losses, Atom Search
Optimisation, Multi-objective function.
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Chapter 1: Introduction and Literature Overview

1.1 Introduction

Worldwide demand for electric energy is increasing because of the growth of
the population and the economy. Electrical power energy plays an essential role in the
inhabitants’ life. Most equipment used in our life needs to use electrical power to
operate. Rapid inventions and new technologies that are based on power energy are
also expanding widely. Industrial evolution and social growth increased the demand
for electrical energy. The electrical power system should be dependable, attainable,

affordable and clean.

The electrical power system Figure (1) is divided into three main sections,
namely, generation with high voltage, transmission with high medium voltage and
distribution with medium low voltage. A distribution system that is closely attached to
the clients is considered a significant part of the entire system. The voltage in the
distribution system is stepped down for the user’s utilisation. The system reliability is
based on the efficiency of the distribution system. Given the rapid increase in the
power demand and network extension, engineers must maintain the stability and
reliability of the power system (Ghadi et al., 2019). The voltage magnitude is
decreased when heavy burdens are attached to the power system, thereby increasing
the power system losses. In the last decade, electrical bulk experienced many
challenges in the power system because of the new lifestyle. A study reported that the
distribution system has experienced 70% of the power losses because the ratio X/R in
the distribution system is lower compared with the transmission system. This
phenomenon leads to increased power loss and voltage violation, high total expenses

and unreliable power system. Consequently, several methods, such as shunt capacitor
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banks (SCB), reconfiguration and on-location power generation, have been proposed
to overcome these issues. Distributed generator (DG) in smart distribution systems is
considered a new power generation technology. DG is a small-scale power generation
that can be placed on-site directly to the distribution system as a grid-connected mode
or connected to the customer as a stand-alone mode (Senjyu et al., 2018). The
integration of DG in the distribution network can reduce power losses and enhance the
voltage profile. The consumption trend of DG in the smart grid has been increasing
rapidly because of fossil fuel depletion. DGs are effective in developing reliability,
reducing power losses, improving the quality of the power system, minimising the
investment cost and decreasing the greenhouse gas emissions (Vita, 2017). Many
significant aspects, such as DG technology, number, size, type and location, must be

considered in the implementation of DG.

Generation

Residential

ﬁ Transformer i

\

( Distribution
- Factory
- ; g

[ I Residential

CHP Plant
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Figure 1: Electric Power Systems
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The DGs can be classified as follows:

- Type 1: Only real power injection and operates at power factor (PF) = 1 (e.g.
micro turbine, PV cells and fuel cells)

- Type 2: Only reactive power injection (e.g. capacitor banks, synchronous
compensator and KVAR compensator)

- Type 3: Real and reactive power injections (e.g. cogeneration, synchronous
machines and gas turbine)

- Type 4: Real power injection but reactive power consumption (induction
generator in the wind farm)

Optimisation is a numerical tool used for investigating the optimal solution of
the objective function where it can be minimised or maximised with specified
conditions. The system aims to minimise the objective functions without breaking the
constraints. A French scholar presented the optimal power flow in 1962. Decades have
been spent to make the algorithm effective in resolving optimisation issues, which can
be linear or complex (nonlinear) problems. Several techniques have been presented to
resolve the optimisation challenges categorised as conventional or intelligent
approaches. Such techniques include gradient technique, Newton method, quadratic
programming, interior point method and linear programming. These techniques are
distinguished for their rapid calculation and online computation. Furthermore, these
techniques are inappropriate for some other problems that involve discrete variables
because of their difficulty in approaching convergence and reaching global optima. In
the previous decade, several modernised intelligent methods have been improved to
cope with the complicated optimal power flow (OPF) issues, such as particle swarm

optimisation (PSO), genetic algorithm (GA), ant—lion optimisation (ALO) and atom
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search optimisation (ASO). Meta-heuristic search optimisation, such as GA, was
evaluated as an appropriate method for solving concurrent multidimensional issues for
global optimal resolution. Moreover, GA can approach convergence smoothly and has
complicated encoding and decoding processes (Devabalaj and Ravi, 2018). PSO is a
meta-heuristic technique founded on the behaviour of flacks of birds and fish; this
approach has better superior convergence than GA because of its integration of social
mentality fundamental and preferable computation to improve the swarms’ behaviour
(Sadiq et al., 2019). Weiguo Zhao presented a recent meta-heuristic ASO in 2019. This
algorithm is founded by mimicking the physical motion of atoms, as illustrated in the
molecular dynamic (MD) simulation with less parameters to regulate (Zhao et al.,

2019).

The DG size and location are considered complex nonlinear optimisation
problems that request for multi-objective optimisation methods, such as reducing
power losses, bus voltage fluctuation, carbon emission and short circuit capacity.
Accordingly, the power network reliability is maximized. This thesis aims to specify
the placement and capacity of DGs in the radial distribution system (RDS) and power
systems. The real power loss and voltage profile at the nodes and the operating cost
are considered the regulating parameters. The location and size of the DGs are

determined by using the ASO technique.

1.2 Statement of the Problem

The integration of DGs in distribution systems has introduced several
challenges and disadvantages in terms of the delivery of power quality, protection
issues and voltage support. The need for distribution generators to control the voltage

at its acceptable limits is required to maintain the power delivery to the customers.



5
Consequently, the power quality and loss issues are mitigated. Sizing and allocating
the DGs in the power network issue has attracted power researchers to investigate in
this field; the inappropriate placement and capacity of the DGS lead to power loss
increment, voltage fluctuation, failure in protecting the power system, unstable system,
harmonics and overall wastage in DG investment cost (Sadiq et al., 2019). Placing and
sizing the DGs is not a straightforward issue but a complex power struggle that needs

to be addressed cautiously.

1.3 Objective of the Work

This research aims to overcome the power losses associated with the
misplacement of DGs and inaccurate sizing in RDSs and power network systems. The
proposed system’s goals are mainly power loss reduction, voltage profile enhancement
and overall expense reduction for the power system. These goals will be attained as
follows:
1- To investigate the effectiveness of the DGs in the power networks and the
characteristics of DG technologies and by identifying the advantages and
disadvantages of DGs to the power systems in radial distribution and transmission
network systems.
2- To obtain the optimal location and capacity of the DGs in the power systems
through the application of ASO algorithm and GA-PSO for comparison purposes.
3- Todiscuss the effectiveness of the ASO algorithm in resolving the issue of optimal
location and capacity of DG in addition to presenting the remarkable influence of
DGs in minimizing the power losses, voltage profile regulation and total cost

reduction.



1.4 Literature Overview

1.4.1 Introduction

Nowadays, the massive demand for energy resources has been increased
exponentially because of the rapid growth of the population. This situation is expected
to introduce several challenges, such as voltage control and power losses as I°R in the
distribution level, in the electrical operational process. The electrical power network
consists of a power station that transmits the energy to the end users via transmission
and distribution feeders. Voltage stability is considered an essential aspect in power
systems to satisfy the operational procedure for all the appliances, such as motors,
bulbs and other loads in the market. Excessive voltage fluctuation caused by load
variations leads to undesirable performance or even in the malfunctioning of the
electrical devices. The power system can deal with the deviation in the voltage in a
short time. Nevertheless, the system should be urgently brought back to the desirable
limit to avoid the motor and generator from spoiling because of the increase in heating,
decrease in transmission line losses and prevent the system from voltage collapse.
According to C57-2017- IEEE/IEC International Standard, the acceptable limits of the
variation in the voltage profile are specified to be approximately +5% of the declared
voltages at the busses (Bidgoli and Cutsem, 2018). The variation in the voltage at the
customer’s properties is due to the alternation in the load on the power system. When
the burden in the power system is increased, the voltage values at the end user
substation would decrease because of the rapid failure in the voltage in the ()
alternator synchronous impedance, (b) transmission feeders, (c) transformer

impedance and (d) distribution. Thus, specific techniques should be used to control the
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voltage in the power system in its acceptable limits. The strategies for controlling the

voltage in the power system are presented in the following subsections.

1.4.1.1 Reactive Power Resources

Reactive power and voltage control are involved in the distribution systems to
acquire the preferable voltage profile and reactive power flow. Certain equipment,
such as capacitor banks, tap changing transformers (TCT) (Penkey et al., 2017) and
DGs, has been used recently. Numerous researchers presented generator excitations,
automatic voltage regulation and static VAR compensator methods to maintain the
voltage levels within the specified limits, improve the reactive power performance,
sustain the system stability and gain the ultimate benefits of the power network

(Aibangbee, 2016).

1.4.1.1.1 SCBs

SCBs are mainly utilised to enhance the quality of the electrical power systems
and improve the power system performance. Such banks are used in transmission or
distribution systems to ensure that the lagging PF is close to unity. Furthermore, the
harmonics are filtered, and the voltages are maintained in stable conditions by locating
the SCB on the distribution feeders. In industries and substations, shunt capacitors are
usually situated close to the load terminals. SCBs are usually connected to the power
system during the overload condition where the loads drag the inductive current. The
SCBs produce VARs to compensate the reactive power. These banks are usually
connected to the system when the demand on the Kilo Volt Ampere (KVA) on the
distribution line is increased, and the voltages on the buses are decreased (Samineni et

al., 2010). SCB is considered an effective way to reduce the power consumed by the
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feeders. Thus, the inappropriate placement of the SCBs will reduce system efficiency
and even harm the entire control system. The appropriate location and optimal size of
the SCB must be specified in the distribution system to obtain the maximum benefits
from the capacitors (Devabalaji et al., 2018). Nowadays, many techniques and
optimisation algorithms have been presented to investigate the optimal placement of
capacitors (Mohamed et al., 2015). Mohsin et al. (2016) proposed the optimal
allocation and sizing for the capacitor banks to solve the voltage drop and overall
losses in the power system. The presented method is tested on realistic 33 kV RDS.
Mahesh et al. (2017) proposed a strategy for the optimal allocation and sizing of
capacitor banks, as well as renewable DGs, such as solar, wind and biomass in RDS.
The proposed technique is examined on the IEEE 33-bus system. The results showed
that the proposed methodology is effective in reducing the power loss whilst enhancing
the profile. Devabalaji et al. (2015) proposed a new integrated approach for the optimal
placement and sizing of the SCB in the radial distribution to solve the power loss issue.
The presented technique is tested on the IEEE 34-bus and 85-bus RDS considering all
load potentials varying from 50% in light load until the load reaches 160% with 1%
step size. Montazeri and Askarzadeh (2018) discussed the capacitor placement in the
distribution system considering the power loss index to specify the potential busses for
allocating the capacitors in the distribution network. The presented technique is tested
on the IEEE 34-bus and 68-bus RDSs with different load factors. Araujo et al. (2018)
explained the placement technique for the capacitor banks in the unbalanced
distribution system considering the daily load with different levels. The proposed
technique focused on calculating the reactive power demand to minimise the losses
apart from the discrete capacitor allocation. The simulation results were obtained from

several IEEE test systems, such as 4-bus, 123-bus and NEV test feeders.
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Voltage deviation association with large line impedance causes power loss.
Thus, the use of TCTs is considered an effective method in regulating voltage and
decreasing losses. Hussain et al. (2017) proposed a technique for minimising the power
loss in the distribution systems by using a TCT. The research is presented through a
number of investigations to create an auto-generated load profile for the IEEE 69-bus
system for every minute for 24 h. The simulation was performed at the optimal tap
transformer position and capacity. These authors prospected that the electronic TCT
solution would be the present and future equipment for the voltage regulation in the
power system. The study is applied on distribution transformers, which comprise the
layout design for accessing the terminals of the tap transformer in addition to the
estimation of the voltage and current transients. Kabiri et al. (2015) presented a study
to help manage the voltage profile and minimise the feeder losses by using a TCT
combined with PV distribution generators. The research considers various factors,
such as line impedance, dynamic TCT, different load factors and PV penetration
levels. The achieved results illustrate that the integrated techniques can organise the
voltage during a 24-hour period efficiently. Sarimuthu et al. (2016) proposed a review
on the different schemes for the on-load tap changer (OLTC) voltage control to
regulate the voltage in distribution networks, including renewable energy resources.
Zhang et al. (2016) discussed the real-time active control and reactive power
adjustment in the power system by using a TCT with controllable loads. A technique
is presented to help the operator adjust the OLTC positions at the connected buses for
regulating the reactive power. Accordingly, the overall load control scheme is

decentralized.
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1.4.1.1.3 DGs

