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ABSTRACT 

I n  the field of wastewater treatment, there is an increasing demand to improve the 

effluent qual i ty especia l ly if  i t  is going to be discharged to surface water. Eff luent 

discharged to surface water should ha e minimum nutrients level (nitrogen and 

phosphorus) in order to avoid eutrophication and the result ing algal blooms which deplete 

the water from the oxygen needed by other plant and animal species. Moreover, there is a 

demand to reduce the chemical consumption i n  the treatment processes and to depend as 

much as we can on the bio logical treatment methods in achieving the required e ffluent 

qual i ty in tenm of BOD and nutri ents concentration. This thesis implements an extended 

and more comprehensive analysis in order to accompl ish an optimal s izing that achieve 

minimum capital and operation costs for the biological nutrients removal (BNR) activated 

sludge processes using ASM kinetic models .  An existing model that optimally sizes the 

activated sludge processes will be further developed and refined to incorporate and 

consider new components; mainly denitrification and phosphorus removal .  The study has 

revealed the strengths and practicality of using ASM kinetic models in a more 

sophisticated activated sludge system . It has been found that the i nternal recirculation 

ratio ( i r) is an i mportant design parameter that can contribute significantly in achieving an 

economical BNR design, thus, imposing a maximum upper l imit  for the in ternal 

recirculation ratio ( l ike what have been suggested by Metcalf & Eddy 1 99 1 )  could forn1 a 

real obstacle against the optimal economical design. The study has proposed a new design 

philosophy that considers the l i fe cycle cost analysis of the BNR system (CAPEX & 

OPEX). The model results have shown that more economical design for the BNR system 

might be achieved if the highest i nfluent temperature is considered rather than the lowest 

temperature. The higher organisms' growth rate at h igher temperatures wil l  generate 

higher amounts of sludge and therefore a considerable increase in the d isposal cost. The 

study i l l ustrates that the BNR system design can be more economical in terms of l i fe 

cycle cost i f  consideration is given to min imize the amount of the sludge generated from 

the system. 
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C H A PTER I 

INTRODUCTION 

The biological treatment process, which i s  an essential part of  any wastewater 

treatment p lant (WWTP), can be considered as one of the largest industries that deal with 

the treatment of raw materia l .  The two main objectives of  the biological wastewater 

treatment process are to coagulate and remove the non-settleable col loidal solids and to 

stabi l ize the organic matter. Moreover, WWTPs can be designed to reduce the nutrients 

content ( i . e. , n itrogen and phosphonls) of the plant effluent . 

The activated s ludge process, first developed in England in 1 9 1 4, has been used 

widely in municipal and industrial wastewater treatment. It is defined as a biological 

wastewater treahnent process in which a mixture of  wastewater and activated sludge is 

agitated and aerated. The activated s ludge is subsequent ly separated from the treated 

wastewater (mixed l iquor) by sedimentation and wasted or returned to the process as 

needed. The basic scheme of this process is performed by a variable and mixed 

community of microorganisms i n  an aerobic aquatic environment. These microorganisms 

derive energy from carbonaceous organic matter in aerated wastewater for the production 

of new ce l l s  in a process known as synthesis, whi le simultaneously releas ing energy 

through the conversion of this organic matter into compounds that contain lower energy 

such as carbon dioxide and water, in a process cal led respiration. I n  addition, a number of 

m icroorganisms in  the system obtain energy by converting ammonia-nitrogen to n itrate­

n itrogen in a process cal led nitrification. 

The activated sludge process has been subjected to many variations developed for 

specific applications such as incorporating anaerobic and anoxic reactors in order to 

achieve better biological nutrients removal .  N utrients removal from wastewater IS 

considered an effective approach for the prevention of eutrophication in closed or semi­

c losed water systems. B iological phosphorus and n itrogen removal i s  usually considered 

in WWTPs whenever the treated effluent is to be discharged to a sensi tive receiving water 

body or the treated effluent is to be exploited for reuse. 



The mam objective of any WWTP design process in general is to have an 

optimized cost effective design that can meet the effluent qual i ty l imits fixed by certain 

regulations. Such an objective is  not easy to achieve using published guidel ines or trial 

and error approaches because of, first :  the complexity of the biological treatment process, 

and second: the high interrelation between the different treatment processes ( i .e . ,  physical 

and biological). However the recent advancement in the mathematical characterization of 

the d ifferent WWTP processes in genera l ,  and the biological wastewater treatment in 

part icular has contributed sign ificantly i n  strengthening the role of computer models, 

which assi t the process designers to understand better the behavior of the different 

treatment processes and the way they are in terrelated. The most popular and widely used 

mathematical  models in the field of biological wastewater treatment are the activated 

s ludge mode l s  (ASMs), which were developed in 1 983 by the International Association 

on Water Po l lution Research and Control CIA WPRC).  

1 . 1  Research Objectives 

The main objective of this study is to explore the way how to formulate a 

mathematical model to optimize the cost of  the B iological Nutrients Removal (BNR) 

process using: ( i )  advanced ASMs, (i i) mathematical model s  of primary and secondary 

c larifiers and ( i i i )  capita l  and plant operation cost functions. The above mentioned sub­

models are incorporated together in one model using the operat ion research methodology 

after defining the problem obj ective function, which is achieving the minimal possible 

cost considering the system constraint functions. The sensitivity of the model results to 

different operating parameters and to variable operating conditions w i l l  be analyzed and 

evaluated. 

1 .2 Methodology 

The methodology fol lowed in  this research to achieve i ts objective is summarized 

in the fol lowing points : 
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I. Identifying the recent approaches a a i lable in model ing the bio logica l treatment 

processes in general and the B R systems in part icular. 

2. Incorporati ng the cost functions of the BNR System considering the required 

capital and system operation investments. 

3. Se lecting the appropriate performance equations re lating the process design 

variables to influent and effluent wastewater parameters and making the necessary 

refinement for their incorporation i n  the optimization model .  

4. Incorporating the above components in a pre-developed optimization model 111 

GAMS language. 

5 .  Solving the model for different sets o f  parameters describing the reaction kinetics 

of v iable  biomass, the i nfluent conditions, the project l i fe, the economical inflation 

rates, etc. 

1 .3 Thesis Outl i ne 

Throughout the chapters of this thesis, a systematic research approach is 

i ntroduced to the reader to i l lustrate the methodology fol lowed in  formulating the 

optimization model of the B R system, in part icular, the anaerobic-anoxic-aerobic 

system, abbreviated as (A 20) system. Chapter 2 of this thes is provides the reader with the 

necessary background information on the biological nutrients removal system. In Chapter 

3, an overview is presented to the reader on the main currently existing mode l l ing 

p latfonns for the activated s ludge systems; their  development history, main di fferences 

between them and capabi l i ties of each one. The cost functions together with the 

mathematica l  model of A20 activated s ludge system combined with a primary c larifier 

are formulated in Chapter 4. In Chapter 5, the usefulness of the developed model is 

i l lustrated through an i l l ustrative problem where a typ ical BNR / AlO system is designed. 

Chapter 6 is devoted to examine the model perfom1ance at varying input data in order to 

have better understanding for the system response considering different design 

conditions. Final ly, in Chapter 7, the study conc lusions are p resented and areas of future 

research are high l ighted. 
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C HAPTER II 

BACKGROUND 

2.1  Biological N utrient Removal 

The B R processes, which were first developed during the 1 960' s, have been 

used for decades to treat wastewater containing nitrogen and phosphorus, as wel l  as 

organic compounds due to their economic advantage compared with the chemical 

treatment methods. B R systems are considered a modification of the original activated 

s ludge process by incorporating anoxic and/ or anaerobic zones to provide nitrogen and/or 

phosphorus removal .  

Grady e t  a l .  ( 1 999) presented a n  elaborate review o n  the h istory o f  the BNR 

systems. One of the first schemes of a BNR system used a series of three separate 

suspended growth systems where the organic matter removal is accomplished in the first 

one, n itrification in the second and denitri fication in the third one. This scheme was 

studied extensively by the researchers but found l ittle attention from the industry because 

of its high capital and operating costs. Another approach cal led the s ingle sludge nitrogen 

removal system, incorporated both aerobic zones for n i trification and anoxic zones for 

denitrification in a single system, with carbon oxidation occurring in both zones. The 

system included an internal recircu lation for the ni trates from the aerobic zones to the 

front  anoxic zones in order to a l low the use of the readi ly biodegradable substrates (S5) by 

the denitri fying organisms. In addition, a second anoxic zone after the aerobic zone is  

proposed i n  order to achieve additional de-nitrification using the slowly biodegradable 

substrates (Xs) and the biomass decay (endogenous respiration). 

B iological phosphorus removal (BP R) was fi rst observed at  certain full scale 

activated s ludge p lants that have a bioreactor of a plug flow type wi th unifonn aeration 

a long its l ength. Such type of b ioreactors usually resul ts in low concentrations of 

dissolved oxygen (�O) especia l ly in the in it ial sections. These init ia l  sections of the plug­

flow b ioreactor behaved as anaerobic environment which is actua l l y  necessary for the 

phosphate accumulating organisms (XPAo) to fonn the internal storage products they need 
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to perform the pho phorus uptake. The researc h during the 1960s resu l ted in the first 

commerc ial BPR proce s which wa known at that t ime as the Phostrip  Process. [ n  thi  

proce ,a s ide-stream flow is d i verted to an anaerobic phosphorus stripper tank at an 

appro imate ratio between 10 to 30% of the influent flow ( P laza et a I ., 1997) . Refer to 

Figure 2-1. 

Pnmarr Judge 

Coagulant 

Product 

Figure 2-1 Phostrip side-stream process. 

Bernard (1975, 1982 and 1983) carried out an im portant research contribution to 

th is  field by proposing two sign i ficant conceptual  advancements to the BN R syste m .  The 

fi rst was by in tegrating the anaerobic and anoxic zones, along with the n itrate re­

c i rcu lation, i n  order to create an effect ive and cost com pet it ive s ingle s ludge n itrogen 

removal system c u rrent ly  known as the four-stage Bardenpho process. The second was 

h is  observation that BPR wou ld occur if n i trate was suffic iently dep leted in the in it ia l  

anoxic zone; th is  observat ion led him to add an in i t ia l  anaerobic zone to his  n i trogen 

removal system to become fi ve stages instead of four. 

In general, a bio logical n itrogen and phosphorus removal system sha l l  be d i v ided 

in to anaerobic, anoxic and aerobic zones with provis ion of i nternal  rec i rcu lat ion from the 

aerobic to the front anoxic  zone.  The B N R  system zones are d istingui shed by the e lectron 

acceptor uti l ized in each one ( i .e ., oxygen in  the aerobic zones and n itrate-N in  the anoxic 
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zones) except the anaerobic zone which has to be maintained free of any electron 

acceptor. The way the B R system bioreactor is div ided between the anaerobic, anoxic 

and aerobic zones j the dist inguishing feature of any BNR system. In this regard, several 

BNR schemes have been developed such as the sequencing batch reactor (SBR), the 

Vniver i ty of Cape Town (VCT) system the Bardenpho process and the P horedox 

process. The three stage Phoredox Anaerobic-Anoxic-Oxic (A2 0) process is considered 

as one of the economical phosphorus and n i trogen removal processes since it requires the 

min imum number of the recalculating streams and reactors. Figure 2-2 presents 

schematics for several BNR system . 

A 

B 

c 

o 

E 

• Anaerobic O Anoxic o Aerobic 

Figure 2-2 Schematics of different BNR systems (Source: Meijer, 2004) 

6 



where 

A i t\ 0 stage phoredox 

B is five stage phoredox (modified Bardenpho) 

C is Three Stage Phoredox (A 2 0) 

D is VCT Process 

E is Johannesburg Process. 

The A20 system basical ly consists of anaerobic compart ment which is necessary 

beside other reactors, to accompl ish phosphorus removal, anoxic compartment to 

accompl ish total n itrogen removal and aerobic compartment to accomplish organic matter 

remova l .  In this system, denitrifiers play the major role in n i trogen removal while the 

PAOs are responsible for the enhanced biological phosphorus removal .  PAOs are certain 

bacteria which have the capacity to incorporate more phosphorus into their cel l  materia l  

than nonnal basic requirements of other types of bacteria .  Both denitrifiers and PAOs 

require substrate (or COD) in order to have the abi lity  to perfonn their reactions 

efficiently. 

2 . 1 . 1  N i trogen Removal 

Richard ( 1 99 1 )  stated that  i n  fresh sewage, about 60% of the n itrogen i s  in the 

organic fonn and 40% in the ammonium foml . The average dai ly per capita production 

rate of n i trogen is approximately 1 6  grams. The ni trogen concentration in a wastewater 

depends on the per capita wastewater flow rate. For a flow rate ranging from 1 00 to 200 

gal lons per capita per day, nitrogen concentration wi l l  range from 42 to 2 1  mgll (Richard, 

1 99 1 ) . 

From a biological point of view, n i trogenous matter in wastewater can be divided 

i nto two categories: non-biodegradable and biodegradable. Regarding the non­

biodegradable fraction, the particulat e  portion is assoc iated with the non-biodegradable 

particulate COD whi le the soluble portion is usual ly neglected. The biodegradable 

n i trogenous matter can be sub-divided into ammonia (both the free compound and its 

sa l ts); the soluble organic n itrogen and the particu late organic n i trogen. Particulate 

organ ic n itrogen is hydrolyzed to solub le  organic n i trogen through a hydrolysis process. 
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The soluble organic nitrogen is acted on by the heterotrophic bacteria and converted to 

ammonia n itrogen in a proce s cal led ammonification (Henze et a 1 . ,  2000) . 

Currently, there are several methods available to control the concentration of the 

total n itrogen such as break-point chlorination, ion exchange, air stripping of ammonia, 

and biological nitrification and denitri fication. The biological nitrification and 

denitrification processes are the most economic and widely used processes in control l ing 

the concentration of  total n itrogen i n  the wastewater treatment plants effluent. 

2 . 1 . 1 . 1  Nitri ficat ion 

The nitrification process can be described as  the conversion of ammonia to n i trate. 

This conversion process general ly involves two oxidation reactions :  ( 1 )  oxidation of 

ammonia to n itrite (equation 2- 1 )  and (2) oxi dation of nitrite to n i trate ( equation 2-2). 

+ 3 NH4 +-02 2 

N02- +�07 
2 -

NilrOSOlllonas ) NO - + 2H + + H 0 2 2 

Nllrobacler ) NO -3 

(2-1 ) 

(2-2) 

In the n i trification process, the oxidation reactions are carr ied out by autotroph ic 

organisms (XA) (also cal led ni tri fiers). The n itrifiers consist of two dist inctive  organisms 

which are i trosomonas and N itrobacter. The N itrosomonas type of autotrophs is 

involved in  the process of oxidizing the ammonia to nitri te while the 1 i trobacter type of 

autotrophs i s  i nvolved in the process of oxidizing nitrite to n itrate. Ni trification process is 

usually accomplished in wastewater treatment plants in conj unction with the 

carbonaceous BOD removal process. However, additional oxygen would be required to 

oxidize ammonia to nitrate. From equations 2- 1 and 2-2, the stoichiome tric oxygen 

requirement for oxidation of ammonia to n i trate is 2* 321 1 4  = 4.57 g02/g NRt-N. 

S ince the concentration of the Total Kjeldahl Nitrogen TKl"1 (sum of organic 

n i trogen and ammon ia) in the influent is sign ificantly lower than that of organic 
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ubstance , the cell rna s produced due to  ammonia ox idat ion is also smal ler t han that 

produced due to BOD removal .  As a result, the fract ion of nitrifiers in the total populat ion 

of  the m ixed l iquor volat i le suspended solids (ML VSS) typical ly ranges between 2 to 5 

percent . The act ivity of nit ri fiers i n  a single stage reactor depends upon the ratio of BODs 

to TKN in the influent. At a rat io of 5 or higher, the act ivity of nitrifiers is l imited (Syed, 

1 999). 

The concentrat ion of DO in  the aerobic zone may also impact the nitri fication 

proces . The growth rate of nitrifiers at a DO level in the range of 0 .3 -0.5 mg/l may be 

insufficient and nit ri ficat ion may not occur. The nit ri fication rate increases with an 

increase in DO in the range of 1 .0 - 3 .0  mg/I . A minimum DO level of 2 .0  mg!l i s  

recommended for the  process design (Syed 1 999). 

It i s  important to also highl ight that many organic and inorganic compounds at 

different concentrations and under di fferent environmental condit ions may have 

inhibitory effects on the nitrificat ion process .  

2 . 1 . 1 .2 Den i tr ification 

Denit rificat ion is the conversion of  n it rate to nitrogen gas .  This conversIOn 

process is accompl ished by microorganisms through a sequence of reduct ion react ions. 

These react ions are developed using an organic source like met hanol (CH30H) as 

(Equat ions 2-3 and 2-4) .  

(2·3) 

(2-4) 

Denitrification i s  an anoxic process that reqUires the absence of oxygen and 

presence of suitable organic carbon source as e lectron donor. This process is usual ly 

carried out by heterotrophic bacteria that are able to  grow under anoxic condit ion; such 

type of bacteria is tenned as deni tri fiers. The source of the organic carbon required for the 
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denitri fication process is either from the incoming raw wastewater (single sludge system) 

or from an external organic source such as methanol (separate sludge system). In a BNR 

single s l udge system with internal recirculation the heterotrophic population is altered 

bet\ een anoxic and aerobic conditions resu lt ing in a lower denitrification capacity when 

compared to the separate sludge system. 

The deni trification rate is very sensitive to the DO level in the anoxic zone. 

Researchers reported that the denitri fication process m ight stop entirely at a DO 

concentration of 0 . 1 to  0 .2  mg/l .  A maximum DO leve l  of O. I mg/l i s  generally assumed 

in the design of the anoxic denitrification process (Syed 1 999). 

2 . 1 .2 Phosp horus Removal 

The discharge of phosphorus to surface water causes accelerated eutrophication of 

lakes, reservoirs and ponds. Municipal and i ndustrial wastewater has been identified as 

one of the principal sources of phosphorus readi ly available for uptake by aquatic micro­

organisms (algae) .  Since 1 970s, phosphoms has been identified as the most important 

rate- l imit ing factor for algal growth in freshwater systems, and i ts removal from these 

wastewaters has therefore become increasingly important. 

Phosphoms removal from wastewater effluents can be achieved in two 

fundamentally di fferent ways: physical -chemical  precipitation and enhanced biological 

removal .  

Several researchers have shown that the b iological process has a lower overall 

operating cost, when compared with the chemical precipi tation (Jiang F .  et ai ,  2004) . In 

b iological phosphoms removal, phosphoms i s  removed by means of i ncorporating the 

polyphosphate (Poly P) and the organical ly bound phosphorus into the cel l  tissue. The 

organical ly bound phosphorus is sequestrated from the wastewater to satisfy the growth 

requirements of the biomass. 

The actual phosphoms content of the cel l  tissue may vary from one-seventh to 

one-third of the ni trogen value, depending on specific environmental conditions. In 
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average, 1 0  to 30 percent of the in fluent phosphoms is removed during the nonnal 

secondary treatment process by sludge wasting. However, higher percentages can be 

further achieved i f  an enhanced biological phosphoms removal (EBPR) process is 

implemented. The Idea of EBPR is to stress the microorganisms by exposing them to 

altering an-aerobic and aerobic conditions so that their uptake for phosphorus is above 

normal levels (Metcalf & Eddy, 1 99 1 ) . 

Droste ( 1 997) mentioned that there are certain bacteria with the abi l ity to 

accumulate phosphoms i n  the form of poly-phosphate wel l  in excess of the phosphoms 

requirements for growth of microorganisms. The operation of the activated sludge process 

with the anaerobic - aerobic sequencing provides favorable conditions for enrichment of 

the sludge with bio-P microorganisms. The init ia l  anaerobic phase is required to produce 

short chain acids which are used by the bio-P microorganisms in the aerobic conditions to 

store the poly-phosphate and achieve phosphorus removaL Phosphorus is released from 

the m icroorganisms in  the anaerobic phase but it is taken up again during the process. 

Basical ly, there are two main processes occurring in the anaerobic  zone, these are 

the accumulation of the readi ly b iodegradable carbon substrates ( i .e .  Cell internal stored 

organic  materials XPHA) and the hydrolysis of intracel lular polyphosphate (Xpp) which i s  

released in the  bu lk  l iquid in the fom1 of orthophosphate (SP04) . I n  the aerobic phase, 

p hosphate is taken by the poly-phosphate accumulating organisms (XPAO) in  the fonn of 

intracel lular polyphosphate using the internally stored organic materia l s  (XPHA) as energy 

source. In the aerobic phase, the PAOs take up more phosphate than that released in the 

anaerobic phase and therefore resul t ing in an achievement of a net phosphorus uptake 

(Joel et aL , 2003) .  

Serra I ta et a l .  (2004) have studied the effect of pH on the EBPR process and 

concluded that operating the anaerobic phase of the system in elevated pH mode offers a 

strategy for control l ing competition between the di fferent organisms' types in 

accumulating readi ly biodegradable carbon substrates. They a lso showed that pH values 

lower than 7 or greater than 9 greatly i nhibit bacterial  activity in the biological treatment 

system. 
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2.1 .2. 1 Denitri fy ing  Pho phate Acc u m u lat ing Organ isms (DNPAOs) 

Re earchers have studied in depth the behavior of the PAOs in teons of their 

abil ity to accept different electron acceptors other than oxygen, and in teons of their  

interact Ion with the ni tri fication I denitrification process in the biological treatment 

system of wastewater treatment plants. Comeau Y. et a1 . ( 1 987) were among the fust few 

re earchers who stated that biological phosphorus uptake can be ach ieved under anoxic 

conditions. I t  was discovered that some PAOs are capable to use the ni trate / n itrite rather 

than the oxygen as e lectron acceptors during the phosphate uptake process. This type of 

organisms is cal led Deni trifying Phosphate Accumulat ing Organisms ( DNPAOs). 

If D P AOs were present  in the A 20 system, they could counteract the negative 

impact of poly-P substrate uptake (which occurs in the anaerobic compartment) on ni trate 

removal by the ordinary heterotrophic organ isms (denitrifiers) Yong et a1 .  (2006) .  This is 

because the D PAOs wil l  perfonn deni trification and phosphorus removal 

s imultaneously. 

A review of  some l iterature publ ished in early nineties revealed that inteonediate 

products of biological nitrogen removal process n itrate and n i t ri te, could become 

inhibitory or toxic substances to phosphorus removal, on the other band, several recent 

publ ications have reported occurrence of phosphorus removal with the presence of nitrate 

in activated s ludge system. From the basic microbiological point o f  view, there is no 

reason why n i trate or n i trite could not be used as an electron acceptor for phosphorus 

removal (Ru et a I . ,  2003) .  

Al though n i trite may not be as good as  n i trate in replacing tbe oxygen as  electron 

acceptor Ru et a I . ,  (2003), in their research to validate and study tbe role of n i tri te in 

phosphorus removal process, suggested the possibi lity of using the n itrite as an electron 

acceptor as long as its concentration does not exceed the inhibi tion concentration (> 1 1 5 

mg II) . They also c lassified the phosphorus removal bacteria into three groups, one is 

capable of uti l izing only oxygen as electron acceptor, the second is capable of ut i l izing 

both oxygen and nitrale as electron acceptors and the third is capable of util izing oxygen, 

n itrate and nitrite as electron acceptors. 
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C HAPTER III 

MODELING OF BNR SYSTEMS 

The development o f  mathematical models describing the B N R  with a study on 

EBPR in activated sludge processes was started in 1 976 by Barnard J. L .  in South Africa. 

ery few models were developed at that t ime but were not widely used because of the 

lack of confidence in their results .  (Meijer, 2004) . 

A model is defined as a description of real i ty ,  used to understand and predict 

certain aspects of real ity. Usual ly, natu ral processes are difficult to understand in fu l l  

detai ls because of their complexity ( i .e .  activated sludge process). Therefore, for the sake 

of understanding, p rocess simplification is required. In act ivated sludge process, several 

orgamsms are responsible for conversion of pol lutants. A comprehensive model that 

i ntends to describe a l l  processes wi l l  be compl icated and impractical to use. A well 

known method for functional model design is based on the "Black B ox" concept. In the 

black box concept, the system is described i n  terms of what is observed from the process 

i n  tenus of exchange of compounds without going into the internal details of the actual 

process. I f  the internal detai ls are to be s tudied ( i .e . ,  cel l  internal metabolism) then a 

, Grey Box" model is developed. 

The I nternational Association on Water Pol lution Research and Contro l ,  which 

become the I nternational Water Association "IW A" in year 2000, has presented i ts first 

ASM for carbon and n itrogen removal in 1 986 .  The BPR processes have been inc luded in 

the IW A model in a later version presented in 1 995 which was upgraded again in 1 999 to 

account for the phosphorus removal under anoxic conditions. 

With knowledge increase in the cell i nternal biochemistry of the PAOs, a 

metabol ic model that describes the EBPR has been developed in 1 994 by the technical 

univers i ty of Delft in  the Netherlands. Th is model is referred to as the Technical 
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Univers i ty of  Delft Phosphoms Model (TUPD). The most recent version of this model 

wa wtegrated with the heterotrophic, hydro lytic and autotrophic reactions of the ASM2d 

and referred to as the TUD model .  The li terature research has revealed that both ASM and 

TUD models are currently the most comprehensive model ing structures for activated 

sludge processes. Bradjanovic et a l .  ( 1 999) used a combination between ASM No. 2 and 

Delft BPR model to describe the performance of a ful l  scale wastewater treatment plant 

(Phostrip- l ike process) in ten11S of COD, n itrogen and phosphorus removal .  Koch et a l .  

(2000) developed an ASM3-based steady state model which can be used for estimating 

the a erage n itrogen removal, s ludge production and phosphorus removal rates of 

d ifferent  biological phosphorus removing systems such as A20 and UCT systems. The 

author could not find any work done previously where the three Stage Phoredox (A 20) 

process is modeled using optimization approach. 

This section provides an overview on both model ing structures and tracks their 

de elopment process t i l l  they reached their final shape. A detai led description is provided 

for the ASM3 model since it  is se lected in this thesis for solving the WWTP optimization 

problem fOIDlulated in the subsequent chapters. 

3 . 1  Activated S ludge Models o f  I WA Task G roup (ASMs) 

As stated earlier, ASMs are considered as one of the most famous models which 

have the capab i l ity to depict the perfomlance of the wastewater treatment systems 

receiving both soluble and part iculate substrates in which organic substrate removal , 

n itrification , denitrification and phosphorus removal are al l  occurring. 

In 1 982,  the International Association on water pol lution Research and Control 

C IA  WPRC or IA WQ) establ ished a task group on mathematical model ing for design and 

operation of activated sludge processes. The aim for the task group was to create a 

common platform that could be used for future developments. The ASM models were 

developed gradually and published i n  a series started with ASM no. 1 which included the 

nitrogen removal processes, then ASM no.  2 which included the BPR processes and then 

ASM no. 2d which included the DNPAOs .  In year 1 998 the Task Group decided to 

develop a new model ing platform, based on recent developments in the understand ing of 
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the activated sludge processes, named as ASM no. 3 (Henze et a I . ,  2000). A l l  ASM 

model are presented in a matrix fomlat in order to overcome the d ifficulties in tracing 

the interactions bet\ een a l l  model components. Following is a summarized description 

for each model .  

3. 1 . 1  Activated S ludge M odel  No. 1 

When i t  was offered in 1 987  by the IA WQ, ASM No. 1 was considered a new 

trend in the mathematical model ing of the activated s ludge systems.  The model has 

adapted many basic concepts from the earlier VCT model such as the bisubstrate 

hypothesis and the death regeneration hypothesis. The bisubstrate hypothesis c lassifies 

the biodegradable  COD in the wastewater i nto readi ly and s lowly b iodegradable COD. 

The readi ly b iodegradable COD (Ss) can pass through the cell and immediately used for 

the synthesis process while the slowly biodegradable COD (Xs), which consists of  larger 

and more complex molecules, has to be hydrolyzed prior to its transformation through the 

ce l l  wal l .  

