PREVALENCE OF BRCA1 AND BRCA2 MUTATIONS AMONG BREAST AND OVARIAN CANCER PATIENTS IN NORTHERN EMIRATES

Zahra Ahmed Mohammed Saeed

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses

Part of the Biotechnology Commons, and the Molecular Biology Commons
PREVALENCE OF *BRCA1* AND *BRCA2* MUTATIONS AMONG BREAST AND OVARIAN CANCER PATIENTS IN NORTHERN EMIRATES

Zahra Ahmed Mohammed Saeed

This thesis is submitted in partial fulfilment of the requirements for the degree of Master of Science in Molecular Biology and Biotechnology

Under the Supervision of Dr. Yusra Saif Al Dhaheri

November 2020
Declaration of Original Work

I, Zahra Ahmed Mohammed Saeed, the undersigned, a graduate student at the United Arab Emirates University (UAEU), and the author of this thesis entitled “Prevalence of BRCA1 and BRCA2 Mutations among Breast and Ovarian Cancer Patients in Northern Emirates”, hereby, solemnly declare that this thesis is my own original research work that has been done and prepared by me under the supervision of Dr. Yusra Saif Al Dhaheri, in the College of Science at UAEU. This work has not previously been presented or published, or formed the basis for the award of any academic degree, diploma or a similar title at this or any other university. Any materials borrowed from other sources (whether published or unpublished) and relied upon or included in my thesis have been properly cited and acknowledged in accordance with appropriate academic conventions. I further declare that there is no potential conflict of interest with respect to the research, data collection, authorship, presentation and/or publication of this thesis.

Student’s Signature: [Signature] Date: 22/12/2020
Advisory Committee

1) Advisor: Dr. Yusra Saif Al Dhaheri
 Title: Assistant Professor
 Department of Biology
 College of Science

2) External member
 Member: Dr. Duckjin Hong
 Title: Consultant Physician
 Department of Laboratory Medicine
 Sheikh Khalifa Specialty Hospital- RAK, UAE
Approval of the Master Thesis

This Master Thesis is approved by the following Examining Committee Members:

1) Advisor (Committee Chair): Dr. Yusra Saif Al Dhaheri
 Title: Assistant Professor
 Department of Biology
 College of Science

 Signature Date: 19/11/2020

2) Member: Dr. Ranjit Vijayan
 Title: Associate Professor
 Department of Biology
 College of Science

 Signature Date: 20/11/2020

3) Member: Dr. Khaled Bajou
 Title: Associate Professor
 Department of Applied Biology/Biotechnology
 College of Science
 University of Sharjah

 Signature Date: 20/11/2020
This Master Thesis is accepted by:

Dean of the College of Science: Professor Maamar Benkraouda

Signature Maamar Benkraouda Date December 25, 2020

Dean of the College of Graduate Studies: Professor Ali Al-Marzouqi

Signature Ali Al-Marzouqi Date December 25, 2020

Copy ____ of ____
Abstract

Breast Cancer (BC) is the most common cancer and the second most cause of death among women. Mutations in BRCA1 and BRCA2 genes confer high susceptibility to both breast and ovarian cancer. However, data on the prevalence of the BRCA1/2 mutations among breast and ovarian cancer patients is limited. The genetic component of breast cancer in UAE is largely unknown and no study has evaluated the BRCA mutations status in breast and ovarian cancer patients in UAE population. This retrospective study aimed to establish mutation frequencies of the BRCA genes in breast and ovarian cancer patients from Northern Emirates and sought to examine potential association of BRCA carriers and Triple- Negative Breast Cancer (TNBC). The study population included patients who underwent BRCA genetic testing at Sheikh Khalifa Specialty Hospital (SKSH) to determine hereditary breast/ovarian cancer. Mutations in BRCA1 and BRCA2 were analyzed by Sanger sequencing or next generation sequencing (NGS) along with Multiple Ligation Probe Amplification (MLPA).

Among 262 patients, 224 (85.5%) had no mutation. BRCA mutations were identified in 38 patients (14.5%). BRCA1 and BRCA2 mutations were detected in 6.9% and 7.6% of the patients, respectively. Variant of unknown significance in BRCA1 was found in 0.4% of patients (one patient). TNBC accounted for 22% of all patients with Breast Cancer (BC) who underwent immunohistochemistry (28/127). Importantly, one novel BRCA1 mutation: c. (80+1_81-1) _ (441+1_442-1) dup in exons 3,5,6,7 was observed in one patient with ovarian cancer who showed positive family history and age ≤ 45. Moreover, two novel deletion mutations were identified in the BRCA2 gene. One deletion in exon 5 in ovarian cancer patient who showed positive family history and age ≤ 45. The second was a deletion in exons 10-13 observed in male patient with breast cancer with age ≤ 45. The current study results will help to establish the spectra of BRCA mutations and risks associated with breast and ovarian cancer in UAE patients.

Keywords: UAE, Hereditary, Breast cancer, Ovarian cancer, BRCA1, BRCA2, MLPA, NGS, TNBC.
نسبة انتشار الطفرات الجينية BRCA1 و BRCA2 بين مرضى سرطان الثدي والمبيض في الإمارات الشمالية

الملخص

يعتبر سرطان الثدي أكثر أنواع السرطان شيوعاً و ثاني صاحب أسباب الوفاة بين النساء. تمنع الطفرات في جينات BRCA1 و BRCA2 و BRCA1/2 في مرضى سرطان الثدي و سرطان المبيض محدودة. يعتبر التكوين الجيني لسرطان الثدي إلى حد كبير غير معروف و لم يتم أي دراسة بتقييم حالة طفرات سرطان الثدي لدى مرضى سرطان الثدي و المبيض في دولة الإمارات العربية المتحدة. تهدف هذه الدراسة إلى تحديد معدل انتشار الطفرات الوراثية لدى مرضى سرطان الثدي والمبيض من الإمارات الشمالية، كما سعت إلى فحص العلاقة المحتملة بين حاملين سرطان الثدي و سرطان الثلاثي السلبي (TNBC) في مرضى سرطان الثدي و المبيض من الإمارات الشمالية. تم تحليل الطفرات الوراثية في جينات BRCA1 و BRCA2 و BRCA1/2 عن طريق إجراء فحص معرفة التسلسل الجيني (NGS) أو تقنية الجيل الجديد لتحديد التسلسل الجيني (Sanger) بالإضافة إلى فحص التضخم (MLPA).

من إجمالي عدد 262 مريض، لم يكن لدى 24 مريض طفرة جينية في BRCA (85.5%)، بينما تم تحديد طفرات في 38 مريضاً (14.5%). حيث تم العثور على طفرات بنسبة 6.9% و 7.6% من المرضى على التوالي. كما تم العثور على طفرات مجهولة الأهمية في BRCA1 و BRCA2 على 0.4% من المرضى (مريض واحد). يمثل سرطان الثلاثي السلبي (TNBC) نسبة 22% من إجمالي عدد المرضى (28/127) الذين يعانون من سرطان الثدي و الذين خضعوا لفحوصات الكيمياء النسيجية المناعية. (Immunohistochemistry)

الجدير بالذكر هو العثور على طفرة جديدة في جين BRCA1 (c. (1-81_81-1+80) dup (1-441+1_442-1)), وهو حدوث تكرار في اكسون 3,5,6,7 في حالة واحدة.
لمريضة مصابة بسرطان المبيض، لم تتجاوز عمر 45 سنة ولديها تاريخ عائلي. علاوة على ذلك، تم اكتشاف طفرتين جديدتين للحذف في جين BRCA2، احدهما حذف اكسون 5 في حالة لمريضة لم تتجاوز ال 45 سنة مصابة بسرطان المبيض و لديها تاريخ عائلي. و الحالة الثانية هو حذف في اكسونات 10-13 لوحظت في مريض ذكر مصاب بسرطان الثدي، لم يتجاوز ال 45 سنة. هذه النتائج ستساعد في تأسيس محتوى واضح للطفرات الجينية و المخاطر المرتبطة بسرطان الثدي والمبيض لدى مرضى شمال دولة الإمارات العربية المتحدة.

مفاهيم البحث الرئيسية: دولة الإمارات العربية المتحدة، سرطان الثدي، والمبيض الوراثي، سرطان الثدي ثلاثي السلبي، فحص التسلسل الجيني، فحص التسلسل الجيني التالي، فحص تضخم الكشف ذو الربط المستقل المتعدد.
Acknowledgements

I would like to thank the following people, without them I would not have been able to complete my thesis research, and without whom I would not have made it through my master degree. I am grateful to the Molecular team at Sheikh Khalifa Specialty Hospital for their support in this thesis project. Special thanks to my previous supervisor Dr. Ho Eun Chang, whose insight and knowledge in this field steered me through this research. She was a big support for achievement today. Thanks to the UAEU, Graduate studies and MSc. Program in Molecular Biology and Biotechnology for the guidance and support.

I am also thankful to my supervisor Dr. Yusra Al Dhaeri at UAE University, who guided me so positively and always made me feel confident in my abilities and without her, I would not be able to finish this master thesis work. Thanks for being there whenever needed and making your time available for me as she was ready all the time to help and providing guidance. Really I believe that I am so blessed to have you as a supervisor. Also special thanks to Dr. Duckjin Hong, whose support was always there and sorry for all the extra work Dr. Hong!

Thanks to Dr. Hyo Jin Park, head of Imaging and Laboratory Medicine for the continuous support.

Thanks to my supervisor Mr. Soohyun Ha and my colleagues in Molecular Diagnosis Unit in SKSH, Mrs. Simi John, Ms. Ameera Ali, Ms. Badriya Mahmoud, and Ms. Noora Hassan for your support and nice motivated words, without which I would have spent more time to complete this study.

