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Ab tract 

E lectrocoagulation ( EC) has been evaluated for the removal of Cr (VI)  

from bracki h groundwater using three different bench-scale EC reactors, namely 

batch st irred tank reactor ( BSTR), continuous st irred tank reactor (CSTR) and a 

continuou e lectrocoagulation co lumn ( ECC) .  Batch EC process was 

experimentally examined at room temperature and the results indicated that Fe-Fe 

e lectrode pair was the most efficient arrangement and was able to achieve 1 00 % 

Cr removal at an e lectrocoagulat ion time o f  5 minutes, a current density of  7 .94 

mAlcm1 and pH o f 8 .  A kinetic study of  batch EC was then performed using both 

pseudo- first-order and pseudo-second-order models. It was confIrmed that 

removal of chromium by EC fo l lows pseudo-first-order models. In all condit ions 

SSE was min imized below 3 . 696. The generated s ludge was characterized using 

EDS,  X-ray fluorescence ( XRF) and FE-SEM. The analysis confIrmed the 

formation and precipitat ion of Fe(OH)3 and Cr(OH)3 as solids. The efficiency of 

different inlet flow rate was also assessed for both continuous CSTR and ECC, 

and indicated that 90 mUmin was the most efficient flow rate when cont inuous 

stirred EC (CSTR) reactor is used and 30 mL/min using continuous co lumn EC 

( ECC), at Fe/Fe pairs and room temperature 25 Dc. The study affIrmed that the 

new innovat ive ECC process improves the removal efficiency of  chromium with 

lowest est imated energy consumption of 0.75 kWh/m3 and disso lved iron of 0. 1 85 

mg/l with an e lectrical cost of 0.030 US $/m3 of treated groundwater. OveralL the 

study affirmed that e lectrocoagulation is a rel iable, environmentally compat ible 

technique for the purifIcation o f  groundwater. 
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Chapter One 

Introduction 

"Try to learn something about everything 
and everything about something" 

Thomas Huxley, (1825-1895) 
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In mo t parts of the world there i a lways a need for large quantities of water 

with different level of quality that may be used for drinking, irrigation, industrial 

application or other dome t ic uses. On the other hand, main water sources such as 

surface water and groundwater are being constantly polluted through the 

accumulation of hazardou contaminants and dangerous heavy metals fi.-om industrial 

effluents as well as other natural processes. The treatment and re-use of  wastewater 

has become an ab o lute necessity. There is, therefore, an urgent need to develop 

effect ive and inexpensive techniques to purify different water sources. 

Chromium compounds that have hannful effects on all l iving forms are 

extensively used in chrome plat ing, leather tanning, and manufacturing of cement [ 1 -

3 ] .  Chromium occurs primarily in two states: hexavalent Cr(VI )  and trivalent Cr( I l l ), 

that are characterized by different chemica l  behaviors and toxicity. Hexavalent 

chrolruum Cr(VI )  is certa in ly more harmful to humans and animals. I t  has severe 

risks in terms of toxicity, including skin irritation, and kidney fai lure , in addition to 

the carcinogenic effect [4] . To meet environmenta l regulations, effluent of wastewater 

contaminated with chromium compounds must be treated before discharge. One of 

the most underexp lo ited treatment techno logies i s  the e lectrocoagulat ion ( EC), which 

has estab lished itself as a convenient, efficient, economical and compact alternative to 

conventional chemica l  and other traditional methods. A major advantage of EC is the 

low occurrence of secondary pollution by in-situ generation of coagulants [5] . Also, 

EC is characterized by high separation efficiency due to the generation of oxygen 

and hydrogen bubbles in a compact frame [6] . Such features make this technology 
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e pecial ly attracti e for u e ill fac il it ie where purificat ions ill l imited space are 

de ired. 

During the last decade, considerable amount of research has been focused on 

understanding the mechanisms of chromium removal from different sources of 

wa tewater by electrocoagulat ion processes. The extensive experimental work carried 

out using this techn ique has so far confrrmed the effect iveness of EC for chromium 

removal from industrial, e lectroplating, textile and synthesized wastewater. However, 

no one had studied the chromium remova l from groundwater by EC process, with 

ery l it t le had been done to estab lish the k inet ics of the EC process. 

From that point of view, the present research herein aims to address the 

performance of e lectrocoagulation process for the treatment of chromium 

contaminated groundwater. Three different bench-scale EC reactor configurations 

were experimentally tested. First, the efficiency of batch stirred EC process was 

examined for the remova l of chromium from groundwater for different operating 

parameters and the results were analyzed in order to establish the k inetics of 

chromium removal by the EC process. The study was then further extended to the 

continuous mode to assess flow dynamics and evaluate removal efficiency at different 

flow condit ions. Final ly, an irmovative e lectrocoagulation co lumn (ECC) reactor was 

tested for the removal of chromium at different feed flow rates and operating 

conditions. The flow behavior and chromium removal effic iencies were then 

compared for the two flow reactors. 
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The results of  thi re earch repre ent an important contribution to knowledge 

as they offer a better under tanding of  the chromium removal and its kinet ics from 

groundwater in an e lectrocoagulation process. In addit ion, the study assesses a new 

reactor design ( EEC) for the treatment of wastewater that is believed to be more 

efficient than conventional e lectrocoagulat ion cel ls .  The effect of init ial pH, applied 

current density (ACD) init ial chromium concentration, and e lectrode types on the 

removal of chromium were analyzed for al l  reactors, in addit ion to the effect of 

influent flow rate, temperature and air mixing flow rate for the continuous EC 

processes. 
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Chapter Two 

Literature Review 

((Life is a succession of lessons which must 
be lived to be understood" 

Helen Keller, (1880-1968) 
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2.  Literature re iew on  Electrocoagu lation 

In this chapter, the fundamentals of e lectrocoagulation and EC reactor design 

are introduced. The concepts and react ions occurring in such system, process 

mechani m , parameter affect ing EC and interpretat ion are exp lained. This section 

tart with a brief discus ion about the sources of chromium exposure and its 

concentrations indifferent aqueous sources including environmental restrict ions by 

means of both water quality and wastewater disposal .  This is fo l lowed by a brief 

comparison between e lectrocoagulation and other conventional methods that have 

been used to remove chromium from different types of wastewater. At the end of this 

sect ion, the specific chromium reactions that occurs in-situ by EC reactions have been 

explained, relevant operational parameters advantages and disadvantages of the 

process. 

2. 1 .  Chromiu m  species in Aqueous Solution 

Chromium is an inorganic metal l ic element that general ly exists in water 

with two stab le oxidation states:  trivalent chromium Cr ( I I I) and hexavalent 

chromium Cr (VI ) , which are characterized by different chemical behaviors and 

toxicity. Hexavalent chromium is known to be highly toxic and carcinogenic, with 

high so lubi lity in aqueous medium [2, 7] .  On the other hand, trivalent chromium Cr 

( I I I )  is much less toxic has low solubi l ity in aqueous so lut ions and readi ly 

precipitates as Cr(OH)3 at pH values greater than 4, and would be a concern in 

drinking water only at very high concentrations. Therefore, chromium reduction is the 
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main phenomenon to eliminate it from polluted aqueous medium since it converts 

toxic mobile Cr(VI )  into les toxic immobile Cr( I I I ) [7 ] .  

2.1.1. Sou rces of Chromiu m  E xposu re 

Chromium compounds are found naturally in rocks, plants, soil and volcanic 

du t, humans and anima ls. Human beings can be exposed to chromium by breathing 

air, drinking water, or eating food contaminated with chromium, or through skin 

contact with chromium compounds. The occurrence of chromium forms in aqueous 

ystems, especially groundwater is often attributed to industrial disposal that 

associated with industrial activitie . Occupational sources of chromium exposure 

with chemical forms of interest shown by checked mark) are shown in Table 2 . 1 .  

Table 2 .  1 .  Sources of chromium compounds in wastewater by industrial act ivities 
[2, 4 8 ] .  

I ndustria l  activi ty H exavalent chro m i u m  Trivalent c h ro mi u m  

Stainless steel weld ing V 

Ferro chrome industry V V 

Chrome pigments V V 

Leather tanning V 
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2.1.2. En ironmental  Regu lations 

There a growing environmental concern for new water treatment 

techno logies a fresh water sources are pol luted. These concerns are attributed to the 

presence of po llutants, such as carcinogenic chemicals, organic matter and oils, which 

ha e adverse impact once the contaminated water is discharged into the 

environment. 

Unl ike most organic po llutants, metals are particularly problematic because 

they are not biodegradable and can accumulate in living t issues thus becoming 

concentrated throughout the food chain. Although at low doses some heavy metals 

are essential micronutrients for plants and animals, in higher doses they can 

detrimentally affect the health of most l iving organisms [9, 1 0] .  Due to the harmful 

effects of chromium compounds, described in Section 2 . 1 ,  governments apply 

enhanced regulat ion for chromium species. Worldwide authorit ies have fixed more 

stringent requirements concerning their presence in drinking water (Table 2 .2). 

Fortunately, the remarkable growth in economics and l iving standards has accelerated 

the development of water and wastewater purification technologies. 

Table 2.2 International regulat ion criteria. 

Country Total C r  i n  d rinking water (mg/L) Reference 

US 0. 1 US EPA [ 1 1 ]  

I nternational 0 .05 WHO [ 1 2] 

Canada 0.05 HC [ 1 3 ] 
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The natural total chromium content of different water sources are hown in 

Table 2 . 3 .  A it was reported in government documents, chromium concentration in 

groundwater is approximately in the range from 0.0002 mg/L to 0. 1 48 mg/L. Even 

though the e concentrations are in dilution range the treatment sti l l required to 

reduce chromium below internat ional regu lat ions. 

Table 2 . 3  atural total chromium concentrat ions of  various water sources. 

Country 
Water Chromium concentration 

References 
sou rce ( mg/L) 

UAEI 
Groundwater 0 .0004 - 0. 1 48 [ 1 4] 

Al Ain 

USA 
Surface 
water 

0.084 [ 1 5] 

USA Groundwater 0.0002-0.05 [ 1 6] 

Canada 
Surface 
water 

0.0002-0.044 [ 1 2] 

I ndia Groundwater <0.0002 [ 1 7] 

2.2.  E lectrocoagu lation Versus other Cr(VI) Reduction M ethods 

Researchers have been striving to develop advanced technologies for the 

removal of toxic chromium species from wastewater. Various methods have been 

proposed and applied toward the attainment of this goal (Table 2 .4) , inc luding ion 

exchange [ 1 8-20] , Adsorption [2 1 -24] ,  chemical prec ipitation [25-28] , biological 

reduction via bacteria [29, 30], membranes [3 1 -33] ,  solvent extraction [34] and 
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chemical prec ipitation [3 5 ] .  Although each of these techniques has its own dist inct 

ad antage , the high treatment cost and low efficiency in one or more areas does not 

completely resolve the outstanding environmental problems. Even thought the cost of 

ad orption by act ivated carbons seems to be low, the process st i l l  suffers from high 

operation cost due to regular regenerat ions [36] .  

Table 2 .4 Electrocoagulation for Cr(VI) reduction versus other methods. 

Method Cost T reatmen t  

Per 1,000 gal efficiency Reference 

E lectrocoagulation $ l .69 1 00 % [ 1 ]  

Chemical 
$ 1 4 . 1 8  [37] coagulat ion 

-

I on exchange $ 6685 - 1 3370 >98 . 5  % [20] 

Adsorption/ $ 0.7- 1 . 2 per pound 
70%-99% [23, 24] 

Activated carbon of activated carbon 

U ltrafiltration - 93 % [38] 

Nanofiltration - 88 % [39] 

As documented by Chen and Hung [40], using electric ity to treat water was 

first proposed in England in 1 889, and the appl ication of e lectrolysis in mineral 

beneficiation was patented by E lmore in 1 904. Electrochemical techno logies can be 

regarded nowadays as established techno logies due to their versat i l ity and 

environmental compatibil ity, which makes the treatments of water possible. 
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Electrochemical proce e categorized to electrocoagulat ion (Ee) electro flotat ion 

(EF) and electrodis olution. Among these methods the electrocoagulation technique 

ha attracted a renewed interest in the search for cost-effect ive alternative to 

convent ional technologie . Hence ideal electrocoagulat ion strategies seeking low­

cost electrode materials and easier ludge handling methods must be considered to 

make electrocoagulation more economically competitive [4 1 ] .  

