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ABSTRACT 

Thi tudy examines the effects of adding the water to the intake air of a dual 

fuel engine on the p rformance and combustion noise. Dual fuel engine is a 

die el engine using small amount (500) liquid diesel fuel as a pilot fuel and 

bums a liquefied petrol um gas as the main fuel. The addition of water to the 

combustion chamber has known effects on reducing the dangerous emission 

of nitrogen oxides. Previous research has attributed the observed reduction 

of nitrogen oxide emissions to a suppression of tlame temperature due to 

quenching effects from the water, thereby reducing thermal SO,. formation. 

The thesis highlights the effects on the performance, CO/HC/Smoke exhaust 

emission and combustion noise of the dual fuel engine. Experimental 

procedures conducted using a Ricardo diesel version variable compression 

research engine are discussed. Results from testing dual fuel engine with 

varying the added water to fuel ratios and other design and operating 

parameters will be presented and discussed. 

The data shows slight decrease in the power output with increasing the 

amount of water added. This drop can be recovered by reducing the 

compression ratio of the engine. The addition of water also shows an 
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mcrea e m the combu tion noise, hO\\ ever the nOlse can be decreased b 

increa ing the engme speed, reducing the pilot fuel mass, retarding the '--

injection timing r r ducing the compression ratio. CO and HC emissions 

have hoy n light increase but still within the accepted range and can be 

reduced further by a catalytic conve11er. Exhaust opacity has shown slight 

increa e with adding more water; however it can be also reduced by 

reducing the mass of pilot fuel. 

R commendations are given for further studies including the use of CFD 

imulation and the use of more water amounts. 
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INTRODUCTION 



C hapter 1 Introduction 

1 . 1  Hi tory of interna l com b u  t ion engine exha u t emi  Ion 

Dunng the cours of the pa t ix decades. the internal combustion engine has been under 

eyer tighter crutin). due to it role a a major source of air pollution. The smog problem 

due to automobile traffic \\ a fir t observed in the early 19"+0s in the Los Angeles basin. 

It ha � been hown that the mog problems in Los Angeles v, ere caused by reactions 

b tween oxides of nitrogen and hydrocarbon compounds in the presence of sunll!!ht. It 

\\ a later concluded that the oxides of nitrogen and the 11) drocarbons. causi ng the 

photochemical smog. origmated from combustion in automotJw engines. 

In 19 -9 .  the tate of California legislature took. as a consequence of the smog problems 

111 Lo Angeles. the first legislative steps towards a reduction of the autoI11oti, e air 

pollution. by setting emissions standards and regulations for automotive engll1es. The 

state of California initiative was followed. first bv the federal government of the United - � 

tates. then by Japan. Europe. and the rest of the world. Ever since this first initiati\e. the 

state of California has been leading the ,va . in terms of setting ever stricter standards on 

vehi Ie pollutant emissions. 

The two-\\'ay catalytic converter (oxidizing catalytic converter) was introduced in 1975 

as a means of reducing tailpipe emissions of hydrocarbons and carbon monoxide In 1976 

Volvo introduced its "smogfree" 1977 model year car. as the fi.rst car featuring a three 

way atalytic converter (oxidizinglreducing catalytic converter). able to drastically reduce 

tailpipe emis ions of all three controlled pollutants: hydrocarbon . carbon monoxide. and 

oxides of nitrogen. 

There have been many methods to control the air pollution problem from dIesel engmes. 

The use of exhaust gas recycle (EGR). adding water to the combustion chamber with any 

method. and adjusting the engine design parameters helped to reduce the nitrogen oxides 

,VO, problem. 
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Chapter 1 Introduction 

The u e of ga eou fuel e g. natural gas. liquefied petroleum gas (LPG). etc IS a 

promi 1l1g approa h for lowering the dependence on petroleum liquid fuels and to reduce 

the emlS Ion of CO2 and other pollutants from the dIesel eng1l1es For a count!! like the 

United. rab Emirates. it IS advantageous to utilize gaseous fuels in diesel engines. The 

ad antages of u. ing ga eou fuel in such engines stem from the economical and 

n "lronmental benefit . Economical benefits are to reduce the dependence on liqUId fuels 

and utiliz1l1g the ga eou fuels locall, so that liquid petroleum od can be exported abroad. 

Enviromnental benefit include the reduction of CO2 green hOllse gas. the hydrocarbons 

and diesel odor Ho\yever. the .YO, emission is still very high and needs to be reduced if 

uch engine are to be commercialized. 

The u e of gaseous fuel in diesel engines can be achie\ ed by t\\O '" a\ s. The first \\ a\ IS '"- '"-' ... ... -

to replace the injectlOn system with spark ignitlOn while the other is to use dual fuel 

concept. In dual fuel engine. the injected diesel fuel is kept at minimum amount: say 5-

lO�"o of the maximum. and the gaseous fuel is  admined as the main fuel in the intake 

manifold \\ith special nozzles. 

It has been concluded from diesel engines combustlOn that the addition of water 111 the 

combustion chamber effectively reduces the NOy emission but there is a concern that it 

may increase the noise level from such engines. 

1.2 Objective of the the i s  

There have been many efforts t o  reduce the 'Oy emission problem from dual engines. 

but the addition of water to the combustion chamber has not been tried before. Therefore 

it is the main objective of the current project to examine the effect of adding water to 

intake of the dual fuel engine on the perfonnance and combustion noise of such engine. 

The diesel engine used here is converted to run on gaseous fuel such as liquefied 

petroleum gas (LPG) and the water has been added as a water vapor in the intake air 

admitted to the engine: hence increasing the absolute humIdity of the air. The absolute 

.., 
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Chapter 1 I ntroduction 

humidity i then in rea ed compared to the base atmospheric case and the effects of 

adding water on the perfOImance and exhau t emissions of the dual fuel engine have been 

te ted. n opt imization has been carried out to select the most appropriate water to aIr 

ratio, water to fue l ratIO, operating and design parameters for the engine to produce the 

be t condit ions. The best conditions here mean the engine should produce the hIghest 

po\\ er output. \\ i th minimum exhaust emission and minimum combustion noise. 

1 .3 Out l ine of the the i 

The fol lowing chapter of the thesis are :  chapter two v\ hich covers the l iterature rev lev,,_ 

chapter three \'"h ich  presents the exper imental data and engine test rig descriptlon_ the 

re�ul ts  and analy I S  i '  pre ented in chapter four . F inal ly the thesis i s  ended wIth chapter 

five \',h ich covers the conc l u  ions and recommendat ions for future v\orks. 
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Chapter 2 Literature R eview 

2 . 1 I n troduction 

lneratur re\ Ie" 1 gl\ n 111 thi chapter \\ hlCh 0\ er the tOpICS discussed in thIS 

the i The topic di cu sed in the thesIs ll1clude the importance of the Il1ternal 

combustion engllle to engineering applications. We also present exhaust emission 

problem from the internal combustIOn engine utilizing the diesel fuels in that chapter In 

thl chapter \\ e also highlight the importance of uti lizing the ga -eous fuels in the e 

engines and emi ion fr m the e engines. The methods of controlling these pollutants 

are al 0 o\ered. Finally. the approach u ed in thi thesIs of utilizing steam in.lectlO11 to 

the admitted air to redu e th emi sion (or adding mOIsture in the intake air) is explored. 

1.2 Exha u t e m i  s ion  from d ie  e l  engine 

Compre ion ignition (Cl) engine . commonly known a diesel engines. are considered to 

be the unit f the tran portation and energy sectors in the \\orld. IvIillions of units are 

used on a darl) basis and the emission of CI engines is an important aspect of pollution 

source CI  engines are de igned to operate on a less refi.ned petroleum distillate than 

gasoline which contain less energy content. Yet CI engines are more effiCient at 

tran Jating fuel energy content into output than gasollllc (engine park IgmtlOn). CI 

eng1l1es also ha, e feVver 0\ erall emissions than gaso ll11c cngi nes and are preferred for 

emISSIOns reductions [1]. Unfo11unately. lagging technological improvements in CI 

engines and fuel have hindered emissions reductions. performance and acceptance of 

these engines. In order to reduce vehicular pollution a change in engine type and design 

for the majority of the transportation sector i needed. B: s\\itchll1g to ne\\ . effiCIent 

diesel engines. substantial reductions in anlbient pollution may be achie\ed. Compared to 

gasoline engines. diesel engines produce 30% as much hydrocarbon. 5°'0 as much carbon 

monoxide and about -0% as much paI1iculate emissions. Utilizing diesel engines in a 

h\'brid electric confiauration can double these reductions in emissions. Exhaust 
_ c 

equipment and fuel modification or substitution can fUl1her these reductions to an e\en 
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Chapter 2 Literature Review 

greater tent II of these tecimologies and 1I11prO\ ements are currentl� a\ ailable and 

pro\ en. Increased mitial costs can ea il) be offset b� ... ub,tantlall) decreased operating 

c L. ImprO\ ed em ironmental and health benefits and ma' production. By optI mizing 

fuel type. engine d ign. exhau t equipment and po\\er-train ystems vehicular pollution 

can be dIe ti\eJ) regulated and mmimized 

The major eml ion comp nents of compre sion ignmon eng ines are particulate matter 

(P\f) and mtrogen oxide ('yO,). Other emi sion include carbon monoxide (CO). sulfur 

oXIde (�O). h) drocarbon (H ) and noise. Unburned h) drocarbons are re ponsible for 

man) of the eYere health problem and are linked to caner. mutation and toxlcit) While 

Pt.! i re ponsible for mog and respirator) problems One group of hy drocarbons . 

. ld hyde . are re pon ible for the odor constituent from diesel engines. Minimization of 

Pt.! and .YO, i the primary focus of emissions reduction work. yet reduclllg all 

emI'SlOn is important . 

,YOT contribute to acid rain and reduce aesthetic air qualit) . CI engines operate at a much 

leaner air fuel ratio than gasoline engines \\"hich facditates lower CO and volatile organic 

compounds. Howe\ er. due to higher operating temperature and pre sure in diesels . .\"0, 

and P:v! emissions are higher [2]. 

There has been probably more health research on diesel em i 's ions ( DE )  than on an� other 

smgle source. possibly exceptmg cigarette smoke. Emis ions from diesels are a mixture 

of gases. \·apors. semi-volatile organic compounds and pm1icles. The particle are all 

respirable and fall into two general chemical classes: 1) "sooe or elemental carbon 

particles coated \vith condensed organic and inorganic compoLlnds. and 2) ultra fine 

particles of condensed organic material and ulfur compounds ha\'ing little or no 

elemental carbon content [3]. Marine diesel engine emissions such as particulate matter 
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and black sm)'" can\ carcinogen comp nent that, igl1lficantl� Impact the health of 

human belJ1g' [-+]. 

2.2.1 n�ine  Dc ign a n d  Tun ing  

ngine de..,lgn and tUl11ng .lre the primar) \ anables 111 emL i n control 1 here re t\\O 

typ of I engll1es that op rate 111 a 'Imdar manner. but ha\e different e haust enll',-ion 

prot) Ie Olr ct lI1J etIon (OI) i' the n \\er. more PO\\ erful 1 engine de Ign used for high 

peed ngine,. The traditional. m re \.\ idel\ manufactured and utdized engine de Inn I .. ..... � 

indire t inJe tlon (l01). The pnmar) ph) Ical difference 111 these englI1es is the lDl 
ng1l1e has a pre-c mbu ti n hal11ber and t� plcall) is deSIgned to u e glovv-plug. to 

fa ditate old 'tarting condition 

The malll benefit of the ll1-dlrect injecti n deSign is that It facJ!ltates better fuel air 

mi.·tur. ir and fuel are 1l1Jected into the pre- ombu,tion chamber of an 10I engll1e The 

dOWTI\\ ard mo\ ement of the pI ton during the II1let 'troke and the UP\\ ard mo\ ement of 

the pnon during the ompre I n troke force the air and fuel to mi\: in a \\irl pattern 

that i' created b) the changlllg \ olume of the combustion chamber The \ eloclt� of the 

'\\ lrl ha been mea ured at 0\ er 2 1  time the \ eloclt� of the eng111e speed [:] The 

re ulting through mixing of the fuel and air 111 the pre-combluion chamber results 111 

more complete combu tlOn. The re ult i that there l' les' 'moke (particulate matter). 

arbon mono\.Ide (CO). o'-lde of nitrogen ( .\"0,). h)drocarbon (He) and fe\\er 

Aldeh)de produced than in an equi\ alent direct injection eng1l1e. 

IDI and Dr engines also emplo) different fuel inJectl n s) tem 101 engines use J 'plit 

rail y tem to deh\er fuel from the fuel mjectlOl1 pump to the fuel 111jector . Dr engll1es 

u e a common rali system that allows more preci e and higher pre ure fuel control and 

injection. Fuel in 101 engme typically injected once per compre Ion 'troke at 

pre sures up to 3.000 pSI While 01 engines often Inject fuel at an) \\ here tr0111 5.000 to 
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25.000 P i and ome of the more ophistIcated fuel Il1lectlOn s)-stems inject the fuel 

mUltiple time p r compre I n troke to enhance fuel mIXll1g and tlame characten'tlc 

Till facIlitates fewer eml sion from incomplete combustlOl1. 

The de ign and placement of the fuel llljector are also Important components of exhaust 

emi ion control. The maller the opening of the llljector. the more the fuel atomize 

upon injectIon. Atomization of fuel affects the mixing of fuel and all' a \\ell and the 

duration of the tlame. ultimatel) affecting the ompietene's of fuel burn The fuel 

injection nozzle \\ idth and length also affect at01111zatlOl1. For optimum atomizatIon of 

fuel. It i nece ary to inject the fuel at a high pressure as possible to maximIze the pray 

area and air saturation. but it i nece an to minimize the amount of fuel contactll1L1 the - � 

ylinder wall a it refom1s into droplets where it is less prone to \ aponzation. 

The timing and rate of fuel injection are also very important factors of emissions control. 

A the injection i inc rea ed the ignition delay (the time between the fuel IS being 

injected and combu tion begins) is getting higher. ThIS Il1creases the total amollnt of fuel 

that is llljected before ignition begins. The longer ignition dela) also heat the fuel to 

higher temperature which end the combustion process earlier. This increa es the 

re idence time of the fuel and exhaust gases in the combustion chamber. \vhich effects 

the emissions formation. The longer the exhaust gases are trapped in the combustion 

chamber the hotter they become. This allows for the recombll1ation and formation of 

polycyclic aromatic hydrocarbons. moke intensity is also reduced but combustion noise. 

higher mechanical and thermal stresses and increased '0 emissions result. Delayed 

injectIOn timing has the opposite effect as exhaust gases are cooler \\ hen released. The 

rate of injection is also an important factor. Higb initial rates of injection reduce e"\haust 

smoke because the inj ection process is ended earlier \\ h ich im proves e lJ II I Illation 

reactions. through bener fuel air mixing. 
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ombustion in  a compre - Ion Ignition engll1e I t nJtlat�d b� '" 11arp In 
-

- - '- u rea e tn  pre_. ure 

\ \ h l  h create' high temperature' and lead t Ignition. fhe nuclei ot tuel paI1i Ie Ignite 

fir·r. 1'01 1 \ \  d b: the re -t f th fuel partl Ie 'lome fuel 1 not burnt becau e it 1 not 

mi. ed \\ i th 0, : g�n th fuel 1 inlected it I'> compre:-; 'ed unt i l  It ignite, [1m i' 

called the ignltJon del a: . The H!niti n deb) atlects the rest ot th� combu lion proce 's. the 

mechani al and th rmal 'tre' -e . n I e .  and e ' hau-t eml lons \\ Ian: reaction take place 

dunng the Ignition dela) and are br ken into mo categorIes. ph) Ical and chemical 

proce - e.;, The ph) Ical proces - tnclude' 

1 )  ":"pra) d l-Integration and droplet formation. 

�) Heating o f  the liquid and fuel e\ aporation and 

3) Diffu. D n  of the \ apor into the air to for m  a combtnible mixtur e . 

Th� chemical proce- e l l1clude: 

1 )  D ompo I tlon o f  the hea\ ) h) drocarbon I ntO  lighter components and 

_) Chemical reactlons bet\\ een the decompo ed part icle .... and 0'\) gen 

The chemi c al and p h) Ical proce es occur imultaneousl: a the fuel \ apor make 

contact \ \i th  the air. The heml al processe' are actual I: the rate controlling processe' for 

combu tlOn.  Pero:-;ides and Aldeh) des are formed dUrlng the Igl1 l tion dela) and reach 

their peak con entration Just before comb u  tion [:] 

2.2.2 on tituent of Exhau t Emi ion 

Cnb umed h) drocarbon 111 the d ie  el exhaust con i t of ei ther original or decompo-ed 

fuel molecules .  or recombined intermedIate compounds . ome h) drocarbon. ::Ire the 

re ult of l ost l ubncating oil. At high l oads the hydrocarbon emiss ions originate from the 

fuel molecul e  III the core and on the cylinder \\all L'nder the e condit ions the 

temperatures reached are fairl) high and cause decompo ition of -ome of the ongl l1al fuel 

molecules  ll1ce the fuel/air ratio in  the core and near the \\ alls 1 generall) rIch. there is 
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a gr at p ibillty that ome re ombination reaction mao occur bet\\een the hydro arbon 

radical and the 1I1t�rmedlate ompound . The re ult I higher concentratlon� of the 

hea\ ler hy dro arbon. I he proce of recombination )f the h) drocarhon compound ... and 

radicals may als result in comp und, haying a different, lructure than the original tuel 

[b] 

Carbon mono Id I f rmed during ll1termedlate c mbu'llon tage ot hy dncarbon fuels. 

