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Abstract 

 

Nowadays, renewable energy sources become a significant source of energy in the 

new millennium. The continuous penetration of dispersed resources of the reactive 

power into power systems is predicted to introduce new challenges. Power loss 

mitigation and voltage profile development are the major investigation challenges 

that recently attracted the attention of researchers in the field of power systems. 

Distributed generation (DG) is widely preferred because it is a highly effective 

solution that strengthens the performance of power system networks. This multi-

objective function study aims to minimise power losses in the feeders, sustain 

voltage levels and reduce the application cost of DGs by adapting the atom search 

optimisation simulated on MATLAB software. Two different IEEE power test 

systems, namely, a 33 bus radial distribution system (RDS) and a 14-bus power 

system that hosts 1, 2 and 3 DGs in both systems, are demonstrated in this research. 

Correspondingly, backward–forward sweep and Newton–Raphson power flow 

methods are used for each system. The proposed technique is compared with genetic 

algorithm particle swarm optimisation (GA-PSO) method. Results depict the 

effectiveness of the proposed method in minimising system power losses and in 

regulating the voltage profile where the power loss reduction is 25.38% in the 33 bus 

RDS using 2 DGs. By contrast, the power loss reduction percentages in the 14 bus 

system are 0.316% and 0.169% in systems with 1 and 2 DGs, respectively. The 

voltage profile has been enhanced compared with those in the original case and the 

results obtained from the GA-PSO method. 

 

Keywords: Distributed Generation, Voltage Profile, Power Losses, Atom Search 

Optimisation, Multi-objective function. 
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Title and Abstract (in Arabic) 

 

ستخدام افي شبكات النظم الكهربائية ب مولدات الطاقة الموزعةوموقع  سعةتحديد 

 الذرة استكشافخوارزمية 

 الملخص

 على ضرورة وحتمية استخدام خيرة، أصبح استنزاف الموارد البشرية مؤشرا  الأ الآونةفي 

 نظمة وشبكات الطاقة الكهربائيةألى ظهور مشكلات عديدة في إمما أدى  ،مصادر الطاقة المتجددة

سلاك الكهربائية وحصول الكهربائية على شكل حرارة في الأ ومن هذه المشكلات فقدان الطاقة

تعد مولدات الطاقة المتجددة  تذبذب في جهد المحطات الفرعية مما ينتج عنه خسائر مادية كبيرة.

في  وكفاءتهاثبتت فاعليتها أا للتغلب على هذه المشكلات، فقد حدث الوسائل المستخدمة حديثأمن 

 ل الكهربائي.الطاقة الكهربائية وشبكات التوصينظمة أ

ل الخسائر يجل تقلأخدام مولدات الطاقة المتجددة من هداف الرئيسية لهذه الدراسة هي استن الأإ

 وبالتاليي المحطات الفرعية الجهد فالكهربائية في شبكات التوصيل الكهربائية والعمل على تنظيم 

نظمة الطاقة الكهربائية وذلك عن طريق استخدام خوارزمية بحث الذرة. ل الخسائر المادية لأتقلي

ب. ولقد تمت عملية اختبار وقد تم تطبيق هذه الخوارزمية عن طريق تطبيق حاسوبي يسمى الماتلا

( وهما IEEEلكترونيات )الكهرباء والإ دين من معهد مهندسيوارزمية على نظامين معتمخهذه ال

محطة فرعية  14شبكة  خر هوط التوزيع الكهربائية والنظام الآمحطة فرعية لخطو 33شبكة ال 

ضافة وحدة طاقة متجددة واحدة في المرحلة الاولى ووحدتان في إائية وذلك بلشبكة الطاقة الكهرب

جل الحصول على حسابات أخيرة لكلا النظامين. من لاث وحدات في المرحلة الأثثانية والمرحلة ال

كد أمام وطريقة نيوتن رافسون. وللتالتدفق الكهربائية، استخدمت كل من طريقة المسح للخلف والا

خرى وهي أزمية، تمت المقارنة مع خوارزمية من النتائج التي ظهرت باستخدام هذه الخوار

الخوارزمية المقترحة  هذهالنتائج مدى فاعلية  ثبتتأتجمع الجسيمات. وقد   -خوارزمية الجينات

بفاعلية، وتم تحسين مستوى و ائية في النظم الكهربائية بكفاءةحيث تم تخفيض فقدان الطاقة الكهرب

مقارنة مع  الجهد في المحطات الفرعية وبالتالي تم تقليل الخسائر المادية للنظم الكهربائية

 خرى.  ات الأيالخوارزم

 

 ،خسائر في القدرة ملف تعريف الجهد، ،مولدات الطاقة الموزعة :الرئيسيةمفاهيم البحث 

 .الذرة، وظيفة متعددة الأهداف خوارزمية بحث



viii 

 

 
 
 

Acknowledgements 

I thank my God, Allah, for giving me good health, patience and strength to 

write this thesis and for all the graces he has given me. 

I would like to thank my supervisor, Dr. Hussain Shareef, for supervising me 

all these years. Thank you very much for your patience, guidance and encouragement. 

I learnt how to be a real researcher, to think differently and to achieve my goals. 

I dedicate this thesis to my family who has always supported me in my studies 

and life. Without your love, care and patience, I would not have achieved this success. 

I would like to thank my husband, Firas, for being with me during good and hard times. 

Thank you for your patience, care and for everything you have done to keep me and 

our kids, Layan, Lamar and Yousuf, gathered in peace and happiness. Moreover, thank 

you for giving us the love we need to survive in this life. 

I would also like to thank all of my friends who supported and helped me with 

my research. Lastly, I would like to thank my family. Words cannot express how 

grateful I am to my mother, father, brothers and sisters.  



ix 

 

 
 
 

Dedication 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my beloved parents, family and friends 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

 
 
 

Table of Contents 

 

Title ............................................................................................................................... i 

Declaration of Original Work ...................................................................................... ii 

Copyright .................................................................................................................... iii 

Approval of the Master Thesis .................................................................................... iv 

Abstract ....................................................................................................................... vi 

Title and Abstract (in Arabic) .................................................................................... vii 

Acknowledgements ................................................................................................... viii 

Dedication ................................................................................................................... ix 

Table of Contents ......................................................................................................... x 

List of Tables ............................................................................................................. xii 

List of Figures ........................................................................................................... xiii 

List of Abbreviations ................................................................................................ xiv 

Chapter 1: Introduction and Literature Overview ........................................................ 1 

1.1 Introduction ................................................................................................ 1 

1.2 Statement of the Problem ........................................................................... 4 

1.3 Objective of the Work ................................................................................ 5 

1.4 Literature Overview ................................................................................... 6 

1.4.1 Introduction ........................................................................................ 6 

1.4.2 Optimisation Techniques .................................................................. 11 

1.4.3 Heuristic and Meta-Heuristic Investigation Techniques .................. 13 

1.4.4 Meta-Heuristic Investigation Algorithms ......................................... 14 

1.4.5 Objective Functions and Constraints ................................................ 16 

1.5 Scope and Limitation of the Research ..................................................... 17 

1.6 Benefits of Research ................................................................................ 17 

1.7 Thesis Outline .......................................................................................... 18 

1.8 Chapter Summary .................................................................................... 18 

Chapter 2: Methodology ............................................................................................ 20 



xi 

 

 
 
 

2.1 Introduction .............................................................................................. 20 

2.2 Materials and Methods ............................................................................. 20 

2.2.1 Power Flow using Newton–Raphson (NR) Method ........................ 20 

2.2.2 Power Flow Using Backward–Forward Sweep Method .................. 23 

2.3 DG Types ................................................................................................. 27 

2.4 Optimisation Algorithms ......................................................................... 28 

2.4.1 GA .................................................................................................... 29 

2.4.2 PSO ................................................................................................... 29 

2.5 General Form of Optimisation ................................................................. 31 

2.5.1 Objective Functions .......................................................................... 31 

2.5.2 Multi-Objective Functions (MOFs) .................................................. 34 

2.5.3 System Constraints ........................................................................... 34 

2.6 Hybrid GA-PSO ....................................................................................... 36 

2.7 ASO Algorithm ........................................................................................ 38 

2.8 ASO vs. Conventional Techniques .......................................................... 45 

2.9 ASO Algorithm for DG Capacity and Placement Challenge ................... 45 

2.10 Chapter Summary .................................................................................. 47 

Chapter 3: Results and Discussion ............................................................................. 49 

3.1 IEEE 14 Bus System ................................................................................ 51 

3.2 IEEE 33 RDS ........................................................................................... 59 

3.3 Chapter Summary .................................................................................... 67 

Chapter 4: Conclusion ................................................................................................ 68 

4.1 Future Work ............................................................................................. 69 

References .................................................................................................................. 70 

List of Publications .................................................................................................... 76 

Appendix .................................................................................................................... 77 

 



xii 

 

 
 
 

List of Tables 

 

Table 1: Parameter Values for GA-PSO and ASO .................................................... 49 

Table 2: Operation Cost Variables for the 14 and 33 Bus Systems ........................... 50 

Table 3: Placement and Capacity Variables Using 3, 2 and 1 DGs ........................... 50 

Table 4: Power Loss in the 14 Bus System ................................................................ 56 

Table 5: DGs Capacity and Location for the 14 Bus System .................................... 57 

Table 6: Operating Cost for the 14 Bus System ........................................................ 58 

Table 7: Power Loss in the 33 Bus System ................................................................ 65 

Table 8 : Capacity and Location of DGs in the 33 Bus System................................. 66 

Table 9: Operation Cost for the ASO 33 Bus System ............................................... 66 

Table 10: 14 Bus System Bus Data ............................................................................ 77 

Table 11: 14 Bus System Line Data .......................................................................... 78 

Table 12: 14 Bus System Voltage Magnitudes .......................................................... 78 

Table 13: 33 Bus System Bus Data ............................................................................ 79 

Table 14: 33 Bus System Line Data .......................................................................... 80 

Table 15: 33 Bus System Voltage Magnitudes and Power Factors  

before System Modification ...................................................................... 81 

Table 16: 33 Bus System Voltage Magnitudes and Power Factors  

after System Modification ......................................................................... 82 

 

  



xiii 

 

 
 
 

List of Figures 

 

Figure 1: Electric Power Systems ................................................................................ 2 

Figure 2: Atom Force Curve ...................................................................................... 39 

Figure 3: Flowchart of the ASO Algorithm ............................................................... 44 

Figure 4: Flowchart for ASO DG Sizing and Locating ............................................. 47 

Figure 5: Single line diagram for the IEEE 14 Bus system ....................................... 53 

Figure 6: Voltage Profile for the 14 Bus System ....................................................... 55 

Figure 7: Power Loss in the 14 Bus System .............................................................. 56 

Figure 8: Single Line Diagram for the IEEE 33 Bus System .................................... 61 

Figure 9: Voltage Profile for the 33 Bus System ....................................................... 63 

Figure 10: Power Loss in the 33 Bus System ............................................................ 64 

Figure 11: Flowchart of Power Loss in the 33 Bus System ....................................... 64 

 

 

 



xiv 

 

 
 
 

List of Abbreviations 

 

ALO Ant Lion Optimization 

APL Active Power Losses 

ASO Atom Search Optimisation 

AVR Automatic Voltage Regulation 

CHP Combined Heat And Power 

CPU Computer Processing Unit  

DG Distributed Generation 

GA Genetic Algorithm 

GA-PSO Genetic Algorithm-Particle Swarm Optimisation 

KVA Kilo Volt Ampere 

KVAR Kilo Volt-Amp Reactance  

KW Kilo Watt  

MD Molecular Dynamics 

MINLP Mixed Integer Nonlinear Programming 

MVA Mega Volt Amp 

NR Newton–Raphson 

OCVC Optimal Coordinated Voltage Control 

OLTC On-Load Tap Changer 

PF Power Factor 

PQ Active Power/ Reactive Power 

PSO Particle Swarm Optimisation 

PV Photovoltaic   



xv 

 

 
 
 

RAC Reduction Of Application Cost  

RDS Radial Distribution System 

SCBs Shunt Capacitor Banks  

TCT Tap Changing Transformers 

VAR Volt-Amp Reactance  

VPI Voltage Profile Improvement  



1 

 

 
 
 

Chapter 1: Introduction and Literature Overview 

1.1 Introduction 

Worldwide demand for electric energy is increasing because of the growth of 

the population and the economy. Electrical power energy plays an essential role in the 

inhabitants’ life. Most equipment used in our life needs to use electrical power to 

operate. Rapid inventions and new technologies that are based on power energy are 

also expanding widely. Industrial evolution and social growth increased the demand 

for electrical energy. The electrical power system should be dependable, attainable, 

affordable and clean. 