2.3. Elect rocoagu lation Wastewater Treat ment 

E lectrocoagulat ion (Ee) with aluminum and iron electrodes was patented in 

the United States in 1 909. At that t ime because of the relatively large capital 

investment and the expensive electricity supply, e lectrocoagulat ion wastewater 

technologies did not fmd wide appl icat ion worldwide. With the ever increasing 

tandard of drinking water supply and the stringent environmental regulations 

regarding the wastewater discharge, e lectrocoagulat ion techno logy has regained its 

importance worldwide during the past two decades. The electrocoagulation (Ee) 

process can be defmed as a wastewater treatment technique that works through 

destabi l izing suspended or disso lved contaminants in an aqueous medium by 

introducing a current into the medium whereas indirect e lectrolysis occur as disso lved 

redox reagent is generated in-situ from an appropriate anode material (Aluminum , or 

Iron) [42 ] .  A schematic diagram of the simplest bench-scale Ee reactor is shown in 

Fig. 2 . 1 .  

E lectrocoagulation has been applied for the treatment of a broad range of 

wastewaters with various contaminants. Typical examples include: o i ly  wastewater 
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[43.44] , fluorinat ion of water [5 , 45]  beavy metal containing so lution such as e, Cr, 

Cu [46, 47], dye and text ile wastewater [3, 48] ,  chemical oxygen demand [49 50] 

ynthetic detergent effluent [5 ]  and potable water [5 1 ,  52). 

DC ,ro1ta�e Source 

�----�>----�

II
�--------�>� 

D 
Pollutant rises to the surface 

M(OH)n (hydrated 
cations) 

Anode(Oxi datLOn) L 

FlotatLOn 

H2(gas) 
Pollutants 

<- - - - - - - - - OH-

Water if 
Cathode(Reduction) 

Fig.2 . 1 A schematic diagram of a bench-scale electrocoagulat ion (EC) [5). 

2.3.1. General Mechanism of E lectrocoagu lation 

As mentioned previously, e lectrocoagulat ion ( EC) is a complex process 

invo lving chemical and physical mechanisms operating simultaneously using 
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con umable electrode ( acrificial) to supply coagulation ions in-situ [53 ] .  As the 

current passed through the electrodes, sacrificial metal anode (AI and/or Fe) is 

di o lved generating the respective metal ions, which immediately undergo the 

de tabil ization mechani m of part iculate suspension that take a p lace in an EC reactor 

as fo llows [ 5 ] :  

� Destabi l ization of the contaminants, particulate suspensIOn and breaking of  

emulsions a compression of the diffuse double layer around the charged species 

by the interactions of ions generated by oxidation of the sacrificial anode 

;;.. Aggregat ion of  the destabil ized phases to form floc, creating a s ludge cake that 

entraps and bridges col lo idal part icles sti l l remaining in the aqueous medium. 

They are then removed by the subsequent processes such as sedimentation, 

fi ltrat ion or flotation. 

The simplest EC reactor is made up of one anode and one cathode. When a 

direct current is appl ied from an external power source, the anode material undergoes 

oxidat ion, while the cathode wi l l  be subjected to reduction or reductive deposit ion of 

e lemental metals. The react ions occurring in an EC cell with a metal (M)  as a 

sacrificial electrode can be summarized as fo l lows: 

At the cathode: 

(2.1) 

At the anode : 

(2.2) 
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2H20(l) ----+ 4H(aq) + + 02(g) + 4e- (2.3) 

2.3.2. Chromi u m  Reduction by Electrocoagu lation 

In spite of the success of electrocoagulation for treating different types of 

wastewater, it appl ication as a possible technique for the treatment of contaminated 

groundwater is rather scarce in the l iterature. Therefore, the major object ive of this 

tudy is to evaluate the potential of ut i l izing EC for the removal of Cr (VI )  for 

brackish groundwater and optimize the operating condit ions to reduce Cr (VI)  

concentration to be within the acceptable l imi t  of 0 .05 mg/L. S ince Cr( I l l )  is 

relat ively innocuous and immobile, the reduction of Cr(VI)  to Cr( I l l )  and the 

formation of insoluble chromium precipitates are essential steps in remediat ing the 

Cr(VI )  contaminated groundwater. Both iron ( Fe) and aluminum (AI) can be used as 

sacrificial electrodes. 

1- I ron  electrode 

The react ions taking p lace in an electrochemical cell when iron metal ( Fe) 

used as sacrificial electrode can be described by the following equations [2] : 

Anode reaction: 

FeCs) � FeC:q) + 2e-

FeC:q) + 20H�q) � Fe(OH)2 (S) 

(2.4) 

(2.5) 

When the pH of the wastewater is between 6 and 8 ,  Fe2+ ions form insoluble 

species onto which Cr(VI )  ions are adsorbed and removed from the solution. 
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Direct e lectrochemical Cr (VI)  reduction to Cr (III) and water electrolysis 

occur at the athode: 

(2.6) 

Moreover there are several reactions occurring in the bu lk solution. The Fe2+ 

di so lved at the anode reduces Cr (VI)  to Cr ( I I I ) :  

Cr 02- + 6Fe2+ + 7H 0 ---t 2Cr3+ + 6Fe3+ + 140H-2 7 2 (a q) (2.7) 

Subsequently, the hydroxide ions formed at the cathode increase the pH of 

the wastewater and may induce precipitation of Cr (Ill) in the form of its 

corresponding hydroxide in-site :  

(2.8) 

ll- Aluminu m electrodes 

On the other hand, aluminum anodes are used to produce aluminum cations 

which form hydroxide species. The pollutants present in aqueous solution are 

destabi lized and then adsorbed on the AI(OH)3(s) produced. The reactions invo lved 

during the e lectrocoagulation using Al electrode are as fo l lows: 

Anodic reaction: 

(2.9) 
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(2.10) 

(2.11) 

2.4. Factors Affect ing E lec t rocoagu lation 

In general, the overa ll efficacy of an electrocoagulation technique is highly 

dependent on the chemistry of the aqueous medium, the type and amounts of 

pol lutants, metal disso lution of sacrificial e lectrodes, flow rate and pH of the 

wastewater electric current density, temperature of the solution and specific energy 

consumption. 

2.4. 1 .  Type of E lectrodes 

The electrode material has considerable effects on the performance of the 

e lectrocoagulat ion reactor. According to the literature iron ( Fe) and aluminum (Al) 

are the most widely used as sacrificial electrodes in EC process, due to low-cost and 

effectiveness to treat various types of wastewater [43, 54, 55 ] .  In addit ion, these 

materials lower the disso lution potential of the anode and min imize the passivation of 

the cathode [47 ] .  Depending on the po llutants of the wastewater one of them is 

preferred. 

As explained in Section (2 . 3 . 1 ), the generated metal ions immediately 

undergo further spontaneous react ions to produce the corresponding hydroxides. 

These compounds have strong affmity for d ispersed particles as well as counter ions 
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to cause coagu lat ion. As hown in Table 2 . 5 ,  the efficiency of using both aluminum 

and iron a sacrificial electrode has been reported for the removal of chromium from 

different wastewater sources. The most effective chromium removal by EC 

techno logy was with Fe electrode and to reach a complete c leaning, it would need 

too much t ime  including the possibi l ity of metal re-disso lution, and enhanced power 

consumpt ion. Whereas, usrng a luminum electrodes lower the removal rates and 

increased the power consumpt ion [46, 56] . 

Table 2 .5  Batch electrocoagulat ion for Cr(VI) reduction. 

Wastewater 
Reactor 

Reactor Electrode 
Current 

capacity// densityl Treatment 
efficiency 

Reference 
Source 

[Cro l type M aterials 
Voltage 

imulated 2000 mL 
Batch 0.3-1 

wastewater III 0-50 bipolar 
AJ plates 

mNcm2 70 % [57] 
beavy metals mg/L 

Simulated 
900 mLII AI-stainless 0.01 -0.05 

Drinking Batcb 
steel mAlcm2 98.2% [58] 

water 
5-25 mgIL 

Simulated 560 mLl 
Batch AJ plates 2.3-20.7 V 49.6% [59J 

wastewater 1 1 00 mgIL l 

650 mL /1 Batcb 
Fe-AJ 

2 .5- 1 0  
] 00% [ 1 ]  Metal plating 

44.5 mgIL monopolar mNcm2 

Plating 400 mLI1500 
Batch Fe plates 

1 0-40 
>99% [60] 

wastewater mgIL mAlcm2 

Simulated 
1 200 

Batcb 
mU/l O-50 Fe-steel 0.2-3 A 1 00% [2] 

wastewater 
mgIL 

bipolar 
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2.4.2.  Cu rrent den i ty 

Operating current density i very important in electrocoagulation because it is 

the only operational parameter that can be directly control led. The amount of 

electrode metal di o lved or deposited is dependent on the quant ity of electricity 

pa ed through the electrolyt ic solution. The amount of metal dissolved (g o fM  cmo2) 

can be derived from Faraday' law: 

m = 
A CDr EC M 

1 000 :;F 
(2.12) 

Where m is the amount of electrode material dissolved (g of metaVcm2) ;  ACD is the 

applied current density ( InA/cm:!) '  tEC is the electro lysis time ( second); M is the 

molecular weight of the e lectrode connected (g/mol); z is the number of electrons in 

oxidat ion/reduct ion reaction ;  and F is the Faraday's constant (96,500 C/mol) . 

From that, current density d irect ly determines both coagulant dosage and 

bubble generation rates and strongly influences both solution mixing and mass 

transfer at the electrodes. In order for the electrocoagulat ion system to operate for a 

long period of t ime without maintenance, its applied current density is suggested to be 

2 - 2 .5  mA/cm1 unless there are measures taken for a periodical c leaning of the 

surface of electrodes [6 1 ] . 

The e lectrical energy consumption (EEC) of the batch EC process can be 

determined by the equation given below [60] : 
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EEC( kWh/ 
m3 )= V It/v (2. l 3) 

Where V i the operating vo ltage (kV), I is the operating current (Ampere) t i 

the time of  reaction (h) and v is the vo lume of wastewater (m\ 

Whereas for the continuous EC process, the electrical energy consumption 

can be determined by the equat ion given below: 

EEC( kWh / 
m3 )= VI! q L (2. 1 4) 

Where V is the operating vo ltage (kV) I is the operating current (Ampere), qL is the 

influent flow rate (m31b) . In addition, electrical energy costs were estimated for al l  

applied current densities, based on the electrical costs in the UAE (0 . 1 5  Dhs/kWh). 

2.4.3. pH of the Wastewater 

According to the pH of the bu lk solut ion, metal ions and hydroxide ions 

could be generated at the e lectrode surface forming various hydroxides and build up 

polymeric chemicals ( Sect ion 2 .3 . 1 ) . The solubil ity of these complex compounds also 

has a considerable influence on the performance of the e lectrocoagulat ion process. I t  

has been established that the pH selection shou ld be  selected with other operating 

parameters such as electrode types, current density as well as flow rate to ensure high 

removal rate. 

2.4.4. Temperatu re of the Solution 

Although electrocoagulation has been around for over 1 00 years, the effect of 

temperature on this techno logy was not very much investigated, with only few studies 

on the effect of temperature on the perfonnance of e lectrocoagulation process [62J .  
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They reported a direct relation between the so lubi lity of formed coagulant and the 

temperature, thus higher temperature increases the solubility and therefore decreases 

the remo al efficiency in pite of the fact that the temperature increase speeds up the 

de tructive reaction of the oxide layer on the electrode surface and increases the 

current effic iency [63 ] .  

2.4.5. I n let Flow Rate 

The flow rate parameter is related to the residence t ime, which is the t ime 

that the wastewater stream is treated inside a continuous Ee reactor, and thus it is 

related to the amount of disso lved electrode metal and the Ee performance efficiency. 

At high influent flow rate, Ee process provides short reaction t ime between the 

contaminant ions present in the wastewater and the sacrificial anode [64] ,  thus giving 

less t ime to adsorb the floes which tends to slow down the rate of anodic reactions 

[65 ] .  I n  addition, enhancing the turbulence of the wastewater can reduce the effect of 

concentration over-potential, which is caused by the difference on electro-active 

species concentration between the bulk solut ion and electrode surface. 

2.5. Advantages and Disadvantages of E lectrocoagulation Process 

Ee system suffers from some drawbacks, such as the passivat ion of 

e lectrodes, limiting their performance and requrrmg regular rep lacement. The 

concentration of aluminum or iron ions in the effluent wi l l  most l ikely be increased, 

requir ing careful pH control .  In addition, high conductive wastewater is required [37 ] .  

Despite these drawbacks, electrocoagulation i s  sti l l  appl icable for the treatment of 

wide range of wastewaters. 
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The mo t important advantage of EC treatment of metal ion pol lutants is 

a o iding any addit ion of chemical substances be nee reducing the possibility of 

econdary po llution [5 , 47] .  In  add ition to the fol lowing [5 ,  6, 42, 47] : 

� The formed oxygen and hydrogen bubbles increase the efficiency of the 

separation process through flotation, by destabi l izing suspended particles. 