Dunng ombll'tIOn. I o. idlzed to 2 through combll1ation reactions bet\\een 0 
and diff rent oxidant. If the,e re ombination reactIons are Incomplete. \\ ill be left. 

Higher temperatures reduce the amount of that i' not oxidized. Ho\\e\er. as 

combu,t!on temperature' ll1crea e. a\ ailable 0 'J gen decrea ... e.' and 0 IS left unoxldlzed. 

Th refore. 0 le\ el typically are 10\\ at 10\\ load.:. but hecome hIgher at higher loads. 

due to failure to be oxidized. 

moke i the most \ i Ible ty pe of emissIon emItted frol11 engll1e e. 'hallst moke 

on i �t. of different t) pe of particulate matter. \\ hlch \ arv \\ ith load. The\ can be 

di \ ided 1I1tO t\\ 0 categorie 

I Liquid partl Ie appeanng a' \\hite cloud of \ apor emitted under cold taI1ing. Idling 

and I \\' load The e particle can ist of main I) unburned fuel and lubncat1l1g ot! and 

rna) be accompamed b) partial OXidation product· and disappear a load i increased. 

2) oot or black make IS emitted as a product of the incomplete combustion proces'. 

parti ularl) at mao 'imum loads [7]. 

moke i measured as the opaci!) of the exhaust. The ma,\II11Um opaclt) for ne\\ dIesel 

engines is regulated b) the EPA at 0.0 1 gram per brake hor epo\\er per hour (g bhp-hl 

for particulate matter less than 1 0  microns in Ize ( P\ [10) (L' EP, , 2007)  mok.e IS 

affected by the Ignition delay. Later ignitIOn lead to greater amounts of mok.e III the 
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eml s  Ion . The Cetane number of  fuel is  a measure ot  the Igll l t ion dela! . The higher the 

Cetane number. the horter the Ignition delay and Ie s smoke is produced . Regulat lon of 

parti u late matter i Important because it causes health problems. P f from 0 1 microns to 

1 0  mIcrons can penetrate deep into the lungs \\ here the) are deposited in the re5pirator: 

bronchioles or ah eolar -acs .  The e deposit ha\ e been ShO\\ 11 to increase cancer 

formati n in human and lab animal [ 8 ] .  An l l1terest l l1g factor that occurs 1 11 the e" haust 

of CI engmes i that the amount of n itrogen and sulfur absorbed b) the particulate matter 

fluctuates depending on the exhaust temperature. Higher e'\haust temperatures. \\ hich 

orrelate with h igher engine loads. wi l l  absorb more -u lfur and less ni trogen than lower 

temperature [6] 

" - itnc o xide (:\O\.) is  formed during the combustion process at \ arious concentrations in  

a l l  the  spray region . 1 0 results from the  disassociation of  0,:  gen molecules into atomic 

oxygen as a result  of h igh combustion temperatures. � i trogen attaches to atomic 0") gen 

after combustlOn has occurred and fom1s NO and other N itrogen-Ox) gen isomers (\;0\. ) 

[9 ] . . 10\ emisslOns l t1crea e with cetane number due to longer ignit ion delay and higher 

combustion temperature [ 1 0] .  0 emissions are regulated b: the EPA at 0 .02 g 'bhp-h 

[ 1 1 ]  . 

ulfur dio'\ide ( SO: ) i s  fonned by the oxidation and combustlO11 of sul fur throughout the 

combustion process.  S02 is a result of the amoLlnt of su lfur in the fue l .  ew dlesel fuel 

standards require that sulfur be l imited to 1 5ppm to mmimize S0: pol lutlOn [ I  1 ]  SO-:. 

causes aci d  rain and lov; le\'eJ smog formation.  It is also l i 11ked to respiratory problems. 

Poly cyc l ic aromat ic  hydrocarbons (P AHs) are byproducts of the i ncomplete combustion 

of organic matter. The) are of major health concern. due to their \\ e l l - k.nov,,�n 

carcinogenic and m utagenic propeI1ies.  The presence of PAHs in engine emissions is not 

determined solely by the presence of P AHs in fue l .  PAHs can be formed by a mi xing of 

\'arious exhaust gases in the atmosphere. a catalY1ic reaction \\ ith exhau t equipment. or 
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from the combustion of lubncants and other tluids present In the eng1 l1e [ 1 2 ] PAHs are 

nOlmal ly  a oClated \\ lth mal l partic les that general l) ha\ e long resIdence times In the 

atmo phere and therefore ha\ e the potential to be tran ported quite long dI stances [ 1 3 ] .  

\Vh i l  the exhaust may not contain a certalJ1 PAH . -uch as ni trobenzo ( a )p:-. rene. a 

carc l Ilogen. it ma:-. contain benzo ( a)pyrene. which is not a kno\\. n carcinogen. HO\� e\eL 

\'> hen expo ed to X02 and trace amounts of I1 1 tric ac id in the atmo phere. the 

benzo( a)pyrene form nitro benzo( a)pyrene [ 1 2 ] Another Interesting change that takes 

place 1 that the benzo( a)p) rene that is emitted as part of the exhaust is a prol11 L1tagen. it 

needs acti vation to cause mutation,  However. the nt trobenzo( a )pyrene is a direct mutagen 

and reqUlres no chemical activation to cause l11utations on the Ames test (a test used to 

detennine mutagenic acti\'it) ) [ 1 -+] . Typical PAH constituents of diesel exhaust are 

ch.ry·�ene(210 0 ) .  pyrene ( 1  0 0) .  and benzo [a]anthracene ( 1 7% ): al l  of \\ hich are 

considered mutagenic  [ 1 " ] urpri singly. P AH emissIons are not spec i fical l)  regulated. 

emis ions of nonmethane hydrocarbons are l imited by the EPA at . 1-+ g, bhp-h [ 1  I ] . 

2.2 .3 Fuel V a ria b l es 

The components of fuel are one of the mall1 determinants of the amount and type of 

pol lutants that wi l l  be present in exhaust emissions.  ul fur IS one of the most problematic 

compounds found in diesel fuel  current ly .  u lfu r  is oxidized in the combustion process 

and fom1s various isomers. These isomers. such as sulfur dioxide. are responsible for aC I d  

rain. re pirato!! problems and other and en\ iro nmental problems.  Sulfur and sulfate are 

detrimental to catal)1ic emissions reduction equipment. The: bind to tbe surfaces of the 

exhaust equipment and render it useless for the catalytic reduction of other po l lutants. 

, Tew EPA standards for on-road diesel require a reduct lOn from .05 gbbp-h to .0 I g/bhp­

h. Hovl/·ever. sulfur is  responsible for most of the lubricating q ual i ty of diesel fuel .  \\ hich 

i s  essential for certain engine components such as the fuel injection pump. Olefi ns and 

aromatics are being used for lubrication. replacing sulfur content in diesel fue l .  As noted 
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earher 01 fin and PAH are kno\\ n to be mutageIlIc and carc inogel1 l c  [ 1. :- ] .  Essent lalh . a 

pol lutant 1 being replaced b� c leaner. but more dangerous compounds. 

Itrogen. carbon. pho phorus and other e lements a \\ e l l  as trace amounts of l1lan� 

metal are often con titu nts of die el fuels .  B� l imit ing the amount of such compounds 

in fuel . 0\ era l l  pol l ut ion from CI emissions can be control led.  

There are man) different pIece of equipment that ba\ e an impact on emissions formation 

from compre sian ignit ion engines. Equipment attaches to the engine or the exhau t and 

modi ties  the \\ ay that exhau t gases are formed. Most of these technologIes are pro\ en. 

but not wIdely used for \'anous reasons. A change in fuel \\ ith a focus on emi "'''lons 

reduction may l llc l ude the use of some or al l of these technologies.  :\lso.  some of t hese 

technologIes are not used because they are not compatlble \\ ith current fue ls .  but ma) be 

compatible \\ith  \\ O.  

2.3  Control Technologie 

Technologies to control aIr pol lutant emiss ion from ICE � can be categorized as process 

or post-combust ion contro ls .  Process controls  i nc lude changes and impro\'ements to the 

combustion chan1ber. fuel air del ivery. and engme components aimed at reduc ing air 

pol lutant emissions.  For example. Computat ional F luid DY'namics ( C FD)  analy is and 

design has been used to improve and air  i ntake valve POI1S to enhance fuel-air mIx ing. 

Post-combustion controls  include catalync conveners and other techno logies appl Ied to 

react \\ i th combustion exhaust constituents including .YO, . CO. HCs. and pm1iculate 

2.3. 1 Com b us tion Mod ificat ions 

Exhaust gas reci rculation ( EGR) IS commonly employed to reburn combustion by­

products. especial ly CO and particulate. EGR also di lutes the intake air OX) gen 

concentration. increasing the heat capaci ty of the combustion products per unit of heat 
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relea�e. 10\\ ring the combu tion flame temperature [ 1 6] .  The authors of [ 1 7] reported 

50% \'0, reductlon at :0°'0 EGR. but CO emISSIons doubled and fuel econOITIV 

decrea ed b\ °'0 . Exhaust gas recuculated on diesel engines must be \ve l l - fi l tered to 

pre\ ent fuel sulfur and exhaust patticulate from erod1 l1g and corroding engine I 11take 

vah e . .  C) l i nder . and p i  tons. I t  h a  been also found that \\ hen hot EGR I S  used the 

amount of , '0 \\'a dec rea ed. but thIS lS also Increases [he amount of CPo  HC and 

l l1crea es the brake spec i fic fuel consumption ( B  FC ) [8 ] . 

:-\dju r i ng fue l i nj ection t iming is  an effecti\. e  method for decreasing NO emissions. ...... x 

Tradit ional pract i  e I S  to delay fuel i nj ection into the combustion chamber to 10\\ er [he 

final name temperatw-e. but this general ly  results 1 11 hIgher unburned hydrocarbon 

emis Ions.  Yanagihara [19J demonstrated that the redu ed \Dy production by shortening 

the inj ection dw-ation \vhde advancing the fue l  injection.  His results are attributed to 

i mpro\ ed fue l-air mixing prior to combustion.  \\ hlCh both i m pro\ es combustIon 

efficiency and reduces unburned h) drocarbons.  

2.3.2 Selective and Non-Selective Cata lytic Red uct ion 

e lectJ\. e catal)1ic reduction ( CR)  im oh'es the use of a catal) st general ly  requmng an 

addit i \  e .  such as ammonia. to in i t iate .YOy reduction chemlstr) . A common app lication 

of CR i n  mtemal combustion engines is the Pt. Rh. and Pd three-way catalytic 

cOl1\'erters used on spark ignit ion engines combust ing ga o l ine .  U nburned hydrocarbons 

act as the select iw reduc ing agent for the catal) sts. I on-selecti\ e catalytic reduction 

G\ CR)  also i m olves the use of a catalyst but witllout the need for an addlt l \  e to reduce 

XO . ' The appl i cation of CR or N C R  catalysts in a diesel exhaust IS �e\ erely 

complicated ( 1 )  primari ly by the h igher excess oxygen content of diesel e"haust. 

resultmg in a net oxidizing env ironment. and (: 2 )  by the presence of ulfur in diesel fuel 

and result ing catalyst poisoning by sulfur diox ide I II the exhaust gases.  igJ1 1 ticant 

research is ongoing using secondary i nj ection of smal l  quanti t ies of fuel in the e\:haust 
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tream to act as the redu l l1g  agent. \\1th demonstrated \-0, reductions of approxI mately 
-l - percent at  reasonable pace \ e loc I ties and high fuel metering rates [20J 

Catal) zing exhaust emis ions has a lso been el11plo� ed l l1 spark ignit ion engines as a \\ av - - . 

to r duce emIS ions This technology has recentl) begun to be used \\ l th the e\haust 

\ tem of C1 engine . B� pas ing exhaust gasses 0\ er J healed platinumirhodlUl11 coated 

a luminum surface e\ eral chemIcal  reactions are promoted CO and volat i le  organic  

compound ( VOC ) are oXId ized into CO�  and H20 . . \ (),  i s  a lso decomposed and 

oXIdized into },; O  and e lemental ni trogen and oxygen , \\ h ich  is eas Ier to absorb in the 

em irorunent [ 1 8 ) . 

2 .3.3 \Vater Injection 

Four maj or approache for introducing \\ ater l l1to the combustion zone h3\ e been 

reponed i n  the l i terature : 

1 .  Fumigating the \\'ater into the engine i ntake air 

�. D irect inj ection into the engine through separate I l1j ector 

3. In- l i ne m i xi ng of \\'ater and fue l  prior to inj ection ( unstabi l Ized emuls Ion)  

4.  f ixtures of  stab i l ized emuls ions treatable  as a single-phase drop-in replacement fuel 

The authors of [2 1 ]  demonstrated that v;ater m Ist inj ection into the bel l  housing of diese l ­

fueled turb ine engl l1es can l ead to promis ing results .  Water mist introduced to the Intake 

of reciprocating compression i gn it ion engines. part Icularl) t\\ o-stroke engines \\ ! th the 

intake air passing through the crankcase. poses s ignificant con-osion potential . eparate 

water i nj ect ing vah es in  the engine avoi ds i ntake S) stem contact \\ ith the 111 ist [22 ] .  

evera l  authors haw evaluated a l l o r  most o f  the opt ions for introduc ing water into the 

combustion process and have primari ly  determined that \vater- in-fue l emuls ions, 
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stabi l ized or un tabi l i zed. are most effectJ \ e  I l1 reduc ing \ ( ) , . B FC and result in lo\\ er 

l l1crea e o f CO and L'lI eml ion [2 "1 ] .  

An ernul ion i defined as a m i xture of tv-, o or more general ly i nsoluble l iquIds.  A 

permanent ernul ion e\.i  t \\ hen sufficient droplet S l zes ha\ e been reached to pre\ enl the 

eparat ion o f  the l l1soluble materials .  Unstabi l t zed emul Ions are generated through the 

high-speed. high- heanng of parti les and sol ids in a l iquid.  A l i m it ing concern with 

emul  ions is the high capital costs of emulsification mixers and pumps. V\ hich are Llsed 

e. ten'iYeI) in  the food and agri culture industri es. 

CnstabI i ized emulsion require h igh shear to suspend small droplets of \\'ater I II the fuel 

[24] An ad\ antage of unstabi l ized emulsions are reduced fuel costs. due to lack of 

addi t i \  e needed. and reduced emiss ions from not cOl11bustl l1g surfactants or  other 

emuls lfY l l1g agents [25 ]  propose a complex fuel ing system inc luding a vortex cham ber to 

pro \ ide l l1 - l ine mix ing o f  water and diesel fue l  witbout requiri ng the addit ion of an 

emu I ify ing agent. Diesel fuel pumps. including the Ull i t  on our Detroit Diesel -l--7 1 

engine. operate at h igh \"o lume and h igh pressure. \\ i th a rec irculation loop baCh to the 

fuel tanle This seryes several purposes:  

1 .  A high-volume pump can create the higb-pressure needed for the fuel  l l1jectors at l ess 

expense 

2. ReCirculat i ng warms the fuel and helps resist gel l mg at 10 \\ temperatures 

3 .  The warmed fuel i mpro\'es combustion 

All of these factors contribute to the effect i \ eness of  an i n - l ine fue l-\� ater emuls l t) ing 

system. assuming that retrofining the fuel system is acceptable.  
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tabIhzed ernul ions u e an emuls ifY Ing agent to uspend the water In the fuel and reduce 

the energ) required for a permanent ernul ion The -\11 Force preferred a drop-in 

replacement fue l .  \\ Jthout the requirement for modI i':  ing the engl l1es or fue l ing s)- stem. 

The cunent re-earch thu uses a urfactant to c reate a permanent. tabd ized emuls ion that 

can be treated as a single-pha e fuel .  A dra\\ bad. to \\ ater-fuel emulsions is the amount 

of air bubble' reportedl)  contained in  the emul ion mixture . In Ref [27] . the authors 

e\ aluated the effect of \\ater-fuel emulsions on diesel engll1e performance and emisslOns 

under transient condit ion . The) conc lude that air bubbles I II the fuel and its \ anabi l ity 

contribute to fl uctuat ion in the injection t iming and a poorer performance under transIent 

condit ion . They recommend removal of bubble from the \\- ater-fuel emulsion.  