In the new millennium, large fossil fuelled power plants are being replaced by
distributed nonconventional/renewable energy resources as alternative energy sources,
such as natural gas, wind power, solar photovoltaic (PV) cells and fuel cells, in
addition to the combined heat and power (CHP) systems. This phenomenon is due to
the load prompt revolution and fossil fuel depletion. DG is considered an effective
solution for the voltage control issue to preserve it at its acceptable limits and maintain
the delivery of power to the customers. Refereeing to (Senjyu et al., 2018) a technique
to control the reactive power depending on the demand resource (DR) programme for
obtaining a stable energy network where the clients can obtain a decrease in the power
cost by generating a reactive power through the DG. By contrast, the utility grid can
acquire a decrement in their power distribution losses. Meanwhile, Aly et al. (2014)
analysed the effect of implementing a large-scale PV system on voltage stability and
adjustment. VVoltage profiles are evaluated by calculating the load flow with different
load levels during a 24-h scale. The power flow analysis is accomplished using a
forward/ backward sweep technique. Voltage profiles are adjusted by using the PV
interface inverters. The voltage nodes are used in the inverter capacity. The study
investigated the probable scenarios of voltage collapse in various times. The improved
techniques are tested on the IEEE 33 bus system. The results illustrate that the PV
interface invertors promote the voltage profile and enhance the power network
operation in addition to the OLTC lifespan expansion by decreasing the number of the
tap positing. Castro et al. (2016) discussed a novel method called optimal coordinated
voltage control (OCVC) to determine a solution for the voltage regulation issue at the

buses and generators and the reactive power losses in the distribution system. A
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comparative study between the OCVC and an ordinary technique for centralised
voltage control is examined on the IEEE 13 and 34 bus test with unbalanced system
load. According to Jeong et al. (2017), a new equivalent method presented for a low
voltage system that contained distributed generators to show the DG effect on voltage
and the power flow in LV and medium-voltage systems. The presented method is
improved depending on the analytical strategy that allows solving the voltage-reactive
power problems by applying a deterministic algorithm. Li et al. (2019) discussed a
technique for controlling the local voltage and the reactive power in DGs. The
presented method is based on local measurement, which can rapidly respond to the
repeated variation of the DG and enhance the performance of the active distribution
network. The results are tested on the IEEE 33 bus and 123 bus systems. The reactive
power adjustment with different control methods has been utilised in (Qamar et al.,
2017) to regulate the voltage in the PV systems with grid-connected mode. The
effectiveness of the PV inverters in controlling the reactive power is observed when
the inverter’s apparent power is considered. This research illustrates such scenario
through the rush hours to ensure that the power generation is high, and the voltage rise
at the point of common coupling (PCC) reached the maximum. The inverter’s
capability to supply the necessary reactive power is limited to the inverter’s apparent
power. Another reactive power resource should be utilised apart from the PV system

to compensate for the reactive power during the peak periods.

1.4.2 Optimisation Techniques

Many methods, such as tap changing transformers, capacitor banks and DGs,
are used to compensate the reactive power and regulate the voltage. Despite the

effectiveness of these components, specifying their optimal size and position is still a
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challenging task. Several optimisation methods have been improved to determine the
appropriate placement and capacity of the reactive power resources. These methods
can be divided in four main categories: heuristic approaches, analytical techniques,
numerical programming methods and artificial intelligence (Al)-based algorithms.
Enhanced stochastic approaches compensated the time consumed in the analytical
optimisation techniques, especially with the complex tasks, to apply a convenient
method. Consequently, various optimisation algorithms, such as simulated annealing,
dynamic programming, GA, tabu search, evolutionary programming, ant colony
system, PSO, fuzzy-based optimisation algorithm, shuffled frog leaping algorithm and
honey bee mating optimisation, have been examined (Ali et al., 2017). Although the
heuristic techniques cannot guarantee a global optimal resolution, acceptable close to
optimal solutions with permissible calculation period have been attested (Araudjo and
Uturbey, 2013). Several heuristic strategies have been used to overcome the optimal
size and location of the reactive power resources. Mohamed et al. (2018) presented a
hybrid technique called genetic moth swarm algorithm (GMSA), which adapted a GA
apart from the MSA. This technique aims to reduce the losses and overall expenses of
the power system in addition to enhancing the voltage profile of the network under
different load conditions. The results have been tested on the IEEE 33 node and 69
node systems. George et al. (2018) utilised an optimisation method called ALO to
determine the optimal capacity of the VARs and the optimal position of the fixed
capacitors in medium and large RDSs. The suggested technique is applied on the IEEE
33 node and 69 node test systems. Ali et al. (2017) utilised the loss sensitivity factors
to specify the appropriate buses for connecting the DG in addition to the ALO, which
was used for allocating and sizing the DGs on the elected buses. In addition to the

Wilcoxon test system, the presented technique is examined on two IEEE bus systems.
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1.4.3 Heuristic and Meta-Heuristic Investigation Techniques

In contrast with the analytical techniques utilised to resolve optimisation issues
and those that can assure an optimum resolution to the optimisation challenges if they
occur, heuristic approaches only aim to provide a quite good solution, which is not
certainly the global optima (Marti & Reinel, 2011). Heuristics are classified as
problem-relay on principles that combined with an investigation method that can be
utilised in optimisation. These types of investigation methods are generally named as
greedy techniques. A greedy method investigates the resolution domain of a specified
function by solo seeking for the optimal one at that time according to a predetermined

heuristic standard.

Meta-heuristics refer to upper-level issue-individualistic algorithms that
support a group of techniques or instructions to improve an investigation procedure
for optimum resolutions compared with heuristics. These algorithms avert benefit from
the available information of the resolution area. Accordingly, such algorithms can
extensively investigate within the resolution domain. Meta-heuristics frequently

permit decay of the acquired resolutions to inspect a diverse resolution area.

According to Marti and Reinelt (2011) who stated that various motives for the
alternative use of heuristic optimisation techniques can be utilised as conventional

deterministic strategies:

No available technique can resolve the issue. Examples comprise of the
optimisation of non-differentiable or non-convex functions, discrete feasible space and

objective functions with several local maxima or minima. Heuristics are also beneficial
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when the mathematical model derivations are either impossible to calculate or

unrecognised.

1.4.4 Meta-Heuristic Investigation Algorithms

In the precise problem of the DG placement and sizing, causes were discovered

in the literature owing to the utilisation of a meta-heuristic investigation technique of

an exact numerical algorithm:

The equations of power balance for the power flow issues are nonlinear and
non-convex.

Generators nonlinear and non-convex have specifications (Yuan, 2009). Non-
convexities of the issue modulation make mixed integer nonlinear
programming (MINLP) insufficient to be applied to problems because of the
algorithm converging risk to fill in the local optimal alternative of the global
optima.

The nonlinearity of generator cost curves can be considered convex and soft
functions (Kumar & Gao, 2010).

The dependencies of the multi-period state need a long execution period of
time to resolve the issue with MINLP. Soares et al. (2013) highlighted the
execution time of a meta-heuristic approach compared with MINLP. The
researchers reported that MINLP needs 25.5 h to resolve the scheduling of DG
generation during a 24-h period inclusive storage strategies compared with the
meta-heuristic approach that only assumes 30 s. Moreover, the researchers
reported a variation in the optimal amount considering a cost function of 0.9%

in the meta-heuristic investigation technique.
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1.4.4.1 PSO

PSO is considered a meta-heuristic method that has received great attention
because of its effectiveness in resolving complicated challenges. This method is well
known as a robust technique in solving issues with special specifications, such as
nonlinearity, high dimensionality and non-differentiability. Ramadan et al. (2017)
adapted such method for determining the optimal placement of the capacitors to
minimise the power losses and manage the voltage profile in the distribution systems
that comprise wind turbine energy generators. The solution formulated a non-linear
cost fitness function because of the non-linear feature of the system due the wind
turbine generators. The PSO simulation is applied on the IEEE 16 bus and 30 bus test
systems, and it proved its robustness compared with the GA. Silva et al. (2017) adapted
a modified PSO (MPSO) technique to size the PV panels for minimising the power
losses and enhancing the voltage profile in the power system. The presented method
was tested on the IEEE 13 node feeder system in addition to the micro-grid of the
Federal University of Paraiba. The proposed method proved its robustness and
effectiveness in achieving the objective functions. Mohamed et al. (2016) proposed a
technique to specify the optimal capacity for the hybrid renewable energy network by
using a load management application for the smart grid according to accessible
generators. This technique aims to maximize the system production and achieve the
load needs with low cost and optimal reliability. The system consists of PV panels,
storage batteries, wind turbines and diesel generator as backup power sources. The
capacity of the system elements is specified using PSO. The simulated results are

applied on the far distant areas in Saudi Arabia.
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In these meta-heuristics population-based techniques, such as GA and PSO, a

large number of non-controllable resolutions can be obtained from a sole execution
because of their multipurpose search capacity. The capabilities of these techniques are
limited to dimensionality issues. Furthermore, no convergence is guaranteed; thus,

robustness is weak.