The death-regeneration hypothesis was introduced in a n  attempt to model the 

d ifferent reactions that take p lace when organisms die .  In this concept the decay of the 

organism wi l l  resu l t  in two fractions .  One fraction is slowly biodegradable substrate, 

which is recycled back to soluble substrate through hydrolysis, and used for more cel l  

growth. The other fraction is non-biodegradable and wi l l  remain as an inert res idue (Xp). 

B ecause of the fact that organisms yie ld is less than unity, the amount of the new biomass 

grown from released substrate must always be less than the amount o f  b iomass lost. The 

ASM 1 model incorporates 8 processes and 1 3  components to simulate the COD and 

n itrogen removal .  Phosphoms removal is not i ntroduced in this model . 

Detai led description of  the model components and the main processes considered 

can be found in Henze et a ! .  (2000) and Jeppsson ( 1 996). Table 3 - 1  shows the process 

k inetics and the stoich iometry considered in ASM l .  
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Table 3-1 Process Ki netics and Sto ich iometry for Activated S ludge Model No.1 
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3 . 1 .2 Activated S ludge Model No. 2 

Activated Sludge Model No. 2 (ASM2) which was publ ished in 1 995 considered 

an exten ion to ASM 1 as it includes many more components required to characterize the 

acti ated sludge process. The most significant change from ASM I to ASM2 is that i n  

ASM2 the  biomass cell internal structure has  been modeled in order to  inc lude the  BPR 

processes. 

In ASM2 model, addi tional biological processes were added to model the BPR 

process .  Moreover, two chemical processes were added to model the chemical 

precipi tation of phosphorus. 

In ASM 1 model, all particulate organic components where accounted as part of 

the total COD value. However, ASM2 model inc l udes the poly-phosphate, which is of a 

prime importance for the BPR process, as a fract ion of the activated s ludge. The problem 

with introducing the poly-phosphate i s  that it does not exert any additional COD in the 

system. For that reason, the TSS was introduced for the first time in ASM2.  The 

introduction of the TSS will al low also for the generation of solids formed during the 

chemical precipi tation of phosphorus .  The ASM2 model incorporates 1 9  processes and 1 9  

components to s imulate the COD, ni trogen and phosphorus removal .  No consideration 

has been given to the DNPAOs in ASM2 model as the PAO (XPAo) grows under aerobic 

conditions only. 

3 . 1 .3 Act ivated S ludge Model No. 2 d  

A s  stated earlier, Comeau Y .  e t  a! . ( 1 987) were from the first few researchers who 

stated that b iological phosphorus uptake can be achieved under anoxic conditions. In 

ASM2 model, no consideration was given to the anoxic growth of the PAOs which was 

considered a weak point in i t .  Therefore, the IW A Task group has avoided this weakness 

in the ASM2 model by issuing an amended version in 1 999 named as ASM2d. 

1 7  



The ASM2d is actua l ly  a minor extension of ASM2 model by including two 

addIt IOnal processes to account for the 0 PAOs. The e two processes are process no. 1 2  

whIch i the anoxic storage of the poly-phosphate (Xpp) and process no. 1 4  which is the 

anoxic growth of the PAOs. The ASM2d model incorporates 2 1  processes and 1 9  

components to simulate the COO, ni trogen and phosphoms removal .  

Serra Ita J .  e t  a l .  (2004) have presented an extension to the AS\-12d by inc luding a 

chemical model able to calculate the pH value i n  the biological processes. The model 

a l low predicting the pH variations due to b iochemical processes and takes into account 

the pH inhibition for each group of bacteria considered in the biological  model .  Table 3-2 

shows the process kinetics and the stoichiometry considered in ASM2d.  
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Table 3·2 Process Kinetics and Stoich iometry for Activated S ludge Model No.2d 
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3 . 1 .4 Act ivated S lu dge Model No. 3 

With more than ten years of experience with ASM I model ing platform which was 

upgraded twice to ASM2 and ASM2d, Some defects of this platfonn were identified by 

the I W  A task group researchers such as: 

1 .  The ASM I model does not include the kinetic expressions that can deal with the 

n itrogen and alkal ini ty l imitations of heterotrophic organisms. 

2. The ASM I model considers both the part iculate and soluble n itrogen components 

eX 'D & S 'D) which cannot be easily measured and added un-necessary 

compl ication to the ASM I model. 

3. Kinetics of ammoni fication in ASM I cannot be easi ly quantified. Moreover, 

ammonification is a fast process that w i l l  hardly affect the model results. 

4. The ASM I model differentiates between two types of inert particulates based on 

their  origin ,  which is ei ther from the influent (XI) or from the b iomass decay (Xp) .  

However, i t  i s  impossible  to different iate between these two fractions in reality. 

5 .  I n  the ASM I model, the decay-regeneration cycles of heterotrophs and autotrophs 

are strongly interrelated although the two decay processes differ significantly i n  

their deta i l s .  

6 .  I n  ASM 1 ,  the hydrolysis process has a significant impact on the oxygen 

consumption and the denitrification by heterotrophic organisms. This is found to 

be not very accurate s ince some other coupled processes are involved in i t .  

7 .  The storage of PHA and sometimes l ip ids or glycogen in  aerobic or anoxIc 

conditions i s  not included in ASM I .  

Considering the above defects i n  the ASM I model platform, the IWA task group 

has proposed in 1 998 the Activated S ludge Model no. 3 (ASM3) as a new model ing 

p latfonn. In ASM3, a more rea l i st ic description of decay processes based on the 

endogenous respiration hypothesis rather than the death regeneration hypothesis ,  which 

was fol lowed in ASM I model, is adapted. Unl ike the ASM 1 model, in  ASM3, the decay 

processes of heterotrophs and n i trifiers are c l early separated. Moreover, larger emphasis 

has been given in ASM3 to the process of  organic substrates storage which has been 

postu lated and observed by many researchers. The ASM3 model includes the cel l  in ternal 

storage compounds by modeling the cel l  internal storage structure. Model ing of the cell 
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in ternal storage tructure was already considered in ASM2 model in order to incorporate 

the BPR proces es .  However, the ASM3 model publ ished by the IW A task group does 

not inc lude the BPR processes. I t  consists of 1 2  processes and 1 3  components. The 

fol lowing table presents a summary for the ASM3 model components : 

Table  3-3 S u m m ary of ASM3 Model C o m p o n e n ts 

Co mpo n e n t  Desc ript ion 
Soluble Compounds 
S02 ( M(02)L-3) Dissolved oxygen. I t  can be measured directly and i t  i s  

subject to gas exchange. 

S, ( M(COD)L-J) Inert soluble organic materia l .  These compounds are 

ei ther part of the i nfluent or they are produced during 

the hydrolysis process of the slowly biodegradable  

substrates (Xs). No further treatment is  possible for 

these compounds. 

Ss (M(COD)L-�) Readily biodegradable organic substrates_ This fract ion 

of substrate is directly available for consumption by 

heterotrophic organisms. ASM3 model assumes that al l  

these substrates are first taken up by heterotrophic 

organisms and stored in the form of storage compounds 

(XSTO) 

SNH.J (M(N)L-3) Ammonium plus ammonia ni trogen (N� + NH3) 

SN2 (M(N )L-j) Nitrogen (N2). This compound i s  assumed to be the 

only product of the denitrification process .  

Sl\OX ( M(N)L-j) Nitrate plus n i trite nitrogen (N03 + N02) 

SALK (mole(HC03)L-J) A lkal inity of the wastewater. This compound is 

introduced in order to have an early indication of 

possible low pH conditions, which might i nhibit some 

biological processes_ 

Particulate Compounds 
X, ( M(COD)L-J) Inert particu late organic material .  This compound 

could be a fraction of the influent and is produced in 

the context of the biomass decay process .  
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C o mpo n e n t  Desc ript i o n  
Xs (M(COD)L-J) S lowly biodegradable substrates. These compounds 

must go through the hydrolysis process before they are 

avai lable for degradation by the biomass. It is assumed 

that the products of hydrolysis are either readily 

biodegradabl e  substrate (Ss) or i nert soluble organics 

(S I) 

XH (M(COD)L-j) Heterotrophic organisms. These organisms can grow 

aerobical ly, many of them also anoxic a l ly 

(denitr ification) but they are assumed to be inactive 

anaerobical ly .  They are responsible for the hydrolysis 

of the particulate substrate Xs and they can metabol ize 

a l l  degradable substrate (Ss). XH are assumed to have 

no anaerobic activity except cel l  external  hydrolys is 

which is  the only anaerobic process in ASM3.  

XSTO (M(COD)L-J) A ce l l  internal storage product of heterotrophic 

organisms such as PHA and glycogen.  

XA (M(COD)L-J) Autotrophic n i trifying organisms which are responsible 

for the n i tr ification process by oxidizing the 

ammonium SNH4 to n i t rate SNOX. Nitrite (N02) as an 

intermediate p roduct of n itrification is  not considered 

i n  ASM3 model .  

Tss (M(SS)L-.l) Total suspended sol ids .  This parameter i s  usually 

moni tored on dai ly  basis by the WWTP's  operators as 

a reflection of the plant performance. 

The fol lowing are the transformation processes considered in the ASM3 model :  

1 .  Hydrolys is :  Conversion of the slowly biodegradable  substrates (Xs) into readily 

b iodegradable substrates (Ss) . Hydrolysis is  assumed to be active independently 

from the e lectron acceptor. 

2. Aerobic storage of the readi ly biodegradable substrates (Ss) :  I t  describes the 

storage of the readi ly biodegradable  substrate (Ss) into a ce l l  internal storage 
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product (XSTO) . In  ASMJ,  I t  i s  assumed that a l l  substrates shal l  first become a 

stored materia l  and later assimi lated into the biomass (heterotrophs) .  Energy is  

obtained for this process from the aerobic respiration of the biomass. 

3. Anoxic Storage of readi ly biodegradable substrate (Ss): It is identical to the 

aerobic storage process except that the energy for this process is  obtained from the 

denitri fication instead of the aerobic respiration . A fraction of the heterotrophic 

organisms is capable of growing anoxically (denitri fication) . 

4 .  Aerobic growth of heterotrophs :  For s implification purposes, the substrate for this 

process is  assumed to consist ent i rely of storage compounds (XSTO) . 

s .  Anoxic growth of heterotrophs :  I t  i s  s imi lar to the aerobic growth except that 

growth here is done through denitri fication instead of the aerobic  respiration. 

6 .  Aerobic endogenous respiration: It describes all fom1s of biomass loss under 

aerobic conditions. The process consumes oxygen and produces mainly inert 

part iculate (Xt). 

7 .  Anoxic endogenous respiration: I t  i s  s im i lar t o  the aerobic endogenous respiration 

but usual ly s lower. This process participates in achieving part of the 

denit ri fication capaci ty of the system (Koch et a l .  200 1 ) . 

8 .  Aerobic Respiration of storage products: This process assures that storage 

products (XSTO) decay together wi th the biomass. 

9. Anoxic  Respiration of storage products :  s imi lar to the aerobic respiration of 

storage products except that i t  happens under anoxic condi tions. This process 

part ic ipates in achieving pali of the deni trification capacity of the system ( Koch et 

a l .  200 1 ) . 

1 0 . Aerobic growth of autotrophs: This process achieves the nitrification i n  the 

system. I t  has the h ighest oxygen consumption when compared with other 

processes. 

In  the ASM3 fonnulation, i t  is assumed that the aerobic endogenous respiration 

and anoxic endogenous respiration processes are identical for all biomass types. 
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3 . 1 .5 EAWAG Bio-P Mod ule 

Rieger e t  a l .  (200 1 )  have publ ished the  EAWAG Bio-P module which adds the 

biological phosphorus removal processes to the Activated Sludge Model No. 3 (ASM3).  

I n  contrast to the ASM2d modu le developed by the I WA task group, the EA WAG Bio-P 

modul e  i s  based on the fol lowing "Simpl ification ' assumptions: 

I .  Based on the statistic model analysis and research results, i t  i s  assumed that there 

is no l imi tation on the P -release due to the fermentation process. Therefore, the 

fennentation process considered in the ASM2d model is neglected in the EA W AG 

B io-P module. 

2. To keep the mode simple, only one in ternal substrate pool is model led (Ss) unlike 

the ASM2d model where fermentable  readi ly biodegradable substrates (SF) and 

fermentation products (SA) were considered. 

3 .  Use o f  endogenous respiration hypothesis to simulate the PAO loss. 

4. Lower rates of anoxic decay when compared with the aerobic decay 

The EA WAG Bio-P module has considered four (4) additional components i n  

addition to  the ( 1 3) components defined i n  the  ASM3 model. These four additional 

components are identical to the components used in the ASM2d model .  The fol lowing 

table summarizes each of them: 

Table  3-4 Addit iona l  Co m po n en t s  o f  the EA W AG B io-P mod u le 

Compo n e n t  Descript i o n  
SP04 (M(P)L·3) I norganic soluble phosphorus, main ly ortho-Phosphate. 

Phosphorus Accumulating Organ isms (PAOs). These 

XPAO (M(COD)L·3) 
organisms are assumed to grow aerobically and some of  

them anoxical ly. Their concentration does not i nclude the 

in ternal cell storage product Xpp and XPHA. 

XPHA (M(COD)L·3) 
This  i s  the ce l l  i nternal storage products of  the PAOs. It 

mainly i nc ludes PHA and glycogen. 

Xpp (M(P)L-3) 
Polyphosphate. This i s  the cel l  i nternal storage products of 

the PAOs. I t  fOnTIS part of the particulate phosphorus. 
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The EA WAG Bio-P modul e  considers both the physiological phosphorus uptake 

during the growth of the organisms as well  as the EBPR of the PAO. For the 

physiological phosphorus uptake, the growth processes of the organisms are completed to 

account for the phosphorus l imi tation . The anaerobic decay is neglected in the EA WAG 

B io-P module; as thi s  was confinned by batch experiments done under starvation 

conditions (Siegrist et a I . ,  1 999). Another assumption is that the model does not consider 

the biological ly i nduced but inorganic calcium phosphate precipitation in the anaerobic 

tanle Koch et a l .  (200 1 )  have emphasized that the biologica l ly  induced inorganic calc ium 

phosphate precipitation is only supported at high pH values high temperatures, and high 

concentrations of PAO. The EBPR is described by eleven ( 1 1 )  processes in addition to 

the twel e ( 1 2) processes of the ASM3 model .  Following is a description for the 

bio logica l  phosphorus removal processes described in the EA WAG B io-P module :  

1 .  Storage of  XPHA: This process occurs main ly under anaerobic conditions but i s  

a lso observed under aerobic and anox ic zones. I n  this process, the readi ly 

b iodegradable substrate (S5) is stored in the fonn of XPHA. This storage process is 

connected directly to the P-release by the stoichiometric parameter YP04. 

2 .  Aerobic and anoxic storage of  Xpp: The PAO wi l l  require energy in order to 

uptake orthophosphate (SP04) and store i t  i n  the fonn of poly-phosphate (Xpp) . 

This energy i s  obta ined from the aerobic or anoxic respiration of the XPHA. The 

PAO bas a maximum P -content to uptake, for that reason, an inhibition term 

( Kmax) is implemented to maintain the XpplXPAO rat io below the maximum 

pennissible value. During the anoxic P-Storage where nitrate i s  respired instead of 

the oxygen, A reduction factor (llNo,PAO) i s  introduced because only fraction of the 

PAO ( i .e . ,  DNP AO) i s  capable of denitrification which wil l  proceed at a reduced 

rate when compared with aerobic storage. 

3 .  Aerobic and anoxic growth o f  XPAo: EA WAG B io-P module  assumes that PAO 

grow only on the ce l l  i nternal storage products (XPHA). For anoxic growth, a 

reduction factor (11 NO,PAO) is appl ied. 

4. Aerobic and anoxic endogenous respiration : These processes describe all fonns of 

biomass loss. The anoxic endogenous respiration is similar to the aerobic process, 

but includes the reduction factor T]NO,end,PAO. 
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5 .  Aerobic and anoxic respiration ( for XP1lA) and lysis ( for Xpp) o f  internal storage 

products : These processes en ure that storage products wi l l  decay together with 

the biomass. The anoxic processes are reduced by the factors 11No,resp,PAO and 

11 'O.lys,PAO· 

The tables below present the stoichiometric matrix for the soluble and particulate 

components of the ASM3 and the EA WAG B io-P module. 
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Table 3-5 Stoich iomctric ma trix  of sol u b le componcnts in ASM3 & EA WAG Bio-P m o d u l e  . 
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Table 3-6 Stoic h iometric matr ix  of  part icu l ate com ponents in A S M 3  & EAWAG Bio-P module  
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3.2  M etabol ic BPR M odel  

The I W  A M rel ies mainly o n  the observed y ie lds of the biomass ( i .e. exchange 

of compound ) and uses a grey bo approach towards the ce l l  internal  conversions by 

model ing the Poly-phosphate and COD storage compounds. W ith knowledge 

ad ancement, certain aspect of the internal c e l l  metabol ism have been understood in a 

better \Va that has encouraged the research groups of the Techn ical University o f  Delft  to 

consider the internal  ce l l  metabol ism processes of the PAOs and develop the metabo l ic 

bio-P module.  The metabol ic  bio-P module  is based on the formation and degradat ion of 

al l  re levant cel l i nternal  storage compounds ( PHA, glycogen, and PP).  A l l  module yields 

are sto ichiometrica l ly related and fol low the metabol ic  conversions mediated by A TP and 

A DHz. A TP is adenosine tri phosphate and it  is the primary energy carrier in a l l  l iv ing 

organ isms on the Earth .  When bio logical ce l l s  metabol ize, the energy released is 

transferred to the A TP wh ich then moves to other parts of the cel l to donate the energy to 

other functions. NADH is the n icotinam ide adenine d inucleotide which is a lso an energy 

source and a source to balance the ce l l  internal  reduction potential  as each molecule of 

AD can acquire h 0 e lectrons. The heart o f  the metabol ic model consists of three 

metabol ic  yie lds being the A TP format ion per NADH2, the b iomass reduction per ATP 

and the ATP requ i rement for maintenance. The figure below compares the d ifferent 

model ing concepts in IW A ASM and Del ft  metabo l ic bio-P modu le.  

x 
.8 
>­OJ 
15 

Figu re 3-1  
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Different Modeling Concepts of BPR (Source: Meijer , 2004) 
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The first metab l ie model was developed by Smolders et a l .  ( 1 994a/b and 

1 995a'b) \\ hcre a kinetic structure was propo ed in which the consumption rate of the 

PHA storage compounds is a net result of biomass growth, poly-phosphate and glycogen 

fonnation.  The model was describing the anaerobic and aerobic phases only of the EBPR. 

In  1 996,  a metabol ic model for EBPR u nder anoxic conditions was proposed. A complete 

version of the metabolic model including the anaerobic anoxic and aerobic phases was 

issued in 1 997. This model was referred to as the Technical University of Delft 

Phosphorus Model (TUDP). In 1 999, the TUDP model was i ntegrated with the 

heterotrophic, hydrolytic and autotrophic reactions of the ASM2d and referred to as the 

TUD model .  The reader is advised to refer to Meijer (2004) for detai led description of the 

model .  
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C H A PT E R  I V  

M AT H E M A T I CA L  M O D E L  FO RM U LATION 

I n  th i  chapter, a mathematical model descr ib ing a W WTP with BNR capabi l ity 

( W WTP/B R) is deve loped lIs ing the [ W  A A S M 3  with the EA WAG b io-P module .  The 

de e loped model  con iders a primary c larifier together with an A2
0 system as shown in 

the figure below. 

Figure 4-1 

Anaerobic 

� 
A noxic 

� 
Aerobic 

o 
0 0 0  

WWTP Scheme Considered in the Developed Mathematical Model 

The pnmary sedimentation tan k is added to the A20 system as it is usua l ly 

considered an im portant part of any W WTP. Grady et a l .  ( 1 999), state that the use of the 

primary c lari fier in the WWTP's is an economic issue, not a process issue. I t  is worth 

mentioning that the primary c larifier can actual ly be considered more econom ical when 

instal l ed with the aerobic-only acti vated s ludge systems rather than the BN R systems.  I n  

the aerobic-on ly activated s ludge systems, primary c larifier can contribute in  removing 

part of the part icu late substrates (Xs)  which reduces the bio logical load and therefore 

reduces the CA PEX and OPEX investments of the b io logical  reactor. However th is  

m ight not  be the case in the BNR systems s ince they m ight experience lack of substrate 

because of the substrate storage in the anaerobic phase. The anaerobic substrate storage 

phase m ight impose a real l i m itation of the subsequent denitri fication, n itri fication and 

COD removal processes. 
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Two rec i rculation streams are considered in the model, first is the conventional 

Judge recirculation to the anaerobic compartment which aims to uti l ize the active 

biomas col lected in the final settler to achieve the COD and nutrients removal and 

second is the internal recirculation from the aerobic compartment to the anoxic 

compartment which aims to achieve the deni trification process. 

The mathematical model developed in this chapter is solved in an optimal design 

approach considering system constraints and objective cost functions. The developed 

mathematical model consists of two groups of components; model parameters and model 

variables. Model parameters are those quanti ties that remain constant during the design 

process, such as the k inetic and stoichiometric parameters of the actiYated sludge process. 

Model variables are those quantities that are detennined by solving the mathematical 

model of the system in an optimum way, such as treatment uni t 's  dimensions and streams 

flow rates. 

The fol lowing sections i l lustrate the mathematical models selected to formulate 

the optimization problem of this study considering the WWTP scheme shown in Figure 

4- 1 .  The developed model consists of three main mathematical sub-models for ( i )  primary 

c larifier, ( i i )  biological treatment and ( i i i) final c larifier. 

The considered models cannot be cl aimed to be the best yeri fied and real ity­

representative models since every model has its own assumptions and restrictions. This is 

especia l ly true for empirical models which are based on col lected data only, and usual ly 

used to predict and not to explain a system. The developed model in this thesis can be 

used as a design tool for new plants or as a perfonnance assessment tool for existing 

plants only after conducting model parameters calibration by verifying its results against 

actual data collected from waste water treatment plants having a s imilar scheme and 

operating under s imilar conditions. 
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4 . 1  Pr imary Clar ifier 

Primary clari fiers are usually instal led a t  the upstream side of the biological 

reactor in order to remove particulate matter from the raw sewage and produce a c larified 

e ffluent to rel ieve the load on the subsequent b iological treatment units .  Primary c lari fiers 

have to be designed to produce s ludge with solids concentrations that can be easi ly 

handled and treated. Metcalf & Eddy ( 1 99 1 )  consider the primary c lari fier to be designed 

efficiently if it can achieve 50-70% suspended solids removal and 25-40% BODs 

removal .  Suidan et a 1 .  ( 1 983) have shown that operating a treatment plant without 

primary sedimentation units might result in a total treatment cost increase by 

approximately 30%. Overflow rate and influent suspended sol ids concentration have been 

considered as the most important  parameters that affect the perfonnance of the primary 

c larifiers . Christoulas et al  (1 998) have emphasized that influent temperature IS an 

important factor that affects paliic les sett l ing velocity and velocity gradients. 

Theoretical mathematical models have fai led to predict the behaviour of the 

sedimentation tanks under actual operating condi t ions because of  the difficulties in 

s imulating the effect  of the density currents and the complex phenomenon of the 

flocculation (Christoulas et ai, 1 998) .  Therefore, Empirical models were found to be more 

suitable for the design of primary c lari fIers. Such models are developed by collecting data 

on process design variables from operational p lants, and then identifying the correlation 

between these variables through the regression analysis. Arwani (2003) has presented a 

h istorical review of mathematical empirical models developed for primary clarifiers. 

In this study, the empirical model of Christoulas et al. ( 1 998) i s  selected for the 

primary sett l ing process because it is recent and has shown good capabi l i ty in fitting the 

observed data. In this model ,  influent suspended solids (TSSin) are related to the effluent 

suspended solids (TSSefTy) by the fol lowing relation: 

TSS eJJ P [ ( - b 
J
] 

--=� = 1 - a exp -- - cq 
TSSm TSS", 

(4-1 ) 
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where a, b (mg /L), and c (dim) are posit ive parameters. The value of a and b are found to 

be related to temperature whi le  c is a constant value. q (rn/d) is the overflow rate which i s  

defined a fol lows : 

Qe./J p 
q =  Ap (4-2) 

where Ap is the surface area of the primary c lari fier (m2) and Qeff...P is the effluent from the 

primary c larifier (m3/d). 

The sludge concentration of sedimentation tank has been modelled by either 

as uming that i ts concentration is l imi ted by the hydraulic capacity of the withdrawal 

mechanisms, or by using the deferent ia l  thickening technique based on the l imit ing flux 

theory .  The l imiting flux theory depends mainly on model l ing the sett l ing veloc ity of the 

partic les. In this study, the underflow solids concentration is calculated according to the 

solids flux theory given by eho et a1. ( 1 996). 

(4-3) 

where k (m/d) and n are settling constants of the primary s ludge. k ranges between 65 to 

460 m/day whi le n ranges between 1 to 5 .  Ap and Qsllldge"'p are in m2 and m3/d respectively. 

The concentrations of the other part iculate compounds (X) in both c larified 

effluent (QefJ]) and sludge streams (Qsludge]), are calculated based on the assumption that 

the port ion of each solid component in the suspended solids of any of the above­

mentioned streams is same as the portion of that component in the primary influent 

suspended solids. In other words the solids di stribution as a percentage of the suspended 

solids w i l l  remain the same in all three streams:  influent, effluent and sludge waste 

stream:  

_ 
TSSe./J X . "If - X  . .  } _eJ> } _ ,n TSS In 

x - X 
TSS sludge 

L .>//ldge - L in TSS. In 

(4-4) 

(4-5) 
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where) represents the particulate components ( i .e .  STO, H ,  A, PAO, etc . ) .  Moreover, it is 

assumed that al l  soluble components are not affected by the primary sedimentation. 

The mass balance relationships for flow (Q) and part iculate components (X), 
considered around the primary c iarifler, are as fol lows: 

Qm = Qeff + Qsllldge 
QinX,1l = QeffXeff + QsllldgeXsllldge 

4.2 BN R Act ivated S ludge System 

(4-6) 

(4-7) 

The mathematical model of the A20 BNR activated sludge system is developed 

and considered in the optimization model fonnulated for the WWTP scheme shown in 

Figure 4- l .  The A:!O system consists basical ly of an anaerobic compartment to achieve 

phosphorus release and then removal in the subsequent chapters, anoxic compartment to 

achieve total n itrogen removal and aerobic compartment to achieve COD removal .  The 

ASM3 with the EAWAG B io-P module has been used for the formulation of the AlO 

system of equations ,  which are then included in the overal l  optimization problem. ASM3 

model i s  rare ly ut i l ized in its fuJI  version and in  most cases a reduced version is 

developed and adopted (Jeppsson, 1 996). The fol lowing simplifications are considered 

during the formulation of the A 20 system of equations based on the ASM3IEA W AG Bio­

P matrix (refer to Table 5-4): 

1 .  The oxygen concentration in the aerobic compartment is control led at a l l  time to 

be greater than or equal to 2 mgll .  Therefore, the tem1 [S02/ (K02+S02)] is 

assumed equal to 1 .  This term is introduced in a l l  aerobic processes of ASM3 

model to switch off the process when the oxygen concentration drops to zero. 

2. The anoxic compartment is assumed to be purely anoxic, and oxygen 

concentration inside it is assumed to equal zero . Therefore, the term [K02/ 
( K02+S02)] is assumed equal to I .  This term is introduced in a l l  anoxic processes 
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of ASM3 to reduce the process rate when the oxygen concentration in the anoxic 

compartment is greater than zero . 

3 .  The nitrogen component (SN2) i s  neglected and the deni tri fication process is 

traced through the n itrate & ni tri te nitrogen (SNOX) . 

4 .  A lkal inity dynamics are neglected and hence the term [SALK/ (KALK/SALK)] i s  

assumed equal to 1 (Chachuat e t  a ! . ,  200 1 ) . This term is introduced to  switch off 

the proces when the alkal in i ty of the wastewater drops to zero . 

Implementing the above mentioned simpl ifications wi l l  result i n  a reduced ASM3/ 

EA WAG Bio-P model consisting of 1 3  state variables, as i l lustrated in Table 4- 1 .  