� Control of stream pH can be e lectrochemically achieved. Such control can 

avo id orne ide react ions or promote the production of desired products ( for 

example, the production of Cr(OH)3 during Cr(VI)  reduction). 

� S ludge production is minimized. 

� Removal of a part icu lar metal ion in mixtures of metal ions may be achieved 

ill some cases. 

" Operating costs are much lower when compared with most of the 

convent ional techno 10 gies. 

" The corresponding anodic react ion can be advantageously used · for example 

undesirable agents such as cyanide may be destroyed at the anode of the same 

cel l .  

" S imple equipment, thus requiring less maintenance and easy automation. I t  is 

also environmentally compat ible and energy efficient . 

Because of these advantages, EC system has been widely used to treat 

wastewater from different industries, such as municipal wastewater [54] , text i le [3 ] ,  

laundry [66], and refmery [43 ] .  
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I t  is worth noting here that most studies in the Literature on the removal Cr 

(VI )  from wa tewater have been carried out using synthet ic water [2, 56, 67] ; 

consequent ly, their results can differ with respect to those obtained with real 

wa tewater due to the complexity of species present in the wastewater and their 

interference with the removal process [7 ] .  In terms of chromium removal from 

groundwater, no studies have been reported in the literature so far in spite of the 

importance of groundwater as a source of drinking water. 
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3.1. Anal  tical Techn ique 

The groundwater sample used in this study were collected from farm wells 

(350 m in depth) located in AI-Ain, U AE.  The characterist ics of the collected 

groundwater samples (pH,  conduct ivity, TDS, TSS, sulphate chloride ions and 

chromium concentration) are presented in Table 3 . 1 .  The concentrat ions of different 

metals and ions: chromium (Cr) strontium ( Sr), magnesium (Mg), cadmium (Cd), 

mangane e ( Mn), copper (Cu), zinc (Zn) and iron ( Fe) were measured using Varian 

ICP Optical Emission Spectrometer, Model 7 1 0  ES .A HACH UV Spectrophotometer, 

Model DR-5000 HACH Germany, was used for measuring the concentration of the 

photometric sulphate. The su lphate and Cr (VI )  were measured according to US EPA 

Method (375 .4) and Method ( 7 1 96), respectively. A JENWAY bench conductivityl 

TDS meter, Model (45 1 0  JENWAY, U K) was used for the conductivity and TDS 

measurements of the samples. The pH of a l l  samples were measured before and after 

the treatment using HANNA Checker pH  meter ( H I  98 1 03, USA). The col lected 

samples were classified as brackish groundwater due to the high conductivity (5 ,930 

)ls/cm) and h igh TDS (3 . 57  giL ) .  

Table 3 . 1  Characterizat ion of  groundwater. 

Cr K 
Su lfate CI- TDS TSS 

Characteristic (rng/L) (IlS 
pH 

(rng/L)  (rng/L) 
lern) 

(giL) (giL) 

Value 0.2 376 1 8 1  5 ,930 3 . 57  0 .02 8 

During experiments, samples were withdrawn from the reactor at dist inct 

t ime intervals, filtered using Whatman fi lter paper (Grade 40) and then analyzed. In  
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addition, zone ett l ing e locity (ZSV) test of 250 ml of  treated groundwater after 

electrocoagulation co lumn ( ECC) was conducted in graduated cylinder. The height of 

the interface between the s ludge and c lear water was plotted against t ime; (ZSV) was 

then calculated from the init ial lope of the graph [68 ] .  

Different initial chromium concentrations were prepared by adding a specific 

mass of  pota sium dichromate to a set vo lume of  groundwater and then treated in the 

EC reactor. Percentage chromium removal efficiency was calculated as fo l lows: 

% Chromium removal efficiency = (Co - Cf)/Co * 1 0 0  (3. 1 )  

Where Co  and Cf  are the initial and [ma l  chromium concentrations m ( mg/L) 

respectively. 

To remove the thin passivation layer formed at the surface of the electrodes, 

e lectrodes surfaces were abraded with sand paper, washed with nitric acid then rinsed 

with distil led water, dried and weighted before and after each experiment . Al l  

experimental runs were repeated twice or three times and the average values are 

reported here. 

3.2. Sludge Characteri zation 

The sludge generated by the electrocoagulat ion of  groundwater was filtered, 

dried at 60 °C for 24 h in an oven to avo id any phase modification. After that, the 

dried s ludge was grinded to produce homogeneous powder, which was then coated 

with carbon using the auto carbon coater (JEC 560) to reduce the surface charge. The 

coated samples were characterized by Field Emission Scanning Electron Microscope 

FE-SEM (JSM-700 i F) to evaluate the surface morphology with high resolution 
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images. In itu qual itat ive and quantitat ive measurements of the coated amples were 

al 0 carried out by energy dispersive X-ray spectroscopy ( EDS) to determine the 

chemical composit ion. In addit ion, X-ray fluorescence (XRF) was used to determine 

the e lemental composition of the powder. 

3.3. Process K inet ics 

In  the process investigated, electrocoagulation kinetic models, namely, 

p eudo-first-order and pseudo-second-order were tested. The best-fit model was 

elected according to the l inear regression correlation coefficient value, SS. Transient 

state was chosen to test these models. The experimental condit ions where only two 

points of transient stage can be found were terminated from the models. 

3 .3. 1 .  Pseudo-First-Order M odel 

Init ial ly, the experimental data of a l l  condit ions were analyzed with pseudo-

first-order model, g iven by the fo l lowing equat ion [69] : 

dx 
- = k (1 - x) dt 1 (3.2) 

Where k i  is rate constant (min-
i
) and x is chromium removal ( x=[Co-Cr]/Co). 

Integrating Eq.  ( 3 .2) ,  with initial boundary condit ions and rearranging to obtain the 

fo llowing t ime dependence formula:  

1 
I n - = k1t 1-x (3.3) 

The value of In  _1_ versus t was plotted, from which k i  can be determined by 1-x 
the s lope of the plot . 
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3.3.2. P eudo-Second-Order M odel 

The kinet ic data were al  0 fitted to the pseudo-second-order model .  The 

p eudo-second-order equation is gi en by Eq.  (3 .4) [69] : 

dx = 
k (1  - X) 2 dt 2 (3.4) 

Where x is removal of chromium, and k2 is rate constant (min- 1 ) .  Integrating 

Eq.  (3 .4), the value of -x- VS. t was plotted for each parameter and the value of rate (I -X) 

constant for each parameter was founded. 
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Performance of  the electrocoagulation process is highly dependent upon the 

electrolyte do age and o lution re istance potential .  In the EC cell as the current pass 

through the metal  electrodes it creates resistance causing a voltage drop known as I R­

drop [70] which can reduce the performance of the EC. In  order to l imit the I R-drop 

conductivity of  the o lution should be sufficient ly high [7 1 ] . It has been reported that 

chloride anion and su lphate could enhance the conductivity of the solution [ 1 ,  72] 

which in tum influences the current density, voltage and power consumpt ion. In 

addition, the percent of  chloride anions could s ignificant ly reduce the adverse effects 

of other anion , such as HC03 -. Indeed, the existence of carbonate anion would lead 

to the precipitation of Ca2+ ion that can form an insu lating layer at the surface of the 

cathode, thus could increase the Ohmic resistance of the electrocoagulat ion cell and 

consequent ly affect removal efficiency [48 ] .  

As  shown in  Table 3 . 1 ,  the col lected groundwater samples can be 

characterized as brackish water with high e lectrical  conductivity of 5,930 )..ls/cm thus 

p lays a key role in enhancing the current flow. At the same time, the presence of  

sulphate and chloride ions in1proves the dissolut ion of a sacrificial anode by pitt ing 

corrosion and avoids the anode passivity which consequent ly improves EC 

performance at short operat ion t ime [ 72] . 
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Batch Stirred EC Process 

4. 1 .  Batch Proce s 

The performance of  batch electrocoagulat ion process has been widely tested 

to remo e different types of contaminant. Balla et. a1. [73]  studied a combined system 

con ist of electrocoagulation/flotation reactor to remove COD and color from 

ynthetic and real  textile wastewater. Lacasa et .  a1. [74] treated groundwater from 

nitrate by st irrer EC. Others were interested in removing of  chromium from 

ynthesized wastewater as shown in Table 2 .5  [58 ] "  others have eva luated the 

removal of chromium combined with different heavy metals such as copper, zinc, 

and nickel from synthetic wastewater [67] and metal plating [ 1 ] , respectively. 

o studies were reported in the literature on the treatment of contaminated 

groundwater by batch EC process. It was therefore thought prudent to invest igate the 

removal of Cr(VI )  from groundwater by bench-scale EC using two e lectrodes. In this 

section, the effect of operating parameters such as electrode materials, pH ACD and 

init ial concentration of the so lution on Cr(VI )  removal performance was 

experimental ly studied. Then, removal k inetic models were tested and rate 

coefficients and removal rate were obtained for the selected model. 

4. 1 . 1 .  Batch EC Procedu re 

The electrocoagulation experiments were conducted using a batch P lexiglas 

cylindrical reactor ( I D  = 1 50 mm; H = 1 50 mm) with a total vo lume of 2,649 m1. The 

total volume of the treated groundwater in each experiment was 1 000 rnI; two 

materials of rectangular metal  e lectrodes ( Fe and/or AI) were used with dimensions of 
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Batch Stirred EC Process 

63 mm X 50 mm X 2 nun and a total anode urface area of 6300 mrn2 (63 cm\ The 

metal e lectrode were p laced at fixed distance between the electrodes in the middle of 

the reactor and connected to a DC power upply ( Popular PE-23005) .  A schematic 

diagram of the experimental set-up is shown in Fig.4. 1 .  Al l  experiments were carried 

out at room temperature (25 °C). 
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Batch Stirred EC Process 

I 
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I 
I 
I 6 

FigA. l .  A schemat ic diagram of  the batch electrochemical apparatus: 1 - DC 

power supply 2- Metal electrodes, 3- Magnetic bar st irrer 4- Plexiglas beaker, 

5- Magnetic st irrer, 6-Plexiglas cover. 

4. 1 .2.  Effect of E lect rode M aterial 

To get deep understanding on the reduction mechanism of Cr (VI) from 

groundwater using iron and/or aluminum electrodes, different anode/ cathode 

configurat ions: Fe/Fe, AlIAl, and Fe/AI were used in this section to carry out 

e lectrocoagulation test. Each experiment, with 63 cm2 electrode area, was conducted 
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at a constant current of 0.5 A (voltage of 0 .007 kV) and init ia l  chromium 

concentration of 1 mg/L. 

FigA.2 .  clearly shows that chromium removal was instantaneous when iron 

wa used a a acrificial anode, achieving a 1 00% removal within the first few 

minutes of operation. During the same coagulation t ime, the EC performance 

decl ined when aluminum was used as a sacrificial anode. This behavior may be 

attributed to the e lectrochemical reduct ion of Cr(VI )  to Cr( I l l )  at the cathode as well  

a the dissociation of iron at the anode generating Fe( I I )  ions, fo l lowed by 

e lectrochemical  reaction with Cr(VI)  forming insoluble hydroxide products ,Cr(OH)3 

and Fe(OH)3 , in situ ( Section 2 .3 .2 . ) .  

I n  contrast , when aluminum anode i s  used the chromium ions in the aqueous 

solution are destabi l ized only by the electrochemical reduction react ion that takes 

p lace directly at the cathode ( Eq .  2 .6) [22] .  The react ions invo lved in the 

e lectrocoagulation process, using Al electrode are as fol lows: 

Anodic reaction: 

(2.9) 

Cathodic reaction: 

3 H20 + 3e - -7 30H(aq) + 3/2H2(g) (2. 1 0) 

Overal l  reaction in bulk so lution: 

(2.11) 
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FigA.2 .  Influence of e lectrode material on the removal of chromium from 
groundwater by batch BC at 0 .5  A and initial chromium concentration of 

I mglL. 

4. 1 .3. Effect of Applied Cu rrent Density 

Appl ied current density ( ACD) is one of  the main operating parameters that 

direct ly affect the process performance and operating cost. According to Faraday' s  

law (Eq. 2. 1 2), ACD not only determines the coagulant production dosage, but also 
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the micro copic bubble SIZe, which consequently have significant effect on the 

removal rate of the pol lutants [ 5 ] .  