And my biggest thanks to my family for all the supports you have shown me through this research, the culmination of two years of distance learning. For my sister
Hadeel, who was always ready to drive me till Al Ain and back again to home and sorry for annoying more than usual.

Finally, to all women who sacrificed their time, believe what Napoleon hill said “Great achievement is usually born of great sacrifice, and is never the result of selfishness”.
Dedication

To my beloved parents and family
Table of Contents

Title ... i
Declaration of Original Work ... ii
Copyright ... iii
Advisory Committee ... iv
Approval of the Master Thesis .. v
Abstract ... vii
Title and Abstract (in Arabic) ... viii
Acknowledgements .. x
Dedication ... xii
Table of Contents .. xiii
List of Tables .. xv
List of Figures .. xvi
List of Abbreviations ... xvii

Chapter 1: Introduction .. 1
 1.1 Cancer ... 1
 1.1.1 Breast Cancer ... 2
 1.1.2 Ovarian Cancer .. 4
 1.2 Genetic Mutation and Hereditary Breast and/or Ovarian Cancer (HBOC) 5
 1.2.1 BRCA1/2 Genes .. 6
 1.2.2 BRCA1/2 Genes Mutations ... 7
 1.3 Triple Negative Breast Cancer (TNBC) .. 9
 1.4 Prevalence of BRCA1/2 Gene Mutations ... 10
 1.4.1 Prevalence of BRCA1/2 Mutation in the World .. 10
 1.4.2 Prevalence of BRCA1/2 Mutations in the Arab Countries 12
 1.4.3 Prevalence of BRCA1/2 Mutations in the Gulf Countries 12
 1.5 Hypothesis ... 15
 1.6 Objectives of the Study .. 15

Chapter 2: Materials and Methods ... 16
 2.1 Study Design ... 16
 2.2 Blood Collection and DNA Extraction .. 16
 2.3 BRCA Genes Analysis ... 17
 2.3.1 Sanger Sequencing ... 17
 2.3.2 Next Generation Sequencing (NGS) .. 20
2.3.3 Multiple Ligation- dependent Probe Amplification Analysis (MLPA) ... 20
2.4 Immunohistochemistry ... 21
2.5 Statistical Analysis ... 22

Chapter 3: Results ... 23
3.1 Study Selection and Patient Characteristics .. 23
3.2 Prevalence of Germinal BRCA Mutation .. 25
3.3 Association of BRCA Status and TNBC .. 30
3.4 Correlation of BRCA1 Gene Mutation with Different Factors ... 32
3.5 Novel BRCA1/2 Mutations Among UAE Population in Northern Emirates 33

Chapter 4: Discussion ... 37

Chapter 5: Conclusion and Future Recommendations .. 43

References ... 44
List of Tables

Table 1: Prevalence of Germline BRCA Mutation Internationally (Unselected for Family History, Age, Sex, or Ethnicity) 11
Table 2: Clinical Characteristics of 262 Patients. .. 24
Table 3: Characteristics of Patients with BRCA1 Gene Mutation 28
Table 4: Characteristics of Patients with BRCA2 Gene Mutation 29
Table 5: Correlation of BRCA1 Gene Mutation with Different Parameters 32
List of Figures

Figure 1: Global cancer statistics 2018 (GLOBOCAN) ... 2
Figure 2: Breast cancer prevalence around the world ... 4
Figure 3: BRCA1 and BRCA2 genes .. 7
Figure 4: United Arab Emirates map (Up) showing the northern regions of the emirates and UAE population percent by emirate (Down) 14
Figure 5: EasySeq™ PCR plates for BRCA1/2 Sequencing 18
Figure 6: Forward primers with -21M13 and reverse primers with M13Rev........... 19
Figure 7: Sequencing chromatogram illustrating the most common mutations in BRCA1 gene c.4065_4068delTCAA ... 27
Figure 8: Immunohistochemical Staining ... 30
Figure 9: Association of BRCA status and TNBC .. 31
Figure 10: Novel BRCA1/2 mutations detected by MLPA analysis workflow in GeneMarker software in this study.............................. 34
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>Breast Cancer</td>
</tr>
<tr>
<td>BRCA1</td>
<td>Breast Cancer 1</td>
</tr>
<tr>
<td>BRCA2</td>
<td>Breast Cancer 2</td>
</tr>
<tr>
<td>ER</td>
<td>Estrogen Receptor</td>
</tr>
<tr>
<td>GLOBOCAN</td>
<td>Global Cancer Observatory</td>
</tr>
<tr>
<td>HAAD</td>
<td>Health Authority of Abu Dhabi</td>
</tr>
<tr>
<td>HBOC</td>
<td>Hereditary Breast and/or Ovarian Cancer</td>
</tr>
<tr>
<td>HER2</td>
<td>Human Epidermal Growth Factor 2 Receptors</td>
</tr>
<tr>
<td>MLPA</td>
<td>Multiplex Ligation-dependent Probe Amplification Analysis</td>
</tr>
<tr>
<td>NGS</td>
<td>Next-Generation Sequencing</td>
</tr>
<tr>
<td>NCD</td>
<td>Non-Communicable Disease</td>
</tr>
<tr>
<td>OC</td>
<td>Ovarian Cancer</td>
</tr>
<tr>
<td>SKSH</td>
<td>Sheikh Khalifa Specialty Hospital</td>
</tr>
<tr>
<td>PR</td>
<td>Progesterone Receptor</td>
</tr>
<tr>
<td>TNBC</td>
<td>Triple Negative Breast Cancer</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction

1.1 Cancer

Cancer is uncontrolled cell division that can occur in any place of the body. In normal cell division, an accurate genome duplication will occur to ensure that the two daughter cells will have the same genetic material as their parent cell. Any failure to achieve this purpose will develop a genomic instability, which generates random mutations including chromosomal rearrangements and different forms of genome alterations. The accumulation of these genetic alterations may varies between different subgroups of cells and leads to form the heterogeneity of cancer [1-2].

Cancer cells are distinct from their normal counterparts through six essential biological features. In 2002, these biological features were first introduced and defined as a cancer hallmarks which includes sustaining proliferative signaling, evading growth suppressors (antigrowth), resisting cell death (apoptosis), enabling replicative immortality, inducing angiogenesis and activating invasion and metastasis (Figure 1). Four additional hallmarks of cancer were introduced in 2011, including deregulating cellular energetics, avoiding immune destruction, genomic instability and mutation and tumor promoting inflammation [3].

The pathogenesis of cancer is multifactorial, as for many other malignancies, involving interactions between different life style and genetic characteristics. Cancer remains one of the most health burden disease worldwide. The incidence of cancer has been rapidly increased resulting in over 8.7 million deaths [4]. Based on 2018 GLOBOCAN statistics, the total number of cancer new cases was around 18 million while the death cases was 9 million in 2018 (Figure 1) [5].
In the United Arab Emirates (UAE), the burden of cancer in 2010 was high and ranked the third leading cause of non-communicable diseases (NCD)-related mortality after cardiovascular and injury [6]. The GLOBOCAN data from 2018 shows that the cancer incidence rate reached 135.5 per 100,000 people and the mortality rate was 54.7 per 100,000 people in UAE [5].

1.1.1 Breast Cancer

Breast cancer is the most prevalent type of cancer among women worldwide with 25.4% of total cancer cases in 2018 [7]. It considered as serious threat to the global development with estimated 1,384,155 new cases and approximately 459,000 deaths cases. It has been estimated that one every eight women will develop breast cancer during her life [8].

Breast cancer is not a single disease but a complex multifactorial disease resulting from interactions between a number of different environmental, lifestyle,
hormonal, and genetic factors. There are three most common diagnostics markers in clinical management of BC patients which are human epidermal growth factor 2 (HER-2), estrogen (ER), and progesterone (PR). BC cell expression of these receptors has an impact in disease progression and also in the therapeutic management. The majority of BCs are sporadic, which means it develops from damage to a person's genes that occurs by chance after they are born. There is no risk of the person passing this gene on to their children. However, the familial susceptibility to BC accounts for more than 25% of all BCs [9].

BC is the most dominant cancer among women in Arab countries [10]. Women in Arab world are diagnosed with breast cancer at more advanced stages, and the incidence rate has increased over the past three decades [11]. According to American Cancer Society, prediction of new cases of breast cancer in women will reach to about 3.2 million in 2050 [12]. These statistics demonstrate the vastness of breast cancer incidence and its effect on societies worldwide.

The Health Authority of Abu Dhabi (HAAD) reported that the prevalence of breast cancer among all cancers diagnosed in Abu Dhabi reached 20.3% in 2014, with an associated mortality rate of 12.2%, making breast cancer the most incident in that Emirate [13]. Of all cancer cases, breast cancer in women from the GCC countries is the most common cancer type. It was reported by the Gulf Center for Cancer Registration that annually, for every 100,000 female there are 53.4 cases of breast cancer in Bahrain, 22.8 cases in the United Arab Emirates, 17.5 cases in Saudi Arabia, 48.2 cases in Qatar, and 46.6 cases in Kuwait [14]. However, the effect of geographical and ethnical differences in breast cancer incidence signs the impact of environmental conditions and the way of life (Figure 2) [15].
Ovarian Cancer

Worldwide, ovarian cancer (OC) is the seventh most common cancer and the eighth leading cause of cancer-related mortality in females, contributing nearly 4% of the total number of new cases diagnosed in 2018 [7]. A number of clinical features are considered to affect progression-free-survival and overall survival rates in ovarian cancer, which includes disease grade, stage and surgical outcome. There are five main histologically defined subtypes of OC which are high grade serous, endometrioid, clear cell, low grade serous and mucinous OC serous and mucinous OC. As the majority of OC is high grade serous, the studies focused on this subgroup more than others [16]. Ovarian cancer, like other types of cancer, may occur spontaneously, and mostly developed due to genetic predisposition involving dysfunctional of dominant genes [17]. However, more than 23% of all ovarian cancer cases are thought to be hereditary [18]. Also, it was reported that in ovarian cancer relatives, the risk of breast cancer is...
increased and vice versa [19]. In Saudi Arabia, the OC accounted for 2.9% of all cancers, whereas in western population it accounted for 3.4%. The median age of OC Saudi population (55 years) and Middle East Epithelial OC population (50 years) were lower than western population (65 years), which could influence the genetic predisposition factors in their ethnicity. Therefore, determination such genetic predisposition will make efficient early diagnosis and cancer prevention process [20].