1.4.5 Objective Functions and Constraints

Single or multiple objective functions have been used combined with system
constraints to increase the profit from reactive power incentives. Generally, the
regulation of voltage profile and the minimisation of real and reactive power losses are
considered essential objectives in distribution systems. Several additional objectives
may incorporate with the base objectives to achieve the optimal performance of the
system; These objectives include expense minimisation or profit maximisation,
increase in the MVA capacity of the system, maximisation of the size of the reactive
power resources, generation of index-based functions and decrease in the current of
weak feeders (Pesaran et al., 2017). The main purpose of constrains in optimising the
power systems is to guarantee the achievement of the design and operation conditions
under the specified limitations. Various types of power network maintenance
constraints include the PF, bus voltage, feeder current and power balance. By contrast,
the interior power capacity, short circuit current and transformer capacity are common
models of the power plant conservation constraints that have been inspected by

research papers.

In 2017, multi-objective optimisation has been utilised to specify the optimal
location of DGs. Active and reactive power losses, voltage fluctuation and total cost

are the objectives of the module. The optimal placement and sizing of the DGs are
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determined by PSO incorporated with fuzzy decision-making technique. The proposed
method proved its effectiveness on the IEEE 69 node RDS. Mendoza et al. (2019)
introduced a technique based on PSO to overcome the optimal placement and capacity
of the capacitors in the power distribution system. The multi-objective functions that
have been utilised are real power reduction and operational and constant costs, thereby
enhancing the voltage quality. The proposed approach was examined on the IEEE 34

node and 84 node test radial distribution networks.

1.5 Scope and Limitation of the Research

This thesis aims to optimise the placement and capacity of the DGs in the
power system by using the ASO algorithm. Two tested systems, namely, IEEE 33 bus
RDS and IEEE 14 bus system, are considered to evaluate the performance of the
proposed technique. 1, 2 and 3 DGs are synchronous generators that inject real and
reactive powers to the system and operate at a PF of 0.866. These generators were used
as case studies to apply the optimisation and obtain the optimum DG location and size.
The backward—forward sweep and NR computational methods are applied to compute
the power losses, voltage magnitudes and other parameters. The ASO algorithm, which
is a newly developed meta-heuristic optimisation technique, is adapted to minimise the
problem and obtain the optimal size and location of the DGs in the power network
systems. The results of the presented technique are compared with the GA-PSO

algorithm to validate the preciseness and effectiveness of the proposed strategy.

1.6 Benefits of Research
This thesis addresses the significance of the contribution of DGs in the power
systems in terms of power loss minimisation, voltage profile improvement (VPI) and

operating cost reduction. The optimal capacity and allocation of DGs can be
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determined by using ASO, which is an effective and efficient technique for the actual
implementation of DGs in the power systems. The acquired results display a reliable
optimal resolution that reflects the important cooperation between the theoretical
background and the real-life practical application. Such results pave the way for other
researchers to investigate future work in this topic and help improve the reliability and

quality of clean electrical power systems.

1.7 Thesis Outline

This thesis is structured into five chapters. Chapter 1 presents an introduction
to the research, including overview, problem statement, objectives, scope and research
limitations, research benefits and thesis outline. Chapter 2 provides a description for
the optimisation that handles a multi-objective problem, including the objective
functions and constraints. The methods and materials utilised in this research are
presented with description of the power flow methods that are used in the tested
systems. The other optimisation techniques utilised in this study are presented. The
proposed optimisation technique with details about the principles of this method and
the manner by which it is implemented to solve the optimisation problem is presented.
Chapter 3 shows the simulation results of the multi-objective optimisation along with
the discussion of the obtained results. Chapter 4 is final chapter of the thesis, and it

summarises the conclusion and discusses the future work related to DGs.

1.8 Chapter Summary
This chapter discusses the related problems and targets at supplying general
details about the distributed power generation in the electricity market competition.

Generally, DG is defined as the electric power generation inside power networks or on
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the consumer front of the network. Distributed resources, distributed utility and

optimisation techniques also are discussed.
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Chapter 2: Methodology

2.1 Introduction

This section illustrates the mechanism by which a recently invented novel
optimisation algorithm called ASO, which is inspired by MD, efficiently solves a
complex optimisation challenge. Power loss minimisation and sustainment of the
system voltage profile within the acceptable limits with the adequate application cost
reduction are considered the fitness functions for a multi-objective approach used for
DG optimal capacity and location in the power systems. In the proposed model, one

single operation point has been used to demonstrate the load in the system.

2.2 Materials and Methods
This section presents the methods that are used in the study, as well as the

materials that are utilised to achieve the research objective.

2.2.1 Power Flow using Newton—-Raphson (NR) Method

The study of load flow is a basic analysis for the power system that provides
information about the loading and losses of the line and transformer in addition to the
voltages at different points in the system. Subsequently, the work on electric power,
which increased the low voltage level, began at the end of the 19th century (Eltamaly
et al., 2018). The interconnected network of delivering electricity or the electrical grid
was extended and classified as generation, transmission and distribution that increase
the transmission voltage to 1200 kV. This complexity increases the number of
problems in power flow control, and a plan is required to reach the minimum cost
without affecting the voltage in the system. The state of the power system and the

calculations of its power that flows through the lines are important for the future
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expansion of the system. Consequently, studies have been carried out to develop
computer programmes for the load flow analysis of large power systems (Wende et
al., 2008). Different methods for calculating the load flow are performed. However,

this research focuses on the NR method.

NR has many advantages, such as low computation time and powerful
convergence characteristics or sure convergence; this method is used to solve
nonlinear algebraic equations (Sharma et al., 2017). The power flow equations are as

expressed as follows:
P;(Real Power) = |V;| X%, (|Vj||Yij|cos((Z)ij +6; — 6i)), (2.1)

Q:(Reactive Power) = —|V;| X%, (|Vj||Yij|Sin(®ij +6; — 6i)). (2.2)
Where:

Vi= Voltage at the ith bus

Vj= Voltage at the jth bus

Yij= Admittance of the ith and jth buses
@;j= Admittance angle

A;=  Phase angle of the jth bus

A;= Phase angle of the ith bus

Jacobean matrix J is used to solve the NR method:

ap  ap

_|as i

J= a0 a| (2.3)
as |v]

Yij is the bus matrix:
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Yiy . Y
]] (2.4)

Ybus = [ - R
Vi .. Y,

The load flow minimises the mismatch between:

e The actual injected power and the calculated values.
e The reactive injected power and the calculated values.

Accordingly, the iteration must be used to estimate the bus voltages and their
angles for calculating mismatches. A small number of mismatch indicates that the load
flow is converged. Before the iteration process (rth) is initiated, we will consider one
bus as a slack bus in the system that has the voltage of one and phase of zero. We also

assume other buses, such as PQ (load bus) and PV (generator).

PP = Vil" St (1| ¥yleos(9; + 6 = 61)), (25)
o = il S, ([ 11Y;lsin(@y; + 6 — 57)). (2.6)
We let

el = |Vil"cos8] and  f7 = |V,|"sins], 2.7)

nh] Gl] = |Yij|COS®ijﬂ
Bj = |Y;j|sing;.

Subsequently, AP and AQj are calculated to obtain values that are less than the

tolerance, and the iterations are stopped.

AP/ = P;(scheduled) — P/ for PV and PQ buses, (2.8)
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AQf = Q;(scheduled) — Qi for PQ buses. (2.9)

The solutions of P1 and Q1 are determined. However, if convergence is not
obtained, then Jacobean matrix elements will be calculated. Thereafter, the voltage
magnitude and phase angles are performed. The iteration process continues until
convergence is obtained. The voltage magnitude and phase angles are updated as

follows:
V|T+D = |V|" + AV, (2.10)
ST+ =87 + AST, (2.11)

The NR method is the preferred general approach for solving the power flow
problems in large systems. This method has been selected because of to its speed,

computation time, convergence characteristics and storage.

2.2.2 Power Flow Using Backward—Forward Sweep Method

In the RDSs, reiterated methods are generally utilised when the investigation
of power flow in transmission systems are inappropriate because of their
computational characteristics and convergence properties. Gauss—Siedel and NR
methods are common in transmission systems. Nevertheless, these approaches are
inconvenient for distribution systems because of the increased R/X rate and the
presence of off-balanced load. The characteristics of the distribution systems cause the
unhurried convergence. Accordingly, exceptional techniques are required to resolve

the load placement issues immediately.

The forward—backward method is an iterative approach used for analysing the

power flow in radial distribution networks. Two phases of computation are
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implemented in every iteration. The sets of recursive equations are utilised to solve the
load flow iteratively. Power flow is calculated by solving the first set of equations in
the backward direction. The power flow is tracked down from the load to the source.
In the backward sweep, the solution of the current and power is obtained with the
possible updates of the voltages (Rupa and Ganesh, 2014). The voltages obtained in
the forward sweep are kept constant during the backward sweep. The magnitude and
angle of the voltage drop are calculated using the second set of equations in the forward
direction where the path leads from the source to the load. In forward sweep, the
current values are updated along with the power flow at each node based on the
calculated voltage drop. The substation feeder voltage is assigned as the actual value
of its voltage. The value of the effective power that is obtained from the backward
sweep should be kept constant during the forward sweep in each branch. In the
forward—backward sweep, the electric quantities of the backward propagation affect

the three variants that can be obtained using the following:

1. The branch current refers to the summation of the currents in that branch.

2. The power flow refers to the summation of the powers in that branch.

3. The admittance summation method is used node by node to obtain the

driving point admittance.

These variants are homogeneous in forward propagation. The calculation of
the bus voltages begins from the source node to the last node based on backward sweep
calculations. The quantities used in backward sweep update the voltages after several
iteration steps, and the iteration process stops when convergence is obtained.

Consequently, a comparison occurs between the calculated values and the previous
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iteration values. Convergence is obtained when the difference between the new and
old values is <0.0001 (tolerance value). If convergence is not obtained, then the
iteration process continues. The new values of the power flow will be calculated by
backward propagation. The process will stop when the solution cannot to meet the
convergence standards. At present, the backward—forward method has been
reformulated for the analysis of the iteration process convergence. Effective power
flows can be calculated by backward propagation for a branch in between nodes ‘k’

and ‘k+1°. The effective real and reactive powers are calculated as follows:

’ (PR 1+QF4)

Pie = Piyy + 10755 (2.12)
/ (Pi+1+Qk+)

Qr = Qkq1 + X L (2.13)

Pc,; and Qi can be obtained by using the following equations:

Piy1 = Pey1 + Prisa, (2.14)

Qr+1 = Qi+1 + QLi+1- (2.15)

In the previous equations, P, is an effective real power from the k + 1 node, and

Qyx+1 Is an effective reactive power from the k + 1 node.