The electrical power system Figure (1) is divided into three main sections, 

namely, generation with high voltage, transmission with high medium voltage and 

distribution with medium low voltage. A distribution system that is closely attached to 

the clients is considered a significant part of the entire system. The voltage in the 

distribution system is stepped down for the user’s utilisation. The system reliability is 

based on the efficiency of the distribution system. Given the rapid increase in the 

power demand and network extension, engineers must maintain the stability and 

reliability of the power system (Ghadi et al., 2019). The voltage magnitude is 

decreased when heavy burdens are attached to the power system, thereby increasing 

the power system losses. In the last decade, electrical bulk experienced many 

challenges in the power system because of the new lifestyle. A study reported that the 

distribution system has experienced 70% of the power losses because the ratio X/R in 

the distribution system is lower compared with the transmission system. This 

phenomenon leads to increased power loss and voltage violation, high total expenses 

and unreliable power system. Consequently, several methods, such as shunt capacitor 
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banks (SCB), reconfiguration and on-location power generation, have been proposed 

to overcome these issues. Distributed generator (DG) in smart distribution systems is 

considered a new power generation technology. DG is a small-scale power generation 

that can be placed on-site directly to the distribution system as a grid-connected mode 

or connected to the customer as a stand-alone mode (Senjyu et al., 2018). The 

integration of DG in the distribution network can reduce power losses and enhance the 

voltage profile. The consumption trend of DG in the smart grid has been increasing 

rapidly because of fossil fuel depletion. DGs are effective in developing reliability, 

reducing power losses, improving the quality of the power system, minimising the 

investment cost and decreasing the greenhouse gas emissions (Vita, 2017). Many 

significant aspects, such as DG technology, number, size, type and location, must be 

considered in the implementation of DG. 
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The DGs can be classified as follows: 

- Type 1: Only real power injection and operates at power factor (PF) = 1 (e.g. 

micro turbine, PV cells and fuel cells) 

- Type 2: Only reactive power injection (e.g. capacitor banks, synchronous 

compensator and KVAR compensator) 

- Type 3: Real and reactive power injections (e.g. cogeneration, synchronous 

machines and gas turbine) 

- Type 4: Real power injection but reactive power consumption (induction 

generator in the wind farm) 

Optimisation is a numerical tool used for investigating the optimal solution of 

the objective function where it can be minimised or maximised with specified 

conditions. The system aims to minimise the objective functions without breaking the 

constraints. A French scholar presented the optimal power flow in 1962. Decades have 

been spent to make the algorithm effective in resolving optimisation issues, which can 

be linear or complex (nonlinear) problems. Several techniques have been presented to 

resolve the optimisation challenges categorised as conventional or intelligent 

approaches. Such techniques include gradient technique, Newton method, quadratic 

programming, interior point method and linear programming. These techniques are 

distinguished for their rapid calculation and online computation. Furthermore, these 

techniques are inappropriate for some other problems that involve discrete variables 

because of their difficulty in approaching convergence and reaching global optima. In 

the previous decade, several modernised intelligent methods have been improved to 

cope with the complicated optimal power flow (OPF) issues, such as particle swarm 

optimisation (PSO), genetic algorithm (GA), ant–lion optimisation (ALO) and atom 
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search optimisation (ASO). Meta-heuristic search optimisation, such as GA, was 

evaluated as an appropriate method for solving concurrent multidimensional issues for 

global optimal resolution. Moreover, GA can approach convergence smoothly and has 

complicated encoding and decoding processes (Devabalaj and Ravi, 2018). PSO is a 

meta-heuristic technique founded on the behaviour of flacks of birds and fish; this 

approach has better superior convergence than GA because of its integration of social 

mentality fundamental and preferable computation to improve the swarms’ behaviour 

(Sadiq et al., 2019). Weiguo Zhao presented a recent meta-heuristic ASO in 2019. This 

algorithm is founded by mimicking the physical motion of atoms, as illustrated in the 

molecular dynamic (MD) simulation with less parameters to regulate (Zhao et al., 

2019). 

The DG size and location are considered complex nonlinear optimisation 

problems that request for multi-objective optimisation methods, such as reducing 

power losses, bus voltage fluctuation, carbon emission and short circuit capacity. 

Accordingly, the power network reliability is maximized. This thesis aims to specify 

the placement and capacity of DGs in the radial distribution system (RDS) and power 

systems. The real power loss and voltage profile at the nodes and the operating cost 

are considered the regulating parameters. The location and size of the DGs are 

determined by using the ASO technique. 

1.2 Statement of the Problem 

The integration of DGs in distribution systems has introduced several 

challenges and disadvantages in terms of the delivery of power quality, protection 

issues and voltage support. The need for distribution generators to control the voltage 

at its acceptable limits is required to maintain the power delivery to the customers. 
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Consequently, the power quality and loss issues are mitigated. Sizing and allocating 

the DGs in the power network issue has attracted power researchers to investigate in 

this field; the inappropriate placement and capacity of the DGS lead to power loss 

increment, voltage fluctuation, failure in protecting the power system, unstable system, 

harmonics and overall wastage in DG investment cost (Sadiq et al., 2019). Placing and 

sizing the DGs is not a straightforward issue but a complex power struggle that needs 

to be addressed cautiously. 

1.3 Objective of the Work 

This research aims to overcome the power losses associated with the 

misplacement of DGs and inaccurate sizing in RDSs and power network systems. The 

proposed system’s goals are mainly power loss reduction, voltage profile enhancement 

and overall expense reduction for the power system. These goals will be attained as 

follows: 

1- To investigate the effectiveness of the DGs in the power networks and the 

characteristics of DG technologies and by identifying the advantages and 

disadvantages of DGs to the power systems in radial distribution and transmission 

network systems. 

2- To obtain the optimal location and capacity of the DGs in the power systems 

through the application of ASO algorithm and GA-PSO for comparison purposes.  

3- To discuss the effectiveness of the ASO algorithm in resolving the issue of optimal 

location and capacity of DG in addition to presenting the remarkable influence of 

DGs in minimizing the power losses, voltage profile regulation and total cost 

reduction. 
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1.4 Literature Overview 

1.4.1 Introduction 

Nowadays, the massive demand for energy resources has been increased 

exponentially because of the rapid growth of the population. This situation is expected 

to introduce several challenges, such as voltage control and power losses as I2R in the 

distribution level, in the electrical operational process. The electrical power network 

consists of a power station that transmits the energy to the end users via transmission 

and distribution feeders. Voltage stability is considered an essential aspect in power 

systems to satisfy the operational procedure for all the appliances, such as motors, 

bulbs and other loads in the market. Excessive voltage fluctuation caused by load 

variations leads to undesirable performance or even in the malfunctioning of the 

electrical devices. The power system can deal with the deviation in the voltage in a 

short time. Nevertheless, the system should be urgently brought back to the desirable 

limit to avoid the motor and generator from spoiling because of the increase in heating, 

decrease in transmission line losses and prevent the system from voltage collapse. 

According to C57-2017- IEEE/IEC International Standard, the acceptable limits of the 

variation in the voltage profile are specified to be approximately ±5% of the declared 

voltages at the busses (Bidgoli and Cutsem, 2018). The variation in the voltage at the 

customer’s properties is due to the alternation in the load on the power system. When 

the burden in the power system is increased, the voltage values at the end user 

substation would decrease because of the rapid failure in the voltage in the (a) 

alternator synchronous impedance, (b) transmission feeders, (c) transformer 

impedance and (d) distribution. Thus, specific techniques should be used to control the 
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voltage in the power system in its acceptable limits. The strategies for controlling the 

voltage in the power system are presented in the following subsections. 

1.4.1.1 Reactive Power Resources 

Reactive power and voltage control are involved in the distribution systems to 

acquire the preferable voltage profile and reactive power flow. Certain equipment, 

such as capacitor banks, tap changing transformers (TCT) (Penkey et al., 2017) and 

DGs, has been used recently. Numerous researchers presented generator excitations, 

automatic voltage regulation and static VAR compensator methods to maintain the 

voltage levels within the specified limits, improve the reactive power performance, 

sustain the system stability and gain the ultimate benefits of the power network 

(Aibangbee, 2016). 

1.4.1.1.1 SCBs 

SCBs are mainly utilised to enhance the quality of the electrical power systems 

and improve the power system performance. Such banks are used in transmission or 

distribution systems to ensure that the lagging PF is close to unity. Furthermore, the 

harmonics are filtered, and the voltages are maintained in stable conditions by locating 

the SCB on the distribution feeders. In industries and substations, shunt capacitors are 

usually situated close to the load terminals. SCBs are usually connected to the power 

system during the overload condition where the loads drag the inductive current. The 

SCBs produce VARs to compensate the reactive power. These banks are usually 

connected to the system when the demand on the Kilo Volt Ampere (KVA) on the 

distribution line is increased, and the voltages on the buses are decreased (Samineni et 

al., 2010). SCB is considered an effective way to reduce the power consumed by the 
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feeders. Thus, the inappropriate placement of the SCBs will reduce system efficiency 

and even harm the entire control system. The appropriate location and optimal size of 

the SCB must be specified in the distribution system to obtain the maximum benefits 

from the capacitors (Devabalaji et al., 2018). Nowadays, many techniques and 

optimisation algorithms have been presented to investigate the optimal placement of 

capacitors (Mohamed et al., 2015). Mohsin et al. (2016) proposed the optimal 

allocation and sizing for the capacitor banks to solve the voltage drop and overall 

losses in the power system. The presented method is tested on realistic 33 kV RDS. 

Mahesh et al. (2017) proposed a strategy for the optimal allocation and sizing of 

capacitor banks, as well as renewable DGs, such as solar, wind and biomass in RDS. 

The proposed technique is examined on the IEEE 33-bus system. The results showed 

that the proposed methodology is effective in reducing the power loss whilst enhancing 

the profile. Devabalaji et al. (2015) proposed a new integrated approach for the optimal 

placement and sizing of the SCB in the radial distribution to solve the power loss issue. 

The presented technique is tested on the IEEE 34-bus and 85-bus RDS considering all 

load potentials varying from 50% in light load until the load reaches 160% with 1% 

step size.  Montazeri and Askarzadeh (2018) discussed the capacitor placement in the 

distribution system considering the power loss index to specify the potential busses for 

allocating the capacitors in the distribution network. The presented technique is tested 

on the IEEE 34-bus and 68-bus RDSs with different load factors. Araujo et al. (2018) 

explained the placement technique for the capacitor banks in the unbalanced 

distribution system considering the daily load with different levels. The proposed 

technique focused on calculating the reactive power demand to minimise the losses 

apart from the discrete capacitor allocation. The simulation results were obtained from 

several IEEE test systems, such as 4-bus, 123-bus and NEV test feeders. 
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1.4.1.1.2 TCT 

Voltage deviation association with large line impedance causes power loss. 

Thus, the use of TCTs is considered an effective method in regulating voltage and 

decreasing losses. Hussain et al. (2017) proposed a technique for minimising the power 

loss in the distribution systems by using a TCT. The research is presented through a 

number of investigations to create an auto-generated load profile for the IEEE 69-bus 

system for every minute for 24 h. The simulation was performed at the optimal tap 

transformer position and capacity. These authors prospected that the electronic TCT 

solution would be the present and future equipment for the voltage regulation in the 

power system. The study is applied on distribution transformers, which comprise the 

layout design for accessing the terminals of the tap transformer in addition to the 

estimation of the voltage and current transients. Kabiri et al. (2015) presented a study 

to help manage the voltage profile and minimise the feeder losses by using a TCT 

combined with PV distribution generators. The research considers various factors, 

such as line impedance, dynamic TCT, different load factors and PV penetration 

levels. The achieved results illustrate that the integrated techniques can organise the 

voltage during a 24-hour period efficiently. Sarimuthu et al. (2016) proposed a review 

on the different schemes for the on-load tap changer (OLTC) voltage control to 

regulate the voltage in distribution networks, including renewable energy resources. 

Zhang et al. (2016) discussed the real-time active control and reactive power 

adjustment in the power system by using a TCT with controllable loads. A technique 

is presented to help the operator adjust the OLTC positions at the connected buses for 

regulating the reactive power. Accordingly, the overall load control scheme is 

decentralized. 
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1.4.1.1.3 DGs 

In the new millennium, large fossil fuelled power plants are being replaced by 

distributed nonconventional/renewable energy resources as alternative energy sources, 

such as natural gas, wind power, solar photovoltaic (PV) cells and fuel cells, in 

addition to the combined heat and power (CHP) systems. This phenomenon is due to 

the load prompt revolution and fossil fuel depletion. DG is considered an effective 

solution for the voltage control issue to preserve it at its acceptable limits and maintain 

the delivery of power to the customers. Refereeing to (Senjyu et al., 2018) a technique 

to control the reactive power depending on the demand resource (DR) programme for 

obtaining a stable energy network where the clients can obtain a decrease in the power 

cost by generating a reactive power through the DG. By contrast, the utility grid can 

acquire a decrement in their power distribution losses. Meanwhile, Aly et al. (2014) 

analysed the effect of implementing a large-scale PV system on voltage stability and 

adjustment. Voltage profiles are evaluated by calculating the load flow with different 

load levels during a 24-h scale. The power flow analysis is accomplished using a 

forward/ backward sweep technique. Voltage profiles are adjusted by using the PV 

interface inverters. The voltage nodes are used in the inverter capacity. The study 

investigated the probable scenarios of voltage collapse in various times. The improved 

techniques are tested on the IEEE 33 bus system. The results illustrate that the PV 

interface invertors promote the voltage profile and enhance the power network 

operation in addition to the OLTC lifespan expansion by decreasing the number of the 

tap positing. Castro et al. (2016) discussed a novel method called optimal coordinated 

voltage control (OCVC) to determine a solution for the voltage regulation issue at the 

buses and generators and the reactive power losses in the distribution system. A 
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comparative study between the OCVC and an ordinary technique for centralised 

voltage control is examined on the IEEE 13 and 34 bus test with unbalanced system 

load. According to Jeong et al. (2017), a new equivalent method presented for a low 

voltage system that contained distributed generators to show the DG effect on voltage 

and the power flow in LV and medium-voltage systems. The presented method is 

improved depending on the analytical strategy that allows solving the voltage-reactive 

power problems by applying a deterministic algorithm. Li et al. (2019) discussed a 

technique for controlling the local voltage and the reactive power in DGs. The 

presented method is based on local measurement, which can rapidly respond to the 

repeated variation of the DG and enhance the performance of the active distribution 

network. The results are tested on the IEEE 33 bus and 123 bus systems. The reactive 

power adjustment with different control methods has been utilised in (Qamar et al., 

2017) to regulate the voltage in the PV systems with grid-connected mode. The 

effectiveness of the PV inverters in controlling the reactive power is observed when 

the inverter’s apparent power is considered. This research illustrates such scenario 

through the rush hours to ensure that the power generation is high, and the voltage rise 

at the point of common coupling (PCC) reached the maximum. The inverter’s 

capability to supply the necessary reactive power is limited to the inverter’s apparent 

power. Another reactive power resource should be utilised apart from the PV system 

to compensate for the reactive power during the peak periods. 

1.4.2 Optimisation Techniques  

Many methods, such as tap changing transformers, capacitor banks and DGs, 

are used to compensate the reactive power and regulate the voltage. Despite the 

effectiveness of these components, specifying their optimal size and position is still a 
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challenging task. Several optimisation methods have been improved to determine the 

appropriate placement and capacity of the reactive power resources. These methods 

can be divided in four main categories: heuristic approaches, analytical techniques, 

numerical programming methods and artificial intelligence (AI)-based algorithms. 