1.2 Genetic Mutation and Hereditary Breast and/or Ovarian Cancer (HBOC)

In human, genes are located on 23 pairs of chromosomes. During the process of cancer development, malignant transformation is known to involve genetic and epigenetic changes that lead to uncontrolled cellular proliferation and/or abnormal programmed cell death (apoptosis). These cellular abnormalities resulted through accumulation of mutations that are frequently associated with molecular abnormalities in certain types of genes, such as proto-oncogenes and tumor-suppressor genes [8, 10]. These mutations can result from genetic predisposition and/or exposure to several risk factors such as physical inactivity and sedentary lifestyles, the overconsumption of high-caloric and poorly-nutritive meals, an increase in obesity rates, an increase in smoking prevalence, elevated air pollutant levels, different forms of ionizing radiations, and synthetic chemicals. Mutations are either inherited from a parent (germline) or acquired affecting only the cells that grow from the mutated cell (somatic). Somatic mutation may determine the phenotype of a particular cancer and maybe of clinical value in determining cancer prognosis. However, only germline mutations can predetermine an individual’s risk of developing cancer. Among all cancer types, only about 5-10% are thought to be related to an inherited gene change [21].
Hereditary Breast and/or Ovarian Cancer (HBOC) syndrome is an inherited genetic disorder with high level of risk compared to the normal breast and ovarian cancer in related family members [17]. Approximately 5-10% of breast cancer cases [18] and about 18% of ovarian cancer cases [22] are due to genetic mutation which is thought to be hereditary.

1.2.1 BRCA1/2 Genes

Minority of breast cancers can show dominant gene mutations. The most common gene mutations are those affecting the Breast CAncer 1 (BRCA1) and BReast CAncer 2 (BRCA2) genes [8]. BRCA genes, important tumor suppressor genes, are involved in DNA damage repair and recombination, cell-cycle checkpoint control, apoptosis and transcriptional regulation [23]. BRCA 1 and 2 genes were reported and identified as breast cancer susceptibility genes for the first time in 1994 and 1995 respectively. Since the time of their discovery, the number of studies reporting the frequency of mutations in these genes in high-risk breast and breast-ovarian cancer families have been increased largely. The breast cancer susceptibility gene BRCA1 is expressed in several tissues including breast and ovary. BRCA1 gene (Figure 3) is a large gene extend to about 100 kb of genomic DNA. It consists of 24 exons, the first and fourth exons are non-coding [24]. Eleventh exon is the largest exon providing more than 60% of the whole coding sequence of BRCA1 gene [25]. The final product of the protein composed of 1863 amino acids, produce about 220 kd nuclear protein. This BRCA1 gene product contains a protein motif, a Ring Finger domain near the amino acid terminus and a conserved acidic carboxyl terminus that functions in transcriptional co-activation. It was proven that BRCA1 protein plays a crucial part in the DNA repair process. RAD51 gene, encodes a protein called RAD51, which is
important in the stability of the genome and essential for the repair of damaged DNA. BRCA1 protein reacts with RAD51 protein during homologous recombination and double strand break repair [23]. The BRCA2 gene (Figure 3) is larger compared to BRCA1, composed of 27 exons, where one is non-coding. It codes for a protein of 3418 amino acids that produce a nuclear protein of 380 kd. BRCA2 gene has a different structure than BRCA1 and the protein lacks a well-defined functional domain. Also, the BRCA2 protein reacts with RAD51 protein and during this cross interaction with RAD51, both BRCA1 and BRCA2 interrelate at sites of DNA synthesis after the induction of DNA damage. Thus, the proteins made by BRCA1 and BRCA2 genes are both essential for repairing damaged DNA and any changes in these genes may lead to hereditary predisposition to breast and ovarian cancer [24].

![Figure 3: BRCA1 and BRCA2 genes][26]

1.2.2 BRCA1/2 Genes Mutations

Mutations in BRCA genes induce defective DNA repair mechanisms, which are associated with the risk of developing breast and/or ovarian cancers. Changes in BRCA genes are spread all over the entire gene. Different mutations have been reported
that exceeds 600 and 400 in \textit{BRCA1} and \textit{BRCA2}, respectively. Most types of gene mutations considered to be risky and disease-causing that produce a defective and non-functional protein. There are several forms of mutations reported in \textit{BRCA} genes such as frame shift mutation when either deletion or insertion (indels) of one or more nucleotides resulting in missing or non-functional product, nonsense mutation when change in one nucleotides produce a stop codon that terminate the protein, or splice site alternations that affect the DNA identity and results in abnormal protein [24]. About 12% of women in the general population will develop breast cancer sometime during their lives and about 1.4% of women in the general population will develop ovarian cancer sometime during their lives. One in 400 to 1,000 persons in the overall population are expected to have a germline mutation in \textit{BRCA1} and \textit{BRCA2} genes that passed down through their families known as autosomal dominant predisposing genes [27]. Some studies showed that a mutation that found towards the 5'-end of \textit{BRCA1} gene tends to develop ovarian cancer whereas mutation towards the 3'-end seems to develop breast cancer which means that there is a possible relation between the mutation site and the corresponding phenotype [25]. Inherited deleterious mutations in the \textit{BRCA1} or the \textit{BRCA2} genes are associated with an increased risk of developing breast and/or ovarian cancer in both woman and men. Women with an inherited \textit{BRCA1} mutation have a lifetime risk of 65-80% of developing breast cancer and 37-62% of developing ovarian cancer, while \textit{BRCA2} carriers have a lifetime risk of 45-85% for breast cancer and 11-23% for ovarian cancer. There is an increased risk of developing several other cancers in addition to breast and ovarian cancer among \textit{BRCA} carriers. \textit{BRCA1} mutations may increase a woman’s risk of developing fallopian tube cancer and peritoneal cancer. Men with pathogenic \textit{BRCA1} or \textit{BRCA2} mutations have a higher risk of prostate cancer (5-25%), and breast cancer among men with \textit{BRCA2}
mutations (6%). Men and woman with BRCA1 and BRCA2 mutations maybe at increased risk of pancreatic cancer, stomach, and head and neck. Together, BRCA1 and BRCA2 mutations cause about 20-25% of hereditary breast cancers. In addition, mutations in BRCA1 and BRCA2 account for around 15% of ovarian cancers overall. Studies on BRCA1 mutation occurrence suggested that nearly half of the families at high risk for breast cancer carried BRCA1 mutation. However, other analysis suggests that the actual incidence of BRCA1 in high risk families (>3 cases of breast and/or ovarian cancer) might be as low as 12.8% to 16%. It has been observed that large variation in the prevalence of BRCA1 mutations in high risk families of different countries more common than the prevalence of BRCA2 mutations [19, 25, 28, 29].

1.3 Triple Negative Breast Cancer (TNBC)

Triple-negative breast cancer is an aggressive subtype of breast cancer with a higher risk of both local and distant recurrence and poor overall prognosis and it accounts for about 10-20% of all cases of breast cancer. TNBC is characterized by a lack of the expression of estrogen (ER), progesterone (PR) and human epidermal growth factor 2 receptors (HER2/neu), thus, no validated molecular targets for treatment are available. TNBC shows an estimated range between 10% and 20% of all breast cancers and having a family history of TNBC and/or BRCA mutations may increase the possibility of having TNBC [30]. It has been unclear how much BRCA1/2 mutation frequency may influence the expression of ER, PR, and HER2/neu [31]. With the development of targeted therapies for breast cancer patients, designation of treatment regimens has become more specific, and breast cancer patients with BRCA mutations should be treated differently from the patients without BRCA mutations. The exact relationship between BRCA status and TNBC is still under investigation.
1.4 Prevalence of BRCA1/2 Gene Mutations

The overall prevalence of pathogenic BRCA1/2 gene mutations is low in the general population (~0.2-0.3%). This prevalence is increased to approximately 3% in women with breast cancer, 6% in women with breast cancer onset at young age (before the age of 40), and higher prevalence is associated with a positive family history of breast or ovarian cancer (20%) [32]. Although it has been demonstrated that the overall prevalence of BRCA1 or BRCA2 oncogenic mutations may differ widely according to the study populations, other studies conclude that mutation prevalence is similar across diverse races and ethnicities [33-34].