The voltages and angles are calculated in the forward propagation. If the
voltage at k is V, < &y, then the voltage at k + 1 is Vi, < 6x41. The impedance
between k and k + 1 node is defined as z, = 1y + jx. Thus, the current in the branch

is presented as follows:

Vi<6p—=V <6
Ik — kSOk k'+1 k+1. (216)
Trt]Xk
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Recursive equations are used to obtain the nodal values of the voltages and angles. In

the first iteration, the voltage is assumed to be 1 pu at all nodes.
Algorithms:

In the first step, the distribution system bus data are read along with their line
data, apparent power and base voltage. The injected active and reactive powers are

then obtained using

Pinj = Pgen — Pioaas (2.17)

Qinj = Qgen — Quoad- (2.18)

Next, the value of iteration counter k is set to be one. The convergence can be
determined by setting € = 0.001, AP,,x = 0 and AQ,.x = 0. Thereafter, the value of

the injected nodal current can be evaluated at node i by using the following equation:

i

The branch current can be obtained using KCL after the backward sweep is
applied. Forward sweep is applied to obtain the voltage at each node by using KVL.

The injected power at i can be calculated using the following expression:
SK = VEUR - Y|V (2.20)

Then, the convergence is checked. If AP« < €, and AQax < €, then the
process is stopped. If the condition is not satisfied, then we set k = k + 1 and calculate

the injected nodal current again until the condition is satisfied.

1) The backward—forward sweep method merits are presented as:
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a) The Jacobean matrix is unnecessary.

b) This method does not rely on PV bus (voltage controlled node) and the

number of DGs for small networks

¢) This method is convenient for online and offline issues
2) Drawback of backward—forward sweep method:

a) Failed in dealing with heavy load

b) Unsuitable for large-scale systems

Consequently, backward—forward sweep method acquires excessive speed, has

sturdy convergence and requires less memory.

2.3 DG Types

DG units are categorised into four types depending on their ability to transfer
the active and reactive power energy of the distribution system (Hung et al., 2010). In
this research, only one type of DG, that is, PQ type (e.g. synchronous generator), is
considered. Under this type, the generation units can deliver real and reactive powers

of 2000 KW and 80 MW. The PF is constant at 0.866. In Hung et al. (2010), a is
a = sign(tan(cos™1(PF))). (2.21)

The sign (+1) means that DG is providing reactive power, whilst (—1) means

that DG is absorbing reactive power. Thus, the output reactive power of the DG is
Qgc = a.Ppg.

In this DG type, @ = (+1)(tan(cos *(PFpg))), (2.22)
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Qr = Qb — Qb (2.23)
Where

Qx is the net reactive power at node kK,

Q¥ is the DG reactive power at node k,

Q¥ is the demand reactive power at node k, and

PF; is the DG PF.

2.4 Optimisation Algorithms

Majority of the power systems have non-convex nonlinear optimisation issues
where ordinary optimisation techniques, such as gradient-based methods end with
local optimal solutions. The solutions obtained from traditional optimisation
techniques are strongly based on the initial values of the methods. The meta-heuristic
or global optimisation algorithm is proposed in this thesis to eliminate these issues.
This algorithm can guarantee acceptable results. Generally, gaining the global optima
solutions needs abundance of running duration and assets. The algorithm does not
work if the solution is unsatisfied and no significant enhancement has been performed.
Consequently, if the obtained results are quite close to the optimal global resolution,

then it can be accepted as the optimal solution for the problem.

Within the global optimisation algorithm, several compromises, such as raising
the objective functional weights to avoid the local optima, have to take place. A
number of iterations should be initiated with no bias to assure that the algorithm

reached the global optima.
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Two optimisation algorithms have been presented in the following parts (GA-
PSO and ASO). These optimisation techniques are easy to simulate and appropriate

for solving the power system issues.

2.4.1 GA

GA is an unsystematic search optimisation technique inspired by Darwinian
Theory. This technique is a specific category of the evolutionary techniques that utilise
methods influenced by the biological revolutionaries, such as inheritance or
population, exploration, election and exploitation (also named as recombination)
(Martin and Spears, 2001). GA initiates the inspection from a series of population that
is nominated to be the proper solutions randomly set within the inspection limits. With
the natural growth, this technique will improve the new prospect resolution named as
off-springs from preceding parents. The objective of each solitary in the population is
assessed in every generation. Numerous solitaries are elected from the present
population (depending on their fitness) and adjusted to format a new novel population.
The recently elected population is in the updated iteration of the technique. The
technique terminates in one of these cases, hit the maximum generation number or
reach the best fitness quantity (Voratas, 2012). GA, which procures to an undesirable
poor convergence and inadequate robustness, is considered a limited algorithm for
research characteristics. Consequently, adapting this method in complex issues will

potentially lead to trapping within the local optima.

2.4.2 PSO

PSO is considered a recent evolutionary strategy attributed to Eberhart and

Kennedy (1995). This approach is a meta-heuristic stochastic global method based on


https://en.wikipedia.org/wiki/Metaheuristic
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the candidate solution population. Moreover, PSO is basically inspired by the social
behaviour of the organised movement of the flock of birds or school of fish in their
journey for hunting food. In this technique, the particles move to many directions in
the search space where each of them represents a candidate solution. Each particle
consists of the control variable data and is incorporated with others with their optimal
data that specifies its performance in the fitness domain. Each swarm k contains its
placements Yk = (yk, 1, yk, 2,..., vk, Mv) where Mv denotes the control variable
numbers, VK is the velocity = (vk, 1, vk, 2, ..., vk, Mv) and local (personal) optimal
experiment Ypbestk= (ybestl, ybest2, ..., ybestMv). In every iteration, each particle
transforms in its own local optimal location provided and towards the global optimal
location specified by the swarm particles. The following equation represents the

particle operation:

Vet =wit x Vi +AC, x randy X (Xpheser — Xib) + AC, X

rand, X (Xfesr — X (2.24)
X+t = xit 4 oyt (2.25)

Where Vit*1 represents the particle’s k velocity at the it +1 iteration; V¢ is the
particle’s k velocity at it iteration; AC1 and AC2 are constants of the acceleration;
rand; and rand, represent a random values within the range of 0 and 1, respectively;

X},ﬁ,estk is the local optimal location of particle k at it iteration; X represents the

placement of particle k at it iteration; Xéﬁ,est performs the optimal global location
amongst the whole particles at it+1 iteration; and X** formulates the location of

particle k at it iteration.
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In nonlinear complex optimisation issues, attaining the optimal resolution
using PSO is not guaranteed. Filling in the local minima, which can procure the

inclination premature convergence and poor robustness, is easy.

2.5 General Form of Optimisation

The mathematical model for any optimisation problem can be formulated as:
min  F (E,X), (2.26)
G =0,
Quin £ Q < Qunax
Where (E,X) represents the objective function; E is the output; X is the
corresponding input; G = 0 is the equality constraints; and Qi < Q < Qnax IS
the inequality constraints, where Q,,,in/Qmqx are the limits between min/max for the

inequality constraints.

2.5.1 Objective Functions

The proposed multi-objective system aims to improve the power system
through the following functions.
e VPI
e Active power loss reduction
e Minimum operating cost
Some objective functions have to be achieved whilst satisfying the system
constrains to accomplish the previously mentioned purposes.
o VPI
VPI is considered the first fitness function that needs to be minimised to

increase the bus and line stability by captivating the voltage deviation of the bus from
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the reference node. The effectiveness of the voltage profile of the nodes after adding
the DG to the system is measured by voltage deviation index (VDI), as shown in the
following formula:

b
|Z;c1 us Vbe _Vk,ref|

MinVPI = VDI =

woG (2.27)

IZRP" Viase=Virer|yope

Where Vpase represents the voltage magnitude in pu at the buses without DG,
Vog is the voltage magnitude in pu on the nodes with DGs, and Vy ,..f is the voltage
reference, which is in this case is 1.

o APL

APL is the second fitness function that represents the effectiveness of the
inclusion of the DGs on the active power loss. After the addition, this function is
usually measured using the active power loss index (APLI) depicted by the following

equation:

b
XY Plpg
Z?busplbase’

Min APL = APLI = (2.28)

where Plpase represents the power loss before adding the DGs to the system, and PlI
denotes to the power loss after adding the DGs.
Moreover, PI can be calculated using Equation (2.29)
PL=YNPI2 Ry Ly, (2.29)

Where Pl is the total power loss in all the lines in the system in pu, | represents
the current value of the branch b in pu, L is the length of the line in Km, Nb is the total
number of the branches and b is the branch number.

o Reduction of application cost (RAC)
The system operating cost consists of several aspects, namely, operating,

investment and maintenance costs. In distribution systems, the integrated DGs will
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fetch an interest to the grid to produce power that substitutes the conventional power
energy. Therefore, the generation cost for the DGs should be considered when
calculating the network operating cost. Thus, the investment Cin, maintenance Cmain,
and generation Cgen costs displaced by DGs are considered for the network operating

cost (Equation (2.30)):

min RAC = RACI = ——n* Smain™ Cgen (2.30)

(Cin+ Cmain— Cgen)max
Gopiya et al. (2015) utilised several strategies to compute the indices of the
investment and maintenance costs. In this study, the cost of investment Cin is expressed
as Formula (2.31), and that of maintenance Crmain is calculated as Equation (2.33). The

generation cost Cgen Substituted by DGs is depicted as equality (2.34).

d(1+d)LTPE

Cin = le\c/l ak E -Pkmax . Cpui . m y (231)

where C,,; denotes to the pu size of the investment cost of the DG at bus k; M
represents the number of candidate DGs; oy = F (x4, X5, X3) IS the weighting factors of
the investment cost, where x; depends on the environmental coefficient, x, is the
displacement coefficient and x5 is the cost of labor and transportation coefficients; d
represents the discount rate; LTDG is the DGs life time; Pkmax form the maximum
capacity value of the DG in candidate bus k; and E is the candidate DG size in the

candidate bus k. Variable E is depicted by Equation (2.32) by normalising the capacity:

E= Pk‘;:ax  k=12,..,M, (2.32)
Crmain = Xt Tur - Coum -E - Prmax- (2.33)

Where Ty, is the maximum DG generation hours, M is the DG number and
Cpum represents the pu capacity for the maintenance cost of the DG at bus k.

Cgen = Z%I E. Pemax - Mk . Teqh- Cpug ) (2.34)
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where T,,p, represents the hours of the equivalent generation of the DG generations,
Cpug 1s the electricity cost of the unit-grid of the DG, 7, is the DG efficiency at bus
k,and (Cin + Crmain — Cgen)max represents the values using the maximum capacity

size of the DGs.

2.5.2 Multi-Objective Functions (MOFs)

A multi-criterion method is used to simultaneously optimise more than a single
fitness function, which can be resolved by using the weighting factors for maximising
the objectives of the DG where a tiny regulation can cause a huge shift in the optimal
method behaviour.

In this research thesis, two and three objective functions are used to solve the
problem of placing and sizing the DGs in the power networks, respectively.

The fitness function of the system is calculated using Equation (2.35).