Enhanced stochastic approaches compensated the time consumed in the analytical 

optimisation techniques, especially with the complex tasks, to apply a convenient 

method. Consequently, various optimisation algorithms, such as simulated annealing, 

dynamic programming, GA, tabu search, evolutionary programming, ant colony 

system, PSO, fuzzy-based optimisation algorithm, shuffled frog leaping algorithm and 

honey bee mating optimisation, have been examined (Ali et al., 2017). Although the 

heuristic techniques cannot guarantee a global optimal resolution, acceptable close to 

optimal solutions with permissible calculation period have been attested (Araújo and 

Uturbey, 2013). Several heuristic strategies have been used to overcome the optimal 

size and location of the reactive power resources. Mohamed et al. (2018) presented a 

hybrid technique called genetic moth swarm algorithm (GMSA), which adapted a GA 

apart from the MSA. This technique aims to reduce the losses and overall expenses of 

the power system in addition to enhancing the voltage profile of the network under 

different load conditions. The results have been tested on the IEEE 33 node and 69 

node systems. George et al. (2018) utilised an optimisation method called ALO to 

determine the optimal capacity of the VARs and the optimal position of the fixed 

capacitors in medium and large RDSs. The suggested technique is applied on the IEEE 

33 node and 69 node test systems. Ali et al. (2017) utilised the loss sensitivity factors 

to specify the appropriate buses for connecting the DG in addition to the ALO, which 

was used for allocating and sizing the DGs on the elected buses. In addition to the 

Wilcoxon test system, the presented technique is examined on two IEEE bus systems. 
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1.4.3 Heuristic and Meta-Heuristic Investigation Techniques  

In contrast with the analytical techniques utilised to resolve optimisation issues 

and those that can assure an optimum resolution to the optimisation challenges if they 

occur, heuristic approaches only aim to provide a quite good solution, which is not 

certainly the global optima (Marti & Reinel, 2011). Heuristics are classified as 

problem-relay on principles that combined with an investigation method that can be 

utilised in optimisation. These types of investigation methods are generally named as 

greedy techniques. A greedy method investigates the resolution domain of a specified 

function by solo seeking for the optimal one at that time according to a predetermined 

heuristic standard.  

Meta-heuristics refer to upper-level issue-individualistic algorithms that 

support a group of techniques or instructions to improve an investigation procedure 

for optimum resolutions compared with heuristics. These algorithms avert benefit from 

the available information of the resolution area. Accordingly, such algorithms can 

extensively investigate within the resolution domain. Meta-heuristics frequently 

permit decay of the acquired resolutions to inspect a diverse resolution area. 

According to Martí and Reinelt (2011) who stated that various motives for the 

alternative use of heuristic optimisation techniques can be utilised as conventional 

deterministic strategies: 

No available technique can resolve the issue. Examples comprise of the 

optimisation of non-differentiable or non-convex functions, discrete feasible space and 

objective functions with several local maxima or minima. Heuristics are also beneficial 
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when the mathematical model derivations are either impossible to calculate or 

unrecognised. 

1.4.4 Meta-Heuristic Investigation Algorithms 

In the precise problem of the DG placement and sizing, causes were discovered 

in the literature owing to the utilisation of a meta-heuristic investigation technique of 

an exact numerical algorithm: 

 The equations of power balance for the power flow issues are nonlinear and 

non-convex. 

 Generators nonlinear and non-convex have specifications (Yuan, 2009). Non-

convexities of the issue modulation make mixed integer nonlinear 

programming (MINLP) insufficient to be applied to problems because of the 

algorithm converging risk to fill in the local optimal alternative of the global 

optima. 

 The nonlinearity of generator cost curves can be considered convex and soft 

functions (Kumar & Gao, 2010). 

 The dependencies of the multi-period state need a long execution period of 

time to resolve the issue with MINLP. Soares et al. (2013) highlighted the 

execution time of a meta-heuristic approach compared with MINLP. The 

researchers reported that MINLP needs 25.5 h to resolve the scheduling of DG 

generation during a 24-h period inclusive storage strategies compared with the 

meta-heuristic approach that only assumes 30 s. Moreover, the researchers 

reported a variation in the optimal amount considering a cost function of 0.9% 

in the meta-heuristic investigation technique. 
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1.4.4.1 PSO 

PSO is considered a meta-heuristic method that has received great attention 

because of its effectiveness in resolving complicated challenges. This method is well 

known as a robust technique in solving issues with special specifications, such as 

nonlinearity, high dimensionality and non-differentiability. Ramadan et al. (2017) 

adapted such method for determining the optimal placement of the capacitors to 

minimise the power losses and manage the voltage profile in the distribution systems 

that comprise wind turbine energy generators. The solution formulated a non-linear 

cost fitness function because of the non-linear feature of the system due the wind 

turbine generators. The PSO simulation is applied on the IEEE 16 bus and 30 bus test 

systems, and it proved its robustness compared with the GA. Silva et al. (2017) adapted 

a modified PSO (MPSO) technique to size the PV panels for minimising the power 

losses and enhancing the voltage profile in the power system. The presented method 

was tested on the IEEE 13 node feeder system in addition to the micro-grid of the 

Federal University of Paraiba. The proposed method proved its robustness and 

effectiveness in achieving the objective functions. Mohamed et al. (2016) proposed a 

technique to specify the optimal capacity for the hybrid renewable energy network by 

using a load management application for the smart grid according to accessible 

generators. This technique aims to maximize the system production and achieve the 

load needs with low cost and optimal reliability. The system consists of PV panels, 

storage batteries, wind turbines and diesel generator as backup power sources. The 

capacity of the system elements is specified using PSO. The simulated results are 

applied on the far distant areas in Saudi Arabia. 
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In these meta-heuristics population-based techniques, such as GA and PSO, a 

large number of non-controllable resolutions can be obtained from a sole execution 

because of their multipurpose search capacity. The capabilities of these techniques are 

limited to dimensionality issues. Furthermore, no convergence is guaranteed; thus, 

robustness is weak.  

1.4.5 Objective Functions and Constraints 

Single or multiple objective functions have been used combined with system 

constraints to increase the profit from reactive power incentives. Generally, the 

regulation of voltage profile and the minimisation of real and reactive power losses are 

considered essential objectives in distribution systems. Several additional objectives 

may incorporate with the base objectives to achieve the optimal performance of the 

system; These objectives include expense minimisation or profit maximisation, 

increase in the MVA capacity of the system, maximisation of the size of the reactive 

power resources, generation of index-based functions and decrease in the current of 

weak feeders (Pesaran et al., 2017). The main purpose of constrains in optimising the 

power systems is to guarantee the achievement of the design and operation conditions 

under the specified limitations. Various types of power network maintenance 

constraints include the PF, bus voltage, feeder current and power balance. By contrast, 

the interior power capacity, short circuit current and transformer capacity are common 

models of the power plant conservation constraints that have been inspected by 

research papers. 

In 2017, multi-objective optimisation has been utilised to specify the optimal 

location of DGs. Active and reactive power losses, voltage fluctuation and total cost 

are the objectives of the module. The optimal placement and sizing of the DGs are 
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determined by PSO incorporated with fuzzy decision-making technique. The proposed 

method proved its effectiveness on the IEEE 69 node RDS. Mendoza et al. (2019) 

introduced a technique based on PSO to overcome the optimal placement and capacity 

of the capacitors in the power distribution system. The multi-objective functions that 

have been utilised are real power reduction and operational and constant costs, thereby 

enhancing the voltage quality. The proposed approach was examined on the IEEE 34 

node and 84 node test radial distribution networks. 

1.5 Scope and Limitation of the Research 

This thesis aims to optimise the placement and capacity of the DGs in the 

power system by using the ASO algorithm. Two tested systems, namely, IEEE 33 bus 

RDS and IEEE 14 bus system, are considered to evaluate the performance of the 

proposed technique. 1, 2 and 3 DGs are synchronous generators that inject real and 

reactive powers to the system and operate at a PF of 0.866. These generators were used 

as case studies to apply the optimisation and obtain the optimum DG location and size. 

The backward–forward sweep and NR computational methods are applied to compute 

the power losses, voltage magnitudes and other parameters. The ASO algorithm, which 

is a newly developed meta-heuristic optimisation technique, is adapted to minimise the 

problem and obtain the optimal size and location of the DGs in the power network 

systems. The results of the presented technique are compared with the GA-PSO 

algorithm to validate the preciseness and effectiveness of the proposed strategy. 

1.6 Benefits of Research 

This thesis addresses the significance of the contribution of DGs in the power 

systems in terms of power loss minimisation, voltage profile improvement (VPI) and 

operating cost reduction. The optimal capacity and allocation of DGs can be 
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determined by using ASO, which is an effective and efficient technique for the actual 

implementation of DGs in the power systems. The acquired results display a reliable 

optimal resolution that reflects the important cooperation between the theoretical 

background and the real-life practical application. Such results pave the way for other 

researchers to investigate future work in this topic and help improve the reliability and 

quality of clean electrical power systems. 

1.7 Thesis Outline  

This thesis is structured into five chapters. Chapter 1 presents an introduction 

to the research, including overview, problem statement, objectives, scope and research 

limitations, research benefits and thesis outline. Chapter 2 provides a description for 

the optimisation that handles a multi-objective problem, including the objective 

functions and constraints. The methods and materials utilised in this research are 

presented with description of the power flow methods that are used in the tested 

systems. The other optimisation techniques utilised in this study are presented. The 

proposed optimisation technique with details about the principles of this method and 

the manner by which it is implemented to solve the optimisation problem is presented. 

Chapter 3 shows the simulation results of the multi-objective optimisation along with 

the discussion of the obtained results. Chapter 4 is final chapter of the thesis, and it 

summarises the conclusion and discusses the future work related to DGs. 

1.8 Chapter Summary 

This chapter discusses the related problems and targets at supplying general 

details about the distributed power generation in the electricity market competition. 

Generally, DG is defined as the electric power generation inside power networks or on 
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the consumer front of the network. Distributed resources, distributed utility and 

optimisation techniques also are discussed. 
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Chapter 2: Methodology 

2.1 Introduction 

This section illustrates the mechanism by which a recently invented novel 

optimisation algorithm called ASO, which is inspired by MD, efficiently solves a 

complex optimisation challenge. Power loss minimisation and sustainment of the 

system voltage profile within the acceptable limits with the adequate application cost 

reduction are considered the fitness functions for a multi-objective approach used for 

DG optimal capacity and location in the power systems. In the proposed model, one 

single operation point has been used to demonstrate the load in the system. 

2.2 Materials and Methods  

This section presents the methods that are used in the study, as well as the 

materials that are utilised to achieve the research objective. 

2.2.1 Power Flow using Newton–Raphson (NR) Method 

The study of load flow is a basic analysis for the power system that provides 

information about the loading and losses of the line and transformer in addition to the 

voltages at different points in the system. Subsequently, the work on electric power, 

which increased the low voltage level, began at the end of the 19th century (Eltamaly 

et al., 2018). The interconnected network of delivering electricity or the electrical grid 

was extended and classified as generation, transmission and distribution that increase 

the transmission voltage to 1200 kV. This complexity increases the number of 

problems in power flow control, and a plan is required to reach the minimum cost 

without affecting the voltage in the system. The state of the power system and the 

calculations of its power that flows through the lines are important for the future 
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expansion of the system. Consequently, studies have been carried out to develop 

computer programmes for the load flow analysis of large power systems (Wende et 

al., 2008). Different methods for calculating the load flow are performed. However, 

this research focuses on the NR method. 

NR has many advantages, such as low computation time and powerful 

convergence characteristics or sure convergence; this method is used to solve 

nonlinear algebraic equations (Sharma et al., 2017). The power flow equations are as 

expressed as follows: 

𝑃𝑖(𝑅𝑒𝑎𝑙 𝑃𝑜𝑤𝑒𝑟) = |𝑉𝑖| ∑ (|𝑉𝑗||𝑌𝑖𝑗|𝑐𝑜𝑠(∅𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖))
𝑚
𝑗=1 ,                     (2.1) 

𝑄𝑖(𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑃𝑜𝑤𝑒𝑟) = −|𝑉𝑖| ∑ (|𝑉𝑗||𝑌𝑖𝑗|𝑆𝑖𝑛(∅𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖))
𝑚
𝑗=1 .          (2.2) 

Where:  

Vi =  Voltage at the ith bus 

Vj = Voltage at the jth bus 

Yij = Admittance of the ith and jth buses 

∅𝑖𝑗= Admittance angle 

∆𝑗= Phase angle of the jth bus 

∆𝐼= Phase angle of the ith bus 

Jacobean matrix J is used to solve the NR method: 

𝑱 = [

𝑑𝑝

𝑑𝛿

𝑑𝑝

|𝑉|

𝑑𝑄

𝑑𝛿

𝑑𝑝

|𝑉|

].                 (2.3) 

Yij is the bus matrix: 
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𝒀𝒃𝒖𝒔 = [

𝑌11 … . 𝑌𝑖𝑗
… . … . … .
𝑌𝑗𝑖 … . 𝑌𝑗𝑗

].               (2.4) 

The load flow minimises the mismatch between: 

 The actual injected power and the calculated values. 

 The reactive injected power and the calculated values. 

Accordingly, the iteration must be used to estimate the bus voltages and their 

angles for calculating mismatches. A small number of mismatch indicates that the load 

flow is converged. Before the iteration process (rth) is initiated, we will consider one 

bus as a slack bus in the system that has the voltage of one and phase of zero. We also 

assume other buses, such as PQ (load bus) and PV (generator). 

𝑃𝑖
𝑟 = |𝑉𝑖|

𝑟 ∑ (|𝑉𝑗||𝑌𝑖𝑗|𝑐𝑜𝑠(∅𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖))
𝑚
𝑗=1 ,                                   (2.5) 

𝑄𝑖
𝑟 = −|𝑉𝑖|

𝑟 ∑ (|𝑉𝑗||𝑌𝑖𝑗|𝑠𝑖𝑛(∅𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖))
𝑚
𝑗=1 .             (2.6) 

We let 

𝑒𝑖
𝑟 = |𝑉𝑖|

𝑟𝑐𝑜𝑠𝛿𝑖
𝑟    𝑎𝑛𝑑     𝑓𝑖

𝑟 = |𝑉𝑖|
𝑟𝑠𝑖𝑛𝛿𝑖

𝑟,                                                (2.7) 

 𝑛ℎ𝑗 𝐺𝑖𝑗 = |𝑌𝑖𝑗|𝑐𝑜𝑠∅𝑖𝑗 , 

𝐵𝑖𝑗 = |𝑌𝑖𝑗|𝑠𝑖𝑛∅𝑖𝑗 . 

