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Abstract 

Cardiovascular arrhythmia diseases are considered as the most common diseases that 

cause death around the world. Abnormal arrhythmia diseases can be identified by 

analyzing heart rhythm using an electrocardiogram (ECG). However, this analysis is 

done manually by cardiologists, which may be subjective and susceptible to different 

cardiologist observations and experiences, as well as to noise and irregularities in those 

signals. This can lead to misdiagnosis. Motivated by this challenge, an automated heart 

rhythm diagnosis approach from ECG signals using Deep Learning has been proposed. 

In order to achieve this goal, three research problems have been addressed. First, 

recognizing the role of each single-lead of a 12-lead ECG to classify heart rhythms. 

Second, understanding the importance of static data (e.g., demographics and clinical 

profile) in classifying heart rhythms. Third, realizing whether the static data can be 

combined with the ECG time series data for better classification performance. In this 

thesis, different deep learning models have been proposed to address these problems 

and satisfactory results are achieved. Therefore, using these knowledges, an effective 

hybrid deep learning model to classify heart rhythms has been proposed. As per 

knowledge obtained from relevant literature, this is the first work to identify the 

importance of individual lead and combined lead as well as the importance of 

combining static data with ECG time series data in classifying heart rhythms. 

Extensive experiments have been performed to evaluate this algorithms on a 12-lead 

ECG database that contains data from more than 10,000 individual subjects and 

obtained a high average of accuracy (up to 98.7%) and F1-measure (up to 98.7%). 

Moreover, in this thesis, the distribution of heart rhythms from the database based on 

heart rhythm type, gender, and age group have been analyzed, which will be valuable 

for further improvement of classification performance. This study will provide 

valuable insights and will prove to be an effective tool in automated heart rhythm 

classification and will assist cardiologists in effectively and accurately diagnose heart 

disease. 

 

Keywords: Artificial Intelligent, Deep Learning, Multimodal, ECG, Arrhythmia, 

Cardiovascular Diseases. 
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Title and Abstract (in Arabic) 

 الثابتهالوصفية والبيانات للقلب  المخطط الكهربائي من بيانات يةالقلب اتيقاعالإتصنيف 

 لتعلم العميق باممثلا الذكاء الاصطناعي ستخدام اب

 صالملخ

الأمراض شيوعًا، والتي تسبب الوفاة في العالم. تعتبر النوبات القلبية وأمراض القلب من أكثر 

يمكن التعرف على إيقاعات القلب الغير طبيعية عن طريق جهاز التخطيط الكهربائي للقلب 

(ECG حيث يتم إجراء هذا التشخيص بواسطة أطباء القلب، ومع ذلك، قد يكون التشخيص .)

مخطط غير خالية من الضوضاء الذاتي يختلف من اخصائي لآخر رغم الخبرة، لأن اشارات ال

ً لذلك، ولأهمية هذا الموضوع،   تموالترددات المختلفة مما يؤدي الى التشخيص الخطأ. تجنبا

توظيف الذكاء الإصطناعي ممثلاً بالتعلم العميق في تشخيص أمراض القلب من خلال النشاط 

جهاز الكهربائي للقلب ( التي تنُتج عن طريق الlead-12صورة ) 12الكهربائي للقلب المكون من 

تقدم كبير في هذا الصدد،  إحراز تم بواسطة أجهزة الاستشعار التي توضع حول جسم المريض. لقد

( تحتوي lead-12تجارب شاملة في تقييم الخوارزميات على قاعدة بيانات مكونة من ) وأجُريت

بحثية: أولاً، ما هي للإجابة على ثلاث أسئلة  يسعىعلى أكثر من عشرة آلاف مريض. هذا العمل 

في تصنيف الإيقاعات القلبية. ثانياً، فهم أهمية البيانات الوصفية الثابته )مثل  leadأهمية ودور كل 

البيانات الطبية السريرية والبيانات الديموغرافية( في تصنيف الإيقاعات، ثالثاً، ما إذا كان يمكن 

كهربائي الزمنية لتخطيط القلب للحصول على دمج البيانات الوصفية الثابته مع بيانات المخطط ال

نتائج أفضل في التصنيف. يعتبر هذا العمل البحثي الأول من نوعه في أهمية تحديد الاستفاده من 

الفردي والمشترك بالإضافة الى أهمية البيانات الوصفية الثابتة مع الزمنية في تصنيف  leadالـ  

تم ، وبناءً على مخرجات التجارب، تي تم الحصول عليهاال إيقاعات القلب. باستخدام هذه المعرفة

)تصل  F1-measureونسبة الـ  %(98.7نسبة مئوية عالية في التصنيف )تصل الى  الى التوصل

بتوزيع وتصنيف إيقاعات  في هذا العمل البحثي أيضًا يامقتم العلاوة على ذلك ، %(. 98.7الى 

القلب من قاعدة البيانات بناءً على نوع كل إيقاع والفئة العمرية، والتي ستكون خطوة مهمة في 

تحسين أداء التصنيف. هذه الدراسة ستوفر نظرة ثاقبة، وستثبت انها فعالة في التصنيف الآلي 

 مراض القلب.لإيقاعات القلب والتي ستسُاعد أطباء القلب في التشخيص الفعال لأ

، بلالتعلم العميق، تخطيط القلب، أمراض الق، الذكاء الاصطناعي: مفاهيم البحث الرئيسية

.إيقاعات القلب الغير طبيعية  
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Chapter 1: Introduction 

1.1 Overview 

Cardiovascular diseases (CVDs) are the most common diseases that cause 

death all over the world. CVDs are considered as the most prevalent disease 

worldwide. More than 17.9 million people yearly meet the fate of death globally from 

CVDs (WHO, 2017). Moreover, CVDs cause 3.9 million deaths in Europe according 

to European Cardiovascular Disease Statistics (European Cardiovascular Disease 

Statistics, 2017). Furthermore, Heart and Stroke statistics reported that more than 

840,000 deaths were recorded in 2016 in the US (Nearly half of US adults have 

cardiovascular disease). In addition, a survey conducted on more than 1000 individuals 

by Cleveland Clinic Abu Dhabi reported that the UAE residents who took part in this 

study, have at least one heart disease (Cleveland Clinic Abu Dhabi, 2019). 

However, CVDs could be prevented through analyzing the heart signals, such 

as Electrocardiogram (ECG). ECG is a significant tool in the medical health domain 

that could diagnose and identify abnormal heart conditions that can lead to CVDs. In 

addition, it is a valuable indicator as a health assessment for cardiologists that could 

detect and classify heart patterns.  

ECG is a popular and cost-effective test that reflects the picture of the cardiac 

condition signals. Typically, ECG signals can be measured using single-lead or 

multiple-lead electrically on the surface of the skin by the electrodes. Those leads are 

distributed on different parts of the body in which they give measurement records that 

depend  on the number of electrodes distributed on the area of the body. Electrodes 
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can detect the heart electrical signals and pass them through connected cables to 

produce the ECG graphs which are represented in the ECG machine.  

 There are various automated algorithms and techniques available that can help 

cardiologists identify and classify heart rhythms (Luz et al., 2016; Matias et al., 2021). 

In this work, deep learning techniques have been proposed to classify the heart rhythm 

using a 12-lead database and compared the performance of different Deep Learning 

models on several variations (single-lead vs combined lead, static vs time-series) of 

the 12-lead ECG data. 

1.2 Motivation 

Monitoring heart activity for patients with heart disease and other heart 

condition patterns leads to better and controlled life (Serhani et al., 2020a). Identifying 

heart disease from ECG needs interpretation skills and deeper understanding. 

Experienced cardiologists can identify heart rhythm problems by manually examining 

ECG data. However, a study suggests that even after years of experience in this field 

sometimes experienced cardiologists misinterpreted in analyzing and distinguish the 

irregular beats due to human error (Sampson et al., 2015).  

Therefore, distinctive automated techniques to identify heart rhythm from ECG 

have been developed to help cardiologists in mitigating the risk of misdiagnosis and 

explore appropriate treatment (Singh et al., 2018) 

Many of these automated techniques apply machine learning including deep 

learning techniques to automatically classify various heart conditions, such as normal 

and abnormal rhythm, and had been proven to achieve high accuracy.  
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This work is motivated by the possibility of enhancing these intelligent 

automation of heart disease classification and thus developing a model that would 

greatly assist caregivers in vital decision-making. 

Furthermore, this thesis is also motivated by the possibility of improving 

prediction by combining static data with time-series data, because addition of static 

with time-series data has not been well investigated for ECG based heart rhythm 

classification problem. Finally, this work is also motivated to investigate the 

effectiveness of different leads of the 12-lead ECG as this initiative was also largely 

ignored in the literature. 

1.3 Problem statement 

This work aims to study and develop an efficient and effective machine 

learning technique to classify heart rhythms using 12-lead ECG recording data. From 

this point, three research questions have been identified to achieve this goal. these 

questions are as follows: 

1. What is the relative importance of each lead in a 12-lead ECG in classifying 

heart rhythms? This is addressed in Section 6.3.3.  

2. What is the importance of static data (e.g. demographic and clinical profile) in 

classifying heart rhythms? This is addressed in Section 6.4. 

3. Can clinical static data be combined with ECG time-series data to improve 

classification accuracy? This is addressed in Section 6.6. 

Extensive study, design, development, and experiments have been done to 

address the above research questions, and this has lead to the achievement of the 
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objective of developing an efficient model to classify heart rhythms from ECG data 

based on deep learning. 

1.4 Contribution 

In this thesis work, deep learning models have been developed to answer three 

research questions, mainly, what is the importance of each lead in a 12-lead ECG in 

classifying heart rhythm, what is the importance of static data in classifying heart 

rhythms, and whether static data can be combined with the ECG data to improve 

classification accuracy. 

In this regard, a comprehensive study, design, development, and experiments 

have been terminated using large number of individual subjects. The collected 

database containing 12-lead ECG recording data of more than 10,000 patients with 

different heart rhythms. The rhythms that contain at least 1,500 subjects have been 

selected. This is done to ensure the reliability of the results. Then, the data is organized 

into three different subsets, so that each subset consists of only two rhythms: normal 

and abnormal rhythm, to simplify the classification problem as a binary classification. 

The first subset consists of normal Sinus Rhythm (SR) data and the anomaly Sinus 

Bradycardia (SB) data. The second subset contains normal Sinus Rhythm (SR) along 

with anomaly Sinus Tachycardia (ST). The third subset has normal Sinus Rhythm (SR) 

and anomaly Atrial Fibrillation (AFIB). Each experiment was conducted based on the 

three subsets. 

In order to address the first question, a 2D-Convolutional Neural Network has 

been adopted which uses the dynamic ECG time-series data as an input. Then, the 

classification performance evaluated by training the model with all the 12-lead signals 
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and repeating the same experiment by training the model with each individual lead 

(single-lead) of the 12-lead ECG signal. Accordingly, the results were analyzed and 

proved statistically that the combined lead performs significantly better than single-

lead. The second question has been addressed by using a Multi-layer Perceptron 

(MLP) architecture to train on the static data that are available in the same dataset. The 

static data of each subject contains some demographic attributes (age, gender, etc.) as 

well as a statistical summary of the dynamic ECG time-series data. It has been found 

that the static data can give some good prediction accuracy (around 80%), however, it 

was less than the accuracy obtained from the 2D-CNN that used the ECG time-series 

data. This finding could be helpful for future research. 

Moreover, by understanding the previous conclusions, the study focused on 

identifying an efficient deep learning model for the classification task using the 

combined lead dynamic ECG time-series data. Thereupon, a hybrid multi-modal deep 

learning model have been proposed, which consists of a One-Dimensional 

Convolutional Neural Network with Bidirectional GRU and Bidirectional LSTM (1D-

CNN-BiGRU-BiLSTM). It is shown empirically that this model significantly 

outperformed all other architectures in terms of classification performance. 

Finally, to answer the third question, several multi-modal deep learning models 

that can combine static data with dynamic time-series data have been proposed. 