MOF = W,.VPI + W,.LPL + W,.RAC, (2.35)
wherein o<w<1 and YW, =1, (2.36)
where W1, W2 and W3 represent the weighting coefficients for VVPI, LPL and RAC,
respectively. The fitness functions specify the weight value based on the importance
of every function to the system where the valuable one has the highest weight
compared to other factors. A normalisation process should be considered because the

objective functions are different.
2.5.3 System Constraints

o Inequality constraints

e DG Generation Capacity
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The inequality constraints contain the allowable penetration size for the DGs

in the power system and the upper limits of DG size at the nominated bus k. At each

candidate bus for the installed DG, the active and reactive powers are restricted by the
upper and lower limits as follows:

{ Pgmin <
ngin <

i PGmax (2.37)

Each nation has a restriction on the DG penetration to assure the system
reliability. If we suppose that the maximum factor of DG penetration is 30%, then the
maximum DG capacity injected to the power system should be <30% of the overall
real power in the network system. This notion means that

Yi=1Pepk < 0.3.Protatioaa » (2.38)
where P;,:a1 10aa TEPrEsents the total load active power in the power network.
Variables P gpmin and Q gmin and P gpmax aNd Q grmay are the minimum and maximum
real and reactive power for the DGs, respectively.

. Node Voltages

The DG incorporation in the power system boosts the voltage limits on all
nodes, which may lead to over-voltage at several nodes. The voltages on all the nodes
are restricted by two values, namely, the upper (V;X,,) and lower VX limits Equation
(14).

VK., < VE < vk, (2.39)

Similar to (Hung and Mithulananthan, 2013), the upper and lower levels are
taken as 0.95 and 1.05 pu, respectively.

e PF

An inequality constraint PF is based on the ratio P/Q of the generator, where

this ratio should be constant. For example, any variation in the real power should be
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followed by a mutation in the reactive power. Generally, the DG PF should be kept
close to uniform to guarantee the full production of the real power of the DGs.
Equation (2.40) expresses the PF constraints in the system, where PFmax represents the
upper limit which equals to one and PFmin, Which forms the lower limit, should be

>0.8.
PFYt,, < PF¥ < PEk.. (2.40)

o Equality constraints

e Power Balance Constraints

The power balance is an equality constraint where the overall power generation
of the system without DG Py in addition to the power of the DG unites Pgoc should
equal to the overall load demand Pq4 along with the total active power 10ss Ploss
Equation (2.41):

2521 Pgpe + 25:11?9 = Py + Pipss- (2.41)

2.6 Hybrid GA-PSO

A hybrid GA-PSO is combination between a PSO and a GA where the
population of the optimal evolution is chosen by the GA; the PSO then optimises the
results regardless of the iteration (Sahoo et al., 2014). First, the GA and PSO methods
are initialised. Thereafter, both techniques are simultaneously executed, and the
optimal solution is stored. After a specific iteration number (stopping criterion), the

simulation stops the running and presents the optimal solution as a final result.

The GA-PSO algorithm procedures are shortened as follows (Dufo-L6pez and

Bernal-Agustin 2008):
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Step 1: Clarify the initial data population size, generations’ maximum number,

crossover and mutation probabilities and the decision variable bounds.

Step 2: Set it = 0, which represents the number of iteration/generation.

Compute the fitness function for each chromosome.

Step 3: Generate the population of the chromosomes and particles.

Step 4: Calculate the objective function for every chromosome.

Step 5: Search for the chromosome/particle global best with the optimal fitness value.

Step 6: Split the chromosomes and particles into two identical sizes of population.

Step 7: Iterate the following until the stopping criterion breaks:

e Add one to the iteration value.

e Apply GA for population, and then crossover to find the new population.

e Discover the optimal chromosome from the present population by comparing
the current population with the previous superior one; keep the optimal one as
the best chromosome.

e Increase it by one.

e Update the new population by applying tournament selection.

e Apply the PSO for particles, and update the optimal location of every particle
through comparing the location of the entire chromosomes of the GA
populations.

e Calculate every particle velocity, update the new location and obtain the global
optimal particle.

Step 8: Printout the location and global optimal particle fitness.
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Step 9: End.

2.7 ASO Algorithm

In comparison with the searching technique of swarm intelligent optimisation
algorithms, a recent meta-heuristic optimisation algorithm has been invented by (Zhao
et al., 2019). The algorithm mimics the physical motion of atoms as illustrated in MD
simulation with few parameters to regulate. MD is a method that utilises a computer
to imitate the atom growth and molecule location all the time. The atom and molecule
movements are fundamentally specified by Newton’s second law; Fi and Gi are
interaction and constraint forces, respectively, both forces influence the ith atom,
which has a mass mi by the following Formula (2.42) (Ryckaert et al., 1977).

a; X my =F;+G; . (2.42)

In ASO, the location of every atom inside the search domain performs a
resolution assessed by its mass, where the preferable solution represents a heavy mass,
and vice versa. In the population, the atoms will be attracted or repelled to each other
depending on the distance between them, thereby motivating the light ones to attract
to heavy atoms. The heavy atoms have minimal acceleration and activate by searching
for optimal resolutions in the nearby domain. By contrast, the light atoms with great
acceleration seek to detect new promising areas in the whole search domain.

The interaction force amongst two atoms or molecules can be approximately

described by Lennard—Jones (L-J) potential as follows:

Fg(t) _ 24s(t)[ (J(t) _ a(t)) ]rlj(t). (2.43)

o(t) Tij (t) rl ®) ra(t)
Thus, the interaction force between the ith and the jth atoms in the dth
dimension is formulated as follows:

24¢(t) a(t)

(t) a(t) 2C,o ij(t))13 B (%)7] (2.44)
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Potential energy U(r)

L-I potential

Figure 2: Atom Force Curve

Figure (2) illustrates the force curve of atoms for MD. The atoms maintain a
proportional space varying in a specified range all the time due to the attraction or the

repulsion. The amplitude alternation of the repulsion is bigger than the attraction, as

shown in distance Equation (2.45):

r =112 g, (2.45)
where ¢ is the depth function that measures the intensiveness of the attraction between
the pair of particles, and o provides a collision diameter measurement that performs
the distance where the inter-particle potential is zero between the two particles Figure
().

The repulsion is positive, whilst the attraction is negative. This situation leads
to the inability of the atom to be convergent to a particular location. Thus, equilibrium
(2.44) is unsuitable to resolve the optimisation problem.

A revised version of this equation is established (Equation (2.46)):

F'() = —n(®[2(h; ()" = ()], (2.46)
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where n(t) represents the depth function to adjust the repulsion or attraction regions
and can be written in Equation (44).

t-1,3 20

n) = a(l — T)3e T , (2.47)
where a represents the depth weight, and T is the iteration maximum number. The h
values ranging between 0.9 and 1.2 belong to the repulsion area. The attraction occurs
when h varies from 1.12 to 2. The equality appears when h = 1.12. As h keeps
increasing from equality point (h = 1.12) until reaching the maximum point (h = 1.24),
the attraction will gradually increase. Thereafter, h begins to decrease. When h is >2,
the attraction is roughly equal to zero. Thus, h,,;,=1.1 is set as a lower limit of
repulsion with a minimal function amount to widen the investigation in ASO. The
upper limit of attraction with a greater function rate is adjusted to h,,,, =2.4.

Accordingly, h is defined in Equation (2.48).

73 ()
(hmin Jj(t) < hmin
ri(©) < Ty®
O'(t) hmln S O'(t) S hmax . (2'48)
73 (6)
hmax a}(t) < hmin

The length scale o(t) is represented by Equality (2.49).

_ B E]eKbesth](t)
o(0) = |[x; (0, 2| (2.49)
and
hmin = 8o + 8(0) and hppay = u, (2.50)

where Kbest is a subset of an atom population comprising of the first K atoms with the
optimal function fitness values. A drift factor g makes the algorithm diverge from the

exploration to the exploitation and is defined as follows:

g(t) = 0.1 x sin(z x 2). (2.51)
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Accordingly, the aggregate force acting on the ith atom with random weights
in the dth dimension from other atoms is represented in Equation (2.52):

F{'() = Yjekpest rand;Ff (1), (2.52)
where rand; is the random number specified between [0,1].

Newton’s third law provides that the ith atom exerts an opposite force on the
ith atom for the similar pair-wise interaction, as expressed by Equation (2.53).

Fij = —Fj, (2.53)

In ASO, a bond between each atom and the optima one is assumed for easiness.
Every atom is controlled by a constraint force from the optimal one. Thus, the ith
constraint of the atom can be rewritten as in Equation (2.54).

0; () = [1xi(t) — Xpese(D]* = bipest: (2.54)
where Xpest(t) is the optimal atom’s location at the tth iteration, and bj est is the length
of the fixed bond between the optimal atom and the ith one. Therefore, the constraint
force is given in Equation (2.55).

G (D) = —AOVE{ () = 2RO (x{'() = Xfest (D), (2.55)

where A(t) represents the Lagrangian multiplier and is defined as follows:

20t

A(t) =BeT, (2.56)
where B is the multiplier weight. After 2 is substituted with A and /8 in Equation (2.57),
the constraint force is represented as Equation (2.58):

Gf'(£) = A(0) (xfest () — x7'(1))- (2.58)
Correspondingly, the acceleration of the ith atom at tth time is shown in Equations
(2.59) and (2.60).

A | Gl

d —
%O =80 T wde

(2.59)



42

ai(t) = —a (1 - ﬂ)g e T Y, rand; [2x(ri) @2 ~(ny®) | (- o)
i - T jeKbest m;(t) ||xi(t),xj(t)||2
20t d _d
e (2.60)

m;(t)
where m; (t) is the mass of the ith atom at the tth iteration and supposed to be measured
by its optima value. When the function fitness has a good value, the atom has great

mass, thereby reducing its acceleration. The mass of the ith atom can be calculated as

follows:
Fit;()~Fitp et (t)
Mi(t) = eFitworst(t)—Fitbest(t), (261)
M;(t)
. = i) 2.62
m(®) = 5 (262)

where Fitrest® and Fitworst are the atoms with high and low values of the fitness
functions at the tth iteration, respectively. Fiti(t) is the value of the function fitness for
the ith atom at the tth iteration. The following equation represents the Fithest® and

Fitworst®:

Fit pes (t) = ie{rlnzir"lN} Fit;(t), (2.63)
Fit ,ors (t) = ie{r{lgl-).(N} Fit;(¢t). (2.64)

At the (t+1)th iteration, the position and velocity of the ith atom can be
expressed for simplification:

vi(t + 1) = rand?® v&(t) + al(t), (2.65)

x{(t+1) = xFvE(E) + vE(t + 1). (2.66)

At the initial stage of the iterations, every atom in the population needs to
interact with as numerous atoms with the Kbest neighbours as possible to enhance the
exploration. In the last stage of the iterations, a few atoms need to interact with atoms

that have better fitness values as its K neighbours for reinforcing the exploitation.
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Whether the interaction force is attraction or repulsion between the atom and its
neighbour, it will rely on the ratio of the distance from rij to o, which is the length that
defines the distance from each atom to the mid location of its K neighbours.
Correspondingly, K is a time function, which gradually reduces with iteration lapse. K

is formulated as follows:

K@® = N- (N-2) x\/; (2.67)

Figure (2) represents the atom population forces, in which KBest represents the
first five atoms with the optimal objective values. The figure shows that A1, A2, Az and
Ay form the KBest. Variables A1, Az, As and A4 attract or repel one another. By
contrast, As, As and Ay attract or repel every atom in the KBest. Every atom in the

population has a constraint force from the optimal atom Az, except for A1 (xbest).