To  investigate the effect of app lied current density on  the removal of  

chromium, a eries of  experiments were conducted on  groundwater samples 

containing a con tant chromium concentration of 1 mg/L at wide range of current 

den ity arying from 1 . 59 to 1 5 . 87 rnAlcm2 (vo ltage ranging from 0.0 1 9  to 0 .0 1 6  V) 

by control l ing a DC current source at fixed surface area equal to 63 cm2 and an 

average init ial pH value of 8 ± 0. 1 .  Fig.4 .3  indicates that chromium removal rate 

increases with increasing ACD.  As the app lied current density is raised from 1 . 59 to 

7 .94 mNcm2, the electrocoagulation performance was enhanced from 33 % up to 98 

0/0, respectively within the fust minute and 1 00% within three minutes of operat ion 

for Fe-Fe electrode pairs.  A further increase in the ADC up to 1 5 .87  rnAlcm2 was not 

beneficial, s ince the c hromium concentration seemed to be the limiting factor and 

most of the added energy would be transferred to heating the reactor content. This 

behavior can be explained according to Faraday's law (Eq .2 . 1 2), where increasing the 

appl ied current cause an increasing in the amount of sacrificial anode disso lved ( i. e. 

iron ions) and its hydroxide ions formed in situ at constant electro lysis t ime, wruch 

improves the reduction rate by iron ions and increases the coagulant dosage by 

forming insoluble compounds ;  Cr(OH)3 and Fe(OH)3 [75 ] .  

Moreover, the amount of micro bubbles, generated during the E C  process, is 

highly dependent on the appl ied current. The bubble size, is inversely proportional 

while the bubble amount is d irect ly proportional to the ACD [76] , wruch improves the 

P a g e  I 35 



Resu lts & Discuss ion I Chapter 4 

Batch Stirred EC Process 

flotation of the aggregated ludge formed through the EC process. evertheless, these 

parameter hould be kept at a level to achieve low-cost operation at low energy 

consumption. 
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Fig.4 .3 . Influence of different applied current density on the performance of 

batch EC removal of chromium from groundwater using iron electrodes at 

initial chromium concentration of 1 mg/L.  

Raising the current density from 1 . 59 to 1 5 . 87  mAJcm2 (vo ltage ranging from 

0.0 1 9  to 0.0 1 6  kV) increases the e lectrical energy consumption from 0.032 to 2 .733 
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kWh/m3 ( Eq .2 . l 3) of treated groundwater respectively as depicted ill Fig.4 .4.  

Electrical co t were estimated for the applied current densit ies and indicated 

significant increa e from 0.00 1 to 0. 1 1 1  US $ for each one cubic meter of treated 

groundwater as the applied current densities increase from 1 . 587 to 1 5 .873 mNcm2. 

At higher current density, part of  the energy consumption is lost to heat up the 

solution. Therefore a current density equal to 7 .94 mNcm2 (current of 0.5 A) was 

con idered a the optimum condition with a reasonable electrical energy consumption 

(EEC) of 0.6 kWh/m3 and an electrical  cost of 0.025 US$/m3 of treated groundwater. 

At this optimum current, the amount of iron disso lved from 63 cm2 rectangular 

e lectrode was est imated by applying Faraday's Law (Eq.2 . 1 2) and the resu lts were 

p lotted as a function of t ime. From the s lope of Fig.4 .5 ,  the iron electrodes erosion 

rate, at app lied current density o f 7 .94 mN cm2, is about 8 .7 mg/min. 

Table 4 . 1 Electrical costs of batch EC at different applied current densit ies 

(tEe = 1 0  min) . 

ACD Voltage E E C  E lectrica l  cost 

( mAlcm2) (kV )  ( kWhlm
3
) ( US $/m3) 

l . 587 0.0 1 9  0 .032 0.00 1  

4 .762 0 .004 0 .2 1 0  0 .009 

7 .937 0 .007 0.600 0.024 

1 1 . 1 1 1  0.0 1 2  1 .4 1 2  0.057 

1 5 .873 0.0 1 6  2 . 733  0. 1 1 1  

P a g e  I 37 



Resu lts & Discuss ion I Chapter 4 

Batch Stirred EC Process 

3 .0 r------------------. 

1:' 
Q) 2 .5 .., 
� 
� "C 
= 2 .0 :I 
o 
� 
OJ 

(!') 1 .5 
E 

-� 
� 1 .0 
-

U 
lLJ 
UJ 0 .5 

0 .0 L-......... _.....L.---.L_-...I...-_ ......... --'O"_� __ I...._.._-..I 

o 2 4 6 8 1 0  1 2  1 4  1 6  1 8  
Applied current density (mAlcm2) 

Fig.4.4 .  The energy consumpt ion of different current densit ies using iron 
e lectrodes at initial chromium concentration of 1 mg/L, e lectrolysis t ime 1 0  

mm. 
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FigA. 5 .  Amount of Iron e lectrode disso lved with time for applied current 
density of 7 .94 mAlcm2. 

4. 1 .4. Effect of I n it ia l  pH 

I n  order to  improve the efficiency of chromium removal in  aqueous so lut ion, 

several react ions must be performed in situ (as exp lained earl ier in Sect ion 2 . 3 .2) :  a 

reduction of hexavalent chromium to trivalent chromium, and an oxidat ion of Fe2+ to 

Fe3+, fo llowed by format ion of inso luble Cr(OH)3 and Fe(OH)3. The format ion of 

these products and there so lubi l ity i s  highly dependent on the so lution pH . For this 
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reason, the dependence of Cr(VI )  reduction on init ial pH was invest igated for pH 

ranging from 2 to 1 0  by adding drops of HCI or aOH (0 . 1 M) using iron electrode at 

optimum current den ity of 7 .94 mA/cm2 (voltage of 0.007 kV) and initial chromium 

concentrat ion of 1 mg/L. 

A i l lu trated in F ig.4 .6, the percentage removal of chromium reached a 

maximum of about 99 % and did not seem to be affected by pH, as long as it is kept 

in the range between 5 and 8. In contrast, increasing the initial pH more than 8 

decreases the removal efficiency sharply to 27  at pH value of 1 0 . This can be 

explained by Eq. (2 .4, 2 .6, 2 .7 )  where an acidic media is required to reduce Cr(VI) to 

Cr( l l l ) once the current passed through the iron cathode. According to predominant 

zone diagram for chromium and iron spec ies [77] ,  once the reduction react ion occurs, 

the pH of the aqueous media increased in the range of 5 - 8 to fonn inso luble 

compounds Cr(OH)3 and Fe(OH)3 as shown in Eq. (2 .5 -2 .7) . These insoluble 

compounds wi l l  const itute the s ludge. 
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Fig.4 .6 . Influence of init ial pH on the performance of batch EC removal of Cr(VI)  
from groundwater using iron e lectrodes a t  an applied current density 

of7 .94 mAlcm2. 

1 2  

The total iron dissociated from sacrific ial electrode was measured after 

treating the groundwater with batch electrocoagulation process and the results 

presented in Fig .4 .7 .  As the pH of the so lut ion increased from 2 to 1 0  the iron 

concentration sharp ly decreased. This behavior is direct ly related to the pH of the 

aqueous media as the pH value kept in the range between 5 and 1 0, the excess 

amount of Fe( I I I )  ions generated in site is precipitated in the form of Fe(OH)3 [77] .  
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On the other hand at pH lower than 5 and higher than 8 the solubi l ity of both 

Cr(OHh and Fe(OHh increa ed. Furtbennore, the corrosion rate of iron electrodes in 

aqueous media decreasing at pH lower than 5 due to H2 evolution; while at the pH 

range of 5 to 1 0  the corrosion rate remains constant and low due to O2 adsorpt ion 

[7 ]. S ince 99 percentage removal of chromium from groundwater was reached with 

the original init ial pH value 8, there was no need to adjust the pH of the groundwater 

for the rest of the experiments. 
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FigA.7 .  Influence of different pH values on the dissolved Fe concentration. 
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4. 1 .5. Effect of I n it ia l  C h romium Concent ration 

I t  has been established that the init ial chromium concentration has a 

con iderable influence on the performance of electrocoagulation process via the 

coagulant dosage. Most researchers studied high initial chromium concentration 

parameter reaching a maximum concentration of 1 00 mg/L [ 1 ,  2 56, 59] . In this 

work, a wide range of initial concentrations, from 0.2 mg/L to 1 00 mg/L, were treated 

on a batch EC u ing Fe/ Fe e lectrodes, at optimum ACD and pH . Genera lly, the 

efficiency of the e lectrocoagulat ion process decreased with increasing the initial 

concentrat ion. As it i l lustrated in Fig.4 .8 ,  a spontaneous completed removal of 

chromium at initial concentration of 1 mg/L was achieved at an interval t ime of one 

minute; however, a further increasing in the initial concentration from 5 to 20 mg/L 

required a longer electrolysis t ime to reach a complete steady-state removal of 

chromium from 3 to 20 minutes. The removal efficiency for extremely high 

chromium concentration ( 1 00 mg/L); at the same previous conditions, was 

experimentally evaluated and presented in FigA.8 ;  only 86 percentage of chromium 

could be removed after 60 minutes. 
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Fig.4 . 8 .  Influence of different init ial concentrations on the performance of batch 
EC removal of chromium from groundwater using iron e lectrodes at ACD of 

7 .94 mAlcm2 and initial pH of8 .  

Faraday's law given in  Eq .2 . 1 2 , explained the concept of constant amount of 

iron ion dosage generated in site from the anode material dissociation at constant 

applied current, which increases with increasing the electrolysis time. These 

generated ions get invo lved in increasing the reduction rate of hexavalent chromium, 

forming inso luble chromium and iron hydroxide compounds Eq. (2 .4-2 .8) .  Therefore, 
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a the init ial chromium concentrat ion increases, a significant dosage of iron ions is 

required for longer electro lysis time to reduce fonning insoluble compounds [56] .  

On the other hand, in case of dilute concentration ( less than 1 mg/L) removal 

efficiency of chromium behaves in different way with some difficulties, particularly 

when u ing tandard flat plate electrodes (as used in this work). This can be related to 

the limitat ions of this type of e lectrodes, as high mass transfer rate is difficult to 

achieve. When plat ing metals disso lved forming a solut ion, the layer of so lut ion next 

to the cathode becomes dep leted in metal ions. Since there is fewer chromium ions 

present in di lute solut ion, diffusion into and across the depleted layer is much slower 

and the layer becomes thicker and more depleted with t ime [79] which explained the 

lower efficiency of st irred batch EC at di luted init ial chromium concentration. 

4 . 1 .6. Sludge M o rphology and Composition 

To evaluate the surface morpho logy of the s ludge formed during the batch 

e lectrocoagulation, a field emission scanning electron microscope analysis was 

carried out. As i l lustrated in FigA.9, the FE-SEM images depict the presence of 

irregular flak-shaped aggregates at 25x magnification range with a diameter size 

ranged from 30 to 1 80 11m. The s ize of the generated sludge particles is expected to 

depend on the app l ied current density, efficiency of mixing and the initial chromium 

concentration. 
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Fig.4.9. FE-SEM micrographs of sludge powder: 25X. 

4. 1 .6. 1 .  Energy Dispersive X-ray Spectroscopy Ana lysis 

Chemical composition analysis of the coated powder samples was performed 

by EDS at 1 5  kv accelerat ing vo ltage and 1 ,OOOx magnification at four different spots 

as shown in F ig.4. 1 0. A qualitat ive and semi-quantitative analysis of the spots 

indicates that the major chemical composit ions in sludge sample are oxygen and iron 

with 53 . 73 and 22.24 average mass %, respect ively; however a small amount of 

chromium appear in the analysis due to the small c hromium concentration m 

groundwater. Other elements appear in the s ludge with low average mass include a, 

Mg, S i, and Ca, which indicates that these ions could not be ful ly removed by the 

e lectrocoagulation process. Thus, infmitely soluble matter ions with molecular 
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weights smaller than Ca +2 or Mg +2 cannot be fully removed from aqueous medium by 

electrocoagulation process [79] .  
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FigA. I O . EDS spectrum of the sludge powder at four different spots. 

4. 1 .6.2. X-Ray Fluorescence 

S ludge samples were a lso analyzed by XRF to quantify the elemental 

composition. The result s  in Table 4 .2 indicate that the s ludge consists of different 

forms of element oxides with a dominant appearance of iron oxide with 84. 1  mass% 

in the form of Fe203 which is resulted from thermal decomposit ion of Fe(OH)3 [80] . 

The rest are S i02, S03, MgO, CaO, c r, Cr203, MnO, SrO, P20S and K20 in 

descending order to minimum appearance of 0.0547 mass% of K20. The lower 

percentage mass of  Cr203 (0 .6 1 6) in the s ludge samples can be attributed to the low 
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initial chromium concentration in the water. As it was mentioned earlier in Section 

2 .3 ,  formation of the inso luble hydroxides by electrocoagulation process generates a 

ignificant amount of coagu lant . Once the coagulant is heated above 50 °C;  during the 

preparat ion of sludge sample, water is lost result ing in a mixture of metal oxides [82] .  