Subsequently, ∆Pi
r  and ∆Qi

r  are calculated to obtain values that are less than the 

tolerance, and the iterations are stopped.   

∆𝑃𝑖
𝑟 = 𝑃𝑖(𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑) − 𝑃𝑖

𝑟  𝑓𝑜𝑟 𝑃𝑉 𝑎𝑛𝑑 𝑃𝑄 𝑏𝑢𝑠𝑒𝑠,            (2.8) 
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∆Qi
r = Qi(scheduled) − Qi

r  for PQ buses.                         (2.9)

 The solutions of P1 and Q1 are determined. However, if convergence is not 

obtained, then Jacobean matrix elements will be calculated. Thereafter, the voltage 

magnitude and phase angles are performed. The iteration process continues until 

convergence is obtained. The voltage magnitude and phase angles are updated as 

follows: 

|𝑉|(𝑟+1) = |𝑉|𝑟 + ∆|𝑉|𝑟 ,                                                                           (2.10) 

𝛿(𝑟+1) = 𝛿𝑟 + ∆𝛿𝑟,                                                (2.11) 

The NR method is the preferred general approach for solving the power flow 

problems in large systems. This method has been selected because of to its speed, 

computation time, convergence characteristics and storage.  

2.2.2 Power Flow Using Backward–Forward Sweep Method 

In the RDSs, reiterated methods are generally utilised when the investigation 

of power flow in transmission systems are inappropriate because of their 

computational characteristics and convergence properties. Gauss–Siedel and NR 

methods are common in transmission systems. Nevertheless, these approaches are 

inconvenient for distribution systems because of the increased R/X rate and the 

presence of off-balanced load. The characteristics of the distribution systems cause the 

unhurried convergence. Accordingly, exceptional techniques are required to resolve 

the load placement issues immediately. 

The forward–backward method is an iterative approach used for analysing the 

power flow in radial distribution networks. Two phases of computation are 
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implemented in every iteration. The sets of recursive equations are utilised to solve the 

load flow iteratively. Power flow is calculated by solving the first set of equations in 

the backward direction. The power flow is tracked down from the load to the source. 

In the backward sweep, the solution of the current and power is obtained with the 

possible updates of the voltages (Rupa and Ganesh, 2014). The voltages obtained in 

the forward sweep are kept constant during the backward sweep. The magnitude and 

angle of the voltage drop are calculated using the second set of equations in the forward 

direction where the path leads from the source to the load. In forward sweep, the 

current values are updated along with the power flow at each node based on the 

calculated voltage drop. The substation feeder voltage is assigned as the actual value 

of its voltage. The value of the effective power that is obtained from the backward 

sweep should be kept constant during the forward sweep in each branch. In the 

forward–backward sweep, the electric quantities of the backward propagation affect 

the three variants that can be obtained using the following: 

1. The branch current refers to the summation of the currents in that branch. 

2. The power flow refers to the summation of the powers in that branch. 

3. The admittance summation method is used node by node to obtain the 

driving point admittance.  

These variants are homogeneous in forward propagation. The calculation of 

the bus voltages begins from the source node to the last node based on backward sweep 

calculations. The quantities used in backward sweep update the voltages after several 

iteration steps, and the iteration process stops when convergence is obtained. 

Consequently, a comparison occurs between the calculated values and the previous 
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iteration values. Convergence is obtained when the difference between the new and 

old values is <0.0001 (tolerance value). If convergence is not obtained, then the 

iteration process continues. The new values of the power flow will be calculated by 

backward propagation. The process will stop when the solution cannot to meet the 

convergence standards. At present, the backward–forward method has been 

reformulated for the analysis of the iteration process convergence. Effective power 

flows can be calculated by backward propagation for a branch in between nodes ‘k’ 

and ‘k+1’. The effective real and reactive powers are calculated as follows: 

𝑃𝑘 = 𝑃𝑘+1
′ + 𝑟𝑘

(𝑃𝑘+1
2 +𝑄𝑘+!

2 )

𝑉𝑘+1
2 ,                                    (2.12) 

𝑄𝑘 = 𝑄𝑘+1
′ + 𝑋𝑘

(𝑃𝑘+1
2 +𝑄𝑘+!

2 )

𝑉𝑘+1
2 .                                    (2.13) 

Pk+1
′  and Qk+1

′  can be obtained by using the following equations: 

𝑃𝑘+1
′ = 𝑃𝑘+1 + 𝑃𝐿𝑘+1,                                                                     (2.14) 

𝑄𝑘+1
′ = 𝑄𝑘+1 + 𝑄𝐿𝑘+1.                                                              (2.15) 

In the previous equations, Pk+1 is an effective real power from the k + 1  node, and 

Qk+1 is an effective reactive power from the k + 1 node. 

The voltages and angles are calculated in the forward propagation. If the 

voltage at 𝑘  is 𝑉𝑘 < 𝛿𝑘 , then the voltage at 𝑘 + 1 is 𝑉𝑘+1 < 𝛿𝑘+1 . The impedance 

between 𝑘 and 𝑘 + 1 node is defined as 𝑧𝑘 = 𝑟𝑘 + 𝑗𝑥𝑘. Thus, the current in the branch 

is presented as follows: 

𝐼𝑘 =
𝑉𝑘<𝛿𝑘−𝑉𝑘+1<𝛿𝑘+1

𝑟𝑘+𝑗𝑥𝑘
.                                                        (2.16) 
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Recursive equations are used to obtain the nodal values of the voltages and angles. In 

the first iteration, the voltage is assumed to be 1 pu at all nodes. 

Algorithms: 

In the first step, the distribution system bus data are read along with their line 

data, apparent power and base voltage. The injected active and reactive powers are 

then obtained using 

𝑃𝑖𝑛𝑗 = 𝑃𝑔𝑒𝑛 − 𝑃𝑙𝑜𝑎𝑑,                                                           (2.17) 

𝑄𝑖𝑛𝑗 = 𝑄𝑔𝑒𝑛 − 𝑄𝑙𝑜𝑎𝑑.                                                          (2.18) 

Next, the value of iteration counter k is set to be one. The convergence can be 

determined by setting ε = 0.001, ∆Pmax = 0 and ∆Qmax = 0. Thereafter, the value of 

the injected nodal current can be evaluated at node i by using the following equation: 

𝐼𝑖
(𝑘)
= (

𝑆𝑖

𝑉𝑖
(𝑘−1))

∗

− 𝑌𝑖𝑉𝑖
(𝑘−1)   𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑛.           (2.19) 

The branch current can be obtained using KCL after the backward sweep is 

applied. Forward sweep is applied to obtain the voltage at each node by using KVL. 

The injected power at i can be calculated using the following expression: 

𝑆𝑖
𝑘 = 𝑉𝑖

𝑘(𝐼𝑖
𝑘)∗ − 𝑌𝑖|𝑉𝑖

𝑘|
2
.                                   (2.20) 

Then, the convergence is checked. If ∆Pmax ≤  ε, and ∆Qmax ≤  ε, then the 

process is stopped. If the condition is not satisfied, then we set k = k + 1 and calculate 

the injected nodal current again until the condition is satisfied.  

1) The backward–forward sweep method merits are presented as:  
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a) The Jacobean matrix is unnecessary.  

b) This method does not rely on PV bus (voltage controlled node) and the 

number of DGs for small networks 

c) This method is convenient for online and offline issues 

2) Drawback of backward–forward sweep method:   

a) Failed in dealing with heavy load  

b) Unsuitable for large-scale systems 

Consequently, backward–forward sweep method acquires excessive speed, has 

sturdy convergence and requires less memory. 

2.3 DG Types 

DG units are categorised into four types depending on their ability to transfer 

the active and reactive power energy of the distribution system (Hung et al., 2010). In 

this research, only one type of DG, that is, PQ type (e.g. synchronous generator), is 

considered. Under this type, the generation units can deliver real and reactive powers 

of 2000 KW and 80 MW. The PF is constant at 0.866. In Hung et al. (2010), α is  

𝛼 = 𝑠𝑖𝑔𝑛(tan(𝑐𝑜𝑠−1(𝑃𝐹))).                                    (2.21) 

The sign (+1) means that DG is providing reactive power, whilst (−1) means 

that DG is absorbing reactive power. Thus, the output reactive power of the DG is 

𝑄𝐷𝐺
𝑘 =  𝛼 . 𝑃𝐷𝐺 .   

In this DG type, 𝛼 = (+1)(tan(𝑐𝑜𝑠−1(𝑃𝐹𝐷𝐺))),                             (2.22) 
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𝑄𝑘 = 𝑄𝐷𝐺
𝑘 − 𝑄𝐷

𝑘 ,                                                                     (2.23) 

Where 

Qk  is the net reactive power at node k, 

𝑄𝐷𝐺
𝑘  is the DG reactive power at node k, 

𝑄𝐷
𝑘 is the demand reactive power at node k, and 

𝑃𝐹𝐷𝐺 is the DG PF.  

2.4 Optimisation Algorithms 

Majority of the power systems have non-convex nonlinear optimisation issues 

where ordinary optimisation techniques, such as gradient-based methods end with 

local optimal solutions. The solutions obtained from traditional optimisation 

techniques are strongly based on the initial values of the methods. The meta-heuristic 

or global optimisation algorithm is proposed in this thesis to eliminate these issues. 

This algorithm can guarantee acceptable results. Generally, gaining the global optima 

solutions needs abundance of running duration and assets. The algorithm does not 

work if the solution is unsatisfied and no significant enhancement has been performed. 

Consequently, if the obtained results are quite close to the optimal global resolution, 

then it can be accepted as the optimal solution for the problem. 

 Within the global optimisation algorithm, several compromises, such as raising 

the objective functional weights to avoid the local optima, have to take place. A 

number of iterations should be initiated with no bias to assure that the algorithm 

reached the global optima. 
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Two optimisation algorithms have been presented in the following parts (GA-

PSO and ASO). These optimisation techniques are easy to simulate and appropriate 

for solving the power system issues. 

2.4.1 GA 

GA is an unsystematic search optimisation technique inspired by Darwinian 

Theory. This technique is a specific category of the evolutionary techniques that utilise 

methods influenced by the biological revolutionaries, such as inheritance or 

population, exploration, election and exploitation (also named as recombination) 

(Martin and Spears, 2001). GA initiates the inspection from a series of population that 

is nominated to be the proper solutions randomly set within the inspection limits. With 

the natural growth, this technique will improve the new prospect resolution named as 

off-springs from preceding parents. The objective of each solitary in the population is 

assessed in every generation. Numerous solitaries are elected from the present 

population (depending on their fitness) and adjusted to format a new novel population. 

The recently elected population is in the updated iteration of the technique. The 

technique terminates in one of these cases, hit the maximum generation number or 

reach the best fitness quantity (Voratas, 2012). GA, which procures to an undesirable 

poor convergence and inadequate robustness, is considered a limited algorithm for 

research characteristics. Consequently, adapting this method in complex issues will 

potentially lead to trapping within the local optima. 

2.4.2 PSO 

PSO is considered a recent evolutionary strategy attributed to Eberhart and 

Kennedy (1995). This approach is a meta-heuristic stochastic global method based on 

https://en.wikipedia.org/wiki/Metaheuristic
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the candidate solution population. Moreover, PSO is basically inspired by the social 

behaviour of the organised movement of the flock of birds or school of fish in their 

journey for hunting food. In this technique, the particles move to many directions in 

the search space where each of them represents a candidate solution. Each particle 

consists of the control variable data and is incorporated with others with their optimal 

data that specifies its performance in the fitness domain. Each swarm k contains its 

placements Yk = (yk, 1, yk, 2,…, yk, Mv) where Mv denotes the control variable 

numbers, Vk is the velocity = (vk, 1, vk, 2, …, vk, Mv) and local (personal) optimal 

experiment Ypbestk= (ybest1, ybest2, …, ybestMv). In every iteration, each particle 

transforms in its own local optimal location provided and towards the global optimal 

location specified by the swarm particles. The following equation represents the 

particle operation:  

𝑉𝑘
𝑖𝑡+1 = 𝑤𝑖𝑡  ×  𝑉𝑘

𝑖𝑡 + 𝐴𝐶1  ×  𝑟𝑎𝑛𝑑1 × (𝑋𝑝𝑏𝑒𝑠𝑡𝑘
𝑖𝑡 − 𝑋𝑘

𝑖𝑡) + 𝐴𝐶2   ×

 𝑟𝑎𝑛𝑑2 × (𝑋𝑔𝑏𝑒𝑠𝑡
𝑖𝑡 − 𝑋𝑘

𝑖𝑡)                                                                                     (2.24) 

𝑋𝑘
𝑖𝑡+1 = 𝑋𝑘

𝑖𝑡 + 𝑉𝑘
𝑖𝑡+1,                                                         (2.25) 

Where 𝑉𝑘
𝑖𝑡+1 represents the particle’s k velocity at the it +1 iteration; 𝑉𝑘

𝑖𝑡 is the 

particle’s k velocity at it iteration; AC1 and AC2 are constants of the acceleration; 

rand1  and rand2  represent a random values within the range of 0 and 1, respectively; 

𝑋𝑝𝑏𝑒𝑠𝑡𝑘
𝑖𝑡  is the local optimal location of particle k at it iteration; 𝑋𝑘

𝑖𝑡  represents the 

placement of particle k at it iteration; 𝑋𝑔𝑏𝑒𝑠𝑡
𝑖𝑡  performs the optimal global location 

amongst the whole particles at it+1 iteration; and 𝑋𝑘
𝑖𝑡+1 formulates the location of 

particle k at it iteration. 
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In nonlinear complex optimisation issues, attaining the optimal resolution 

using PSO is not guaranteed. Filling in the local minima, which can procure the 

inclination premature convergence and poor robustness, is easy.      