However, none of the multi-modal models achieved better accuracy than the models 

that used only ECG time-series data. It can be concluded that the static data does not 

help in improving the classification results.  

Based on the knowledge obtained from related literature, this is the first work 

that vows to address these three important questions for a more accurate diagnosis 
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using the newly published database. It is understood that this study will provide 

valuable insights into heart rhythm classification problems and will deliver an effective 

and efficient tool for classifying heart rhythms. This will not only be useful for 

healthcare professionals, but also will pave the way for future study, research, and 

developments. For example, these research results will be useful in building more 

comprehensive heart disease diagnosis research initiatives that utilize other data 

including ECG such as patient clinical profile, clinical images of heart collected by 

Imaging devices like Echocardiogram. Also, the proposed technique can be used to 

develop a diagnostic tool for physicians. 
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Chapter 2: Background – ECG and Deep Learning 

This chapter introduces a description of the main characteristics of the 

Electrocardiogram (ECG). Furthermore, it presents a summarization about the Neural 

Network, followed by Deep Learning (DL), Convolutional Neural Network (CNN), 

and Recurrent Neural Network (RNN). 

2.1 Electrocardiogram 

Electrocardiogram also called ECG or EKG, is a health assessment tool that 

records bioelectrical heart activities. Examining heart status can be done also by 

ambulatory or wearable devices which is prevalent in daily application, such as smart  

watches that use photoplethysmogram (PPG) as a sensor to motitior heart rate and 

cardiac cycle (Bashar et al., 2018; Shen et al., 2019). ECG with 12-lead is efficient and 

often used in healthcare which gives clear measurements of 12 different heart view 

dimensions, hence, decisions can be utilized by cardiologists to diagnose common 

heart problems, such as regular and irregular rhythms.  

The standard ECG uses ten electrodes in which generates the 12-lead 

(Goldberger et al., 2013). The limb leads consist of six leads placed on the arms and 

calves are represented as lead I, II, III, aVL, aVR, and aVF. On the other hand, the rest 

of the leads are called precordial leads that are placed on the precordium and described 

as V1, V2, V3, V4, V5, and V6. Figure 1 visualizes the 12-lead ECG signals using ten 

electrodes distributed through a human body. 
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Figure 1: Visualization of the 12-lead heart electrical signal using ten electrodes 

ECG typically produces heart wave pattern signals through the electrodes. At 

the start of the heart cycle, the heart relaxes and expands while receiving blood into 

the ventricles through the atrial. Therefore, the atrial chambers pump the blood into 

the ventricles and then relax. Those electrical signals can examine the changes in heart 

activity. The normal ECG cycle contains P wave, QRS complex, and T wave. The P 

wave indicates the atrial depolarization that spread from the sinoatrial node (SAN) to 

the atrial. The Q, R, and S waves are called as QRS Complex. QRS complex depicts 

the process of ventricular depolarization. Then, the T wave occurs after the QRS 

complex which illustrates the ventricular repolarization. U wave is a small deflection 

wave that follows the ventricular repolarization, it may not always be noticeable in the 

ECG. RR interval is the time elapsed between the two successive R waves of the QRS 

signal. Figure 2 briefly expresses the P, Q, R, S, and T waves. 
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Figure 2: Basic ECG wave 

2.2 Neural networks 

Artificatl Intelligence (AI) refer to a comprehensive term that simulates the 

human intelligence such as Machine Learening (ML) including deep learning (DL). 

Neural Networks (NN) is one of the most popular and efficient computing techniques, 

which has its root in Artificial Intelligence (AI). It is usually used for trading systems 

and tasks such as classification, clustering, and prediction. Figure 3 exposes in detail 

the distinction between AI and other related terminologies. 

 

Figure 3: AI terminologies 
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The history of the neural network started when Walter Pitts and Warren 

McCulloch implemented a model based on the neural networks inspired by the human 

brain, which exhibit that the computable logic function could suitably learn. In 1950, 

Marvin Minsky and Dean Edmonds, created the first neural network, then many of the 

concepts were proposed such as backpropagation. Since 1943, many researchers 

introduced realistic models that provide computing power that allows the potential 

ability of the computational neuron network models to act as biological neurons that 

have nerve cells connected to each other. Therefore, it allows the information to flow 

through the connected neurons along with the associated weight to solve a particular 

task. However, artificial neurons are applied to various numbers of complex situations 

where there are large datasets in order to train static data and make predictions for 

multiple inputs in such there is no time constrain. 

 

Figure 4: Single perceptron neural network 

The above figure is a graphical representation of a single neural network 

perceptron that learns only linearly separable patterns e.g. XOR logic gate. The 

following elements can be seen from the figure: input layer (𝑥𝑖), associated weights 

(𝑤𝑖), net sum (Σ), Bias (𝑏𝑖), activation function (g), and output layer (𝑦). The input 
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layer (𝑥𝑖) of the perceptron passes the input values (data) for further processing, then 

the input values are processed along with each connection by associated weights (𝑤𝑖). 

Those processed values are then passed to the net sum (Σ) to calculate the total sum. 

The bias is an additional parameter that adds a threshold value to adjust the output 

along with the weighted sum of the input. Then, the activation function (g) will be 

applied to the net sum of the weighted inputs. Activation function (g) is mainly used 

to introduce nonlinearities in the network. The most common activation functions are 

sigmoid, hyperbolic tangent, softmax, and rectified linear unit. Finally, the output layer 

(𝑦) calculates the prediction score based on the inputs, the associated weights, and the 

activation function as exhibited below. 

 i.e., y = g.( ∑ 𝑥𝑖  . 𝑤𝑖
𝑛
𝑖  )  

Generally, the perceptrons are trained using the forward and backpropagation 

method to calculate the gradient descent of neural network parameters. In particular, 

the forward propagation sequentially calculates intermediate variables which proceed 

from the input to the output layer. The backpropagation sequentially calculates the 

gradients of intermediate variables in the reversed order of the neural network (Russell 

& Norvig, 2009). 

In terms of multi-layer perceptron (MLP), the architecture presented and 

arranged as layers, each neuron of each layer will repeat the same process as clarified 

above, then the output result of the particular neuron is calculated. The MLP has the 

same structure as a single perceptron neural network with primarily two or more 

hidden layers. 
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2.3 Deep learning 

In recent years, Deep Learning (DL) has been widely used in many areas, such 

as computer vision, speech recognition, image verification, classification, and many 

more. DL is a part of the Machine Learning family. Machine learning techniques are 

limited in terms of capability to extract features from the raw data that requires more 

concentration to carefully design hand-crafted high-quality features to proper 

representation patterns. An image, for instance, is represented by channels and arrays 

of pixels that require large volumes of data to train a network, hundreds of features to 

be extracted, and a huge amount of computational power to solve the network 

complexity. These limitations can be solved by deep learning. DL has the advantage 

of automatically extracting useful features due to the ability to deal with sophisticated 

and heterogeneous network structures from the substantial and high dimensional data. 

The nature of deep learning able to analyze the presented patterns efficiently 

and effectively. However, some of the complex problems start to decrease whenever 

the layers increase, and this is basically because of the scalability of the DL network. 

Typically, the amount of training data, in addition to the size of the network help the 

DL approach to perform well.  

Nowadays, the deep learning accuracies of different approaches energetically 

enhanced the state of the art application tools due to various DL architectures (Abiodun 

et al., 2018; Khan et al., 2020), for example, Convolutional Neural Networks (CNN) 

often used for learning from images, and Recurrent Neural Networks (RNN) for 

learning from temporal data. These variations are briefly introduced in the following 

paragraphs. 
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2.3.1 Convolutional Neural Network   

Convolutional Neural network (CNN) sometimes called ConvNet, is one of the 

most popular variants of deep learning that is successfully used for computer vision. 

Conceptually, its structure performs well in detecting objects, and handwritten digits. 

The big data and the trend of the improvement in the technology accelerated the 

research in CNNs that lead to a series of improvements.  

Therefore, significant improvement has been achieved to improve the 

representation of CNNs architectures such as using different parameters, 

regularization, loss, layers, and activation function. Moreover, the learning 

methodology helps the CNN to be performed to complex, heterogeneous, and large-

scale data such as ResNet, AlexNet, VGGNet, and GoogLeNet that are used for 

different tasks. It is often used in many medical research fields to diagnose diseases 

from the images of ECG, X-ray, and RMI which supports the doctors in diagnosis and 

treatment.  

There are three main layers in the CNN architecture: convolutional, pooling, 

and fully connected layer. The convolutional layer has a mathematical operation that 

is used to extract various features from the input data. The convolution is performed 

between the input and a filter of a particular size to determine the represented 

information of the input such as horizontal and vertical edges. The output of the 

convolutional layer is termed as a feature map that fed to other layers in order to learn 

other features. The pooling layer mostly following the convolutional layer in which 

decreases the size of the convolved feature map to eliminate the computational cost. 

Finally, the fully connected layer (FC) also known as the dense layer, in which it 

connects the neural network layers by a learning weight and bias vector. It is usually 
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placed before the last output layer of the CNN architecture, where the output layer is 

used to calculate the probability distribution of each class. Figure 5 below shows the 

three layers of CNN architecture. 

 

Figure 5: CNN architecture 

2.3.2 Recurrent Neural Network 

Recurrent Neural Networks (RNN) is a branch of Artificial Neural Networks 

that became popular due to the high dynamical behavior that contains cyclic 

connections for processing sequence of values across time, which makes it performs 

successfully in identical tasks for sequential data and produce an output in every time 

steps. This mechanism allows RNN to heavily demonstrate tasks such as time-series 

prediction, and language translation (LeCun et al., 2015). However, RNNs have 

limitations that are limited to the ability of time backpropagation which makes it 

unstable to capture long-term dependencies.  

Hochreiter and Schmidhuber (1997) have presented long-short term memory 

(LSTM) which has input gates that gain the knowledge stored in the memory cell 

block, forget gate which learns the information to be forgotten or needed from the 

memory block, and output gate that can understand when to call the stored information. 

Figure 6 depicts the input state (𝑋𝑡), current time stamp (𝐻𝑡), and output state (𝑂𝑡).  
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Figure 6: RNN architecture 

This specific type of traditional RNN architecture is designed to use the 

memory blocks rather than the traditional RNN units which can control the information 

flow to the memory more efficiently as illustrated below. 

The input gate 

𝑖𝑡= σ.( 𝑤𝑖[ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑖 )   

The forget gate 

𝑓𝑡= σ.( 𝑤𝑓[ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑓 )   

The output gate 

𝑜𝑡= σ.( 𝑤𝑜[ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑜 )   

Where it represents the input gate, 𝑓𝑡, expresses the forget gate, 𝑜𝑡, indicates output 

gate. 
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Chapter 3: Literature Review 

Many existing research initiatives have attempted and conducted their studies 

on ECG and photoplethysmogram (PPG) data. Researchers frequently explored 

different machine learning (ML) and deep learning (DL) techniques to predict and 

classify various arrhythmias, such as atrial fibrillation, tachycardia, bradycardia, and 

ventricular arrhythmias. Furthermore, there are studies on supraventricular ectopic 

beat detection from ECG. Other researchers concentrated on the classes suggested by 

the Association for Advancement of Medical Instrumentation (AAMI) standards 

which distributed the heartbeat into five classes: non-ectopic (N), supraventricular 

ectopic (S), ventricular ectopic (V), fusion (F), and unknown beats (Q). Some 

researchers reviewed various sparsity based noise reduction techniques for desnoising 

of ECG signal (Devi et al., 2019; Keshavamurthy & Eshwarappa, 2017). 

Based on the literature study of the related work from Google Scholar, IEEE 

Explore, ACM, Science Direct, and Elsevier databases, two main categories have been 

identified. The first category is the application of DL models for heart disease detection 

in general, and the second category is the heart rhythm classification using DL from 

12-lead ECG data. The next two subsections explain those categories. 