EBest
Attraction

Repulsion
Constraint

Figure 2: Forces of an Atom System with KBest for K = 5.
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2.8 ASO vs. Conventional Techniques

The ASO technique varies from usual optimisation and search approaches in
the following ways:
1. ASO executes by coding the parameter set and not the parameters themselves.
2. ASO investigates from a population of atoms and not a solo one.
3. ASO utilises objective function intelligence and not the derivative functions or
alternative adjunct information.

4. ASO applies probabilistic transition aspects and not the deterministic ones.

2.9 ASO Algorithm for DG Capacity and Placement Challenge

ASO is a newly scientific meta-heuristic strategy that has been improved for
global optimisation issues. This strategy is impacted by the fundamental molecular
mobility to arithmetically form the movement pattern of atom and is basically
established on the interaction and constraint mechanism. Every atom in ASO is
influenced by the interaction strength comprised of an appeal and dissonance from its
close surroundings and the constraint strength from the atom, which has the superior
fitness computation. The atom movement adapts the second law of Newton. The force
of attraction motivates the atoms to investigate the entire inspection domain. The
repulsive strength permits the atoms to utilise a promising dense space. This approach
is adapted to achieve the multi-objective DG optimal capacity and size in the power
systems. Figure (3) illustrates the flowchart for the system where the technique
procedure is depicted as follows:
Step 1: Read the data for the power system network inclosing the bus and branch data.
Step 2: Perform the load flow for the base case to determine the bus voltages and total

power losses. Calculate the PF.
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Step 3: Set the initial data, such as the number of DGs and buses, for the system.

Step 4: Define o and B values for the optimisation.

Step 5: Identify the initial values, such as atom numbers, maximum number of
iterations and the stopping criteria, for the optimiser.

Step 5: Call the optimiser, and set the iteration counter = 1, and Fithest=Inf.

Step 6: Specify the upper and lower limits inside the optimiser for the DG size and
location.

Step 7: Check the stopping criteria if it hits the limit, and then proceed to the end.

Step 8: Randomly initialise the positions and velocities of atoms.

Step 9: Run the power flow to satisfy the objective functions

Step 10: Check for constraint satisfaction, and add penalty for undesired values.

Step 11: Calculate the fitness value Fit; if the present one is less than the optimal
fitness, then assign the present value to be the optimal fitness. Otherwise, return
to Step 7.

Step 12: Compute the mass by using Equations (56) and (57).

Step 13: Define the atom’s neighbours by using Equation (62).

Step 14: Calculate the interaction force by using Equation (49).

Step 15: Compute the constraints force by utilising Equation (52).

Step 16: Determine the acceleration by applying Equation (55).

Step 17: Update the velocity and position of every atom by utilising Equations (60)
and (61), respectively.

Step 18: If the number of atoms reaches the maximum, or the iteration counter hits the
limit or the stopping criteria breaks the bounds, then proceed to the next step.
Otherwise, increase the counter by one, and return to Step (8).

Step 20: Display the optimal solution Xpest.



Figure (3) illustrates the flow chart for ASO DG sizing and locating.
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Figure 4: Flowchart for ASO DG Sizing and Locating

2.10 Chapter Summary
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ITR=ITR +1

This chapter proposed the equations of the power flow, mathematical
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formulation of the power loss and the equations for calculating the operating cost. Four
Al methods, namely, GA, PSO, GA-PSO and ASO, were implemented to resolve the

problems that were presented and discussed in addition to their working procedures.
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Chapter 3: Results and Discussion

This chapter presents the results of the optimal allocation and capacity of DG
in power networks (RDS and transmission network) by using the GA-PSO and ASO
techniques. The proposed technique was implemented and programmed in MATLAB
R 2017b in a computer with Intel Core i7, 2.59 GHz and 8 GB of RAM. The algorithm
was evaluated to verify the effectiveness, robustness and efficiency of the proposed

ASO technique.

Table 1: Parameter Values for GA-PSO and ASO

Parameters GA-PSO | ASO
Population size 50 50
Maximum iteration number | 200 200
Maximum error 1x10° | 1x10°

The techniques were tested to be evaluated on the IEEE test systems, namely
are 14 and 33 bus test systems. The ASO is utilised to specify the placement and
capacity of DGs for comparative aims using the GA-PSO method. In this thesis, 1, 2
and 3 DGs, which operate in PF > 0.8, are considered. Table (1) shows the parameter
settings for both methods. Both techniques were adjusted to have the same parameter
values for comparing the performance and effectiveness of the proposed approach.
Table (2) illustrates the parameters that are used to calculate the operating cost for the
DGs. Below is a detailed discussion of the two different IEEE test systems that are
utilised to evaluate the proposed strategy.

e |EEE 14 Meshed bus system
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e |EEE 33 RDS

Table 2: Operation Cost Variables for the 14 and 33 Bus Systems

variables 33 bus system 14 bus system
Weighting coefficient o 1.01 1.03
Investment Costs /$kW! 1400 1400
Maintenance Costs /$ (kW h)™* 0.03 0.03
On-Grid price /$(kW. h)! 0.15 0.15
Efficiency of DG (1) 13.44%. 13.44%.
Discount rate (d) 0.12 0.12
maximum houre(Tygy;)(h) 3000 3000
Equivalent generation huor(Teqp) 3000 3000
Number of DGs (M) 1DG, 2DGs, 3DGs | 1DG, 2DGs, 3DGs
Life time of DG(LTDG) 5 5

The DG type that is used in this study is a synchronous generator generation
unit. This this type of renewable energy can supply active and reactive powers to the
system with a rated power of 2 MW in the 33 bus system and 80 MW in the 14 bus
system. In this approach, the placement and sizing of DGs in the distribution system
are considered a problem dimension and represented as variable parameters to
formulate the optimisation problem. The DG location is defined as the integer variable
of the problem. The placement and capacity of the DGs are expressed in the ASO as a
vector Table (3):

Table 3: Placement and Capacity Variables Using 3, 2 and 1 DGs

DG Bus Number Real capacity (kw) Reactive capacity
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no. (Kvar)

3DGs | Bl B2 B3 P1 P2 P3 Q1 Q2 Q3

2DGs | Bl B2 P1 P2 Q1 Q2

1DG Bl P1 Q1

Where B1, B2 and B3 are the DG bus locations; and P1, P2 and P3 and Q1, Q2 and
Q3 are the active and reactive capacities of the DGs, respectively.
The constraint values for the system are presented as follows:

e The upper and lower limits for the DG placements are bus numbers 2 and 33
for the 33 bus system and 2 and 14 for the 14 bus system.

e The upper and lower limits for the capacity are 0% and 80% of the bus load,
respectively. The total capacity of the DGs should be <30% of the total system
loads in 33 RDS. By contrast, the capacity limits are from 0 M to 2 M in the
14 bus system (the rated power of the DGSs).

e The allowable values of voltage magnitudes on the buses are 5% of the rated

voltage between 0.95 and 1.05.

The accepted values for the PF should be >0.8.

3.1 IEEE 14 Bus System

The IEEE 14-bus test system shows the grid topology with a 12.66 kV as base
voltage of the system with 1 main supply station, 14 buses, 20 feeders, 2 generators, 3
synchronous compensators, 10 load points and double two-winding and three-winding
transformers Figure (5). The feeders and transformers were designed using pi-
equivalent circuits. Bus number 1 is considered a reference or slack bus. The

synchronous compensators and generators were designed by using the active and
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reactive power steady states and the restrictions of the reactive power generation. The
network has 362.6 MW as a total active power demand load and 113.96 MVAR as a
total reactive power as a demand load; moreover, the system has a 392.05 MW as a
total real power generation and 205.54 MVAR as a total reactive power generation
(Candelo et al., 2013). The base apparent power for the system is 100 MVA. The total
real and reactive power losses for the system are 13.393 MW and 54.54 MVAR,
respectively. The proposed technique is implemented by utilising MATLAB software
to compute the optimal location and capacity of the DGs. Tables (10) and (11) show
the bus and line data for the system, respectively. Before the DGs are added to the
power system, a power load flow procedure based on the NR method is applied to
obtain the system conditions. Table (12) presents the power flow results, which
designate the magnitudes of the node voltage for the buses of the system. The DG
optimal placement and capacity issue is implemented for one operating point where
the loads are assumed to be fixed in all cases. The demand active (Pd) and reactive
power (Qd) are specified in MW and MVAR, respectively. By contrast, the line
resistance (R) and feeders’ reactance (X) are expressed in per unit (pu). With regard
to the bus types, bus numbers 1, 2 and correspond to a PQ bus, a PV bus and a slack

bus, respectively.
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Figure 5: Single line diagram for the IEEE 14 Bus system

In Figure (5), G and B represent the generators and bus numbers, respectively.

The application of a power flow code using NR method is an advance stage to
obtain the IEEE 14 bus system power loss and the voltage magnitudes on the buses.
The parameter values from (Almagboul et al., 2019) that are used in the ASO technique

are presented as follows:

e Population size =50
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e Depth weight (o) = 50
e Multiplier weight (B) =0.2
e Maximum number of iteration= 200
Various cases for the IEEE 14 bus power system are investigated on the basis
of the number of DGs (i.e. 1, 2 and 3 DGSs). The capacity range of the DG is from 0 M

to 80 M.

Case 1: This system is demonstrated by installing a single DG. ASO is applied to

specify the optimum capacity and position of the DG in the system.

Case 2: In this case, the system is presented by applying two DGs by using ASO to

identify the optimal size and location of the DGs on the buses.

Case 3: The system in this case investigates the utilisation of ASO to specify the

optimum placement and size of three DGs in the 14-bus RDS.

The maximum operating cost is considered on the basis of the summation of
the maximum installed capacity of each DG in the system to calculate the normalised
operating cost. The maximum operating costs for 1, 2 and 3 DGs are 3.4698 x 10°,

3.6591 x 108 and 1.0503 x 107, respectively.