2.5 General Form of Optimisation 

The mathematical model for any optimisation problem can be formulated as: 

min      ℱ (𝐸 , 𝑋),                                                                                                  (2.26) 

𝐺 = 0, 

ℚ𝑚𝑖𝑛  ≤  ℚ ≤  ℚ𝑚𝑎𝑥 , 

Where (𝐸 , 𝑋) represents the objective function; 𝐸  is the output; 𝑋  is the 

corresponding input; 𝐺 = 0 is the equality constraints; and ℚ𝑚𝑖𝑛  ≤  ℚ ≤  ℚ𝑚𝑎𝑥  is 

the inequality constraints, where ℚ𝑚𝑖𝑛/ℚ𝑚𝑎𝑥 are the limits between min/max for the 

inequality constraints.  

2.5.1 Objective Functions 

The proposed multi-objective system aims to improve the power system 

through the following functions. 

 VPI  

 Active power loss reduction 

 Minimum operating cost 

Some objective functions have to be achieved whilst satisfying the system 

constrains to accomplish the previously mentioned purposes. 

o VPI  

 

VPI is considered the first fitness function that needs to be minimised to 

increase the bus and line stability by captivating the voltage deviation of the bus from 
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the reference node. The effectiveness of the voltage profile of the nodes after adding 

the DG to the system is measured by voltage deviation index (VDI), as shown in the 

following formula: 

𝑀𝑖𝑛 𝑉𝑃𝐼 = 𝑉𝐷𝐼 =
 |∑ 𝑉𝐷𝐺

𝑛𝑏𝑢𝑠
𝑘 −𝑉𝑘,𝑟𝑒𝑓|

𝑊𝐷𝐺
 

 |∑ 𝑉𝑏𝑎𝑠𝑒
𝑛𝑏𝑢𝑠
𝑘 −𝑉𝑘,𝑟𝑒𝑓|𝑊𝑜𝐷𝐺

 ,                                                          (2.27) 

Where Vbase represents the voltage magnitude in pu at the buses without DG, 

VDG is the voltage magnitude in pu on the nodes with DGs, and 𝑉𝑘,𝑟𝑒𝑓 is the voltage 

reference, which is in this case is 1.  

o APL 

 

APL is the second fitness function that represents the effectiveness of the 

inclusion of the DGs on the active power loss. After the addition, this function is 

usually measured using the active power loss index (APLI) depicted by the following 

equation: 

𝑀𝑖𝑛 𝐴𝑃𝐿 = 𝐴𝑃𝐿𝐼 =
 ∑ 𝑃𝑙𝐷𝐺
𝑛𝑏𝑢𝑠
𝑖

∑ 𝑃𝑙𝑏𝑎𝑠𝑒
𝑛𝑏𝑢𝑠
𝑖

,                                                                            (2.28) 

where Plbase represents the power loss before adding the DGs to the system, and Pl 

denotes to the power loss after adding the DGs.  

Moreover, Pl can be calculated using Equation (2.29) 

𝑃𝑙 = ∑ 𝐼𝑏
2 𝑅𝑏

𝑁𝑏
𝑏 𝐿𝑏 ,                                                 (2.29) 

Where Pl is the total power loss in all the lines in the system in pu, I represents 

the current value of the branch b in pu, L is the length of the line in Km, Nb is the total 

number of the branches and b is the branch number. 

o Reduction of application cost (RAC) 

 

The system operating cost consists of several aspects, namely, operating, 

investment and maintenance costs. In distribution systems, the integrated DGs will 
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fetch an interest to the grid to produce power that substitutes the conventional power 

energy. Therefore, the generation cost for the DGs should be considered when 

calculating the network operating cost. Thus, the investment Cin, maintenance Cmain, 

and generation Cgen costs displaced by DGs are considered for the network operating 

cost (Equation (2.30)): 

𝑚𝑖𝑛 𝑅𝐴𝐶 = 𝑅𝐴𝐶𝐼 =
𝐶𝑖𝑛+ 𝐶𝑚𝑎𝑖𝑛− 𝐶𝑔𝑒𝑛

(𝐶𝑖𝑛+ 𝐶𝑚𝑎𝑖𝑛− 𝐶𝑔𝑒𝑛)𝑚𝑎𝑥
.                                                        (2.30) 

Gopiya et al. (2015) utilised several strategies to compute the indices of the 

investment and maintenance costs. In this study, the cost of investment Cin is expressed 

as Formula (2.31), and that of maintenance Cmain is calculated as Equation (2.33). The 

generation cost Cgen substituted by DGs is depicted as equality (2.34). 

𝐶𝑖𝑛 = ∑ 𝛼𝑘 𝐸 . 𝑃𝑘𝑚𝑎𝑥  .  𝐶𝑝𝑢𝑖 .  
𝑑(1+𝑑)𝐿𝑇𝐷𝐺

𝑑(1+𝑑)𝐿𝑇𝐷𝐺−1

𝑀
𝑘   ,                                   (2.31) 

where 𝐶𝑝𝑢𝑖  denotes to the pu size of the investment cost of the DG at bus k; M 

represents the number of candidate DGs; αk = ℱ(x1, x2, x3) is the weighting factors of 

the investment cost, where x1  depends on the environmental coefficient, x2  is the 

displacement coefficient and x3 is the cost of labor and transportation coefficients; d 

represents the discount rate; LTDG is the DGs life time; Pkmax form the maximum 

capacity value of the DG in candidate bus k; and E is the candidate DG size in the 

candidate bus k. Variable E is depicted by Equation (2.32) by normalising the capacity: 

𝐸 =  
𝑃𝑘

𝑃𝑘,𝑚𝑎𝑥
    , 𝑘 = 1,2, … ,𝑀,                                                       (2.32) 

𝐶𝑚𝑎𝑖𝑛 = ∑ 𝑇𝑀𝐻  .  𝐶𝑝𝑢𝑚 . 𝐸 .  𝑃𝑘𝑚𝑎𝑥
𝑀
𝑘 .                                                          (2.33) 

Where 𝑇𝑀𝐻 is the maximum DG generation hours, M is the DG number and 

𝐶𝑝𝑢𝑚 represents the pu capacity for the maintenance cost of the DG at bus k. 

𝐶𝑔𝑒𝑛 = ∑  𝐸 .  𝑃𝑘𝑚𝑎𝑥  .  𝜂𝑘  .  𝑇𝑒𝑞ℎ .  𝐶𝑝𝑢𝑔
𝑀
𝑘  ,                                  (2.34) 
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where 𝑇𝑒𝑞ℎ represents the hours of the equivalent generation of the DG generations, 

𝐶𝑝𝑢𝑔 is the electricity cost of the unit-grid of the DG, 𝜂𝑘 is the DG efficiency at bus 

k, and  (𝐶𝑖𝑛 + 𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑔𝑒𝑛)𝑚𝑎𝑥 represents the values using the maximum capacity 

size of the DGs. 

2.5.2 Multi-Objective Functions (MOFs) 

A multi-criterion method is used to simultaneously optimise more than a single 

fitness function, which can be resolved by using the weighting factors for maximising 

the objectives of the DG where a tiny regulation can cause a huge shift in the optimal 

method behaviour.  

In this research thesis, two and three objective functions are used to solve the 

problem of placing and sizing the DGs in the power networks, respectively. 

The fitness function of the system is calculated using Equation (2.35). 

𝑀𝑂𝐹 = 𝑊1. 𝑉𝑃𝐼 + 𝑊2. 𝐿𝑃𝐿 + 𝑊3. 𝑅𝐴𝐶 ,                                                          (2.35) 

wherein  0 ≤ 𝑊 ≤ 1      and       ∑ 𝑊𝑘 = 1 𝑂
𝑘 ,                                             (2.36) 

where W1, W2 and W3 represent the weighting coefficients for VPI, LPL and RAC, 

respectively. The fitness functions specify the weight value based on the importance 

of every function to the system where the valuable one has the highest weight 

compared to other factors. A normalisation process should be considered because the 

objective functions are different. 

2.5.3 System Constraints 

o Inequality constraints 

 DG Generation Capacity   
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The inequality constraints contain the allowable penetration size for the DGs 

in the power system and the upper limits of DG size at the nominated bus k. At each 

candidate bus for the installed DG, the active and reactive powers are restricted by the 

upper and lower limits as follows: 

{
 𝑃𝑔𝑚𝑖𝑛  ≤ 𝑃𝑔 ≤  𝑃𝑔𝑚𝑎𝑥  
 𝑄𝑔𝑚𝑖𝑛  ≤ 𝑄𝑔 ≤  𝑄𝑔𝑚𝑎𝑥  

.                                                            (2.37) 

Each nation has a restriction on the DG penetration to assure the system 

reliability. If we suppose that the maximum factor of DG penetration is 30%, then the 

maximum DG capacity injected to the power system should be ≤30% of the overall 

real power in the network system. This notion means that 

∑ 𝑃𝐺𝐷𝐾  ≤ 0.3 . 𝑃𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑  
𝑀
𝑘=1 ,                            (2.38) 

where 𝑃𝑡𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 represents the total load active power in the power network. 

Variables 𝑃𝑔𝑚𝑖𝑛 and 𝑄𝑔𝑚𝑖𝑛 and 𝑃𝑔𝑚𝑎𝑥 and 𝑄𝑔𝑚𝑎𝑥 are the minimum and maximum 

real and reactive power for the DGs, respectively. 

 Node Voltages 

The DG incorporation in the power system boosts the voltage limits on all 

nodes, which may lead to over-voltage at several nodes. The voltages on all the nodes 

are restricted by two values, namely, the upper (𝑉𝑚𝑎𝑥
𝑘 ) and lower 𝑉𝑚𝑖𝑛

𝑘  limits Equation 

(14).  

𝑉𝑚𝑖𝑛
𝑘  ≤  𝑉𝑘  ≤  𝑉𝑚𝑎𝑥

𝑘                                                (2.39) 

Similar to (Hung and Mithulananthan, 2013), the upper and lower levels are 

taken as 0.95 and 1.05 pu, respectively. 

 PF  

An inequality constraint PF is based on the ratio P/Q of the generator, where 

this ratio should be constant. For example, any variation in the real power should be 
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followed by a mutation in the reactive power. Generally, the DG PF should be kept 

close to uniform to guarantee the full production of the real power of the DGs. 

Equation (2.40) expresses the PF constraints in the system, where PFmax represents the 

upper limit which equals to one and PFmin, which forms the lower limit, should be 

≥0.8. 

𝑃𝐹𝑚𝑖𝑛
𝑘  ≤  𝑃𝐹𝑘  ≤  𝑃𝐹𝑚𝑎𝑥

𝑘                                                 (2.40) 

o Equality constraints 

 Power Balance Constraints 

The power balance is an equality constraint where the overall power generation 

of the system without DG Pg in addition to the power of the DG unites PgDG should 

equal to the overall load demand Pd along with the total active power loss Ploss 

Equation (2.41): 

∑ 𝑃𝑔𝐷𝐺
𝑁𝐺
𝑔=1 + ∑ 𝑃𝑔

𝑁
𝑔=1 = 𝑃𝑑 + 𝑃𝑙𝑜𝑠𝑠.                                  (2.41) 

2.6 Hybrid GA-PSO 

A hybrid GA-PSO is combination between a PSO and a GA where the 

population of the optimal evolution is chosen by the GA; the PSO then optimises the 

results regardless of the iteration (Sahoo et al., 2014). First, the GA and PSO methods 

are initialised. Thereafter, both techniques are simultaneously executed, and the 

optimal solution is stored. After a specific iteration number (stopping criterion), the 

simulation stops the running and presents the optimal solution as a final result. 

The GA-PSO algorithm procedures are shortened as follows (Dufo-López and 

Bernal-Agustín 2008): 
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Step 1: Clarify the initial data population size, generations’ maximum number, 

crossover and mutation probabilities and the decision variable bounds. 

Step 2: Set it = 0, which represents the number of iteration/generation. 

Compute the fitness function for each chromosome.  

Step 3: Generate the population of the chromosomes and particles. 

Step 4: Calculate the objective function for every chromosome. 

Step 5: Search for the chromosome/particle global best with the optimal fitness value. 

Step 6: Split the chromosomes and particles into two identical sizes of population. 

Step 7: Iterate the following until the stopping criterion breaks: 

 Add one to the iteration value. 

 Apply GA for population, and then crossover to find the new population. 

 Discover the optimal chromosome from the present population by comparing 

the current population with the previous superior one; keep the optimal one as 

the best chromosome. 

 Increase it by one. 

 Update the new population by applying tournament selection. 

 Apply the PSO for particles, and update the optimal location of every particle 

through comparing the location of the entire chromosomes of the GA 

populations. 

 Calculate every particle velocity, update the new location and obtain the global 

optimal particle. 

Step 8: Printout the location and global optimal particle fitness. 
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Step 9: End. 

2.7 ASO Algorithm 

In comparison with the searching technique of swarm intelligent optimisation 

algorithms, a recent meta-heuristic optimisation algorithm has been invented by (Zhao 

et al., 2019). The algorithm mimics the physical motion of atoms as illustrated in MD 

simulation with few parameters to regulate. MD is a method that utilises a computer 

to imitate the atom growth and molecule location all the time. The atom and molecule 

movements are fundamentally specified by Newton’s second law; Fi and Gi are 

interaction and constraint forces, respectively, both forces influence the ith atom, 

which has a mass mi by the following Formula (2.42) (Ryckaert et al.,  1977). 

a𝑖  ×  𝑚𝑖 = 𝐹𝑖 + 𝐺𝑖 .                                                (2.42) 

In ASO, the location of every atom inside the search domain performs a 

resolution assessed by its mass, where the preferable solution represents a heavy mass, 

and vice versa. In the population, the atoms will be attracted or repelled to each other 

depending on the distance between them, thereby motivating the light ones to attract 

to heavy atoms. The heavy atoms have minimal acceleration and activate by searching 

for optimal resolutions in the nearby domain. By contrast, the light atoms with great 

acceleration seek to detect new promising areas in the whole search domain. 