Table  4-1 State V a riables in Redu ced A S M3IEA WAG B io-P m odel 

State Variable Description 

TSS Total Suspended Solids 

XI I nert Particulate 

Xs Slowly B iodegradable Substrate 

XH Heterotrophic Organisms 

XSTO Cell Storage Product of heterotrophic Organisms 

XPAO Phosphorus Accumulating Organisms 

Xpp Poly-Phosphate 

XPHA Cell Storage Product of PAO 

XA Autotrophic I Nitrifying Organisms 

Ss Sol uble Substrate 

SNOX Nitrate plus Nitrite N itrogen 

SNH4 Ammonium plus Ammonia N itrogen 

SP04 I norganic Solu ble Phosphorus 

Table 4-2 shows the formulation of the reduced processes'  rates considered in the 

A S M3IEA WAG Bio-P model .  All processes should result in a posi t ive rate values ( i .e .  

greater than or equal to zero). The complete formulation of the processes' rate equations 

can be found in Henze et al. (2000) and Rieger et a! . (200 1 ) . 
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Table  4-2 
Process 

R I  HydrolysIS 

Reduced p roce es of A S M 3/EA WAG Bio-P model 

Proce s rate equatioll (concentration per unit time) 

k Xs i  Xu 
X H K

x + Xs I XH 
H 

Heterotrophic or�a/lisms, aerobic and dellitri[ying activity 
R2 Aerobic S k s " 

R3 

R4 

R5 

R6 

R7 

R8 

R9 

Storage o f  Ss A STa K 
S 

H 
S + s 

AnoxIc 
Storage of Ss 

Aerobic 
G rowth 

AnoxIc 
Growth 
(Dcnllnficatlo 
n) 
Aerobic 
Endogenous 
Respiration 
AnoxIc 
Endogenous 
RespiratIOn 

Aerobic 
Respiration of 

XSTO 

k S,vo.r Ss 
X 'STO '7sax H 

K,vo.r + SNa.l' K s + Ss 

S Nay S NH. X STa I X H 
f.1H 77,vax

K S K S K X I X  
XH 

So\ + NaX NH, + NH, STO + STO H 

S",o.\ 
bH, \O\, XH 

. KNax + SNax 

bsTO,a, X STO 

Anoxic 
S 

Respiration of b 
,vax 

X sm. val' 
K S 

STa 
XSTO , . 

NO..1' + Nax 

A litotrophic organisms, nitrifying activity 
R I O  Aerobic 

R I I 

R I 2  

growth of X\ , 
nl tn tication 

Aerobic 
Endogenous 
RespiratIOn 
AnoxIc 
Endogenous 
Respiration 

SNax 
bA, \'ax K 

+ S 
X A 

Nax ,vax 

Phosphorus A CCltlll ulatinl? Orl?anisms 
P I  Storage of Ss Xpp l XpAa 

XPHA q PHA X PAa 

P2 

P3 

Aerobic 
S torage of 

X pp 

Anoxic 
Storage of 
Xpp 

Acroblc 
Growth of 

Xp,\O 

Kss,PAa + Ss Kpp,PAa + XPP I XpAa 

Spa, XpHA I XpAa KmaX,PAa - ( Xpp I XPAa )  
X qPP ----'--- PAa 

Kpa" pp + Spa, KpHA + XpHA I X PAa K,?P,PAa + Km ... " PAa - e Xpp I X PAa ) 

x PIIA K ( X PP ) 

S max,PAO - -X SNO po, X P W  q '7 PAD , X PAD pp .vU,I'AO K NO,PAO + S NO K PO, ,PP + S PO, X PIIA K K ( ): PP ) K PIIA + -- IPP PAO + m:u,PAO - X XpAO PIO 
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P5 

P6 

P7 

P8 

P9 

P I O  

P I 1 

Proces 

Ano IC 
Gro\', th o f  
XPAO 

Aerobic 
endogenous 
respiration 
Anoxic 
endogenous 
respiration 
Aerobic lysis 
o f Xpp 
Anoxic lysIs 
o f  PP 

Aerobic  
respiration of 
X PHA 
AnoxIc 
respiratIon of 
XPHA 

Proce rate equation (concentration per unit time) 

S,vo S 'H Spo, XpHA / XpAO X j.1PAO TJvO.PAO K X / X 
PAO K NO.PAO + S,vo K,vH .PAO + S Nfl K PO, .PAO + S PO, PH'; + PHA PAO 

S,vo bpAO TJNO .... d.PAO K S 
XPAO 

XO.PAO + XO 

b S\'o 
PP '7,,·O,lvs.PP K NO.PAO 

b SNO 
PfiA TJxO.resp.PHA K NO.PAO 

XpflA 

Table 4-3 shows typical values for the k inetic parameters of  the ASM3fEA WAG 

B io-P model appeared in table 8-2, at 20°C as suggested by Henze et al . (2000) and 

Rieger et a l .  (200 1 ) . 

Table 4-3 Typical  va l ues of k i netic para meters for ASM 3/EAWAG B io-P model 

Value 
Symbol C h a racterization 

(20'C) 

Typ ical kinetic parameters of ASM3 , H enze et  a!. 2 000 

KH Hydrolysis rate constant 3 

Kx Hydrolysis saturation constant I 

Heterotrophic organisms XH, aerobic and denitri fyiog activity 

kSTO Storage rate constant 5 

11 'lOX A noxic Reduction Factor 0.6 

K:o;ox Saturation constant [or SNOX 0.5 

Ks Saturation constant for substrate Ss 2 

KSTO Saturation constant for XSTO 1 

1111 Heterotrophic max. growth rate of XH 2 

K'''H� Saturation constant for SNH4 O.O l 
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gCODxs (gCODXH rl d-I  

gCODxs (gCODXH rl 

gCOD Xs (gCOD '(H rl d -I 

gN03 - N  m -3 

gCODss m -
3 

gCODxsro (gCODXH rl 

d·1 

gN m-3 



V a l u e  
ymbol Cha racteriza t io n U n i ts 

(20°C) 

bH.Ol Aerobic  endogcn. Respiration rate of XH 0.2 d·l 

bH sox Anoxic endogen. Respiration rate of XH 0. 1 d-I 

bSTo.o2 Aerobic respiration rate for XSTO 0.2 d- I 

bSTo.Nox Anoxic respiration rate for XSTO 0. 1 d-I 

Autotrophic organisms XA, nitrifying Activity 

f.lA Autotrophic max. growth rate o f XA 1 d·1 

KA.SH4 Ammonium substrate saluration for XA 1 gN m -3 

bA.Ol Aerobic endogen. respiration rate of XA 0. 1 5  d- I 

bA.NOX Anoxic endogen. respiration rate of XA 0.05 d-I 

Typical kinet ic para meters of EA WAG B io-P modu le, Rieger et al .  2 00 1 

qPHA Rate constant for storage of XPHA 6 d- I 

qpp Rate constant for storage of Xpp 1 .5 d- I 

f.lPAO Max. growth rate of XPAO 1 d' 

llNo.PAo Anoxic reduction factor growth of X PAO 0.6 

bpAO Max. endogen. Respiration rate of XPAO 0.2 d- I 

Anoxic reduction factor for endogen. 
ll"O.end.PAO 0.33 

Respiration 

bpp Lysis Xpp 0.2 d-I 

TjSO.I),.PP Anoxic reduction factor for lysis 0.33 

bpHA Respiration rate for XPHA 0.2 d· 1 

Tjl\o.rcsp,PHA Anoxic reduction factor for respiration 0.33 

KSS,PAO Saturation constant for Ss 1 0  gCOD /11 -3 

Kpp,PAO Saturation constant Xpp/XPAO 0.05 gP gCOD -1 

KPHA Saturation constant for XPHAIXPAO 0. 1 gCOD gCOD -1  

Kmax,PAO M ax, ralio of X pp/XPAO 0.2 gP gCOD -1  

Saturation constant for 
gP gCOD -1  K,PP,PAO 0.05 

[ Kmax,PAO-(Xpp/XPAO)] 

KNO,PAO Saturation constant for SNO 0.5  gN m -3 

Kp04.P? Saturation constant for SP04 (XP? Storage) 0.2 gP m-J 

Kp04.PAO 
Saturation constant for SP04 (XPAO 

0.0 1 gP m -3 

growth) 

KNII ,PAO Saturation constant for SNH 0.05 gN m-J 
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The ASM3IEA V AG B io-P model is introduced in the fonn of  stoichiometric and 

compositIOn matrix (Table 3-5  and 3 -6). Henze et a 1 .  (2000) recommends the following 

equat lOl1 to estimate the temperature effect on the k inetic parameters: 

\ here 8T ( in  0c) can be obtained from:  

K� 
In ( ( T, )  K ) 

() - ( � )  r -

(4-8) 

(4-9) 

Table 4-4 shows typical values for the stoichiometric and composi tion parameters as 

suggested by Henze et a l .  (2000) and Rieger et a! . (200 1 ) . 

Table 4-4 

Symbol 

Typical  Stoichiometric a n d  c o m posit ion p a ra meters of ASM3 / 
E A 'VAG B io-P m odel  

C h a racteriza tion Val u e  U n its 

Typical  Stoichiometric a n d  composition para meters of  ASM3 , H e n ze et al .  2000 

fSI Production of SI  in hydrolysis 

YSTO.O� Aerobic yield of stored product per Ss 

YSTO.r-oOX Anoxic yield of stored product per S, 

YH,02 Aerobic yield of heterotrophic biomass 

YH."-;OX Anoxic yield of heterotrophic b iomass 

YA Yield of autotrophic biomass per NOJ'-N 

fXI Production of XI in endogen, respiration 

I .  ',51 N content ofS ,  

l".S5 N content of S, 

i )(1 N content of XI 

11')(5 N content of  Xs 
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a 

0.85 

0.8 

0.63 

0.54 

0.24 

0.2 

0.0 1 

0.03 

0.02 

0.04 

gCODs, (gCODxs fl  

gCODxsro (gCODss r l 

gCODxsro (gCODss fl  

gCOD x H (gCOD Xsro rl 

gCOD XH (gCODxsro r l  

gCOD x 
A 

(gN 
s 'OX rl 

gCOD x, (gCODx.'I r l 

gN (gCODs, ) - 1  

gN (gCODs )- ' ,. 
gN (gCOD I' rl 

gN (gCODX,. )- ' 



Symbol C h a racterization Value U n i ts 

1 :-'; B"I content of biomass, XH ,XA 0.07 g.v (gCOD.r.1I r l 

l TSS,X1 ISS to COD ratio for XI 0.75 gTSS (gCOD v{ r l 

ITSS.XS ISS to COD ratio for X. 0.75 gTSS (gCOD vs rl 

ITSS.BM ISS to COD ratio for biomass ,XH,XA 0.9 gTSS (gCODxBII rl 

Typical Stoichiometric and composition param eters o f  EA WAG Bio-P module, R ieger et a l .  2 0 0 1  

yPAO,02 

yPAO,NO 

yPHA 

YPO-l 

lp,SS 

Ip.SI 

I r,'I: I 

ip.xs 

ip.B�1 

ITSS."<I 

ITSS�XS 

ITSS.XSTO 

ITSS,BM 

ITSS,XPP 

Y ield B IOmass / XPHA 

Yield Biomass / XPHA 

Requirement of XPHA per Xpp storage (p-

storage) 

Requirement of XPP per XPHA storage 

(p-release) 

Phosphorus content of S5 

Phosphorus content of SI 

Phosphorus content of XI 

Phosphorus content of Xs 

Phosphorus content of biomass 

(XH,XA,XPAO) 

ISS to COD ratio for Xl 

ISS to COD ratio for Xs 

ISS to COD ratio for XSTO re p. XPHA 

ISS to COD ratio for biomass 

ISS to COD ratio for Xpp 

4.2. 1 M ass Balance Equations 

0.6 gCOD (gCOD )-1 

0.5 gCOD (gCOD r' 

0.2 gCOD gp - I  

0.35 gP gCOD-' 

0 gP gCOD -1 

0 gP gCOD -' 

0.0 1 gP gCOD -' 

0.005 gP gCOD -' 

0.0 1 4  gP gCOD -' 

0.75 gTSS (gX, r ' 

0.75 g TSS (gXs tl 

0.6 g TSS (gX STO )- 1 

0.9 gTSS (g BM r ' 

3.23 gTSS (g X pp )- I 

Steady state mass balance equations for a l l  system state variables are developed 

across the anaerobic, anoxic and aerobic reactors using the fol lowing general formula :  

Mass in - Mass Ollt + {Vreaclor . Reaction Rate] = (dc/dt) * Vreaclor (4-1 0) 
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For steady state analysis (dc/dt) = zero. The figure below shows the streams 

numbering system adopted during the model development: 

Fig ure 4-2 Process Flow Diagram of the Modeled A20 System 

As stated earlier, hydrolysis in ASM3 model is assumed to be active 

i ndependent ly from the electron acceptor. Therefore, during the model formulation, 

hydrolysis i s  assumed to occur in all three reactors ( i . e .  anaerobic, anoxic and aerobic) .  

The other process i n  the ASM3IEA W AG B io-P model that is assumed to occur in the 

anaerobic compartment is the storage of the readi ly degradable substrates (Ss) in  the form 

of cel l - internal storage products (XPHA) which pri marily includes poly-hydroxy­

alkanoates and glycogen. The Following is the system of equat ions developed for the 

anaerobic  compartment: 
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TSS, TSS7 Q2XPA O, TSS� + QrXPA OS TSS5 - (Q2 + Qr )XPA O) = 0 

Q2SS'  + QrSS5 - (Q2 + Qr )SS3 + [V;�u (R'anaer - PI)] = 0 

Q2SNH, + QrSNHS - (Q2 + QJSNH3 + [V;�er (O.O IR'ana.r + O.03F; )] = 0 

Q2SPO, + QrSPOS - (Q2 + Qr )SPO) + [V;n�er (O .005R'anaer + O.3 5F; )] = 0 

(4-1 1 ) 

(4-1 2) 

(4-1 3) 

(4-14)  

( 4-1 5) 

(4-1 6) 

(4-1 7) 

(4-1 8) 

(4-1 9)  

It can be noted that the system of  equations for the anaerobic compartment does 

not include a l l  AS M3/EA W AG-BioP model components as some of them, such as XH, 

are not affected by any of the two processes assumed to occur in the anaerobic 

compartment which are hydrolysis (R 1 anaer) and storage of XPHA (P 1 ) . 

In  the same manner, the systems of equations for both anoxIc and aerobic 

compartments are developed as fol lows : 
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For Anoxic compartment 

Q, ;(J, ���: + Q, X/� ���� + Q"XI, - (Q" + Ql + Q, )XI4 + [ I;�. (0 .2R7 + O.2R I 2 + 0.2P7)] = 0 

(Q) + Q, )XS, + Q"XSj - (Q" + Q1 + Q, )XS. + [ r;�, (-Rlum,, )] = 0 

, Q)XH, ���: + Q,XH, ���; + Q"XH) - (Q" + Q2 + Q, )XH. + [ 1;;, ( RS - R7)] = 0 

TSS, ' TSS7 [V;""" ] Q,XSTO, TSS, + Q,,'STO, TSSS + Q"XSTO, - (Q" + Q) + Q, )XSTO. + 2'4 (0.8RJ - 1 . 8SR) - Rq )  = 0 

Q,XPAO, -) + Q,XPAO, --+ Q"XPAO, - (Q, + Q, + Q  )XPAO. + ...!!!'!!!.. ( PS - P7) = 0  TSS TSS7 [ V ] 
. TSS, TSSS . , . , 24 

(Q) + Q, )X"" J + Q,,)(,.,.) - (Q" + Q2 + Q, )Xp, • • + [ V;�" (P3 - P9)] = 0 

(Q) + Q, )X"" 13 + Q"X""'5 - (Q" + Q2 + Q, )X" /I ' 4  + [ ��;�ir (-0.2P3 - 2 P5 - PI I )] = 0 

Q,XA TSS) + Q XA TSS7 + Q  XA _ (Q + Q, + Q )XA + [ V;""" (-R1 2)] = 0  
. ' TSS, ' ' TSS5 ,, 5 " 

• , • 24 

[ V [- 0.75R'u"", + 0.48R] - 0.2 I R, - 0.7SR7 l1 
(Q) + Q, )XTSSJ + Q"X TSSS - (Q" + Q2 + Q, )X TSS. + .;�" - 0.6Rq - 0.7SR" + 3 . 1 1 � - 0.3Ps = 0 

- 0.7SP, - 3.23P9 - 0.6� , 

(Q) + Q. )SSJ + Q" SSj - (Q" + Q2 + Q, )SS. + [ r  ;�. (R,,, ..... - R3)] = 0 

[ V  (o.O I R  + 0.03R - 0.07R + O.066R J] (Q + Q )SNH + Q  SNH - (Q + Q, + Q )SNH + � 'unnX J S . 7 = 0 1 , 1 " , 
" • , • 24 + O.066R' 2  - O.07P, + O .06P, 

[ [- 0.07 R, - 0.3R, - 0.28R7 - 0.3SRo ll 
Q2SNO, + Q. SNO, + Q"SNO, - (Q" + Qz + Q, )SNO. + V;�, - O.28R,z - O.07P, - O.34p; - O.2Rp' = 0 

- O.34� ,  

+ SPO + SPO - + + SPO + � - ° [ V  (O.OOSR,un", - 0.0 1 4R, + 0 .0 1 2R, J] (Q, Q, ) , Q" 5 (Q" Ql Q, ) , 24 + O O I 2R," - P' - O.0 1 4P; + 0.O I 2P7 + � -
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(4-21 ) 

(4-22)  

(4-23) 

(4-24) 

(4-25) 

(4-26) 

(4-27) 

(4-28) 

(4-29) 

(4-30) 

(4-31 ) 

(4-32) 



For AerobIc compartment 

. [ TSS6 (Q Q ) X'I TSS7 ] [ Va.., ( 6 ') 
] (Q,, + Q� + Q, ),\ I, - QoXI' TSS� 

+ Q" XI, + 9 +  r i ' TSSI 
+ 24 0.2R + 0._Rl l + 0.2P6) = 0  

r [ TSSr. TSS7 ] [ Va" 
] (Q,, + Q, + Q )/\S, - Q6XS, -- + Q" XSI + (Q9 + Q, )XSI -- + -(-Ria., ) = 0  . ' TSSI TSSI 24 

: (Q" + Q1 + Q. )XH, -[ Q6XH5 ;��: + Q" XHI + (Q9 + Q, )XHI ;��:J + [;; (R4 - R6)] = ° 

(Q" + Q, + Q, )XSTO. -[Q" XSTOI TSS6 + Q"XSTO, + (Q9 + Q, )XST05 TSS7 ] + [ Va" (0.8SR2 - L6R4 - R8)] = ° . TSSI TSSI 24 

(Q" + Ql + Q, ) XPA 0, - [ Q" XPA05 ;��: + Q"XPAOI + (Q9 + Q, )XPAOI ���: ] + [�'; (P4 - P6)] = ° 

[ TSS6 rss7 ] [ V  
] (Q,, + Q� + Q, )XN" - Q"XPPs TSSI

+ Q"XPPs + (Q9 + Qr )XPPs rSSI + ;; (P2 - P8) = 0  

[ TSSr, TSS7 ] [ V",., 
] (Q,, + QZ + Q, )XJ'IIA' - Q6Xml' TSS5 

+ Q"XI'IIAI + (Q? + Q, )X[,IIA5 TSSI + 2"4(-0.2P2 - 1 .67P4 - PI O) = 0  

[0 TSS(, Q ( TSS7 ] [V  ] (0 + O, + Q )XA, - ( Nfl --' + XA, + Q,) + Q )XAI -- + ....'!C!:.. (RI O - Rl I ) = 0  -" - . ' - , TSSI ,, - ' TSS, 24 
[ (- 0.7SR, + O.S l R, - 0.06R. - 0.7SR6 l1 V tI�r -

(Q" + QJ + Q, )Xrss • - [Qr.X rss, + Q"X TSS, + (Q" + Q, )Xrss, J+ ;; - 0.6R� + 0.9R,o - 0.7SR" + 3. 1 1  Pl = ° 
- 0. 1 02P, - 0.7S�, - 3 .23;:;' - 0.6F;0 

(Q" + Ql + Q, )SS, - [(Q6 + Q9 + Q, + Q,, )SSJ+ [�'; (R'a" - R2)] = ° 

o + + SNH - + + + SNH + -=- w, ' " - 0 [ 1 l v (O.O I R, + O.03Rz - O.07!?, + O.066!?, JJ C" Ql QJ • (Q(, Q9 Q, Q,J I 24 _ 4.24R,o + 0.066R" - 0.07 P, + 0.066�, -

(Q" + QJ + Q, )SNO. - [(Q(, + Q" + Q, + Q,, )SNOl l+ [;; (4. 1 7 R,o )] = ° 

+ + SPO - + + + SPO + � - 0 [ 1 [ V (O.OOSR, ,,,., - 0.0 1 4R. + 0.0 1 2R(, - 0.0 1 4R,o )] (Q" Q2 Q, )  , (Q(, Q. Q, Q,, ) I 24 + 0.0 1 2R, , - Pl - O.0 1 4P. + O.0 1 2� + p"  -
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(4-35) 

(4-36) 

(4-37) 

(4-38) 

(4-39) 

(4-40) 

(4-41 ) 

(4-42) 

(4-43) 

(4-44) 

(4-45) 



In a l l  equations, flow CQ) i in m3lhr, concentration is in mgtl and volume is in m3 . 

oting that a l l  processe rates are expressed on "per day" ba is in Table 4-3,  the unit 

balance across the developed system of equations is a fol lows: 

Mass In - Mass OUI + [V",.elor * Reaction Rate] = 0 

[m3 mg ] _[m3 mg ] +
[

m
J 

x � x day ] = 0 
hr / hr / / . day 24hr 

4.2.2 Oxygen Requ irements Constra in ts 

(4-46) 

The oxygen is consumed in the aerobic compartment for t\VO main reasons; the 

fi rst is for the removal of the organic matter and second is for ni trifi cation. The oxygen 

required for the organic matter removal and ni trification can be est imated from the 

fol lowing two equations (Grady et a1. 1 999) : 

(4-47) 

(4-48) 

where SRTaer is the sol ids retention t ime in the aerobic compartment which represents the 

average t ime a particulate (X) consti tuent stays in the aerobic reactor. Mathematically, 

SRT is defined as the mass of particulates contained in the reactor d ivided by the mass 

discharged from the reactor. 

SR T  = 
Va" r  x MLSS 

acr Q'ffTSS.ff + Q"a:iI >l"dlt"TSS"ruuludge 
(4-49) 
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The Alr  flow rate (AFR) \ hich has to be supplied by the system air d iffusers is 

calculated using the fol lo\ ing expression (Grady et al . ,  1 999): 

AFR = 
6 ( ROH + ROA ) 

fl, 
(4-50) 

where AFR is in m3/min, ( ROII+ROA) is the total oxygen requirement in kglh and ne i s  

the fie ld oxygen tran fer efficiency expressed as percent of  oxygen in  the diffused air 

actual ly  transferred i nto the l iquid. The value of  ne depends on the d iffuser nature and its 

insta l l at ion depth and it typical ly varies between 6 to 1 5% (Grady et a1 .  1 999). 

Air di ffusers in activated sludge systems usual ly provide the turbulence necessary to 

maintain sol ids in suspension. This has resu lted in constraints on process design and 

operation . The upper feasible bio-reactor volume (m3) can be related to the AFR using the 

fol lowing expression: 

v ::; 1 000 AFR 
au AIR L 

(4-51 ) 

where A I RL i s  the minimum air input rate that can be achieved by the insta l led air  

d iffuser. A typical AIRL value of 20 m3/ (min . I OOO m3) is usual ly acceptable. The lower 

feasib le  bio-reactor volume can be given by the fol lowing express ion: 

v > 1 000 AFR 
aer -

A1Ru 
(4-52) 

where A1Ru i s  the maximum possible air  input rate that can be achieved by the installed 

air  d iffuser. A typical A1Ru value of 90 m3/ (min . ! 000 m3) is usual ly acceptable. 

Another criteria imposed on the volume of the aerobic reactor is related to the maximum 

volumetric oxygen (not air) transfer rate that can be achieved economical ly  on a 

sustainab le basis , which is usual ly estimated around 0 . 1 kg 02 / (m3 .hr) (Grady et a l . ,  

1 999) : 

47 



(4-53) 

The above mentioned criteria on oxygen and mixing requirements of the bio­

reactor are considered in the optimization problem of this study. The aeration system 

consumes approximately 50 to 60% of the net power demand for a typical activated 

s ludge waste\ ater treatment plant (USEPA Report, 1 999). Therefore the designer is 

re ponsible for having the proper diffuser type and the optimal aerobic reactor volume in 

order to meet both mixing and oxygen requ irements of the process at the lowest possible 

costs. 

4.3 Secondary Sedimentation 

The secondary clari fier plays a cnlcial role in activated sludge wastewater 

treatment process by receiving the mixed l i quor from the aerobic compartment and 

c larifying it sufficiently to produce an effluent with an acceptable quality .  S ludge 

produced from the secondary c larifier should be thickened in a proper way to maintain the 

desired sol ids level i n  the reactor through the sludge re-c irculation stream and to achieve 

an effective treatment for the wasted s ludge. This means that secondary settl ers shal l  

perfonn two functions in para l le l :  ( i )  clarification and ( i i )  thickening. I ndustry experience 

has shown that secondary c larifier is often the main bott leneck of the entire activated 

s ludge process. 

Several models have been developed for the secondary c larifi er inc luding simple 

empiri ca l  models as wel l  as sophist icated computational fluid dynamics models .  The 

reader is referred to Arwani (2003) for a historical review on the models developed for 

c larification and thickening i n  the secondary c larifier. 

In the optimization problem fom1Ulated in this thes is; c larification 111 the 

secondary c larifier is model led using Voutchkov ( I  992) empirical model : 

TSS6 
= 6 .2 1 . l n(MLSS.SVI )  

- 26.43 
O .67. l n(H) - ln(SR )  

4 8  

(4-54) 



where TS 6 (m mgll)  i s  the total suspended sol ids in the p lant effluent, MLSS ( in  gil) i s  

the mixed hquor su  pended solid \ hich is equal to  TSSs, SVI  ( in  m llg) is the s ludge 

volume index, H ( m) is the side water depth in the settl ing tank and SR (in mlhr) is the 

overflow rate in the secondary c larifier which is equal to Q6 I Ar. ( i . e . ,  Ar is the surface 

area of the final c larifier). 

An SVI value greater than 200 m llg indicates poor sett l ing (Metcal f  & Eddy, 

1 99 1 ) . Regarding the side water depth, the current practice fa vours a minimum side-water 

depth of 3 . 5  to 4 meter. For the overflow rate, the typical range is 1 6-32 m3/m2 .d 

(Metca l f  & Eddy, 1 99 1 ) . 

The thickening process is modelled according to the solids flux theory as given by Cho et 

a1 . ( 1 996): 

(4-55) 

where kw (m/d) and nw are constants representing the thickening properties of the waste 

activated sludge, Af is the surface area of the final c lari fier in m2 and Q7 is the c larifier 

b low down in  m3/hr. 

The concentrations of the other particulate compounds (X) in both c lari fied 

effluent (Q6) and sludge streams (Qr) are calcu lated based on the assumption that the 

portion of each solid component in the suspended solids of any of the above-mentioned 

streams is the same as the portion of that component in the secondary i nfluent suspended 

solids. I n  other words, the sol ids distribut ion as a percentage of the suspended sol ids wi l l  

remain the same in  al l  three streams :  i nfluent, effluent and sludge waste stream: 

(4-56) 

(4-57) 
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where ) repre ent the particu late component ( i .e .  STO, H ,  A,  PAO, etc . ) .  It is assumed 

that all soluble component are not affected by the secondary sedimentation. 