Re earch has also been conducted extensively  on the LIse of additl \ es to impro\ e the 

lubncation. reduce the corrosive effect of water in the fue l .  and improve the emulsion 

stab i l Ity. N i trate-contain ing ignit ion impro\ ers are recommended to reduce exhaust 

emi sions [ 2 8 ]  Lubri c ity addit ives composed of d imer or trimer acides. phosphate esters. 

sulfurIzed castor o i l s  are recommended by Peter-Hobl) n [29] and catal)- sts can also be 

used U1 SItu in the fuel to reduce SO, [29] . I n  add i tion to pro\ iding l ubrIcat ion 

i mprovement. addi t i \'es to water-fuel emulsions can be employed for ant Ifreeze 

characterist ics [ 3 1 ]  obviously important when s ignificant \ olume percents of water are 

present i n  a fuel i ng sy tem in  freezing c l imates . The authors of [ 32 ]  demonstrated that 

surfactants added to diesel  fuels  can c lean up fue l  injector as \\ e l l  as prevent further 

inj ector deposits.  They also reported a shght increase in XO, from the combustion of the 

surfactants. as \\ e \\' i l l  experience v. i thout a lso add i ng \\ ater to tbe fue l .  

Grookes. e t  a1 . .  [ 3 3 ]  attr ibute water-fuel  emuls ions VI. ith ImIJrO\ e d  combustlOll and 

lower part icu late and NO, emissions to the secondary atomization of the \vater. often 

desig nated as m icroexplosions.  In Ref. [3�]  the authors extenS I \ e!y examined the micro­

explosions of emulsified fuels  and determined that there is a mimmum percent \\ atel' 

1 8  



Chapter 2.  literatu re Review 

content In the ernul ion required for micro-explosions to occur. and that the percent 

increa es \\'ith the kl l1ematic \ I co I t) of the fue l .  

Table  1 pro\ ides a summar) of v, ater i nj ection and v, ater- in- fuel emulsion research 111 the 

l I terature related t the pre ent tudy. Note that Montagne et aL 111 Ref [3 2 ]  reported a 5 

percent .YO, Il1crease when adding surfactant only to dle�el fuel for cleaning fuel 

inj ector Grookes. et a! . .  In  Ref [ 3 3 J  were companng diesel and \ egetable oil fuels .  both 

df) and as an emuL ion \\ i th 1 00 0 water. b) volume Their results \\"ere included to 

demon trate that smal l rat ios of water provide negl iglble reductions in ,v0, er11 l ssions. 

mal l quantit ies of \\ ater are effect i \ e in pro\'ing B FC \\ hich could have merit for fuel  

3nng . I n  [23 J .  the authors considered 111 acro- and micro-emulsions to deten11 l ne if  

water droplet l ze has a significant effect on . \  ( ), reduction. B S FC and other 

combustion parameter . They define micro-emulsion as emulsions with water droplet 

sizes smal ler than the wav elength of vis ible l ight. approximately 555 1U11 . \\- hereas l11acro­

ernul - ions are characterized \\'jth \vater droplet sizes larger than the \\"avelengtb of , iSIble 

light. Thus . micro-emulsions are reponed to \ i sual l) appear c lear. v, h ! le l11acro­

ernul ions appear c loud; . Our fuel mixture \\ ould be characterized 1 11 this manner as a 

macro-emulsion A shown in Table 2 . 1 .  the reported 1'\0\ reductions vv"ere 25 and 23  

percent for 111acro- and micro -emulsions. respecti' e l y . The) reponed significantl) -h igher 

( unspecified) rat ios of surfactant -were required to establ i sh a m icro-emulsion.  al though 

they reported l onger stab i l i ty l i fetime for the micro-em uls ion. In Ref [25J the authors 

showed that using the minimum surfactant required to establish a stable macro-emulsion 

i s  j ustified. 

· 1 9 
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Table 2 . 1 :  ummer) of D iesel engine Ox ' reduction using \-vater and other additives 

Refe rence l e t h od \Vater, Vol% ox, _ % 

Crookes et a! . .  1 990 [33] Unstabi l i zed 1 0  4 

Greeves et al .. 1 976 P4] Unstabi l ized 80 60 

?\lontagne et I . .  1 987 [32] Surfacant only -5 

t-.1acro-emulsion 20 25 

O"-ieaJ et a! . ,  1 98 1  [23] 

!'vI iero-emulsion 20 23 

awa and haj itani .  1 992 [27] Stabi l i zed 40 64 

The data of the references mentioned in .  Tab l e  2 . 1 .  except for that of [32] , are plotted i n  

F ig ure 2. 1 .  

� 0 
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0 

� () � 
"0 (1) 
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g z ...... 

N O x  re d u ct io n a s  a fu n ct i o n  of fue l - wate r 

e m u ls i o n  wate r c o n te nt  re p o rte d i n  the 

l iterature  
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W ate r Content, vol.% 
1 00 

F igure 2 . 1 :  P lot of the water content verses NO x reduction for the data presented i n  

references of Table 2 . 1  

20 



Chapter 2'  Literature Review 

Trend 1 \ i  lb le for reduced .\'0, emissions \\ ith l l1creased \\ ater content in the fuel ,-\s 

ho\\ n in Table 2 1 .  this data represents the ii \ e I l1dependent research programs 

onducted acro" a pan of 22 years . 

dding water to the fuel air mixture to decrease the formation al so has the trade off 

of  increa- ing the eo and H emi sions under most c ircLl lllstances Essentiall: the \\ ater 

is J U  t lo\\ ering the gas and combustion temperatures. \\ hleh has the same effect as 

ad\an ing the inj ection t iming or intereooling [ 8 ] . 

" azha et a l .  [ 3 5 ]  used the l l1 Iet manifold \\ atel' induction and Exhaust Gas Reclrculation 

lEGR) \\ ith four cyl inder die e l  engine. The engine \\ as modi fied to I l1corporate a \vater 

i nj ection sy-tem into the air intake and an EGR system . Water- l l1 -fuel emulsion was 

prepared by m i xing and circulating the mixture for an appropriate length of time pnor to 

i nj ection into the engine, It has been sho\\ n that \\ h l l e  EGR can produce a substantial 

reduction in  .YO, emi sions :  thi is achieved at the expense of increased smoke. \\ ater 

induction on the other hand can result in up to 60° 0 reduction in ;\,0, at no real cost In 

temlS of engine perfomlance or other pol lutants, The authors indicated that us ing of 

emul died fuel leads to reduction in both .YO, and sllloke at no cost to the engll1e 

performance ( as indicated b:- specific fuel consumption and thermal eftlcienc: ) It  is 

concluded that the use of emulsified fuels or a combination of EGR and v"ater addI tlOn 

could pron beneficial in tenns of contro l l ing diesel engine emissions. i mi lar 

conc l usions have been reached by G . B .  Abd-Al la [36] . Brusca and lanzafame [ 3 7] Llsed 

a continuous i nj ection system to supply water a single cyl inder e FR engine Results have 

shown that ",'ater i nj ection real l y  represents a ne\\ \\ a) to contro l ,YO, formation in 

Diesel Engine. By using a humid air motor system (HAM ) that is connected to an ele\'en 

l iters d iesel engine under the various speed and load conditions. Nord. ef 01 [ 3 8 ]  

explored the reduction of the 0,. The reduction v;as d irect l: related to the hUlll l d it) of 

the inlet air and a further reduction can be ant ic ipated \\ l th higher humidlt� . The 

influence of the system on the emissions of hydrocarbons ( He )  \\ as negl igible \\ bi le a 
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moderate increase in the emiSSion of carbon monoXIde ( CO )  \\ a' notI ced [ 3 8 ] .  Increasing 

the \\ ater to fuel rat IO a a \,. ay to reduce the YC\ Llsing a ne\\ \lnsubishl \\ater 

I l1j ectlon ystem [ ' 9] or pon water inj ection [40] ha\ e been also employed. 

L in  and Huang [4]  found that the addition of an o,: genatl llg agent into fuel oi l  I S  one of 

the p s ible approache for reduc ing engine emIssions. Eth) lene gl) col monOaceLlte \\ as 

found to be a promising candidate primari ly due to its 10\\ poison and oxygen-rich 

compo ll lon properl Ie The experimental results sho\\ that an increase in the mlet air 

temperature cau ed an l l1crease in brake speci fic fuel  consumption ( B  FC ) .  arbon 

f'.. I onoxide. Carbon Dioxide emis ion. and exhaust gas temperature. \\ h I le decreasmg the 

exce�s air. Oxygen and i trogen Oxide emission concentrations. Increasing the l I1 lct air 

humidity increased the Carbon Monoxide concentrat ion \\ hi le  the decreased excess air. 

oxygen and n itrogen oxide emi s ion concentrations.  

PapaglaImakis and Hountalas [4 1 ]  tried to stud: the effect of gaseous fuel as a 

upplement for l iquid diesel fueL and they selected tbe natural gas \\ hICh has a re lati\ 'ely 

h igh auto Ignit ion temperature and moreo\ er is an economical and c lean burning fuel .  

The effect of  l iquid fuel  percentage rep laced by natural gas on engine performance and 

emiss ions has been studied. 

Christensen and Johansson [42] reached to same result b) llS l J1g \\ ater IJ1j ectlon 1 11 a 

Homogeneous Charge Compression Ignit ion ( HCCl ) engine. The NO\ emissions. \A hICh 

are "ery low for HCCL decreased even more \\'hen \\ ater inj ection \\ as appl ied. To 

reduce the peak tlame temperatures associated with NO formation. Mel lo  and \ lel lor [-+3 J  

used an inert fluid inj ection. such as water/steam . 
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2 .3 ..t Other ontrol Techno logie 

The author of [44] de en bed a fi l ter cart designed for capture of X( ) \ '  CO. V OC s. and 

pam ulate from the , \ 1 "' :2 -\- 6 dle eI generator The de\ ICe i ·  a series of sub-s: stem-. 

includll1g a \ rmicul ite fi l ter to capture particulate. aU'-TO-air heat exchanger and deml ster 

for cool ing and de\\ atering. and granular acm ated carbon ( GAC l fi lters to adsorb XO� . 
. Thi - devi e requires a large footprint. 

Aft r the G. fi lter are saturated and adsorpt ion rates begll1 to dec l l lle. the fi lter are 

them1al l y  regenerated . Ad orbed gases are desorbed. and call either be compressed. 

borrled. and reused. or destro) ed on- l ine yia e lecti\ e catah tic reductIon.  The \ ermicul ite 

partIculate fi lters are replaced and d iscarded after e'\ces - i \  e increase l J1 pre sure drop. 

The fi lter cart require a large footprint and \\ ould not be feasib le to mobi l ize to a \\ ar-

fighti ng theatre .  Ad\ antages inc l ude that one fi lter cart call sen i ce mu lt iple generators. 

depending on the apacit) of the fi lter cart. and it can be ll�ed to control emissIOns fi'ol11 

other ombust lO I1 sources. 

1 Ton-thermal  p lasmas have a lso been appl ied to die el exhaust. and speci ficalJ) appl ied to 

reduce 1 TO, emis ions from the A/M3 2A-86 [45 ) .  ThiS app l icat Ion a lso requi red the use 

of a eries of subs) tems. including a ceramic part I culate fi lter. nonthermal plasma 

di charge ( TPD) reactor tube \vith alcohol inject IOn.  and a \\ et gas scrubber The 

particulate fi lter captures part iculate and would be c leaned in- l ine using the hot exhaust 

gases. The 1 TPD essentia l ly uses high-voltage. lov, amperage. high-pulse rate e Iectrlcal 

discharges to generate react i\'e. oxidati \'e spec ie in the exhaust gases. The add Ition of 

alcohols i s  reported to i ncrease the reaction eilic ienc: . lov. ering e lectron volts required to 

OXIdize .VO to 4\'0, . The v" et scrubber is then used to adsorb and react the \D� \,·ith 

water to form n itric acid .  HN03. and then with sodium h) dro�lde. NaOH.  to form sodium 

nitrate. Xa,V03 . useful as a fert i l izer .  This system \" ou ld  a l so requ i re a large footpri nt . 
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2 --'  o m b u  t i o n  , o i  e Prob lem 

The tudv of ngl l1e n01 e has been earned out S I \1Cc the ear" tages of cngll1e 

de\ elopment. In 1 93 1 .  RIcardo fir t found a descnpti \ c  re lationship bet\\ een the 

combusti n pre ure ri e and the noise produced [46 J Later. a number of parameters in  

determining the  noi e de\  elopments \\Jere im estigated \ \  hich l llc lude the first and second 

derl\ atl\ e of c-: l inder pres'ure. These methods \\ ere effect i \ e in re\ eal ing the 

re lationship between engme combustion and noise .  ome of these method sti l l  play an 

important role  in identify ing the sources of engine nOIse [47] . 

A lthough there are a number of engine noise sources. one of the most fundamentals I S  the 

combu,tion- l I1duced noi e [48 ] .  I t  occurs to\\ ards the end of the compresslOll stroKe and 

ub-equent expansion stroke. The rapid pressure change due to the combust Ion transmits 

through engine tructures and forms a part of the airborne noise.  This pressure change 

also cau -es the \ ' ibrat ion of the engine components sllch QS the C) 1 i nder head. pi stons. 

connecting rod and engine body . The vibration of these components then pro\ I des 

another part of the o\'era l l  engine noise. Together these noise sources account for 0\ er 

0° 0 of total engine noise.  The combustion-induced noi e is ho\\ e\ er the dominant 

ource. It occurs around the top dead centre ( TD ) .  

Other nOlse sources are due to engll1e funct ions such as the inj ection of fuel and the 

operation of inlet  and exhaust \'ah es. These ources usual I) prodt.lce low level noise and 

make up a fraction of the o \ era l l  noise. Yet a l l  ha\ e de Ignated times of occurrence 1 11 

terms of crank angles .  For i nstance. fuel i nj ection i s  usual ly  performed around 8- 1 0° 

before the TDe i n  the compression stroke . The exact i nstances of these e\ ents depend on 

the individual design of the diesel engines. 

Increasing road traffic in  tlle \vorld has brought about legis lation aimed at reducing noise 

from vehicle engines. o ise is transmitted throughout the engine block and otller rigIdly 
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attached components as \ ibrat lon These \ I bratlons can eXIst aC I'Oss tl . . le entlre spectrum 

of tTequencle \\ 'hen the: are in the range at \\ hich a health: human ear can bear the: 

radiate fr m the engine -tructure as audible .  Th Is  nO ise and \ ibratlOl1 can create se\ ere 

problems for the engl l1e t ructure i ts operators and the sUITOUndl' ll oS E 
. 

� . . � .  ngme nOise can 

be grouped i nto one of lhree categories:  aIr flo\\ . mechan ical and com bustIOn nOI <;e [�9] . 

2.5 Method of control ling the engine noi e p roblem 

For the dual  fuel engine- using d iesel and ga eous fue l .  G H. Abd Al ia. et .  al  [:OJ  found 

that increas ing the amount of pi lot fuel at high loads led to earl) knockmg. The 

combu tlOn noise i found to be related to the type of  gaseous fue ls and to the engine 

de ign and operating parameters of the dual fue l  engine. TIle engine tested used dual fuels 

of DIe  e l  and three ga eou fuels separatel) . [ 5 1 .  52] Effects of various working fluid 

compo_lt ions on combustion noise i n  diesel engines are tudied by Galinsky el ( (/  [49] 

and pro\ ided a better understan d i ng of the re lationshIp bet\\ een the combustion process 

and noise production.  Combust ion noise levels. rate of pressure rise. intake Ill lxture 

composition and load are related . 

2.6 Dua l  Fue l  Engines 

The avai labi l ity of a lternativ e gaseous fuels has lead to a w orldwide spread of i nrernal 

combustion engines runn ing on dual fuel concept . Gaseous fuels  also promise to be 

suitable  for h igher compression engines since it is k.Jl0\\ n tllat the) resist knock. more than 

conventional l iquid fuels .  as \'v e l l  as producl l1g  less pollut i ng exhaust gases. if appropriate 

conditions are sati fied for its mixing and combust ion.  Therefore it is more economical 

and of environmental advantage to use gaseous fuel in  diesel engines \\ hich use dual fuel 

concept. There ba\ e been many published works on tbe use of gaseous fuels in dual fuel 

engmes. atural gas use in  dual fuel engines has been studied from the combustion 

duration  and ignition delay point of view as indicated in [ 1 ]  and from performance and 

emissions point of v Iew as presented in [3 ] .  Combustion and thermal loading and 
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temperature di tribution ha\ e a lso been studied for dual engl l1e - [9] . Pure methane has 

also been tudied m dual fue l  engines from flame spread limits pomt of \ l ev, [ l �] and 

perform an e and eml IOns point of v iev,: [ 1 3 ] .  LPG has been studied from the POl l1t of 

\ lev, of  performance and emis Ions:  [ 1 3 ] .  