The interaction force amongst two atoms or molecules can be approximately 

described by Lennard–Jones (L–J) potential as follows: 

 𝐹𝑖𝑗
𝑑(𝑡) =

24𝜀(𝑡)

𝜎(𝑡)
[2(

𝜎(𝑡)

𝑟𝑖𝑗(𝑡)
)13 − (

𝜎(𝑡)

𝑟𝑖𝑗(𝑡)
)7]

𝑟𝑖𝑗(𝑡)

𝑟𝑑(𝑡)
.                       (2.43) 

Thus, the interaction force between the ith and the jth atoms in the dth 

dimension is formulated as follows: 

𝐹𝑖𝑗
′ (𝑡) =

24𝜀(𝑡)

𝜎(𝑡)
[2(

𝜎(𝑡)

𝑟𝑖𝑗(𝑡)
)13 − (

𝜎(𝑡)

𝑟𝑖𝑗(𝑡)
)7].                       (2.44) 
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Figure 2: Atom Force Curve 

Figure (2) illustrates the force curve of atoms for MD. The atoms maintain a 

proportional space varying in a specified range all the time due to the attraction or the 

repulsion. The amplitude alternation of the repulsion is bigger than the attraction, as 

shown in distance Equation (2.45): 

𝑟 = 1.12 𝜎,                          (2.45) 

where ε is the depth function that measures the intensiveness of the attraction between 

the pair of particles, and σ provides a collision diameter measurement that performs 

the distance where the inter-particle potential is zero between the two particles Figure 

(2). 

The repulsion is positive, whilst the attraction is negative. This situation leads 

to the inability of the atom to be convergent to a particular location. Thus, equilibrium 

(2.44) is unsuitable to resolve the optimisation problem.  

A revised version of this equation is established (Equation (2.46)): 

F′(t) = −η(t)[2(hij(t))
13 − (hij(t))

7] ,                      (2.46) 
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where η(t) represents the depth function to adjust the repulsion or attraction regions 

and can be written in Equation (44). 

η(t) = α(1 −
t−1

T
)3e

20t

T  ,                         (2.47) 

where α represents the depth weight, and T is the iteration maximum number. The h 

values ranging between 0.9 and 1.2 belong to the repulsion area. The attraction occurs 

when h varies from 1.12 to 2. The equality appears when h = 1.12. As h keeps 

increasing from equality point (h = 1.12) until reaching the maximum point (h = 1.24), 

the attraction will gradually increase. Thereafter, h begins to decrease. When h is ≥2, 

the attraction is roughly equal to zero. Thus, ℎ𝑚𝑖𝑛=1.1 is set as a lower limit of 

repulsion with a minimal function amount to widen the investigation in ASO. The 

upper limit of attraction with a greater function rate is adjusted to ℎ𝑚𝑎𝑥 =2.4. 

Accordingly, h is defined in Equation (2.48). 

{
 
 

 
 h𝑚𝑖𝑛                                                           

𝑟𝑖𝑗(𝑡)

𝜎(𝑡)
 < ℎ𝑚𝑖𝑛 

  
𝑟𝑖𝑗(𝑡)

𝜎(𝑡)
                                          ℎ𝑚𝑖𝑛 ≤

𝑟𝑖𝑗(𝑡)

𝜎(𝑡)
 ≤  ℎ𝑚𝑎𝑥

ℎ𝑚𝑎𝑥                                                             
𝑟𝑖𝑗(𝑡)

𝜎(𝑡)
< ℎ𝑚𝑖𝑛

   .                            (2.48) 

The length scale σ(t) is represented by Equality (2.49). 

𝜎(𝑡) = ‖𝑥𝑖𝑗(𝑡),
∑ 𝑥𝑖𝑗(𝑡)𝑗𝑒𝐾𝑏𝑒𝑠𝑡

𝐾(𝑡)
‖
2 

                               (2.49) 

and 

ℎ𝑚𝑖𝑛 = g0 + g(t) and ℎ𝑚𝑎𝑥 = 𝑢 ,                                             (2.50) 

where Kbest is a subset of an atom population comprising of the first K atoms with the 

optimal function fitness values. A drift factor g makes the algorithm diverge from the 

exploration to the exploitation and is defined as follows: 

g(t) = 0.1 × sin(
𝜋

2
×

𝑡

𝑇
).                         (2.51) 



41 

 

 
 
 

Accordingly, the aggregate force acting on the ith atom with random weights 

in the dth dimension from other atoms is represented in Equation (2.52): 

Fi
d(t) = ∑ randjFij

d(t)jϵ𝐾𝑏𝑒𝑠𝑡 ,                              (2.52) 

where randj is the random number specified between [0,1]. 

Newton’s third law provides that the ith atom exerts an opposite force on the 

ith atom for the similar pair-wise interaction, as expressed by Equation (2.53).  

𝐹𝑖𝑗 = −𝐹𝑗𝑖 ,                  (2.53) 

In ASO, a bond between each atom and the optima one is assumed for easiness. 

Every atom is controlled by a constraint force from the optimal one. Thus, the ith 

constraint of the atom can be rewritten as in Equation (2.54). 

θi(t) = ⌈|xi(t) − xbest(t)|
2 − bi,best

2 ⌉,                                             (2.54) 

where xbest(t) is the optimal atom’s location at the tth iteration, and bi,best is the length 

of the fixed bond between the optimal atom and the ith one. Therefore, the constraint 

force is given in Equation (2.55). 

Gi
d(t) = −λ(t)∇θi

d(t) = −2λ(t)(xi
d(t) − xbest

d (t)),                                 (2.55) 

where λ(t) represents the Lagrangian multiplier and is defined as follows: 

λ(t) = βe
20t

T ,                                                    (2.56) 

where β is the multiplier weight. After 2λ is substituted with λ and β in Equation (2.57), 

the constraint force is represented as Equation (2.58): 

Gi
d(t) = λ(t)(xbest

d (t) − xi
d(t)).                                                         (2.58) 

Correspondingly, the acceleration of the ith atom at tth time is shown in Equations 

(2.59) and (2.60). 

𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑚𝑖
𝑑(𝑡)

+ 
𝐺𝑖
𝑑(𝑡)

𝑚𝑖
𝑑(𝑡)

,                                                                             (2.59) 
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𝑎𝑖
𝑑(𝑡) = −𝛼 (1 −

𝑡−1

𝑇
)
3

𝑒−
20𝑡

𝑇
  ∑

𝑟𝑎𝑛𝑑𝑗  [2×(ℎ𝑖𝑗)(𝑡)
13−(ℎ𝑖𝑗(𝑡))

7
]

𝑚𝑖(𝑡)
 
 (𝑥𝑖

𝑑(𝑡)− 𝑥𝑗
𝑑(𝑡))

‖𝑥𝑖(𝑡),𝑥𝑗(𝑡)‖2
𝑗𝜖𝐾𝑏𝑒𝑠𝑡 +

 βe
20t

T
xbest
d (t)−xi

d(t)

𝑚𝑖(𝑡)
 ,                                                                                                (2.60) 

where 𝑚𝑖(𝑡) is the mass of the ith atom at the tth iteration and supposed to be measured 

by its optima value. When the function fitness has a good value, the atom has great 

mass, thereby reducing its acceleration. The mass of the ith atom can be calculated as 

follows: 

M𝑖(𝑡) = 𝑒
𝐹𝑖𝑡𝑖(𝑡)−𝐹𝑖𝑡𝑏𝑒𝑠𝑡(𝑡)

𝐹𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡)−𝐹𝑖𝑡𝑏𝑒𝑠𝑡(𝑡),                                                (2.61) 

𝑚𝑖(𝑡) =
𝑀𝑖(𝑡)

∑ 𝑀𝑗(𝑡)
𝑁
𝑗=1

,                                                                      (2.62) 

where Fitbest
(t) and Fitworst

(t) are the atoms with high and low values of the fitness 

functions at the tth iteration, respectively. Fiti(t) is the value of the function fitness for 

the ith atom at the tth iteration. The following equation represents the Fitbest
(t) and 

Fitworst
(t): 

𝐹𝑖𝑡 𝑏𝑒𝑠𝑡 (t) = min
𝑖∈{1,2,..,𝑁}

𝐹𝑖𝑡𝑖(𝑡),                                                (2.63) 

𝐹𝑖𝑡 𝑤𝑜𝑟𝑠𝑡 (𝑡) = max
𝑖∈{1,2,..,𝑁}

𝐹𝑖𝑡𝑖(𝑡).                                                        (2.64) 

At the (t+1)th iteration, the position and velocity of the ith atom can be 

expressed for simplification: 

𝜈𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖

𝑑  𝜈𝑖
𝑑(𝑡) + 𝑎𝑖

𝑑(𝑡),                                   (2.65) 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑  𝜈𝑖
𝑑(𝑡) + 𝜈𝑖

𝑑(𝑡 + 1).                                               (2.66) 

At the initial stage of the iterations, every atom in the population needs to 

interact with as numerous atoms with the Kbest neighbours as possible to enhance the 

exploration. In the last stage of the iterations, a few atoms need to interact with atoms 

that have better fitness values as its K neighbours for reinforcing the exploitation. 
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Whether the interaction force is attraction or repulsion between the atom and its 

neighbour, it will rely on the ratio of the distance from rij to σ, which is the length that 

defines the distance from each atom to the mid location of its K neighbours. 

Correspondingly, K is a time function, which gradually reduces with iteration lapse. K 

is formulated as follows: 

𝐾 (t)  =  N – (N –  2)  × √
𝑡

𝑇
.                                                           (2.67) 

Figure (2) represents the atom population forces, in which KBest represents the 

first five atoms with the optimal objective values. The figure shows that A1, A2, A3 and 

A4 form the KBest. Variables A1, A2, A3 and A4 attract or repel one another. By 

contrast, A5, A6 and A7 attract or repel every atom in the KBest. Every atom in the 

population has a constraint force from the optimal atom A1, except for A1 (xbest). 

 

Figure 2: Forces of an Atom System with KBest for K = 5. 
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Figure 3: Flowchart of the ASO Algorithm 
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2.8 ASO vs. Conventional Techniques 

The ASO technique varies from usual optimisation and search approaches in 

the following ways: 

1. ASO executes by coding the parameter set and not the parameters themselves. 

2. ASO investigates from a population of atoms and not a solo one. 

3. ASO utilises objective function intelligence and not the derivative functions or 

alternative adjunct information. 

4. ASO applies probabilistic transition aspects and not the deterministic ones. 

2.9 ASO Algorithm for DG Capacity and Placement Challenge  

ASO is a newly scientific meta-heuristic strategy that has been improved for 

global optimisation issues. This strategy is impacted by the fundamental molecular 

mobility to arithmetically form the movement pattern of atom and is basically 

established on the interaction and constraint mechanism. Every atom in ASO is 

influenced by the interaction strength comprised of an appeal and dissonance from its 

close surroundings and the constraint strength from the atom, which has the superior 

fitness computation. The atom movement adapts the second law of Newton. The force 

of attraction motivates the atoms to investigate the entire inspection domain. The 

repulsive strength permits the atoms to utilise a promising dense space. This approach 

is adapted to achieve the multi-objective DG optimal capacity and size in the power 

systems. Figure (3) illustrates the flowchart for the system where the technique 

procedure is depicted as follows: 

Step 1: Read the data for the power system network inclosing the bus and branch data. 

Step 2: Perform the load flow for the base case to determine the bus voltages and total 

power losses. Calculate the PF. 
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Step 3: Set the initial data, such as the number of DGs and buses, for the system. 

Step 4: Define α and β values for the optimisation.  

Step 5: Identify the initial values, such as atom numbers, maximum number of 

iterations and the stopping criteria, for the optimiser.  

Step 5: Call the optimiser, and set the iteration counter = 1, and Fitbest=Inf. 

Step 6: Specify the upper and lower limits inside the optimiser for the DG size and 

location. 

Step 7: Check the stopping criteria if it hits the limit, and then proceed to the end. 

Step 8: Randomly initialise the positions and velocities of atoms.  

Step 9: Run the power flow to satisfy the objective functions 

Step 10: Check for constraint satisfaction, and add penalty for undesired values.  

Step 11: Calculate the fitness value Fiti if the present one is less than the optimal 

fitness, then assign the present value to be the optimal fitness. Otherwise, return 

to Step 7. 

Step 12: Compute the mass by using Equations (56) and (57). 

Step 13: Define the atom’s neighbours by using Equation (62). 

Step 14: Calculate the interaction force by using Equation (49). 

Step 15: Compute the constraints force by utilising Equation (52). 

Step 16: Determine the acceleration by applying Equation (55). 

Step 17: Update the velocity and position of every atom by utilising Equations (60) 

and (61), respectively. 

Step 18: If the number of atoms reaches the maximum, or the iteration counter hits the 

limit or the stopping criteria breaks the bounds, then proceed to the next step. 

Otherwise, increase the counter by one, and return to Step (8). 

Step 20: Display the optimal solution Xbest. 
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Figure (3) illustrates the flow chart for ASO DG sizing and locating. 

 

Figure 4: Flowchart for ASO DG Sizing and Locating 

 

 

 

 

 

2.10 Chapter Summary  

This chapter proposed the equations of the power flow, mathematical 
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formulation of the power loss and the equations for calculating the operating cost. Four 

AI methods, namely, GA, PSO, GA-PSO and ASO, were implemented to resolve the 

problems that were presented and discussed in addition to their working procedures. 
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Chapter 3: Results and Discussion 

This chapter presents the results of the optimal allocation and capacity of DG 

in power networks (RDS and transmission network) by using the GA-PSO and ASO 

techniques. The proposed technique was implemented and programmed in MATLAB 

R 2017b in a computer with Intel Core i7, 2.59 GHz and 8 GB of RAM. The algorithm 

was evaluated to verify the effectiveness, robustness and efficiency of the proposed 

ASO technique. 

Table 1: Parameter Values for GA-PSO and ASO 

Parameters GA-PSO ASO 

Population size 50 50 

Maximum iteration number 200 200 

Maximum error 1x10-9 1x10-9 

 

The techniques were tested to be evaluated on the IEEE test systems, namely 

are 14 and 33 bus test systems. The ASO is utilised to specify the placement and 

capacity of DGs for comparative aims using the GA-PSO method. In this thesis, 1, 2 

and 3 DGs, which operate in PF ≥ 0.8, are considered. Table (1) shows the parameter 

settings for both methods. Both techniques were adjusted to have the same parameter 

values for comparing the performance and effectiveness of the proposed approach. 