The mass balance relationships ( for flow Q and part iculate components X), considered 

around the secondary c larifier, are as fol lows : 

Q5 - Q,r = Q6 + Q7 
(Q5 - Q,J (XJ = Q6X6 + Q7X7 

4.4 Cost Est im ate 

(4-58) 

(4-59) 

The cost estimate assignment during the conceptua l  s tudy phase of an engineering 

project is of crucial  importance to developers or government authori ties prior to any 

dec ision on commencing any project work. This assignment includes the estimate of  

investment or  capital costs; the operation and  maintenance costs and  perfonning a l ife 

cycle cost analysis that reflects the project economies during its l ifetime period. 

The term "Capital Costs" as commonly defined in construct ion projects i ncludes 

the direct and i ndirect capital costs. Direct capital costs include the installed process 

equipment and associated piping and instrumentation; site c iv i l  works; buildings; roads 

and laboratories. Indirect capital costs i nc lude interest during construction; insurance 

contingency; projec t  management and architectura l  and engineering fees. On the other 

hand, "Operating Costs" can be spli t  in to fixed and variable operating costs .  Fixed 

operating costs consider the costs of regular maintenance and repair  works which are 

usua l ly  related to the wastewater treatment p lant capacity .  Variable operating costs are 

directly related to the operation mode ( i . e . ,  ful l  or part ia l  capaci ty) of the wastewater 

treatment plant which include the chemical and power costs. 

2 
This  subsection wil l  emphasize on the cost estimate components of the A ° 

process which i s  usual ly considered i f  wastewater nutrients are to be removed 

bio logical ly .  As stated earlier, phosphorus removal from wastewater can be achieved 

ei ther by the chemical precipi tation through chemical addition or by adopting the EBPR 
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proce s, which takes advantage of the phosphoru uptake by the PAOs. Both chemical  

and biological methods can be used in the same plant i f  a higher level of phosphorus 

removal is required. Se eral researchers have shown that the BPR has a lower operating 

cost when compared with the chemical precipitation methods (Levlin et a l . ,  2003) .  

J iang F .  et a 1 .  (2004 & 2005) studied two approaches for estimat ing the costs of 

phosphorus removal in  wastewater treatment p lants. The first is through having entirely 

new plants constructed on ' Greenfield" si tes and the second is through the adaptation of 

a lready existing wastewater treatment plants in order to achieve a higher level of 

phosphorus removal . 

4.4. 1 Capita l  Cost Est i mate (CAPEX) 

Estimation of capital costs of any wastewater treatment plant is usual ly done 

through three (3) main steps: ( i )  identifying the construction costs ( i .e . ,  direct capital 

cost); ( i i )  estimating the indirect costs as percentages of direct costs; and ( i i i )  considering 

the inflation, especia l ly when direct cost is estimated based on plants buil t  several years 

back, in order to have a realistic updated capital cost estimate. The USEPA ( 1 998) has 

identified standard factors used to estimate the capita l costs of any t reatment faci lity. 

Table 4-5 p resents these factors: 

Table 4-5 US E PA Sta n d a rd Capita l  Cost Est i m a te Components  fo r Waste 
Treatment I n d ustry 

CAPEX Factor C omponent CAPEX Estim ate 

Equipment Technology Specific  Cost 

I n stallation 25 - 55% of Equipment Cost 
Direct 

Piping 31 - 66% of Equ ipment Cost 

Instrumentation & Control 6 - 30% of Equipment Cost 

Engineering 1 5% of Direct cost 
Indirect 

Contingency 1 5% of Direct Cost 

Jiang F. et a ! .  (2004) have estimated costs for di fferent phosphorus removal 

systems and concluded that the tota l capital cost increase with the target P removal 
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e ffic iency and the des ign capac ity of  the treatment fac i l ity . However when the requ i red 

removal e ffic iency e ceeds 90%, CAPEX wi l l  increase cons iderably as a consequence of  

extra un it processes needed to  be  i nstal led. The  figure below i l l ustrates the capital cost 

est imate in the U . . for d i fferent s izes o f  A20 systems a s  est imated by J iang F .  e t  a l .  

(2004).  The est imate i s reported based o n  costs for 1 978 .  The author has updated the cost 

to reflect the cond i t ions in year 2006 by us ing the Engineering News Record (ENR) 

construct ion cost index wh ich shows an EN R va lue of  2776 for year 1 978 and ENR value 

o f 769 1 for March 2006. 

300 

250 

200 
� 
c: 

� 
� 1 50 
CD 
0 
0 
N 

1 00 

50 

0 

0 20 40 60 8 0  1 00 

Row (MGD) 

Figu re 4-3 Overview o n  C a p i t a l  Cost  v a l u e  of t h e  A 20 system 

4.4.2 Operation and Main tena n ce (O& M) Costs 

1 20 

The US EPA ( 1 998) has ident i fied the standard factors used to est i mate the 

operat ion and maintenance costs  of  any t reatment fac i l i ty. The table below presents these 

factors. The prices mentioned i n th i s table are i nd icative as they are appl icable to the U . S .  

market on ly .  
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T a ble 4-6 US E P A  ta n d a rd O & M  Cost Esti m a te C o m ponents fo r Waste 
T rea t m e n t  I nd ustry 

Facto r  Esti mate 

Maintenance 4% of total CAPEX 

Taxes & I nsurance 2% of total CAPEX 

Labour 28 .2 1 $ (2004) per hour 

E lectric i ty 0 .0499 $ (2004) per kWh 

Chem icals Not Requ ired for the A20 system 

Disposal costs are 0 . 27  $ (2004) per Kg of 

Wastes D isposal 
sol ids for bio logical  wastes and 1 .24 $ (2004) 
per Kg sol ids for a b lend o f  chemical and 
biological  s l udge . 

J iang F .  et a l .  (2004) have reported an esti mate to the total O&M cost o f  the AAO system.  

The cost is reported to reflect year 2004 cond it ions .  

� 
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� 
� 
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0 
0 
N 

3 5  

3 0  

2 5  

2 0  

1 5  

1 0  
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0 20 40 6 0  8 0  1 00 
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Fig u re 4-4 Overview o n  O&M cost v a l u e  of  the A20 system 

4.4.3 Cost Funct ions 

1 20 

Cost funct ions are those that describe the cost of  a process un it as a function o f  

des ign or  operat ion parameters. Cost funct ions  are cons idered i mportant for any 
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optimization problem i n  order to account for the capi tal and operational costs that usual ly 

play a significant role  i n  defin ing the optimum design for any wastewater treatment 

fac i l i ty .  

Several studies were publ ished on the development of cost estimate functions for 

different  wastewater treatment processes. Tang et a 1 .  ( 1 984) have conducted an early 

e ffort in this regard by developing cost functions that describe the most common uni t  

proce ses considered in  any wastewater treatment plant. Tyteca ( 1 985) used the cost 

i nfomlation provided by researchers previously to develop new cost functions c lassifieds 

in three categories: (i) investment cost, ( i i )  fixed operating cost and ( i i i )  variable 

operating costs . Arwani  (2003) has conducted a l iterature review on the history of cost 

fu nctions development and came up with a summary of cost functions used in optimizing 

a smgle stage activated sludge process ( i .e . ,  aerobic only). Table 4-7 presents these 

function 

Table 4-7 S u m m a ry of cost fu nct ions  used in opt i m iz ing s ingle  stage activated 
sl udge system (Ta n g  et a I . ,  1 984 & Tyteca, 1 985) 

Process U n it  

Primary Clarifier 

Primary Sludge 
Pumping 

Aeration Tank 

D iffused Aeralion 

Secondary Clarifier 

Return & Waste Sludge 
Pumping 

Capital 

1 971 $ 

824 A o n 

9870 Q 0 53 

461 V 0.71  

8533 Q. 0
66 

824 A 0 77 

9870 Q 0 53 

Operatio n  

m a n  hours 1 y r  

1 7. 1  A 0 6 

257 Q 0 41 

1 87 Q. 0
48 

1 7. 1  A 0 6 

257 Q 0.4 1 

Mai nten a n ce 

m a n  h ou rs 1 yr 

9.23 A 0 6 

1 1 2 Q 0 43 

74 .4 Q. 0
55 

9.23 A 0 6 

1 1 2  Q 0 43 

M aterial & 
S upply 

1 971 $ 1  yr 

8.26 A 0 76 

2 1 4 Q 0 64 

8.26 A 076 

2 1 4 Q 0 46 

Power 

kW h r  1 yr 

23.85 Q H/Ep 

23.85 QH/Ep 

A' Surface Area (nl); Q: Flow (m3/hr); V: Volume em3) ;  Qa:  Air Flow Rate (m) / min); H: Pumping Head 
(m); Ep Pumping Efficiency. 

As discussed earlier, the optimization problem of this thesis considers A20 in its 

fonml lation. The main additional costing components of the A20 system when compared 

with the s ingle aerobic stage act ivated s ludge system are as fol lows: 
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I .  Capital cost of the anaerobic compartment. 

2 .  apital  cost of the anoxic compartment. 

3 .  apital and operation cost o f  the internal rec irculation flow. 

4. M ixing energy cost for anaerobic and anoxic compartments. 

In the optimization model formulation, tbe same cost function that estimates the 

capital cost of the aerobic compartment (refer to Table 4-7) is ut i l ized in estimating the 

capital costs for both anaerobic and anoxic compartments. Moreover, the same cost 

functions that estimate the capital and operation cost for the return and waste sludge 

pumping (refer to Table 4-7) are ut i l ized in estimating the capital and operation cost of 

the internal reci rculation flow. J iang F .  et a1 .  (2005) has presented the fol lowing cost 

function which estimates the mixing energy requirements for the anaerobic and anoxic 

compartments i n  order to keep the sol ids in suspension: 

ME = UE * (Vanaer + Vanox) (4-60) 

where M E  is the mixing energy in kW, UE is the unit energy consumption of mixing 

which is 0 .0 1 4  k W/m
3 

and Vanaer and Vanox are the volumes of the anaerobic and anoxic 

compartments. The cost of waste disposal is considered in the optimization model of this 

thesis by estimating the amount of the sludge generated f0D11 both primary and final 

settlers using the fol lowing equation:  

M sludge = Xu * Qw (4-6 1 )  

where Xu i s  the sludge concentration i n  the underflow stream and Qw i s  flow of  the waste 

stream. S l udge disposal can typical ly be responsible for 25 to 40% of the operating costs 

of an aerobic b iological treatment system ( Robin, 2005). 

4.5 Opti m ization Prob lem 

An optimization problem consists of an  objective function, constraints, and bound 

on variab les. Based on the mathematical models  presented in the previous sections, the 

formulated optimization problem is explained as fol lows : 
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Object ive  F u n ct ion  

1mimize Total Annual Cost (4-62) 

Con t rai nts  

Priman' Clarifier 

q Ap - 24 Q2 = 0  

TSS, - [l - Ca exp';:, -" )] x TSS, � 0 

TSSg - [K (n - 1) ]: X�X 1 000 X [�] ) l n = 0  
n - 1  24 Qg 

Q2 + Q, - Q) = 0 
Q2 TSS2 + Q TSSg - Q) TSS) = 0 

A ctivated Sludge 

A naerobic (Eqllatiolls from 4-1 1  to 4-1 9) 

A noxic (Equations from 4-20 to 4-32) 

A erobic (Equations from 4-33 to 4-45) 

Design Constraints on Vaer 

v < 1 000 AFR 
aer 

- A IR L 

S6 

Where X; represents applicable 
model state variables shown in 
Table 4- 1  and I) represents 
applicable model processes 
shown in Table 4-2 



v � 1 000 AFR 
O<r AlR L, 

v � CROff + ROJ 
au 

0. 1 

Secondarv Clarifier 
1 [ jl lnW ;;; nw A 

TSS7 - [Kw (nw - l )] x -- x 1 000 x p 
= 0  

mv - l  24 (Q9 + Qr) 

6.2 1 x  In( XrSS 5 x SVI) 
X - 1 000 + 26 43 = 0 rSS6 q . 0.67 x In(H ) - In(1) 

24 

Q6 x 24 
- 0 ql - -AI 

Q2 - Q6 - Q9 = 0 

(Q2 + Q, )Xrss5 - Q6Xrss6 - (Q9 + Qr ) Xrss7 = 0 

B o u n d s  

XI � X  � X  o I up 

where X10 and Xup are the lower and upper bounds of the variables respectively. All  

effluent quality constraints ( i .e .  TSS, Soluble organics, phosphorus and nitrogen, etc.) 

were introduced to the model through the system bounds. 

4.6 Opt imization Usi ng  GAMS 

The system of equations developed earl ier can b e  described a s  highly non-l inear 

s ince most of the constraints are functions of more than one variable .  I n  addition to the 

ASM3/EA WAG Bio-P model state variables l is ted in Table 4- 1 ,  the table below l ists the 

A 20 decision system variables of the optimization problem in this study. 
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Table 4-8 A2a system variab les in the opt imization model 

S y m bo l  D e  c r-i pt ion U n i ts 

Ap Surface area of  primary clarifier m 2 

qp Over flow rate of primary clarifier mid 

AF Surface area 0 f final c larifier 
., 

m-

qF o er flow rate of final c larifier mid 

Vanaer Volume of anaerobic compartment m3 

Vanox Vol ume of anoxic compartment m3 

Vaer Volume of aerobic compartment m3 

Qr S ludge re-c irculation flow rate m3lhr 

Q lr  Internal Re-circulation flow rate m3lhr 

QI Process stream ( i  = 1 to 9) m3lhr 

ROH 
Oxygen Requirement for removal of organic 

kgld 
matter 

ROA 
Oxygen Requirement associated with 

kgld 
n i tr ification 

AFR Air  flow rate m3/min 

The developed mathematical model contains 49 variables ( 1 3  out of 49 are 

decision variables), 43 equal i ty constraints ( 7  degrees of freedom) and 6 inequal i ty 

constraints .  This excludes other model variables, such as cost parameters, that are not part 

of the main A20 system mathematical model and their values can only be calculated after 

solving the main system of equations. 

The General A lgebraic Modeling System (GAMS) i s  spec ifical ly designed for 

model ing l inear, nonl inear and mixed integer optimization problems. The system is  

especia l ly useful  wi th  large, complex problems. "GAMS" al lows the  user to  concentrate 

on the model i ng problem by making the setup simple. The system takes care of the time­

consuming detai ls of the specific machine and system software implementation. "GAl\1S" 

lets the user to concentrate on model ing by e l iminat ing the need to think about purely 

technical machine-specific problems, such as address calculations, storage assignments, 

subroutine l inkage, and input-output and flow control .  "GAMS" increases the time 

available for conceptualizing and mnn ing the model, and analyzi ng the results .  The 

58  



G I S  language is fom1al ly s imilar to commonly used programming languages. I t  

is therefore famil iar to anyone with programming experience. In GAMS, there is more 

than one sol er avai lable for different  types of problems ( i .e .  l inear, non-l inear, etc . ) .  For 

non-l inear models, there are three standard algorithms avai lable named as CONOPT, 

M INOS and SNOPT. 

CO OPT algorithm is selected to solve the non-l inear optimization problem of 

this study. CO OPT solver i s  usual ly used for large-scale non l inear optimization 

problems (NLP).  It is a feasible path solver based on the old proven G RG method. Three 

versions of the CON OPT solver have been i ssued t i l l  now. These are CON OPT, 

CONOPT2 and CONOPT3 . 

Al l  components of CONOPT have been designed for large and sparse models. 

Models with over 1 0,000 constraints are routinely being solved. Specia l ized models with 

up to 1 mi l lion constraints have also been solved with CON OPT (Ref: ,¥ww.gams.com). 

The results of solving any optimization problem are usually a ffected by several 

factors such as the ini t ia l  values, system bounds and scaling of variables. Having good 

in i tia l  va lues for the system variables,  which satisfy or c losely satisfy the constraints, 

reduces the work involved in finding the first feasible solution and therefore the 

computational effort in finding the final optimal solution. In the optimization problem of 

this study, EXCEL Solver is used in fi nding a "close to feasible" solutions for a l l  system 

variables, which are then fed as ini t ia l  values to the GAMS model .  

System bounds usual ly fal l  i nto two categories: ( i) Model bounds and ( i i )  

A lgorithm bounds. Model bounds represent real ity constraints ( i .e . ,  some variables should 

a lways be posit ive) while a lgorithm bounds help the model algorithm by preventing it 

from moving away from the optimal solution. 

I n  Non l inear as wel l  as l inear programming algorithms, Search directions are 

detennined by calculating the derivatives of the system constraints and objective function. 

Moreover, the function values are used to detem1ine if  the constraints are satisfied or not. 

The scal ing of the variables and constraints ( i .e . ,  measurement uni ts) detennine the 

relative size of the derivatives and function values and therefore the search direction. In 
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case system vanables are not properly scaled the a lgorithm might ignore smal ler  values 

by considering them zero, which \ i l l  result  in  an  inaccurate search direction. 

4.7  Para meters Cal i brat ion 

The parameters of the ASM3IEA WAG B io-P model or  any other models  are not 

univer a l  in  the sense that every system could be modeled using same parameter values. 

The e parameters have spec ific values, for the wastewater under consideration that can be 

found through standard methods given in the l i terature. The adjustment of the model 

parameters to reflect the actual system performance is genera l ly referred to as model 

cal ibration. 

Weijers et al .  ( 1 996) presented a l i terature review on cal ibration strategies and 

methods for assessing parameter ident ifiabi l ity of the ASM 1 mode l .  One approach is the 

steady state cal ibration where data obtained from the p lant are averaged assuming that 

th is average represent a steady state condition. However, the enhanced nutrients removal 

p lant are more sensitive to disturbances caused by varying load and temperature than 

conventional p lants because of the in teraction between the process stages. Fitting the 

steady state of the model to an unsteady p lant might result  in  having biased parameter 

estimates. Another disadvantage of steady state cal ibration is that the number o f  

parameters that can b e  estimated i s  equal to o r  smal ler than the number of outputs. 

A better calibration approach is by fitting the h istorical dynamic data of the 

process with the dynamic model results .  In th i s  approach the number of parameters that 

can be determined is larger than the number of outputs. However, the low sampl ing 

frequency, which is usual ly once per week, might result  in  l imited accuracy and therefore 

unsatisfactory cal ibration results. To have more accurate model ing, experiment duration 

and sampl ing frequency have to be chosen in re lation to the t ime constants of the process 

and the spectrum of the influent variations. Hydraul ic residence time (HRT) is one of the 

important time constants of the treatment p rocess which has to be considered in 

detcn11 in ing the appropriate sampl ing frequency .  
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Gurkan et al .  (2005) used SWOT analysis (Strength, Weakness, Opportunities and 

Threats) in studying four different systematic calibration protocols for full  scale 

wastewater treatment systems (BIOMATH, HSG, STOWA and WERF). The systematic 

calibration protocols were proposed by different  researchers in order to create a standard 

approach in performing the cal ibration study which makes the comparison between 

d ifferent cal ibrations of the ASMs possible. The need for these protocols came from the 

fact that the cal ibration studies performed in the past were based on different  influent 

"\ astewater characterization methods different  k inetic parameter estimation methods, 

d ifferent selection of parameters to be calibrated and d ifferent p riorities within the 

cal ibration steps. 

Regarding the mathematical model of this study, several tria ls have been made by 

the author to find a wastewater treatment plant wi th s imi lar scheme (Anaerobic-Anoxic­

Aerobic) by contacting several government authorit ies and private consul tants and 

contractors . Unfortunately, and within the l imited search t ime available, no simi lar p lant 

was found knowing that all major domestic wastewater treatment plants operating in UAE 

(such as AL Mafraq WWTP) are l imited to anoxic and aerobic treatments only. 

Therefore, the model perfonnance i s  assessed only against standard design parameters 

publ ished i n  the l i terature such as Metcalf & Eddy ( 1 99 1 ) . 
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C H APTE R  V 

APPLICATION PROBLEM 

I n  this section, the optimal design of a typ ical BNR system is  introduced in order 

to examine the developed model results .  As in any treatment plant design problem, input 

data avai lable prior to the design commencement ass ignment should inc lude the 

fol lowing: 

1 .  I nfluent waste,.: ater characteristics. 

2. Effluent d ischarge ( i .e . ,  into the sea) cri teria and/or irrigation water qual ity 

standards. 

3 .  Constraints o n  space avai labi l i ty ( i f  any) . 

4. Constraints on the fmancial i nvestment (if any). 

I n  case of usmg the ASM platfonn models as a design assisting tool, a 

comprehensive lab work has to be carried out to estimate the stoichiometric and kinetic 

parameters of these models .  

5 . 1  I n fl uent  Characteristics 

I nfluent to any WWTP should usually be characterized i n  terms of both quantity 

and quality .  Detennining the wastewater flow rates is considered a fundamental step in 

the design of any wastewater treatment faci l i ty. Metca lf  & Eddy 1 99 1  state that the 

average flow rate occurring over a 24-hr period based on total annual flow rate is used in 

evaluating the wastewater treatment plant capacity. As a dai ly average fl ow rate, the flow 

rate quant i ty considered in this i l l ustrative problem is  36,000 m3 /d ( 1 ,500 m
3Ihr). 

For the purpose of this i l lustrative problem, influent wastewater quality is 

assumed to have the medium strength wastewater characteristics as given by Metcalf & 

Eddy ( 1 99 1 )  and shown in Table 5 - 1 . For an actual design case, wastewater qua l ity has to 

be characterized through standard test methods. 
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Table 5-1 Med ium Strength Untreated Inf luent  Characteristics (Metcalf & Eddy, 

1 991  ) 

Conta m i nants Concentration (mg/L) 

Solids, Total (TS) 720 

Dissolved , Total (TDS) 500 

Fixed 300 

Volatile 200 

Suspended Solids (TSS) 230 

Fixed 65 

Volati le (VSS) 1 65 I 
BOD, 5 day, 20 °C (BODs) 220 

Total Organic Carbon (TOC) 1 60 

Chemical Oxygen Demand (COD) 500 I 
Nitrogen (total as N )  40 

Organic 1 5  I 
Free ammonia 25 I 
N itrites 0 I 
Nitrates 0 I 

Phosphorus (Total as P) 8 I 
Organic 3 I 
Inorganic 5 I 

5. 1 . 1  Trans lat ion o f  influent  Composi t ion in to ASM components 

The standard water composit ion shown in  Table 5- 1 cannot be used directly as 

input to the ASM model, since the i nfluent composition should be first trans lated to the 

components considered in the ASM/EAWAG B io-P model that are l i sted in Table 4- l .  

Grady et a l .  ( 1 999) proposed a procedure to translate the i nfluent composition i nto the 

ASM model components shown in Table 4- 1 by using some simp l ifying assumptions 

discussed hereafter. 

Grady et a l .  ( 1 999) has divided the total i nfluent COD into four components: ( i) 

slowly b iodegradable substrate (Xs), (i i) readi ly biodegradable substrate (Ss), ( i i i) inert 

part iculate COD (X,) and ( iv) inert soluble COD (S,) .  However, in the ASM3 mode l ,  the 

inert soluble COD (S,) is considered negl igible .  I t  is a common practice in activated 

s ludge model ing assignments to assume a negligible concentration ( i .e . ,  zero) for the 

biomass components (XH, XA and XPAo) in the i nfluent when compared with amount of 
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biomas fomled later within the activated sludge process. Henze et a l .  (2000) stated that 

more research \ ould be required to study the impact of the already existing influent 

b iomass on the activated sludge process. In this i l lustrative problem, a l l  influent biomass 

components are assumed to equal zero. 

Metca lf  & Eddy ( 1 99 1 )  estimate the total COD of a domestic wastewater to be 

approximately equal to 2 . 1 t imes the BOD5 value. 

COD 10/01 :::: (2. 27) (BOD5) (5-1 ) 

Grady et a l .  ( 1 999) proposed to estimate the b iodegradable COD from the fol lowing 

expressIOn : 

(5-2) 

Inert COD is  the di fference between the total COD and b iodegradable COD: 

COD lIIerl = COD TOlol - COD Biodeg (5-3) 

Henze et a1. (2000) suggest that 35 to 40 percent of the particulate organic matter 

m domestic wastewater is non-biodegradable.  Volatile suspended solids (VSS) are 

considered representative of the particulate orgaJ11c matter. Assuming that the 

composition of the inert particulate organic matter is l ike that of protein, which has a 

COD equivalent of J . 5  g COD I g protein ,  and that p rote in i s  tota l ly volati le in a VSS test, 

then : 

Inert Particulate ()6) = 37.5% * 1 . 5  * VSS = 0. 56 VSS (5-4) 

Regarding the parti tioning of the biodegradable  COD into slowly (Xs) and readi ly 

b iodegradable (Ss) substrate, Grady et al .  ( 1 999) suggest that 43% of  the biodegradable 

COD is readi ly biodegradable .  

Ss = (0. 43) (COD b/Odey) (5-5) 
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(5-6) 

Regarding the n itrogen components, the ASM3 model divides n i trogen 

components into three types : ( i )  ammonium p lus ammonia n i trogen (S 'H�), n itrate plus 

n i trite n itrogen (SNOX) and denitri fied ni trogen (SN2) .  According to H enze et a! . (2000), 

the S '2 concentration in the influent can be neglected. Moreover, most of the domestic 

wastewater contains no ni trate n itrogen (SNOX) in the i nfluent (Grady et a l . , 1 999). 

Regarding the phosphorus content of the influent, in-organic soluble phosphorus (SP04) is 

assumed equal to the inorganic phosphorus value reported in Tab le  5- 1 .  Particulate 

phosphorus is e i ther hydrolyzed and released as soluble phosphorus or entrapped with the 

MLSS  and removed with the waste solids. The poly-phosphate (Xpp) concentration in raw 

municipal wastewater is nonnal ly zero (Henze et a! . ,  2000) . It is reasonable to assume 

that all cel l  storage products concentrations in the i nfluent equal to zero since they are 

mainly fonned within the activated sludge process i tself. 

I t  i s  worth mentioning that the procedures mentioned above involve some degree 

of uncertainty. In a real design case, the author recommends to carry out the experimental 

l ab test according to the procedures presented in Henze et a1. (2000) . Table 5-2 shows the 

composit ion of the medium strength wastewater (given in Table 5 - 1 )  a fter translation into 

ASM3 components. 

Table 5-2 ASM3 Translated composit ion of a med ium strength wastewater (Grady et 

a I . ,  1 999) 

State Variable Description Concentrat i o n  U n i t  

TSS Total Suspended Solids 230 g TSS m-3 

XI Inert Particulate 92 g COD m-3 

XS Slowly Biodegradable Substrate 2 1 4  g COD m-3 

XH H eterotrophic Organisms 0 9 COD m-3 

XSTO Cell Storage Product of heterotrophic Organisms 0 g COD m-3 

XPAO Phosphorus Accumulating Organisms 0 g COD m-3 

XPP Poly-Phosphate 0 g P m-3 

XPHA Cell Storage Product of PAO 0 g COD m-3 

XA Autotrophic I Nitrifying Organisms 0 g COD m-3 

Ss Soluble Substrate 1 62 g COD m-3 

S NOX Nitrate plus Nitrite Nitrogen 0 g N m-3 

SNH4 Ammonium plus Ammonia Nitrogen 25 g N m-3 

SI I nert Soluble (Not considered in the ASM3 model) 0 g COD m-3 

S P04 I norganic Soluble Phosphorus 5 g P m-3 
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5.2 E ffluent  Characterist ic 

The WWTP effluent i mo t commonly used for non-potable purposes ( i .e .  not  for 

drinking) such as agriculture, landscape and public parks irrigation. Other non-potable  

appl ication include cool ing water for power p lants and o i l  refineries, i ndustrial  process 

water for faci l it ie such as paper mi l l s  and carpet dyers, toilet fl ushing, dust control ,  

construction activities and concrete mixing.  A l ternatively, WWTPs effluent might be 

discharged dIrect ly into the open sea, and in this case, attention has to be given to the 

nutrients removal (Phosphorus and n itrogen)  in order to prevent the eutrophication of the 

" ater body to avoid high concentrations of aquatic weeds and algae. 

It is important to emphasize that the wastewater treatment p lant designer should 

know what the plant effluent is intended for, as this i s  going to reflect directly on the 

effluent qual i ty guidel ines have to be fol lowed and therefore on the level of treatment 

steps to be considered in the plant. 