3.1 Application of DL models for heart disease detection in general 

The following related works belong to the first category, i.e., heart disease 

detection in general, using deep learning techniques. The works could be further 

subcategorized into two: works that use MIT-BIH arrhythmia database and works that 

use other databases.  
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These works apply DL models on the MIT-BIH arrhythmia database. Note that 

the database contains 48 half-hour excerpts of two-channel ambulatory ECG 

recordings, obtained from 47 subjects. 

Acharya et al. (2017c) applied a CNN model to identify five heartbeats classes 

according to the Association for Advancement of Medical Instrumentation (AAMI). 

The experiment was conducted using MIT-BIH arrhythmia database. They applied 

preprocessing techniques to remove noise, normalize segmentation by Z-score, and 

apply synthetic data to overcome the imbalance classes. The proposed CNN was 

trained with and without noise using augmented data and achieved accuracy of  

94.03% and 93.47%, respectively.  

Xu et al. (2019) presented a deep neural network for preprocessing feature 

extraction and beat-by-beat classification using MIT-BIH arrhythmia database. They 

applied raw ECG waveforms to include the extracted features such as QRS complex, 

P, and T waves as input for the model classifier because observations express that the 

P and T waves contain meaningful information to heart arrhythmias.   

 Jun et al. (2016) implemented an optimized deep neural network for premature 

ventricular contraction (PVC) beat classification performed by MIT-BIH arrhythmia 

database, noted that they extracted six features from the ECG signal such as R-peak, 

RR-interval, QRS duration, ventricular activation time, Q-peak, and S-peak that are 

used as an input to the deep neural network (DNN) classification model. The DNN 

model of six hidden layers achieved 99.41% of accuracy and sensitivity of 96.08%.  

Kiranyaz et al. (2015) employed a simple 1D-CNN for ventricular ectopic beats 

(VEB) and supraventricular ectopic beats (SVEB) classification depends on five types 
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of heartbeats that are recommended by the Association for Advancement of Medical 

Instrumentation (AAMI) standard. MIT-BIH arrhythmia database was used in this 

experiment and the results indicate high classification performance accuracies of 99% 

and 97.6% for VEB and SVEB, respectively.  

Singh et al. (2018) have applied three types of RNN algorithms for classifying 

normal and abnormal rhythms in an ECG. The study was conducted by MIT-BIH 

arrhythmia database. The binary classification of the LSTM algorithm achieved an 

accuracy of 88.1% without signal preprocessing.  

Serhani et al. (2020b) adopted CNN model that considers various optimization 

of hyperparameter which can achieve higher model accuracy. The experiments 

conducted using MIT-BIH arrhythmia database and applied optimization schemes 

with batch normalization, regularization, and increasing training epochs. They also 

categorize clinical recommendation suggestions for five arrhythmia classes. 

Gao et al. (2019) conducted a long short-term memory (LSTM) using focal 

loss function to eliminate the imbalanced data gained from open-source MIT-BIH 

arrhythmia database, discrete wavelet transform using Daubechies wavelet 6 was 

applied for signal noise removal, beat segmented using sliding window search method, 

along with, generating normalized data by Z-score technique during the preprocessing 

analysis. Observations proved that the Nadam gradient descent optimization and focal 

loss function robust solution for accurate detecting of imbalanced ECG signals which 

carry out 99.26% of accuracy for eight beat classes.  

Oh et al. (2018a) proposed an autoencoder, derived from MIT-BIH arrhythmia 

database using lead II signals, further, signals were segmented into samples to allow 
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heterogeneous segmentation of the ECG records, Z-score normalization was used for 

scaling, and all the preprocessing helped to handle the U-net model, which is able to 

identify both arrhythmia conditions and R peaks with 97.32% of accuracy.  

Romdhane et al. (2020) introduced a CNN method with an effective focal loss 

function using a public MIT-BIH arrhythmia and INCART databases. The cost 

function of the model uses focal loss to solve the imbalanced classes, the model was 

able to achieve 98.41% of accuracy that classifies ECG signals to five AAMI standard 

categories.  

Li et al. (2020) deployed a deep learning model for diagnosing cardiac 

arrhythmia classification of five types of heartbeats classes by applying two leads from 

ECG signals. The preprocessing was obtained for denoising and segmentation which 

finally shows an accuracy of 99.38%, that obtained using MIT-BIH arrhythmia 

databases. 

Note that, unlike the proposed work, none of the above techniques analyzed 

the performance of the ECG combined 12-lead with each single-lead of the 12-lead 

ECG or investigated the usefulness of static data. Furthermore, the MIT-BIH database 

consists of two-channel ECG data with a sampling rate of 360 samples per second. In 

contrast, this work deals with 12-channels ECG data, collected at the rate of 500 

samples per second. Finally, a database consisting of more than 10,000 subjects was 

used since MIT-BIH database has only 47 subjects. 

The following research work used other databases for heart rhythm 

classification. 
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Acharya et al. (2017b) have employed CNN trained using 10-fold cross-

validation for ECG segments detection of four classes obtained from three databases 

available publicly and one from Creighton University Ventricular Tachyarrhythmia 

(CUDB). ECG signals were down sampled to 250 Hz, noise removed using 

Daubechies wavelet 6, and each segment normalized using Z-score normalization to 

solve scaling problem. Then, they used the two and five seconds durations of ECG 

signals without the QRS detection, which achieved accuracies of 92.50% and 94.90% 

for the two and five seconds, respectively. They also highlighted that the CNN is 

invariant to translation, hence, QRS detection is unnecessary. 

Hannun et al. (2019) have implemented a deep neural network (DNN) for 

twelve rhythm classes by using a large dataset contains 53,549 single-lead subjects 

recorded by Zio monitor devices. The DNN model achieved F1-score and ROC of 

0.837, and 0.97, respectively. Moreover, they further tested the proposed DNN to an 

external database such as 2017 PhysioNet Challenge database to capture the robust 

performance of the model without adjustment to the hyper-parameters and model 

architecture, therefore, the result demonstrated that the capability of the DNN acts well 

as on a different database. The author noted that this study is limited to single-lead 

ECG compared to the standard 12-lead ECG.   

Nurmaini et al. (2020) present a low computational 1D-CNN based on 10 fold 

cross-validation strategy to classify ECG signals into two and three classes, where the 

two classes contain only normal sinus rhythm (SR) and atrial fibrillation (AFIB). The 

three classes consist of SR, AFIB, and non-AFIB. They conducted their experiments 

using three datasets that are available publicly such as MIT-BIH Malignant Ventricular 

Ectopy, MIT-BIH Atrial fibrillation, Physionet Atrial Fibrillation, and one external 
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database from an Indonesian hospital. Discrete Wavelet Transform (DWT) was used 

to eliminate the noise (artifact). Normalization and signal segmentation of 9 seconds 

produced better performance and achieved accuracies of 99.98% for the two classes 

and 99.17% for the three classes.  

Now, will discuss the second category of the related work, which is about heart 

rhythm classification using 12-lead ECG with DL models.  

3.2 Heart rhythm classification using DL from 12-lead ECG data 

The following works apply DL models used to classify heart rhythms from 12-

lead ECG signals. 

Acharya et al. (2017a) have applied 11-layer convolutional neural network 

(CNN) for heart attack called Myocardial Infarction (MI) beats classification. This 

study conducted using Physikalisch-Technische Bundesanstalt diagnostic ECG 

database (PTBDB). PTBDB database consists of 12-lead signals of 148 MI and 52 

normal data. Lead II was only used in this study in which they validate the proposed 

method with two datasets with and without noise. They removed the noise using 

Daubechies wavelet 6 mother wavelet function. Each ECG signal was segmented using 

normalization with Z-score normalization. Then, it was trained by 10-fold cross-

validation technique which achieved accuracies of 93.53% and 95.22% with noise and 

without noise, respectively. This explicit that the method still can classify well by 

noisy ECG beat. 

Tan et al. (2018) applied an algorithm of CNN with LSTM for normal and 

coronary artery ECG classification. Lead II ECG data was preprocessed and resampled 

for consistency (Hz), next applied (discrete wavelet transform) Daubechies wavelet 6 
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mother wavelet function to ensure noise removal, consequent, data segmented to 5 

seconds without detecting the R-peak, and finally generate augmentation procedures 

such as re-normalize ECG segment before forwarding it to the training stage. 

PhysioNet and St Petersburg INCART 12-lead Arrhythmia Database were used in this 

study which accomplished overall performance accuracy of 99.85%.  

Yildirim et al. (2020) designed efficient Deep Neural Network (DNN) with 

high performance for heart rhythm classification using each single-lead signal of the 

12-lead. They show a promising result on all the ECG 12-lead using the newly 

published database contains more than 10000 records. Mainly, two experiments were 

conducted and each lead was classified separately. The first experiment involves seven 

rhythms, and the second experiment contains rhythms that are merged due to the 

insufficient number of subjects in the database. Lead 2 obtained the highest lead among 

all other leads in the 12-lead ECG in both experiments, which achieved 92.24% and 

96.13% for the first and the second experiment, respectively. 

The proposed work is more relevant to the second category, i.e., classification 

of heart rhythms from 12-lead ECG data. However, this work is distinguished from 

the above work in that this work evaluates the effectiveness of every single-lead in a 

12-lead ECG signal and a combination of all leads (12-lead). Moreover, the possibility 

of utilizing static data in addition to the ECG data to improve the classification 

performance is investigated. Table 1 displays the other related work summarizes along 

with the features. 
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Table 1: Related work comparison 
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Chapter 4: Proposed Approach 

 This work performs a comprehensive evaluation of the 12-lead ECG to 

classify normal and abnormal heart rhythms. A deep learning technique based on 2D-

CNN have been adapted to adequate for combined lead and single-lead. This allows to 

evaluate the relative importance of combined lead and single-lead from the dynamic 

ECG time-series data. Also, an MLP architecture have been developed to classify only 

the static data from the ECG data for investigatigating the effect of using static data 

classification. Moreover, a novel hybrid 1D-CNN-BiGRU-BiLSTM architecture has 

been proposed, which evaluates the combination of all leads (12-lead) from the 

dynamic ECG time-series data. Finally, the possibility of combining static data with 

the dynamic ECG time-series data has been investigated by designing multi-modal 

deep learning that uses the proposed hybrid DL fused with the MLP model.  

The overall architecture consists of ECG database, data preprocessing, 

sampling, model deployment, and model evaluation. Two types of ECG databases 

were used, namely, the dynamic time-series, and the basic ECG measurements static 

data. The ECG database is passed to a data pre-processing stage to perform the data 

cleaning, transformation, and reduction. Then, it is sampled to training, validation, and 

testing data in order to be forwarded to the model deployment phase. The model 

deployment phase provides all the models that are developed to answer the thesis 

questions.  Each of the models has been evaluated based on the accuracy and F1-score. 

Finally, the average evaluation result is reported by cross-validation. However, the 

above-mentioned detection and classification model architectures are evaluated on 

real-world patient data and their performances are compared in Chapter 6. Figure 7 

illustrates the overall system architecture of the heart rhythm classification.  
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Figure 7: Overall system architecture of the proposed heart rhythm classification 

The next sections demonstrated the arrangements of 2-Dimensional 

Convolutional Neural Network (2D-CNN) for combined and single-lead, proposed 

hybrid (1D-CNN-BiGRU-BiLSTM) for the combined lead as well as the multimodal 

deep learning (Proposed hybrid + combined with MLP) architectures.  

4.1 2D-Convolutional Neural Network architecture 

Justification of the architecture: the CNN model is considered as fast and most 

commonly used for time-series data in related literature (Ebrahimi et al., 2020; Khan 

et al., 2021). CNN with a fewer number of layers has the advantages of lower hardware 

specifications and ensures shorter time during training compared to their deeper 

counterparts (Gu et al., 2015). It also accommodates to optimize more hyperparameters 

and facilitates the training process.  

Thus, the ECG time-series architectures have been developed for the combined 

and single-lead using the 2D-CNN. The first architecture is convenient for the 

combination of the 12-lead and the second architecture is adequates the individual lead 

(single-lead).  
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Justification of combined and single-lead architectures: before selecting the 

architectures, many experiments were investigated, single layer to deeper network 

structure along with the number of parameters and hyper-parameters were observed. 