2 . 7  c o p e  of tbe current n o rk 

There ha\e been man:- olut ions to the YO, and nO Ise em l S - lon problem for diese l 

engl 11es Ho\\ e\ er. there ha not been an) \\ ork that deal s  \\ ith the solutlon of these 

problem - for dual fue l engines. When diesel engll1e is COI1\ erted to run on a diesel fuel as 

pi lot fuel and \\hen it is cOlwerted to run on gaseous fuel as the main fuel .  then the noise 

and 'yO, are t i l l  high and must be reduced. Therefore. the objecti \ e of the present \\ ork 

1 - to examine the effects of adding v .. ater to the l l1take a ir  of the engine on the engl 11e 

performance. ombustion nOIse and exhaust emissions of a dual fuel engine rUl111 l 11g on 

d iesel - LPG. The \ ater ha been added in  the present \\ ork to the intake air of the 

engine in  the form of vaporized water produced by a speCial test rig. The water add ition 

effect on the performance and exhaust emissions ha\ e been also im e tigated . 
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3. 1 I n t roduction 

The research engine used in the present study is the research engine Ricardo E6 single 

c y l inder variabl e  compression indirect injection diesel engine Among tl th 
. . __ le 0 er engll1es 

exi t i n  the H eat Engine laboratory of the UAE University, the Ricardo E6 engine i s  very 

fl xible i nce the compre ion ratio. ignition t iming and other factors are al l control lable 

( ee next s ction for detai ls) .  This flexibi l ity makes it a very useful piece of equipment 

for research. It can be used in many educational and research studies related to enai ne b 
perfomlance. fuel additi  e new fuel blends, and their air pol l ution. 

The test bed used has se eral accessories such as the i ntake steam system, l iquid and 

gaseous fuel s stern, and gas analyzer. A l l  the instruments are connected to a Data 

Acquisition System (DA ) to store the data and fac i l itate the research studies. This 

c hapter cons iders the engine test bed and all  the i nstruments used in this research. I t  g ives 

a brief description of each component along with its principle of operation. 

3.2 The R icardo E6 Engine 

The Ricardo E 6  engine i s  a s ingle cyl inder, indi rect inj ection water cooled, four-stroke 

unit of 507 cc (3 1 in3) swept volume. having a bore of 76 mm (3 .0  in) and a stroke ot 1 1 1  

mm (4. 3 7 5  in) .  The cyl i nder, cy l inder head and cam box are bolted together fonning an 

i ntegral unit which i s  attached to the crankcase through a large nut around the lower end 

of the cy l inder retained by the cyl inder housing as shown in F igJ . 1 .  Ful l  detai ls  of the 

engine are g iven in Tab l e  3 . 1 and a complete picture is  shown in Fig .3 .2 and Fig. 3 J .  The 

engine can be operated as spark or compression ignition one. The compression ratio of 

the petrol/gas version is continuously variable  between 4 .5  - 20.0 whi l e  the engine 

running. The ratio can a lso be varied for the diesel  vers ion but, as the performance of any 

d i esel combustion system is very sensitive to pi ston-to-cyl inder head c learance, the ratio 

is, in practice, usual l y  set at about 22. The cy l inder posit ion is  measured by means of a 

m icrometer and the compression ratio (CR) can be obtained according to the formula:  
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C R  = (Clearance o l ume -l- wept vol wne).'( l earance volume) 

The correspond i ng c learance volume for the compression i gnition engine \\'ith the 

c) l i nder in  the nom1al ful ly  wound down position is  25.26 cc, \\ hich gives a compression 

ratio of 2 1 . 0 7. The engine valves are operated from the overhead camshaft by means of 

swinging cam fol lowers. I n  the diesel version, a head having a Ricardo Comet Mk V 

compression swirl combustion chamber is fitted . This type of combustion system consists 

of t\\"o parts. The wir!  chamber in the head has a top half of spherical form and the lower 

half i a truncated cone which communicates with the cylinder by means of a narrow 

passage or throat. The second part consi sts of special cavities cut into the crovm of the 

piston as shown schematica l ly  in Figs. 3 . 3  and 3 .4 .  The lower half of the com bustion 

chamber contain i ng the throat is  thermal l y  insulated from the rest of the cyl inder head. 

On the compression stroke of the engine, air is forced i nto the Comet chamber and is 

given a rotat i ng motion by the shape of the chamber and by the position of the 

communicating passage. 

The l iquid fuel is i nj ected i nto the Comet chamber via a pintle type nozzle, and the 

oraanized swirl of the air in the chamber ensures that there is suppl ied.  The American b 

B osch fuel i nj ection pwnp, type A P E  1 8  using a cam form 6/ I ,  and a 6 mm plunger is 

driven from camshaft extension at the rear of the engine. The injection, t iming can be 

altered over a l imited range ( 25 °  to 45° BTDC) while the engine is  running. The injector 

body is fitted with a 4 mm spring which is adj usted to give an opening pressure of 1 50 

atmospheres to the nozzle. 
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Tabl e 3 . 1 Ricardo Engine peci fications 

umber of cyl inder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
Bore 76. 2  nun (3")  

troke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 1 1 . 1  ftl1l1 (-t.375") .  
wept 0 l w11e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 .507 l i ters (3 1 in3 )  

Max. p ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 0  revls (3000 rpm) 
M in.  peed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 5  revls (900 rpm) 
Ma'(. Po\\ er . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . .  Diesel (CR = 20.93) 

atural ly p lrated), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 kW 
uper harged (0.5 bar), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 4 .0 kW 

Ma: . 'l i nder Pre sure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 50 bar 
C ompre ion Ratio C R) Max. CR 2 1 .07 
I njection Timing V aried over 25°- -t5° 
BTDC. 

3.2 . 1 The Coolant and Oil  System 

The coolant system is  a pressurized closed c ircuit.  The coolant is  drawn from the bottom 

of a h eader tank and pumped tlu'ough a heat exchanger before passing out to the engine 

cool ing jacket. The outlet p ipe to the engine contains an electric heater used to maintain 

the cool ant temperature d uring motoring tests. 

The l ubricating o i l  is contained in the engine swnp. The oil is drawn from the sump and 

p umped through the heat exchanger, o i l  fi lter and temperature sensor pocket, before 

returning to the main o i l  system on the engine. The o i l  pressure is l imited to 2 .0  bar by a 

re lief valve mounted on the engine . The reconunended operating temperatmes for both 

the engine coolant and o i l  are 70· C , which are maintained via the use of heat exchangers 

v.rith norrnal l ab water as the cool ing agent. 

3.2.2 Dynamometer 

Dynamometer is an e lectrical dc machine rated at 22 k W-420 volts, mounted on trunnion 

bearings supported by pedestals .  The system is sel f venti lated by a shaft driven fan and is  

operated through a KTK thyri stor converter unit, which enables i t  to  act as  an ac motor to 

drive the engine d uring starting and motoring operations, or ?. df' generator \ he" used to 
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load the engine. During l oading the dc power from the d) namometer is inverted to 3-
pha e a ia the thyristor unit, and then fed back into the mains. Load is measured using a 

torque arm of 3 90 m m  (mounted on the dynamometer frame) which operates on a strain 

gauge load ce l l ,  the output from v"hich provides a continuous dispiay of torque i ! .  ,�1111) at 

the ontrol con ole .  The dynamometer is  fitted \vith two identical torque arms to maintain 

tatic balance. A ta hogenerator mounted on the dynamometer shaft provides a speed 

signal to the c losed loop speed contro l system.  

3.2 .3 Control Con o le  

The control consol e  i s  a free standing wli t  which houses the fol lowing: 

a) Automat ic  Control nit (ACU) :  it is  a safety trip system desi gned to protect the 

equipment and or operator. ystem fault, speed, o i l  pressure, flame. stop switch, water 

level ,  water temperature and o i l  temperature are the monitored parameters. I n  the event of 

any of the above conditions being unsatisfactory, the appropriate amber warning lamp 

wi l l  i l l um inate, and the s stem (diesel version) wi l l  shut down as fol low: Fuel solenoid 

valve c loses (on service frame), c ut off solenoid de-energized to stop, dynamomc+;-r drive 

d isconnected and l ast the engine coasts to stop.  

b) Torque and Speed I nd icators. 

c)  Remote Control Unit.  

d)  Power Supply U nit .  

3.2,4 Service Frame 

The services frame i s  associated with the fue l  system and has mounted o n  i t  the fo llowing 

items:  

• A compression/ratio chart re lated to the particular £6 engine supplied. 

• A l iquid fuel tank. 

• A mult i-slope manometer. 

• Fuel pump and fuel cooler. 
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• 

• 

• 

• 

n oi l  pres ill" gauge. 

fuel  burette (replaced by the CompujloH' meter). 

fu I regulator. 

ga Rotameter 

The e:-...hau t ystem provided on the engine consists of a flexible stainless steel pipe (to 

tol erate high temperatures and absorb ibration) which connects the engine man: fold to a 

hort teel p ipe with t\ 0 si lencers and one sample orifice. 

The engi ne i mounted on a 4 - 0 kg flexibly supported cast i ron block (to reduce the 

excited vertical v ibratory forces) which is attached to a rigid \ elded base frame by 

(unseen) four rubber mountings which minimi ze transmitted disturbance to the base 

frame . 

3.3 F u e l  System 

The present proj ect deals \vith D ual F uel Compression I gnition Engine, which means two 

fuels are being used simultaneous l y .  The d i esel l iquid fuel  is inj ected regul arly through 

the existing fuel  inj ection system and mass of l iquid diesel is kept at minimum val ue to 

i gnite the other main gaseous fuel .  The gaseous fuel  used is L iquefied Petro leum Gas 

(LPG) \\hic h  is i ntroduced to the engine through the gas system at the intake pi De of the 

engine j ust ahead of the i ntake valve. The gaseous fuel  forms them main fuel admitted as 

it forms more than 90% of the fue l  used. It is admi tted at a pressure s l ightly higher than 

atmospheric in the i ntake p ipe using a proper nozzle  facing the i ntake air flow downward 

with many holes provided to homogenize the gas i nto the intake air. Thus, the fuel system 

can be divided to D iesel (Fig.  3 .5)  and Gas Fuel Systems. 

3.3. 1 Diesel Fuel  System 

In  general, the fuel system of a Diesel-engine i nstal lation is defined as the equipment 

\\ hich is necessary to handle  fue l o i l  from the point where it  is del ivered to the p lant and 
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unti l  it reaches the fuel - inj ection pump.  This equipment consists of strainers. filters, 

transfer pumps. tanks, piping and fuel meters. I n  del ivering the fuel to the combustion 

chamber a d iesel fuel inj ection syst m must ful fi l l  fiye main requirements: 

I )  1eter or mea ure correct quantity of fuel injected 

_) Time fuel  inj ection 

3) Contro l rate of fuel inj ection 

4) Atomize fuel  into fi ne droplets 

5 )  Pro perl) d istribute fuel in  combustion chamber 

The diese l  fuel system of the Ricardo E6 engine is shown schematical l y  in Figul e::. .3 .3 

and 3 .5 .  The fol lowing related components wil l  be di scussed briefly: 

i )  Compuflo\ System. 

i i) Fuel I nj ection Pump.  

i i i )  I l1i ection ozzle .  

iv)  The Control and Display Unit :  I t  executes the signal from the load cel l ,  controls the 

e lectromagnetic valve in the fuel supply  l ine, di splays the measuring parameters and 

indicates fau lt conditions. 

l\lea u ring  Technique  

\\1,en the system power is 0 and the fuel  container is empty, the load cel l sends a 

signal to the m icroprocessor in  the Control and Display Unit which, in  turn, sends a 

signal to the e lectromagnetic  valve in the fuel supply l ine to open and thus al lo\\'ing the 

container to be fi l led . The e lectromagnetic valve is c losed in a sim i lar way , �::':! the 

container is fi lled with the preset value. During fi l l ing the last rate is displayed, therefore 

we do not record the rates t i l l  the RUN button is i l l uminated ; otherwise the last flow rate 

i s  recorded i ndependent of the current flow rate. Over a selective time period, the rate of 

fue l  consumption value is calculated to get the average. 
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3.3 . 1 . 1  The o m p u flow ystem 

The C mpuflo\\ i a mult i -function micro processor-based fud G1�asurement sY<5+PI1l. I t  
m asmes the weight of fuel  consumed in a preset time, the time to  consume a preset 

amount of fuel ,  the instantaneous fuel flow rate, the engine speed and total engine 

re\- o lution . The y tem is  capable of produc ing an output of all displayed parameters 

(0-5 oIt each). 

De cription of the ystem 

The major pmis of the Compuflow system are : 

J )  The t-. Iea uring H ead Unit, as shown in Figmes 3 . 3 -3 .6 ,  consists of hvo parts: 

1 )  ..111 Aluminum fllel container to \, h ich the fue l  supply, the fue l  feed and fuel return 

l ines are conn ected. 

2) A vel}' sensitire load cell that senses any change in fuel  weight in the fuel container 

and transm it a corresponding e lectrical signal to the microprocessor in the Contro l  and 

D i sp lay Unit  ia the Wei gh Rig Control Unit .  

I I )  The Wei gh Rig Control Unit :  I ts function is to interface the control s ignals from the 

Control and Display Unit  to the Measuring Head Unit. 

3.3 . 1 .2 The Inj ection Pump 

The p lunger-type i nj ection pump,  shown in Fig .  3 . 7  ( left), has an  engine-driven camshaft 

which rotates at one-half engine speed . Rol ler  cam fol lowers, rid ing on the camshaft 

lobes. operate the p lungers to supply  high-pressure fuel through the delivery valve to the 

i nj ection nozzle .  The pumping e lement is  a p lunger and barrel ,  one set to supply an 

engine cyl inder. The plw1ger has a constant stroke. However, in order to vary the amount 

of fuel del ivered per stroke for satisfy ing varying load demands, the upper part of the 

p lunger is provided with a vert ical channel extend ing from its top face to an annular 

groove, the top edge of which is m i l led in the form of a hel ix (cal led the control edge) as 

shown in F ig. 3 . 7 .  The baITel has e ither a single or double control pOli, depending on the 
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design ( ince the a tual d s ign i not provided \\ ith the engine). The top of the barrel is 
c Ia d b) a pring- loaded valye cal led the deliverv valve . . 

3 . 3 . 1 .3 I nj ect ion Nozzle 

The i nj ction Tozzle i a s imple device used to atomize the fuel for better combustion 

and pread the fuel spra to ful l  mix it \;"ith air. In the present injection nOZZle �pintle 

t) pe) the fuel  pressure acts on the lower end of the valve, moving i t  i nward to release a 

fuel  spra) as indicated i n  Fig. 3 . 8 .  A spring at the upper end of the valve is normal ly 

adjusted to set the openi ng pressure (opening pressure equals to 1 50 bars). A smal l 

amount of fuel l eaks pa t the nozzle valve and lubricates the working parts. The excess 

l ubricating fue l  is removed from the top of the nozzle at the fuel  leak-off and returns to 

the Compuflow system.  

3.4 G a  e o u s  Fue l  Measure m ents  

The LPG gas fuel  flow rate is measured by a variable area meter (rotameter). The 

rotameter consists of a gradual l y  tapered glass tube mounted veliical 1y  in a frame with 

the large end up. The gas flows up through the tube and suspends freely a float. As the 

flow varies. the float rises or fal l s  thus varying the area of the annular space b� , , ;;:"'n it 

and the tube, so that the head loss across this annulus i s  equal to the weight of the float .  

The tube i s  marked in  divi sions and the readi ng of the meter is taken from the scale 

reading and the reading edge of the float which is taken at the l argest cross section of the 

float. The rotameter has a cal ibration chart to convert observed scale read ings to flow 

rate .  The rotameter float is  constructed of stainless steel .  

3 . 5  Exhau s t  Gas  Measurements 

3.5. 1 Exhaust Gas AnaJys is  

The exhaust gas module is  pOliable gas analyzers used to  perform vehicle diagnostic tests 

and to measure emission gas levels found in the exhaust of al l internal combustion 
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engines. Figure 3 .9  sho\>\ a photo for the exhaust aas analvzer The aas a 1 b J .  b na yzer measures 
th emi  ion levels of carbon dioxide, carbon monoxide, h)  drocarbons, and oxygen. The 
exhaust ga e enter the gas analyzer through the sampl ing hose/probe assembly. The gas 

anal) zer then anal) z  the gases and sends analyzed data to the too l .  The tool ,  with the 

G a  HG-S20 software i nstal led, enables reading the analyzed data and controls the aas b 

anal) zer functions. 

3.5.2 The OpaciOletter Sha dy X2000 

The i nstrument ho\\'n in  Figure 3 . 1 0  i s  used to measure the opacity of diesel engine 

exhau t .  I t  is made up of detecting unit inside a measuring cel l ,  optic systems, computer 

control led data processing and display units and control keypad . The gas from the 

engine ' exhaust system is taken along a hose to the measurement cel l heated to 70°C 

where it forms a uniform 20 em thick colwnn. After measuring the exhaust gas is vented 

to the outside. 

The instrwnent displays the opac ity sett ings by means of a 20 character, 5- l ine display. 