1.4.1 Prevalence of BRCA1/2 Mutation in the World

Recent studies indicate that there is a significantly variation in the prevalence of BRCA1 or BRCA2 mutations among ethnic groups and geographical areas. Mutations in BRCA1 and BRCA2 are more common in certain racial/ethnic populations. There are common mutations in specific population that have been described among Ashkenazi Jews population [35] as well as patients of Spanish ancestry and that due to common ancient ancestor [36]. Founder BRCA1 and BRCA2 mutations have also been found in several European populations in Austria, Slovenia, Italy, France, Spain, Portugal, Belgium, the Netherlands (Holland), Germany, Czech Republic, Slovakia, Hungary, Greece, Cyprus, Denmark, Sweden, Norway, Finland, Iceland, the United Kingdom, Ireland, Poland, Latvia, Lithuania, Estonia, Belarus, and Russia [36]. Prevalence of BRCA1 and BRCA2 mutations varied widely between key clinical and demographic subgroups and across countries. Data from Table 1 were adopted from Armstrong et al. [37], which summarizes the prevalence of both genes mutation in several studies reported on BRCA mutation prevalence in patients with
different stage of breast cancer and different hormone receptor status. The highest germline mutation of \textit{BRCA} was reported in the United States [37].

Table 1: Prevalence of Germline \textit{BRCA} Mutation Internationally (Unselected for Family History, Age, Sex, or Ethnicity) [37].

<table>
<thead>
<tr>
<th>Country</th>
<th>Study Reference</th>
<th>Hormone Receptor status</th>
<th>Breast Cancer Stage</th>
<th>N at risk of mutation</th>
<th>% \textit{BRCA} 1</th>
<th>% \textit{BRCA} 2</th>
<th>% \textit{BRC A} 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>Sharma et al. [60]</td>
<td>TNBC</td>
<td>Mixed</td>
<td>207</td>
<td>11.1</td>
<td>4.3</td>
<td>15.4</td>
</tr>
<tr>
<td></td>
<td>Couch et al. [56]</td>
<td></td>
<td></td>
<td>1824</td>
<td>8.5</td>
<td>2.7</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>Tung et al. [61]</td>
<td>HR+/HER2-</td>
<td>Stages I-III</td>
<td>301</td>
<td>1.7</td>
<td>3.3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Bayraktar et al. [62]</td>
<td>Mixed</td>
<td>Stages I-III</td>
<td>488</td>
<td>3.7</td>
<td>2.5</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>Vidula et al. [63]</td>
<td>NR/unclear</td>
<td>Metastatic BC</td>
<td>195</td>
<td>15</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Spain</td>
<td>Gonzalez-Rivera et al. [64]</td>
<td>TNBC</td>
<td>Stages II-III</td>
<td>105</td>
<td>12.4</td>
<td>1.9</td>
<td>14.3</td>
</tr>
<tr>
<td>Australia</td>
<td>Wong-Brown et al. [65]</td>
<td></td>
<td>Mixed</td>
<td>439</td>
<td>5.9</td>
<td>3.4</td>
<td>9.3</td>
</tr>
<tr>
<td>Sardinia/Italy</td>
<td>Palomba et al. [66]</td>
<td>NR/unclear</td>
<td>Metastatic BC</td>
<td>726</td>
<td>1</td>
<td>1.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Germany</td>
<td>Fasching et al. [67]</td>
<td>Mixed</td>
<td>Metastatic</td>
<td>1462</td>
<td>1.4</td>
<td>2.9</td>
<td>4.3</td>
</tr>
<tr>
<td>France</td>
<td>Meynard et al. [68]</td>
<td></td>
<td>Metastatic</td>
<td>407</td>
<td>0.7</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>South Korea</td>
<td>Kim et al. [69]</td>
<td>NR/unclear</td>
<td>NR/unclear</td>
<td>471</td>
<td>1.5</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>Israel</td>
<td>Dagan et al. [70]</td>
<td>Female, Ashkenazi, Early onset</td>
<td>Locally advanced BC</td>
<td>13</td>
<td>23.1</td>
<td>30.8</td>
<td>53.8</td>
</tr>
</tbody>
</table>

Abbreviations: BC, breast cancer; \textit{BRCA}, BC susceptibility gene; HER2-, human epidermal growth factor receptor 2–negative; HR+, hormone receptor–positive; NR, not reported; TNBC, triple-negative BC.
1.4.2 Prevalence of \textit{BRCA1/2} Mutations in the Arab Countries

The incidence and mortality of cancer in Arab countries is increasing rapidly and this will obstruct human development and well-being. The most common cancer among women in Arab countries was Breast cancer with 49.9% and Ovarian cancer with 5% in 2012. WHO estimated that by 2030, there will be an increase of 1.8 fold in cancer incidence in the Gulf States and the Eastern Mediterranean region [38]. The number of cancer researches and publications from Arab region is considered low compared to worldwide publications and this due to less number of researchers in this field, the high cost of research and low research output [10]. This explains the rarity of high quality data on \textit{BRCA} mutations in Arab populations. Breast cancer is the first leading cause of all cancer deaths among Arab females with approximately rate of 14 to 42% of all female cancers in Arab region [18]. According to Abdulrashid et al. [18], it has been shown that HBOC patients in Arab countries have \textit{BRCA} mutations and the prevalence of \textit{BRCA2} mutations were more common (17%) than \textit{BRCA1} mutations (11%) among the breast cancer patients in the Arab region [18].

1.4.3 Prevalence of \textit{BRCA1/2} Mutations in the Gulf Countries

There are six member countries of the Arabian Gulf Cooperation Council that are: Saudi Arabia, Bahrain, Kuwait, Oman, Qatar and United Arab Emirates. Due to the migration from Africa, the first Eurasian populations formed and found to be genetically related to the original Arabs. In the GCC, populations are divided to genetic subgroups, about 48.1% of GCC populations was expats because of recent migration of migrant workers [14]. The fact of being descended from the same ancestors has led to an increase in genetic diseases among GCC populations and these factors contribute to a unique genetic makeup in their populations. According to Abulkhair et al. [27]
prevalence of \textit{BRCA1} gene mutation (82.5\% of mutations) in Saudi patients is more than \textit{BRCA2} gene mutations [27]. In Oman, Kuwait and Bahrain, the knowledge about the frequency of \textit{BRCA1/2} gene mutations among breast cancer patients is not yet available. Although it was reported that Qatari breast cancer patients with \textit{BRCA1} mutations carriers were triple negative breast cancer [14]. Although patients with hereditary breast and/or ovarian cancer (HBOC) in GCC countries have minimal contributions to \textit{BRCA1/2} mutations, which is the most reported form of cancer in Oman, there is a lack of data about the \textit{BRCA1/2} mutation role in breast cancer in the region [14].

The current population structure of the UAE is diverse; a result of a high percentage of expatriates (80-90\%, residing in the country), compared to a relatively small but diverse indigenous population admixed with immigrants from Yemen, Oman, North Africa, Iran, Baluchistan, India, and other neighboring regions. Approximately 11 million residents in the UAE, however, around 10\% only are Emirati citizens where endogamous marriage is common, making this segment of UAE population relatively homogenous [39-40].

The knowledge about the prevalence and types of \textit{BRCA1} and \textit{BRCA2} mutations involved in breast and ovarian cancer patients in UAE is unavailable. Given these considerations, this study aims to determine the prevalence of \textit{BRCA1} and \textit{BRCA2} mutations in patients with breast and/or ovarian cancer; leading to better care for patients in this region.
This study was conducted on patients from northern region of UAE including five emirates: Sharjah, Ajman, Ras Al Khaimah, Umm Al Qaiwain, and Fujairah. About one third of the population live in the Northern Emirates (Figure 4) [42].

Figure 4: United Arab Emirates map (Up) showing the northern regions of the emirates and UAE population percent by emirate (Down) [41].
1.5 Hypothesis

BRCA1 and 2 mutations contribute to the incidence of breast and ovarian cancer among northern Emirates patients.

1.6 Objectives of the Study

The main aims of this study are to:

1- Estimate the frequency of BRCA1/2 genes mutations among cases of breast and ovarian cancer in northern Emirates.

2- Determine the types of BRCA1/2 genes mutations associated with breast and ovarian cancer patients diagnosed at the Oncology Department, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, UAE.

3- Investigate the potential relationship between BRCA status and TNBC.

4- Identify possible novel BRCA1/2 mutations among UAE population.
Chapter 2: Materials and Methods

2.1 Study Design

This retrospective study was conducted on 262 patients who underwent \textit{BRCA} genetic testing to determine hereditary breast/ovarian cancer. 262 unselected breast and ovarian cancer patients, diagnosed at any age from July 2015 to August 2020, from the Oncology Department, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, UAE. In total, 262 patients were approached in this study during their out-patient visit to the Oncology Department in the hospital. Before the test, all patients had been informed about the implications of genetic testing, and interviewed in person for their family history of cancer. The oncologist filled the genetic test request form with patient information, onset of symptoms, familial history of cancer with specific reference to a history of breast or ovarian cancer and family tree for at least three generation. Medical records for all patients included in this study were reviewed retrospectively. This study was approved by The Institutional Review Board (IRB) in Ministry of Health and Prevention in Dubai, UAE (MOHAP/DXB-REC/AAA/No.111/2020).

2.2 Blood Collection and DNA Extraction

For each \textit{BRCA} gene analysis test request, a blood sample was obtained from each patient for DNA extraction. Approximately 6 mL of whole blood was collected in sterile tubes containing EDTA from all subjects enrolled in this study. Genomic DNA was extracted manually (following standard protocol) using the QIAamp Blood Mini Kit from QIAGEN manufacturer. The purity and concentration of the extracted DNA was assessed using Nanodrop 2000/2000c Spectrophotometer from
ThermoScientific. The ultimate concentration used was 25-50 ng/µL and the ratio of (A260/A280) was not less than 1.8 to assure the good quality of DNA.