Table (2) illustrates the parameters that are used to calculate the operating cost for the 

DGs. Below is a detailed discussion of the two different IEEE test systems that are 

utilised to evaluate the proposed strategy. 

 IEEE 14 Meshed bus system 
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 IEEE 33 RDS 

Table 2: Operation Cost Variables for the 14 and 33 Bus Systems 

variables 33 bus system 14 bus system 

Weighting coefficient α 1.01 1.03 

Investment  Costs /$kW-1 

1400 1400 

Maintenance Costs /$ (kW h)-1 

0.03 0.03 

On-Grid price /$(kW. h)-1 
0.15 0.15 

Efficiency of DG ( η) 13.44%. 13.44%. 

Discount rate (d) 0.12 0.12 

maximum houre(TMH))(h) 3000 3000 

Equivalent generation huor(Teqh) 3000 3000 

Number of DGs (M) 1DG, 2DGs, 3DGs 1DG, 2DGs, 3DGs 

Life time of DG(𝐿𝑇𝐷𝐺) 5 5 

 

The DG type that is used in this study is a synchronous generator generation 

unit. This this type of renewable energy can supply active and reactive powers to the 

system with a rated power of 2 MW in the 33 bus system and 80 MW in the 14 bus 

system. In this approach, the placement and sizing of DGs in the distribution system 

are considered a problem dimension and represented as variable parameters to 

formulate the optimisation problem. The DG location is defined as the integer variable 

of the problem. The placement and capacity of the DGs are expressed in the ASO as a 

vector Table (3): 

Table 3: Placement and Capacity Variables Using 3, 2 and 1 DGs 

DG Bus Number Real capacity (kw) Reactive capacity 
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no. (Kvar) 

3DGs B1 B2 B3 P1 P2 P3 Q1 Q2 Q3 

2DGs B1 B2  P1 P2  Q1 Q2  

1DG B1   P1   Q1   

 

Where B1, B2 and B3 are the DG bus locations; and P1, P2 and P3 and Q1, Q2 and 

Q3 are the active and reactive capacities of the DGs, respectively. 

The constraint values for the system are presented as follows: 

 The upper and lower limits for the DG placements are bus numbers 2 and 33 

for the 33 bus system and 2 and 14 for the 14 bus system.  

 The upper and lower limits for the capacity are 0% and 80% of the bus load, 

respectively. The total capacity of the DGs should be ≤30% of the total system 

loads in 33 RDS. By contrast, the capacity limits are from 0 M to 2 M in the 

14 bus system (the rated power of the DGs). 

 The allowable values of voltage magnitudes on the buses are 5% of the rated 

voltage between 0.95 and 1.05. 

 The accepted values for the PF should be >0.8. 

3.1 IEEE 14 Bus System 

The IEEE 14-bus test system shows the grid topology with a 12.66 kV as base 

voltage of the system with 1 main supply station, 14 buses, 20 feeders, 2 generators, 3 

synchronous compensators, 10 load points and double two-winding and three-winding 

transformers Figure (5). The feeders and transformers were designed using pi-

equivalent circuits. Bus number 1 is considered a reference or slack bus. The 

synchronous compensators and generators were designed by using the active and 
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reactive power steady states and the restrictions of the reactive power generation. The 

network has 362.6 MW as a total active power demand load and 113.96 MVAR as a 

total reactive power as a demand load; moreover, the system has a 392.05 MW as a 

total real power generation and 205.54 MVAR as a total reactive power generation 

(Candelo et al., 2013). The base apparent power for the system is 100 MVA. The total 

real and reactive power losses for the system are 13.393 MW and 54.54 MVAR, 

respectively. The proposed technique is implemented by utilising MATLAB software 

to compute the optimal location and capacity of the DGs. Tables (10) and (11) show 

the bus and line data for the system, respectively. Before the DGs are added to the 

power system, a power load flow procedure based on the NR method is applied to 

obtain the system conditions. Table (12) presents the power flow results, which 

designate the magnitudes of the node voltage for the buses of the system. The DG 

optimal placement and capacity issue is implemented for one operating point where 

the loads are assumed to be fixed in all cases. The demand active (Pd) and reactive 

power (Qd) are specified in MW and MVAR, respectively. By contrast, the line 

resistance (R) and feeders’ reactance (X) are expressed in per unit (pu). With regard 

to the bus types, bus numbers 1, 2 and correspond to a PQ bus, a PV bus and a slack 

bus, respectively. 
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Figure 5: Single line diagram for the IEEE 14 Bus system 

 

In Figure (5), G and B represent the generators and bus numbers, respectively. 

The application of a power flow code using NR method is an advance stage to 

obtain the IEEE 14 bus system power loss and the voltage magnitudes on the buses. 

The parameter values from (Almagboul et al., 2019) that are used in the ASO technique 

are presented as follows:  

 Population size = 50 
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 Depth weight (α) = 50 

 Multiplier weight (β) =0.2 

 Maximum number of iteration= 200 

Various cases for the IEEE 14 bus power system are investigated on the basis 

of the number of DGs (i.e. 1, 2 and 3 DGs). The capacity range of the DG is from 0 M 

to 80 M. 

Case 1: This system is demonstrated by installing a single DG. ASO is applied to 

specify the optimum capacity and position of the DG in the system.  

Case 2: In this case, the system is presented by applying two DGs by using ASO to 

identify the optimal size and location of the DGs on the buses.  

Case 3: The system in this case investigates the utilisation of ASO to specify the 

optimum placement and size of three DGs in the 14-bus RDS.  

The maximum operating cost is considered on the basis of the summation of 

the maximum installed capacity of each DG in the system to calculate the normalised 

operating cost. The maximum operating costs for 1, 2 and 3 DGs are 3.4698 × 106, 

3.6591 × 106 and 1.0503 × 107, respectively.  

Before placing the DG, the voltage magnitudes were poor because the voltages 

in most buses were adjacent to the lower boundary of the identified limits. 

Nevertheless, the magnitude was improved after the DGs were applied to its optimum 

location and capacity Figure (6). The values of the voltage nodes at buses 2 to 5 were 

significantly enhanced, similar to buses 9, 10 and 14. Applying 3 DGs in the network 

system resulted in superior enhancement in the voltage profile compared with 1 and 2 

DGs. 
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Figure 6: Voltage Profile for the 14 Bus System 

 

Figure (6) exhibits that voltage magnitudes in all cases that adapt GA-PSO are 

weaker compared with those obtained from the ASO technique. Installing 3 DGs in 

the power system by using GA-PSO exhibits better results than installing 1 DG or 2 

DGs in buses from 2 to 5. By contrast, attaching 2 DGs improves the voltage profile 

in buses 9, 10, 11 and 14. The results verified that the proposed method presents better 

results in terms of enhancing the voltage profile compared with GA-PSO. 

Power losses in the lines is the second objective function where the power loss 

base obtained from applying the NR method is 13.593 MW. Figure (7) illustrates the 

power loss after ASO and GA-PSO are applied on the 14-bus system and 1, 2 and 

3DGs are individually injected. The figure demonstrates that the use of ASO with 1 

DG is an effective case. By contrast, the worst case is the implementation of GA-PSO 

with 3 DGs.  

Table (4) presents power loss and loss saving in addition to the percentage of 

power loss reduction that resulted from the implementation of ASO and GA-PSO 



56 

 

 
 
 

algorithms in the 14-bus system.  

 

Figure 7: Power Loss in the 14 Bus System 

 

 

 

 

 

 

 

 

 

 

Table 4: Power Loss in the 14 Bus System 

Method ASO GA-PSO 

power 1 DG 2 DGs 3 DGs 1DG 2DGs 3DGs 

P loss Base 

(MW) 
13.593 13.593 13.593 13.593 13.593 13.593 

13.3

13.4

13.5

13.6

13.7

13.8

13.9

14

1 2 3

P
o

w
e

r 
Lo

ss
e

s

Number of DGs

ASO

GA-PSO

Base Case
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Power loss 

DG (MW) 
13.55 13.57 13.89 13.65 13.6    13.9 

Loss 

Saving 

(MW) 

0.043 0.023 -0.297 -0.143 -0.007 -0.05 

Power loss 

reduction 

% 

0.316 0.169 -2.18 -0.004 -0.051 -2.259 

CPU time 

(s) 
62.39 61.13 61.13 123.573 122.484 121.437 

 

Figure (4) shows the power losses in all the cases (i.e. 1, 2 and 3 DGs). The 

installation of 1 DG to the 14-bus system is sufficient. The power losses are the lowest 

with a value of 13.55 MW and a reduction percentage of 0.316% compared with other 

cases. By contrast, the results obtained from the GA-PSO show that the optimisation 

failed to reduce the power losses Figure (7) and Table (4). 

The ASO results clearly verify the effectiveness and influence of this novel 

algorithm compared with the outcome attained from the GA-PSO method. The 

optimum location and size from the ASO provides 0.043 MW compared with -0.143 

MW by the GA-PSO technique.  

 

 

Table 5: DGs Capacity and Location for the 14 Bus System 

Method 

DG location DG capacity 

1DG 2DGs 3DGs 

1DG 2DGs 3DGs 

P(MW) Q(Mvar) P(Mw) Q(Mvar) P(MW) Q(Mvar) 

ASO 8 

2 

6 

8 

10 

0 2 

4 

4 

4 

6 

0 

1 

1 

4 
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7 0 0 

GA-

PSO 

11 

10 

5 

7 

13 

12 

20 20.994 

0.5 

0.5 

9.414 

10.87 

0.019 

3.9 

0.5 

0.123 

0.5 

1.9 

 

Table (5) illustrates the optimal placement of the DGs in the 14-bus system 

with their corresponding active and reactive power sizes. Tables (4) and (5) show the 

acquired results from the proposed ASO technique in bus 8 with 1 DG case. Such case 

provided superior power loss reduction and proper placement for DG implementation 

with sizes of 0 MW and 2 MVAR. This finding indicates that only a reactive power is 

injected to the system. On the contrary, the GA-PSO method proposed that bus 11 is 

the optimal placement with 20 MW and 20.994 MVAR. The results obtained from 

Figure (6) shows that the ASO with 3 DGs on buses 4, 6 and 12 presented the highest 

voltage profile enhancement compared with the other cases in ASO and GA-PSO. 

The CPU time in Table (4) indicates that the proposed ASO take less 

simulation time to run the optimisation than GA-PSO where the average time needed 

for ASO is 61.55 s. By contrast, the average required time for GA-PSO to execute the 

simulation is 122.5 s. 

Table 6: Operating Cost for the 14 Bus System 

Cost parameters 
ASO GA-PSO 

1DG 2DGs 3DGs 1DG 2DGs 3DGs 

Generation cost (k$) 0.040 53.65 120.59 48.37 54.457 404.59 

Investment cost (k$) 0.30 407.5 918.62 323.232 425.394 3116.30 

Maintenance cost 

(K$) 
0.0697 92.12 207.06 80.1 93.071 694.696 

Operation cost (k$) 0.336 445.97 1005 263.96 572.85 1406.41 
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This study considers operating cost as a third objective function. The operating 

cost of the DG units that comprise generation, investment and maintenance costs plays 

an important role in specifying the DG capacity. The high degree of penetrating the 

DGs in the power system will increase the investment and maintenance costs. Table 

(6) demonstrates that the operating cost for the GA-PSO is more expensive than that 

of the ASO. The optimiser injected 1 DG with only a reactive power, which costs less 

than the system with active and reactive power together. This notion indicates a non-

optimal capacity of the utilised DGs in the power system when the GA-PSO algorithm 

is used.  

3.2 IEEE 33 RDS 

Figure (8) depicts the grid topology of the IEEE 33-bus test system, that is, a 

RDS with a 12.66 kV as base voltage of the system with 1 substation, 33 buses and 32 

feeders. The network has 3.715 MW as a total active power demand load and 2.3 

MVAR as a total reactive power as a demand load (Dharageshwari and Nayanatara, 

2015). The base apparent power for the system is 100 MVA. Bus number 1 is 

considered a slack or reference bus, and the other buses are load buses. The total real 

and reactive power losses for the system are 187 kW and 110 KVAR, respectively. 

The proposed technique is implemented by utilising MATLAB software to compute 

the optimal location and capacity of the DGs. Tables (13) and (14) show the bus and 

line data for the system, respectively. Before the DGs are added to the power system, 

a power load flow procedure based on the backward forward method is applied to 

obtain the system conditions. The data for the buses and lines are stored in a MATLAB 

file. Table (15) shows the results of the power flow that designate the magnitudes of 

https://ieeexplore.ieee.org/author/37085522876
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the node voltage and the PF for the system buses. The DG optimal placement and 

capacity issue is implemented here for one operating point where the loads are 

assumed to be fixed in all cases. The demand active power (Pd) and the reactive power 

(Qd) are specified in KW and kVAR, respectively. By contrast, the line resistance (R) 

and feeders’ reactance (X) are in pu. The table demonstrates that the PF for bus 30 is 

0.316228. Thus, the reactive power load on the bus has been changed to 100 kVAR 

instead of 600 kVAR to enhance its PF. Table (16) shows the voltage magnitudes and 

power factor on the buses after the reactive power on bus has been modified to 30. 

With regard to bus types, bus numbers 1, 2 and 3 correspond to a PQ bus, PV bus and 

slack bus, respectively.  



61 

 

 
 
 

 

Figure 8: Single Line Diagram for the IEEE 33 Bus System 

 

Before the DGs are implemented, a power flow programme based on the 

backward–forward sweep method is applied to determine the IEEE 33 bus system 
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power loss, as well as the voltage on the buses.  

The parameter values from (Almagboul et al., 2019) that are used in the ASO technique 

are presented as follows:  

 Population size = 50 

 Depth weight (α) = 50 

 Multiplier weight (β) =0.2 

 Maximum number of iteration= 200 

Several cases are investigated for the power system of the IEEE 33 bus on the basis of 

the number of DGs (1, 2 and 3).  

Case 1: This system is represented by installing a single DG. ASO is applied to specify 

the optimum capacity and position of the DG in the system.  

Case 2: In this case, the system is demonstrated by applying two DGs by using ASO 

to identify the optimal size and location of the DGs on the buses.  

Case 3: The system in this case investigates the utilisation of ASO to specify the 

optimum placement and size of three DGs in the 33 bus RDS.  