The structure of 2D-CNN in this work consists mainly of two convolutional layers. 

Primarily the two convolutional layers are suitable in both combined and single-lead 

data, but they slow down the training process of the combined lead architecture. 

Adding max-pooling into the combined lead and single-lead architecture will boost the 

processing power of the combined lead but at the same time, it will not fit for the 

single-lead architecture due to the different dimensions. Therefore, the max-pooling 

was added only for the combined lead architecture after each convolutional layer to 

increase the processing power. In addition, the kernel size of the first convolutional 

layer for combined lead has been increased to ensure better performance. All the other 

parameters and hyperparameters are not adjusted. That is, the architectures are 

convenient for both combined and single lead, and they are analyzed based on their 

performance and classification. 

Subsection 4.1.1 shows the 2D-CNN architectures for combined lead and 

subsection 4.1.2 illustrates the 2D-CNN for single-lead. 

4.1.1 2D-CNN architecture for combined lead data  

The architecture of the 2D-CNN model for the combined lead consists of two 

conv2D layers along with two max-pooling, the first convolution layer has 8 filters 

with a kernel size of 5 and a max-pooling size of 2. Subsequently, the second layer of 

conv2D uses a kernel size of 3 along with 16 filters. Next, a stride, max-pooling of the 

size of 2 applied to the max-pooling layer to produce down sample operation and 

extract essential features from the previous feature map. Additionally, it controls the 
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speed in training duration. The flatten layer transforms the two-dimensional matrix to 

be fed into the fully connected layers. Overfitting also plays an important role during 

training which can't be neglected. One drop layer with a rate of 0.5 was added which 

is proved to be a very effective technique for reducing the overfitting. Finally, all the 

neurons were connected as a fully connected layer to form a single output that 

computes the distribution of binary classification. Figure 8 expresses the combination 

of 12-lead structure and Table 2 briefly summarizes the following structure along with 

layer parameters, output shape, and the number of parameters in detail. 

 

Figure 8: Combination of 12-leads architecture 
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Table 2: Layers and parameters of 12-lead architecture 

Layer (Type) Layer Parameters Output Shape Number of parameters 

Conv2D 

Filters=8,  

Kernel Size= 5 

Padding = “same” 

5000x12x8 208 

Max Pooling Pool size=2 2500x6x8 0 

Conv2D 

Filters=16,  

Kernel Size= 3 

Padding = “same” 

2500x6x16 1168 

Max Pooling 
Pool size=2 

Stride=2  
1250x3x16 0 

Flatten   60000 0 

Dense   256 15360256 

Dropout Rate=0.5 256 0 

Dense   1 257 

 

4.1.2 2D-CNN architecture for single lead data  

The CNN model structure for classifying single-lead ECG contains two 

conv2D layers. The first conv2D layer had 8 filters, 5 kernel sizes, and padding of zero 

(Layer 1), the second layer had conv2D with 8 filters, kernel size of 1, and padding of 

zero. Finally, all the neurons were connected by flatten layer then fed into a 256 dense 

layer (Fully connected layer). Moreover, one dropout layer regularization with a rate 

of 0.5 was added, to eliminate the overfitting. However, other hyperparameters of the 

CNN model were not altered, which was set as the rates of the first experiment. Figure 

9 displays the single-lead architectures and Table 3 summarizes the structure 

corresponding to layer parameters.  
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Figure 9: Single-lead architecture 

Table 3: Layers and parameters of single-lead architecture 

Layer (Type) Layer Parameters Output Shape Number of parameters 

Conv2D 

Filters=8,  

Kernel Size= 1, 

Padding = “same” 

5000x1x8 16 

Conv2D 

Filters=16,  

Kernel Size= 3, 

Padding = “same” 

5000x1x16 1168 

Flatten   80000 0 

Dense   256 20480256 

Dropout Rate=0.5 256 0 

Dense   1 257 

 

4.2 Multi-layer perceptron architecture for only static data 

Justification of the architecture: multi-layer perceptron (MLP) has the 

processing elements that learn from the relation input values of the static data. It has 

been widely used due to its capability of solving problems related to classification that 

are not linearly separated. 

 MLP was developed after studying possible cases that concern the model’s 

selection such as the number of neurons and hidden layers. The number of neurons in 

the intermediate layer was tested between different numbers of neurons. Finally, the 

MLP model has two intermediate hidden layers of 6 neurons each, which were 

constituted by 11 input parameters, and a single output neuron. The single output 
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neuron has a sigmoid activation function which will further classify the heart rhythm 

based on the binary classification. 

The ECG static values are forwarded as an input to the input layer of the MLP. 

The multiplication will be performed to each input data with the corresponding weight 

to forward it to the hidden layers, then it is passed to the output layer for binary 

classification. Figure 10 illustrates the multilayer perceptron (MLP) that is designed 

for investigating only the static data. 

 

Figure 10: MLP architecture for static data 

4.3 Proposed Hybrid 1D-CNN with-Bidirectional-GRU-and Bidirectional 

 LSTM architecture 

The hybrid architecture of a one-dimensional convolutional neural network 

(1D-CNN) with the bidirectional gated recurrent unit (BiGRU) and bidirectional long 

short-term memory (BiLSTM) represented as 1D-CNN-BiGRU-BiLSTM. This 

architecture has been termed as a proposed hybrid. 
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Justification of the architecture: hybrid deep learning structure is able to reveal 

promising results by considering a hybrid DL model that couples CNN with RNN to 

ensure robust classification (Hong et al., 2020). The proposed hybrid architecture uses 

the first layer of a 1-Dimensional Convolutional Neural Network that can process the 

time-series data through its image processing capabilities. This allows spatial 

representation learning from the time-series data. The BiGRU and BiLSTM layers are 

capable to learn from the temporal dependencies in the ECG data. Thus, the proposed 

hybrid method can capture the temporal dependencies from different lead data, as well 

as the inter-relationships among the lead data.  

The proposed hybrid uses the combined 12-lead of the dynamic ECG time-

series data for heart rhythm classification. However, the component of this model 

consists of different layers. Mainly, employing three consecutive one-dimensional 

convolutional neural networks (1D-CNN) with different filter sizes and a max-pooling 

layer following each 1D-CNN layer. The first Conv1D layer has 8 filters and a kernel 

size of 5 with padding. Then, a 1D-Max-pooling size of 3 is applied to extract essential 

features. Dropout with the dropout rate of 0.3 value, and Batch Normalization layer to 

accelerate the training and reduce the generalization error. Subsequently, the second 

layer of Conv1D convolved with 16 filters, kernel size of 11 using padding, and stride 

set to 2. Next, a 1D-Max-pooling size of 3 along with a 0.3 dropout rate. The third 

Conv1D layer has 32 number of filters and a kernel that has a size of 3, with padding 

and 2 stride length. 1D-Max-pooling size of 3 as well, coupled with 0.3 dropout rate, 

and then batch Normalization layer. Additionally, two bidirectional layers consist of 

one GRU layer and one LSTM layer with 128 number of units that can capture the 

dynamic information in serialized data, along with the Batch Normalization layer. 

Moreover, a flatten layer was added, then fed into the fully connected layers. Finally, 
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all the neurons were fully connected within the layer to form a single output that 

computes the distribution of binary classification, where the sigmoid was chosen as 

the activation function. Figure 11 illustrates this architecture in detail. 

 

Figure 11: Proposed hybrid architecture 

4.4 Multimodal deep learning (Proposed Hybrid combined with MLP)  

Justification of the architecture: the multimodal architecture allows to deal with 

different modalities of information to improve the performance. This can be done by 

integrating multi-dimensional data. The most common method of combining those 

modalities sources by concatenating them through the concatenation layer. The 

multimodal allows capturing of the represented features of static data along with the 



33 

 

  

 

 

temporal dependencies of the dynamic ECG time-series data for classifying the heart 

rhythms. 

A multimodal deep learning architecture has been conducted for heart rhythm 

classification using static and combined 12-lead ECG time-series data. As illustrated 

in Figure 12, the overall framework structure consists of two main inputs. That is, the 

first input contains statistical ECG time-series data, where the second input has the 

dynamic heart rhythm time-series data. The static data forwarded to the Multi-layer 

Perceptron (MLP) model and the dynamic ECG-time series data fed to the proposed 

hybrid model. Thus, the formation of the multimodal deep learning architecture is 

explained in detail in the upcoming paragraphs. 

The structures of both the hybrid model for the combined 12-lead and the MLP 

model that uses the static data are explained previously in the proposed approach 

chapter.  

In this current work, the sigmoid function was removed from the last layer of 

the models (MLP and proposed hybrid DL), then added to the last layer of the 

multimodal deep learning architecture. However, the static data are initially passed 

through the input layer of the MLP model and the corresponding dynamic time-series 

signals are forwarded through the proposed hybrid (1D-CNN-BiGRU-BiLSTM) 

model. Then, the two models are merged with a concatenate layer using the functional 

APIs. Functional APIs is more flexible to handle non-linear topology structure, 

therefore, functional APIs has the advantage over the sequential APIs to share multiple 

inputs or outputs of deep learning models. 
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Figure 12: Multimodal (proposed hybrid fused with MLP) architecture. 

After the concatenation layer, the flatten layer has been added and then the 

dropout of rate 0.1 was applied to prevent overfitting. Five dense layers were added, 

along with each dropout. The first dense layer consists of 256 neurons, where the 

second and the third dense layer contains 128 neurons, and the fourth layer is expressed 

by 64 neurons. Finally, all the neurons were connected as a fully connected layer in 

order to form a single output that can generate the distribution of binary classification 

using the sigmoid activation function. All the baseline of the model optimizers was 

discussed in the parameter setting Section 6.1.2.  



35 

 

  

 

 

Chapter 5: Dataset 

This chapter discusses the dataset used in this study and demonstrates the 

analysis of data distribution that were analyzed from the database, followed by data 

preparation and preprocessing used in this regard. 

There are different ECG databases that contain various subjects grouped as 

normal and abnormal, most of these databases are open source and available 

online. On the contrary, there are some of the ECG classification experiments in 

relevant literature have been employed using private databases which are not available 

to the public. However, the databases which are available to the public contain 

different subjects, sample rate (frequency), ages, rhythms, ECG time length, and either 

single-lead or more.  

For the present study, the published database that accommodates a large 

number of subjects (10646) including male and female, the highest sample rate (500 

Hz), and a large number of leads (12-lead) have been obtained. The database was 

collected by Chapman University and Shaoxing People’s Hospital (Shaoxing Hospital 

Zhejiang University School of Medicine).   

This database is collected with respect to the ECG time-series of the 12-lead 

from the electrical cardiac muscle activities (Zheng et al., 2020). Each lead in the 12-

lead ECG has 500 Hz samples per second for 10 seconds, which is equal to 5000 values 

for each lead. Basically, leads contain low and high-frequency noise, consequently, 

due to the reflection of the interpreted signals with artifacts such as motion noise, 

electrode connection, and baseline wandering, which affects the readings of the raw 

data are processed by signal processing approaches: Butterworth low pass filter to clear 



36 

 

  

 

 

out frequency above 50 Hz, Locally Weighted Scatterplot Smoothing (LOSS) applied 

to free the effects of baseline wandering, and Non-Local Means (NLM) to eliminate 

the remaining noise. Finally, those processed data (Denoised) got to perform the 

preprocessing and prepare the data for the heart rhythm classification. 

This database contains 11 rhythms such as Sinus Bradycardia (SB), Sinus 

Rhythm (SR), Atrial Fibrillation (AFIB), Sinus Tachycardia (AF), Sinus Irregularity 

(SI), Supraventricular Tachycardia (SVT), Atrial Tachycardia (AT), Atrioventricular 

Node Reentrant Tachycardia (AVNRT), Atrioventricular Reentrant Tachycardia 

(AVRT), and Sinus Atrium to Atrial Wandering Rhythm (SAAWR). In addition to 56 

cardiovascular conditions. Figure 13 introduces the distribution of the 11 rhythms in 

the database. 