2.3 BRCA Genes Analysis

2.3.1 Sanger Sequencing

BRCA1/2 gene analysis is based on the Gold Standard Sanger Sequencing. Human Genome build NCBI36 (*BRCA1*: Acc. nr: NM_007300, *BRCA2*:Acc. nr: NM_000059), M13 tailed PCR primers were designed and optimized for 100% coverage of the coding sequence of the *BRCA1* and *BRCA2* genes, including sections of approximately 50 bp up- and downstream of each exon (24 exons for *BRCA1* and 27 exons for *BRCA2*). All amplicons can be amplified and sequenced using one universal set of PCR conditions.

For sequencing, PCR using EasySeq™ PCR Plates (Figure 5). 96 well-plate containing dried down primer pairs in optimized concentrations, covering both *BRCA* genes. Columns 11 and 12 contain all amplicons, in a total of 15 PCR multiplexes, to be used as a No Template Control (NTC), to confirm all results are specific.

All primer sets have been optimized in concentration and design to be compatible with key chemistries [42].

Cycle Sequencing is performed with universal sequencing primers: Forward primers with -21M13 and reverse primers with M13Rev to enable cycle sequencing with universal primers (Figure 6).

Raw data of sequencing is analyzed with reference sequence using software (Sequencher v5).
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA1</td>
<td>BRCA1</td>
</tr>
<tr>
<td></td>
<td>exon 1</td>
<td>exon 10</td>
<td>exon 15</td>
<td>exon 23</td>
<td>exon 8</td>
<td>exon 11/3</td>
<td>exon 11/11</td>
<td>exon 13</td>
<td>exon 13</td>
<td>exon 20</td>
<td>MP-1</td>
<td>MP-3</td>
</tr>
<tr>
<td>B</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA1</td>
<td>BRCA2</td>
</tr>
<tr>
<td></td>
<td>exon 2</td>
<td>exon 11/1</td>
<td>exon 9</td>
<td>exon 16</td>
<td>exon 24</td>
<td>exon 9</td>
<td>exon 11/4</td>
<td>exon 11/12</td>
<td>exon 14/1</td>
<td>exon 21</td>
<td>MP-2</td>
<td>MP-4</td>
</tr>
<tr>
<td>C</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA1</td>
<td>BRCA2</td>
</tr>
<tr>
<td></td>
<td>exon 3</td>
<td>exon 11/2</td>
<td>exon 10/10</td>
<td>exon 17</td>
<td>exon 1</td>
<td>exon 10/1</td>
<td>exon 11/5</td>
<td>exon 11/13</td>
<td>exon 14/2</td>
<td>exon 22</td>
<td>MP-3</td>
<td>MP-5</td>
</tr>
<tr>
<td>D</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA1</td>
<td>BRCA2</td>
</tr>
<tr>
<td></td>
<td>exon 5</td>
<td>exon 11/3</td>
<td>exon 11/11</td>
<td>exon 18</td>
<td>exon 2</td>
<td>exon 10/2</td>
<td>exon 11/6</td>
<td>exon 11/14</td>
<td>exon 15</td>
<td>21&24</td>
<td>MP-4</td>
<td>MP-6</td>
</tr>
<tr>
<td>E</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA1</td>
<td>BRCA2</td>
</tr>
<tr>
<td></td>
<td>exon 6</td>
<td>exon 11/4</td>
<td>exon 11/12</td>
<td>exon 19</td>
<td>exon 3</td>
<td>exon 10/3</td>
<td>exon 11/7</td>
<td>exon 11/15</td>
<td>exon 16</td>
<td>25</td>
<td>MP-5</td>
<td>MP-7</td>
</tr>
<tr>
<td>F</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA1</td>
<td>BRCA2</td>
</tr>
<tr>
<td></td>
<td>exon 7</td>
<td>exon 11/5</td>
<td>exon 12</td>
<td>exon 20</td>
<td>exon 4</td>
<td>exon 10/4</td>
<td>exon 11/6</td>
<td>exon 11/16</td>
<td>exon 17</td>
<td>26</td>
<td>MP-6</td>
<td>MP-8</td>
</tr>
<tr>
<td>G</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
</tr>
<tr>
<td></td>
<td>exon 8</td>
<td>exon 11/6</td>
<td>exon 13</td>
<td>exon 21</td>
<td>exon 586</td>
<td>exon 11/1</td>
<td>exon 11/5</td>
<td>exon 11/17</td>
<td>18</td>
<td>27/1</td>
<td>MP-1</td>
<td>MP-9</td>
</tr>
<tr>
<td>H</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA1</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
<td>BRCA2</td>
</tr>
<tr>
<td></td>
<td>exon 9</td>
<td>exon 11/7</td>
<td>exon 14</td>
<td>exon 22</td>
<td>exon 7</td>
<td>exon 11/2</td>
<td>exon 11/10</td>
<td>12</td>
<td>19</td>
<td>27/2</td>
<td>MP-2</td>
<td>EMPTY</td>
</tr>
</tbody>
</table>

Figure 5: EasySeq™ PCR plates for BRCA1/2 Sequencing [42].
Figure 6: Forward primers with -21M13 and reverse primers with M13Rev.

M13 Forward primer (-21M13): 5’ TGTTAAACGACGGCCAGT 3’
M13 Reverse primer (M13Rev): 5’ CAGGAAACAGCTATGACC 3’
2.3.2 Next Generation Sequencing (NGS)

The Ion Torrent system (http://www.iontorrent.com) is unique among Next Generation Sequencing technologies in that the detection for sequencing is not based upon fluorescent dyes but rather measuring the pH change as the result of the release of a H+ ion upon nucleotide incorporation using semiconductor technology (Ion semiconductor sequencing). By sequentially adding nucleotides, the machine is able to detect which nucleotide has been incorporated into the growing strand.

The Oncomine™ BRCA Research Assay consists of two pools of AmpliSeq™ oligonucleotide primers and associated reagents to generate amplicon libraries for next-generation sequencing (NGS) on Ion Torrent™ platforms. The assay is designed to provide sensitive and comprehensive sample amplification of all coding regions of the human BRCA1 and BRCA2 genes and by using the Ion Chef™ System where the library preparation is automated.

2.3.3 Multiple Ligation-dependent Probe Amplification Analysis (MLPA)

The MLPA protocol (MLPA®DNA protocol) was performed using the instructions provided by the company http://www.mrc-holland.com. The MLPA assay was performed using a set of probes for BRCA1 (P002-D1 probe mix), for BRCA2 (P045/CHEK2 probe mix) and the EK5 SALSA MLPA reagents kit purchased from MRC-Holland (Amsterdam, The Netherlands). These probes were used to detect the deletion or duplication of exons in the human BRCA1/BRCA2 genes in order to determine genetic predisposition to hereditary breast and/or ovarian cancer. Briefly, 10 ng of genomic DNA in a volume of 5 μl was denatured for 5 min at 98°C, cooled and hybridized with MLPA probes (1.5 μl/sample) in the presence of SALSA MLPA buffer (1.5 μl/sample) for 16 h at 60°C. Ligation reaction was performed for 15 min at
54°C by adding 32 μl of ligation mixture (3 μl SALSA Ligase buffers A and B, respectively, 25 μl demineralized water, and 1 μl SALSA Ligase-65/sample) followed by heating to 95°C for 5 min. PCR amplification of the ligation product was performed according to the standard protocol. Briefly, 10 μl was added to the mixture consisting of (7.5 μl demineralized water, 2 μl SALSA PCR primers and 0.5 μl SALSA polymerase/sample) while the samples were left at 4°C or on ice. The samples were pre-heated to 60°C for 30 s, followed by 35 cycles of 95°C for 30 s, 60°C for 30 s, 72°C for 1 min, and a final extension for 20 min at 72°C. From each PCR reaction, 0.7 μl product was mixed with 9 μl of Hidi Formamide (Applied Biosystems Foster City, CA, USA) and 0.2 μl of GeneScan™ 500 LIZ™ dye Size Standard (Applied Biosystems, Foster City, CA, USA) and all fragments were separated by capillary electrophoresis on the ABI 3500XL Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Sequencer, SeqScape and GeneMarker, unique genotype analysis software’s designed for mutation detection, were used in the analysis.

2.4 Immunohistochemistry

A total of 127 patients with invasive breast carcinoma who underwent mastectomy were tested for ER, PR and the HER-2 status. Briefly, tissue samples from each patient were fixed in 10% neutral buffered formalin and embedded in paraffin. Sections were deparaffinized in xylene, rehydrated in a graded ethanol series, and stained using a Benchmark XT (Roche, Basel, Switzerland). Immunohistochemical analysis was carried out with the following monoclonal antibodies: anti-estrogen receptor (clone SP1, commercially with appropriate dilution, Roche, Basel, Switzerland), anti-progesterone receptor (clone 2E2, commercially with appropriate dilution, Roche, Basel, Switzerland) and anti-HER-2 (clone 4B5, commercially with
appropriate dilution, Roche, Basel, Switzerland). Staining was assessed according to the ASCO/CAP guidelines.

2.5 Statistical Analysis

The data, either clinical or genetic findings, were statistically evaluated. Statistical significance was performed to find the association between BRCA1 gene mutation and other parameters using a two-sided significance level of 5% and 1%. The statistical analysis was interpreted and analyzed using the SPSS software version 16 and Microsoft Excel Data Analysis Tool.
3.1 Study Selection and Patient Characteristics

Total of 262 cases were tested for \textit{BRCA1/2} mutation analysis. Patient’s clinical characteristics are presented in Table 2. The mean age at the time of diagnosis was 46.5 years (range 21-90). 71 out of 262 patients (27\%) had a positive family history for hereditary breast and ovarian cancer.