Before placing the DG, the voltage magnitudes were poor because the voltages
in most buses were adjacent to the lower boundary of the identified limits.
Nevertheless, the magnitude was improved after the DGs were applied to its optimum
location and capacity Figure (6). The values of the voltage nodes at buses 2 to 5 were
significantly enhanced, similar to buses 9, 10 and 14. Applying 3 DGs in the network
system resulted in superior enhancement in the voltage profile compared with 1 and 2

DGs.
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Figure 6: Voltage Profile for the 14 Bus System

Figure (6) exhibits that voltage magnitudes in all cases that adapt GA-PSO are
weaker compared with those obtained from the ASO technique. Installing 3 DGs in
the power system by using GA-PSO exhibits better results than installing 1 DG or 2
DGs in buses from 2 to 5. By contrast, attaching 2 DGs improves the voltage profile
in buses 9, 10, 11 and 14. The results verified that the proposed method presents better

results in terms of enhancing the voltage profile compared with GA-PSO.

Power losses in the lines is the second objective function where the power loss
base obtained from applying the NR method is 13.593 MW. Figure (7) illustrates the
power loss after ASO and GA-PSO are applied on the 14-bus system and 1, 2 and
3DGs are individually injected. The figure demonstrates that the use of ASO with 1
DG is an effective case. By contrast, the worst case is the implementation of GA-PSO

with 3 DGs.

Table (4) presents power loss and loss saving in addition to the percentage of

power loss reduction that resulted from the implementation of ASO and GA-PSO
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Figure 7: Power Loss in the 14 Bus System
Table 4: Power Loss in the 14 Bus System
Method ASO GA-PSO

power 1DG 2 DGs 3 DGs 1DG 2DGs 3DGs

P loss Base

(MW) 13.593 | 13.593 | 13.593 13.593 13.593 13.593
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Power loss
DG (MW)

13.55

13.57

13.89

13.65

13.6

13.9

Loss
Saving
(MW)

0.043

0.023

-0.297

-0.143

-0.007

-0.05

Power loss
reduction
%

0.316

0.169

-2.18

-0.004

-0.051

-2.259

CPU time
(s)

62.39

61.13

61.13

123.573

122.484

121.437

Figure (4) shows the power losses in all the cases (i.e. 1, 2 and 3 DGs). The

installation of 1 DG to the 14-bus system is sufficient. The power losses are the lowest

with a value of 13.55 MW and a reduction percentage of 0.316% compared with other

cases. By contrast, the results obtained from the GA-PSO show that the optimisation

failed to reduce the power losses Figure (7) and Table (4).

The ASO results clearly verify the effectiveness and influence of this novel

algorithm compared with the outcome attained from the GA-PSO method. The

optimum location and size from the ASO provides 0.043 MW compared with -0.143

MW by the GA-PSO technique.

Table 5: DGs Capacity and Location for the 14 Bus System

DG location DG capacity
Method 1DG 2DGs 3DGs
1DG | 2DGs | 3DGs
P(MW) | Q(Mvar) | P(Mw) | Q(Mvar) | P(MW) | Q(Mvar)
2 8 4 4 1
ASO 8 2
6 10 4 6 4
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7 0 0
7 0.019 0.123
GA- 10 0.5 9.414
11 13 20 20.994 3.9 05
PSO 5 0.5 10.87
12 0.5 1.9

Table (5) illustrates the optimal placement of the DGs in the 14-bus system
with their corresponding active and reactive power sizes. Tables (4) and (5) show the
acquired results from the proposed ASO technique in bus 8 with 1 DG case. Such case
provided superior power loss reduction and proper placement for DG implementation
with sizes of 0 MW and 2 MVAR. This finding indicates that only a reactive power is
injected to the system. On the contrary, the GA-PSO method proposed that bus 11 is
the optimal placement with 20 MW and 20.994 MVAR. The results obtained from
Figure (6) shows that the ASO with 3 DGs on buses 4, 6 and 12 presented the highest
voltage profile enhancement compared with the other cases in ASO and GA-PSO.

The CPU time in Table (4) indicates that the proposed ASO take less
simulation time to run the optimisation than GA-PSO where the average time needed
for ASO is 61.55 s. By contrast, the average required time for GA-PSO to execute the
simulation is 122.5 s.

Table 6: Operating Cost for the 14 Bus System

ASO GA-PSO
Cost parameters

1DG | 2DGs | 3DGs 1DG 2DGs 3DGs

Generation cost (k$) | 0.040 | 53.65 | 120.59 | 48.37 54.457 404.59

Investment cost (k$) | 0.30 407.5 | 918.62 | 323.232 | 425.394 | 3116.30

Maintenance cost

(K$) 0.0697 | 92.12 | 207.06 80.1 93.071 | 694.696

Operation cost (k$) | 0.336 | 445.97 | 1005 | 263.96 |572.85 1406.41
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This study considers operating cost as a third objective function. The operating
cost of the DG units that comprise generation, investment and maintenance costs plays
an important role in specifying the DG capacity. The high degree of penetrating the
DGs in the power system will increase the investment and maintenance costs. Table
(6) demonstrates that the operating cost for the GA-PSO is more expensive than that
of the ASO. The optimiser injected 1 DG with only a reactive power, which costs less
than the system with active and reactive power together. This notion indicates a non-
optimal capacity of the utilised DGs in the power system when the GA-PSO algorithm

is used.

3.2 IEEE 33 RDS

Figure (8) depicts the grid topology of the IEEE 33-bus test system, that is, a
RDS with a 12.66 KV as base voltage of the system with 1 substation, 33 buses and 32
feeders. The network has 3.715 MW as a total active power demand load and 2.3
MVAR as a total reactive power as a demand load (Dharageshwari and Nayanatara,
2015). The base apparent power for the system is 100 MVA. Bus number 1 is
considered a slack or reference bus, and the other buses are load buses. The total real
and reactive power losses for the system are 187 kW and 110 KVAR, respectively.
The proposed technique is implemented by utilising MATLAB software to compute
the optimal location and capacity of the DGs. Tables (13) and (14) show the bus and
line data for the system, respectively. Before the DGs are added to the power system,
a power load flow procedure based on the backward forward method is applied to
obtain the system conditions. The data for the buses and lines are stored ina MATLAB

file. Table (15) shows the results of the power flow that designate the magnitudes of


https://ieeexplore.ieee.org/author/37085522876
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the node voltage and the PF for the system buses. The DG optimal placement and
capacity issue is implemented here for one operating point where the loads are
assumed to be fixed in all cases. The demand active power (Pd) and the reactive power
(Qd) are specified in KW and kVAR, respectively. By contrast, the line resistance (R)
and feeders’ reactance (X) are in pu. The table demonstrates that the PF for bus 30 is
0.316228. Thus, the reactive power load on the bus has been changed to 100 kVAR
instead of 600 kVAR to enhance its PF. Table (16) shows the voltage magnitudes and
power factor on the buses after the reactive power on bus has been modified to 30.
With regard to bus types, bus numbers 1, 2 and 3 correspond to a PQ bus, PV bus and

slack bus, respectively.
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Figure 8: Single Line Diagram for the IEEE 33 Bus System

Before the DGs are implemented, a power flow programme based on the

backward—forward sweep method is applied to determine the IEEE 33 bus system
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power loss, as well as the voltage on the buses.
The parameter values from (Almagboul et al., 2019) that are used in the ASO technique
are presented as follows:

e Population size =50

e Depth weight (o) = 50

e Multiplier weight (B) =0.2

e Maximum number of iteration= 200
Several cases are investigated for the power system of the IEEE 33 bus on the basis of

the number of DGs (1, 2 and 3).

Case 1: This system is represented by installing a single DG. ASO is applied to specify

the optimum capacity and position of the DG in the system.

Case 2: In this case, the system is demonstrated by applying two DGs by using ASO

to identify the optimal size and location of the DGs on the buses.

Case 3: The system in this case investigates the utilisation of ASO to specify the

optimum placement and size of three DGs in the 33 bus RDS.

The maximum operating cost is considered on the basis of the summation of
the maximum installed capacity of each DG in the system to calculate the normalised
operating cost. The maximum operating costs are 1.4573 x 10°, 2.9277 x 10° and 4.411

x 10° for 1, 2 and 3 DGs, respectively.

The voltage profile at the buses is plotted in Figure (6), where the voltage
magnitudes are compared with the system before and after installing 1 DG once, 2
DGs in another time and 3 DGs in the ASO and GA-PSO techniques. ASO is applied

to enhance the voltage magnitudes of the buses influenced by the number of DGs
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connected to the system. The voltage profile with 1 and 2 DGs has similar values
compared with the voltage values with 3 DGs. The use of 1 and 2 DGs rather than 3
DG provide better results, and the voltage values are closer to the unity than when 3

DGs are utilised.

Before locating the DG, the voltage magnitudes were poor because the voltages
in most buses were adjacent to the lower boundary of the identified limits.
Nevertheless, the magnitude was significantly promoted after the DG capacity was
applied to its optimum location Figure (6). The voltage node values at buses 6 to 18

were significantly increased, similar to buses 24 to 32.

GA-PSO 1DG —©6— Base Case —&— GA-PSO 2DG —&— GA-PSO 3DG —&— ASO 3DGs ASO 2DGs —8—ASO 1DG
T Bg

0.98 -

0.96 -

Voltage Magnitude (pu)

0 5 10 15 20 25 30 35
Bus Number

Figure 9: Voltage Profile for the 33 Bus System

Figure (9) demonstrates that the values of the voltages in all cases by utilising
GA-PSO are poor compared with those from the ASO. Nevertheless, penetrating 2
DGs in the distribution system by using GA-PSO presents better results than installing
1 DG or 3 DGs. The results verified that the proposed method presents better results
in terms of enhancing the voltage profile compared with GA-PSO.

The second objective function is the power loss in the feeders where the power

loss base obtained from applying the backward—forward sweep method is 186.657 kW.
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Figures (10) and (11) show the power losses in the system after ASO and GA-PSO are

applied on the 33-bus system by independently injecting 1, 2 and 3 DGs. The figure

demonstrates that the most effective case is the use of ASO with 2 DGs, whilst the
worst one is the implementation of GA-PSO with 3 DGs.

Table (7) reflects the results obtained from Figures (10) and (11). The power

loss resulted from the implementation of ASO and GA-PSO algorithms to determine

the power loss and loss saving, in addition to the percentage of power loss reduction

in the system.

5 GA-PSO 1DG

—5— GA-PSO 2DGs
GA-PSO 3DG

a0 R —©—ASO 3DGs

f ~—O— ASO 2DGs

—O6—ASO 1DG

Figure 10: Power Loss in the 33 Bus System
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Figure 11: Flowchart of Power Loss in the 33 Bus System

Table (7) shows that the power loss for the base case of the system before

installing any DG is 186.657. The table illustrates that the optimal loss saving and
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reduction percentage are achieved when the ASO is utilised with 2 DGs. The 1 DG
showed good results in improving the voltage profile minimising the power loss.