 

Figure 13: Distribution of rhythms in the database 

Moreover, it includes ECG 12-lead signal and ECG basic measurements static 

data for each individual subject such as Gender, Patient age, Date of Birth, Atrial Rate, 

QRS Counts, QT Interval, Atrial Beat Rate, Ventricle Beat Rate, Q offset, and T offset, 

et. Table 4 illustrates all the static data attributes in the dataset. 
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Table 4: ECG static database attributes 

Attributes Types Value Range Description 

File Name String  ECG data file name (unique ID) 

Rhythm String  Rhythm Label 

Beat String  Other conditions Label 

Patient Age Numeric 0-999 Age 

Date Of Birth Date  Date of Birth 

Gender String Male/Female Gender 

Ventricular Rate Numeric 0-999 Ventricular rate in BPM 

Atrial Rate Numeric 0-999 Atrial rate in BPM 

QRS Duration Numeric 0-999 QRS duration in msec 

QT Interval Numeric 0-999 QT interval in msec 

QT Corrected Numeric 0-999 Corrected QT interval in msec 

R Axis Numeric -179~180 R axis 

T Axis Numeric -179~181 T axis 

QRS Count Numeric 0-254 QRS count 

Q Onset Numeric 16 Bit unsigned Q onset (In samples) 

Q Offset Numeric 17 Bit Unsigned Q offset (In samples) 

T Offset Numeric 18 Bit Unsigned T offset (In samples) 

 

5.1 Analysis of data distribution 

The distribution of different rhythms based on age groups and gender has been 

analyzed from the database. Table 5 reports this distribution of all rhythms and age 

categories group. For instance, the rhythm SB contains 3889 patients, those patients 

engaged 2481 males and 1408 females, and 11 individuals from the overall aged 

between 91 to 98. The second column clearly demonstrates the total values of all 

presented rhythms, where SB rhythm has the greatest number among all rhythms.  
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This analysis will help to identify the prevalence of different heart rhythm 

problems at different ages which will give a good understanding of developing a more 

effective classification model (Khan et al., 2011). In particular, the highest frequency 

age group for each rhythm can be chosen to train a classification model that is believed 

to be more effective than developing a model without considering the age of the 

patient. However, this requires further investigation and more data which could be 

explored in the future. 

Table 5: Distribution of rhythms based on age group and gender 

 

 

The section is further divided into two subsections to analyze the distribution 

of rhythms based on gender and age group. Subsection 5.1.1 analyzes the distribution 

of rhythms based on gender, while Subsection 5.1.2 analyzed based on age group. 

5.1.1 Based on gender 

In this section, the rhythms are distributed based on gender and displayed into 

a pie chart that determines information about the proportion of the patients based on 

each rhythm. 
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Figure 14: Rhythms distribution of male (left) and female (right) 

These pie charts in Figure 14, represent the male at left and female at right, 

which indicate the distribution of total males and total females in the database. It is 

clear from the charts that the SB has the majority in both males and females, where it 

occupies 41.66% of the total males and 30.02% of the total females. The SR 

consumption represents 13.47% of the total males, and 21.83% of the total females. 

AFIB shares consumption category of 17.48% of total males, and 15.76% of total 

females. Followed by ST, which has 13.42% of total males and 16.40% of the total 

females as well. Then, the SVT at 4.68% of the male’s total, and 6.57% of the female’s 

total. AF and SI share around 4% of the total distribution in both males and females. 

Approximately, one percent of AT in both females and males. Finally, AVNRT, 

AVRT, and SAAWR have less than 15 patients for males and females which represent 

less than 0.1 percent.   

5.1.2 Based on age group 

In this section, all the rhythms are distributed based on age group segment 

correlation and represented them into a pie chart that provides information about the 

proportion of the patients based on each rhythm. Figures 15-20 are showing the 

distributions of ages group graphically. 
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Figure 15: Age group distribution of SB (left) and SR (right) 

In terms of the most significant feature, the largest group category of SB was 

the group aged 61 to 70, which is represented as 30.79%. On the other hand, the 

majority group of the SR is accounted as 23.59% between ages 51 to 60. The next 

segment of the SB majority was announced at 26.06% and aged between 51 to 70. In 

contrast, the SR group age between 61-70 achieved a consumption of 22.62%. In 

addition, those aged between 41 to 50 in the SB shares 26.06 percent. Moreover, the 

other age groups contributed lower rates which can be clearly comprised in the above 

pie charts. 

 

Figure 16: Age group distribution of AFIB (left) and ST (right). 
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In the charts above, the age group from 71 to 80 consumed the most for AFIB 

at a rate of 32.19%. On the flip side, the most significant group age found at ST is 

between ages from 61 to 70. The subsequent important segment of AFIB for those 

aged between 81 to 90 at the percentage of 28.97. In contrast, the ST participates at a 

rate of 17.28% for ages between 51 to 60. The third best results are indicated for those 

aged between 61 to 70 for AFIB and ages category of 71 to 80 for ST. However, the 

other distribution of age categories is concluded in the above charts. 

 

Figure 17: Age group distribution of AF (left) and SI (right) 

The side-by-side pie charts above illustrate the age groups of AF and SI, where 

the most significant age group reported at 31.25% between 71 to 80 in AFIB. The 

corresponding majority age group of SI indicated between 11 to 20 at 18.70%. The 

second majorities of AF and SI are indicated at 23.96% for ages 61 to 70 and 16.15% 

for ages 21 to 30, respectively. The third majority of the age group of AF shares a 

percentage of 20.83% between 81 to 90. On the other side, SI has 15.86% aged 

between 5 to 10. The other age distribution depicts the rest of the age categories as 

shown above.  
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Figure 18: Age group distribution of SVT (left) and AT (right) 

The above pie charts show the age group distribution of SVT and AT. The 

largest group category of SVT is grouped at ages between 61 to 70, which represented 

a proportion of 20.27%. On the other hand, AT accounted for 35.14% between ages 

71 to 80. The second majority of the SVT segment is indicated at 19.32% for ages 

between 41 to 50. In contrast, the AT group age between 61 to 70 results in 

consumption of 20.72%. Furthermore, those aged from 51 to 60 in SVT announced 

18.75% and 14.41% of AT categorized between ages 81 to 90. Referring to the above 

charts, the other age groups contributed at lower overall rates. 

 

Figure 19: Age group distribution of AVNRT (left) and AVRT (right) 
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The pie charts side-by-side express the AVNRT and AVRT group age that 

contains a total of 16 patients in AVNRT and 8 patients in AVRT. However, the 

representation of 33.33% has a maximum of 5 patients categorized between ages 51 to 

60. On the other hand, the AVRT majority defined as 37.50% which consists of 3 

patients from ages 61 to 70.  The other age categories are displayed clearly in the above 

charts. 

 

Figure 20: Age group distribution of SAAWR 

The SAAWR consumed the lowest consumption held among all age group 

distribution. It contains seven patients; two segments are represented as 29% contain 

only 2 patients. The other 3 segments indicated as 14% has one patient each. 

5.2 Preprocessing and data preparation 

In the present work, various experiments were performed on the new ECG 

dataset that contains more than 10,000 individual subjects. The rhythms that contain 

more than 1,500 subjects were selected such as SB, SR, AFIB, and ST. Then, the data 

was organized into three different subsets based on these classes as shown in Figure 

21. The first subset consists of normal sinus rhythm (SR) data and the anomaly sinus 

bradycardia (SB) data. This subset is referred to as SR-SB. The second subset consists 

of normal sinus rhythm (SR) along with the sinus tachycardia (ST) which is indicated 
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as SR-ST. The third group consists of normal sinus rhythm (SR) and atrial fibrillation 

(AFIB). This can be represented as (SR-AFIB). There are in total 1825 sinus rhythm 

(SR), 3888 sinus bradycardia (SB), 1564 sinus tachycardia (ST), and 1780 of AFIB. 

This method allows testing abnormal types of cardio conditions along with the normal 

rhythm to observe the distinguishing behavior between normal and anomaly rhythms. 

 

Figure 21: Organization of the dataset 

During the preprocessing stage, vital recommendations for the data preparation 

have been suggested in the relevant work to use normalization techniques in order to 

improve the attainment of the model, where all the selected rhythms in this work 

contain large scale ECG subjects, therefore, those subjects were normalized to a min-

max normalization to rescale features variables and eliminate the scaling problem 

before forwarding the trained dataset to the model. Normalization function ensures 

amplitude scaling of the signal range constrained between 0 and 1 without affecting 

the morphology of the signal. Moreover, during the data cleaning stage, some of the 

individual records contain null values which were carried out from the dataset as 

follows: two SB and five ST records were excluded. 
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Chapter 6: Experiments and Results 

This chapter explains the experimental setup, followed by the evaluation setup. 

It also comes up with different experiments to answer the three research questions, 

mainly, what is the importance of each lead in a 12-lead ECG in classifying heart 

rhythms, what is the importance of static data in classifying heart rhythms, and whether 

static data can be combined with ECG data to improve classification accuracy.  

In this regard, the classification experiments are essentially attempted by three 

different subsets, so that each classification experiment is repeated for each subset such 

as SR-SB, SR-ST, and SR-AFIB. Four different experiments are conducted as follows. 

First, experiment with the dynamic ECG time-series data using the combination of 12-

lead, in addition to each individual leads (single-lead) of the 12-lead with the help of 

the 2D-CNN. This study aims to show that the combination of 12-lead ECG achieves 

better results than single-lead and it has been proved by statistical inference using t-

test. Therefore, the rest of the experiments were further evaluated with the combined 

12-lead due to both its high accuracy and the fact that it has been proved statistically. 

Second, classify only static data that are available in the same subsets using MLP. The 

study is aimed to investigate the performance of only static data classification. Third, 

experiment with an effective hybrid DL (proposed hybrid) model for the classification 

of the heart rhythm, which achieved superior performance among other architectures 

of this study. Finally, the static data are fused with the dynamic ECG time-series data 

of the 12-lead combined by using the multimodal framework. This allows examining 

the effectiveness of the static data with dynamic ECG time-series data. The finding 

emphasizes that the static data decreases the performance ability compared to the 

proposed hybrid DL model. This evidence can be helpful for the future research study. 
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6.1 Experimental setup 

The structure of this section is described as follows: The hardware and software 

subsections presents the hardware and software specifications, parameter setting 

subsection summarizes the optimization algorithm and the activation functions that 

were used in the experiments. Finally, the overfitting avoidance subsection that 

highlights the technique used to avoid overfitting during the experiments.  

6.1.1 Hardware and software 

All the experiments were executed on CIT DGX-1 server, which consists of 8 

Tesla NVIDIA GPUs with 32 GB RAM each. The models were implemented using 

Python 3.7.6, Keras 2.3.1, Scikit-learn, and other deep learning related dependencies.  

6.1.2 Parameter setting 

The Rectified Linear Unit (ReLu) was mainly used as an activation function in 

all the experiment's convolutional layers, in addition to the MLP layers of the static 

data experiment as well. The ReLU activation function has been used with default 

arguments such as maximum activation value set to ‘none’, and zero values for both 

negative slope and threshold. Batch normalization was added in some of the layers of 

the proposed hybrid (1D-CNN-BiGRU-BiLSTM) architecture and set to -1 and 0.99 

for axis and momentum, respectively. Furthermore, the sigmoid activation function is 

applied to the last layer in each architecture to ensure binary classification. Differently, 

all the sigmoid activation functions were removed from the 2D-CNN and proposed 

hybrid before merging them using concatenate layer to deploy the multimodal 

architecture, where the sigmoid function was only added in the last layer of the 

multimodal architecture. Researchers use gradient descent optimization algorithms 
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such as Nadam, Momentum, AdaMax, and Adam to find the local minimum values of 

a given function. In the conducted experiments, adam optimizer achieves good results 

which were coupled with, learning rate, beta 1, beta 2 of 0.001, 0.9, 0.999 respectively. 