Thomas et a! . ( 1 994) stated that the seawater quality standards need to be set at or 

belo\\; the levels at which they are shown to damage coral reefs and in particular the 

nutrients which they need to be below the level at  which they stimulate massive growth of 

weedy a lgae which overgrow and k i l l  corals .  The levels of nutrients that damage reefs are 

around hundred times lower than those that harm human beings, so use of human health 

water qual ity standards are actual ly deadly to coral reefs. Researchers have establ ished 

critical leve l s  of ni trogen and phosphorus which must not be exceeded if reefs are to 

remain healthy without being overgrown by weedy a lgae. These concentrations are 0.0 1 4  

mg/I as N for n itrogen (0.040 mg/l as N03) and 0 .003 mg/I as P for phosphorus (0.007 

mg/l as P04). 

I t  i s  usual to see different treated effluent quality guidelines from one country to 

another depending on their local requirements. Moreover, it is worth mentioning that not 

a l l  countries can afford having very stringent treated effluent guidel ines as th is wou ld 

require higher investments in the treatment fac i l it ies. 

Many countries set a l imit between 1 to 2 mg/I as the l imit for the total phosphorus 

concentrations in discharges of wastewater treatment plants. In A20 processes, effluent 
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phosphonls concentration of less than 2 mg/I can be expected without effluent fi ltration 

(1\.letca l f  & Eddy, 1 99 1 ) . 

The American Water Works Association (A WW A) guideline for irrigation water 

requires a maximum phosphate l imit of 2 mg/l . According to the Australian Guidelines 

for effluent qual i ty i ssued in January 2004, with advanced treatment processes ( i .e . ,  BNR) 

the a im should be to reduce the total nitrogen to less than 1 0  mg/I and the total 

phosphonls to less than 5 mg/I. The polish legislation concerning treated wastewater 

qual ity standard requires total n i trogen of 1 5  m g/I for medium WWTPs and 1 0  mg/I for 

large WWTPs (Malgorzata et a l .  2006). 

The treated effluent, discharged into the sea, from any Wastewater Treatment 

P lant operating in Abu Dhabi Emirate (U.A.E . )  shall meet the regulations specified by 

Abu Dhabi Environmental Agency. The l imits suggested by Abu Dhabi Environmental 

Agency shows that they are sort of relaxed when compared with other more strict  

regu lations. Table 5-3 summarizes the main effluent characteristics specified in this 

regulation. 

Table 5-3 C haracteristics of treated wastewater at point of discharge into the sea as 

requ i red by Abu Dhabi  E nvironmental  Agency 

P arameter Symbol  U n it Suggested L im i t  

P hys ical Properties 

Total  Suspended Solids TSS mg/l 50 

Total Dissolved Solids TDS mg/l 1 500 

p H  pH u nits 6 - 9  

F loating Particles mg!m2 None 

Temperature (higher than Backg round) T °C 5 

T u rbidity NTU 75 

I n organ ic  Chem ical Properties 

Total  Ammonia (as N) NH4' mg/l 2 

N itrate N 03-N mg!1 40 

C h lori ne Residual cr mg!1 1 
Dissolved Oxygen DO mg!1 >3 

B iochemical Oxygen Demand (BOD) BOD5.20 mg!1 50 

Total Kieldahl N itrogen as N TKN mg!1 1 0  

Total Phosphorus (as P) P04·3 mg/l 2 

C hemical  Oxygen Demand (COD) COD mg/l 1 00 
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Effluent characteristics for Al Mafrag Wastewater Treatment Plant, a major 

wa te\\ ater treatment plant operat ing in Abu Dhabi Emirate are summarized in Table 5-4. 

Phase I of Al Mafrag Wastewater treatment p lant was commiss ioned in 1 982 with 

average treatment capaci ty of 23 M IGD.  Phase 2 was comm issioned in 1 997 adding an 

addit ional average treatment capaci ty of 34.5 M IGD. Phase 1 reactors are aerobic only 

whi le phase 2 reactors inc luded anoxic channels with mixers to achieve nitrogen removal .  

Al l  treated effluent from Al Mafrag plant is reused for i rrigation purposes. The effluent 

concentration of n i trate (29.2 mg/I as NOJ-N) i ndicates poor denitri fication which is only 

carried out for 60% of the influent stream. 

Table 5-4 Average Effluent Analysis of AL M afraq WWTP (April 1 999) 

Parameter U n its I nf luent 
After After After 

Primary Secondary Tertiary 

Electrical Cond uctivity �S I em 2,900 3,300 3 , 1 00 3,000 

pH units 7 7 . 1  7 . 1  6 . 9  

Biochemical Oxygen Demand (BOD) mgll 228 1 69 2.8 0 . 9  

Chemical Oxygen Demand mg/I 5 1 5 257 42 1 7  

Total Alkal inity as CaC03 mg/l 223 222 56 37 

Total Sulphides a s  S mg/l 33 28.2 0.5 N i l  

Suspended Sol ids mg/I 1 79 1 69 7.2 2 . 4  

Ammoniacal N itrogen a s  N mgtl 30 29 0.6 0 . 5  

N itrate Nitrogen as N mg/l x x 6.6 6 . 6  

You et a ! . (2002) studied the n itrification/denitrification perfoffi1ance of the A20 

system using p i lot plant and batch experiments and reported total n itrogen removal 

effic iency from 48.4 to 78%. Yong et a l .  (2006) experimentally studied the performance 

of the AlO B R system and reported removal efficiencies of 92.3% for COD, 95 . 5% for 

phosphorus, 96% for ammonia and 79 .5% for total n itrogen. They found that nitrate is the 

major constituent of the effluent total n itrogen (TN) concentration, indicating good 

n i trification for ammonium removal in the A20 system. 

Metcalf & Eddy ( 1 99 1 )  state that in a well operating activated sludge plant 

treating domestic wastewater, effl uent BODs should usually vary between 2 to 1 0  mg/L 

suspended organics between 5 to 1 5  mg/L, and non-biodegradable organics between 2 to 

5 mg/L .  According to the same reference, the activated sludge process can achieve as low 

as 1 0  mg/l of TSS in the effluent .  
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The author would l ike to stress that the economic feasibi l ity of  the BNR level, that 

can be achieved using a B R system, d iffers from one place to another based on the local 

market situation. For example, at certain  s ituations, it would be more economical to 

consider chemical treatment methods ( i .e . ,  ferric chloride addition) to achieve higher 

levels of nutrients removal .  

Currently i n  UAE, almost a l l  treated sewage effluent is reused for i rrigation 

purposes and this could be the reason why there is no c lear attention to the nutrients issue. 

However, the rapid developments expected in both Abu Dhabi and Dubai emirates and 

specifical ly in the new art ificia l  i s lands expected to be developed with in the next 1 0  

years, would  require the environmental agency to revise i ts  d ischarge regulations. Such 

regulations should target more stringent l imits especial ly those associated with nutrients. 

Thi is  mainly because the majority of the wastewater effluent generated on these is lands 

is discharged into the sea. Even if the generated effluent is re-used for i rrigation purposes, 

it can easi ly i nfi l trate into the groundwater because of its shal low depth. Recent reports 

(by residents and eye witnesses) from the art ificial  palm island developed by Dubai 

government state that turbid water and algal blooms could c learly be noticed in the water 

surrounding the i sland.  This  is of course not a des irable s i tuation for such is lands 

developed to be p laces for leisure and tourism. Notification of this eutrophication 

phenomenon is  very recent (to the date of wri t ing this report) therefore; no independent 

technical report has addressed this issue yet and the problem highlight above is based on 

author ' s  analysis only. Relatively stringent effluent characteristics are considered in this 

i l lustrative problem. Table 5-5 l ists the bounds imposed on the treated effluent qual ity in 

the GAMS model .  

Table 5-5 Constra i nts Imposed on the Effluent Qual ity Parameters in GAMS 

model (All with lower l im it of 1 E-6) 

Qual i ty Parameter U pper Limit (mg/I) 

Total Suspended Sol ids (TSS) 1 5  

Soluble Substrate (S,) 0 .5  

Ammonium plus Ammonia  Nitrogen (SNI f4) 1 

I trate p lus Nitrite Nitrogen (SNOX) 7 

Inorganic Soluble Phosphorus (SP04) I 
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For the GAMS model developed in this thesis, constraints are imposed on the 

upper l imit  of the quality parameters. These constraints imposed on the upper l imi t  were 

selected a fter reviewing several design data of A20 systems. Other eftluent quality 

parameters are left unbounded ( i .e .  bounded between l E-6 and l E6) .  It is important to 

real ize that over-specified effluent constraints m ight resul t  in having u n-economic  design . 

5.3 Objective F u nction 

The objective function of the optimization model formulated in this study is to 

achieve the minimum total annual cost of the A 20 system. As mentioned previously in 

section 4, the cost functions used in this study are derived from functions developed by 

Tang et al. ( 1 984), Tyteca ( 1 985) and Jiang et a l .  (2005 ) .  Both CAPEX and aPEX are 

considered i n  these cost functions. The total p lant cost calcu lated from the optimization 

model is presented in 2006 US Dollars per year. Therefore, the capi ta l  cost is amortized 

annually based on a certain design l i fe and a d iscount rate. The ENR construction cost 

i ndex is used to update the capital and material  and supply cost functions from their base 

year ( 1 97 1 ), i n  which they have been developed, to year 2006. Table 5 -6 presents the cost 

functions '  parameters considered in the optimization problem. 
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Table 5-6 Cost Fu nctions' Parameters Considered in the Optimization Problem 

Parameter 

1 97 1  Cost I ndex (BCI)  

2006 Cost I ndex (CI )  

Plant Design l ife 

Interest Rate 

Amortization Factor (AF) 

Operating & Mai ntenance Wages (OMW) 

Power Cost (PC) 

Pumping Head of returned sludge 

Pumping Head for I ntemal re-circulation 

Pumping Efficiency 

Unit Energy Consu mption of mixing (ME) 

Disposal cost per  kg of Biological Solids (DC) 

U nit 

Years 

% 

$ (2006) per man-hr 

$ (2006) per kWh 

meter 

meter 

% 

$ (2006) 

Val ue 

1 581  

7689 

30 

8 

0 .0888 

8 

0.05 

1 0  

5 

80 

0.0 1 4  

0.3 

Considering the cost parameters in  Table 5-6 and the cost functions stated in section 4, 

the total annual system cost can be calculated from the fol lowing expression : 

Total A n n u a l  cost (2006$/yr) = Annual Capital Cost + O&M cost + Material for maintenance 

cost + Power cost for pumps + Power cost for mixing + Disposal 

cost. 

where :  

= [(CIIBCI)*AF * CAPEX)+[OMW*O&M ) + [ (CIIBCI) * MC] + 

[PC * Pconsum) + [ M E  * (Vanaer+V.no,ic) * PC * 24 * 365 ) + 

[DC * MSJudge J 

CAPEX: Capital investment ( 1 97 1 $) 

OMW: Operating and Maintenance Wages (2006$/man-hr) 
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O&M: Operation and Maintenance (man-hr/yr) 

MC: material  cost ( 1 97 1  Iyr) 

PC: Power Cost (2006$/kWh) 

Pconsum: Power consumption (KWh/yr) 

ME:  M ixing Energy (kW/mJ) 

DC: D isposal Cost (2006$lkg of sol ids) 

MSludge: Ki lograms of sludge per year 

5.4 Bounds on System Variables 

As stated earlier, having reasonable bounds on the system variables that reflect the 

practical design requirements and the treatment process economies is very necessary to 

end with a practical feasible solution and avoid oversized design. 

Metca l f  & Eddy ( 1 99 1 )  recommend setting the overflow rate of the primary 

c lari fier low enough to ensure sat isfactory performance at peak rates of flow. Typical 

design values of the primary clar ifiers show that tile overflow rate could range from 30 to 

1 20 m3/m2.day and tanks diameters from 1 2  to 46 meter. 

Regarding the A20 BNR System, the fol lowing typical  design information, stated 

in Metcalf & Eddy ( 1 99 1 ), are considered in the optimization problem : (i) sol ids retention 

t ime (SRT) from 4 to 27 days, ( i i ) mixed l iquor suspended solids from 3,000 to 5000 

mgll, ( i i i )  return activated sludge (Qr) from 20 to 50% of the influent and ( iv) internal 

reci rculation rate (Qar) from 1 00 to 3 00% of the i nfluent. 

On the secondary clarifier, typical design information given by Metca lf  & Eddy ( J 99 1 )  

3 ' 
suggests an overflow rate between 1 6-32 m Im-.d .  Table 5-7 presents a summary of 

bounds appl ied i n  the GAMS model .  Other system variables are bounded between l E-6 

and l E6.  
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Table 5-7 Bounds Imposed on the GAMS m odel variab les 

P a r a m e t e r  U n i t  L o w e r  Bou n d  

Over flow rate of  primary clarifier (qp) mid 30 
Over flow rate of secondary clarifier mid 1 6  

So l ids Retention Time (SRT) d 4 

ludge recycle ratio (r) % of influent 20 

I nternal reci rculation ratio ( ir) % of influent 1 00 

Mixed L iquor Susp nded Sol ids mg/ l 3000 
(MLSS) 

The reader is referred to Appendix A for a copy of  the GAMS input fi le .  

5.5 Model  I n i tia l  Point  

U p per Bou n d  

1 20 

32 

27 

50 

300 

5000 

The high nonl ineali ty of the mathematical model developed i n  this study requires 

a proper in i tia l  point (feasible or c lose to feasible) that can direct its convergence process 

i nto the right direction. The feasible in it ia l  point refers to spec ified values of a l l  model 

variables that va l idate a l l  l isted constraints. For that reason, another mathematical tool is  

required. I n  th is  i l lustrative problem, M icrosoft EXCEL Solver is used to get the required 

ini t ia l  point for the developed GAMS model . In order to s impl ify the i teration process for 

EXCEL solver, the mathematical model is broken down into three parts solved in 

sequence. The solution found in  every step is considered i n  the subsequent step . 

Fo llowing is a description of each part: 

1 )  Primary Clarifier: The mathematical  model of the primary c larifi er consists of four 

equations and four variables. TSS2 is  d i rectly related to the pre-defined TSS 1 and other 

pre-defined parameters ; therefore, there is no need to include its model in the i teration. In 

order to fac i l i tate the convergence process, qp value of 1 20 In/day is assumed 

2)  Secondary Clarifier: The mathematical model of the secondary c larifier consists of five 

equations and seven variables. Effluent TSS (TSS6) is assumed equa l  to 1 0  mg/l .  The 
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value of  Q2, which is required for the flow balance equat ion across the tank, is already 

calculated from the primary clarifier set of equations. 

3)  A20 System: The mathematical model of the A20 system consists of 34 equations and 

38 vanables. Values of variables derived in the first two systems of equations are 

considered in this mathematical model .  

Fol lowing the above approach, the ini t ia l  point  needed for the GAMS model is 

prescribed in Table 5-8.  Definit ion of the variables in the table can be found in Table 4 - 1  

and Table  4-8.  Al l  concentrations are expressed in mg/J. 

Table 5-8 I n it ia l  Val ues for the system variab les as derived us ing EXCEL Solver 

Var iable Value Var iable Va lue  

Ap 299.80 SNH4 9.64 

qp 1 20.00 SN04 0.03 

At 1 925.06 XST04 9 1 0. 1 4  

qt 1 8. 50 XA4 57.52 

02 1 498.99 SP04 1 7.76 

06 1 483.66 XPHA4 660.62 

08 1 .01  XPA04 1 345.45 

09 1 5.33 XPP4 1 33.24 

Or 7 1 5.88 XI4 2236 . 9 1  

O i r  2, 1 7 1  TSS4 5208. 38 

Vanaer 1 0 1 1 .85 XS5 378.9 1 

Vano• 2999.68 XST05 91 7 .87 

Vaer 1 9 1 1 .03 XH5 1 342. 8 1  

TSS2 1 76.07 XA5 58.25 

SS3 30.57 XPHA5 622.02 

XS3 462.08 XPA05 1 359.83 

XH3 1 3 1 2 . 1 8  XPPs 1 49 . 7 1  

XPP3 1 1 3.34 XI5 2238. 5 8  

XPA03 2302. 1 7  SNH5 3.61  

S"'H3 1 8. 1 2  SN05 2.48 

XPHAJ 706. 1 9  SS5 1 .40 

SP03 37.60 Spos 1 .00 

TSS3 5 1 89.55 TSS5 5256 . 9 1  

SS4 35.80 TSS7 1 5903. 1 1  

Xs4 394.94 TSS8 79949. 1 4  

XH4 1 328.05 

. 
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5.6 Appl icat ion Problem Resu lts 

n in i t ia l  run for the GAM model is  carr ied out considering a l l  above-mentioned 

I sue re lated to the sy tem con tra ints and in i t ia l  po int .  The value o f the objective 

function, repre ent ing the total y tem annual co t, i s  US$ 2,344, 1 00 (2006) per year. 

apital and the s l udge di posal co  ts are the main contributors to the total system cost and 

thi h igh l ights the importance of elect ing the most econom ical ly feasible s l udge 

treatment and di posal method . F igure 5 - \ i l l ustrates the contribut ion percentage of every 

co t component considered in th i s  study. 

Capital Cost--

I • Operating & 
Ma intenance Cost 

o Material  Su pply for 
Maint .  

o Power Cost 

• Mixing Cost 

Disposa l Cost 
1 2% 9% 

Figu re 5-1 Contribution of Different Cost Components into the total a n n ual 

cost 

The model results are depicted below i n  a process  flow d iagram format. 
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-....I 0\ 

01  P,Im.., 
CI •• III.r 

08 

r 

V aer Volume of AerobiC Comp m3 

V anox Volume of AnOXIC Camp m3 

V anaer Volume of An-aerobic Camp m3 

T .... T .. v.un. lin'l 

Stream Descr iVlion Pal ame1e. 

Q Flow,ate 

TSS Total Suspended Solids 

XI Inert Particulate 

XS Slowly 810deg Substrate 

XH Heterotrophic Organisms 

XSTO Cell Storage Product of hel Organisms 

XPAO Phosphorus Accumulallng Organisms 

XPP Poly-Phosphate 

XFHA Cell Siorage P,oduct of PAO,ganlsms 

XA Autolrophlc / Nitrifying Organisms 

SS Soluble Substrate 

SNOX Nrtrate plus Nitrite Nitrogen 

SNH. Ammonium plus Ammonia Nitrogen 

SPO. InorganiC Soluble Phosphorus -

--

02 An-,l.rohic 

4 ,3)5 2  

5,508 6 

1 ,005 6 

10.819 

UtI;1 
1 

m3 / hr 1 ,500 0 

ppm 230 0 

ppm 92 4 

ppm 2 1 4 4 

ppm 0 0  

ppm 0 0  

ppm 0 0  

ppm 0 0  

ppm 0 0  

ppm 0 0  

ppm 161 8 

ppm 0 0  

ppm 25 0 

ppm 5 0  

air 

03 04 Anoxic • Aerobic 

Ap Surface Area of Primary Clarifier (m,) 
D,p Over nowrate of Primary Cla"fier (mlday) 

Af Surface Area of Final Clarifier (m') 
q, Over now,ale of Final Clarifier (m/day) 

2 3 4 5 
1 ,499 0 1 ,852 8 6 ,349 7 6 ,349 7 

1 76 0  4 , 1 95  3 4 ,206 3  4 ,205 3  

70 7 2,041 3 2 ,046 3 2 ,048 6 

164 1 286 5 189 1 1 76 3  

0 0  1 ,8OB 5 1 ,854 6 1 ,869 1 

0 0  572 4 61 1 0  591 1 

0 0  1 1 7 8 1 18 1  1 2 1 7 

0 0  80 5  86 4  88 2  

0 0  24 9 1 4 6 1 1 5 

0 0  1 1 2 5  1 1 5 0  1 1 6 2  

1 6 1 8 1 33 8  1 5 5  0 246 

0 0  1 . 3 0 2  7 0  

25 0  21 0 8 0  1 0  

5 0  9 2  2 9  1 0  ----_ ... _- ---- -

05 Final 06 

y. 
07 

0, 09 

299 8 r RecHculatlon ratio 0 236 

120 0 " Internal recHculatlon ratio 3 00  

1 ,628 0 System Cost 2006 USS / yr 52,344 100 

21 9 

Sueam No. 10 

6 7 8 9 , II 

1 ,488 2 364 6 1 0  1 0 8 353 8 4 ,497 0 

1 5 0  21 ,329 1 80,000 0 21 ,329 1 21 ,329 1 4,205 3 

7 3  1 0 ,390 5 32,1 39 1 10,390 5 1 0 ,390 5 2,048 6 

0 6  894 0 74 ,584 3 894 0 894 0 1 76 3  

6 7  9 ,480 3 0 0  9,480 3 9,480 3 1 ,869 1  

2 1  2 ,997 8 0 0  2 ,997 8 2 ,997 8 591 1 

0 4  61 7 5  0 0  61 7 5  61 7 5  121 7 

0 3  447 5 0 0  447 5 447 5 88 2  

0 0  58 1 0 0  58 1 58 1  1 1 5  

0 4  589 3 0 0  589 3  589 3 1 16 2  

0 2  0 2  161 8 0 2  0 2  0 2  

7 0  7 0  0 0  7 0  7 0  7 0  

1 0  1 0  25 0 1 0  1 0  1 0  

1 0  1 0  5 0  1 0  1 0  1 0  



The results shov that the internal rec i rcu lation ratio ( ir) is on i ts upper bound of 3 .  

In order to investigate the system perfom1ance a t  internal rec irculation rat ios hiaher I:> 
than 3 ,  the model was re-run with unbounded internal recirculat ion ratio (ir) .  Results 

are summarized in Table 5 -9 .  

Table 5-9 System performance at u n bounded upper l imit of i nterna l  reci rcu lat ion 

rat io 

Upper Bound on 

Symbol Description Units Internal Recirc. = Unbound Internal 
3 (Metcalf & Eddy Recirc. ratio 

1 991) 
q Overflow rate of Primary Clarifier mId 1 20.0 1 20.0 

Ap Surface Area of Primary Clarifier m2 299.8 299.8 

qf Overflow rate of Second. Clarifier mId 2 1 .9 22.1  

Af  Surface Area of Second. Clarifier m2 1 628.0 1 ,6 1 7.9 

V anaer Anaerobic Volume m3 1 ,005.6 1 ,060.9 

V anox Anoxic Volume m3 5 ,508.6 3 ,345.9 

V aer Aerobic Volume m3 4 ,305.2 4,531 

V tot Total Reactor Volume m3 1 0, 8 1 9  8 ,938 

r ReCIrculation Ratio - 0.235 0.200 

ir Internal Recirculation Ratio - 3.0 3 . 1 63 

SRT tot Solids Retention Time d 7 .50 5 .90 

TSS6 Total Suspended Solids mg/L as TSS 1 5.0 1 5.0 

SS6 Readily Biodeg. Su bstrate 
mg/L a s  

0.24 0.25 COD 
SNH6 Ammonium plus Ammonia N itrogen mg/L as N 1 .0 1 .0 

SN06 Nitrate plus N itrite Nitrogen mg/L as N 7.0 7 .0 

SP06 Inorganic Soluble Phosphorus mg/L as P 1 .0 1 .0 

MLSS Mixed liquor suspended solids mg/L 4205.2 4 0 1 9.3 

06 Effluent Flow Rate m3 /hr 1 488.2 1 489.0 

09+08 Waste streams m3 / hr 1 1 .7 1 0.9 

Sludge Disposed Sludge Kg / d 7474.7  7502.7 

Cost System Annual  Cost 2006 $ /year 2,344 , 1 00 2 , 3 1 6,600 

The results show that the object ive function value is improved by around 1 .2%. I n  

order to  know exactly where the cost savings has  occurred, comparison between the costs 

of the system when ir is  unbounded against the cost of the system when ir is  bounded by 3 

i s  shown in  Table 5 - I O. 
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Table 5-1 0 

Cost Item 

Capital Cost 

Operation Cost 

M aterial Cost 

Power Cost 

Mixing Cost 

Disposal Cost 

Cost comparison between the des i g n  of bou nded intern al  rec ircu lat ion ratio 

against the design of u nbounded i nternal  recirculation ratio 

Cost ( 2006 US$ per year) 

Component 
Upper Bound on  Unbou nded % 
Intern al  Rec i rc.  = I nterna l  Change 
3 (Metcalf & Eddy Recircu lat ion 
1 99 1 )  Ratio 

Aerobic Tank 75,7 1 4  78,5 1 3 3.7 
Anoxic Tank 90, 1 94 63,307 -29.8 
Anaerobic Tank 26 ,964 28,008 3.9 

Primary Settl ing Tank 28,736 28,736 0 .0 

Secondary Settl ing Tank 1 05,74 1 1 05,236 -0.5 

Diffu sers 1 44 ,035 1 44,048 0 .0 
Primary Sludge 

4 ,294 4,294 0 .0 P umpi ng 

Return Sl udge Pu mping 95,429 87,573 -8.2 

I nternal S ludge Pumping 367,882 378,355 2.8 

Waste Sludge Pumping 1 5,030 1 4 ,405 -4.2 

Total 954,0 1 9  932,475 -2 . 3  

Primary Sett l ing Tank 6 , 4 5 1  6 ,451  0 .0  
Primary Sludge 

2,969 2,969 0.0 Pumping 

Diffu sers 34 , 1 44 34 , 1 4 7 0.0 

Second a ry Settl ing Tank 1 7, 804 1 7 ,738 -0.4 

Retu rn Sludge Pumping 33,929 3 1 , 7 1 4  -6 . 5  

I nternal S ludge Pumping 98,020 1 00,207 2.2 

Waste Sludge Pumping 7 ,94 1 7,681 -3.3 

Total 201 ,259 200,908 -0 .2  

Primary Settling Tank 3 , 1 98 3, 1 98 0 .0 

Primary Sl udge 
1 ,050 1 ,050 0.0 

P u mping 
S econdary Settling Tank 1 1 ,569 1 1 , 5 1 4  -0 . 5  

Return Sludge P u mping 44,4 1 7  40,042 -9.8 

I nternal Sludge Pumping 226 ,576 234,386 3.4 

Waste Sludge Pumping 4 , 767 4 ,529 -5.0 

Total 291 ,576 294,71 9 1 . 1  

Primary Sludge 
8 8 0 .0  

Pumping 

Return Sludge Pumping 5,255 4 ,469 - 1 5 . 0  

I nternal Sludge Pumping 33, 5 1 7 35,339 5 . 4  

Waste Sludge Pumping 80 74 -7 .7 

Total 38,859 39,890 2.7 

Anoxic Tank 33,779 20, 5 1 7 -39 . 3  

Anaerobic Tan k  6 , 1 67 6 , 506 5 . 5  

Total 39,945 27,023 -32.4 

81 8,441 821 ,586 0.4 

Total 2,344,1 00 2 ,31 6,600 - 1 .2 
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From Table 5 - 1 0, i t  is c lear that the reason for this improvement in the total cost is 

the 5% increase in the i r  which resulted in reducing the r to its lower bound value.  This 

5% incren e in the internal recirculation ratio ( i r) has reduced the volume of the anoxic 

compartment by around 40% and this is actual ly  the main cost saving that reduced the 

total system co t .  The results a lso show that the sludge c irculation ratio was reduced by 

around 1 5% resulting in a s l ight increase (by around 5%) in both anaerobic and aerobic 

reactors in order to compensate for the reduced amount of the recycled organisms into the 

system. Reducing the r wi l l  result also in reducing the MLSS value in the reactor and 

therefore les olume of waste streams are to be discharged from the system. From the 

above discussion we can conclude that the s ludge circulation ratio ( r) in this problem is 

basically governed by the denitrification process because it has to convey a sufficient 

amount of denitrifiers in order to achieve the required n itrate leve l .  However, increasing 

the internal rec i rculation ratio ( ir) to achieve the required denitrification level is more 

economical as i t  wi l l  result in reducing the organisms' r and the anoxic reactor volume 

considerably. The system sensitivity to the ir  wi l l  be further investigated in the next 

section. 