T\\ 0 scales are variable :  l i near absorption % from 0 to 99 and logarithmic in  3 figures for 

absolute l ight absorption K expressed in ( 111- 1 ) .  Both scales go from 0 for total l ight flow 

to ful l -scale for complete absorption. 

3.6 �Iea u ring of Combust ion Pre s u re and Crank Angle 

Another data acquisit ion system is used to col l ect the cyl inder combustion pressure and 

crank angle  data. The pressure signal is col l ected by a hIgh pressure water cooled piezo­

e l ectric pressure transducer and fed into a charge ampl ifier then to a data acquis ition card 

I inked to the personal computer. The crank angle  signal is fed into a degree marker 

shaper channel and the output is fed into the acquisition card . The acquisition card could 

co l lect data at the rate of 250 kHz. A Labview program has been written to col l ect the 

data from the two channe ls; shown in Figs. 3 . 1 1  and 3 . ]  2, at a sampl ing rate of 1 0000 

po ints per second and store the pressure and crank angle data in the computer disk for 
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offline anal S lS .  computer program written m 1 Excel to find the maximum 
ombu tion pre ure and the pressure rise rate data at all cycle points from mid 

compression stroke to mid expan ion stroke The maximum value of pl·es . 
t · . sure nse ra e IS  

then obtained and recorded . This alue wi I I  be used to represent the noise level at that 

operating condit ion .  Experiments have been carried out after running the engine for 

some t ime unti l it reache steady state and o i l  temperature is at 60° C ± 5 ,  and cool ing 

water temperature is at 70° C ± 5 

3 . 7  Data Acq u i  it ion System ( DAS) 

The obj ective of a data acqui sit ion system IS  to monitor, record and control various 

proces e in case of continuous operation. In the present research the DAS is employed 

only to col l ect the i mportant performance parameters of the Ricardo engine using 

pecia l l )  developed software. 

The measured and stored parameters are : 

• Temperature (air, fueL o i l ,  exhaust, coolant in  and coolant out), Torque and 

engine speed. A l l  signals are taken from the Ricardo Engine Control Console .  

• L iquid fuel m ass flow rate from the Compuflow System.  

I n  the  current case there have been some troubles with Gas Analysis S)  stem so an 

external Gas Analysis System has been used . Figure 3 . 1 3  and F igure 3 . 1 4  ShOV-lS the 

general cOlmection between the mother board of the DAS system and the measuring 

instruments with the i r  type and range of output signals. In addition to an IBM computer, 

an Epson printer. and a HP p lotter, the system consists of two parts. The first part is a 

Il MAC-5000 m aster (mother) board, and the second part is one casi ng containing six 

expander boards (one IlMAC-4030 board, one IlMAC-4050 board and four IlMAC-'+O I S  

boards). A brief description of the d ifferent boards is g iven below: 

3.7. 1 The :Mother Board ( J.!MAC-5000) 

This board can be used i ndependently  as a single board measurement and control system 

as shown in F ig. 3 . 1 3 . It has a bui l t- in  microcomputer using a measurement and control 
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l anguage cal led 'tlJfACBASJC The board consists of 1 2  analog input channels, 8 analou c 
o utput hannels, 8 d igital i nput channels, and 8 digi tal output channels .  I t  is provided 

\\- i th an 808 8-based m icr computer (5 1 H z  PU) with standard memory of 80 KB of 

RO t and 32 K B  RA 1. 

3.7.2 E xpander Boa rd 

Expander Boards are used to increase the channel capac ity of the Data Acquisition 

)- tem .  The e boards are compati ble with the iJ.MAC-SOOO master board and they are 

i nterfaced to it via an expansion bus . A brief description of the different expander boards 

uti l ized is g iven below: 

a) J.1l\ I AC-.t030 Analog O u tput Expander Boa rd :  I t  has eight charmels  for analog 

output signals  which may be used to operate control e lements such as valves or actuators. 

The 'tl.ilAC--I030 board inc ludes a m icroprocessor for contro l l ing analog conveliers and 

comm wlication \\�th the iJ.il1AC-5000 board, the ROM (software storage), and RAM (data 

storage). 

b) F o u r  'tl l\ 1AC-.t0 1 5  Anal og I nput  Expander Boards :  The iJ..MAC-4015 is used for 

data col lection purposes and it has 1 2  channels accepting ana log ir:put s ignals of d1e  same 

type.  

c) iJ. iAC-4050 PulselF requency, 110 Expander Board : I t  contains eight frequency 

input and/or output channel s .  Each independent channels can be used for event count ing, 

frequenc.; measurement, and time proportional output. 

3.7.3 The iJ. l\ 1ACBASIC Lan guage 

This l anguage is an extension of the wel l -known BASIC high l evel programmll1g 

l an guage, m ixed with some statements from FORTRAN and PASCAL, opt imized for 

m easurement and control appl ications. The iJ.MACBA I C  is  spec ial ly des igned to 

perform measurement and control functions in any app l ication requiring analog or digital 

i nput and/or output signals (J/O). A personal computer is used as a bost computer for tbe 

'tl.MA C system .  Work station Operating System ( WOS) has bepn developed for popular 
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microcomputer . The \VO pro\ ides many functions such as: 

1 ) torage of the � I B program i n  the PC's di sk. 

2) F i l e  management (name, copy, etc . )  without losing communicat ions with the 

�"\i4. C ) tern . 

3)  e of the I BM's disk for read ing and writing simple data fi les under �MACBASIC 

program control .  

4)  C e of an attached printer v ia  the Pc. 

}' lore detai l s  about � 1 CBA IC program see Appendix A .  Photos of the cards are 

show11 in Fig. . 1 - .  

3.8 The D igital  Storage Osci l lo  cope and Accessories 

The digi tal torage osc i l loscope (Gould 404 1 )  is a computer interfaceable type operates 

both as a conventional real t ime oscil loscope with a 25 MHz band width and also as a 

d ig ital storage i nstrument w ith a 1 0  MHz maximum sampl ing rate. The digital 

osc i l loscope operates according to the principle that analog signals may be converted to 

d igital i gnals through a sampl ing process I nstead of di splay ing the analog signal 

d i rect ly;  i t  fi rst perfoTIns an analog-to-digital conversion and then stores the digital 

s ignals i n  a buffer memory .  The signal may then be displayed on the C RT screen as 

points .  B ecause the d igital signal is stored, i t  may be recal led and reexamined on an 

expanded scale .  I n  add i tion, the signal may be stored on inexpensi ve auxi l iary disks for 

later study or possible mani pulation with a computer. I n  the present proj ect, the 

osci l loscope was j ust used to detect the onset of knocking, to know when the ignition 

starts and to observe the pressure levels generated within the cylinder for the sake of 

comparison of the different cases, as shown in  F ig. 3 . 1 6. 

3.9 Steam Gen erat ion System 

The steam inj ection unit has been designed and bui lt  to change the moisture content i n  

the moving stream o f  air. I t  may be seen i n  F ig. 3 . 1 7  in  a complete picture. I t  i s  equipped 
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\,\'ith a \ ariable peed fan blows air through a 254 mm square ducting. The air then passes 

through the stearn area v, her steam is injected into the air flow by using the boi l ing 

water tank.  Three e lectric heaters are fi tted in the water tank to evaporate the water at 

d i fferent rate . Two thermometers \ ere used to measure the wet and dry bulb 

temperature and the air humid ity rat io. The engine intake moisture can be changed by 

inj ecting d ifferent amount of steam from the water tank \\ hicn is equipped v. .  I, Three 

e lectrical heaters as fol lows: 

1 )  F i rst water heater; 2 kW capacity. 

2) econd water heater; 2 kW capacity. 

3 )  Thi rd \\ ater heater: 1 kW capacity . 

The speed of the blower fan can be varied by a ariab le transformer. The engine air 

intake pipe has been connected to the steam generat ion system by a 80 mm hose. The 

intake air humidity ratio can be changed then by operating more water heaters wh ich 

enab les more water to evaporate and to increase the humidity rat io of the engine intake 

air. The variat ion of the system fan speed also enables the control of the humidity ratio as 

the experiments have to be carried out at fixed humidity ratio. The system enabled the 

relati, e humid ity to change from atmospheric value to 1 00% (saturated air). 

3 . 1 0  Experimental  P roced u re 

The fol lowing parameters have been varied accord ing to the shown levels :  

• The \'·'!ater specifi c  humidi ty has been varied at the leve ls :  6 ,  14  and 24 g/kg 

This waterfair  gives the fol lowing ratio  of water/fuel : 

M in imum waterffuel ratio  = 

Maximum water/fuel rat io = 

771 ·  w 111 ·]V In·  air 
--- = -- x ---

m · fuel In · air m · fuel 

( 711 · ",  ) . 
m i n  m · fuel 

6 20 1 2  
= -- x - = --

1 000 1 1 00 

( m · lI' 24 20 48 
) max = 

1 000 X 
-

1 
= 

1 00 m · fuel 
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• The engine peed and it i s  varied from 1 8  to 30 rev./sec 

• The p i lot d ie  el fuel mass injected and it is varied from 0 .00004 to 0.0002 kg/s 

• Th engine injection t iming for the pi lot fuel and it is varied from 20 to 45° BTDe 

• The engin compression ratio and it is varied [rom 1 4  to 22 (for the diesel engine) 

• Th mass of ga eous fuel  and it is varied to give from 2 m torque output ti l l  the 

on et of engine knocking and strong pressure waves observed 

The fol lowing parameters ha e been col l ected : 

• The engine output torque, Nm 

• The Liquid and gaseous fuel flow rate, kg/s 

• The combustion pressure over many cycles. bar 

• eo emi sion Ie  e l  in exhaust gases, % 
• H e  emissions l evel  in exhaust gases. ppm 

• Opacity of the exhaust gases, % 
The fol lowing parameters ha e been calculate and presented :  

• Engine output power 

Power = Torque x angular speed 

BP = Tx27iN 
\\ here T is  the torque measured in Nm. and is the rev.!sec of the engine 

• Engine brake specific  fuel consumption 
711/ bsfc = ­BP 

where 171/ is measured fue l  flow rate in kg/s, and BP is brake power in k W 

• The maximum combustion pressure 

Pmax = max(p' ) ,  

where P i  i s  the combustion pressure, bar 

• The maximum combustion pressure rise rate (measure of combustion noise 

emissions) dP d� 
(-)max = max(-) 
de de 
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where this i s  calculated in  M E 'cel for al l  the cycle points by getting the slope of the 

pr ssure against the crank angle, then the maximum value is estimated. 

• The onset of engine knocking; when the pressure rise rate becomes very high and 

engine roughness i observed. 

A sample of the combust ion pressure data as wel l  as the pressure rise rate is shown in 

Fig. 3 . 1 8 . 

3. 1 1  C o m m o n  v al u e  for parameters in  experiments 

I f  not pec ified d ifferently,  then the common values of the experiment parameteb QJ. e.  as 

fol lows: X = 20 rps . IT = 35 °  BTDC, Compression Ratio = 22 

3. 1 2  E rro r a n a lysis of measu red d ata 

3 . 1 2 . 1  Errors 

The e rror i s  the d i fference  between the (unknown) true value and the m easured 

v alue (best e xperimental l y  d eterm ined value).  

3 . 1 2 . 2  E rror C lassificatio n 

B ased o n  the abo, e ment ioned sources, errors are c l ass ifi ed as fol lows : 

(1) Systematic  or F i xe d  Errors 

Systemat i c  error is o f  an ins idious nature : it is completely unobtrusive .  As the term 

ind i cates ,  i t  is repeti t ive and of a fixed va lue ,  rec urring cons lslent ly every t i  .. _ _  :." the 

m easurem en t  is mad e .  S uch errors m ay resul t  from :  

A .  C a l ibration  errors 

B .  C ertai n  types of cons istent ly  recurring human error 

c. Errors o f  technique 

D. Uncorrected load i n g  errors 
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( I I )  Random o r  ccidental  Errors 

Rand o m  errors are di t inguishab le  by their lack of consistency .  An observed 

q uantity rna not be con i tent when estimating reading or the process may inc lude 

certai n  uncontro l led  or  poorly control led variables causing c hanging cond it ions.  We 

ha\ e d j'f"erent error's E . 
fr 

. 1 1 1  . rrors stemmmg o m  enVlronmenta variat ions,  errors 

resu l t ing fro m  variations in definit ion and errors derived from insufficient 

e n  i t i \  i t) o f  the m easuri ng system .  

( I l l) I l legi t imate errors 

l l l egit i m ate  error : As the ir  name imp l ies, they shou ld  not exist. They inc lude 

o utright m i stakes that can be e l i m inated through exerc ise o f  care and repf ' � i ()n of  

the measurement .  

A .  B lw1ders or m istakes. 

B .  Computational Errors 

C. C haotic Errors. 

3. 1 2.3 U ncertainty 

3. 1 2 .3. 1 Uncertainty Ana ly is 

uppose a set of measurements is made and the unceliainty in each measurement may be 

expressed with the same odds. These measurements are then used to calculate some 

desired result of the experiments. We wish to estimate the uncertainty in the calculated 

result on the basis  of the uncertainties in the primary measurements. The result R is a 

given function of the i ndependent variables X l ,  X2 X3, . . . . ,Xn . Thus, R = R ( X L  X2 , 

X3 . . .  , Xn )  

Let WR b e  the uncertainty in  the result and W1 ,W"2, . . . Wn be the uncertainties i n  the 

i ndependent variables.  If the uncertainties in the independent variables are al l  given with 

the same odds, then the uncertainty in the result is given as: 
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Part icular notice hould be given to the fact that the uncertainty propagation in the result 

\\"R predi ted b the equation abo\ e depends on the squares of the uncertaint ies in the 

independent variables \\'n· This means that if the uncertainty in one variable is 

i gn ificant l larger than the unceliainties in the other variables, say, by a factor of 5 or 

1 0 . then it i the largest uncertainty that predominate and the others may probably be 

neglected . I n  the previous discussion we noted that an uncertainty analysis may aid the 

im e t igator in selecting a lternative methods to measure a particular experimental 

\ ariable .  It may also indicate how one may improve the overa l l  accuracy of a 

measurement by attacking critical ariables in the measurement process. 

3. 1 2.3.2 U n ce rtain tie in Some I m portant Parameters 

A mentioned ear l ier, the error in any quantity (dependent parameter) is a function of the 

i ndependent variables inc luded in its calcu lated value. 

The i ndependent parameters involved in our experiments with their approximate 

uncertainties are presented in Table 3 .2 .  The uncertainties calculated in Table 3 .2 are 

based on the maximum scattering percentage around a mean reading (for example a 

typical mean reading of the fuel  pressure drop across the orifice meter is 50 mY (th is  is 

the reading on the d igital pressure meter). I t  is found that the reading fluctuates between 

46 and 5 5  mY, so, the maximum scatter is ± 4.5  mY from which we can find the 

m ax imum scattering percentage as shovm in the Table (9 %). 
A n  examp le  of the experimental scattering may be seen in figures 3 . 1 9, 3 . 20 and 3 . 2 1 for 

the torque, m aximum pressure and maximum pressure rise rate. I t  may be noti ced that the 

repeatab i l ity of the experimental results is acceptable and the maximum uncertainties are 

given in  Table  3 .2 .  
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Table 3 . 2  Cnce11ainties in  some independent \ ariables 

I ndependent Variable Uncertainty 

C%) 
The water specific humidity, g 0.83 

The engine speed. rpm 2 .S  

The engine output torque, Nm 4 

The pi lot diesel fuel volume injected, kg/s 6 

The engine i njection t iming for the pi lot fuel ,  °BTDC 5 

The engine compression rat io 1 

The mass of gaseous fuel ,  kg/s 1 .25 
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Figure 3 . ] :  Longitudinal arrangement of the Ricardo £6 Engine Diesel version [53 ] 

46 



VT l p1t:;r v-:-cngme a na expenmental Test Rig: Description and P roced u re 

Figure 3 . 2 :  Photo of the complete engine test rig 

Figure 3 . 3 :  Photo of the engine and gas system test rig 
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Figure 3 .4 :  Combustion chamber [53]  
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!-'AS Cards 

Figure 3 . 1 5 . Photo of the DAS Cards and connections to sensors 

Figure 3 1 6 · Photo of the storage osci l loscope and pressure-crank angle acquisition card 
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Figure 3 . 1 7 : Photo of Air conditioning unit with steam generation system 
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C h apter 4 . Resu lts and Discussions 

... . 1 I n trod uct io n  

di cus ion  i s  given in thi chapter about the results taken from the dual fuel engine 

running on d iesel and LPG. and the effects of water addition and some design and 

operat ing parameter on the engine performance and emissions are presented. The studied 

param t r are the engine peed, the engine load, the pi lot fuel mass injected the injection 

t im ing of the pi lot fuel and th compression ratio. The measured parameters included the 

brake horsepower output of the engine, the brake specific fuel consumption, the 

maximum combu tion pressure, the maximum combustion pressure rise rate CO He , , , 

and moke emi sions. 