Various empirical studies suggested different cost functions for different 

arrhythmia classification such as focal loss function (Romdhane et al., 2020) and 

batch-weighted loss function (Sellami & Hwang, 2019), hence, in this approach, the 

Mean Square Error (MSE) loss function accomplished the best-presented results 

among all other cost functions. All those parameter adjustments ensure the optimal 

outcome results. The training was derived of 50 epochs in all the conducted 

experiments, except for the MLP experiment where it has been set to 100 epochs due 

to the continuous error dropping, to guarantee the minimum error rate, consequent, the 

validation was computed subsequently after each round.  

Bengio (2012) presented a practical recommendation on choosing the hype- 

parameters of a model. A grid search has been performed to gather the best parameters 

and hyperparameters to improve the optimal performance of the networks. The 

accuracy values have been determined by evaluating the classification accuracy with 

respect to the loss function. Also, various network architectures, gradient descent 

optimization algorithms, dropouts, and loss functions have been evaluated. 

Accordingly, by comparing the experimental results of multiple cases that were tested, 

it is confirmed that the proposed parameters and hyperparameters obtain the best 

classification accuracy. 

Two metrics of the performance measurements are estimated to evaluate the 

model performance such as Accuracy and F1-measure which were considered in each 

iteration. 
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6.1.3 Overfitting avoidance 

In this thesis work, many techniques were used to avoid overfittings like the 

cross-validation strategy, which is a powerful preventative measure against overfitting. 

It allows tuning hyperparameters with the original training set. This is done in all the 

conducted experiments. In addition, regularization techniques are considered as an 

effective technique to prevent overfitting situations, it was performed in all the case 

studies architecture that have been described briefly in the proposed approach Chapter 

(Chapter 4). Moreover, the grid search method was performed to optimize various 

parameters and hyperparameters. 

6.2 Evaluation setup 

There are two main criteria for data splitting such as normal split and cross-

validation. The normal split is mainly considered as a classic approach in which the 

data split randomly into training and testing sets. On the other hand, the cross-

validation criteria are often preferred, the dataset splits into a number of given folds in 

order to divide the dataset to the corresponding to the selected folds. In the thesis 

experiments, 10 fold cross-validation were done. In each fold, there is 90% training 

data and 10% test data. The training data is further split into training and validation 

sets. The training set is used to train the network and the validation set to validate the 

model. Then the test data is used to evaluate the model. After completing the 10-fold, 

the average evaluation result is reported. No early stop strategy was used.  

Evaluating machine learning algorithms is essential for any use case. There are 

many evaluation metrics used to evaluate the quality of the machine learning 

performance such as accuracy, F1-score, precision, recall, specificity, and ROC Curve 

(AUC). The accuracy is the most intuitive measure, it’s a ratio of correctly predicted 
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to the total observations. F1-score is used when the false negatives and false positives 

are crucial. Precision is a measure of the true predicted positive to the total predicted 

positive. Recall (sensitivity) is the ratio of the true predicted positive to the total of the 

actual positive. The ROC area under the curve is a measure of the culmination of the 

model, which gives an idea about the true-positive rate for a given false-positive rate 

and provides a summary indicator of the classifier attainment.  

However, during the approach iteration, the accuracy and F1-score metrics 

were estimated to evaluate the model performance. Accuracy works best when the 

false positives and false negatives have similar costs and it is mostly used when all the 

classes are equally balanced. The binary classification subsets are a disproportionate 

ratio of observations in each class, therefore, F1-score is the harmonic mean between 

precision and recall and it is used to ensure reliability when dealing with imbalanced 

data. The following performance metrics can be evaluated as follow: 

Accuracy =
𝑇𝑃   +   𝑇𝑁

   𝑇𝑃  +   𝑇𝑁  +𝐹𝑃  +   𝐹𝑁   
 

F1 Score =
2   ×   (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   ×   𝑅𝑒𝑐𝑎𝑙𝑙)   

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  +   𝑅𝑒𝑐𝑎𝑙𝑙
 

Where: 

TP:  refers to the number of correctly predicted positive samples. 

TN: refers to the number of correctly predicted negative samples. 

FP: refers to the number of negative samples incorrectly predicted as positive. 

FN: refers to the number of positive samples incorrectly predicted as negative. 
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6.3 Experiments using 2D-CNN of single-lead and combined lead classification 

In this section, an experimental classification of the normal and abnormal 

rhythms for leads combined (12-lead) and single-lead are provided. Mainly, a 2D-

Convolutional Neural network was used in this experiment, which is most commonly 

used for time-series data in related work. The purpose of this study, primarily to answer 

the first research question of the effective leads in the 12-lead ECG. The adapted 2D-

CNN for both combined and single lead approach is introduced in more detail in the 

proposed approach chapter (Chapter 4). 

Two experiments were attended, the first scenario is to classify the 

abnormalities based on the combination of all leads (12-lead combined), the second 

scenario is to identify which lead of the 12-lead is the most effective. Then comparing 

the performance of the 12-lead combined with the single-lead. Each subset is divided 

into training and validation in which each subset being compared separately. 

Ultimately, to confirm the results and analysis, the results of the subsets are comparted 

and come with a hypothesis test (one-tail t-test) to prove the results. 

6.3.1 Experiments with combined lead 

The purpose of this section is to attend an experiment of 2D-CNN using all 

leads combined (the 12-lead). Figure 8 in Section 4.1.1 shows the architecture of the 

combination of all leads used in this regard. The section is divided based on the subsets 

that were described previously. 

6.3.1.1 SR-SB subset 

The performance results of the experiment that obtained for SR-SB subset 

classification achieved Accuracy and F1 Score as 98.43% and 96.73%, respectively. 
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Figure 22 briefly clarifies the accuracy and corresponding loss function during training 

and testing. Table 6 determines the training accuracies and validation accuracy 

concerning the epochs.  

 

Figure 22: Combined lead SR-SB accuracy (left) and loss (right) 

Table 6: Combined lead SR-SB performance measurements 

Epochs 
Validation 

Accuracy F1-score 

10 0.9790 0.9590 

20 0.9878 0.9776 

30 0.9878 0.9738 

40 0.9843 0.9672 

50 0.9843 0.9673 

 

6.3.1.2 SR-ST subset 

The experiment that was conducted for the classification of the SR-ST subset, 

defines that the Accuracy and F1 Score obtained as 97.94% and 97.71%, respectively. 

Figure 23 displays the accuracy and loss function performance. Table 7 exhibits the 

performance ranking. 
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Figure 23: Combined lead SR-ST accuracy (left) and loss (right) 

Table 7: Combined lead SR-ST performance measurements. 

Epochs 
Validation 

Accuracy F1-score 

10 0.9823 0.9816 

20 0.9853 0.9867 

30 0.9794 0.9786 

40 0.9882 0.9874 

50 0.9794 0.9771 

 

6.3.1.3 SR-AFIB subset 

The classification experiment that uses the SR-AFIB subset achieved Accuracy 

and F1-score of 83.10% and 83.46%, respectively. SR-AFIB classification reveals that 

it achieves high accuracy during the training, but low accuracy during the validation. 

This overfitting could be shown from the training and validation sets as depicts in 

Figure 24. Table 8 refers to the experiment performance outcomes. 
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Figure 24: Combined lead SR-AFIB accuracy (left) and loss (right) 

Table 8: Combined lead SR-AFIB performance measurements. 

Epochs 
Validation 

Accuracy F1-score 

10 0.8006 0.8027 

20 0.8227 0.8278 

30 0.8393 0.8464 

40 0.8227 0.8144 

50 0.8310 0.8346 

 

6.3.2 Experiments with single-lead 

The purpose of this experiment is to see the effect of each lead by using 2D-

CNN adapted for a single-lead. This section provides classification analysis for the 

leads available in the subsets of SR-SB, SR-ST, and SR-AFIB. The best behavior of 

the single-lead CNN network is clarified in Figure 9 in Section 4.1.2.  

6.3.2.1 SR-SB subset 

The experiment emphasizes that the best three highest leads out of the 12-lead 

for SR-SB classification in terms of Accuracy and F1-score are lead 4, lead 1, and lead 

2, respectively. These highest leads achieved more than 98% and 96% of Accuracy 

and F1-score, respectively. Other leads obtained less than 98% of Accuracy and F1-
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score. Figure 25 symbolizes the validation accuracy along with its corresponding loss 

function through epoch 50. 

 

Figure 25: Validation of all the individual leads SR-SB 

6.3.2.2 SR-ST subset 

The investigation of the SR-ST subset classification examined that the highest 

three single-leads in terms of Accuracy and F1-score achieved as follows: lead 9, lead 

8 and then lead 10, respectively. It attained more than 93% of Accuracy and 92% of 

F1-score. The other single-lead obtained more than 85% and 82% of Accuracy and F1-

score, respectively. Figure 26 displays the accuracy and cost function values. 

 

Figure 26: Validation of all the individual leads SR-ST 
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6.3.2.3 SR-AFIB subset 

An experiment that has been employed for the SR-AFIB subset classification 

captured the highest three leads in terms of Accuracy and F1-score as lead 8, lead 2, 

and lead 9, respectively. These highest leads achieved Accuracy and F1-score above 

70%, while the others achieved between 70%-60% of accuracy. Figure 27 captures the 

accuracy of all leads and cost function.  

 

Figure 27: Validation of all the individual leads SR-AFIB 

6.3.3 Subsets comparison for a combined and single-lead 

It can be noticed from the experiments of combined and single-lead that the 

combined lead achieved better results compared to single-lead. It is interesting to 

observe that lead 4 of SR-SB achieves the same performance as the combined lead in 

terms of Accuracy, and less performance in terms of F1-score. Table 9, 10, and 11 

summarize the results obtained for combined lead and single-lead.  

As it can be observed from the Tables that the SR-SB and SR-ST subsets 

classification obtained acceptable performance compared to SR-AFIB in both 

combined and single-lead. In general, SR-AFIB performed well in training, but it didn't 

generalize well during validation. This overfitting can be avoided if the characteristic 
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of the AFIB is mainly understood. Unfortunately, AFIB contains characteristics of 

rhythm pattern conditions such as atrial flutter (AF) or sinus tachycardia (ST), etc. 

(Nurmaini et al, 2020). In addition, AFIB signals have irregular time elapse between 

RR intervals which means that the inconsistencies in the RR interval and other 

characteristics in AFIB classification will affect the outperform of the model 

measurements. Some reserchers have proposed methods for detecting arrhythmias 

using RR interval from ECG data (Kim et al., 2011; Lian et al., 2011). However, 

studies reveal promising results that considering the capability of CNN coupled with 

the RNN model to ensure robust detection of AFIB (Oh et al., 2018b; Murat et al., 

2020). Therefore, the CNN structure can be integrated with the RNN to form a hybrid 

deep learning network for more accurate diagnosis. This possibility have been 

investigated and proposed an effective hybrid deep learning architecture, as explained 

in the coming Section (6.5). 

As a result, several important observations can be made. First, the SR-SB and 

SR-ST achieved higher accuracy compared to the SR-AFIB. Second, lead 4 achieved 

the same accuracy as the combined lead but still with a lower F1-score in the SR-SB 

subset. For all other subsets, combined lead performed better than all the single-lead. 

Therefore, it proves the hypothesis that “combined lead performance is better than 

single-lead”. The result of the test is shown after the tables. 