Since relaxing the upper bound of the i ntemal recirculation ratio has resulted i n  

reducing the s ludge c irculation rate t o  its lower bound of 0 . 2 ,  another model run i s  caJTied 

out to investigate the model results when the lower bound of the s ludge c irculation ratio i s  

omitted. Results have shown 1 .5% improvement in the objective function value but  with a 

reduction i n  the recirculation ratio by more than 50%. This i s  actual ly  considered a large 

deviation from the common design practice and therefore the minimum sludge c irculation 

ratio of 0 .2  wi l l  be maintained. 

It i s  also noticed that the system resulted in a pnmary c larifier des ign with 

maximum a l lowed overflow rate (qp= 1 20 rn/day) . To investigate the system perfomJance 

at h igher primary overflow rate value, the model was re-run with upper bound on primary 

overflow rate set equal to 1 E+6.  Results has shown that the model converge for a lmost 5 

t imes higher primary overflow rate with a reduction in the total system annual cost by 

around 3% , refer to Table 5 - 1 l .  
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Table 5-1 1 Model performa nce at unbou nded primary overflow rate 

Symbol Description Units Value 

q Overflow rate of Primary Clarifier mId 560. 7  

Ap Surface Area of Primary Clarifier m2 
64.2 

q f  Overflow rate o f  Second. Clarifier mId 22. 1 

Af Surface Area of Second. Clarifier m2 . -

1 ,61 7 .3  

V anaer Anaerobic Volume m3 1 ,224 .8  

V anox Anoxic Volume m3 3 ,494.0 

V aer Aerobic Volume m3 5,22 1 

V tot Total Reactor Volume m3 9,940 

r Recirculation Ratio - 0.200 

i r  Intemal Recirculation Ratio - 3.276 

SRT tot Solids Retention Time d 5.67 

TSS6 Total Suspended Solids mg/L as TSS 1 5.0 

S S6 Readily Biodeg. Substrate 
mg/L as 

0.278 
COD 

SNH6 Ammonium p lus  Ammonia N itrogen mg/L as N 1 .0 

S N 06 N itrate plus Nitrite Nitrogen mg/L as N 7.0 

SP06 Inorganic Soluble Phosphorus mg/L as P 1 .000 

MLSS M ixed liquor suspended solids mg/L 4027.540 

06 Effluent Flow Rate m3 /hr 1 488.047 

09+08 Waste streams m3 I hr 1 1 .953 

Sludge Disposed Sludge Kg I day 6946.208 

Cost System Annual Cost 2006 S /year 2,266,600 

The resul ts in  the table above indicate that the primary clarifier is not effectively 

part icipating in the treatment process and a reduction in the total system annual cost 

m ight be achieved if the system is designed without a primary clari fier. 

The waste streams discharged from the system are e ither from the primary or the 

secondary c larifiers. However the type of  the d isposed sludge is di fferent in each case. 

The s ludge rejected from the primary c larifier contains mainly slowly biodegradable 

substrate ( Xs) and inert particulates (XD in ratios equal to 70 and 3 0% respect ively. I n  

contrast, the s ludge rejected from the secondary c larifiers i s  rich in t h e  organisms grown 

in the biological reactor. The table below summarizes the composition the sludge rejected 

from the secondary clarifier. 
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Table 5-1 2 Composit ion of s l udge rejected from the secondary clarifier 

Component  Description U n its Percent 

XI Inert Particulate mg/I 36.5 

Xs Slowly Blodeg. Substrate mg/I 3 . 1  

XH Heterotrophic Organisms mg/I 39.9 

XSTO Cell Storage Product of he!. Organisms mg/I 8.4 

XPAO Phosphorus Accumulating Organisms mg/l 2 . 6  

Xpp Poly-Phosphate mgtl 6.8 

XPHA Cell Storage Product of PAO organisms mgtl 0 . 2  

XA Autotrophic I Nitrifying O rganisms mgtl 2 . 5  

The abo e table shows that the heterotrophic organisms (XH) and inert particulates 

( XI) fom1 more than 75% of the s ludge composition. This result  agrees with what has 

been reported by Koch et al. (200 1 ) . 
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C H APTER VI 

MODEL PERFORMANCE AND SENSITIVITY 

In this sect ion, the sensitivity of the developed mathematical model for the A20 
B R system is exp lored under different real ist ic design conditions. Sensitivity analyses 

are beneficial in detennining the direction of future data col lection activities . Data for 

which the model i s  relatively sensitive would require careful characterization, as opposed 

to data for which the model are relatively insensitive. Two approaches are fol lowed in 

studying the model sensitivity, first by varying the model input parameters over a 

reasonable range and second by changing the constraints appl ied on the model variables 

(ei ther re lax ing or t ightening). Typical ly, and for the purpose of this study, model 

sensitivity to changes in influent temperature, flow rate and quality are noted. Model 

sensitivity to e ffluent qual i ty is noted as well . The model performance is also tested for 

prescribed changes i n  the most sensitive kinetic parameters. 

6. 1 Effect of Temperatu re 

Research has shown that the temperature of the i nfluent to WWTPs has a 

significant i mpact on both sedimentation and biological treatment processes. The effect of 

temperature on sedimentation processes i s  sti l l  considered a hot  research point because of 

the di fficult ies in predicting the behavior of the sedimentation tanks by theoretical 

mathematical models .  Christoulas et a 1 .  ( 1 998) found that influent temperature is an 

i mportant factor that affects particles sett l ing velocity and velocity gradients. 

On the other hand, the temperature dependence of the biological reaction rates is 

very important in assessing the overa l l  efficiency of the biological phosphorus and 

n itrogen removal process. Literature review revealed an agreement between most 

researchers in which better biological n itrogen removal efficiency can be achieved at 

h igher temperatures but below 30°C.  For example ,  Choi et a ! . ( 1 998) reported, based on a 

lab scale modified VCT process, that the denitrification rate at SoC i s  roughly 1 0  times 

lower than at 1 0°C.  
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Researchers have d ifferentiated between the temperature effect on ni trifiers ' 

growth and temperature effect on ni trifiers ' activity .  According to Metcalf  & Eddy 

( 1 99 1  a), Temperature has a strong effect on the growth of ni trifiers, but quantifying the 

effect has been difficult .  Part of the difficulty in quantifying temperature effects is the fact  

that the optimum temperature is  not  fixed s ince i t  varies as the total ammonia-N 

concentration changes (Quinlan, 1 984) . The trend with optimal temperature for n itrifiers 

growth appears to be that the growth rate increases as temperature increases up to 

approximately 3 5°C wi th an overal l  range for growth between 4°C and 45 to 50°C 

(Antoniou et a! . 1 990). This means that at temperature range between 35°C and 50°C, 

n i trifiers can sti l l  grow but with reduced rate .  Regarding the temperature effect on 

n itrifiers ' act ivity, the optimal temperature for n itrifiers ' activity has been reported to be 

as low as 1 5°C (Charley et a 1 . , 1 980), but more typica l ly appears to increase with 

i ncreasing temperature up to approximately 3 0°C, slowing down as the temperature 

increases beyond that (Fdz-Polanco et al . , 1 994). Especial ly at lower temperatures, 

n i trification appears to be more severely affected than denitrification by temperature 

changes (Azevedo et a l .  1 995) .  

As with n itrification, temperature affects both the activity and the growth rate of 

the organisms i nvolved in denitrification (de-nitrifiers) (Metca I f  & Eddy ] 99 1 a). 

Deni trification is reported to occur at temperature range between 0 and 50°C, with 

optimum reaction rates occurring at 30 - 50°C ( Barnes and B l iss, 1 983) .  It is c lear that 

h igher temperatures are of greater concem on nitrificat ion process than the de­

n i trification process . It is important to note that the exponential expression suggested by 

H enze et a l .  (2000) (Eq 4-8 and Eq 4-9) to model the temperature effect on the organisms 

growth rate is a general mathematical expression suggested for all organisms ' types and 

does not consider the specific temperature effec t  on the n itrifiers and de-nitrifiers. This 

exponential expression for the temperature effec t  on the kinetic parameters can probably 

be successful ly appl ied at a temperature range between 1 0  to 30°C. 

Contradictory resu l ts are noticed on the temperature effect  on the Enhanced 

Biological Phosphorus Removal (EBPR). Beatons et a l .  ( !  999) i nvestigated the 

temperature effect on the EBPR in SBR process operated at temperatures between 5 and 

20 °C and at a constant SRT of 1 0  days . The experiment results reported that P-release is 

highest at tempera ture between 1 5  and 20°C.  This concludes better phosphorus removal 
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efficIency at higher temperatures .  Obaja D. et a l .  (2003 ) operated experi mental ly a 

sequencing batch reactor (SBR) with anaerobic, anoxic and aerobic s tages and concluded 

that good nutrient removal i achieved at temperatures higher than 1 6°C. However, 

Marklund and Morling ( 1 994) u ed a fu l l  scale sequencing batch reactor to show the 

Enhanced Biological Phosphorus Removal was not lost even at temperatures as low as 3 

to 8°C.  Jonsson et a! . ( 1 996) showed using a fu l l  scale UCT plant that the concentration 

of soluble phosphorus in the plant effluent was lower than 0.3 mg/l even at temperatures 

below l OoC. Such removal efficiency can be achieved as long as enough volati le fatty 

acids are present in the wastewater. Converti et a ! .  ( 1 995) used a modified Anaerobic 

Oxic 0 process to s tudy the temperature effect on the EBPR process for a range of 5 to 

35°C.  The results showed that the P removal efficiency varied between 60 to 62 .5% over 

the considered temperature range. They stated that the time necessary to achieve the 

desired P removal was strongly i ncreased as temperature decreased. 

In this s tudy, the effect of temperature on the kinetic parameters of the biological 

process is expressed using the exponential expression (Eq. 4-8 and Eq. 4-9) recommended 

in Henze et a 1 .  (2000). A quick review on the typical  values of the kinetic parameters 

given in Henze et a ! .  (2000), shows that some parameters are not affected by the 

temperature change. Values of the temperature-affected kinetic parameters at di fferent 

temperatures are derived using the above-mentioned exponential  expression and 

summarized in Table 6- 1 .  It is obvious that kinetic parameter values increase as 

temperature i ncreases. 
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Table 6-1 Va lues of Kinetic Parameters i n  in ASM3/EAWAG Bio-P module at d i fferent 

Temperatu res 

Parameter 
Temperature iC) Temperature 

Coefficient (9) 1 0  2 0  3 0  
kH 2 3 4 . 5  0.04 

ksTO 2 . 5  5 1 0  0.07 

UH 1 2 4 0.07 

bH02 0 . 1  0 .2  0 .4 0 .07 

bHNOX 0.05 0 . 1 0.2 0 .07 

bSTOO2 0. 1 0 . 2  0 .4  0 .07 

bSTO NOX 0.05 0 . 1 0.2 0.07 

UA 0.35 1 2 .86 0 . 1  

bA02 0.05 0. 1 5  0.45 0 . 1 1 

bANOX 0.02 0.05 0 . 1 3  0 . 09 

qPHA 4.02 6 8.95 0 . 04 

qpp 1 .0 1  1 . 5 2.24 0 .04 

UPAO 0.5 1 2 . 0 1  0 . 0 7  

bpAO 0 . 1  0 . 2  0.4 0 . 07 

bpp 0. 1 0 . 2  0 . 4  0.07 

bpHA 0 . 1  0 . 2  0.4 0.07 

I n  order to study the temperature sens i tivi ty of the A20 system mathematical 

model ,  several model runs are carried out at temperatures between 1 0  to 30°C and 

compared with the base case run i l lustrated in section 5, which was carried out at 20°C. 

At temperatures greater than 20°C, the model was unable to converge into a 

feasible solution unless the upper bound on either the r or the ir is re laxed. Since it was 

a l ready concluded in  the i l lustrat ive problem that relaxing the internal recirculation ratio 

( i r) wi l l  resul t  in  a more economic solution because of the considerable saving in the 

anoxic volume ractor, temperature sensit ivi ty analysis is carried out without imposing any 

upper bound on the ir. Model results are summarized in Table  6-2. 
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Table 6·2 A20 System Desig n at D ifferent Temperatures 

Temperatures °c 
Symbol Description Units 

10 20 30 

q Overflow rate of Primary Clarifier mId 1 20.0 1 20.0 1 20.0 

Ap Surface Area of Primary Clarifier m2 
299.8 299.8 299.8 

qf Overflow rate of Second. Clarifier mId 22. 1 22.1  22. 1 

Af Surface Area of Second. Clarifier m2 1 6 1 8.3 1 ,6 1 7.9 1 ,6 1 9.6 

V anaer Anaerobic Volume mJ 1 ,675.8 1 ,060.9 961 . 1  

V anox Anoxic Volume m3 6,272 . 1  3 .345.9 3,384 . 1  

V aer Aerobic Volume m3 1 1 ,2 1 7  4 , 530.9 4,976.0 

V tot Total Reactor Volume m3 1 9 , 1 64 8 ,938 9,321 

r Recirculation Ralio . 0.200 0 .200 0.200 

ir I nternal Recirculation Ratio . 3.3  3 . 1 63 3.561 

SRT tol Solids Retention Time d 1 3.32 5.90 7 . 57 

TSS6 T olal Suspended Solids mg/L as  TSS 1 5.0 1 5.0 1 5 .0 

SS6 Readily Biodeg. Su bstrate 
mg/L as 

0 . 1 97 0 .250 0. 1 09 COD 

SNH6 Ammonium plus Ammonia N itrogen mg/L as N 1 .00 1 .0 0.37 

SN06 Nitrate plus Nitrite Nitrogen mg/L as N 7 .0 7 .0 7.0 

SP06 Inorganic Soluble Phosphorus mg/L as P 1 .0 1 .000 1 .0 

MLSS Mixed liquor suspended solids mg/L 401 6.69 401 9.327 4009.56 

06 Effluent Flow Rate m3 /hr 1 489.61 1 489 .035 1 49 1 . 1 4  

09+08 Waste streams m3 I hr 1 0.40 1 0.965 8.86 

Sludge D isposed Sludge Kg I d 7 1 90.59 7502.7 1 8  6347 .75 

AFR Air Flow Rate m3 / min 267.44 2 58.4 298.56 

Cost System Annual Cost 2006 S /year 2,447,400 2 ,3 1 6,600 2,260,300 

The results reported in Table 6·2 shows that the total system cost decreases as 

temperature decreases. It is also noted that the internal reci rculation ratio sl ightly increase 

above and below the base case scenario .  Refer to Figure 6- 1 .  
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At l Ooe lower, the total system annual cost has increased by around 5 .5%. The 

model behav ior at lov er temperature i s expected and interpreted by the lower growth 

rates of the m icroorgan isms at lower temperatures wh ich have to be met by a new design 

wi th more than 1 1 4% larger reactor volume and 1 25% more retention t ime. The mai n 

i ncrease i n the reactor volume i s in the aerobic compartment wh ich i s mai n ly governed by 

the n itri fication process requ i red to ach ieve an ammon ium n itrogen level of  less than or 

equal I mg/l .  The i r has increased by around 5% to compensate for the lower den itri fiers 

growth rate. 

At a temperatures h igher than the base case scenario ( i .e .  30 °C), the total  system 

annual cost has decreased by around 2 .5%. The resu lts are c learly showing that the mai n 

savings in the system at h igher temperatures came from the lower amounts of  s ludge to be 

disposed. At  30oe, the amount of  generated s ludge i s lower by more than 1 5% compared 

to the amount generated at 20oe . A s  demonstrated in the i l l ustrat ive problem, the d i sposal 

cost counts 35% of the total system annual cost and therefore i t has a s ign i ficant impact 

on the mode l object ive funct ion .  Th is actual ly explain s  why the model has imposed a 

s l ight i ncrease on the reactor volume ( i .e. 4 .3% at 30°C)  and the internal rec i rculat ion 

ratio ( i .e .  1 3% at  30°C). A lthough it m ight appear that increasi ng the reactor volume and 
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the ir might increase the ystem co t, that was no the case where such slight increase 

re ul t  in more reduction in the amount of s ludge produced by the system which 

eventual ly ha more impact on the system cost. This increase in the reactor volume and 

the internal recirculation rate, and at the same time keeping the r unchanged, wil l  result in  

the death of higher percentage of the heterotrophic organ ism, which is  one of the main 

s ludge components ( refer to Table  5 - 1 2) ,  in  addition to better hydrolysis of the readi ly 

b iodegradable substrates (Xs) .  Al though the death of heterotrophs wi l l  result in  producing 

i nert part iculates, this wont have a significant impact on the s ludge volume reduction 

kno\ving that the stoichiometric parameter ( fxl) of the ASM3 matrix that relates the 

biomass endogenous respiration to the inert part iculates generation is  equal to 0. 1 only. I n  

other words, death of 1 mg/l of biomass generates 0 . 1 mg/l of  inert part iculates. Moreover, 

the biomass contribution to the TSS ( irSS,BM) is 20% higher than the i nert particulates 

contribution to the TSS ( iTSS,XI) .  

In  conclusion, the model results show that the objective function value i s  

governed by  the i ncrease in the capital cost of the system ( i . e .  volume of reactor) at lower 

temperatures while it is governed by the s ludge d isposal cost at higher temperatures. We 

conclude also that the upper l imit of 3 for the i nternal recirculation ratio (recommended 

by Metcalf & Eddy 1 99 1 )  may not result  into ao economically feasible design especial ly 

at temperatures above 20°C, which i s  most l ikely the case in UAE and other GCC 

countries .  At h igher temperatures, it w i l l  be more economical to increase the ir to more 

than 3 whi le  the r is maintained fixed. This wi l l  resul t  in  reduc ing the amount of sludge 

generated from the system as it w i l l  increase the b iomass retention in the system and 

therefore their endogenous respiration rate. From the BNRlWWTPs operation point of 

view, i ncreasing the internal recirculation ratio of the plant during the summer season can 

achieve a significant reduction in the amount of s ludge generated and therefore reducing 

the OPEX. 

6.2 E ffec t  of I nfluent Flow Rate 

In the base case problem, the influent flow rate was 1 ,500 m31hr. Considering the 

base case problem, model performance is examined for lower and higher flow rates. 

Results are summarized in Table 6-3 . 
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Table 6-3 A20 System Design at d ifferent in fl uent flow rates (at 20°C) 

Symbol Description Units 
Flow Rate (m3/hr) 

500 1500 2500 

q Overflow rate of Primary Clarifier mId 1 20.0 1 20.0 1 20.0 

Ap Surface Area of Primary Clarifier m2 
99.9 299.8 499.7 

qf Overflow rate of Second. Clarifier mId 22.1  22. 1 22. 1  

Af Surface Area of Second. Clarifier m2 
539.3 1 ,61 7.9 2696.5 

V anaer Anaerobic Volu me m3 353.3 1 ,060.9 1 ,769.0 

V anox Anoxic Volume m3 1 , 1 80.9 3 .345.9 5,438.9 

V aer Aerobic Volume mJ 1 ,509.4 4,530.9 7 ,554 

V tot Total Reactor Volume mJ 3,044 8,938 1 4,762 

r Recirculation Ratio - 0.200 0.200 0.200 

ir I nternal Recirculation Ratio - 3 . 1 4  3 . 1 6  3.2 

SRT tot Solids Retention Time d 6.03 5.90 5.84 

TSS6 Total Suspended Solids mg/L as  TSS 1 5.0 1 5.0 1 5.0 

SS6 Readi ly B iodeg. Substrate mg/L as COD 0.249 0.250 0.250 

SNH6 Ammonium plus Ammonia N itrogen mg/L as N 1 .0 1 .0 1 .0 

SN06 Nitrate plus N itrite N itrogen mg/L as N 7.0 7.0 7.0 

SP06 Inorganic Soluble Phosphorus mgfL as P 1 .0 1 .000 1 .0 

MLSS Mixed liquor suspended solids mg/L 4,0 1 9 . 3  401 9.327 4,01 9.3 

06 Effluent Flow Rate m3 /hr 496.3 1 489.035 2,48 1 .7 

09+08 Waste streams m3 I hr 3.653 1 0.965 1 8.278 

Sludge Disposed Sludge Kg I d 2 ,499.96 7 502.7 1 8  1 2,506.6 

AFR Air F low Rate m3 I min 86. 1 2  258.4 430.6 

Cost System Annual Cost 2006 $ Iyear 1 ,039, 1 00 2 ,31 6,600 3 ,423,800 

The model results are expected as they show an increase in the total annual cost 

with increasing flow rate and vice versa. I t  i s  clear that the system design in terms of r, ir 

and the SRT is almost same for higher and lower flow rates. Otber des ign parameters are 

e ither scaled up for h igher flow rates or scaled down for lower flow rates. The design 

parameters are scaled up or down in a percentage equal to the percentage increase or 

decrease in the in fluent flow rate. 
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6.3 Effect o f  Wastewater Qua l i ty 

As stated earl ier, the base case design is carried out \I i th a medium strength 

waste ater qual i ty quoted from Metcalf  & Eddy 1 99 1 .  Model performance, at increased 

and decreased selected quali ty parameters is  investigated in this subsection. The model i s  

also tested with h igher and lower strength wastewater qual i ty both quoted from M etcalf & 

Eddy ( 1 99 1 )  as wel l .  Table 6-4 shows the model performance at d ifferent wastewater 

qua l i t ies compared to the base case run of this study. 
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Table 6-4 Model Performance at d ifferent Wastewater Qual it ies 

Symbol Description 

Influent Characteristics I--Q Flow Rate 

T Temperature 

BODS Biochemical Oxygen Demand (sdays) 

COD Chemical Oxygen Demand 

VSS Volatile Suspended Solids 

XH Heterotrophic Organisms 

XSTO Cell Storage Product of het. Organis. 

XPAO Phosphorus Accumulating Organ is. 

Xpp Poly-Phosphate 

XPHA Cell Storage Product of PAO 

XA Autotrophic t N itrifying Organisms 

TSS Total Suspended Solids 

SNH4 Ammonium plus Ammonia N itrogen 

SNOX N itrate plus Nitrite Nitrogen 

SP04 I norganic Soluble Phosphorus 

A 2 0  System Desiqn 
q 

Ap 

qf 

Af 

Vanaer 

Vanox 
Va•r 
VIOl 

Overflow rate of Primary Clarifier 

Surface Area of Primary Clarifier 

Overflow rate of Second. Clarifier 

Surface Area of Second. Clarifier 

Anaerobic Volume 

Anoxic Volume 

Aerobic Volume 

Total Reactor Volume 
- ----- --_ .. _------

Units 
Base 

Case 

m3 I hr 1 500 

°c 20 

mg/l 220 

mg/l 500 

mg/l 1 65 

mgll as COD 0 

mg/l as COD 0 

mg/l as COD 0 

mgtl as P 0 

mg/l as COD 0 

mg/l as COD 0 

mg/l as TSS 230 

mg/l as N 25 

mg/l as N 0 

mg/l as P 5 

mId 1 20.0 

m2 
299.8 

mId 22.1  

m2 
1 ,6 1 7  9 

m3 
1 .060 9 

m3 
3 , 345.9 

m3 
4 , 530 9 

m3 
8,938 

9 1  

1 

1 500 

20 

220 

500 

1 65 

0 

0 

0 

0 

0 

0 

230 

35 

0 

5 

1 20.00 

299.80 

22.09 

1 6 1 8 .44 

1 , 1 20 . 7  

6 , 2 1 9 .4 

5,084.3 

1 2 ,424 

2 3 4 5 6 

1 500 1 500 1 500 1 500 1 500 

20 20 20 20 20 

220 308 220 400 1 1 0  
500 708 500 1 000 250 
1 65 1 65 229 275 80 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

230 230 322 350 1 00 
25 25 25 50 1 2  
0 0 0 0 0 

7 5 5 1 0  3 

1 20.00 1 20.00 1 20 0 1 20.00 1 20.00 

299.80 299.80 299.3 299 1 5  299 98 

22.09 22 . 1 0  22.1 22.08 22.1  

1 6 1 7 . 54 1 ,620.2 1 ,6 1 2 .8 1 .6 1 2 0 1 ,623.5 

1 , 1 07.6 1 , 1 10 .2  1 ,384.4 1 ,582.4 577 9 

3.494.8 3.379.7 4 . 1 94 1 8,343.7 9 1 6  

4,70 1 . 7 7,854 5,827 4 8.204 2,984 

9,304 1 2 ,344 1 1 ,406 1 8 , 1 30 4,478 



Symbol Description 

r Recirculation Ratio 

ir Internal Recirculation Ratio 

SRT'ot Solids Retention Time 

TSS6 Total Suspended Solids 

SS6 Readily Biodeg . Substrate 

SNH6 Ammonium plus Ammonia N itrogen 

SN06 Nitrate plus Nitrite Nitrogen 

SP06 Inorganic Soluble Phosphorus 

MLSS Mixed liquor suspended solids 

06 Efnuent Flow Rate 

09+08 Waste streams 

Sludge Disposed Sludge 

AFR Air Flow Rate 

Cost System Annual Cost 
-

Units 

-

-

d 

mg/L as TSS 

mg/L as COD 

mg/L as N 

mg/L as N 

mg/L as P 

mg/L 

m3 /hr 

m3 1 hr  

Kg I day 

m3 1 min 

2006 $ /year 

Base 
Case 

0.200 

3 . 1 6  

5.90 

1 5.0 

0.250 

1 .0 

7.0 

1 000 

401 9.327 

1 489 035 

1 0.965 

7502 7 1 8  

258.4 

2 , 3 1 6 ,600 

92 

1 

0 200 

4 856 

8.74 

1 5.0 

0 . 1 33 

0.85 

7.00 

1 .00 

4 0 1 6 09 

1 489.74 

1 0.27 

7 1 1 9.73 

305.055 

2 , 563,200 

2 3 4 

0.200 0.200 0.2 

3 1 7 3.90 3 . 1  

5.92 1 1 .03 5.9 

1 5.0 1 5.0 1 5.0 

0.248 0 . 1 5 1  0 2  

1 .00 0 . 43 1 .0 

7.00 7 00 7.0 

1 .00 1 00 1 .0 

402 1 .25 4005.77 4,034.3 

1 488.62 1491 .9!; 1 .483 5 

1 1 .38 8.05 1 6 . 5  

7729.98 5899.53 1 1 ,089 . 1  

258.39 370.29 248.4 

2.348, 500 2 , 3 1 6 ,400 2,751 ,500 

5 

0 200 

7 82 

9.53 

1 5 . 0  

0 1 1 9  

0 68 

7 00 

1 .00 

4032.85 

1 482.87 

1 7 . 1 3  

1 1 520.47 

492.27 

3 , 5 1 3 .000 
_.- -

6 

0 200 

1 .00 

6 24 

1 5.0 

0294 

0.66 

7.00 

1 .00 

3992 .04 

1 495.78 

4 .22 

2522.26 

1 43 04 

1 .257,700 
- -



I n  case 1 ,  i ncreasing the Ammonium plus ammOl1la n itrogen (SNH4) 

concentration by 40% ( i . e. from 25 mg/ I to 35  mg/ I )  has resul ted in an increase in the 

total system annual cost by around 1 0%. Such increase has resulted in an increased 

reactor volume and mainly the aerobic compartment in order to provide the sufficient 

n itrification capacity. The h igher n itrification capaci ty has resulted in increasing the ir by 

more than 50% and the anoxic compartment by 85% in order to accommodate the 

increase in the n itrate (N03) fom1ation and maintain the required level of nitrate in the 

effluent. 

In case 2,  the inorganic phosphorus concentration i s  increased by 40% ( from 5 to 

7 mg/ I) .  This i ncrease has i ncreased the total system annual cost by 1 .4% only.  This 

indicates that the system cost i s  seven t imes more sensit ive to the increase in the 

ammol1lum concentration compared to the i ncrease in the phosphorus concentration of the 

influent. The main design change i s  noticed on the reactor volume which is increased by 

around 4°'0 and reflected on a l l  reactors. The increase in the anaerobic compartment i s  

required in order to  a l low the PAOs to achieve better storage of XPHA components which 

are going to be respired during the phosphorus uptake phase in both anoxic and aerobic 

compartments.  The i ncrease i n  the anoxic and the aerobic compartments i s  also necessary 

to compensate for the reduced amount of substrates transferred from the anaerobic 

compartment because of the higher substrate consumption in the anaerobic phase caused 

by the PAOs. 