Of total 262, 248 (94.7\%) patients were females and 14 (5.3\%) were males. Total of 186 of the 262 patients (71\%) diagnosed with breast cancer and 22/262 (8.4\%) had ovarian cancer. Patients and relatives of cancer patients from Emirates citizen were the most common with total number 230 cases (87.8\%), 10 cases from gulf countries (3.8\%), 13 from Arab countries (5\%) and 9 (3.4\%) from other Asian, European, and African countries.
Table 2: Clinical Characteristics of 262 Patients.

<table>
<thead>
<tr>
<th></th>
<th>Wild type</th>
<th>All</th>
<th>BRCA1</th>
<th>BRCA2</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=224</td>
<td>n=38 (14.5%)</td>
<td>n=18 (6.9%)</td>
<td>n=20 (7.6%)</td>
<td>n=262 (100%)</td>
</tr>
<tr>
<td>Mean age at diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46.5 (21-90)</td>
</tr>
<tr>
<td>(Range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 or less</td>
<td>103</td>
<td>25 (65.8)</td>
<td>11 (61.1)</td>
<td>14 (70)</td>
<td>128 (48.9)</td>
</tr>
<tr>
<td>More than 45</td>
<td>121</td>
<td>13 (34.2)</td>
<td>7 (38.9)</td>
<td>6 (30)</td>
<td>134 (51.1)</td>
</tr>
<tr>
<td>Cancer type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>166</td>
<td>20 (52.6%)</td>
<td>10 (55.6%)</td>
<td>10 (50%)</td>
<td>(186/262) (71%)</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>17</td>
<td>5 (13.2%)</td>
<td>3 (16.7%)</td>
<td>2 (10%)</td>
<td>(22/262) (8.4%)</td>
</tr>
<tr>
<td>Other</td>
<td>30</td>
<td>3 (7.9%)</td>
<td>0 (0.0%)</td>
<td>3 (15%)</td>
<td>(33/262) (12.6%)</td>
</tr>
<tr>
<td>Relative of cancer</td>
<td>11</td>
<td>10 (26.3%)</td>
<td>5 (27.8%)</td>
<td>5 (25%)</td>
<td>(21/262) (8%)</td>
</tr>
<tr>
<td>patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>214</td>
<td>34 (89.5%)</td>
<td>17 (94.4%)</td>
<td>17 (85%)</td>
<td>(248/262) (94.7%)</td>
</tr>
<tr>
<td>Male</td>
<td>10</td>
<td>4 (10.5%)</td>
<td>1 (5.6%)</td>
<td>3 (15%)</td>
<td>(14/262) (5.3%)</td>
</tr>
<tr>
<td>Family History</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>50</td>
<td>21 (55.3%)</td>
<td>13 (72.2%)</td>
<td>8 (40%)</td>
<td>(71/262) (27%)</td>
</tr>
<tr>
<td>Negative</td>
<td>174</td>
<td>17 (44.7%)</td>
<td>5 (27.8%)</td>
<td>12 (60%)</td>
<td>(191/262) (73%)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emirates Citizen</td>
<td>196</td>
<td>34 (89.5%)</td>
<td>17 (94.4%)</td>
<td>17 (85%)</td>
<td>(230/262) (87.8%)</td>
</tr>
<tr>
<td>Gulf Countries</td>
<td>7</td>
<td>3 (7.9%)</td>
<td>1 (5.6%)</td>
<td>2 (10%)</td>
<td>(10/262) (3.8%)</td>
</tr>
<tr>
<td>Arabs</td>
<td>12</td>
<td>1 (2.6%)</td>
<td>0 (0.0%)</td>
<td>1 (5%)</td>
<td>(13/262) (5%)</td>
</tr>
<tr>
<td>Others</td>
<td>9</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>0 (0%)</td>
<td>(9/262) (3.4%)</td>
</tr>
<tr>
<td>ER, PR, HER2 receptor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNBC</td>
<td>21</td>
<td>7 (18.4%)</td>
<td>6 (33.3%)</td>
<td>1 (5%)</td>
<td>(28/127) (22%)</td>
</tr>
<tr>
<td>Non-TNBC</td>
<td>90</td>
<td>9 (23.7%)</td>
<td>2 (11.1%)</td>
<td>7 (35%)</td>
<td>(99/127) (78%)</td>
</tr>
<tr>
<td>Unknown#</td>
<td>111</td>
<td>22 (57.9%)</td>
<td>10 (55.6%)</td>
<td>12 (60%)</td>
<td>(133/262) (50.7%)</td>
</tr>
</tbody>
</table>

#Unknown means did not undergo Immunohistochemistry test in SKSH and information is not available. **Abbreviations:** ER; Estrogen Receptor, PR; Progesterone Receptor, HER2; Human Epidermal Growth Factor 2 Receptors, TNBC; triple-negative breast cancer, **BRCA**: Breast Cancer genes
3.2 Prevalence of Germinal BRCA Mutation

Of total 262, 224 patients and relatives of cancer patients had no mutation in BRCA genes (85.5%). 38 mutations were identified in BRCA1 and BRCA2 genes (14.5%, 38/262). 18 out of 38 mutations were in BRCA1 gene (6.9%) and 20 mutations were in BRCA2 gene (7.6%) as shown in Table.2. All other patients had wild type BRCA genes with benign or likely benign mutations. All reported mutations revealed pathogenic mutations except three novel mutations of large exon rearrangements with one large duplication involving four exons (Exon 3, 5, 6 and 7) with more than 11,658bp in BRCA1 gene and two deletions of either one or more exons in BRCA2 gene. Duplication/ deletions mutations were detected by Deletion/Duplication Analysis (MLPA) method.

Six different mutations in BRCA1 were identified in 18 patients diagnosed with BC or/and OC. The most common BRCA1 mutation was frameshift in exon 10: c.4065_4068delTCAA p. (Asn1355Lysfs*10) which was detected in 5 females and 1 male of one family with a breast cancer history. Same mutation was found in other 6 unrelated patients, 3 with breast cancer and 3 with ovarian cancer. The mean age for those patients with this type of mutation was 39.7 years (Figure 7 and Table 3).

Another BRCA1 frame shift mutation in exon 10 also c.2704delG (p. Glu902Asnfs*98) was detected in two members of one family (cousins) with BC family history. A frame shift mutation in exon 2 c.68_69delAG (p.Glu23Valfs*17) was detected in a woman with TNBC and positive family history. BRCA1 uncertain significant mutation c.4186-10G>A was found in intron side of one BC female patient.

13/18 patients with mutation in BRCA1 gene (~72%) had a family history of breast cancer with age range between 21 and 65 years old (Table 3).
Out of 38 BRCA positive cases, 20 patients revealed 12 different mutations in BRCA2 gene. The most common mutation detected in BRCA2 gene was the frame shift type. 6 BRCA2 mutations revealed in exon 11. Out of 20 patients, 8 (40%) had a positive family history of breast cancer. The c.771_775delTCAAA (p.Asn257Lysfs) mutation accounted for 15% of the cases with BRCA2 gene mutation, and c.2808_2811delACAA (p.Ala938Profs*21) was reported also in other 3 patients (15%), one with BC and two with OC with average age 49 and positive hormone receptors. Also, the c.1593dupA (p.Glu532Argfs*3) mutation found in two members of one family (sister and brother) and one patient all diagnosed with BC (15%). In addition, two unreported mutations were identified, first a deletion of exon 5 in an ovarian cancer female patient with a positive family history and another deletion of four exons (Exons 10-13) in male patient with malignant neoplasm of axillary tail of left breast (Table 4).
Figure 7: Sequencing chromatogram illustrating the most common mutations in *BRCA1* gene c.4065_4068delTCAA
Table 3: Characteristics of Patients with *BRCA1* Gene Mutation

<table>
<thead>
<tr>
<th>BRCA1 Gene Mutation</th>
<th>RS ID</th>
<th>Exon Number</th>
<th>Type of Mutation</th>
<th>N. of Patients (n=18)</th>
<th>%</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.4065_4068delTCAA (p.Asn1355Lysfs*10)</td>
<td>rs80357508</td>
<td>10</td>
<td>Frameshift</td>
<td>12</td>
<td>67</td>
<td>9 with positive family history, 6 members of 1 family with BC, 6 unrelated patients with 3 BC and 3 OC, 3 TNBC, average age 39.7</td>
</tr>
<tr>
<td>c.68_69delAG (p.Glu23Valfs*17)</td>
<td>rs80357914</td>
<td>2</td>
<td>Frameshift</td>
<td>1</td>
<td>6</td>
<td>Positive family history and TNBC</td>
</tr>
<tr>
<td>c.2704delG (p.Glu902Asnfs*98)</td>
<td>rs886040064</td>
<td>10</td>
<td>Frameshift</td>
<td>2</td>
<td>11</td>
<td>2 members of 1 family (cousins) with BC, average age 48</td>
</tr>
<tr>
<td>c.(80+1_81-1)dup (441+1_442-1)dup (MLPA)</td>
<td>3,5,6,7</td>
<td>Frameshift</td>
<td>Duplication</td>
<td>1</td>
<td>6</td>
<td>Positive Family history, OC patient, Age ≤ 45</td>
</tr>
<tr>
<td>c.4186-10G>A (VUS)</td>
<td>rs80358172</td>
<td>11</td>
<td>IVS</td>
<td>1</td>
<td>6</td>
<td>TNBC, Age >45</td>
</tr>
<tr>
<td>c.5323G>C (p.Glu1775Gln)</td>
<td>rs80357432</td>
<td>20</td>
<td>Missense</td>
<td>1</td>
<td>6</td>
<td>TNBC, Age >45</td>
</tr>
</tbody>
</table>