Table 9: SR-SB individual leads performance measurements comparison 

Leads  Accuracy  F1 Score  

All Leads 0.984266  0.974359  

Lead 1 (I) 0.982517 0.971751  

Lead 2 (II) 0.980769  0.968116 
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Table 9: SR-SB individual lead performance measurements comparison (continued) 

Leads  Accuracy  F1 Score  

Lead 3 (III) 0.942308   0.900901  

Lead 4 (aVR) 0.984266 0.974063 

Lead 5 (aVL) 0.961538  0.935673 

Lead 6 (aVF) 0.972028  0.953488 

Lead 7 (V1) 0.954545  0.922619 

Lead 8 (V2) 0.973776  0.956268 

Lead 9 (V3) 0.973776  0.956522 

Lead 10 (V4) 0.966990  0.944625 

Lead 11 (V5) 0.973776  0.9566522 

Lead 12 (V6) 0.970280  0.951009 

 

Table 10: SR-ST individual leads performance measurements comparison 

Leads  Accuracy  F1 Score  

All Leads 0.979351 0.976271 

Lead 1 (I) 0.929204 0.918367 

Lead 2 (II) 0.923304  0.911565 

Lead 3 (III) 0.858407 0.840000 

Lead 4 (aVR) 0.929204 0.918367 

Lead 5 (aVL) 0.855457 0.829268 

Lead 6 (aVF) 0.908555 0.896321 

Lead 7 (V1) 0.911504 0.895833 

Lead 8 (V2) 0.955752 0.94915 

Lead 9 (V3) 0.964602 0.959732 

Lead 10 (V4) 0.935103 0.926667 

Lead 11 (V5) 0.911504 0.903226 

Lead 12 (V6) 0.873156 0.856187 
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Table 11: SR-AFIB individual leads performance measurements comparison 

Leads  Accuracy  F1 Score  

All Leads 0.831025 0.840731 

Lead 1 (I) 0.664820 0.709832 

Lead 2 (II) 0.731302 0.739946 

Lead 3 (III) 0.628809 0.625698 

Lead 4 (aVR) 0.67590 0.69940 

Lead 5 (aVL) 0.612188 0.621622 

Lead 6 (aVF) 0.698061 0.728180 

Lead 7 (V1) 0.664820 0.675603 

Lead 8 (V2) 0.736842 0.755784 

Lead 9 (V3) 0.706371 0.710383 

Lead 10 (V4) 0.628809 0.676329 

Lead 11 (V5) 0.656510 0.653631 

Lead 12 (V6) 0.653740 0.670185 

 

Statistical test to confirm the results: the hypothesis that “combined lead 

performs better than single lead” is further investigated using hypothesis testing. In 

particular, as it recognizes that the combined lead accuracies of SR-SB, SR-ST, and 

SR-AFIB are 98.42%, 97.93%, and 83.10%, respectively. The t-test experiment has 

been performed and  it is found that the combined lead (mean = 0.93, standard 

deviation = 0.07, sample size = 36) is in fact statistically better than the single-lead 

(mean = 0.85, standard deviation = 0.13, sample size = 36). This difference was 

significant in terms of P-value of 0.0012, which is less than the α of 0.05, and test 

statistic (t) of 3.14 greater than the critical value of 1.66 (one-tail).  
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6.4 Experiment using MLP for only static data classification 

This experiment has involved only the static data for heart rhythms 

classification to answer the second question (importance of static data in heart rhythm 

classification) by using the Multi-layer Perceptron (MLP) architecture. This empowers 

to investigate the effectiveness of the static data in the classification of heart rhythms.  

The static data are available in the same subsets for each individual. It contains 

some demographic attributes (patient age, gender, date of birth, etc.), in addition to the 

ECG time-series statistical summary of the ECG time-series data. Static data are 

already described in Table 4 of Chapter 5. However, the statistical summary of the 

ECG time-series was only included as an input to the MLP model, while other feature 

characteristics e.g., age, gender, etc, were not involved. These statistical summaries 

have 11 features such as Ventricular Rate, Atrial Rate, QRS Duration, QT Interval, QT 

Corrected, R Axis, T Axis, QRS Count, Q Onset, Q Offset, and T Offset. During the 

experiment observation, it was noticed that the validation and training error continues 

dropping when the epoch was set to 50. Therefore, it is adjusted to epoch 100 in order 

to increase the possibility of terminating training based on the minimum error rate. 

Each experiment was repeated and compared based on each subset such as (SR-SB, 

SR-ST, and SR-AFIB. 

6.4.1 SR-SB subset 

 The observation of the experiment using SR-SB subset classification obtained 

98.25% and 96.85% in terms of Accuracy and F1-score, respectively. Figure 28 below 

shows the accuracy and loss across epoch 100. Table 12 reports the performance 

measurements of the SR-SB classification. 
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Figure 28: MLP SR-SB accuracy (left) and loss (right) 

Table 12: MLP SR-SB performance measurements 

Epochs 
Validation 

Accuracy F1-score 

20 0.9755 0.9553 

40 0.9773 0.9577 

60 0.9808 0.9643 

80 0.9755 0.9546 

100 0.9825 0.9685 

 

6.4.2 SR-ST subset 

The experiment of SR-ST subset classification attained 99.02% and 99.07% in 

terms of Accuracy and F1-score, respectively. Figure 29 illustrates the loss iteration 

and the corresponding accuracy to 100 epochs. Moreover, Table 13 reveals the 

performance rating of each epoch along with the Accuracy and F1-score. 
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Figure 29: MLP SR-ST accuracy (left) and loss (right)  

Table 13: MLP SR-ST performance measurement 

Epochs 
Validation 

Accuracy F1-score 

20 0.9770 0.9782 

40 0.9836 0.9835 

60 0.9836 0.9835 

80 0.9803 0.9808 

100 0.9902 0.9907 

 

6.4.3 SR-AFIB subset  

The examination employed for the SR-AFIB subset classification captures the 

Accuracy and F1-score as 84.0% and 83.78%, respectively. Figure 30 depicts the 

accuracy and the loss cost plots during the 100 epochs iteration. Table 14 below shows 

the performance metrics of the SR-AFIB subset classification during the validation.  
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Figure 30: MLP SR-AFIB accuracy (left) and loss (right) 

Table 14: MLP SR-AFIB performance measurement 

Epochs 
Validation 

Accuracy F1-score 

20 0.7508 0.7673 

40 0.8092 0.8183 

60 0.8246 0.8224 

80 0.8215 0.236 

100 0.8400 0.8378 

 

6.4.4 Subsets comparison  

It can be seen from Table 15 that the SR-SB and SR-ST carry out good 

performance results compared to the SR-AFIB. For example, the average accuracy 

conducted using 10 fold cross-validation of SR-SB, SR-ST, and SR-AFIB are 97.93%, 

98.22%, and 80.59%, respectively, which indicates SR-AFIB has depressed accuracy 

in contrary to SR-SB and SR-ST. This indication emphasizes that using only static 

data does not help in improving the classification. Hence, a combination of the static 

data with the dynamic time-series ECG data was proposed to form a multimodal 

network, which examines whether adding static data able to provide better results or 

not as shown in subsequent sections.  
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Table 15: MLP model subsets comparison 

Subset  Accuracy  (%) F1 Score  (%) 

SR-SB  97.93 96.72 

SR-ST   98.22 98.08 

SR-AFIB 80.59 82.27 

 

 6.5 Experiment using the proposed hybrid 1D-CNN-BiGRU-BiLSTM model 

In this section, the proposed hybrid architecture was analyzed using a 1-

Dimensional Convolutional Neural Network with Bidirectional Gated Recurrent Unit 

and Bidirectional Long-short term memory (1D-CNN-Bi-GRU-LSTM) model (shown 

in Figure 9, Section 4.2) using all the leads combined from the dynamic time-series 

data. This architecture attained effective results in the classification of heart rhythms. 

The upcoming subsections discuss the performances of each subset e.g. SR-SB, SR-

ST, and SR-AFIB. 

6.5.1 SR-SB subset  

 The experiment for SR-SB subset classification accomplished higher 

attainment in terms of Accuracy and F1-score as 99.61% and 99.60%, respectively, 

during the validation stage. Figure 31 shows briefly the validation accuracy and the 

corresponding iteration loss along the 50 epochs. Moreover, the performance 

measurements are shown briefly in Table 16 below. 
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Figure 31: Proposed hybrid SR-SB accuracy (left) and loss (right) 

Table 16: Proposed hybrid SR-SB performance measurements 

Epochs 
Validation 

Accuracy F1-score 

10 0.9922 0.9862 

20 0.9942 0.9806 

30 0.9961 0.9893 

40 0.9981 0.9960 

50 0.9961 0.9960 

 

6.5.2 SR-ST subset 

This investigation of SR-ST subset classification achieved higher performance 

as 99.42% and 99.07% in terms of Accuracy and F1-measure, respectively. The 

illustration in Figure 32 shows the accuracy and loss function during the model 

iteration. Table 17 displays the performance evaluation of the SR-ST subset during 

validation. 
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Figure 32: Proposed hybrid SR-ST accuracy (left) and loss (right) 

Table 17: Proposed hybrid SR-ST performance measurement 

Epochs 
Validation 

Accuracy F1-score 

10 0.9981 0.9941 

20 0.9689 0.9531 

30 0.9981 0.9946 

40 0.9961 0.9946 

50 0.9942 0.9907 

 

6.5.3 SR-AFIB subset 

The trial of SR-AFIB subset classification obtained superior results in terms 

of Accuracy and F1-score as 99.02% and 99.14%, respectively. Figure 33 indicates 

the accuracy with the corresponding loss during validation. Table 18 presents the 

measurement outcomes. 
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Figure 33: Proposed hybrid SR-AFIB accuracy (left) and loss (right) 

Table 18: Proposed hybrid SR-AFIB performance measurement 

Epochs 
Validation 

Accuracy F1-score 

10 0.9836 0.9849 

20 0.9967 0.9970 

30 0.9902 0.9894 

40 0.9934 0.9941 

50 0.9902 0.9914 

 

6.5.4 Subsets comparison 

The observations from Table 19 show that the SR-SB, SR-ST, and SR-AFIB 

achieved satisfactory outcomes result. For instance, as it is recognized from the Table 

below that the 10-fold cross-validation average accuracy of SR-SB, SR-ST, and SR-

AFIB are 98.18%, 98.30%, and 98.73%, respectively, which shows that all current 

subsets including SR-AFIB achieved higher accuracy in comparison to previous 

experiments. 
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Table 19: Proposed hybrid subsets comparison 

Subset  Accuracy (%) F1 Score  (%) 

SR-SB  98.18 97.06 

SR-ST   98.30 98.15 

SR-AFIB 98.73 98.73 

 

Accordingly, in the upcoming section, an experiment to combine the static data 

with the time-series ECG data was attempt by using the proposed hybrid fused with 

the MLP to form multimodal DL in order to accomplish an enhanced result. 

Regardless, adding static data does not enhance the performance compared to the 

proposed hybrid. 

6.6 Experiment using the Multimodal Proposed hybrid combined with MLP 

In the previous experiments, it was founded that the proposed hybrid produces 

higher performance in all the subsets, where it achieves more than 98% in terms of 

Accuracy and F1-measure. This study tries to analyze the impact of the static data on 

improving the outcomes to answer the third research question of the thesis. Therefore, 

an experiment was implemented to involve the static data fused with the dynamic time-

series data to form a multimodal of (MLP + proposed hybrid DL). Multimodal deep 

learning has the ability to deal with multi-dimensional datasets of different modalities 

that have channels of information sources. This illustration of the multimodal 

architecture was introduced briefly in section 4.4 in the proposed approach chapter. 

The experiment was repeated for each subset e.g. SR-SB, SR-ST, and SR-AFIB. Each 

subset was compared separately. Finally, through a comparative table (in the subset 

comparison subsection), the results have been analyzed for each subset obtained by 

cross-validation. 
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6.6.1 SR-SB subset 

 The observation of the experiment that was conducted for SR-SB subset 

classification carries out Accuracy and F1-score as 99.13% and 98.07%, respectively. 

Figure 34 shows the accuracy and loss cost during validation deployment. Table 20 

reports the performance evaluation results of the subset of SR-SB. 