4.2 Effect of water add ition on b rake power o u tput 

... . 2 . 1 .  E ffect of  e ngi n e  p eed 

Figure -+ . 1 shows the experimental results of the brake power output of the enrrine as a 

fun tion of the engine speed and water addition. I t  can be seen form the figure that 

i nc reasing the engi ne speed general ly  increases the brake po\ver output. The increase in  

the engine speed i ncreases the l iquid fuel flow rate as  wel l  as the gaseous fuel flow rate 

which increase the heat release rate and this increases the brake power output of the 

engine. It may be seen also from the same figure that increasing the water addition level 

from 6 g/kg to 1 4g/kg then to 24 g/kg general ly  reduce the brake power output of the 

engine, however this reduction in the brake power output is not much compared to the 

benefit of using the water in the engine as the Ox is proved to reduce by other 

researchers. For example the brake power output fom1 the engine at speed of 30 rps ( 1 800 

rpm) and at 6g/kg \vater (atmospheric conditions) is 1 775  Watt, whi le for the highest 

spec ific humidity of 24g/kg it is 1 650 Watt. The percentage drop for 1 4  g/kg is 4 .2  % and 

for 24 g/kg is 7%.The drop in the brake power output as the water addition increases may 

be attributed to the red uction in the maximum combustion temperature and pressure 

which reduces the brake mean effective pressure. 
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4. 2 . 2 .  E ffect of rn a of pi lot fu el 

Figure -+.2 hows the effect of the mass of pi lot fuel i njected on the brake power output 

for the di fferent levels of water add ition. The first l ine is for specific humidity 6g/kg, the 

second l i ne is for 1 4-g/kg. \\ hi le the third l ine is for 24g1kg. It may be seen from the figure 

that i ncreas ing the mass of pi lot fuel general ly increases the brake power output of the 

engine for al l rat ios of water leve l .  This increase is due to the increase of the mass pi lot 

fue l  which i ncreases the heat re leased from the injected fuel .  However any increase in the 

water addition ratio causes a drop in the brake power output, and this drop is also 

expected as the mean effective pressure is reduced duel to the drop in the maximum 

combust ion temperature and pressure. However it may be seen that the drop in  the brake 

po\yer output is less for small  amounts of pi lot fueL and bigger for higher amounts of 

p i l ot fuel .  It maybe mentioned here that the dual fuel engine general ly uses smal l  amount 

of pi lot fue l  which  means the drop in the brake power output wi l l  be very smal l .  and there 

is no need to go to higher amount of pi lot fuel .  

4.2.3. E ffect o f  injection t iming 

Figure -+ . 3  shows the effect of water addition and injection t im ing on brake pOVvt:! ULJtput. 

It may be seen from the figure that increasing the injection t iming advance from 20 to 45 

degree before top dead center general ly reduces the brake power output. Increasing the 

i nj ection advance causes the combustion to start earl ier, which leads to an increase i n  the 

combust ion temperature and pressure. This increase occurs in the compression stroke 

which decreases the mean effective pressure and reduces the net work of the engine and 

the brake power output. I t  may be also seen from the figure that the water addit ion 

decreases the brake power output s l ightly .  

4.2.4. E ffect of com p re sion ratio 

F igure 4.4- shows the effect of compression rat io and water addition on brake power 

output of the dual fuel engine. I t  can be noticed from the figure that the increase in the 
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compression rati o  from 1 4  up to 22 general ly  increases the brake power output of the 

engin . In reasing the com pression ratio of the engine i ncreases the thermal efficiency of 

th ideal cycl e  which in turn i ncreases the brake power output of the engine. It may be 

noticed that the water addition decreases the brake power output of the engine at most of 

the compre sion rat io except for compression rat io 22 . It may be noticed also that for 

compres i on rati o  of 22 the brake power output is s l ightly decreased. This may be due to 

th fact of running the dual fuel engine at high compression ratio of 22 and because of the 

engine knocking which tends to reduce the brake power output. I t's not recommended, 

therefore. that the dual fuel engine uses compression ratio of 22 - to avoid the engine 

lnocking. The use of s l ight ly  lower compression ratios e .g.  20 would produce h igher 

brake power output and even in the case of using high amount of water in the admitted air 

(24 g.'kg) the engine would give the same power as of compression ratio of 22. This is 

favorable in the add ition also of the knocking-free run of the engine. 

4.3 E ffect of water add it ion on brake specific fuel consumption 

4.3. 1 .  E ffect of engine speed 

Figure 4.5 shows the effect of the engine speed and the water addition on brake specific 

fue l  consumption.  I t  may be seen from the figure that increas ing the engine speed 

genera l ly  i ncreases the brake specific fuel consumption (bsfc) for al l water add ition 

ratios.  The brake spec ific fuel consumption is  calculated from the mass of the pi lot fue l  

divided by the brake power output of the engine. I ncreasing the engine speed increases 

both the mass of p i lot fue l  and mass of gaseous fuel as wel l  as the brake power output of 

the engine. It seems that the mass of the fuel increases more than the increase in the brake 

power output that's why the brake specific  fuel consumption tends to increase. It may be 

also noticed from the figure that the increase in the water addit ion form 6 g/kg to 1 4g Ikg 

i ncreases the brake spec ific fuel consumption. Thi s increase is due to one parameter. This 

parameter i s  the drop of the engine in the brake power output with the water addit ion as 

m ay be seen from figure 4. 1 .  
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4 . 3 . 2 .  Effect of p i lot fuel  rna flow rate 

Figure 4.6 shows the effect of the water addition and the mass of pi lot fuel on the brake 

specific  fue l  consumption.  The dual fuel engine is running on both fuels at the same time; 

pi l ot and LPG. I t  may be een from this figme that the increase in the mass pi lot fuel 

general ly  decreases the brake specific fuel consumption. The decrease in the specific fuel  

o n  umption i due to the increase in the brake power output of the engine, as may be 

een in figure 4 .2 .  H owe er the mass of the gaseous fuel (LPG) is constant. I t  may be 

a lso seen from the figure that adding more water \vi l l  increase the specific fuel  

consumption at  a l l  masses of p i lot fuel .  

-t3.3.  E ffect of  inject ion t i m in g  

Figure 4 . 7  depicts the effect o f  the water addition and injection timing o n  brake "oecific 

fuel consumption for the three water levels tested . I t  may be seen that advancing the 

inj ection t iming form 20 to 4S degrees before the top dead center general ly increases the 

brake specific fuel consumption. The increase in the bsfc is due to the drop in the brake 

power output of the engine as a result of increasing the pressure and temperature earl ier 

in  the compression stroke \vhich decreases mean effective pressure. Also i ncreasing the 

water add ition level from 6 to 1 4  g/kg then to 24 g/kg increases the brake specific fuel 

consumption s l ightly for the same reasons mentioned above. 

The i ncrease i n  the brake specific fuel consumption is almost the same for al l injection 

t iming. For the brake power output and brake specific fuel consumption it may be 

concluded to run the eng ine at early injection t iming for higher brake power output and 

less b rake specific  fuel consumption at al l water addition ratios whi le increasing the 

inj ection t iming to 45 for example wi l l  reduce the brake power output of the e11gine and 

increases the spec ific  fue l  consumption. 

4.3.4.  E ffect of com p re s ion .·atio 

Figure 4.8 gives the effect of the water addition and compression ratio on the brake 
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specific fuel consumption for the three le\ els of water addition. I t  may be seen that 

in reasing the compression ratio from 1 4  to 1 6, 1 8 , 20 to 22 general ly decreases the brake 

specific fuel consumption. This decrease is due to the increase in the brake po\\ er output 

of the engine. Howev er it may be seen from the figure that at compression ratio of 22, the 

brake p c ific fuel consumption tends to increase. I ncreasing the water addition from 

6g,kg to 1 4g/kg then to 24 g/kg specific humidity general ly increases the brake spec ific 

fue l  consumption and this i s  due to the drop in the brake power output . However this 

increase i s  l i ghtly  low at compression ratio of 20. I t's recommended that the engine uses 

compre ion ratio of 20 to prevent the engine knocking. 

4 ..4 Effect of water add it ion on maximum pressure rise rate 

.... 4.1 . Effect of engi n e  speed 

Figure 4.9 hows the effect of the engine speed and the water addition on the maximum 

pre sure rise rate for the three water addition leve ls of 6, 1 4  g/kg and 24g/kg spec ific 

humidity. I t  may be seen from th is  figure that the increase in  the engine speed from 1 6  to 

dP 
3 2  revol ut ions per second general ly  decreases the maximum pressure rise rate (-) 

de m ax ' 

The maximum pressure rise rate is a measure of the combustion noise and it 

is d i rectl y  rel ated to it. H i gher pressure rise rate produces higher combustion noise and 

vice \I ersa I ncreasing the engine speed increases the mixing between air and fuel wh ich 

m akes the combustion to start smoother and hence decreases the ignition delay period . 

This reduction in  the ignition delay period causes the max imum pressure rise rate to 

decrease so the engine w i l l  be running more smoothly especial ly  at higher engine speeds. 

It may be seen also from the same figure that increasing the water add ition increases the 

maximum pressure rise rate in the engine. Adding more water to the engine decreases the 

m aximum combustion temperature and increases the ignit ion delay period and this 

i ncreases the maximum pressure rise rate so the engine \vi l l  be nosier at a hig!,v; ':!ater 
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le\ e l .  However at the highest speed of (30 rps) the maximum pressure rise rate is about 

-+ bar /degrees which is much lower than the value at low engine speed. Therefore 

I'UIming the engine at high speed with high water level wou ld decreases the ATO x 

mls  lOn, because of the decrease in temperatures. and also decreases the combustion 

noi e.  

-+..4.2 .  Effect of  p i lot fue l  ma  flow rate 

Figure -t . ! 0 show the effect of water addition and mass of pi lot fuel on maximum 

. ( dP 
pre ure nse rate de )ma,, ' It may be seen from the figure that increasing the mass of 

p i l ot fuel increases ma.ximum pressure rise rate . I ncreasing the mass of pi lot fuel means 

that it \\i l l  stay l onger t ime for this amount to be ignited; or longer ignjtion delay ignition. 

The i ncrease in the i gnition delay period causes the maximum pressure rise to increase 

and the engine wi l l  run noisier at high amount of mass of pi lot fuel used. For the dual fuel 

engine, it should be noted that the use of mass of pi lot fuel  should as low as possible as 

the main fue l  here i s  the gaseous fuel and the function of the pi lot fuel i s  j ust to ignite it. 

T herefore running the engine at smal l p i lot fuel  wi l l  reduce the maximum pressure rise 

rate. I t  may be seen also from the same figure that inc'easing the water addi llOn ievel 

resulted i n  an increase in maximwll pressure rise rate. The increase in the pressure rise 

rate i s  due to the increase in  the ignition delay period as adding more water to the mixture 

l ead to lower temperatures which in turn increases the ignjtion del ay and produces more 

pressure rise rate. H owever at very smal l amowlt of p i lot fuel mass this increase in 

pressure rise rate i s  very smal l ,  i . e. the engine wi l l  not be noisy even if  we add more 

water. 
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4 A .3. Effect of injection t iming 

Figur 4 . 1 1  shows the effect of water addition and p i lot fuel injection t iming on 
maxim um pre ure rise rate. lt may be seen from the figure that advancing the injection 

t iming l ead to h igher pressure rise rate. I ncreasing the i njection timing ad ance means 

inj ecting the p i lot fuel  earl ier and ear l ier at low pressures temperatures. Reducing the 

pre ure and temperature at th inj ection increases the ignition delay period which in turn 

incr  ases the pres ure rise rate. 

I t may be een also from the figure that increasing the water addition form 6g/kg to 

1 4g, kg to 24 g/kg l ead to an increase in  pressure rise rate stated above in the previous 

fi gure . 

4..tA. Effect of compre s ion ratio 

The effect of water addition and compression ratio on the maximum pressure rise rate 

rna) be depicted i n  F ig .  4 . 1 2 . I t  may be not iced from this figure that increasing the 

compression ratio from 1 4  to 22 general ly  increases the maxim um pressure rise rate or 

combustion noise. The increase in the compression rat io  causes al l pressures and 

temperatures to increase during the engine cycles. This increase may lead a more 

probab i l ity of sel f  ignition of LPG before the p i lot flame ignites it. The self ignition of 

the gaseous fuel ( low ignition temperature for LPG) causes the pressure rise rate to 

i ncrease.  It is advised that for t he dual fuel engine when it runs on LPG,  to reduce the 

compression ratio to a oid having the engine running at h igh combustion noise or even 

knocking.  

imi lar trend for the water addit ion may be noticed to the prevIOus figure� (:LIlli the 

advantage of adding water may be greatly  noticed when the engme runs at lower 

compression ratios as the maximum pressure r ise rate is smal l .  
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4.5  Effect of water add ition on max imum combu tion pre ure 

4.5.1 . E ffect of emrine peed 

The effect of the engine speed and water add ition on the maximum combustion pressure 

rna) be seen i n  Fig .  -+ . 1 " . may be noticed from the figure that increasing the engine 

peed from 1 8  to "'0 re\ olutions per second genera l ly  decreased the maximum 

combu t ion pre sure for the same amount of water exi sts in the inlet air. The increase in  

the  peed ha shov-.TI a deer ase in the maximum pressure rise rate (F ig .  4.9) above. The 

deer a e in the max imum pressure rise rate means a slow i ncrease of the combustion 

pre sure during the compression stroke whi le  the piston is going inward. This slow 

increase i n  the pres ure cau es most of the combustion to occur during the expansion 

troke and reduce the maxim um pressure of the cycle as shown in Fig. -+. 1 3 . On the 

contrar) . a decrease in the engine speed causes the pressure rise rate to increase or the 

pre sure goes up fast during the compression stroke ", hich causes the maximum pressure 

to increa e. 

imi lar to pre ious effects, the increase in the water added in the air from 6 to 1 4  to 24 

g kg caused the maximum combustion pressure to increase. This increase is due to the 

fact that adding more water i ncreased the pressure rise rate (above) and it then increased 

the maximum pressure. 

4.5.2. E ffect  of p ilot  fuel mass flow rate 

Figure -+. 1 4  shows the effect of the mass of pi lot fuel  and the amount of water on the 

ma'<imum pressure. I t  may be noticed from this figure that increasing the mass of pi lot 

fuel  increases the maximum pressure of the cycle. This increase is a result of the increase 

of the maximum pressure rise rate as shown in fig. 4. 1 0 . The maximum pressure of the 

cycle increased from about 60 bars at the lowest amount of pi lot to about 7 1  bars at the 

h ighest amount. S imi l ar to previous effects, when the water added is increased the 

maxim um pressure has been also increased as a result of the increase of the pressure rise 

rate. 
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4.5.3. Effect of injection t im ing 

Figure 4 . 1 5  depicts the effects of increasing the injection timing advance and the water 

added n the maximum pre sure of the c c le o  It may concluded from this figure that 

ad\ a'1c ing the inj ect ion of the pi lot d iesel fuel  general ly increases the maximum pressure 

of the cycl as the pres ure rise rate becomes higher; FigA. l l . The dual fuel engine 

becom s nois, \\ hen the injection is ad\'anced and it may be recommended to retard the 

i nj ect ion to l imit  i ts noise and prevent h igh knocking of the engine which may reduce the 

l i fe of it as wel l  as deteriorating the performance of the engine. 

Adding more water in the inl et air s l ightly i ncreases the maximum pressure of the cycle 

a may be een from the figure. 

4.5A. E ffect  of  compres ion rat io  

The effects of i ncreasing the compression ratio and adding more water on the maximum 

pressure of the cycle may be shown in FigA . 1 6. I t  may be concluded from the figure that 

i ncreasing the compression ratio from 1 4  to 22 general ly increases the maximum pressure 

of the cyc le .  This increase is a result if t"vo parameters which lead to the sharp increase 

from about 3 5  to about 70 bars. The first is the increase in the maximum pressure rise rate 

" hich causes the combustion to accelerate and increasp. the maximum pressu! v v f  the 

cyc le .  The second is  the i ncrease in  the whole cycle pressures as a result of the increasing 

the compression ratio . This i nc ludes the pressure during the compression stroke before 

the i nj ection of the p i lot fuel which leads to an increase i n  the maximwn pressure of the 

cycle. The increase in  the water added also i ncreased the maximum pressure of the cycle 

as seen in the figure. I t  i s  also recommended to reduce the compression ratio of such dual 

fuel  engine to reduce the maximum pressure rise rate or the combustion noise. There has 

been l ike sharp i ncrease in the pressure rise rate and maximum pressure when the engine 

compression ratio i ncreased from 20 to 22. 
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.t. E ff t o f "  at r add ition on 

.t.6. 1 .  • ff ct of enQine  p cd 

emi ion 

I· i gure 4 . 1 7  sho\\ the eff ct of \\ater addit ion and the engine peed on CO emis-ion . I t  

may b e  seen frol11 thi figure that increasing the engine p e d  increa e t h  CO e m i  ion 

up to a -p d of 2 re\ o lution per econd. then tart to fal l  do\\ 11 and thi occur at al l  

\\ ;:lter add it ion le\ e l . I ncrea l I1g the ngine peed general ly increases the mas of fue l  

used and th i  tend to  increase th  CO emi  sion. I t  ma) be een also from the same 

tigure that i n  rea i ng the water add it ion level from 6 to l ..t  g kg to 2..t glkg increa es the 

CO on the exhau t ga e a inj ecting more water in the i nlet air tends to d i l ute the 

mi .  ture more \\'ith water and th i s  makes the mi .  ture more d i luted and it may give h igher 

le\ I of CO m i  ion in the exhaust. 