In case 3, Both COD and BOD are i ncreased by around 40% considering the 

relation COD�.3 BODs whi le  other qual i ty parameters are kept unchanged from the base 

case values. This increase in the COD & BOD has resulted in a minimal  reduction in the 

total annual system cost ( less than 0.0 I %). However, a major change i s  noticed in the 

optimal volume of the aerobic reactor. The SRT is almost doubled at fixed r which 

resulted in 20% less s ludge volume because of the longer endogenous respiration phase 

available for the organisms. The system has main ly  increased the aerobic compartment 

volume since endogenous respiration rate is faster under aerobic condi tions. 

I n  case 4, both VSS and TSS are increased by 40% considering the relation 

YSS:::::O . 7 1  *TSS. The VSS is d irectly related to the concentrat ion of the inert part iculates 
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through the re lation : I nert Part icu late (XI)  =0 .56  V S .  The I ne rt partic u lates does not 

undergo any treatment during the proce s but produced through the aerobic and anoxic 

endogenous respirat ion processes of the heterotrophic  and autotrophic organ isms. 

Therefore, the amount of (Xl)  increa es during the bio logical treatment process and then 

sett le in the fi nal edi mentation tank. So, increa ing the amount of the inert part icu lates 

w i l l  re u l t  in increasing the amount of s ludge produced from the system and therefore a 

con iderable increa e in  the s stem cost as the s l udge d isposa l counts for 35% of the tota l 

system cost, Refer to F igure 5- 1 .  I ncreasing the TSS by 40% has increased the produced 

amount of s ludge b around 50% and the total system annual  cost by around 20%. 

Because of the considerable waste d isposal cost the system w i l l  try to maintain the 

ML S a lue by fix ing the s l udge c i rcu lat ion rat io (r) at its lower l im it .  There fore, 

increasing the XI concentration in the reactor w i l l  resu l t  in a decrease in the concentration 

of the Xl-!, XA and XPAO organ isms. Th is  explains the increase in the tota l reactor volume 

wh ich  is accompanied by an increased amount of waste to d i spose the extra inert 

part icu lates. Resu l ts are showing a l most a l inear re lat ionsh ip between the concentration of 

the VSS and the total system annual cost; Refer to Figure 6-2 . 
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In cn e 5 and 6, model performance i s  investigated for high and low strength 

wa tewater characteri t ics. Wastewater compo it ion for both cases is quoted from 

1etcal f & Eddy ( 1 99 1 ) . The results show total cost increase for the high strength 

wastewater ca e and decrease for the low strength waste\ ater case. Model results are 

can idered expected and reasonable; refer to Table 6-5 .  M inor change is noticed in the 

design of the primary and secondary c larifiers, which indicates that any change i n  

wastev,:ater strength wi l l  mainly impact the design of the biological treatment process 

can idering a fixed effluent TSS requirement. In both cases, the trade-off behveen the 

i nternal recirculation ratio and the ni trification rate in the aerobic reactor has resulted i n  

having better nitrification results .  

Tab le  6-5 

Symbol 

q 

Ap 

q f  

At 

V anaer 

V anox 

V aer 

V tot 

r 

i r  

SRT tot 

TSS6 

SS6 

SNH6 

SN06 

SP06 

MLSS 

Q6 

Q9+Q8 

Sludge 

AFR 

Cost 

Percentage increase I decrease in the  system design parameters 

cons idering h igh and low strength wastewater characteristics. 

Case 4 
Case 5 (L ow 

Description Units (High 
Strength) 

Strength) 

Overflow rate of Primary Clarifier m/day 0 .00% 0.00% 

S u rface Area of Primary Clarifier m2 -0.22% 0.06% 

Overflow rate of Second. Clarifier m/day -0 .05% 0 . 1 0% 

S u rface Area of Second. Clarifier m2 -0.36% 0.35% 

Anaerobic Volume m3 49. 1 5% -45.53% 

Anoxic Volume m3 1 49.37% -72.64% 

Aerobic Volume m3 8 1 .08% -34. 1 3% 

Total Reactor Volume m3 1 02.85% -49.90% 

Recirculation Ratio - 0 .00% 0.00% 

I nte rnal Recirculation Ratio - 1 4 7. 1 1 %  -68 .38% 

Sol ids Retention Time day 6 1 .66% 5.78% 

Total S uspended Solids 
mg/L as 

0 .00% 0.00% 
TSS 

Readily Biodeg . Substrate 
mg/L as 

-52.40% 1 7 .60% 
COD 

Ammonium plus Ammonia 
mg/L as N - 3 1 .60% -33.90% 

Nitrogen 
N itrate plus Nitrite Nitrogen mg/L as N 0 .00% 0.00% 

I norganic Soluble Phosphorus mg/L as P 0.00% 0.00% 

M ixed l iq uor suspended solids mg/L 0 .34% -0.68% 

Effluent Flow Rate m3 /hr -0.4 1 % 0.45% 

Waste streams m3 I hr 56 .24% -6 1 .50% 

Disposed Sludge Kg I day 53 .55% -66.38% 

Air Flow Rate m� I m i n  90. 54% -44 .64 %  

System Annual Cost 
2006 $ 

5 1 .64% -4 5.71  % 
Iyear 
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6.4 Effect of E ffl uent  Cha racterist ics 

The bounds appl ied on the effluent characteristics in the base case des ign are 

derived from practical l imits of B R sy tern; refer to Table 5 -5 .  In th is  subsection, model 

perfonnance is  explored at more stringent effluent quality bounds. The simulation results 

are summarized i n  Table 6-6. I t  i s  worth mention ing that effluent qual ity requirement 

varies from one regulation to another based on d ifferent health, environmental and 

economical perspecti ves. Required effluent quality varies a lso based on the envisaged use 

for effluent, which i s  e ither disposed to the sea, used for i rrigation purposes or sometimes 

for i ndustrial purposes. 

Table 6-6 Model performance at more stri ngent  effluent  qua l ity parameters 

Case 1 Case 2 Case 3 
Base Upper Upper Upper Bound 

Symbol Description Units 
Case Bound on Bound on on 

TSS = 7.5 Nitrate = 3.5 Phosphorus = 

mg/l mgll 0. 5 mg/l 

q 
Overflow rate of Primary 

m/day 1 20.0 1 20 1 20 1 20 
Clarifier 

Ap 
Surface Area of Primary 

m2 299.8 299 299 299 
Clarifier 

qf 
Overflow rate of Second. 

m/day 22. 1 1 7 . 5  22. 1 22 . 1  
Clanfier 

Af 
Surface Area of Second. 

m2 1 6 1 7.9 2049 1 6 1 8  1 6 1 7  
Clarifier 

V anaer Anaerobic Volume m3 1 ,060.9 946.8 1 ,060.2 1 ,077.5 

V anox AnoxIc Volume m3 3,345.9 3 , 1 79.0 5,742.9 3 ,398.0 

V aer Aerobic Volume m
3 

4,530.9 4 ,386.5 4,508.3 4 ,575.7 

V tot Total Reactor Volume m3 8 ,938 8 ,5 1 2  1 1 ,3 1 1 9,051 

r Recirculation Ratio - 0. 200 0.200 0.200 0.200 

ir 
Internal Recirculation 

3 . 1 60 3.208 7 .706 3 . 1 62 
Ratio 

-

SRT tot Solids Retention Time day 5 .90 6.53 7.60 5 .91  

TSS6 Total Suspended Solids 
mg/L as 

1 5.0 7.5 1 5.0 1 5.0 
TSS 

SS6 
Readily Biodeg. mg/L as 

0.250 0.2 1 8 0.2 1 1 0.249 
Substrate COD 

SNH6 
Ammonium plus mg/L as 

1 .00 0.86 1 .00 1 .00 
Ammonia Nitrogen N 

SN06 
Nitrate plus N itrite mg/L as 

7 .0 7 .0 3 .5  7 .0 
NltroQen N 

SP06 
Inorganic Soluble mg/L as 

1 .0 1 .0 1 .0 0.5 
Phosphorus P 

M LSS 
Mixed l iquor suspended 

mg/L 4 , 0 1 9 . 3  4 ,568.3 4 ,01 8 . 3  4 , 0 1 9.8 
solids 

06 Effluent Flow Rate m3 /hr 1 ,489.0 1 ,490 . 1  1 ,489.2 1 ,488.9 

09+08 Waste streams m3 I hr 1 0.97 9.93 1 0. 7 5  1 1 .07 

Sludge Disposed Sludge Kg I day 7 , 502.7 7 ,632.6 7,38 7 . 1  7 , 560.9 

AFR Air Flow Rate m3 I min 258.4 263.2 258.9 258.4 

Cost System Annual Cost 
2006 $ 2 , 3 1 6 , 600 2 ,355,500 2,851 ,900 2,325,000 
Iyear 
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I n  ca c I ,  the upper bound of the TSS is set on 7 .5  mg!1 instead of 1 5  mg!1 .  The 

total system annual cost is increa ed by 2% for this 50% reduction in the TSS 

requirement. Quick review of the model results show that the model has tackled this new 

TSS requirement by reducing the overflow rate of the secondary clari fier by almost 20% 

result ing in more than 25% increa e in the surface area of the secondary c larifier. The 

model re ul ts also show that the tota l volume o f  the reactor is reduced by around 5%; 

however, the other effluent characteristics are sti l l  met. This  actual ly draws an important 

conc lusion on the impact of the secondary clarifier design on the biological treatment. I n  

the base c a  e scenario, where the TSS upper bound i s  ] 5 mg/I ,  the model has s ized the 

reactor 5°'0 larger in order to reduce the M LSS value wh ich in tum results in a smaller 

surface area for the secondary c larifier. This means that the cost functions of the 

secondary clarifier were governing the design of the biological reactor in the base case 

s imulation. 

In case 2 ,  the upper bound of  the nitrate and ni trite n itrogen ( Sf'03) is reduced by 

50° ° to be 3 . 5  mg/I instead of 7 mg!1 .  The design resul ts shows that the main design 

changes were in the i ncreased volume of the anoxic reactor (around 72%) and in the i r  

which was increased by 1 40% resulting in an increase in the  tota l system cost by around 

23°'0. It is c lear from the results that the required n i trate level in the p lant effluent is a 

highly economic issue with direct impact on the required p lant investments. 

In case 3 ,  the upper bound of the inorganic  phosphorus level (SP04) is made more 

stringent by reducing it to 0.5 instead of 1 .0 mg/ 1. No signi ficant change is noticed in the 

system design except i ncreasing the anaerobic reactor vol ume by around 1 .5% resulting 

in an increase in the total system annual cost by 0 .36%. 

From the above discussion, i t  can be concluded that the total system cost of the 

plant is more sensitive to n itrate requirement in the effluent rather than phosphorus or 

TSS. 

6.5 E ffect of  Ki netic Parameters 

The developed ASM3!EA WAG B io-P model has considered a total of 65 kinetic 

and stoichiometric parameters in its mathematical fonnulation where 36 parameters are 
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kinetic and the remaining are stoichiometric .  Va lues of these parameters are assumed as 

recommended by Henze el al (2000) and Rieger et al .  (200 I ) . The ASM3/EA WAG Bio-P 

model i introduced in the form of toichiometric and composition matrix based on the 

uggested values for these stoichiometric  parameters. Therefore the stoichiometric 

parameters are actual ly imbedded in the original matrix structure and they don ' t  exist as 

independent parameters in this formulation. Based on the above discussion, the sensitivity 

analysis in this ubsection is l imited to the k inetic parameters only. Most of  k inetic 

parameters are temperature dependent with exponential functions, therefore; the model 

ensit i\' i ty to the effective kinetic parameters is investigated at di fferent temperatures. 

Table 6-7 shows the percentage change in the total annual system cost after i ncreasing 

and decreasing the values of the kinetic parameters by 50% at 20 °C & 40 °c.  The impact 

of the other kinetic parameters not shown in Table  6-7 is found to be marginal .  

Table 6-7 

Parameter 

IJH 

IJA 

IJPAO 

K H  

bH02 

bA02 

bpAO 

bpHA 

Percentage Change in  Objective Fu nction Va lue due to variations i n  K inetic 

Parameters 

Descript ion 

Heterotrophic max.  growth 
rate of Xfl 
Autotrophic max. growth 
rate of XA 
Max. growth rate of XPAO 
Hydrolysis rate constant 

Aerobic endogen. 
Respiration rate of XH 
Aerobic endogen. 
respiration rate of XA 
Max. endogen. respiration 
rate of XPAO 
Respiration rate for XPHA 

U n it 

d-1 

d-1 

d-1 
gCODxs 
(gCODxH)d-1 

d-1 

d-1 

d-1 

d- 1  

20 °C 40 °c 

+50% -50% +50% -50% 

-0.5 1 4% 1 .623% -0. 1 07% 0.089% 

0 .514% 5.1 97% 0.098% -0.544% 

0.0 1 3% 0.730% -0.049% 0.860% 

-0.285% 0.88 1 %  0 . 1 56% 0.44 1 %  

-0. 3 1 5% 0.660% 0.352% -0.530% 

0.0 1 7% 0.263% -0. 1 69% -0.009% 

0. 1 25% -0. 1 08% 0.793% -0. 1 20% 

0.000% -0.004% -0.0 1 3% 0.0 1 8% 

I t  i s  c lear fom1 the results shown in  Table 6-7 that each kinetic parameter has a 

di fferent effect  on the model solution.  I t  i s  noticed also that the same k inetic parameter 

has a d ifferent effect on the objective function value at di fferent temperature. The most 

s ign ificant effect on the obj ective function value is reported by �lA when reduced by 50% 

indicating that this parameter should be given the highest attention as it imposes the 
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highest impact on the system cost. Most of the other parameters impacted the objective 

function value by les than 1 %. 

The analysis done in Table 6-7 gIves a good indication about the level of 

uncertainty i n  the objective function value when considering the typical va lues of the 

kinet ic  parameters suggested by the model developers.  I t  i s  c lear now that maj ority of 

these kinetic parameters have an impact of less than 1 % on the system design when their 

values are i ncreased or deceased by 50%; this actual ly supports the use of such models as 

a pre l iminary de ign tools in the conceptual phase of the project knowing that as an 

indu try practice fol lowed by most engineering consultants, the budget estimate of any 

proj ect  in the conceptual phase is usually presented with ±40% al lowance. 

In order to have a closer look on where spec ifical ly the system design di ffers at 

d ifferent k inetic parameters values; three i l lustrative model mns are presented in the table 

below considering di fferent organisms growth rates parameters s ince the model has 

h ighest sensit ivi ty when those parameters are changed. 
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Tab le  6-8 Model performance at d ifferent K inet ic and stoich iometric Parameters at 
20°C 

Symbol Description Units Base 
Case 1 Case 2 Case 

q Overflow rate of Primary Clarifier mId 1 20.0 1 20.0 1 20.0 

Ap Surface Area of Primary Clarifier m2 
299.8 299.8 299.8 

q f  Overflow rate o f  Second. Clarifier mId 22.1  22. 1 22 0 

Af Surface Area of Second. Clarifier m2 
1 6 1 7. 9  1 6 1 7.9 1 623.4 

V onaet Anaerobic Volume m3 
1 ,060.9 1 ,057 .5 2,291 5 

V an ox Anoxic Volume m3 
3 , 345.9 3 , 1 42 . 4  6,609.0 

V ae, Aerobic Volume m3 
4 , 530.9 4 , 525.6 1 3, 328.8 

V tot Total Reactor Volume m3 
8,938 8,725 22,229 

r Recirculation Ratio - 0.200 0.200 0.21 1 

i r  Internal Recirculation Ratio - 3 . 1 60 3.095 3.671 

SRT tot Solids Retention Time day 5 90 5.74 1 9 04 

TSS6 Total Suspended Solids 
mg/L as 

1 5.0 1 5 0  1 5 0 
TSS 

SS6 Readily Biodeg. Substrate 
mg/L as  

0.250 0.235 0 . 1 4 1  
COD 

SNH6 
Ammonium plus Ammonia mg/L as 

1 .00 1 .00 1 .00 
Nitrogen N 

S N 06 N itrate plus Nitrite N itrogen 
mg/L a s  

7.0 7 0  7 0  
N 

SP06 I norganic Soluble Phosphorus 
mg/L as 

1 .0 1 .0 0 0 1 
P 

MLSS M ixed l iquor suspended solids mg/L 4 , 0 1 9 . 3  4 ,01 9.5 4,071 6 

06 Effluent Flow Rate m3 /hr 1 ,489.0 1 ,489.0 1 ,49 1 .3 

09+08 Waste streams m3 / h r  1 0.97 1 0.99 8.75 

Sludge Disposed Sludge Kg/d 7,502.7 7 ,51 7.6 6 , 1 65. 3 

AFR Air Flow Rate m3 1 min 258.4 258.2 307.2 

Cost System Annual Cost 
2006 5> 

2 , 3 1 6,600 2,304,700 2,437,000 
/year 

Where: 

In case 1 :  Heterotrophic max .  growth rate o f XH ( ).lH) increased from 2 to 3 d· 1 

In case 2 :  Autotrophic max. growth rate of XA ().lA) reduced from I to 0 .5  d' i 

In case 3 :  Max .  growth rate of  XPAO ( ).l PAO) increased from 1 to 2 d· 1 

1 00 

Case 3 

1 20 0 

299.8 

22.0 

1 623.3 

1 ,060.0 

3,350.0 

4 ,429 

8,839 

0.2 1 8  

3 . 1 26 

5.96 

1 5 0 

0.252 

1 .00 

7 0  

1 .00 

4 , 1 1 9 5 

1 ,488.6 

1 1  44 

7,51 1 . 1  

258.4 

2 , 320,200 



I n  cn e I ,  the heterotrophic maximum growth (UH) rate of the heterotrophs (XH) is 

increased by 50%. The resu l ts show that the total system cost is insign ificant ly reduced 

by 0 .5%;  and this reduction can be mainly related to the reduced volume of the reactor 

because of the higher hetcrotrophs growth rates. 

In case 2, the autotrophic maximum growth rate ( IlA) of the autotrophs (XA) is 

reduced by 50% leading to an increase in the tota l system cost by around 5%. Reducing 

the growth rate of the autotrophs wi l l  directly affect the n i trification process resul ting i n  

an a lmost three t ime' s  larger aerobic reactor. I t  i s c lear that the system is more sensitive 

to the autotrophic rather than heterotrophic growth rate because autotrophs are already 

assigned with 50% lower growth rate. This large increase in the aerobic reactor volume 

which resulted in a l arge increase in the SRT and at the same time the sl ight increase in 

the sludge circulation ratio (r) ;  w i l l  a l l  increase the endogenous respiration phase and 

therefore reduce the amount of s ludge generated from the system. The simulation results 

of case 2 show around 20% reduction in the amount of generated sludge. This reduction 

in the amount of s ludge resulted in reducing the organisms ' concentration in the recycled 

stream which in tum resulted in an i ncrease in the volumes of both anaerobic and anoxic 

compartments. 

In case 3, the maximum growth rate of the phosphate accumulating organisms 

( IlPAO) is increased by 1 00% leading to an insignificant increase in the total system cost 

by around 0. 1 6%. This s l ight increase in the system cost is expected because the higher 

growth rates for the PAOs which wi l l  resul t  in storing higher amounts of substrates in the 

anaerobic reactor to accomp lish the p hosphorus release and therefore less substrate wi l l  

be ava i l able for the other organisms to  grow in the subsequent anoxic and aerobic 

reactors . Therefore the system has increased the r by around 1 0% in order to introduce 

more part iculate substrate (Xs) into the anoxic and aerobic compartment and achieve the 

required phosphorus, ammonium and n i trate levels .  

1 0 1  



C HAPTER VII 
CONCLUSIONS AND FUTURE RESEARC H 

B iological utrients removal from both domestic and industrial wastewater has 

been recognized as one of the necessary processes that are required to prevent surface 

water pol lution through eutrophication. Therefore, many wastewater treatment plants 

have been designed to be capable to achieve the acceptable level of nutrient concentration 

in their  discharged effluent and spec ifical ly those where the treated effluent is d ischarged 

directly i nto the sea. The continuous development of knowledge concerning the nutrients 

removal mechanisms led to a better mathematical characterization for the process biology 

which i n  tum led into the involvement of the computer models as powerful tool for 

designing WWTP with B R capabi l i ty .  

System optimal formulation, l ike the one developed in this research, can be very 

u eful design tools where an optimal plant des ign for a given input data and effluent 

quality can be obtained based on pre-defined design constraints. Such models are very 

efficient to carry out design options evaluation and comparison. I n  this research, a 

mathematical model i s  developed for the Phoredox process which i s  one of the most 

popular processes applied in wastewater treatment  p lants to achieve BNR. The Phoredox 

process is a single sludge process where the wastewater influent passes through 

anaerobic anoxic and aerobic phases in series manner. The mathematical optimization 

approach i s  used i n  solving the developed model aiming to find the most optimum design 

that can achieve the lowest capital (CAPEX) and operation (aPEX) costs. The software 

package "GAMS", which is a powerful optimization tool, has been used in this study to 

perform the optimization runs. I t  is very important to realize that in any cost optimization 

problems, the applied cost functions play a key role in driving the response of the 

optimization model . This is because the mathematical structure of the model tries always 

to fi nd the most economical and cost effective design . Therefore, incorporating a realistic 

cost functions that reflects the local market situation i s  important to get a reasonable and 

rel iable results. 
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The fo l lowing point summarize the main finding of this re earch obtained from 

the model results analysis :  

I .  The upper l imit  of three ' 3" assigned by Metcal f  & Eddy ( 1 99 1 )  for the ir as a 

typical design parameter for the A 10 system needs to be relaxed sl l1ce i t  i s  found 

to be an obstac le  against achieving an economic design; this is especia l ly in p lants 

where a stringent ni trate level is required in the effluent. In such plants, l imiting 

the ir would  require the system to increase the main r in order to introduce more 

denitrifiers into the system which consequent ly would require an increase in the 

volume of the anoxic reactor so that an appropriate retention t ime can be achieved. 

The CAPEX and OPEX investments requ ired to increase the ir are certainly lower 

than those required to increase both main r and anoxic volume reactor. 

2. The wastewater influent temperature in United Arab Emirates and other GCe 

countries usual ly varies between 20°C i n  winter and 35 to 40°C in summer. The 

model results has shown that more economical des ign for the A20 BNR system 

might be achieved if the highest influent temperature is considered rather than the 

lowest temperature. The higher organisms ' growth rates at temperatures higher 

than 20°C wi l l result in a considerable increase in the amount of sludge generated 

from the system which in tum wi l l  i ncrease the operation cost of the plant (OPEX) 

significantly. I ncreasing the SRT by 75% during the h igh temperature operation 

can reduce the total amount of the s ludge generated from the system by around 

35%. This  w i l l  lead into a significant reduction in the operat ion cost of the p lant 

knowing that s ludge handling, treatment and disposal is one of the most expensive 

items that i ncreases the l i fe cycl e  cost of the p lant considerably.  

3 .  The BNR A 20 system i s  more sensitive to the variations in the ammonium p lus 

ammonia n itrogen concentration (SNH4) than the variations i n  the phosphorus 

concentration (SP04). Results of the s imulation model have shown that 40% 

increase in the ammonium plus ammonia n i trogen concentration (SNH4) in  the 

influent has increased the total annual system cost by 1 0% while the same 

increase in the phosphonls concentration has increased the total annual system 

cost by 1 .5% only. 

4 .  Considering the fact that the organisms growth rate increases exponential ly with 

the i ncreased substrate concentration in the influent. In WWTPs where seasonal 

increase is experienced in the influent eo D leve l ;  the best operation practice is to 
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increa e the SRT of the plant to its maximum possible l imit and fixing the r to its 

lowe t possible l imit i n  order to al leviate the expected increase in the sludge 

volume becau e of the higher organisms growth rates. This practice wi l l  

participate i n  elongating the endogenous respiration phase of the organisms which 

fonn more than 70% of the sludge generated from the system. 

5 .  The concentration of  the VSS in the influent i s  of  a significant impact on the 

system operation cost as i t  can be directly translated into an increase in the 

amounts of s ludge generated from the system which in tum increases the 

operation cost of the plant .  

6 .  The model results have shown that the TSS removal achieved in a pnmary 

c larifier is not significant enough to accompl ish savings in the subsequent 

biological process design that pays back the capital investment of the primary 

c larifier i tsel f. However, the primary c larifier might participate effectively i n  

removing the solids that might have an  inhibit ion effect on  the biomass of the 

activated s ludge system; such effect is not considered in the model of this study 

and any final decis ion on the feasibi l i ty of the primary c larifier should be judged 

against i t .  

7 .  The current qual ity regulations for the treated sewage effluent discharged into the 

sea in United Arab Emirates need to be rev ised so that more stringent 

requirements for nutrients level are considered. The need for these more stringent 

regulations came from the recently noticed eutrophication phenomenon that 

started to appear in the surface water surrounding the newly developed islands. 

The new required nutrients level has to be studied careful ly as are directly related 

to the d i lut ion effect and the water c irculation rate in the area of discharge. 

8 .  Most probably, any level of n itrate and phosphorus removal can  be achieved using 

the A 20 BNR system, provided that the system is  properly designed with 

appropriate design parameters . However, the economical ly feasible level of 

nutrients removal that can be achieved biological ly i s  d ifferent from one s i tuation 

to another depending on the local market economies. For example, at certain 

s ituations i t  could be more economical to achieve 60% of the required nutrients 

removal biologically whi le the remaining 40% are removed chemical ly. 

9 .  Sensitivity analysis on the kinetic parameters of the ASM3-EA WAG Bio-P model 

has shown that the maximum growth rate of the autotrophs (IlA) is by far the 

highest parameter that impacted the objective function value. The objective 
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function value is i ncreased by around 5% when the parameter value reduced by 

50% at 20De. 

1 0 . more Stringent ni trate effluent requi rement wi l l  have a considerable impact on 

both CAPEX and OPE X investments. The results of the mathematical model 

developed in this study have shown that applying 50% more stringent n i trate 

requirement requires 2 . 5  times more in ternal recirculation rat io, 70% larger anoxic 

reactor volume and consequently more than 20% increase in the total annual cost. 

7. 1 Future Resea rch 

The fol lowing points sununarize the main areas of this research that s t i l l  deserve further 

invest iga tion : 

1 .  Consider more appropriate performance models for both primary and secondary 

c larifiers, and preferably models that are developed based on data col lected from a 

plant operating in the same area where the overal l  optimization model is i ntended 

to be used. 

2 .  Develop more specific cost functions that  represent the actual s i tuation of the local 

market in the area where the optimization model i s  intended to be used. 

3 .  Conduct detai led uncertainty analysis i n  order to have a n  accurate assessment to 

the model results rel iabi l i ty .  This is actual ly an in tensive statistical work which 

requi res identification to the statistical properties of all model random parameters. 

Based on the nature of the random parameters, the most appropriate probabi l i ty 

distribution shal l be selected. 

4 .  Perform model cal ibration and field verification using the standard cal ibration 

protocols developed for wastewater treatment plants. Reader is referred to Gurkan 

Sin et a!. (2005) for further elaboration on the di fferent calibration protocols 

currently exist and the differences between them. 