 

Figure 34: Multimodal SR-SB accuracy (left) and loss (right) 

Table 20: Multimodal SR-SB performance measurement 

Epochs 
Validation 

Accuracy F1-score 

10 0.9808 0.9656 

20 0.9948 0.9922 

30 0.9948 0.9891 

40 0.9948 0.9859 

50 0.9913 0.9807 

 

6.6.2 SR-ST subset 

The empirical study for SR-ST subset classification earns 99.12% for Accuracy 

and 99.26% for F1-score. Figure 35 demonstrates the accuracy and loss across epoch 

50. Table 21 determines the validation evaluation results of the subset of SR-SB  for 

varying number of epochs upto 50. 
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Figure 35: Multimodal SR-ST accuracy (left) and loss (right) 

Table 21: Multimodal SR-ST performance measurement 

Epochs 
Validation 

Accuracy F1-score 

10 0.9794 0.9803 

20 0.9882 0.9890 

30 0.9912 0.9926 

40 0.9882 0.9890 

50 0.9912 0.9926 

 

6.6.3 SR-AFIB subset 

This trial study for SR-AFIB classification achieved 99.45% and 99.60% as 

regards Accuracy and F1-score, respectively. Figure 36 below briefly clarifies the 

accuracy and loss during training and validation. Table 22 displays the validation 

evaluation outcomes of the subset of SR-AFIB. 
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Figure 36: Multimodal SR-AFIB accuracy (left) and loss (right) 

Table 22: Multimodal SR-AFIB performance measurement 

Epochs 
Validation 

Accuracy F1-score 

10 0.9861 0.9875 

20 0.9861 0.9886 

30 0.9861 0.9881 

40 0.9917 0.9929 

50 0.9945 0.9960 

 

6.6.4 Subsets comparison 

It could be observed from Table 23 that the SR-SB, SR-ST, and SR-AFIB 

classification carry out a satisfying performance. For example, the average accuracy 

conducted using 10 fold cross-validation of SR-SB, SR-ST, and SR-AFIB are 97.69%, 

97.73%, and 97.87%, respectively. Nevertheless, this indication confirms that the 

combination of the static data with the ECG time-series data does not enhance the 

model improvement of the classification. Since the proposed hybrid DL model 

performs better in terms of all the performance measurements, where it achieves an 

average accuracy of more than 98% during the cross-validation iteration in all the 

subsets. 
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Table 23: Multimodal (proposed hybrid + MLP) subsets comparison 

Subset  Accuracy (%) F1 Score (%)   

SR-SB  97.69 96.47 

SR-ST   97.73 97.59 

SR-AFIB 97.87 97.88 

 

6.7 Comparison of evaluation results  

This section summarizes the performance of all the experiments that were 

conducted of different models and provides the answer to the three research questions 

stated in the problem statement of the introduction. 

To address the first question (the importance of each lead in a 12-lead ECG in 

classifying heart rhythm). A comprehensive experiment was executed using the 2D-

CNN for the single and combined lead, where the combined lead (12-lead) performed 

significantly better than single-lead. This fact was emphasized statistically using a T-

test. Therefore, all the other experiments were conducted based on the combination of 

all leads (12-lead) in which it was inserted as an input to the models to investigate the 

remaining questions. 

The second question was addressed (the importance of static data in classifying 

heart rhythms) by using a Multi-layer Perceptron (MLP) architecture to train on the 

only static data that are available in the same subset, which contains statistical ECG 

basic measurements of the time-series data. This provides evidence of the performance 

of the static data classification. Since the MLP network has the advantage to extract 

the important features from the static raw data. It has been found that the static data 

can give low prediction accuracy, however, it was less than the accuracy obtained from 



72 

 

  

 

 

the 2D-CNN that used the combined leads ECG time-series data. For instance, the 

MLP model subsets for the SR-SB and SR-ST achieved accuracy around 97%, while 

the SR-AFIB attained approximately around 80%.  

In contrast, the proposed hybrid is extremely better than other methods. The 

classification of the SR-AFIB, SR-SB and SR-ST subsets shows a performance of 

more than 98% in terms of Accuracy and F1-measure.  

The fact of fusing the static data with the proposed hybrid DL model is further 

investigated. This examination can identify whether the static data enhance the 

attainment of the model to answer the third thesis question (can clinical static data be 

combined with ECG time-series data to improve classification). It could be found that 

it achieved less performance (about 97.87%) compared to the proposed hybrid DL. 

 Furthermore, different possibilities were also investigated to utilize the static 

data in order to improve the classification performance by including it into the model 

using MLP. This was done by fusing primarily the MLP model with 2D-CNN and the 

proposed hybrid to form a multimodal fusion (MLP + 2D CNN + Proposed hybrid). 

In addition to including the MLP with 2D-CNN to come up with a multimodal of (2D-

CNN+MLP), as shown in the summary for all comparison table. However, all the 

above-mentioned models were producing lower accuracy when fused with the MLP 

model. This concludes that adding static data does not help improving classification 

performance. Table 24 displays the comparison of the other cross-validation accuracy 

of the mentioned models. 
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Accordingly, it is emphasized finally that the proposed hybrid deep learning 

model exhibits superior performance to all the subsets which carried out robust 

outcomes results compared to all the other methods. 

Table 24: Summary for all comparison 

Measurements Model  
SR-SB  

(%) 

SR-ST 

(%)  

SR-AFIB 

(%) 

Accuracy 

2D-CNN 98.12 97.07 80.33 

MLP 97.93 98.22 80.5 

Multimodal (2D-CNN+MLP) 97.56 97.52 79.44 

Multimodal  

(Proposed hybrid +MLP) 
97.69 97.73 97.87 

Multimodal fusion  

(proposed hybrid + 2D-CNN+MLP) 
97.69 97.57 97.87 

Proposed hybrid 98.18 98.30 98.73 

F1-score 

2D-CNN 97.05 96.80 81.11 

MLP 96.72 98.08 82.27 

Multimodal (2D-CNN+MLP) 96.19 96.16 80.02 

Multimodal (Proposed hybrid 

+MLP) 
96.47 97.59 97.88 

Multimodal fusion  

(proposed hybrid + 2D-CNN+MLP) 
96.55 97.35 97.83 

Proposed hybrid  97.06 98.15 98.73 

   

Moreover, the subsets of SR-SB, SR-ST, and SR-AFIB were tested with a very 

recent related work (Yildirim et al., 2020) that used the same 12-lead database and a 

hybrid deep learning architecture (which is different from the hybrid architecture). 

Yildirim et al. model code was not available, so it was implemented by two different 

models. The first model was implemented using the same architecture along with the 
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parameters and hyperparameters. The second model was adapted by considering 

hyperparameter optimization and tuning to choose a set of optimal hyperparameters. 

However, the comparison proves the superiority of the proposed hybrid model because 

Yildirim et al architecture was mainly customized for a single-lead, therefore, it does 

not perform well in these experiments. These results are presented in Table 25.  

Table 25: Comparison with the Yildirim and his team work architecture 

Measurements Model  
SR-SB 

(%) 

SR-ST 

(%) 

SR-AFIB 

(%) 

Accuracy 

Yildirim et al., 2020  

(original architecture) 
96.86 65.73 63.7 

Yildirim et al., 2020  

(adapted architecture) 
97.72 71.58 63.7 

Proposed hybrid 98.18 98.30 98.73 

F1-score 

Yildirim et al., 2020  

(original architecture) 
94.86 57.64 66.23 

Yildirim et al., 2020  

(adapted architecture) 
96.4 64.89% 61.08 

Proposed hybrid 97.06 98.15 98.73 

 

6.8 Analysis and discussion  

Here the results were analyzed and the outcomes are explained based on the 

research findings: subsection (6.8.1) explains why combined leads are better than 

single-lead, Subsection (6.8.2) discusses why time-series data are better than static data 

in classification. In addition to the effect of adding static data to ECG time-series data, 

and the last Subsection (6.8.3) summarizes why the proposed hybrid model achieves 

the best result.   



75 

 

  

 

 

6.8.1 Combined lead vs single-lead 

Many researchers have attempted heart rhythm classification based on a single-

lead. This is because most of those studies have widely used publicly available 

databases such as MIT-BIH arrhythmia database (Moody & Mark, 2001; Sahoo et al., 

2019). This directory contains 47 subjects with 2 leads, studied by the BIH Arrhythmia 

Laboratory between 1975 and 1979 and were sampled at 360 samples per second. 

Other researchers conducted their experiments based on the INCART database, which 

contains records extracted from the Holter monitor. This database records 48 subjects 

sampled at 257 Hz using 12-lead. Other ECG databases contain different distributions 

of anomaly which is available to the public as well.  Most of those databases contain 

limitations such as imbalanced classes, either single-lead or more, and low sampling 

frequencies, thus, the new large database plays a vital role in this study. In this thesis 

work, a newly published database was used containing more than 10,000 subjects with 

various rhythms that are higher than the usual sample rate. It was sampled at a rate of 

500 Hz and containing a large age group between 4 to 98.  

However, the signals that are extracted from ECG devices may contain noises 

such as line interference, electrode connection noise, motion artifact, and other random 

noises. Combining all lead data gives a better view of the state of the heart rhythm and 

reduces the effect of noise rather than using a single-lead only. This is why combined 

lead performs better than individual lead. It is believed that the outcome of this work 

about the superiority of combined lead will have an impact on future studies. 
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6.8.2 Static data combined with time-series data 

The static data consists of different statistical measures that are extracted from 

the ECG time-series data. Therefore, combining static data does not enhance the 

performance of the Deep Learning model, because it just adds redundancy in the data.  

In general, the structure of the DL models that contains many hidden layers 

able to learn from the time-series data in a way that is superior to hand-crafted 

statistical features generated from the time-series data. This special structure allows to 

learn powerful representations and extract features automatically from the ECG time-

series training data.  

6.8.3 Proposed hybrid model performance 

The hybrid approach performs well because of the advantage of combining the 

1D-Convolutional Neural Network with the Bidirectional Gated Recurrent Unit 

(BiGRU) and Bidirectional Long-short-term memory (BiLSTM). The 1D-CNN is 

capable of extracting out significant items and learning complex features from the data 

in a way similar to image learning. Bidirectional Long short-term memory (BiLSTM) 

is an extension of traditional LSTM which consists of memory blocks that have proven 

to be very useful in learning from temporal data. Therefore, a combination of the 1D-

CNN with BiGRU and BiLSTM ensures better learning compared to the other 

approaches such as 2D-CNN.  
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Chapter 7: Conclusion and Future Work 

A DL model is proposed to diagnose heart rhythm anomalies from 12-lead 

ECG data. This study is motivated by the fact that manual diagnosis of heart rhythms 

from ECG signals by experts may be erroneous, and therefore, an automated heart 

rhythm diagnosis approach will help caregivers to make more informed decisions with 

less chance of misdiagnosis. A Large database of 12-lead ECG data consisting of more 

than 10 thousand subjects has been collected and three research challenges were 

identified to accomplish the goal of developing the automated diagnosis model. The 

first challenge was to understand the role of each lead of the 12-lead ECG in classifying 

heart rhythms. This challenge was addressed by proposing a CNN model to evaluate 

the efficacy of individual lead and the combined lead, concluded with the help of 

statistical tests that the combined lead data are much more effective than the single-

lead. The second challenge was to understand the effectiveness of static data that was 

part of the database. To address this, an MLP model was proposed to evaluate the 

performance of the static data. Finally, the third challenge of understanding the 

effectiveness of fusing the static data with the ECG time series data for heart rhythm 

classification was addressed by proposing different multimodal DL models and 

evaluating the combined data. Thereby, it can be  concluded that the static data does 

not help in improving the classification performance. 

 Furthermore, an effective hybrid DL model (1D-CNN BiGRU-BiLSTM) have 

been proposed to classify heart rhythm and showed its effectiveness over other models.  

In the future, utilizing other databases would be considered as well as utilizing 

demographic data (e.g. age, gender) and clinical background in improving the 

classification performance using multi-class classification and attention-based models. 
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Existing deep learning architectures such as transfer learning can be investigated, 

which may have great impact by applying the fine-tuning to the model after retraining 

the network weights using the new database. Also, considering the diagnosis of other 

types of heart disease such as Myocardial Infarction (MI) and use other types of data 

like image. Additionally, classifying the heartbeats based on the recommendations of 

the Association for the Advancement of Medical Instrumentation (AAMI) standard 

that categorized heartbeats into five classes using the heartbeats features available in 

the same database. Finally, collaborating with a local medical facility to collect patient 

data and develop a full-fledged application that would be used in the field. 
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