Thi finding conftrmed the earlier propo ed mechanisms that once the contaminant 

material de tabi l ized by app lying a current, it can be separated from the groundwater 

by forming inso luble spec ies such as Fe(OH)3 and Cr(OH)3 that are present in the 

s ludge. 

Table 4 .2 Composit ional analys is of sludge generated from electrocoagulation 
process. 

Composition M gO Si02 S03 cr CaO C r203 M nO Fe203 SrO 

Mass % 2 . 78 4 .55  3 . 85 1 . 85 1 . 88 0 .62 0 . 1 9  84. 1 0 .095 

4. 1 .7. Process Kinetics 

The kinet ics of chromium removal from groundwater by batch 

e lectrocoagulation was tested by applying pseudo ftrst-order (Eq .3 . 3 )  and pseudo 

second-order models (Eq.3 .4) [69] . 

The results of both models are presented in Table 4 . 3 .  By statistical analysis 

it was determined that the p lot of pseudo [lfst-order reaction model was found to be 

l inear, for all conditions studied, with acceptable correlation coefftc ients. This implies 

that the best equation representing chromium removal from groundwater is a pseudo 
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fi t-order homogeneou model. The initial removal rate was predicted from the slope 

of the p lot of chromium concentration versus t ime for all the condit ions examined. 

The plot of In l l( l -x) v . t is gi en in Fig.4. 1 1 , as a function of different 

init ia l  pH and initial chromium concentration. As seen from the figure there was a 

l inear relat ionship between in I /( l -x) and t ;  the p lots for other parameters a lso 

exhibited linear variat ion. 

Table 4.3 Kinetics parameters adj usted from tbe experimental data of batcb EC. 

Pseu do-first order model Pse udo-seco n d  order model 

-rer k, k2 
Parameter 

(min- ' ) 
S S E  

( min- ' ) 
SSE 

(mgIL. min) 

2 0.197 0 .8343 0.6068 0.1335 979.004 

Initial p H  5 0.327 1.1480 3.6964 15.470 341.065 

10 0.274 0.5920 0.0444 l .6110 0.8706 

0.2 0.0110 0.3526 0.7225 3.073 23.863 

5 1.6445 1.4560 0.0352 26.270 320.70 

Initial Cr 
10 2.0392 0.3212 0.0043 0.5440 0.0443 

(mgIL) 

20 2.2312 0.3151 0.4247 0.2572 0.0089 

100 1 .4444 0.0353 0.1892 0 . 1114 0.9841 

Electrode 
AIIAl 0.127 0.1812 0.0782 0.3155 0.3424 

material 
Fe/Al 0.332 1.6820 1 . 0403 7 l .100 1461.8 
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chromium concentration. 

P a g e I so 



Resu lts & Discuss ion I Chapter 4 

Batch Stirred EC Process 

4. 1 .8. Opt imum Operation Condit ions for Batch EC 

Optimum operation conditions for the removal of chromium from brackish 

groundwater using batch st irred e lectrocoagulat ion process were determined. A 

maximum chromium removal efficiency was achieved using Fe/Fe electrodes 

arrangement, with ACD of 7 .94 mAlcm2 initial pH of 8, and an operating 

temperature of25 0c. At these optimum condit ions, other heavy metals and ions were 

al 0 removed at varying removal efficiencies as shown in Table 4 .4 .  

Table 4.4 Results of batch EC process before and after the treatment at  optimum 
condit ions: init ial pH = 8, Iron electrodes and ACD of 7 .94 mAlcm2 . 

Feed gro u ndwater T reated groundwater 

Metals Concentration Concentrat ion 
% Removal (mg/l) (mg/l) 

Cr 5 0 1 00 

Mg 1 1 0 .8  86.5 22 

Sr 1 8 .4 1 5 .6 1 5  

Cd 0 .0 1 8  0.0 1 6  1 1  

Mn 0.66 0.3 1 8  52 

Cu 0.066 0 .044 34 

Zn 0. 1 4 1  0 .062 56 

Fe - 0.243 -
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4.2.  Cont inuou Electrocoagu lation Process 

The performance of continuous electrocoagulat ion reactors for the treatment 

of wa tewater wa rarely inve tigated, with the exception of limited studies on the 

reduction of COD [4 1 48 83, 84] removal of petroleum contaminants [85] ,  and 

removal of ar enic from synthet ic wastewater [86] (Table 4 .5 ) .  The possibi l ity of 

reducing electrode performance due to passivation of the electrodes over t ime has 

l imited the usage of continuous electrocoagulation as a mainstream wastewater 

treatment technology. However, strict environmental regulations on industrial effluent 

wastewater have re-evaluated the usage of  continuous EC. Chromium reduction has 

only been reported using a batch EC process [57 ,  58, 60, 87] .  

Table 4 . 5  Continuous electrocoagulation process. 

\Vastewater 
Reactor Reactor type 

Electrode 
Retention 

Treatment 
capacity and 

materials 
time! 

efficiency 
Reference 

source 
!/[CC] connection flow rate 

200 mL!! 

Groundwater 
petroleum 

Continuous St-Fe 
2 - 60 67.2% -

[85] hydrocarbon mm 93 .4% 
[64mgIL] 

MSG COD Continuous 1 - 3 
fermentation 

[3000mgIL] bipolar 
Fe 

Lim in 
68% [ 4 1 ]  

wastewater 
Synthetic COD 

Continuous Al 
1 0  - 28 7 1 .5% -

[83] 
wastewater [ 1 20 mglL] Lfh 90.2% 
Synthetic 3 . 1 LI! COD 

Continuous Al 28 - 78 
95% [48] 

wastewater [25-200 mgIL] Lib 

Dyeing 
1 . 65 LI! 

Continuous 50 - 200 
COD Al 95% > [84] wastewater 

[870 mg/L] 
monopolar mLirnin 

Synthetic As [2 mglL]/ Continuous 
Steel 2 L1 h  

70% ! 
[86] 

drinking water N [300 mgIL] bipolar 80% 
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The prime object ive of this part of the study was to assess the performance of 

electrocoagulation in a cont inuous st irred mode (CSTR) for the removal of 

hexavalent chromium from brackish groundwater. In this chapter, the fo l lowing 

operat ional parameter have been experimentally investigated: e lectrode materials, 

influent flow rate (Qd, applied current density (ACD) influent pH and influent 

chromium concentration (Co) . 

4.2. 1 .  Cont inuous St i rred Electrocoagulation Procedu re 

An electrocoagulation reactor with simi lar configurat ion to that used for 

the batch process (Section 4. 1 )  was utilized for the continuous st irred tank reactor 

(CSTR) experiments. At the beginn ing of each continuous experiment, EC reactor 

was filed with an effective volume of 1 000 mL of groundwater achieving 

complete metal electrode coverage with surface area of 63 cm2 . Both electrodes 

were connected to the middle of  the P lexiglas cover as shown on the schematic 

diagram of the experimental set-up in FigA. 1 2 . This design was retained to 

decrease the passivation of anode by enhancing the mixing between the inter 

surface of the cover and anode electrode [6 1 ] . The contaminated inlet flow rate 

was control led by a peristalt ic pump (MasterFlex7553 -79) .  Thus, the treated 

groundwater leaves the EC reactor by continuous spi l l ing and gently enters a 

sett ling container. A continuous stirring at 300 rpm was applied to homogenate 

the l iquid at both feed container and EC reactor. The treated groundwater samples 

were col lected from the sett ling container at constant t ime intervals. 
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Fig.4 . 1 2 . A schematic diagram of continuous stirred EC process: 1 - DC 
power supply; 2- Metal electrodes; 3 -P lexiglass cyl indrical '  4- Feed pump; 5 -

Feed container; 6-Sett l ing container; 7 - Magnetic stirrer; 8 - Magnetic bar 
stirrer 9-P lexiglass cover. 

4.2.2.  Effect of E lectrode M ateria l  

As in the batch process, two e lectrode materials were used: iron (Fe) and 

a luminum (AI) at different arrangements. Four sets of experiments were carried out 

using four different electrode arrangements ( Fe/Fe, All AI, Fe/AI, and AlIFe) using 

fixed influent flow rate of 90 mL/min, initial chromium concentration of 5 mglL and 

a current of 0.5 A (vo ltage of 0.009 kV). These arrangements refer to the materials 

used and the p lacement of the e lectrode (Anode/Cathode). 

The experimental results, shown ill Fig.4. 1 3 , prove that the chromium 

removal efficiency of the cont inuous EC reactor is s ignificant ly affected by the 
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matenal o f  the acrificial anode. Generally it was ob erved that complete removal of 

chromium could be achie ed when iron is used as an anode material . Thus 1 00% 

removal was achieved after 5 minutes of electrolysi t ime when both electrodes are 

iron. Thi may be attributed to chromium reduction mechanisms that take a place in 

the EC reactor. According to Eq.2 .6 and 2 .8  hexavalent chromium Cr(VI)  is reduced 

to trivalent chromium Cr( I I I )  once the current passes through the cathode surface 

fo l lowed by in-situ react ion of Cr( I I I )  with hydroxide ions forming chromium 

hydroxide Cr(OH)3 solid. In the case of iron as a sacrificial anode, one more 

additional reduction react ion of chromium occurs in the bulk media (Eq .2 .7 )  due to 

the reaction of the dissociated iron ions (Fe2) and the chromium ions Cr(VI) , forming 

insoluble products, Cr(OH)3 and Fe(OH)3, in-situ [8, 77 ] .  Therefore the contribution 

of the two mechanisms to Cr(VI)  reduction by iron as a sacrificial anode faci l itates 

chromium removal at a short operation time (e lectro lysis time = 5 min) . 

On the other hand, for aluminum sacrificial anode, l imitations on chromium 

removal were observed, with only 40 % of the chromium could be removed 

( electrolysis t ime = 30 minutes) when both e lectrodes were made of aluminum. In this 

case, both e lectrochemical reduction of Cr(VI )  at the cathode surface and adsorption 

of chromium on AI(OH)3 floc ( Eq. 2 .9-2. 1 1 ) [88] take place. Replacing the cathode 

with iron electrode, seems to have more detrimental effect on the removal efficiency 

as shown in Fig. 4 . 1 3 . This could be attributed to the fact the chromium removal 

mechanism in this case is only l imited to the electrochemical reduction of chromium 

[56] . 
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Fig.4. 1 3 . Influence of e lectrode material on continuous stirred EC at QL = 90 
mllrnin, and Cro = 5 mg/L. 

4.2.3. Effect of I nlet Flow Rate 

The effect of inlet flow rate on the performance of EC CSTR with iron 

e lectrodes was evaluated using three different flow rates 30, 90 and 1 50 mL/min, at 

an initial c hromium concentrat ion of 5 mg/L. Both current density and init ial pH were 
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kept constant at 7 .94 rnA! cm2 and 8 respect ively. The experimental re u lts are 

hown in Fig.4. 1 4 . After three minute of electro ly is reaction chromium removal 

efficiency is decrea ed from 99% at 90 mL/min to 72% at 1 50 mL/min. At the same 

e lectroly i t ime, EC performance is sl ightly reduced (removal effic iency = 90%) at 

the lowe t inlet flow rate of 30 mllmin. 

The inverse relation between the in let flow rate and the removal efficiency 

(for QL of 90 and 1 50 rn1!min) can be related to the residence time inside the reactor; 

low inlet flow rate provides longer react ion t ime between the chromium ions present 

in the water and the iron ions released from the anode surface [64], thus giving more 

t ime to destabi l ize chromium ions and thereby improve the removal rate [89] . 

However, the decline in chromium removal efficiency by cont inuous st irred EC 

process at low flow rate (QL = 30 mL/min) can be attributed to the generation of large 

amount of gas bubbles that is observed at the surface of  the cathode. These bubbles 

reduced the interface surface area between chromium ions and the electrode causing 

reduction in the removal rate of the chromium [65 ] .  At an inlet flow rate of 30 

mllmin the solution turbulence in the reactor is lower compared with 90 mllmin, thus 

affecting chromium ions destabil izat ion process and leading to lower chromium 

removal .  
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FigA. 1 4 .  Influence of inlet flow rate in removal efficiency of chromium in 
continuous stirred EC process using iron electrodes. 