*The description of nucleotide sequence is in accordance with HGVS nomenclature. DNA mutations are numerated according to NCBI reference sequence NM_007300.3 for *BRCA1* Bold: most common mutation. Highlighted: Not reported (Novel) mutation. VUS-variant of uncertain significance. MLPA-Multiplex ligation-dependent probe amplification analysis. IVS-Intron Variant Sequence.
Table 4: Characteristics of Patients with \textit{BRCA2} Gene Mutation

<table>
<thead>
<tr>
<th>*\textit{BRCA2} Gene Mutation</th>
<th>RS ID</th>
<th>Exon Number</th>
<th>Type of mutation</th>
<th>Cases with \textit{BRCA2} Gene Mutation, Frequency of Disease Causing (n=20)</th>
<th>No. of Patients</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.4124delA (p.Glu1375fs)</td>
<td>rs886040512</td>
<td>11</td>
<td>Frameshift</td>
<td>(n=20)</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hormone receptors positive, average age 54, BC and OC patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c.3649delA (p.Arg1217fs*11)</td>
<td>rs864622134</td>
<td>11</td>
<td>Frameshift</td>
<td>OC patient, age >45</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>c.771_775delTCAA (p.Asn257Lysfs)</td>
<td>rs80359671</td>
<td>9</td>
<td>Frameshift</td>
<td>3 members of 1 family (2 sisters and aunty) age ≤ 45, all affected with BC</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>c.2808_2811delACAA (p.Ala938Profs*21)</td>
<td>rs80359351</td>
<td>11</td>
<td>Frameshift</td>
<td>Hormone receptors positive, average age 49, one BC and two OC patients</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>c.7007G>A (p.Arg2336His)</td>
<td>rs28897743</td>
<td>13</td>
<td>Missense</td>
<td>Hormone receptors positive, average age 54.5, Omani BC female and Prostate cancer male patient</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Deletion in Exon 5 (MLPA)</td>
<td>5</td>
<td></td>
<td>Frameshift \ Deletion</td>
<td>Positive family history, age ≤ 45, OC patient</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>c.1593dupA (p.Glu532Argfs*3)</td>
<td>rs397507272</td>
<td>10</td>
<td>Frameshift</td>
<td>2 members of 1 family (brother and sister) and 1 patient, all with BC</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>**c.4574A>T (p.His1525Leu) (VUS)</td>
<td>rs397507336</td>
<td>11</td>
<td>Missense</td>
<td>Hormone receptors positive BC, Positive family history, age > 45</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>c.2654A>G (p.Asp885Gly)</td>
<td>rs398122750</td>
<td>11</td>
<td>Missense</td>
<td>BC patient, age ≤ 45</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>c.4415_4418delAGAA (p.Lys1472fs)</td>
<td>rs397507333</td>
<td>11</td>
<td>Frameshift</td>
<td>BC patient, age ≤ 45</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>c.9109C>A (p.Gln3037Lys)</td>
<td>rs397508037</td>
<td>23</td>
<td>Missense</td>
<td>TNBC, BC patient, age ≤ 45</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Deletion in Exons 10-13 (MLPA)</td>
<td>10-13</td>
<td></td>
<td>Frameshift \ Deletion</td>
<td>Male patient with BC, age ≤ 45</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

*The description of nucleotide sequence variations is in accordance with HGVS nomenclature. DNA mutations are numerated according to NCBI reference sequence NM_000059.3 for \textit{BRCA2}. Bold: most common mutation. Highlighted: Not reported (Novel) mutation. VUS-variant of uncertain significance. MLPA-Multiplex ligation-dependent probe amplification analysis. ** This mutation was classified as Pathogenic in Varsome and VUS in ClinVar.
3.3 Association of *BRCA* Status and TNBC

Out of 262 cases enrolled in this study, 127 cases were tested for TNBC by immunohistochemistry test (Figure 8).

Figure 8: Immunohistochemical Staining. Representative examples of immunostaining for the protein markers ER, PR and HER-2. Negative or positive staining. All the slides were analyzed in x 4 and x 20 microscope objectives. Brown staining with light blue background refers to positive in ER, PR (B), and HER2 (A). Light blue background refers to negative (C) for ER, PR, HER-2 as shown alongside higher magnification.
Out of total 127 patients, 28 were TNBC (22%). 6 of these TNBC patients revealed a *BRCA1* gene mutations (21.4%) and one patient had a *BRCA2* mutation (3.6%). Other 21 patients didn’t show any mutation either in *BRCA1* or *BRCA2* genes (75%). Taken together, *BRCA1* mutation carriers were more likely to have TNBC than those of *BRCA2* carriers (Figure 9).

![Figure 9: Association of BRCA status and TNBC. Unknown indicated patients who did not underwent immunohistochemistry test in SKSH.](image)
3.4 Correlation of BRCA1 Gene Mutation with Different Factors

According to Chen et al. [31], BRCA1 carriers were more likely to have TNBC than those of BRCA2 carriers or non-BRCA1/2 carriers among patients with breast cancer [31]. Also, the correlation of BRCA1 gene mutation with different factors including TNBC, age and familial history was studied. The results showed that patients with BRCA1 gene mutation is significantly correlated with young age (\(p < 0.01\)), and family history (\(p < 0.05\)) while TNBC (\(p =0.17\)) alone was not associated with significant risk (Table 5).

Table 5: Correlation of BRCA1 Gene Mutation with Different Parameters

<table>
<thead>
<tr>
<th>Factor</th>
<th>BRCA1 Mutation</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td></td>
<td></td>
<td>n</td>
<td>(P)</td>
</tr>
<tr>
<td>No. of Patients</td>
<td>%</td>
<td>No. of Patients</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>262</td>
<td>0.000** (< 0.01)</td>
</tr>
<tr>
<td>(\leq 45)</td>
<td>11 (4.2%)</td>
<td>117 (44.7%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>45</td>
<td>7 (2.7%)</td>
<td>127 (48.5%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family history of BC or OC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>262</td>
<td>0.02* (< 0.05)</td>
</tr>
<tr>
<td>No</td>
<td>5 (1.9%)</td>
<td>186 (71.0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>13 (5.0%)</td>
<td>58 (22.1%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>6 (4.7%)</td>
<td>22 (17.3%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2 (1.6%)</td>
<td>97 (76.4%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Two-sided significance level set at 5%.

**Two-sided significance level set at 1%
3.5 Novel BRCA1/2 Mutations Among UAE Population in Northern Emirates

In Tables 3 & 4, 15 mutations were found and these mutations had been reported in different databases such as ClinVar, Breast Cancer Information Core (BIC), Varsome, AlAmut and/or HGMD2019. Three Novel mutations were detected by MLPA of a large exon rearrangements first, a duplication of 4 exons (Exon 3, 5, 6, and 7) in BRCA1 gene of a 43 years old emirate female who have been diagnosed as an OC patient with a family history of BC. Other two novel mutations were found in BRCA2 gene with a deletion of one exon (Exon 5) of a 39 years old female patient with family history of malignant neoplasm of ovary. Also large deletion of 4 exons (Exon 10-13) was detected in a 42 years old male patient with malignant neoplasm of axillary tail of left male breast (Figure 10).
BRCA1 gene: Duplication of 4 exons (Exon 3, 5, 6 & 7)

Case: a 43 years old emirate female who have been diagnosed as an OC patient with a family history of BC

Figure 10: Novel BRCA1/2 mutations detected by MLPA analysis workflow in GeneMarker software in this study. Part of an MLPA analysis report (GeneMarker v3.0.1) of **BRCA1** in A and **BRCA2** in B and C. The resulting peak ratios are plotted in the ratio plot above, and are reported for each case in the Report Table to the right. (Upper: Four Duplications, middle: one deletion, and bottom: Four Deletions).
Figure 10: Novel BRCA1/2 mutations detected by MLPA analysis workflow in GeneMarker software in this study. (Continued).
Figure 10: Novel BRCA1/2 mutations detected by MLPA analysis workflow in GeneMarker software in this study. (Continued).
Chapter 4: Discussion

Cancer poses one of the major health problem challenges worldwide. BRCA1/2 germline mutations are responsible for genetic predisposition and may increase the risk for breast and ovarian cancer [43]. To date, few studies have been reported on BRCA associated breast cancer in the Arab world. In the present study, unselected breast or/and ovarian cancer patients with one of the following high-risk criteria were eligible for the BRCA mutation analysis: a first-degree relation with a known mutation in a cancer susceptibility gene, history of TNBC in family member, male breast cancer, first or second degree relative with breast or ovarian cancer at age ≤45 years.

According to several studies and reports across the globe, prevalence of BRCA mutations varies widely among different populations. This variation can be attributed to the effects of founder mutations and environmental factors as well [44-45]. In Western countries, the genetic testing for breast cancer have become standard clinical management for selected patients. However, in Arab countries it is still less managed and genetic testing is not well-established yet. Only few studies reported BRCA mutations among breast and ovarian cancer in the Eastern and Arab countries. According to these studies, the BRCA1/2 mutation pooled estimate was about 20% among patients with both breast and ovarian cancer [12].

To date as per the documented literature, this is the first study in UAE that used genetic analysis methods to evaluate the prevalence of germline BRCA mutations in breast and ovarian cancer patients. The analysis was made on patients unselected for age, family history, gender or the expression of hormonal receptors status. This retrospective study enrolled patients between July 2015 and August 2020 at Sheikh Khalifa Specialty Hospital in Ras Al Khaimah, being the leading medical facility for
the Northern Emirates. The results show that the prevalence of the \textit{BRCA1/2} mutation among the 262 cases enrolled in this study is 14.5% (38/262).