.t.6.2 .  E ffect of ma of p i lot fue l  

Figure ..t. 1 8  bo\\ s the  effect of water addition and ma s of pi lot fuel  on CO emi ions. I t  

m a \  be een from the figure that increasing the mass of p i lot fue l  general l) decreases the 

CO m i  ion . Thi i du to the more complete combu tion that occurs at higher mass 

of p i lot fuel  injected. a higher m ass of p i lot fuel  injected g ives bigger and bigger flames. 

and this  tend to burn complete l) the gaseous fuel that occur in the combustion chamber. 

Ho\\ ever. i t  m ay be also seen that at \'Cr) high l evel of ma of p i lot fuel  there is an 

increa e i n  CO emissions and this  ma be due to ome unburned fuel  that comes out of 

the d i ffu ion flame at h igher mass of pi lot fue l .  I t  ma) be al 0 seen from the same figure 

that i n  rea ina the water level in the in let air increase in the CO emis ions in the <::> 

ex.hau t gasses. This i du to the i ncreased d i lut ion of the in let air fu I mix.ture \\hich 

ai\ es m ore amounts of CO emissions in  the exhau t gas es .  
e 

4.6.3. E ffect of inj ection t iming 

Figure 4 . 1 9  shows the  effect of water addition and the injection t im ing on CO emissions 

for the three tested water addit ion l e\ e l  of 6, 1 4, 24g/kg. I t  may be seen from the figure 
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that the CO emi sions in the exhaust gasses is maximum at injection t iming of 25-30 

degrees before Top Dead entre (TDC) , and it  is minimum at very late or very early 

i nj ection t iming.  At very late inj ection t iming, the CO emission is very low as the 

i nj ection occur very early during the compression stroke. I njecting the fuel during the 

compression stroke give more time for the combustion to occur and burn al l  the CO 

emi ion that \\ i l l  re ult in the exhaust gasses, hence the CO emissions wi l l  decrease. 

l ncrea ing  the \vater addition from 6 to 1 4  to 24 g/kg general ly increases the CO 

eml ' ion i n  the exhaust gasses because of the di lution effect as more water exists in the 

fue l  air m ixture and this tends to increase the CO emissions in the exhaust gasses. 

Ho\\ e\ er the l evel of the CO emission is far below the allo\vable l imits with exhaust 

gas es. 

4.6 . .... E ffect of compress ion ratio 

Figure 4 .20  sho\\ s the effect of water addition and the compression ratio on the CO 

emis ion.  I t  may be seen from the figure that increasing the compression ratio from 14 to 

22 increases general ly the CO emission in  the exhaust gasses however the CO emission 

le\ e l  i s  far below the a l lowable l im its for the current exhaust gasses l imi ts .  I ncreasing the 

water addit ion level from 6 to 1 4  then to 24 g1kg generally increases the CO emission 

because of the d i lution effect as more water i s  i njected in the exhaust gasses. 

4.7 E ffect of water add it ion on He emissions 

4. 7.1 . E ffect of  engi n e  peed 

Figure 4 .2 1 shows the effect of \vater addition and the engine speed on CO emiSSIOn. I t  

m ay b e  noticed from the figure that increasing the engine speed generally decreases the 

HC e miss ion for all water addition level tested. I ncreasing the engine speed increases the 

swirl and turbulence level in  the combustion chamber and this improves the mix ing 

between the l iqu id fuel inj ected, the gaseous fuel and the air. More m ixing enhances the 

combust ion and should reduce the HC emission. 
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I ncreasing the water add itions from 6 to 1 4  to 24 � kg increases the HC emission in the 
exhaust ga e as more d i lution occurs and more incomplete combustion and this leads to 

higher I vels of H C  emission in the exhaust gasse . However, al l are below the al lovvable 

l im its for the H emi sions in  the exJlaust gasses. Moreover the techno log) of catalytic 

com erter is v 1') wel l  adVatlCed and it should be re latively easy to reduce the HC 

emi s ion lower by u ing it .  

-t  7.2. E ffect of m a  of p i lot  fuel 

The effect of water add ition and the mass of pi lot fuel on HC emission may be seen in 

fi gur 4 .:L .  It may be noticed from the figure that increasing the mass of pi lot fuel  

genera l ly  decreases the HC emission in the exJ,aust gasses. The reason for this is that 

increasing the mas of p i lot fuel tends to make the flame bigger and bigger, and this tends 

to ompletely burn the gaseous fue l that exist in combustions chamber. This reduces the 

H e  emission in the exhaust gasses. I ncreasing the water addition level general ly  

increases the  He emission because of the  d i lution effect. Nonetheless, as mentioned 

above that usi ng a catalytic cOI1velier may help to reduce the H C  emission even when the 

water is increased . 

.t.7.3. E ffect  of  inj ect ion t iming 

The ffect of water addit ion and the inj ection t iming on HC emission may be depicted in  

fi gure 4 .23 .  I t  m ay be  noticed form the fi gure that increasing the injection timing advance 

from 20 to 45 degrees before the Top Dead Centre general ly  decreases the H e  emission 

in the exhaust gasses for the three tested water addition leve l .  Starting the combustion 

ear l ier and earl ier during the compression stroke gives higher temperature and the 

pressure in the combustion chamber. H igher temperature and pressure gives more chance 

for more complete combustion and gives less H e .  S imilar effect of adding the water to 

the combustion chamber has shown, that increased the HC emission because of the 

d i lut ion effect. More water is injected in the combustion chamber gives higher level of 

emissions of He.  
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-t.7 04 .  � ffect of compre ion ratio 

F igure 4 .24 ho\\'s the effect of water addition and compression ratio on He emission. I t  

may be een from the figure that He emission becomes higber and higher with increasing 

the com pres ion ratio of the engine. The reason for this may be due to the higher 

knock ing pos ib i l i ty of the engine at higher compression ratio which tends to increase the 

unburned Hydro arbon in e;.,..haust gasses. imi lar trends of adding the water to the He 

emi ion i noti ced that resulted in increasing the He emission in the exhaust gasses 

because of the more d i lution effect. 

-t.8 E ffect of water add it ion on Smoke emi  sion 

.t .8 . 1 .  E ffect of  engi n e  speed 

F igure 4 . 25 shows the effects of adding the water to in let air and the engine speed on 

opacity or the smoke level of the exhaust gases. It may noticed from the figure that 

increasing the engine speed general l y  increases the opacity level of the exhaust gases for 

the t hree water addition levels  tested. I ncreasing the engine speed means more fue l  is 

i nj ected i n  the combustion chamber and more fuel is burned . At the same time there is a 

l ess t ime for combustion of this high amow1t of fuel which tends to increase the opaci ty 

or the smoke level  i n  the exhaust gases. I ncreas ing the \vater addition level i n  tbe in let air 

has resulted i n  i ncreas ing the opacity l evel due to more water exists in the cc; , ,�-..;::;tion 

chamber that l eads to more d i lution effect and more unburned carbons atoms that lead to 

h igher l evel  of smoke in the exhaust gases. 

4.8.2.  E ffect of m ass of p i lot  fue l  

The effect of the water addition and the mass of pi lot fuel on opacity level i s  given in 

fi gure 4.26. I t  m ay be noticed form the figure that increasing the mass of pi lot fue l  

i nj ected increases general l y  the opac i ty level of  the exhaust gasses. More p i  lot fuel 

i nj ected means h igher amount of diesel fuel  injected to i gnite the gaseous fuel .  This 

increases the d iffusion combustion for the diese l fuel injected which leads to bigger 

7 1  



Chapter 4 Resu lts and Discussions 

po s ib i l  it) of ha\ ing unburned arbon atoms and hi Gher level of opac l' h Tl '  . 
to ,) . 1e mcrease In  

the  water addit ion level fr m 6 to  14  to 2-+ glkg gi\ es similar effect as before of an 
increase in the opacity Ie el at a l J  a lues of mass of pi lot fuel  tested. 

The good advantage of the dual fue l  engi ne \ ould be then to uti l ize as smal l amount of 

p i lot fue l  as possib le to reduce the smoke emi sions in the exhaust gases. Adding more 

water to in let air at mal l amount of p i lot fuel  d id not increase much the opacity le\e l .  

.t.8.3. Effect of  inject ion t iming 

The effect of i nj ection t iming of the pi lot d iesel fuel  on the opacity for the three tested 

water addit ion level rna be een in Fig .  -+ .27 .  It may be noti ced from this figur._ ��?t for 

i nj ection t iming of around 30° BTDC the opaci ty level is mirumwn and increases both 

ide for the late and very early inj ection. t this inj ection t iming, it seems that the 

combu t ion i most complete and produces the l east smoke in the exhaust . It seem that 

the 30° BTDC is opt imum for this engine . 

.t .8A. E ffect  of  com pre ion ratio 

The effect of  compression ratio and the water addition level on the opacity level of the 

exhaust gasses may be seen in figure -+ .28 .  It may be seen from this figure that i ncreasing 

the compression ratio  of the engine general ly decreases the opacity l evel of the exhaust 

gasses or the smoke l evel .  I ncreasing the compression ratio tends to increase al l  the cycle 

temperatures and pressure which gives more complete combustion for al l the 

hvdrocarbon fuel and the l ess opac i ty level or smoke level of the exhaust ga� <"C's. The 

same effect for the water addition to increase the opac i ty level of the exhaust gasses 

occurs. 

4.9 Knocking l i m its of dua l  fuel engine 

4.9. 1 Effect of  torq u e  on  maxi m u m  p ress u re ri e rate and maxim u m  pressu re 

The effect o f  load and water addi tion level on the dual fuel  knocking l imi t  is i l lustrated in  
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fi gures 4 .29 a. b and c. The figure shows the increase of the maximum pressure rise rate 

or the combustion noise when the load output is increased. The load (or output torque) is 

increased from m inimum value c lose to zero and unt i l  the engine starts to knock at very 

h igh amount of gaseous fuel .  The torque output has been i ncreased by increasing the 

amount of L PG ga eous fue l  whi le  maintaining the pi lot fue l  constant . The end of the 

experiment i when there is  heavy knocking and any further increase to the gaseous fuel 

amow1t would decrease the output power (or torque) of the engine. That point is 

r ognized as the onset of ignition fai l ure . 

F igure 4 .29a hows the knocking l imit  (or the point of highest torque) to be around 1 0  

111, \\ h i l e  i t  i s  around 1 5  111 for compression ratio of 20 (Fig. 4 .29b) and it is  around 1 6  

' m  for compression rat io of 1 8  (Fig 4 .29c). I t  may be concluded that the decrease in the 

cOl11 lJres ion ratio  from 22 to 20 and then to 1 8  enabled the engi ne to run at higher torque 

output \\ ithout heavy knocking or ignition fai l ure. The reduction in the compression 

ratios reduces the cycle  pressure and temperature which reduces the possibi l ity of self­

ignit ion of the LPG gaseous fue l  and having knocking in the dual fuel  engine. I t  is  

recommended therefore to reduce the compression ratio of the dual fuel  engine to reduce 

the knock ing possib i l i ty and reduce the combustion noise and enables the engine to run at 

h igher o utput torques. 

It may be a lso noticed that increas ing the output torque leads to an increase of the 

m axim um pressure ri se rate. This is a result of the increase in the amount of LPG gaseous 

fuel admi tted i n  the intake air which -when burned - produces high pressure rise rate. 

imi lar trend m ay be found for the maximum combustion pressure as shown in fig. 4 .30a, 

b and c .  the i ncrease in  the maxim wTI pressure with increasing the torque is a result of the 

i ncrease in the pressure rise rate shown above in fig. 4.29. The same conc lusion for the 

knock l im it is  a lso seen here for the maximum pressure. 

4.9.2 Effect of torq u e  on brake specific fue l  consu mption 

F igures 4 . 3 1 a, b and c show the effect of output torque 011 the brake specific fuel  
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con umption Cbs/c) for the three tested water addition le\ e l  te ted and at different 

compression ratio ' .  Fig.  4 .'"  J a repre ents the effe t of torque on bsfc at a compre ion 

ratio of J , \\ h i l e  Fig. 4. I b i at compression ratio of 20 and Fig. 4.3 J c is at compres ion 

rat io of 22 .  By comparing these three figure , It may be noticed that decrea ing the 

com pre i n ratio from 2_ to 20 then to 1 8  ha resulted in an 1I1crea e in the � . .  �:::-�king 

l i m it or th maxim um torque that the engine can produce \\ ithout knocking. It ma) be 

a lso hO\\ 11 i n  the tigures that increas ing the output torque results in a decrea e in the 

bs/c. The i ncrea in th utput torque i a re 'ult of the increase on the mas of LPG 

ga.l?ou' fue l  which al 0 produce more po\\ er output therefore it  seems that the increase 

i n  the power is more than the increa e in the fuel  ma and also due to an improvement of 

the engine efficienc) at h igh load . 

4.9.3 Eff ct of tO t'q u e  on opacity 

figure 4.  "' 2 depict the effect of output torque, compre ion ratio and the water addition 

l e\ el on the opacity I \ e l  of th exhaust gase . Each compression rat io is  i l l ustrated in a 

'eparate F igure. The com pres ion ratios of 1 8 , 20 and 20 are sho\\n in Figures 4 .32a, 

4 .  "' _b and 4.32c re pective l) .  It could be seen from these three figures t!� -:t at a l l  

compression rat io , the increase in  the output torque has resulted in the i ncrease in the 

'moke level or opac it) l evel of the exhaust gases. E\ en at h igher amount of \\ ater 

add it ion level s  the same trend is noticed. Thi increase in the opacity may be due to the 

i ncrea e in the amount of gaseous fuel admitted with the inlet air. The increase in the 

gaseou fuel m ay have re u lted in the increase of fuel  to air ratio and thi reduces the 

amount of oxygen avai lable for the complete combustion of the fuel .  This may have 

re u l ted in the i ncrease in the opacit) le\  el of exhaust ga es. 

The comparison of Fig. 4 . 32(a) with Fig. 4 .32(b) and Fig. 4 .32(c) gives s imi lar trend of 

reducing the opacity with increasing the compression ratio.  
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Chapter 5:  Conclusion and Recommendations 

5. 1 I n troduct ion  

disc us ion  and result  ha\'e been explored in the pre\'ious chapter about the results 

taken fi-om the dual fue l engine running on diesel and LPG, and the effects of water 

addit ion and ome design and operating parameters on the engine performance and 

emis ions are presented . The studIed parameters are the engine speed, the engine load 

the p i lot fuel  mass inj ected the inj ection t iming of the pi lot fuel  and the compression 

rat io.  From the experimental result discussed in the previous chapter the fol lo\\ ing 

con i us ions may be drawn. 

5 .2  E ffect of w ater add it ion on brake power output 

I .  I ncreasing the engine speed general l)  increases the brake power output. 

I ncreasing the mass of pi lot fuel general ly increases the brake power output of the 

engine for al l rat ios of \;vater level .  

3 .  I ncreas ing the  inj ection t imi ng advance from 20  to  45  degree before top dead 

center genera l ly  reduces the brake power output . 

..t .  The i ncrease in  the compression ratio from l ..t  up  to  22  general ly increases the 

brake power output of the engine . 

5 .  I ncreasing the water addition level from 6 g/kg.air to 1 4g/kg then to 24 g/kg.air 

\vhat genera l ly  reduce the brake power output of the engine, however this 

reduct ion in the brake power output is  not much compared to the benefi t  of using 

the water in the engine as the NO ... is proved to reduce. 

6 .  T h e  use o f  s l ight ly lower compression ratios e.g. 2 0  woul d  produce higher braKe 

power output and even in the case of using high amount of water in the admitted 

air (24 g/kg.air) the engine would give the same power as of compression ratio of 

22 .  
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-.3 ffect of water add it ion on brake peci fic fuel con um ption 

1 .  I ncrea ing the engine speed general ly increases the brake spec ific fuel 

onsumption (b fc) for al l water addition ratios. 

The increase in the mass pi lot fuel general ly decreases the brake spec ific fuel 

on umption. 

3 .  dd ing more \\ ater \\ i l l  increase the specific fuel consumption at al l masses of 

p i lot fue l .  

4 .  dvanc ing the  inj ection t im ing form 20 to  45 degrees before the  top dead center 

genera l ly  inc rea es the brake specific fuel consumption. 

S. I ncreasing the compression ratio from 1 4  to 1 6. 1 8, 20 to 22 general ly  decreases 

the brake spec i fic fuel consumption. 