4.2.4. Effect of Applied Current Density 

Applied current density (ACD) is direct ly affecting coagu lant dosage and 

hydrogen evo lut ion rate, as well as mass transfer near the electrodes. The ACD was 

varied from l . 50 mAlcm2 to 1 5 . 87  mAlcm2 (voltage ranging from 0 .002 to 0 .0 1 4  

kV}to assess its effect on the performance efficiency o f  the EC CSTR The 

experimental work was conducted at fixed inlet concentrat ion (Co= 5 mg/L) , inlet 
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flow rate (QL = 90 mL/min)and constant initial pH of 8 using iron e lectrodes. The 

re u lt indicated that the operation t ime required to achieve a steady-state condition 

wa inversely proportional to the current density as shown in Fig. 4 . 1 5 .  As the applied 

current den ity increa e from l . 59 to 7.94 rnA/cm2, chromium removal efficiency 

increase from 37% to 99% after five minutes of electrolysis react ion. H igh current 

density would accelerate the dissolution rate of Fe2+ ions provided by an anode 

material and therefore raises the destabil izing rate of the pol lutants, thus forrns larger 

amount of coagu lant and improves the performance of EC process [47 ] .  However, 

increasing the ACD above 7 .94 rnA/cm2 is not just ified as most of the energy 

supp lied would be dissipated into heating the reactor content and hence raising the 

temperature. The high influent flow rate of 90 rnL/min provided high mass transfer 

between the e lectrode surfaces and the contaminated groundwater within the cell and 

thereby increases the removal efficiency of the CSTR EC. 
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FigA. 1 5 . l nf1uence of Applied Current Density on the performance of 
continuous stirred EC at QL = 90 m1!min. 

30 

When it comes to optimizing the appl ied current density, three major 

parameters are essential in evaluat ing the removal efficiency: the e lectrical energy 

consumption (EEe) CEq .  2 . 1 4), the amount of iron ions disso lved from sacrificial 

anode and the operating electrical costs .  FigA. 1 6  presents both e lectrical energy 

consumption and the amount of dissolved iron, for different va lues of ACD, with an 

e lectrolysis t ime of 30 min. The results show that increasing the ACD leads to an 
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incremental ri e in energy consumption as we ll a the amount of disso lved iron. I n  

that ca e ,  increa ing ACD from 1 . 59 mAl cm2 to 7.94 mAl cm2 causes a sl ight 

mcrea e in the cell oltage and therefore energy consumpt ion from 0.04 to 0.80 

kWh/m3 electrical costs from 0.002 to 0.032 US$/rn3 (Table 4.6) and disso lved iron 

do e from 0.099 to 0.304 mg/L. Further increase in current density ( maximum ACD 

= 1 5 . 87  mAlcrn2) brings up the energy consumption significantly to about 2 .6 kWh/m3 

(e lectrical costs equal to 0. 1 06 US$/m3 ) .  At this maximum applied current density, 

the amount of disso lved iron exceeded the environmental regulations, reaching 1 .03 

mglL. The energy consumption is direct ly attributed to the increase in potential 

difference at high current density, and most of that energy is converted to heat ing the 

reactor content. Therefore, the optimum applied current density for the cont inuous 

e lectrocoagulat ion using iron e lectrodes is 7 .94 mAl cm2 with an acceptable EEC of 

0 . 80 kWh/m3 and a reasonable electrical cost of 0.032 US$/rn3 . At these conditions 

chromium is completely removed from the contaminated groundwater after a shorter 

e lectrolysis t ime (tEe = 5 min) with an acceptable iron dose of 0.304 rng/L. 
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Table 4 .6 Electrical co ts of continuous tirred EC at inlet flow rate of 90 mlImin and 
different app lied current densities. 

ACD Voltage E EC 

( mAlcm2) ( kV) (kWh/O13) 

l . 587 0.002 0.04 1 

4 .762 0.005 0.253 

7 .937  0.009 0.792 

1 l . 1 1 1  0 .009 1 .2 1 9  

1 5 . 873 0.0 1 4  2 .6 1 1 
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FigA. 1 6. E lectrical energy consumption and disso lved Fe dose as a function of 
ACD at inlet flow rate 90 mL/min using iron electrode. 
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4.2.5.  Effect of I n itial p H  

A presented in Sect ion 2 .3  the electrocoagulation process re ults i n  the 

formation of iron and chromium ions, which form metal hydroxides with OR spec ies 

depending on the pH of the wastewater. Thus metal hydroxides (mainly Fe(OH)3 and 

Cr(OHh) tend to form insoluble coagu lants at suitable initial pH, so easi ly separated 

by fi ltration. Therefore, the init ial pH is a key operating parameter that influences the 

perfom1ance of EC process. Several experiments were performed by adjusting the 

init ia l  pH using H2S04 and aOH at inlet flow rate of 90 mL/min, using iron 

electrodes. The experimental results, i l lustrated in Fig.4. l 7 , clearly indicate that the 

continuous EC process has the capabi l ity to remove more than 90 % of the chromium 

ions as long as the pH of the treated groundwater is maintained in the range of 5 to 

1 0 . At this range steady-state condit ions were achieved more rapidly and removal 

rate was higher in the initial transient period. The highest performance was observed 

at init ial pH of 8, with a 1 00 % removal .  However, the reduction rate of chromium 

was poor at a pH of2 .  

The effect of pH can be explained by complex reactions generated during EC 

process, which are strongly related to hydroxide ions formed in situ, thus affect ing the 

reaction equi l ibrium. D i ' az et. al . [77] tested the chemical and thennodynamic 

characteristics of both iron and chromium spec ies in aqueous solutions. They reported 

that, as the pH of the wastewater was monitored between 4 and 1 0, iron and 

hydroxide ions were generated by e lectrochemical react ions forming various 

polymeric species such as : Fe(OHf, Fe(OH)/, Fe(OHk, and Fe(OH)2 thus [mally 
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tran form into Fe(OH)3 a a predominant insoluble hydroxide though complex 

polymerization-precipitation kinetics. At the same t ime, initial pH within the range of 

to  l O is needed to form insoluble Cr(OH)3 [90]. Thus, there is an overlap with the 

pH required to reduce and form insoluble metals hydroxide ions. In addit ion, pH of 

the wastewater affect the generat ion rate of gas bubbles [9 1 ] , which provide both 

ufficient surfaces area for gas-l iquid-solid interface and mixing efficiency toward the 

aggregation of t iny destabi l ized part ic les. In addition, the generated hydroxide ions 

were affect ing the react ion equ i l ibrium. At an acidic pH of 2, low generation of OH-

ions increased the reverse reactions forming soluble chromium and iron ions, thus 

prevent ing the format ion of insoluble hydroxide compounds and lowering chromium 

removal efficiency. In contrast, an increasing the chromium reduction efficiency at 

h igher init ial pH (pH > 2) is attributed to the generat ion of large amount of hydroxide 

ions thus forming more insoluble hydroxide compounds (Cr(OH)3 and Fe(OH)3) .  
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Fig.4. 1 7 . Influence of pH at QL = 90 mlImin, Cro = 5 mg/L, and ACD = 7 .94 
mA/cm2 using iron electrode. 

Optimum init ial pH must be selected based on the highest chromium removal 

rate in combination with minimum dissolved iron after the treatment. For this reason, 

the final pH and the total disso lved iron of the treated groundwater were analyzed and 

the results are i l lustrated in Fig 4. 1 8 . The results indicated that h igh initial pH reduced 

the concentration of disso lved iron ions after the treatment . At an initial acidic pH of 
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2, a rna imum iron dissolution of 1 7  mg/L was observed with a significant increase 

on the final pH ( final pH = 4.2) .  Further increases in the initial pH (pH> 2) sharply 

reduced the amount of disso lved iron in the treated groundwater reaching a minimum 

iron concentration of 0.304 mg/L at an initial pH of 8 .  

I t  wa  a lso observed that the fmal solution pH  increases from 4 . 2  t o  9 as the 

init ial pH of groundwater increases from 2 to 1 0 . This rise in the value of the fmal pH 

may be attributed to the evo lution of more hydrogen at the cathode surface (Eq. 2. 1 ) . 

In addit ion in ignificant increase in the pH of the treated groundwater (final pH = 

9. 1 )  was obtained at initial pH of 8 in which it remains almost constant due to the 

buffering capac ity of the Fe(OHh thus week hydroxide ions were generated in situ . 

However as the initial pH of grow1dwater is maintained at 1 0, a slight decrease in the 

treated groundwater pH (final pH = 9) was observed. This phenomenon is due to the 

accumulat ion of OH- ions in the aqueous phase during the process (Eq. 2 .5 )  [92] . 
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Fig.4. 1 8 . Amount of disso lved iron and pH of effluent treated groundwater. 

It can be conclude that the optimum pH must be chosen in order to achieve 

the best removal efficiency with minimum soluble iron content and maintaining a pH 

value c lose to neutrality to avoid downstream treatment for pH adjustment . For these 

reasons, the most favorable initial pH value, within the invest igated range, is 8 with 

the h ighest removal rate of chromium. 
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4.2.6. Effect of I n i t ial  Concentration 

Initial pol lutant concentration play a significant role in the performance of 

cont inuous electrocoagulat ion process. Experiments were conducted at init ial 

chromium concentrat ion ranging between 0.225 and 1 00 mg/L, using the optimum 

operating condit ions obtained earlier: ACD of 7 .94 mA/cm2, inlet flow rate of 90 

mL/min, init ial pH of 8 and iron electrode material . Fig. 4 . 1 9  shows the remova l  

efficiency of chromium from groundwater samples using CSTR electrocoagulation. I t  

can be een that removal effic iency of chromium reached 9 1 %, 98% and 97 % at 

initial chromium concentration of 0.2 mg/L, 1 mg/L and 5 mg/L, respect ively (within 

an electrolysis t ime equal to 5 min ) .  At these init ial concentrations a steady state 

could be reached within 1 0  minute of electrolysis reaction. H igher initial chromium 

concentration slowed the performance of the CSTR process and decreased the 

removal efficiency, reaching only 90 % and 67 % chromium removal for 20 and 1 00 

mg/L, respect ively (electrolysis t ime of30 min). 

Faraday's law (Eq .  2 . l 2) shows c learly that at a given app lied current the 

lfon ions disso lved from sacrificial anode are not enough to reduce higher 

concentration. Whereas longer electrolysis t ime is required to accumulate iron ions in 

aqueous solutions and consequent ly improve the reduction rate forming more 

coagulants. 
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Fig.4. 1 9 . l nfluence of init ial chromium concentrat ion at QL = 90 mL/min pH 8 
and ACD equal to 7 .94 mAlcm2. 

4.2.7. Opti m u m  Operation  Condit ions for CSTR EC 

A chromium removal efficiency of 1 00% was achieved at inlet flow rate ofQL 

= 90 mllmin, initial pH  = 8 ,  ACD of 7 .94 rnAlcm2 using iron electrodes, at room 

temperature (T = 25 °C) .These results highl ight the potential of applying CSTR EC 

process for the efficient removal of chromium and other pol lutants from groundwater 

(Table 4 .7) at low operation costs. 
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Table 4 . 7  Result of continuou st irred EC (CSTR) process before and after the 
treatment at optimum condit ions: QL = 90 mVmin, initial pH = 8, I ron 

e lectrodes and ACD of 7 .94 mA/cm2 Operation time = 30 min. 

Feed groundwater Treated grou ndwater 

Metal Concentration (mgll )  Concentrat ion (mg/l) % Removal 

Cr 5 0 1 00 

Mg 1 1 0 .8  80.3 28 

Sr 1 8 .4 1 4 .8  1 9  

Cd 0.0 1 8  0.0 1 5  1 7  

Mn 0.66 0. 1 75 73 

Cu 0.066 0 .044 34 

Zn 0. 1 4 1  0 .025 83 

Fe - 0. 304 -
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4.3. Cont inuous  EC Colu mn Proce s 

During the pa t few years considerable amount of research has been 

focu ed on the development of new and more efficient continuous EC processes. 

Recently the performance of vert ica l electrochemical co lumn was examined for 

removing different types of pollutions (Table 4 .8 )  such as : COD, co lor, turbidity 

[93, 94] and pheno l [95] in addition to the dynamic model of horizontal column 

for the removal of chromium [96] . Even though these processes could reach high 

removal efficiency, they are suffering from high cost due to the use of carbon 

steel as a sacrifice anode. 

This part of the study evaluates the performance of a novel 

e lectrocoagulation co lumn (ECC) for the removal of chromium from brackish 

groundwater. To the best of the author' knowledge there is no studies in the open 

l iterature that address the removal of chromium from groundwater using ECC system. 