The results of this study were consistent and can be further ascertained with a recent publication (March 2019) by Abdulrashid et al who report \textit{BRCA1/2} prevalence among HBOC/HBC based on 14 selected studies from different Arab countries. Eight studies from North Africa (3 Morocco, 2 Algeria, 2 Tunisia, 1 Egypt), four from Middle East (2 Lebanon, 1 Palestine, 1 Jordan) and two studies from GCC (1 Saudi Arabia and 1 Qatar) (Table. 1). In Middle East countries, the pooled prevalence of BRCA mutations was high ~ 28%, followed by the GCC countries with pooled prevalence ~22%, and the pooled prevalence was 16% in North Africa [18].

Globally, the prevalence of \textit{BRCA1/2} mutations was also estimated in an international publication by Armstrong et al. [37], where a 70 large studies reported \textit{BRCA1} and/or \textit{BRCA2} mutation prevalence data in BC patients across the following 12 countries: (33 USA), (11 South Korea), (4 United Kingdom), (4 Spain), (3 Germany), (3 Italy), (2 Canada), (2 Australia), (2 Russia), (2 France), (1 Japan) and (3 Israel). The prevalence of germline \textit{BRCA} mutations enrolled in unselected population on any basis other than breast cancer was clearly shown in Table.1, where the highest prevalence was reported in United States study with 15.4% and the lowest prevalence was reported as 2.7% in a French study [37].

The prevalence of \textit{BRCA1} and \textit{BRCA2} in this study population were 6.9% and 7.6% respectively. Data from Arab region studies showed that \textit{BRCA2} is the most common type mutation among HOBC patients with an estimated pooled prevalence of 17% [18]. Likewise, among Asian populations \textit{BRCA2} mutations are more common. Western population showed a different pattern, where \textit{BRCA1} mutations were more common. One study on Saudi patients reported the frequency of \textit{BRCA1} mutations as
10.7% [27]. BRCA mutations prevalence could vary widely within demographic groups and over countries.

In this study, 18 mutations were reported of both BRCA genes in 38 breast and/or ovarian cancer patients. In addition to sequencing method, MLPA was also performed for all patients’ samples. The results showed a number of rearrangement of BRCA gene exons either deletion or duplication of one or more exons in BRCA1/2 genes. Most of these mutations were frameshift deletions (10%) in BRCA2, duplications (5.6%) in BRCA1 gene. Some common BRCA1/2 mutations were found and reported previously in the GCC, Arab Countries and world populations. For example, the most abundant BRCA1 mutation in this study c.4065_4068delTCAA (p.Asn1355Lysfs*10) was found twelve times in eight female patients and one male patient with strong family history of breast cancer and also this mutation is prevalent in GCC, Middle East, Europe populations [14, 36].

Another mutation was found in BRCA1 gene, c.66_67AG (p.Glu23Valfs*17) which was detected in a migrant woman worker from India with breast cancer. Also, this mutation accounted for the 30.4% of the BRCA1 mutations and is common in Spanish and Ashkenazi Jewish populations. Ovarian cancer patients are more likely to carry this type of mutation [36].

Three most common pathogenic frameshift mutations found in BRCA2 gene are c.1593dupA (p.Glu532Argfs*3), c.771_775delTCAA (p.Asn257Lysfs) and c.2808_2811delACAA (p.Ala938Profs*21). All these mutations were detected in emirate families with breast cancer history. First c.1593dupA (p.Glu532Argfs*3), was found in one sister and brother, the second c.771_775delTCAA (p.Asn257Lysfs) in two sisters of another family and the third mutation c.2808_2811delACAA (p.Ala938Profs*21) found to be one of the common mutations in GCC populations.
A missense mutation c.7007G>A (p.Arg2336His) was found twice in Omani female and male cancer patients and this mutation has been reported in populations of Middle East, Saudi Arabia and Qatar [14][36]. According to a review by Rahman, S., and Zayed, H. [14], ClinVar reports confirmed the pathogenicity for BRCA2 c.7007G > A and that it can cause disease. Also, this mutation was found in Hong Kong [14].

Triple negative breast cancer is aggressive molecular subtype among other breast cancer cases because it lacks ER, PR and expression of HER2 receptors. Thus, no validated molecular targets are available for the treatment and therefore considered a high-risk breast cancer with overall poor prognosis. Of all breast cancers, TNBC accounts for about 15%. Reports showed that TNBCs are the predominant cancer subtype with a germline BRCA mutation in which the prevalence of the BRCA mutation is 10 to 30% [46-48]. BRCA1 mutation shown also to occur more frequently at younger age [23]. In this study, BRCA1/2 mutation in TNBC patients was evaluated. Among all 127 patients who underwent immunohistochemistry staining in Pathology Department of Sheikh Khalifa Specialty Hospital, 28 patients (22%) were identified with immunohistologically confirmed invasive, ER, PR, and HER2 negative BC.

A total of 7 (25%) BRCA mutations were identified in 28 patients who had TNBC. In the current screening, the prevalence of the BRCA1 germline mutation was about 21.4% (6/28), and the prevalence of the BRCA2 germline mutation was about 3.5% (1/28). These data revealed that the prevalence of BRCA1 mutations is more common than BRCA2 in TNBC patients, and BRCA1 mutation is found more common among TNBC patients but not significantly correlated with the BRCA1 mutation.

These findings are consistent with the data from international studies demonstrating that BRCA1 gene mutation were more common (85.7%) than BRCA2 gene mutation (14.3%) in TNBC [36]. Furthermore, literature revealed that TNBC is
the predominant molecular profile in patients with a germline BRCA1 mutations [49-50]. Several studies have evaluated the prevalence of BRCA1 mutations in patients with TNBC. Reports showed that the prevalence of BRCA1 mutations in TNBC patients varies between populations and from one study to another. Most studies included patient populations selected for young age at diagnosis (< 50 years) and reported a prevalence ranging from 7.6 to 23% [51-54]. While other studies evaluated the frequency of BRCA1 mutations in unselected TNBC patient populations. The BRCA1 mutation frequency was 6.5% when unselected women with TNBC were evaluated [55]. When selected by age, the frequency of BRCA1 mutations was 2.8% in patients diagnosed at age ≥ 50 years [55]. One study showed that BRCA1 mutations were detected in 9% of unselected TNBC patients and in 4.8% of women diagnosed at age ≥ 50 years [56]. In one large study of unselected TNBC patients (n = 1824), the prevalence of BRCA1 mutation was 8.5%. For the 50–59 age group, the prevalence was 7.4% [57]. In this study 21.4% (6/28) of TNBC patients, unselected for age and family history, were found to carry BRCA1 mutation. These findings are with the agreement with previous reports for Asian populations [44-45, 58-59], where BRCA1-mutated tumors were ER- or PR-negative and had a higher histological grade, but exhibited less medullary carcinoma compared to the Western population [25]. Studies have shown that TNBC with BRCA1 has a unique morphology and immunohistochemical phenotype that explains the susceptibility of breast cancer women with germline BRCA1 mutations to be triple negative [30]. TNBC with family history may influence the BRCA mutation. Although several studies have evaluated the prognostic role of the BRCA1/2 mutation in patients with TNBC, these studies have shown inconclusive results. The present study is a small scale screening analysis and not all patients underwent immunohistochemistry. Therefore, a possible association
between TNBC, BRCA carriers, and positive family history was not made involving all breast cancer patients enrolled in this study. Thus, a conclusion needs more data collection and further investigation.

Three novel large exons rearrangement of both BRCA1 and BRCA2 genes using MLPA were found in two female ovarian cancer patients with strong family history and one breast cancer male. One large BRCA1 genomic rearrangements duplication in exon 3, 5, 6 and 7 (c.(80+1_81-1)_(441+1_442-1) dup) was detected in a 43 years old female patient with ovarian cancer and considered a novel mutation as it was not reported in any database yet. As reviewed by Rahman and Zayed [14], the genomic rearrangement in BRCA1 that was found in a study of 43 Omani BC female patients which only exon 3,5,11,13 and 20 were tested by direct Sequencing and MLPA and they identified four large genomic rearrangement were revealed: two duplications and two deletions in exons 1 and 2 [14].

In BRCA2, one case with a deletion of exon 5 was detected in ovarian cancer female patient and there is no available data of the contribution of BRCA2 mutations located on exon 5. Another large deletion of four exons in BRCA2 gene was identified in breast cancer young male patient and similar to this mutation (deletion of 3 exons 10-12) was reported once in the literature [60].
Chapter 5: Conclusion and Future Recommendations

In conclusion, this study provides a baseline information on the prevalence of BRCA mutation in hospital based population in northern emirates. The current findings indicate that 14.5% of unselected patients enrolled in this study carried BRCA mutations. The present data provide an evident contribution of BRCA1 and BRCA2 mutation in patients of breast and ovarian cancer. One limitation of this study is the low number of patients who underwent TNBC testing. Furthermore, the results suggest to collect more data regarding the status of TNBC and BRCA mutations to make a conclusive data whether TNBC could be an effective threshold for BRCA genetic test and whether to be considered in genetic testing guidelines in UAE in the future. Moreover, this study could be extended further by investigating the possible association between patients with positive BRCA mutations and the clinical histopathology of the cancer.

To date, there is no large scale study conducted in Arab countries for BRCA mutations including UAE. Therefore, it is important to conduct a large scale investigation to better understand the contribution and the frequency of BRCA mutations in patients with TNBC. This will contribute to genetic counseling for mutation carriers, offer better disease management and will definitely play an important role in establishing local diagnostic frame for genetic testing.
References