5--' Effect of water add i t ion on maxi mum pressure rise rate 

1 .  The increase in the engine speed from 1 6  to 32 revolutions per second general ly 

decreases the maximum pressure rise rate (dPJ . or the combustion noise. 
dB max 

2.  Increas ing the mass of pi lot fuel  increases maximum pressure rise rate. 

3 .  Advancing the inj ection t iming leads to higher pressure rise rate.  

4. Increasing the compression rat io from 1 4  to 22 general ly increases the maximum 

pressure rise rate or combustion noise. 

5.5 Effect of w a ter add i t ion on maximum combustion p ressure 

1 .  Increasing the engine speed from 1 8  to 30 revolutions per second general ly 

decreases the maximum combustion pressure for the same amount of water exists 

i n  the i nlet  air. 

2 .  Increasing the m ass of pi lot fuel increases the maximum pressure of the cycle .  

3 .  Advancing the inj ection of t ile p i lot diesel fuel general ly increases the maximum 

pressure of the cycle. 
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4 .  Increasing the compression rat io from 14  to  22 general ly increases the m�ximum 

pr SSLlre of the cycle.  

-.6 Effect of water ad d it ion on CO emi ion 

I .  Increasing the engine speed increases the CO emission up to a speed of 28 

re\ o lutions per second. then starts to fal l  down and this occms at  al l  water 

addit ion le\ e ls .  

Increasing the mass of p i lot fuel  general ly decreases the eo emissions. 

3 .  The C O  emissions i n  the exhaust gasses is maximum at injection t iming of 25-30 

degrees before top dead centre (TOC), and it is minimum at very late or very early 

inj ection t iming. 

-1.. I ncreasing the compression ratio from 1 4  to 22 increases general ly the CO 

emission in the exhaust gasses , However the CO emission level is far below the 

a l lowable l i mi ts for the current exhaust gasses l imits. 

5.7 Effect of  water add it ion on HC emissions 

1 .  I ncreas ing the engine speed genera l ly decreases H:e H e  emission for a l l  warer 

addit ion level tested .  

2 .  I ncreas ing the mass of pi lot fuel  general l y  decreases the H e  emission i n  the 

exhaust gasses. 

3 .  I ncreasing the i njection t iming advance from 2 0  to 45 degrees before the top dead 

centre general l y  decreases the He emiss ion in the exhaust gasses for the three 

tested water addition level .  

4 .  He emission becomes higher and higher with increasing the compression ratio of 

the engine. 
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5.8 Effect of\"vateJ- ad d it ion on moke emis ion 

1 .  I ncreasi ng the engine speed general ly increases the opacity level of the exhaust 

gase for the three water addition levels tested. 

2 .  I ncreasing the mas o f  pi lot fuel  inj ected increases general ly the opacity level of 

the exhau t gasse . 

For inj ection timing of around 30· BTDC the opacity level is minimum and 

increase both sides for the late and very early i njection. 

� .  Increa ing tbe  compression ratio of the engine general ly  decreases the op:':' i tv 

le\ e I of  the exhaust gasses or the smoke leve l .  

5.9 Knocki n g  l im its  of dua l  fuel engine 

1.  The increase of the maximum pressure r ise rate or the combustion no ise when the 

load output is increased . 

The decrease in  the compress ion ratio from 22 to 20 and then to 1 8  enabled the 

engine to run at h igher torque output without heavy knocking or ignition fai l ure. 

3. The increase in  the maximum pressure with increasing the torque. 

-I. Decreas ing the compression rat io from 22 to 20 then to 1 8  has resulted in an 

increase in  the knocking l im it or the maximum torque that the engine can produce 

without knocking. 

5. I ncreasing the output torque results in a decrease in the byc. 

6. At a l l  compression ratios, the increase in  the output torque has resulted in  the 

i ncrease i n  the smoke level or opacity level of the exhaust gases. 

5. 1 0  Recommendations for fu tu re work 

B ased on the results of the current research the fol lowing recommendtions are suggested. 

1 .  The current research project deals with the experimental data col l ected fi r  the 

diese l  engine running on dual fue l  of diesel l iquid fue l  and LPG gaseous fuel as 

the main fuel .  it is recommended to repeat the same experiment using a 
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omputat ional F lu id  D) nam ics (CFD) calculations as the software exists at the 

AE C"ni\er it) (K I VA3-verre I3) .  

2. The \\ ater addit ion proved to be effective in changing the performance, noise 

emissions and j\D, emissions. The proposed project deals \vith testing the use of 

the FD code K I V  3-verre I3 .  I t  \\ ould be re latively easy to add some water 

H20 at the beginning of the compression stroke with the existing fuel -air 

mixture. 

3. The current research changed the water addition level from 6 g/kg air 

(atmospheric a ir) to 1 �  then to 24 g/kg air, however i t  would be advantageous to 

test h igher amount of water inj ected in the in let air using different methods of 

water addit ion. 
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Chapter 5 :  Appendix 

Appendix 

Data acq u i  i t ion progra m ( i n  M u-Mac- Basic)  

RE \L :  1 ,J,T ,TF,OIL,TG,TC. I.TCT,SPD,TRQ,SPDFTRQF.i\lF  
RC o\L:  TA\ ,TFV.OILV.TGV.TC V,TCTV, PDV,TRQV. PDF ,TRQFV,MFV 
RE o\L'  F .A�[A.PHI,DEN l TI'.\'D.PDA,TCF,FLAG,COUNT 
REAL:  CO.C02,02.UHC, 10 
REAL. COV,C02V,02V.CHCV, OXV 
REAL. co. 02, UHC, OX,"1 X I  
I i  'TEGER: FILEl ,FILE2,FILE3 

TRI}';G: A$[ 1 6].B$[ 1 6],S$[ 1 6] 
I 0 RE�l * *  * * * *  * * * * * * * " * * * * * * *  * * * *  * * * * * * * * *  ** ** * * * * * * * * * * * * * * ** * * * * * *  * 

20 RE�l * *  THIS PROGRAM (Written In UMACBA I C) COLLECTS M EASURED * *  

30 R F}. 1 * *  D TA FRO�1 THE DATA ACQUI SITIO YSTE f A  D AVES THE 1 * *  

40 RE:'1  * *  L DATA F ILES. ** 

50 RE�l ** * *  

60 RE:-'l * *%�o�o 
70 RE ,\ l  * *  

MODEFIED & li\lPROVED B y  . . . . .  ALAA I S KA DARA I 0/0°'0%* *  

o 1 4 1 11 1 994 * *  

80 RDI * *  B.  c. Proj ect * *  
* *  90 REl\l * *  

1 00 RD[ * *  

1 1 0 R E M  * *  
Program i s  available i n  the WOS di rectory under the * *  

name . . . .  DIESEL * *  

1 20 REi\1 * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

1 30 REi\l 

1 40 RE�l * Open Data Fi les For Output Data. * 

1 50 REM -" ------------

1 60 PRDJT ttWOS CHR$( 1 63);  
1 0 FILE 1 = 1 :  FILE2 = 2: FILE3 = 3 
1 80 0PE-:\("0","DFN 3",FILE 1 ) 
1 90 OPE, '("0","DTN3 ",FILE2) 
200 OPE,l("0" ,"DPN3" ,FILE3) 
2 1 0  REM 
220 RE [ * Configurate The Input Channels. * 

230 RE t--r 
240 L 1'\'1'E( 1 2,4 1 ,0. 1 ) 
250 TNTI'PE( l 3,4 1 ,0. 1 ) 
260 INT1'PE( 1 4,4 1 ,0, 1 )  
270 NTI'PE( 1 5,4 1 ,0. 1 )  
280 INTI'PE( l 6,4 1 ,O. l )  
290 TNTYPE ( 1 7,4 1 ,0, 1 )  

300 1. Tl'PE(36,2.0. 1 )  

3 1 0  l:'lTYPE(37,2,0. 1 )  
3 20 TNTYPE(38,2,0. 1 )  
340 rNTYPE(40,2,0. 1 )  
350 INTYPE(4 1 ,2,O. l )  
3 60 INTYPE(42,2,O . l )  
3 7 0  INTYPE(43,2,0. 1 )  

380 IWTYPE(44,2,0. 1 )  

390 REM 
400 REM * Engine Load ing Test. * 

4 1 0  RE M  

1 08 



Chapter 5: Appendix 

420 L ' P  'T "I THE E 'GINE READY FOR LOADI G TE T (Y 1 1) OR (C) FOR GAS A A. CALES 
"; BS 
42 1 RE[\.1 THE ORlGI}"AL GA A" ALY ER SCALE OF 02,CO,L HC, OX GASES ARE 
25,0.5 ,4000,4000 RE PECTI VEL Y. 
422 IF B$ <'> "C" A. ID B$ <> "e" THE 02 = 25:  CO = .5 :  SUHC = +000. S OX = 4000 
425 I F  BS "c" OR BS="e" THE'\T BS-"y": 11'PUT"INSERT THE SALE OF CO,02,UHC, OX " SCO, 
S02. U HC, S 'OX 
430 I F  BS '> "Y" A 'D B$ <> "y" THE. GOTO 870 
435  PRL T 
43 7 \ I AX I = 1 00 
438 FLAG = 0 
439 COCo T - 0 
440 PRDlT " TA 1 TG SPD TRQ M F  1 AMA I PHI 02 I CO C02 I UHC l Ox" 
450 PRL T "  C C rpm Tm Kgihrl Kgihrl '!-;, I % I % I PP 1 I PPM" 
460 PRINT " ---- 1 ----+------ 1- ----+----- 1------ 1 --- --1------ 1----- 1 ----+----1----- " 
470 FOR I = I TO t-IAX I 
480 RE\1 * A\ eraging The Input Data 5 Times. * 
490 REt-I 

500 T A = 0 :  OIL = 0: TG = 0: TCN = 0: TCT = 0: TRQ = 0: SPD = 0 
5 ]  0 Tf = 0: .MF = 0: CO = 0: C02 = 0: 02 = 0: U HC = 0: OX = 0 
520 FOR J = 1 TO 5 
530  REl\\ * Col lecting i\.[easured Data And Converting Them To S . l .  Units * 
540 RE\ I *------------------------------------------------

550  TA = AIN( l 2) + TA: REM INDUCED AIR TEMPERATURE 
560 TF = A IN( 13)  + TF: RE f L IQU l D  FUEL TEt-1PERATURE 
570 OIL = A IN( 1 4) + OIL :  REM O I L  TEMPERATU RE 
5 8 0  TG = AIN( 1 5) TG: REM EXHAUST GASE TE"t\tfPERATURE 
590 TC = AIN( 1 6) + TC : REM TEMP. OF COOLING WATER IN 
600 TCT = AIN( 1 7) + TCT: REM TE IP.  OF COOL! G WATER OI'T 
6 1 0  TRQ = « (AIN(36) * 1 00) * 5 .0795) - . 8 1 39) + TRQ 
620 SPD = « (AIN(37) * 1 00) * 723.32) + 49.3 1 )  + SPD 
630 I\ 1 F  = « (AIN(38) ,. 1 00) * 7.536) - .09 1 2) + 1F 
650 CO = « (AIN(40) * 200) * SCO) / 1 0) + CO 
660 C02 = « (All\( 4 1 )  * 200) * 20) / 1 0) + C02 
670 02 = « (All (42) * 200) * S02) / 1 0) + 02 
680 U HC = « (AIN(43) * 200) * SURC) / 1 0) + UHC 

690 'OX = « (AIN(44) * 200) * SNOX) / 1 0) + NOX 
700 NEXT 
71 0 T A V = T A / 5: OIL V = OIL ! - :  TGV = TG / 5 :  TCNV = TCN / 5 :  TFV = TF / 5 
720 TCTV = TCT / 5 : TRQV = TRQ / 5 :  SPDV = SPD / 5 :  MFV = MF / 5 

730 COY = CO I 5 :  C02V = C02 / 5 : 02V = 02 / 5 : U HCV = UHC / 5 : OXV = NOX / 5 
73 1 RE!\1 FLAG JUST TEL L  US WHE SOMETHING WRONG W ITH GAS ANALYSER SCALE 
732 RE 1 THE G IV E  1ASSAGE IF THE SCALE I S  OT RIGHT 
733 RE�1 " " " 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 ' " " " ' ' ' ' " 1 1 1 " , 1 1 1 1 1 1 1 1 1 1 " " " " , , " , , , , , , ' ' " ' ' ' ' " 1 1 1 1  

735 IF (COV > SCO) OR (02V > S02) THE FLAG = FLAG + I :  PRINT "** BELOW VALUES 
BEYON D  SCALES OF CO ORlAND 02, FLAG= " ;  FLAG 

737 I F  (NOXV > S OX) OR (UHCV > S UHC) THEN F LAG = FLAG + I :  PRINT , ,** BELOW 
V ALUES B EYOND SCALES OF NOX ORlAND UHC, FLAG= " ;  FLAG 
740 PDA = -5E-09 * SPDV " 3 + .00003 * SPDV " 2 - .0287 * SPDV + 32.856 
745 TCF = 1 .055203 - .002882 * TAV + 6.  1 3 1 6E-06 * TAV " 2 + 1 . 1  495E-09 * TAV " 3  

747 V D  = .0001 1 9  * PDA * TCF 

748 D EN SITY = 1 00 /  ( .287 * (T A V + 273» 
750 AMA = DENSITY * VD * 3600 

755  FA = 1FV / AMA 
757 PHI = FA / .069 
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760 PRl}lT L r,G ":t#.# #1#;.# #### ;Z#.# #.## #>;..# #.## ##.'/# #.## ## .# #### ##-#--if'" T A\,'  TG\" 
PO\' :  TRQ\ ; \ I F\,; \IA; PHI ;02V; COV; C02\, ; U HCV; 1 'OXV 

" ,  

76 1 RE\l print "02 = ";02\, 
762 RE I TO G ROUP THE DATA POINTS 
764 COl, T = CO T + 1 
766 I F  COCNT = 5 THE1 CO . T = 0: PRJ T " - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

770 RE�I 
780 RE:'! * Sa\ ing The Col lected Data (Loadi ng) In  Their Data Fi les * 

790 RD I * -----

800 PRINT ff F I L E2, L fl\G "##ti#.#"; PDV; TA V; OIL V; TG\'; TC V: TCTV 
8 1 0  PRINT ttFI LE3 , lJ ING "####.###"; SPD\'; TRQV; I FV ;  AJ\1 A; CO": C02V; 02\,; UHrV; 

O X \ , P H I  
8 1 2  $ = 11\'PUT$( I )  
8 1 3  I F  $ = "F"  OR $ = "f' THEN FLAG = 0 
8 1 4  I F  $ = "Q" OR S$ = "g" TH E 1 =  l A X I 
8 1 6  I F  $ = "R" O R  $ = "I''' THE S02 = 25: SCO = . 5 :  SUHC = 4000: S OX = 4000 
8 1 8  I F  $ = "C" OR $ = "c" THE, INPUT " IN SERT TH E SCALES OF CO,02,UHC, OX IN ORDER 
" CO, 02. C HC, S. TOX 
830 "EXT 
840 PRNT: PRINT: PRINT #\VOS CHR$( 1 63 ) ;  
8 5 0  RE\1 * FRICTION TEST (t-.l0TORING). * 

860 RDf 
870 I"JPUT "IS THE ENG INE READY FOR FRICTlO TEST (Y )"; A$ 
880 IF A$ <> "Y" A 'D A$ <> "y" THEN GOTO 1 090 
890 P RINT : P RINT 
900 PRINT " SPEED TORQUE" 
9 1 0  PRNT " - ------
920 FOR 1 = 1 TO MAX I 
930 RE\l * A\'eraging The Input Data 5 Times. * 
940 RE\1 
950 TRQF = 0 :  SPDF = 0 
960 FOR ] = 1 TO 1 0  
970 RE}'I * Collecting leasured Data And Com erting Them To S.  L Units * 

980 RE}'f 
990 TRQF = (ABS« (AIN(36) * 1 00) * 5 .0795) - . 8 1 39» + TRQF 
1 000 SPDF = ( AB S« (AIN(37) * 1 00) * 723 .32) + 49.3 1 »  + SPDF 
1 0 1 0  1 EXT 
1 020 SPDFV = SPDF / 1 0: TRQFV = TRQF / 1 0  
1 030 PRINT U SlNG " ####.# ##.#"; S PDFY; TRQFY 
1 040 RE\1 * Saving The Collected Data (Motori ng) in Its Data F i l e  * 

1 0 -0 RE}'1 
1 060 PRINT # F I LE I ,  USING "#### .#"; SPDFY; TRQFY 
1 070 S$ = INPUT$( J )  
1 075 I F  S $  = "Q" OR S$ = "g" THEN I = MAX I 
1 0 80 �XT 
1 090 REM * Cl ose The Data Fi les. * 
1 1 00 REM 
1 1 1 0 CLOSE (FI L E  I ) 
1 1 20 CLOSE (FILE2) 
1 1 30 CLOSE ( F I L E3)  
E 'D F I L E  

1 1 0 
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