The aim of the current study is to assess the chromium remova l efficiency and 

est imate the energy consumption as well as sludge generat ion using this new 

approach. 
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Table 4 .  Electrochemical co lumn process 

Wa tewa ter 
capacit)1 

Reactor Electrode Mixing Residence Treatment Reference 
ource 

I [ C ]  
Orientation materials 

Carbon 
lmulated Cr [ 1 000 

Horizontal steel wire -
wastewater mg/L] 

rod 

1 934 
Carbon 

UlPhenol 
imulated [3 1 00 rod- Steel 

Vertical tube wastewater mglL] 

1 774 
UICOD 

lmulated [7496 Carbon 
paint mgIL]/1 Vertical rod- Steel 

wastewater col orll tube 

turbidity 

3 UICOD 

Industrial 
[2 1 00 1 2  Al 

wastewater 
mgIL]11 Vertical horizontal 

turbidi tyll sheets 

color 

* Slillulated data 

4.3. 1 .  Colum n  E lectrocoagu lation Proced u re 

type 

0 
mlXillg 

No 
· . 

mlxmg 

No 
· . 

lTIlXillg 

Air 
· . 

mlXillg 

t ime 

* - -

1 0- 1 80 
1111n 

60 - 480 
mll 

1 5, 30, 
and 60 

mll 

efficiency 

* - -

42-98% 

44. 1 % 1/ 
86.2% II 

87% 

80% 11 
92% II 

94% 

The electrocoagulation experiments were conducted in a continuous 

P lexiglas cyl indrical co lumn ( ID  = 6 cm; H = 52 em) with a total vo lume of 1 470 mI. 

The EC co lumn was designed with a symmetrical sect ion to produce uniform l iquid 

velocity distribut ion with a cyc lic mot ion of contaminated water between the 

e lectrodes and the internal wall of the reactor, which is generated by an air jet injected 

through an orifice in the bottom of their actor thus eliminat ing any tendency toward 

bulk c irculation [96] . Parallel to the air jet, a feed nozzle was connected to the bottom 
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of the reactor to feed groundwater using a peristaltic pump (Master Flex 7553-79) to 

control the feed flow rate. The total vo lume of the groundwater treated in each 

e periment wa about 1 1 00 rn1; an iron rod with dimensions of 39 em X 0.53 em and 

a total surface area of 65 .6 cm2 was u ed as anode. A helical stainless steel cathode of 

4 m in length was wrapped around the anode rod, while maintaining a fIxed distance 

between the rod and the helical coi l .  The e lectrodes were placed in the middle of the 

column and connected to a DC power supply (Popular PE-23005). A schemat ic 

diagram of the experimental setup is shown in Fig .4 .20. A jacket was designed to 

control the temperature of the groundwater inside the column and achieved 

homogenous di tribut ion of temperature a long the co lumn. The treated groundwater 

and formed floes were separated by gravitat ional settling after the EC column. 
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Fig.4.20. A schematic diagram of electrocoagulation column (ECC) 
system: 1 - Helical cathode, 2- Rod anode, 3 - DC power supply, 4-

P lexiglas column, 5- Water jacket, 6- Magnetic bar stirrer, 7- Magnetic 
stirrer, 8- Sett l ing tank, 9- Feed Pump. 

4.3.2. Effect of M ix ing Rate 

Mixing characterist ics are considered one of the major parameters that affect 

the removal efficiency, in addit ion to the hydrodynamic ideality of the column 

system. It can be created in several ways such as air injection (rising bubbles), solids 
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contact ( Judge blanket), hydraulic (jets and baffled channels) and mechanical 

agitat ion (paddle, reel and turbine) [56] .  The formed agitation by a ir is necessary, in 

column proce , to induce coagulant's formation and flotation in addit ion to prevent 

any coagu lant accumulat ion at the bottom of the Eee reactor and therefore, improve 

the remo al o f  a specific contaminant. 

For that, the effect iveness of using air inject ion at various flow rates was 

experimentally invest igated. As it is i l lustrated in Fig. 4 .2 1 ,  air was injected in the 

bottom o f Ee co lumn by a single air nozzle at different flow rates (0 Umin, 2 Umin 

and 4 Umin) ;  inlet flow rate of 1 50 Umin and constant initial chromium 

concentration of 20 mg/L at room temperature (25 °C) .  As it is shown in Fig.4 .2 1 ,  

66% of the total chromium was removed from contaminated groundwater when air 

was not used reaching a steady state after 30 minutes of treatment . On the other hand, 

when air was injected at 2 Umin, 20% improvement in the removal was observed, 

whereas a maximum chromium removal efficiency of 94 % was achieved after 60 

min of electrolysis time at air flow rate of 4 Umin . 

H igh rate of mass transfer between the electrodes surfaces and contaminants 

in groundwater at the high flow rate of 1 50 mL/min, explains the high remova l 

without using air ( i .e .  air flow rate = 0) .  Nevertheless, as the air flow rate is increased 

from low (2 Umin) to moderate (4 Umin), the gas-liquid interfacial contact is 

enhanced due to the speeding up of bubble formation and thus increasing the 

concentration of disso lved oxygen generated in the system [98 ] .  Therefore, high air 

flow improves the destabi l izing rate of d isso lved ions generating insoluble metal 
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hydroxide and increa ing coagu lant growth size. In addit ion, using high air flow rate 

rai es the turbulence of l iquid pha e around the ri ing bubbles [99]. They are then remo ed 

ub equently by flotation. So the optimum air flow was elected at 4 Llmin. 
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FigA.2 1 .  Effect of a ir mixing on the performance of continuous EC column at 
QL = 1 50 mL/min, Cra = 20 mg/L, pH = 8 and 1 =  0 .5 A. 

4.3.3. Effect of I n let Flow Rate 

The effect of feed flow rate on the removal of chromium at two init ial 

chromium concentrations 5 mg/L and 20 mg/L and inlet air flow rate of 4 Llmin were 
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experimentally evaluated. The influent flow rate QL was progressively increa ed from 

30 mUmin to 1 50 mL/min, and the result are shown in FigA.22 .  Generally, it wa 

ob erved that the performance o fEC column is inversely proportional to influent flow 

rate. For a constant init ial concentration of  5 mglL and inlet flow rate between 30 and 

1 50 mL/min, chromium removal is decreased from 93% at 30 mL/min to 43% at 1 50 

mL/min after one minute of operation time. At higher init ial concentration of 20 

mg/L, performance of cont inuous electrocoagulation co lumn (ECC) is general ly 

decrea ed. 

This behavior can be attributed to the residence t ime inside the co lumn; high 

influent flow rate provides short reaction t ime between the chromium ion present in 

the groundwater and the iron anodic rod [64], thus giving less t ime to adsorb the floes 

which tends to s low down the rate of anodic reactions. Consequently the reduction 

rate of chromium is reduced fonning l ight coagulants .  A longer electro lysis time of 

about 1 20 min was needed to reduce chromium below the environmental l imit for the 

high influent flow rate ( 1 50 mL/min) . 
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Fig.4.22. Effect o f  inlet flow rate o n  chromium removal at electrolysis t ime o f  1 
minute, I = 0.5 A, and qair = 4 Llmin. 

It was experimentally observed that a large amount of sludge was generated 

as the flow rate decreased, forming larger coagulants s ize, which directly affected the 

sett ling rate and therefore the separation rate in settling tank. In order to predict zone 

sett l ing velocity (ZSV) of treated groundwater, s ludge settling experiments were 

conducted at room temperature and the results are presented in Fig. 4 .23 and the slope 

of zone sett ling of each experiment was determined. An inverse relat ion between 
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ettl ing elocity and influent flow rate at constant init ial concentrat ion was obtained. 

The highest ludge settling e locity of 1 5  cm/min was obtained for the lowest inlet 

flow rate of 30 mL/min . In contrast, a the inlet flow rate increased from 90 to 1 50 

mL/min, the ZSV gradually decreased from 2 . 5  to 0.33 cm/min, thus confIrming the 

fact that large sludge with h igh density is generated at lower flow rate which can 

provide fast separat ion by gravitational sett l ing. 

-.. 

S 
CJ 

--

-9orI 
.c 
� 

.. 
� 
.c:: 
� 
CJ 

.� -
.. 
� 

-9orI C 
"""'i 

25�--------------------------------� 

20 

1 5  

1 0  ; 

5 

o 
o 5 

. . . . . • . . . . .  QL 30 mUmin 
----b- QL 90 mUmin 
-e- QL 1 50 mUmin 

i · • .•. • •. •. •. •. •. •. . . . . . . . . . . . . . . 

1 0  1 5  20 25 30 
Settling time (min) 

Fig.4 .23 .  Sett l ing profile of treated groundwater as a function of inlet flow 
rate at Co= 5 mg/L. 
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4.3.4 E ffect of J ninal Concentration 

The removal efficiency of chromium from groundwater was invest igated as a 

function of initial concentration ranging from 0.225 to 1 00 mg/L. The obtained result s 

are shown graphical ly in Fig .4 .24 & 4.25 at inlet flow rates of 30 and 90 mL/min, 

re pecti e ly. It was experimentally proved that the removal rate of chromium was 

fa ter at QL equal to 30 mL/min for all the studied concentration range. For low to 

moderate initial chromium concentration (0 .225 mglL to 5 mg/L) , a quick complete 

chromium removal was accomplished within three minutes for both influent flow 

rates of 30 and 90 mllmin. In addition, when increasing the initial chromium 

concentration to 20 mg/L, longer e lectrolysis time was requ ired to remove more than 

90 % of the chromium for both influent flow rates. However, for higher init ia l 

chromium concentration ( 1 00 mg/L) , the chromium removal efficiency dropped to 

60% after 30 minutes of electrolysis treatment for the influent flow rate of 90 

mL/min. 

This may be attributed to the availabi lity of the iron ions necessary for the 

e lectrocoagulation process. At fixed inlet flow rate and app lied current density, 

constant amount of iron ion dosage is dissociated from the anode at a given 

e lectrolysis t ime. As the init ial chromium concentration rises, the availabi l ity of these 

ions becomes the l imit ing factor. This effect is more pronounced for high influent 

flow rate due to the reduced residence t ime inside the column. For low feed flow rate, 

P a g e I 82 



Resu lts & Discuss ion I Chapter 4 

Continuous EC Column Process 

a longer reaction t ime was provided for the iron ions to react and destabil ize the 

di 01 ed chromium, forming more floc [56] .  
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FigA.24. Effect of init ial chromium concentration on  the performance of ECC 
at QL = 30 mL/min, 1 =  0.5 A, Temperature = 25 °C, and initial pH = 8. 
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Fig.4 .25 .  Effect of init ial chromium concentrat ion on the perfomlance of ECC 
at QL = 90 rnL/min, I = 0.5 A, Temperature = 25 DC, and init ial pH = 8 .  

4.3.5. Effect o f  Applied Cu rrent Density 

Applied current density (ACD) is one of the most important parameters 

that control the performance of cont inuous e lectrocoagulation column process 

[47 ] .  It is well known that ACD determines the removal rate of a specific 

contaminant, the amount of Fe2+ dose achieved within the process, and hence 
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affect the coagulant growth [5 ] .  To study the effect of ACD on the performance 

of the electrocoagulation column, ACD was varied from 3 .04 to 1 5 .2 1 mA/cm2 

( o ltage raised from 0.00 1 9  to 0.003 kY), u ing different influent flow rates (30 

mL/min and 90 mL/min). The results are presented in Fig .4 .26 and 4 .27 for both 

30 mL/min and 90 mL/min, respectively. It is evident that raising the current 

den ity from 3 .04 to 1 5 .2 1 mAlcm2 (vo ltage ranged from 0 .002 to 0.003 kV) 

improved the removal efficiency of chromium from 30% to 1 00% and from 1 4% 

to 90% at influent flow rate equal to 30 mL/min and 90 mL/rnin, respectively; 

particularly for the first few minutes of electrolysis react ion. Indeed, steady-state 

conditions could be achieved w ith complete removal after 1 0  minutes of 

continuous ECC at low flow rate; whereas, longer t ime was needed a t  higher flow 

rate. This expected behavior is d irect ly explained by the increase of bubble 

generat ion rate and po llutant destabi l izing rate, result ing in a more efficient and 

faster removal when the current is increased. 

P a g e  I 85 



Resu lts & Discu ssion I Chapter 4 

Continuous EC Column Process 

1 20 

1 00 

9 
__ .a..()." i!i: .. J 

(� - . :!" . ..... ,� 

.. 
e 80 � f "" 
� 
w 

.. � 
.. � > � 
e 
� 
� 

0 
I; 

60 
i 

40 

! 

.
.
.
. .  

* . .
. 

ACD = 3 .04 mA/c m 2 

20 --0- ACD = 7 .6 1  mA I cm 2 

- .. - ACD = 1 5 .2 1  mA/cm 2 

o 
o 5 1 0  1 5  20 25 30 

EC t ime  (m in) 

FigA.26. Effect of applied current density on chromium removal a t  QL = 30 
rnL/min and Co = 5 mglL. 

P a g e  I 86 



Resu lts & Discuss ion I Chapter 4 

Continuous EC Column Process 

1 20.-----------------------------

1 00 ---ffi- - - - � 

3 
ijl 0 · · · · · · · · ·  · · · · 0 · · · · · · · · · · · · · · · · · · · · · · ·  . . . . 