The maximum operating cost is considered on the basis of the summation of 

the maximum installed capacity of each DG in the system to calculate the normalised 

operating cost. The maximum operating costs are 1.4573 × 105, 2.9277 × 105 and 4.411 

× 105 for 1, 2 and 3 DGs, respectively. 

The voltage profile at the buses is plotted in Figure (6), where the voltage 

magnitudes are compared with the system before and after installing 1 DG once, 2 

DGs in another time and 3 DGs in the ASO and GA-PSO techniques. ASO is applied 

to enhance the voltage magnitudes of the buses influenced by the number of DGs 
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connected to the system. The voltage profile with 1 and 2 DGs has similar values 

compared with the voltage values with 3 DGs. The use of 1 and 2 DGs rather than 3 

DG provide better results, and the voltage values are closer to the unity than when 3 

DGs are utilised. 

Before locating the DG, the voltage magnitudes were poor because the voltages 

in most buses were adjacent to the lower boundary of the identified limits. 

Nevertheless, the magnitude was significantly promoted after the DG capacity was 

applied to its optimum location Figure (6). The voltage node values at buses 6 to 18 

were significantly increased, similar to buses 24 to 32.  

 

Figure 9: Voltage Profile for the 33 Bus System 

 

Figure (9) demonstrates that the values of the voltages in all cases by utilising 

GA-PSO are poor compared with those from the ASO. Nevertheless, penetrating 2 

DGs in the distribution system by using GA-PSO presents better results than installing 

1 DG or 3 DGs. The results verified that the proposed method presents better results 

in terms of enhancing the voltage profile compared with GA-PSO. 

 The second objective function is the power loss in the feeders where the power 

loss base obtained from applying the backward–forward sweep method is 186.657 kW. 
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Number of Buses 

Figures (10) and (11) show the power losses in the system after ASO and GA-PSO are 

applied on the 33-bus system by independently injecting 1, 2 and 3 DGs. The figure 

demonstrates that the most effective case is the use of ASO with 2 DGs, whilst the 

worst one is the implementation of GA-PSO with 3 DGs.  

Table (7) reflects the results obtained from Figures (10) and (11). The power 

loss resulted from the implementation of ASO and GA-PSO algorithms to determine 

the power loss and loss saving, in addition to the percentage of power loss reduction 

in the system.  

 

 Figure 10: Power Loss in the 33 Bus System 

 

Figure 11: Flowchart of Power Loss in the 33 Bus System 

Table (7) shows that the power loss for the base case of the system before 

installing any DG is 186.657. The table illustrates that the optimal loss saving and 
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reduction percentage are achieved when the ASO is utilised with 2 DGs. The 1 DG 

showed good results in improving the voltage profile minimising the power loss.  

Table 7: Power Loss in the 33 Bus System 

Method ASO GA-PSO 

power 1 DG 2 DGs 3 DGs 1DG 2DGs 3DGs 

P loss 

Base 

(KW) 

186.657 186.657 186.657 186.657 186.657 186.657 

Power 

loss (KW) 
142.58 139.58 145.8997 169.668 165.348 161.28 

Loss 

Saving 

(KW) 

44.077 47.077 40.7573 16.989 21.309 25.377 

Power 

loss 

reduction 

% 

23.77 25.38 21.83 9.102 11.461 13.638 

CPU time 

(s) 
58.610511 61.333 75.1611 65.097063 84.587807 99.448808 

 

Table (8) illustrates the size and placement for the DGs in the power system as 

a result of the application of ASO and GA-PSO for comparison purposes. Tables (7) 

and (8) demonstrate that the DG placement presents a loss reduction of 25.38% 

because of its location at the end of the system when the ASO is utilised for 2 DGs. 

By contrast, loss reduction saving is 13.638% when GA-PSO is used for 3 DGs. Table 

(8) shows the locations for the DGs. This result shows that this bus is a non-optimal 

location with a non-optimal size. When the GA-PSO is applied with 3 DGs, better 

results are achieved compared with 1 DG and 2 DGs. Nevertheless, the use of ASO 

presents superior results. The CPU time consumption for running the simulation code 

by MATLAB software manifests that ASO with 1 DG consumes less time than any 
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other cases. Similarly, GA-PSO with 1 DG takes a short time to execute the code. 

Table 8 : Capacity and Location of DGs in the 33 Bus System 

Metho

d 

DG location DG capacity 

1D

G 

2DG

s 

3DG

s 

1DG 2DGs 3DGs 

P(Kw

) 

Q(Kvar

) 

P(Kw

) 

Q(Kvar

) 

P(Kw

) 

Q(Kvar

) 

ASO 17 
15 

13 

9 

26 

15 

8 4 
1 

1 

44 

23 

1 

1 

1 

12 

13 

5 

GA-

PSO 
27 

28 

17 

5 

17 

18 

20 32 
1.84 

6.05 

20.32 

30.1 

5 

5 

5 

7.7 

12.5 

20.05 

 

This study considers the operating cost as a third objective function. The DG 

unit operating cost, which includes the generation, investment and maintenance costs, 

plays an important role in selecting the DG capacity. The high degree of dispersion for 

the DGs will increase the investment and maintenance costs. Table (9) illustrates that 

the operating cost for the GA-PSO is more expensive than that of ASO because of the 

non-optimal capacity of the utilised DGs in the power system.  

 

 

 

 

 

Table 9: Operation Cost for the ASO 33 Bus System 

Cost parameters ASO GA-PSO 
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1DG 2DGs 3DGs 1DG 2DGs 3DGs 

Generation cost 

(k$) 
52.416 53.65 120.59 1048.55 413.567 786.24 

Investment cost 

(k$) 
396.141 407.5 918.62 2924.587 3149.098 6000.375 

Maintenance cost 

(K$) 
90 92.12 207.06 1800.401 710.1 1350 

Operation cost (k$) 433.725 445.97 1005 2172.736 3445.639 6564.13 

 

3.3 Chapter Summary 

This chapter presents the results obtained from applying ASO on 14-bus 

transmission system and 33-bus RDS. The results are compared with those of the GA-

PSO algorithm. The voltage profile enhancement, power loss reduction and 

operational expenses on the 33-bus RDS are carried out effectively with rigid 

robustness. 
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Chapter 4: Conclusion  

DGs are essential components in power networks because of their effective 

influence in mitigating power losses, enhancing voltage profile and reducing the 

operating cost of the power systems. These goals can be obtained depending on the 

DGs location in the power system with appropriate capacity. 

This thesis proposes a novel meta-heuristic ASO approach that can be applied 

to the nonlinear and non-convex power system problem. Such approach can obtain the 

DG optimal placement and optimal capacity with multi-objective advantages, namely, 

power loss reduction, VPI and operation expense decrement. The results of this 

technique have been compared with those obtained from GA-PSO algorithm. In this 

thesis, two load flow analyses, namely, Newton–Raphson method and backward–

forward sweep method have been applied on a transmission network and a RDS, 

respectively. Two different IEEE test systems, namely, 14-bus system and 33-bus 

RDS, have been tested to evaluate the effectiveness and influence of the proposed 

algorithm. Three scenarios are also included in the research, and 1, 2 and 3 DGs have 

been installed. DGs inject active and reactive power to the system. The results verified 

the effectiveness of ASO compared with the results obtained from GA-PSO where the 

optimal placement and capacity satisfy a high power saving of 14.75 MW for ASO 

compared with the 1.8 MW for GA-PSO in the 14-bus system. By contrast, the power 

saving for ASO is 47.077 compared with GA-PSO in the 33-bus RDS. The cost 

obtained from ASO is more profitable than those gained from GA-PSO.  

The effectiveness and influence of ASO on the 33-bus RDS are better than 

those of ASO on the transmission system. Such system has generators, synchronous 

compensators and two-winding and three-winding transformers. Specifically, the 
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transmission system has PV and PQ buses apart from the slack bus. Meanwhile, 33-

bus RDS only has PQ buses and the slack bus. The ratio X/R is low in the radial 

systems compared with that in the transmission ones, thereby increasing the power 

losses in the radial systems. 

ASO is a meta-heuristic optimisation technique with expeditious convergence 

rate, few adjustable parameters, simple operation and rigid robustness. 

4.1 Future Work 

This thesis is operated on a single operating point where the load is assumed to 

be fixed. The application of the optimisation on variable loads is a target for future 

work. Other objective functions, such as voltage stability index, will be added to the 

system. Another idea is to determine whether the DG placement and sizing issue in 

transmission networks are compatible with dispatch reactive power problem. 
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Appendix 

 

Table 10: 14 Bus System Bus Data 

Bus No Bus Type Pd Qd 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
 

3 

2 

2 

1 

1 

2 

1 

2 

1 

1 

1 

1 

1 

1 
 

0 

21.7 

94.2 

47.8 

7.6 

11.2 

0 

0 

29.5 

9 

3.5 

6.1 

13.5 

14.9 
 

0 

12.7 

19 

-3.9 

1.6 

7.5 

0 

0 

16.6 

5.8 

1.8 

1.6 

5.8 

5 
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Table 11: 14 Bus System Line Data 

From Bus To Bus R X 

1 

1 

2 

2 

2 

3 

4 

4 

4 

5 

6 

6 

6 

7 

7 

9 

9 

10 

12 

13 
 

2 

5 

3 

4 

5 

4 

5 

7 

9 

6 

11 

12 

13 

8 

9 

10 

14 

11 

13 

14 
 

0.01938 

0.05403 

0.04699 

0.05811 

0.05695 

0.06701 

0.01335 

0 

0 

0 

0.09498 

0.12291 

0.06615 

0 

0 

0.03181 

0.12711 

0.08205 

0.22092 

0.17093 
 

0.05917 

0.22304 

0.19797 

0.17632 

0.17388 

0.17103 

0.04211 

0.20912 

0.55618 

0.25202 

0.1989 

0.25581 

0.13027 

0.17615 

0.11001 

0.0845 

0.27038 

0.19207 

0.19988 

0.34802 
 

  

Table 12: 14 Bus System Voltage Magnitudes 

Bus No Vm (pu) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 
 

1.06 

1.045 

1.01 

1.019 

1.02 

1.07 

1.062 

1.09 

1.056 

1.051 

1.057 

1.055 

1.05 

1.036 
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Table 13: 33 Bus System Bus Data 

Bus No Bus Type Pd Qd 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 
 

3 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
 

0 

100 

90 

120 

60 

60 

200 

200 

60 

60 

45 

60 

60 

120 

60 

60 

60 

90 

90 

90 

90 

90 

90 

420 

420 

60 

60 

60 

120 

200 

150 

210 

60 
 

0 

60 

40 

80 

30 

20 

100 

100 

20 

20 

30 

35 

35 

80 

10 

20 

20 

40 

40 

40 

40 

40 

50 

200 

200 

25 

25 

20 

70 

600 

70 

100 

40 
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Table 14: 33 Bus System Line Data 

From Bus To Bus R X 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

2 

19 

20 

21 

3 

23 

24 

6 

26 

27 

28 

29 

30 

31 

32 

21 

9 

12 

18 

25 
 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

8 

15 

22 

33 

29 
 

0.0922 

0.493 

0.366 

0.3811 

0.819 

0.1872 

0.7114 

1.03 

1.044 

0.1966 

0.3744 

1.468 

0.5416 

0.591 

0.7463 

1.289 

0.732 

0.164 

1.5042 

0.4095 

0.7089 

0.4512 

0.898 

0.896 

0.203 

0.2842 

1.059 

0.8042 

0.5075 

0.9744 

0.3105 

0.341 

2 

2 

2 

0.5 

0.5 
 

0.047 

0.2511 

0.1864 

0.1941 

0.707 

0.6188 

0.2351 

0.74 

0.74 

0.065 

0.1238 

1.155 

0.7129 

0.526 

0.545 

1.721 

0.574 

0.1565 

1.3554 

0.4784 

0.9373 

0.3083 

0.7091 

0.7011 

0.1034 

0.1447 

0.9337 

0.7006 

0.2585 

0.963 

0.3619 

0.5302 

2 

2 

2 

0.5 

0.5 
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Table 15: 33 Bus System Voltage Magnitudes and Power Factors before System 

Modification 

Bus No Vm (pu) PF 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 
 

1 

0.996367 

0.97928 

0.970075 

0.960998 

0.938432 

0.934157 

0.928215 

0.920576 

0.913501 

0.912453 

0.910629 

0.903221 

0.900484 

0.89878 

0.897128 

0.894691 

0.893959 

0.995672 

0.990973 

0.990048 

0.989212 

0.975113 

0.967423 

0.964043 

0.93608 

0.932959 

0.919024 

0.909023 

0.904714 

0.899643 

0.898528 

0.898182 
  

1 

0.857493 

0.913812 

0.83205 

0.894427 

0.948683 

0.894427 

0.894427 

0.948683 

0.948683 

0.83205 

0.863779 

0.863779 

0.83205 

0.986394 

0.948683 

0.948683 

0.913812 

0.913812 

0.913812 

0.913812 

0.913812 

0.874157 

0.902861 

0.83205 

0.923077 

0.923077 

0.948683 

0.863779 

0.316228 

0.906183 

0.902861 

0.83205 
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Table 16: 33 Bus System Voltage Magnitudes and Power Factors after System 

Modification 

Bus No Vm(pu) PF 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 
 

1 

0.996367 

0.97928 

0.970075 

0.960998 

0.938432 

0.934157 

0.928215 

0.920576 

0.913501 

0.912453 

0.910629 

0.903221 

0.900484 

0.89878 

0.897128 

0.894691 

0.893959 

0.995672 

0.990973 

0.990048 

0.989212 

0.975113 

0.967423 

0.964043 

0.93608 

0.932959 

0.919024 

0.909023 

0.904714 

0.899643 

0.898528 

0.898182 
  

1 

0.857493 

0.913812 

0.83205 

0.894427 

0.948683 

0.894427 

0.894427 

0.948683 

0.948683 

0.83205 

0.863779 

0.863779 

0.83205 

0.986394 

0.948683 

0.948683 

0.913812 

0.913812 

0.913812 

0.913812 

0.913812 

0.874157 

0.902861 

0.83205 

0.923077 

0.923077 

0.948683 

0.863779 

0.316228 

0.906183 

0.902861 

0.83205 
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