Table 7: Power Loss in the 33 Bus System

Method ASO GA-PSO

power 1DG 2 DGs 3 DGs 1DG 2DGs 3DGs

P loss
Base 186.657 186.657 186.657 186.657 186.657 186.657
(KW)

Power

loss (KW) 142.58 139.58 | 145.8997 169.668 165.348 161.28

Loss
Saving 44,077 47.077 40.7573 16.989 21.309 25.377
(KW)

Power
loss
reduction
%

23.77 25.38 21.83 9.102 11.461 13.638

CPU time

©) 58.610511 | 61.333 75.1611 | 65.097063 | 84.587807 | 99.448808

Table (8) illustrates the size and placement for the DGs in the power system as
a result of the application of ASO and GA-PSO for comparison purposes. Tables (7)
and (8) demonstrate that the DG placement presents a loss reduction of 25.38%
because of its location at the end of the system when the ASO is utilised for 2 DGs.
By contrast, loss reduction saving is 13.638% when GA-PSO is used for 3 DGs. Table
(8) shows the locations for the DGs. This result shows that this bus is a non-optimal
location with a non-optimal size. When the GA-PSO is applied with 3 DGs, better
results are achieved compared with 1 DG and 2 DGs. Nevertheless, the use of ASO
presents superior results. The CPU time consumption for running the simulation code

by MATLAB software manifests that ASO with 1 DG consumes less time than any
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other cases. Similarly, GA-PSO with 1 DG takes a short time to execute the code.

Table 8 : Capacity and Location of DGs in the 33 Bus System

DG location DG capacity
Metho 1DG 2DGs 3DGs
d 1D | 2DG | 3DG
G S S P(Kw | Q(Kvar | P(Kw | Q(Kvar | P(Kw | Q(Kvar
) ) ) ) ) )
9 1 12
15 1 44
ASO 17 26 8 4 1 13
13 1 23
15 1 5
5 5 7.7
) 28 1.84 20.32
F?SAE) 27 17 20 32 5 12.5
17 6.05 30.1
18 5 20.05

This study considers the operating cost as a third objective function. The DG

unit operating cost, which includes the generation, investment and maintenance costs,

plays an important role in selecting the DG capacity. The high degree of dispersion for

the DGs will increase the investment and maintenance costs. Table (9) illustrates that

the operating cost for the GA-PSO is more expensive than that of ASO because of the

non-optimal capacity of the utilised DGs in the power system.

Table 9: Operation Cost for the ASO 33 Bus System

Cost parameters

ASO

GA-PSO
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1DG | 2DGs | 3DGs | 1DG | 2DGs | 3DGs

Ge”er?;g;” COSt | 55416 | 53.65 | 120.59 | 1048.55 | 413.567 | 786.24

'”VESt(rEg't COSt | 396.141 | 4075 | 918.62 | 2924.587 | 3149.098 | 6000.375

Maintenance cost | o) | o515 | 207.06 | 1800401 | 7101 | 1350
(K$)

Operation cost (k$) | 433.725 | 445.97 | 1005 | 2172.736 | 3445.639 | 6564.13

3.3 Chapter Summary

This chapter presents the results obtained from applying ASO on 14-bus
transmission system and 33-bus RDS. The results are compared with those of the GA-
PSO algorithm. The voltage profile enhancement, power loss reduction and
operational expenses on the 33-bus RDS are carried out effectively with rigid

robustness.
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Chapter 4: Conclusion

DGs are essential components in power networks because of their effective
influence in mitigating power losses, enhancing voltage profile and reducing the
operating cost of the power systems. These goals can be obtained depending on the

DGs location in the power system with appropriate capacity.

This thesis proposes a novel meta-heuristic ASO approach that can be applied
to the nonlinear and non-convex power system problem. Such approach can obtain the
DG optimal placement and optimal capacity with multi-objective advantages, namely,
power loss reduction, VPI and operation expense decrement. The results of this
technique have been compared with those obtained from GA-PSO algorithm. In this
thesis, two load flow analyses, namely, Newton—Raphson method and backward—
forward sweep method have been applied on a transmission network and a RDS,
respectively. Two different IEEE test systems, namely, 14-bus system and 33-bus
RDS, have been tested to evaluate the effectiveness and influence of the proposed
algorithm. Three scenarios are also included in the research, and 1, 2 and 3 DGs have
been installed. DGs inject active and reactive power to the system. The results verified
the effectiveness of ASO compared with the results obtained from GA-PSO where the
optimal placement and capacity satisfy a high power saving of 14.75 MW for ASO
compared with the 1.8 MW for GA-PSO in the 14-bus system. By contrast, the power
saving for ASO is 47.077 compared with GA-PSO in the 33-bus RDS. The cost

obtained from ASO is more profitable than those gained from GA-PSO.

The effectiveness and influence of ASO on the 33-bus RDS are better than
those of ASO on the transmission system. Such system has generators, synchronous

compensators and two-winding and three-winding transformers. Specifically, the
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transmission system has PV and PQ buses apart from the slack bus. Meanwhile, 33-
bus RDS only has PQ buses and the slack bus. The ratio X/R is low in the radial
systems compared with that in the transmission ones, thereby increasing the power

losses in the radial systems.

ASO is a meta-heuristic optimisation technique with expeditious convergence

rate, few adjustable parameters, simple operation and rigid robustness.

4.1 Future Work

This thesis is operated on a single operating point where the load is assumed to
be fixed. The application of the optimisation on variable loads is a target for future
work. Other objective functions, such as voltage stability index, will be added to the
system. Another idea is to determine whether the DG placement and sizing issue in

transmission networks are compatible with dispatch reactive power problem.
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Appendix

Table 10: 14 Bus System Bus Data

Bus No | Bus Type Pd Qd
1 3 0 0
2 2 21.7 12.7
3 2 94.2 19
4 1 47.8 -3.9
5 1 7.6 1.6
6 2 11.2 75
7 1 0 0
8 2 0 0
9 1 29.5 16.6
10 1 9 5.8
11 1 3.5 1.8
12 1 6.1 1.6
13 1 13.5 5.8
14 1 14.9 5
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Table 11: 14 Bus System Line Data

FromBus | To Bus R X
1 2 0.01938 0.05917
1 5 0.05403 0.22304
2 3 0.04699 0.19797
2 4 0.05811 0.17632
2 5 0.05695 0.17388
3 4 0.06701 0.17103
4 5 0.01335 0.04211
4 7 0 0.20912
4 9 0 0.55618
5 6 0 0.25202
6 11 0.09498 0.1989
6 12 0.12291 0.25581
6 13 0.06615 0.13027
7 8 0 0.17615
7 9 0 0.11001
9 10 0.03181 0.0845
9 14 0.12711 0.27038
10 11 0.08205 0.19207
12 13 0.22092 0.19988
13 14 0.17093 0.34802

Table 12: 14 Bus System Voltage Magnitudes

Bus No

vm (pu)

O© 00 NO O b WN P

e e ol e
A wWMNEFR O

1.06
1.045
1.01
1.019
1.02
1.07
1.062
1.09
1.056
1.051
1.057
1.055
1.05
1.036

78



Table 13: 33 Bus System Bus Data

Bus No | Bus Type Pd Qd
1 3 0 0
2 1 100 60
3 1 90 40
4 1 120 80
5 1 60 30
6 1 60 20
7 1 200 100
8 1 200 100
9 1 60 20
10 1 60 20
11 1 45 30
12 1 60 35
13 1 60 35
14 1 120 80
15 1 60 10
16 1 60 20
17 1 60 20
18 1 90 40
19 1 90 40
20 1 90 40
21 1 90 40
22 1 90 40
23 1 90 50
24 1 420 200
25 1 420 200
26 1 60 25
27 1 60 25
28 1 60 20
29 1 120 70
30 1 200 600
31 1 150 70
32 1 210 100
33 1 60 40
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Table 14: 33 Bus System Line Data

From Bus | To Bus R X
1 2 0.0922 0.047
2 3 0.493 0.2511
3 4 0.366 0.1864
4 5 0.3811 0.1941
5 6 0.819 0.707
6 7 0.1872 0.6188
7 8 0.7114 0.2351
8 9 1.03 0.74
9 10 1.044 0.74
10 11 0.1966 0.065
11 12 0.3744 0.1238
12 13 1.468 1.155
13 14 0.5416 0.7129
14 15 0.591 0.526
15 16 0.7463 0.545
16 17 1.289 1.721
17 18 0.732 0.574
2 19 0.164 0.1565
19 20 1.5042 1.3554
20 21 0.4095 0.4784
21 22 0.7089 0.9373
3 23 0.4512 0.3083
23 24 0.898 0.7091
24 25 0.896 0.7011
6 26 0.203 0.1034
26 27 0.2842 0.1447
27 28 1.059 0.9337
28 29 0.8042 0.7006
29 30 0.5075 0.2585
30 31 0.9744 0.963
31 32 0.3105 0.3619
32 33 0.341 0.5302
21 8 2 2
9 15 2 2
12 22 2 2
18 33 0.5 0.5
25 29 0.5 0.5
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Table 15: 33 Bus System Voltage Magnitudes and Power Factors before System

Modification
Bus No Vm (pu) PF
1 1 1
2 0.996367 0.857493
3 0.97928 0.913812
4 0.970075 0.83205
5 0.960998 0.894427
6 0.938432 0.948683
7 0.934157 0.894427
8 0.928215 0.894427
9 0.920576 0.948683
10 0.913501 0.948683
11 0.912453 0.83205
12 0.910629 0.863779
13 0.903221 0.863779
14 0.900484 0.83205
15 0.89878 0.986394
16 0.897128 0.948683
17 0.894691 0.948683
18 0.893959 0.913812
19 0.995672 0.913812
20 0.990973 0.913812
21 0.990048 0.913812
22 0.989212 0.913812
23 0.975113 0.874157
24 0.967423 0.902861
25 0.964043 0.83205
26 0.93608 0.923077
27 0.932959 0.923077
28 0.919024 0.948683
29 0.909023 0.863779
30 0.904714 0.316228
31 0.899643 0.906183
32 0.898528 0.902861
33 0.898182 0.83205
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Table 16: 33 Bus System Voltage Magnitudes and Power Factors after System

Modification
Bus No Vm(pu) PF

1 1 1

2 0.996367 0.857493
3 0.97928 0.913812
4 0.970075 0.83205
5 0.960998 0.894427
6 0.938432 0.948683
7 0.934157 0.894427
8 0.928215 0.894427
9 0.920576 0.948683
10 0.913501 0.948683
11 0.912453 0.83205
12 0.910629 0.863779
13 0.903221 0.863779
14 0.900484 0.83205

15 0.89878 0.986394
16 0.897128 0.948683
17 0.894691 0.948683
18 0.893959 0.913812
19 0.995672 0.913812
20 0.990973 0.913812
21 0.990048 0.913812
22 0.989212 0.913812
23 0.975113 0.874157
24 0.967423 0.902861
25 0.964043 0.83205
26 0.93608 0.923077
27 0.932959 0.923077
28 0.919024 0.948683
29 0.909023 0.863779
30 0.904714 0.316228
31 0.899643 0.906183
32 0.898528 0.902861
33 0.898182 0.83205
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