I ... 
= 80 J ... 
� 0 oS I � 

.. 
� 60  -

I e': 0 � 
� J 5 0 � 40 " · · · · ·0 · · · ·  ACO = 3.04 mA/c m 2 

;g, A ACO = 7.6 1 mA I cm 2 0 

20  
0 -ffi- ACO = 1 5 .2 1 m A/c m 2 

0 
0 5 1 0  1 5  20 25 30 

EC tim e (min) 
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Applied current density not only affects reduction reaction that occurs in the 

column, but a lso contro ls the amount of iron ions dissociated from the e lectrodes and 

consequent ly affects the electrical energy consumption ( EEC). The EEC was 

calculated using Eq.  (2 . 1 4) for both flow rates and the results are shown in FigA.28 .  

General ly, there is a direct relation between energy consumpt ion and applied current, 

and an inverse-relat ion with respect to the influent flow rate. l ndeed maximum EEC 

of  1 . 83 kWhlm3 was obtained for the lowest flow rate (30 mL/min) and the highest 
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ACD (ACD = 1 5 .2 1 mNcm2). For high ACD, most of the energy goes into raising 

the temperature of the reactor content and thus reducing the efficiency of the whole 

process. At the same flow rate, the amount of iron ions is increased considerably 

reaching a maximum concentration of 1 . 39 mg/L as shown in Fig.4 .28 .  This 

concentration is about six times higher than the al lowable l imit of 0.3 mg/L for iron 

ions in drinking water. In addition, electrical  costs (Table 4 .9) were est imated at the 

appl ied current densit ies (A  CD ranged from 3 .04 to 1 5 . 2 1  mAlcm2) for both inlet 

flow rates (QL equal 30 and 90 rnL/min) . The highest e lectrical  costs were obtained at 

the lowest inlet flow rate of 30 mllmin due to the highest electrical energy 

consumptions. However, the inlet flow rate of 30 mllmin (I = 0 .5  A) g ives favorable 

for good removal efficiency, and low iron ion concentrations. 

Table 4 .9 Electrical costs of continuous EC co lumn at different inlet flow rates and 
different app lied current densit ies . 

I n let flow rate = 90 mJ/rnin I nlet flow rate = 30 ml/min 

ACD Voltage E EC Electrical cost EEC Electrical cost 

(mAlcm1) (kV) (kWh/m3) (U S  $/m3) (kWh/m3) ( US $/m3) 

3 . 04 0.00 1 9  0. 0704 0.003 0. 2 1 1 0.009 

7 . 6 1  0.0028 0.2593 0.0 1 1 0. 750 0.030 

1 5 .2 1 0.0033 0.6 1 1 1  0.025 l . 833 0.073 
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Fig.4.28.  E lectrical energy consumption and disso lved iron as function of  
current densities. 

4.3.6. Effect of pH 

Chromium removal by  electrocoagulation has a compl icated mechanism that 

is highly sensitive to the solution pH,  since it affects the reaction pathways and the 

formation of intermediate compounds. The performance of the ECC was examined at 

initial so lution pH ranging between 2 and 1 0, ACD equals to 7 .6 1  mAlcm2 and 

influent flow rates of 30 mlImin and 90 mlImin. As i l lustrated in Fig.4 .29, the highest 
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chromium removal (more than 90 %) was obtained for init ial pH ranged between 5 

and 8 .  For the same influent flow rate (30 ml/min), a much lower removal efficiency 

a achieved when the solution pH was monitored to be less than 5 or higher than 8. 
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Fig.4.29. Effect of init ial pH on the removal of  chromium at different inlet flow 
rates, Cra = 5 mg/L, ACD = 7 .6 1  mAlcm2; qalr = 4 Llmin; 

at e lectrolysis t ime of 1 minute. 

During the electrocoagulation process, several ions are generated 

simultaneously as the current passes through the sacrificial electrode rod (Eq.  2 .4-
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2 . 1 1 ) . The e ion undergo further spontaneous reactions to produce various metal 

hydro ide complexes uch as Fe(OH)3, and Fe(H20)4(OHi+ in addit ion to Cr(OH) 3 

and Cr(OH )6 depending on the solut ion pH [ 1 ] . Diaz et al . [76J,  studied the formation 

of chromium and iron compound as a function of solut ion pH and reported that iron 

ion are favorable to fonn inso luble Fe(OH )3 compow1ds in addition to precipitate the 

exces amount of Fe( I l )  ions generated in s ite when the initial pH in the range of 5- 8. 

In addit ion the reduction of Cr(VI )  to Cr( I l l )  and subsequent precipitation of the 

Cr(OH)3 , are favorable at the same pH range which explains the high efficiency of 

electrocoagulation co lumn in  this range. On the other hand, the decrease in the 

remo al efficiency at pH lower than 5 or h igher than 8 was ascribed to an amphoteric 

behavior of Fe(OH)3 which leads to soluble cat ions Fe3+ , Fe(OH)/ (at acidic pH) and 

monomeric anions Fe(OHk (at alkal ine pH)  [3, 4] . 

4.3.7. Effect of Temperature 

The effect of temperature on the removal o f  chromium from groundwater 

was evaluated at three different temperatures, namely 1 0, 25 and 40 °C at a constant 

influent flow rate of 90 mlfmin and an applied current density of 7 .6 1 mAlcm2 

(vo ltage of 0.0028 kV), where the temperature was contro l led using a water bath 

jacket . The resu lts presented in Fig.4 .30 show that temperature has an important 

effect on chromium removal, whereas chromium removal efficiency was more 

effective at lower temperatures. The removal efficiency was increased by 1 0 % as the 

temperature decreased from 40 °C to 1 0 °C. It was observed that longer electrolysis 

t ime ( i . e .  more than 2 hours) is required to reach almost complete removal as the 
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temperature increased from 1 0 °C to 40 0c. A exp lained earl ier, high temperature of 

the olution affect the so lubi l ity of generated coagulants temperature thus increased 

the solubi l ity. Therefore the precipitat ion of comple iron hydroxides and chromium 

hydroxides increa ed a the temperature decreased [ 1 00] .  Maximum removal 

efficiency was achieved at 2S 0c. 
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FigA.30.  Effect of temperature of solut ion on the removal of chromium, by 

continuous EC column Cro = 1 00 mg/L, ACD = 7 .6 1 mAfcm2 ; qair = 4 Llmin. 
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4.3.8. ECC Opt imum Operat ion Condit ions 

A new electrocoagulation co lumn ( ECC) was evaluated for the removal of  

chromium and other ions from brackish groundwater and its performance was 

optimized for continuou operation. The optimum condit ions in terms of initial pH, 

feed flow rate and Appl ied Current Density (ACD) were found to be 8, 30 mIJmin and 

7 . 6 1  mNcm2 (vo ltage of 0 .0028 kY), respect ively. At these optimum condit ions, the 

ion removal effic iencies were 1 00%, 74%, 70%, 59%, 44%, 33%, and 28% for 

chromium, copper, zmc strontium, magnesium, manganese, and cadmium 

respectively. 

Table 4. 1 0  Resu lts of electrocoagulation co luron ( ECC) before and after the treatment 
at optimum conditions: initial pH = 8; Operation time 30 min; QL = 30 mIJmin and 

ACD of7 .6 1  mA/cm2. 

Feed gro u ndwater Treated grou ndwater 

Metals Concentration ( mg/l)  Concentration ( mg/l) % removal 

Cr 5 0 1 00 

Mg 1 1 0 .8  6 1 . 7 44 

Sr 1 8 .4 7 .6 59 

Cd 0 .0 1 8  0 .0 1 3  28 

Mn 0.66 0 .44 33 

Cu 0.066 0.0 1 7  74 

Zn 0 . 1 4 1  0 .042 70 

Fe - 0. 1 85 -
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4.3.8. Comparison of Continuous  EC processes 

The performance of continuous CSTR EC was compared to that of the 

continuous column EC at initial chromium concentration of 5 mg/L and current of 

0.5 A. The obtained results are pre ented in (Table 4. 1 1 ) .  Faster chromium 

removal rate was obtained using cont inuous EC column (ECC), compared to the 

C TR EC. Although the same amount of contaminants is treated inside both 

reactor when using the same in let flow rate, the efficient air mixing associated 

with the ECC improves the liquid-gas-solid mass transfer, which consequently 

enhances the reduction rate of chromium [98] .  In  addit ion, using rod as a 

acrificial e lectrode instead of  rectangular sheet improved the mixing process 

inside the co lumn. The cont inuous EC co lumn (ECC) process was found to be 

more economical (e lectrical costs were always lower than 0.030 US $/m3) 

compared to the cont inuous stirred (EC) (electrical cost was equal to 0.096 US 

$/m3) .  The low e lectrical  costs for the ECC are attributed to the smal l  distance 

between rod and helical electrodes, result ing in lower operating vo ltages. 
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Table 4 . 1 1  Perfonnance of continuous tirrer and column electrocoagulation 
proce ses on chromium removal, at Cra = 5 mg/L, pH = 8, tEe = 1 0  min, and 

1 =  0.5 A at room temperature. 

Reactor Anode M ixing 
I n let flow 0/0 Electrical  cost 

rate Removal 
type type type 

( mLimin)  efficiency (US $/m
3
) 

30 99.9 0 .030 

Column 
Rod 

Air 4 
90 98.4 0 .0 1 1 

EC Llmin 

1 50 96. 8  0.006 

30 99.8 0 .096 

St irred Rectangula Stirrer 300 
90 1 00 0 .032 

EC r sheet rpm 

1 50 93 .8  0.0 1 9  
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5. 1 .  Conclu ions 

Genera l ly, high conductivity of  the co llected samples has a significant effect 

on the performance of electrocoagulation process which decreases the I R- drop and 

therefore improves the reduction rate. Chromium removal efficiency by EC process 

"\ as affected by app lied current density, initial pH initial concentrat ion and electrode 

material. It wa also proved that longer electroly is time was required to reach 1 00% 

chromium removal as the initial concentration increased from few minutes (for 

di luted concentrations of 1 mg/L) and the e lectrolysis t ime extended to more than one 

hour (at init ial chromium concentration of 1 00 mg/L).  

Batch st irred electrocoagulation reactor proved to be a promising treatment 

method for the removal of chromium from brackish groundwater. The 

experimenta l  results indicated that batch EC process could reach 1 00 % removal 

efficiency of total chromium from brackish groundwater using iron electrodes 

arrangement, with applied current density of 7 .94 mA/cm2 (vo ltage of 0 .007 kV), 

stirrer speed of  300 rpm, initial pH of  8 and an operating temperature of25  0c. At 

the same conditions, harmful heavy metals and other ions could significantly be 

removed through the batch process, at efficienc ies of 56%, 52 %, 34%, and 22% 

for zinc, manganese copper, and magnesium, respectively. Analysis of the process 

kinetics indicated that the Pseudo first-order model was correlated with the 

experimental  data to a great extent , yield ing a lower SSE than the Pseudo second­

order model. Furthermore, s ludge generated from EC was analyzed by FE-SEM to 

study the surface morphology in addition to chemical composit ion by EDS.  The 

P a g e  1 97 



Con c l u s i o ns & Reco m m e ndat ions  I Chapter 5 

re ults howed high oxygen and iron content with a smal l  amount of chromium in 

amorphou and flake- haped aggregates with an average diameter s ize of 1 45 I-Lm. 

XRF analyzes indicated that the main composit ion of the sludge was Fe(OH)3 with 

Cr203 . 

The performance o f  two different continuous e lectrocoagulation processes, 

namely cont inuou stirred tank reactor (CSTR) and continuous e lectrocoagulat ion 

colurrm (ECC) were examined. The experimental results indicated that the highest 

remova l efficiency o f  c hromium was achieved using the ECC with the lowest 

dis o lved iron concentrat ion of 0. 1 85 mg/L at applied current density of 7 . 6 1  

mAJcnl (vo ltage of  0 .0028 kV) and a n  inlet flow rate of 3 0  mL/min. Electrical 

energy consumpt ion was found to be equal to 0 .75 kWh/m3 (electrical cost of 0 .03 

US Im\ Therefore, ECC process is highly recommended for industria l 

appl ications. 

The effect of temperature on the performance of colurrm reactor was assessed 

at different temperatures, namely 1 0, 25 and 40 °C .  Maximum chromium removal 

efficiency of 1 00% was achieved at 25 °C, in which maximum precipitation of 

chromium iron hydroxides takes p lace. EC treatment of groundwater using iron 

e lectrodes, can achieve significant removal effic iency for other heavy metals and 

harmful ions. 
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5.2.  Recommendations 

Based on the re ults of this research it  is recommended to e aluate the 

efficiency of the new ECC in the treatment of different types of contaminants such 

a organic compounds and other harmful heavy metals (arsenic, lead strontium, 

etc). It  is a l  0 worth developing a more rigorous mathemat ical analysis of the 

ECC proces . 
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