5. Opt imizing the pumping heads for the different A20 process streams by 

considering different process arrangement. 
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ppend ix  A CAMS M odel Input  Fi le 

Scalar 
Q I mfluent to primary clari fier flowrate ( m3 per hour) 1 1 5001 
T stream I temperature in oC 1201 
BODS stream I BODS at 20 oC (mg per L) 12201 
COD stream I total chemical oxygen demand (mg per L) 15001 
VSS stream I Volat i le Suspended soi lds / 1 651 
XH I hetotrophic biomass in influent (mg per L)/OI 
XSTO I storage particulates in influent (mg per L) 101 
XPAO I poly-phosphate accumulating organisms in  influent 101 
XPP I poly phosphate in  influent 101 
XPHA 1 poly-hydroxy alkanoates in influent 101 
XA 1 Autotrophic  biomass m influent (mg per L) 101 
TSS I stream I Total suspended Solids (mg per L as SS) 1230.01 
S H I stream 1 Ammonium ni trogen (mg per L as N) 1251 
SNO I soluble n i trate and nitrite nitrogen in stream I (mg per L) 101 
SPO I Inorganic solub le phosphorus in influent lSI 
S05 Oxygen concentration in the aerobic compartment /21 

* Parameter of prImary clari fier model 
c constant in primary clarifier (day per m) /0.0035/ 
n settl ing index in primary sludge(value between 1 -5)  12.3/ 
k etthng constant of the primary sludge (65-460 m per day) /4001 

* Parameters of secondary clarifier model 
nw sett l ing constant for the final clarI fier / 1 .81 
kw settling constant for the  final clarifier (m per day) 13851 
SVI  S ludge volume index (ml  per  g)  1 1 501 
H Side water depth of final clarifier /3 .7/ 

* 1 4.4 Design parameters for the bio-reactor 
ne Field oxygen transfer efficiency 11 01 
AIRU max aIr  input rate (m3 per min air per 1 000 m3 volume) 1901 
AIRL min air input rate (m3 per min a ir  per 1 000 m3 volume) 1201 
fX I  production o f  X I  i n  endogen. respiration ( g  COD X l  per g COD biomass)/0.21 
Y H  aeroic yield o f  heterotrophic biomass ( g  COD XH per g COD XSTO)/0.631 
Y A YIeld of autotrophic biomass per N03-N (g COD XA per g N SNO)/0.241 

* Cost parameters 

Base cost index 1 1 58 1 1 
cost mdex for 2006 17688.90/ 

BCI  
C I  
CRF 
OMW 
PC 
PHr 
PHir 
PE 
UE 

capi tal recovery factor for 8% and 30yrs 10.08881 
Operating maintenance wages $perhr 18/ 
Power Cost ($perKWhr) /0.05/ 
Pumping head of returned sludge 1 1 01 
Pumping head of internal re-,circulation lSI 
pumping efficiency 10.81 
unit  energy consumption of mixing (kW per m3) 10.0 1 41 

* Kmetic Parameters for Bio-P module at T=20oC 
qPHA_20 16/ 
qPP _20 / 1 .5/ 
uPAO 20 / I 1  
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n OPAO 10 6/ 
bPAO 20 /0 21 
n 0 end PAO /0.33/ 
bPP 20 /0.2, 
nl O_lys]P /0 33/ 
bPHA_20 /0.21 
n OrcspPHA /0 331 
KSSPAO ' I O  
KHCOPAO 10. 1 /  
KPP PAO /0 05 
KO PAO 10.21 
K PHA 10. 1 1  
KmaxP A O  10.2/ 
KI PP PAO 10.051 
KNO P AO 10.5/ 
KP04 PP 10.21 
KP04 PAO /0 O i l  
KNH PAO /0 051 

* Kmetic parameters for AS 13 at 20 OC 

kH hydrolysis rate constant (g CODxs (g CODxh)"- 1 d"- I »  13/ 
�X hydrolysis saturatIOn constant (g CODxs (g CODxh)"- I )  / I / 

* Heterotrophic organisms Xh 
kSTO storage rate constant (g COD s (g CODxh)"- l d"- I »  /5/ 
nnox /0.6, 
k02 10.21 
kNox 10 5/ 
Ks Saturation constant for substrate Ss (g CODss 01"-3) /21 
KXSTO saturation constant for XSTO (g CODxsto (g CODxh)"- I )  / 1 /  
Uh Heterotrophic max growth rate of X h  (d"- I )  /21 
KNH4 SaturatIOn constant for ammonium SNH4 (g N m"-3) 10.0 1 1  
bH02 AerobiC endogenous respiration rate o f Xh (d"- I )  10.21 
bHNox /O. 1 1  
bST002 AerobiC respiration rate for XSTO (d"- I )  /0.21 
bSTONox 10. 1 1  

* Autotrophic organisms XA , nitri fying actiVity 
UA Autotrophic max growth rate XA (d"- I )  I I I  
KANH4 A mmonium substrate saturation for X A  ( g  N m"-3) / I I  
kA02 /0 51 
bA02 Aerobic endogenous respiration rate of XA (d"- l )  10. 1 51 
bAN OX /0.05/; 

parameters 
a constant in christoulas model 
b constant in christoulas model (mg per L) 
CODblO biodegradable COD 1 0  steam 1 
CODinert mert COD in steam 1 

X I I particulate inert in stream 1 
S I I soluble inert in stream 1 
SS 1 readdy bIOdegradable substrate in stream 1 
XS I slowly bIOdegradable susbstrate in stream 1 
qPHA, qPP , uPAO , bPAO , bPP , bPHA; 

a= 1 .7 1 -0.03 *T; 
b=683.6-2 1 1 3 *T; 
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COObio= I 7 1 *BOOS; 
OOmcrt=COO-COObio; 

XI I =0.S6* SS. 
S l l  =COOmert-XI l .  
SS 1 =0 43 *COOblO; 
XS I =COOblo-SS I ;  
q PHA=qPHA _ 20*( EXP(0.04 *(T-20» );  
qPP=qPP _20*(EXP(0 04 *(T-20» );  
uPAO=uP AO _ 20*(EXP(0.07*(T -20» ); 
bPAO=bPAO_20*(EXP(0 07*(T-20» ); 
bPP=bPP 20*(EXP(0.07*(T-20))); 
bPHA=bPHA_20*(EXP(0.07*(T-20» ) ;  

ariables 
* primary settlIng tank 
q overno� rate (m per day) 
Ap surface area of the primary clanfier(m2) 
qf O\ er now rate of final  clarifier (m per day) 
Af surface area of the final clanfier (m**2) 
Vanaer , Vanox , Vaer 
r, lr,SRTtot,TSS6,SSS,SNHS,SN05,SP05,TSS5,Q6,Q98,sludge 
AFR AIr fiow rate (m3 a ir  per min) 
Obj fun 
Q2 flowrate stream 2 (m3 per hour) 
Q9,Q8 
XIS .XSS,XH - ,XSTOS,XPA05.XPPS XPHA5,XA5 
TSS2 suspended solids in  stream 2 (ppm as ss) 
TSS8 suspended solids In stream 8 (mg per L as 5S) 
* FInal settler equations 
TSS7 suspended soltds in  stream 7 (ppm as ss) 
Qr recycled now (m3 per hour) 
* Other system variable 
XS3,XH3,XPA03,XPP3,XPHA3,TSS3,SS3,SNH3,SP03,X I4,XS4,XH4,XST04,XPA04,XPP4,XPHA4,X 
A4,TSS4,SS4,SNH4,S 04,SP04,Qir.anaer,anox 
* Reaction Rates 
R I aer,R 1  anox,R l anaer,R2,R3 , R4,R5,R6,R7,R8,R9,R 1 0,R I I ,R I 2 
P I ,P2,P3,P4.P5.P6,P7 ,P8.P9,P 1 0,P I I 
* Reactor desIgn 
ROH Oxygen Rcquiremncl for removal of organ ic  matter (kg per day) 
ROA Oxygen Requircllmet associated with nitrification (kg per day) 
CCAerT,CCAnoxT,CCAnaerT,CCPST,CCFST,CCAFR,CCOAF,CCPSP,CCRSP,CCI SP 
OCPST.OCPSP,OCOAF,OCFST,OCRSP,OCISP 

1CPST,MCPSP.MCFST,MCRSP,MCISP 
PCPSP,PCRSP,PCISP,MEAnoxT,MEAnaerT,OCOST,CCWSP,OCWSP,MCWSP,PCWSP 
SRTaer Sol tds retention LIme (hr); 
EquatIons 
* model of fi rst clari fier 
C 1 flow balance on the primary clari fier 
C2 surface area of the primary clarifier (m"2) 
C3 XSS2 suspended soltds model of primary clari fier 
C4 suspended solids in stream 8 (mg per L as ss) 
C5 XSS balance on the primary clarifier 
C6,C7,C8,C9,C I O,C I I ,C I 2,C I 3,C I 4,C I 5,C I 6,C 1 7,C I 8,C 1 9,C20,C2 1 ,C22,C23 ,C24,C2S 
C26,C27 ,C28,C29 ,C30,C3 I ,C32,C33 ,C34,C3 5,C36,C3 7 ,C38,C39,C40,C4 1 ,C42,C43 ,C44 
C45,C46,C4 7 ,C48,C49,C50,C5 1 ,C52,C53 ,C54,C55 ,C56,C57  ,C58,C59,C60,C6 1 ,C62,C63 
C64,C65,C66,C67 ,C68,C69,C70,C 7 1  ,C72,C73,C74,C75,C76,C77 ,C78,C79,C80,C8 1 ,C82 
C83,C84,C85,C86,C87,Cl�8,C89,C90,C9 I ,C92,C93,C94,C95,C96,C97,C98,C99,C I OO,C I 0 I 
C I 02,C I 03,C I 04,C I 05,C I 06,C I 07,C I 08,C I 09,C I I O,C I I I ,C I 1 2,C I 1 3 ,c I 1 4,c I 1 5 ; 

C I . 
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Q I  =c= Q2+Q8. 
C2 .. 
Ap=c=(Q2*24)/q. 
C3. 
TSS2=c=( 1 -(a*exp« -bfT S 1 )-c*q» )*TS I ;  
C4 . 
TSS8=e=«K *(n- I » * *( I /n» *(n/(n- 1 » *« Apl(Q8 *24» * *( I /n» * I e3; 
CS 
Q 1 *TSS 1 =e= Q2 *TSS2 + Q8 *TSS8; 
C6 . 
TSS7=e=« Kw*(nw- 1 » * * (  I Inw» *(nw/(nw- l » *  I 000*« Af/« Q9+Qr)*24» "' * ( l Inw» ; 
C7 
TSS6=e=« 6. 2 1  *Iog( 1 e-3 *TSSS*SVI»)I(0.67* log(H)-log( q f/24» )-26 .43 ; 
C8 . 
0=e=qf-« Q6*24)! At); 
C9 . .  
O=e=Q2-Q6-Q9. 
C I O  . .  
0=e=« Q2+Qr)*TSSS) - (Q6*TSS6) -«Q9+Qr)*TSS7); 
C I I . . 
R I aer=e=kH*(XSSIXHS) *( l I(kX +(XSSIXH5» ) *  XHS;  
C I 2  . .  
R I anox=e=kH*(XS4IXH4)*( l I(kX +(XS4IXH4» ) * XH4; 
C I 3  . .  
R I  anaer=e=kH*(XS31XH3)*( 1 l(kX+(XS3IXH3» ) *XH3;  
C I ·L  
R2=e=kSTO*(SSS/(Ks+SSS» *XHS;  
C I S  . .  
RJ=e= kSTO * nnox*(S 04/(kNox+SN04» *(SS4/(Ks+SS4» *XH4; 
C I 6  
R4=e=Uh * (S H S/(KNH4+SNHS» *(XSTOSIXHS)*( 1 /( KXSTO+(XSTOS/XHS» )*XHS;  
C 1 7. 
RS=e=Uh * nnox *(S 04/(kNox+SN04» *(SN H4!(KNH4+SN H4 » * (XST04IXH4) * ( l /(KXSTO+(XST041 
XH4» )*XH4; 
C I 8  . .  
R6=e= bH02*XHS;  
C I 9  . .  
R7=e=bHNox*(SN04/(kNox+SN04» *XH4; 
GO . .  
R8=e=bST002*XSTOS; 
C2 1 . .  
R9=e=bSTO ox*(SN04/(kNox+SN04» *XST04; 
C22 
R I  O=e=UA *(S H S/(KANH4+SNHS» *XAS; 
C23 . .  
R l l =e=bA02* XAS; 
C24 . .  
R 1 2=e=bANOX*(SN04/(kNox+SN04» *XA4; 
C2S . .  
P l =e=qPHA *(SS3/(KSSPAO+SS3» *(XPP31XP A03)*(  I J(KPP _PAO +(XPP3JX PA03» )*XPA03; 
C26 . .  
P2=e=qPP*(SPOS/(KP04_PP+SPOS» *(XPHAS/XP AOS )*(  I I(KPHA +(XPHASIX P  AOS» )*(Kmax P AO­
(XPPSIXPA05» *( l /(Ki]P] AO +KmaxPAO-(XPPS/XPAOS» )*XPAOS; 
C27 . .  
P3=e= qPP*nNOPAO*(SN04/(KNO]AO 
+S 04» *(SP04/(KP04]P+SP04» *(XPHA4/XPA04)*( 1 /( KPHA+(XPHA41XPA04» )*(KmaxPAO­
(XPP4/XPA04» *( 1 /(KI_PP] AO + KmaxPAO-(XPP4/XPA04» )*XPA04; 
C28 
P4=e=uPAO*(SNHS/(KNH PAO 
�SNHS» *(SPOS/(KP04]AO+SPOS» *(XPHAS/XPAOS)*( I /(KPHA+(XPHAS/X PAOS» )*XPAOS; 
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C29 . .  
PS=e=uPAO*nNOPAO*(S 04/(KNO_PAO +SN04» * (S H4/(KNH]AO 
+S H4))*(SP04 '(KP04]AO+SP04))*(XPHA4 'PAO-l)"'( I /(KPHA+(XPHA4 j PAO-l» ) *X PA04, 
C30 . 
P6=e=bPAO*XPA05; 
C3 1 
P7=e= bPAO*n O_end]AO * (S 04/(KNO]AO +SN04))*XPA04; 
CEo 
PS=e=bPP*XPPS, 
C33 .. 
P9=e=bPP*nNO _Iys _ PP*(SN04IKNO] AO)*XPP4; 
C34 
P 1 0=e=bPHA *XPHAS; 
C3S . 
P 1 1  =e=bPHA *nNOrespPHA * (SN04IKNO ] AO)*XPHA-l; 
C36 . 
O=e=(Q2*SS I )+(Qr*SSS)-« Q2+Qr)*SS3)+« V anaer/24)*(R 1 anaer-P 1 » ;  
C37. 
0=e=«Q2+Qr)*SS3 )+(Qir*SSS)-« Qir+Q2+Qr)*SS4 )+( ( Vanox!24) * (R 1 anox -R3» ; 
C38.  
O=e=( (Qlr+QhQr)*SS4 )-( (Q2+Qr+Qi r)*SSS)+( (Vaer/24 )*(R I aer-R2» ; 
C39 . 
0=e=(Q2*XS 1 *(TSS2fTSS 1 » +(Qr*XSS*(TSS7fTSSS» -«Q2+Qr)*XS3)+« Vanaer/24)*(- 1 *R I anaer» ; 
C-lO . .  
0=e=« Q2+Qr)*XS3)-r(Qir*XSS)-« Qir+Q2+Qr)*XS4 )+«(Vanox!24)*(  - I  *R  I anox» ; 
C4 1 . . 
0=e=« Qlr+Q2+Qr)*XS4)-« Qlr+Q2+Qr)*XSS)+« Vaer/2-l )* (  - I  * R I aer» ; 
C42 . .  
0=e=(Q2 *SNO I )+(Qr*SNO S)+(Qir*SNOS)-« Q ir+Q2+Qr)* SN04 )+« Vanox!24) * (  -0.07* R3-0.3 * R5-
0.2S* R  7 -0.3S*R9-0.2S * R I 2-0.07* P3-0.34* PS-0.2 S *P7-0.3-l * P I I » ; 
C43 . 
O=e=« Qir+Q2+Qr)*SN04 )-« Q2+Qr+Qir)*SNOS)+«(V aerI24)*( 4. 1 7 *  R I O», 
C44 . .  
O=e=(Q2* S  H I  )+(Qr*SNHS)-« Q2+Qr)*SNH3)+« VanaerI24)*(O.O I * R I  anaer+0.03 * P  I » ;  
C4S . .  
O=e=«Q2+Qr)*S H3)+(Qir*SNHS)-« Qir+Q2+Qr)*SNH-l )+« Vanox/24)*(O.O I * R  I anox+0.03* R3 -
o 07*RS+0.066*R7+0.066* R  1 2-0.07* PS+0.06* P7» ; 
C46 . .  
0=e=« Qir+Q2 . Qr)* SNH4)-« Q2+Qr+Qir)*SNH5)+« VaerI24 )*(0.0 1 *  R I aer+0.03 * R2-
0.07* R4+0.066*R6-4.24*R I 0+0.066* R I I -0.07 * P4+0.06 6 * P6» ; 
C47 . .  
0=e=(Q2 *XP AO I *(TSS2fTSS I » +(Qr* XP AOS * (TSS7 ITSS5» -« Q2+Qr)*XPA03) ;  
C4S . .  
0=e=«Q2+Qr)* X P  Am )+(Qlr* XP AOS)-«Qir+Q2+Qr)*XP A04 )+«Vanox!24 )*(P S -P7» ; 
C49 . .  
0=e=« Qlr+Q2+Qr) * XP A04 )-« Qir+Q2+Qr)* XP A05)+« Vaer/24)*(P4-P6» ; 
CSO 
0=e=(Q2* XPP I *(TSS2fTSS I » +(Qr* XPPS*(TSS7ITSSS» -« Q2+Qr)* XPP3)+« Vanaer/24)*(-0.35 * p  I » ;  
CS I . . 
0=e=«Q2+Qr)*XPP3)+(Qlr*XPPS)-« Qir+Q2+Qr)*XPP4)+« Vanox!24)*(P3-P9» ; 
C52 . .  
0=e=«Qir+Q2+Qr) * XPP4)-«Qlr+Q2+Qr)*XPPS)+« Vaer/24)*(P2-PS» ; 
CS3 . .  
0=e=(Q2* X H  1 * (TSS2fTSS I »+(Qr*XHS *(TSS7 fTSSS» -« Q2+Qr)* XH3);  
CS4 . .  
0=e=« Q2+Qr)*XH3)+(Qlr*XH5)-« Qir+Q2+Qr)*XH4)+« Vanox!24)*(R5-R7» ; 
CS5 . 
0=e=« Qir+Q2+Qr)*XH4)-« Qir+Q2+Qr)*XHS)+« Vaerl24)*(R4-R6» ; 
CS6. 
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0�c=(Q2 *XA I * (TSS2rrSS I » +(Qr*XA5 *(TSS7rrSS5» +(Qir*XA5)­
«Qir+Q2+Qr)*XA4)+« Vano. 24)*(- 1 * R 1 2» . 
C57. 
0=e=«Qlr+Q2+Qr)*XA4 )-«Qi r+Q2+Qr)*XA5)+«Vaer/24)*(R I O-R I I  » ;  
C5S . 
0=c=(Q2 '  XSTO I *(TSS2rrSS I » +(Qr*XST05 *(TSS7rrSS5» +(Qir*XST05)­
« QIr+Q2+Qr)* XST04)+« Vanox/24)*(0.S*R3 - I .S5*R5-R9» ; 
C59. 
0=e=« Qlr+Q2+Qr)*XST04)-« Qir+Q2+Qr)* ST05)+« VaerI24)* (0.S5*  R2- 1 .6* R-1--RS» ; 
C60 . 
0=e=(Q2* XPHA I *(TSS2rrSS I » +(Qr*XPHA5* (TSS7 rrSS5» -«Q2+Qr)*XPHA3 )-«Vanaer/2-1-)*(P I » ;  
C6 1 . . 
0=e=« Q2+Qr) *XPHA3)+(Qir* XPHA5)-«Qir+Q2+Qr)*XPHA4)+« Vanoxl24)*( -0 .2*P3-2 * P --P I I  » ;  
C62 . .  
0=e=«Qir+Q2+Qr)*XPHA4)-«Qi r+Q2+Qr)*XPHA5)+«(Vaer/24)* ( -0.2 * P2- 1 .67 * P4-P 1 0» ; 
C63 . .  
0=e=(Q2* SPO I )+(Qr* S P05)-« Q2+Qr)* SP03 )+«Vanaer124)*(0.005 * R  I anaer+0. 3 5  * p  I » ;  
C64 _ _  

0=e=« Q2-rQr)* SP03 )+(Qlr* S P05)-( (Qir+Q2+Qr)* S P04 )+« Vanoxl24) *(0.005 * R 1 anox-
0 0  1 4 *R5+0.0 1 2 *R7+0.0 1 2 * R I 2-P3-0.0 1 4*P5+0.0 1 2* P7+P9» ; 
C65 . .  
0=e=« Qir+Q2+Qr)*SP04)-« Q2+Qr+Qir)*SP05)+«Vaer/24)*(0.00 5 * R  I aer-O.O 1 4  * RHO.O 1 2 * R6-
0.0 1 4 * R  1 0+0.0 1 2 * R  I 1 -P2-0.0 1 4*N+0.0 1 2 * P6+PS» ; 
C66 . .  
0=e=(Q2 *XI I *(TSS2rrSS I » +(Qr*XI5*(TSS7rrSS5» +(Qir*XI5)­
« Qir+Q2+Qr)*X 1-1-)+«Vanoxl24 )*(0.2* R 7+0.2 * R I 2+0 .2* P7» ; 
C67 . 
0=e=« Qlr+Q2+Qr)* XI4)-« Qir+Q2+Qr)*X15)+« Vaerl24)* (0.2 * R6+0.2 * R  I I  +0.2*  P6» ; 
C6S . .  
0=e=(Q2*TSS2)+(Qr*TSS7)-« Q2+Qr)*TSS3)+«Vanaer124)*(-0.75 * R I anaer-0.53 '" P I » ; 
C69. 
0=e=«Q2+Qr)* TSS3 )+(Qir*TSS5)-« Qir+Q2+Qr)*TSS4 )+« Vanoxl24)* (-0.75 * R 1 anox+O.4S * RJ-
0 2 1 * R5-0.75 * R7-0.6*R9-0.7S * R 1 2+ 3 . 1 1  * P3-0.3* P5-0.75 *P7-3.2 3 *P9-0.6*P I I  » ;  
C70 . .  
0=e=« Qlr+Q2+Qr)*TSS4)-« Qir+Q2+Qr)*TSS5)+« VaerI24)*( -0.75*  R I  aer+O.S I * R1-0.06* R4-0.75*R6-
0.6*RS+0.9* R I 0-0.75*R I I  +3 . 1 1  * P2-0. 1 02* P4-0.7S*P6-3.23 * PS-0.6* P  1 0»; 
C 7 1  . .  
SRTaer=e=(Vaer*TSS5)/« Q6*TSS6)+(Q9*TSS7» ; 
C72. .  
ROH=e=(Q2*24* 1 000)*( I c-6)* (SS I +(XS I *(TSS2rrSS I » -SSS)*( 1 -« ( I +fXI *bH02*(SRTaer/2-1-» *YH) I 
( 1  +bH02 *(SRTacr/24» » ,  
C73 . .  
ROA=e=(Q2*24* 1 000)* ( 1 e-6)*(SNH I +SNO I -SNH5)*(4.57-«( 1 +fX I *bA02*(SRTaerI24» * YA)1 
( 1  +bA02*(SRTaerI24» » ; 
C74. .  
AFR=e=(6*«ROH+ROA)124» /ne; 
C7S . .  
Vaer=g=( I 000*AFR)1 A I RU; 
C76 . .  
Vaer=I=( 1 000* A FR)/AI RL; 
C77. .  
Vaer=g=« ROH+ROA)/24)/0. 1 ;  
*Capital Cost 
C78 . 
CCAerT=e=46 1 * Vaer* *0.7 1 ;  
C79 . .  
CCAnoxT=e=46 1 * Vanox* *0.7 1 ;  
CSO . .  
CCanaerT=e=46 1 *Vanaer* *0.7 1 ;  
C S I  
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CCPST=c=824* Ap" -O.77; 
C82 
CCFST=c-824 '" Af* *O. 77; 

3 .  
CCDAF=c=8533 * AFR **0.66; 
C84 
CCPSP=e=9870*Q8 **0.53; 
C85 
CCWSP=e=9870*Q9* *0.53; 
C86 
CCRSP=e=9870*Qr**0.53;  
C 7. 
CCI P=e=9 70*Qlr**0.53;  
*Operating and Maintenance Cost 
C 8 .  
OCPST=e=( 1 7. 1  * Ap* *0.6)+(9 .23 * Ap* *0.6); 
C89. 
OCPSP=e=(257*Q8* *0.4 1 )+( 1 1 2*Q8* *0.43); 
C90 . .  
OCWSP=e=(257*Q9* *0.4 1 )+( 1 1 2*Q9* *0.43); 
C9 1 .  
OCDAF=c=( 1 87 *  AFR * *0.48)+(74.4* AFR **0.55) ;  
C92 . 
OCFST=e=( 1 7. 1  * Af**0.6)+(9.23* Af* *0.6); 
C93 
OCRSP=e=(257*Qr* *0.4 1 )+( 1 1 2*Qr**0.43); 
C94 . .  
OCISP=e=(257*Qir* *0.4 1 )+( 1 1 2 *Qir* *0.43) ;  
* laterial Supply 
C95 .. 
MCPST=e=8.6:2* Ap* *0.76; 
C96 . 

lCPSP=e=2 1 4*Q8* *0.64; 
C97. 

lCWSP=e=2 1 4*Q9**0.64; 
C98. 

lCFST=e=8.62* Af**0.76; 
C99 . .  
I ICRSP=e=2 1 4*Qr* *0.64; 
C I OO . .  
MClSP=e=2 1 4*Qir* *0.64; 
* Power Cost 
C I O ! . . 
PCPSP=e=(23.85*Q8*PHir)IPE; 
C I 02 . 
PCWSP=e=(23.8S*Q9*PHir)IPE; 
C I 03 . .  
PCRSP=e=(23.85*Qr*PHr)/PE; 
C I 04 . .  
PCISP=e=(23.85*Qir*PHir)IPE; 
* M ixing Energy 
C I 05 . .  
M EAnoxT=e=UE *Vanox; 
C I 06 . .  
M EAnaer T =e=U E* Vanaer; 
* Disposal Cost 
C I 07 . 
DCOST=e=O.3 *(TSS7*Q9+ TSS8*Q8)*( 1 1 1  000)*24 *365;  

C 1 08. 
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Obj fun=c=« (CI *CRF) BCI)*(CCAerT +CCAnoxT +CCanaerT +CCPST +CCFST +CCDAf+CCPSP+CCRS 
P+CCI P+CCWSP) 
+(OMW *(OCPST +OCPSP+OCDAF+OCFST +OCRS P+OCI SP+OC\VSP» +« CIIBCI)*( 1CPST +MCPSP 
+0.ICFST +i'vICRSP+ lC[SP+MC\VSP» 
+(PC-(PCPSP+PCRSP+PC[SP+PCW P» +(PC*24*365*(M EAnoxT+MEAnacrT))+DCOST; 
C [ 09 .. 
Q Ir=c=ir*Q2; 
C [  [ 0  . .  
Qr=e=r Q2, 
C I I I . 
Vanacr=e=anaer*(Vacr+Vanaer+Vanox); 
C I 1 2  
Vanox=e=anox *(Vaer+Vanaer+Vanox); 
C 1 1 3 .  
SRTtot=e=( 1 /24 )*(  (Vaer*TSSS+ Vanox *TSS4+ Vanaer*TSS3 » /« Q6 * TSS6)+(Q9*TSS7» : 
C I I ·t., 
Sludgc=c=(TSS 7*Q9-tTSS8*Q8)*( l 1 l  000)*24; 
C [  I S . 
Q9 =e=Q9+Q ; 
* ml tial values 
Q2.1= 1 498.986, Q .1= 1 .0 1 4; 
Qr 1=3S 2  1 36, Q6.l= 1 4  7.943; 
Q9.1= 1 1 .043: TSS2 l= l 76 039; 
T S .1= 0000 000, q.I= 1 1 9.830; 
Ap 1=300 224; TSS6.1= I S .OOO· 
TSS7 1=2 1 3 7 1 804, qf 1=2 1 .940 ; 
Afl= 1 627.67 1 ,  Vanaer 1= 1 1 37.788; 
Vanox. I=S I 67 27 1 ;  Vaer.I=4406.028; 
QIr. I=4.:l96.958;  SS3 . 1= 1 09.6 1 1 ; 
XS3 1=287.S37,  XH3. l=1 574.062; 
XPP3 . 1=90.390. X PA03 1=338. 1 1 4;  
S H3 . l=2 1 .825 ; XPHA3.1=85.860, 
SP03 1= 1 8. 1 89, TSS3. 1=4 1 72.806; 
SSS I=0 249; XS5 . 1= 1 79.262; 
XH5. l=l  628.094 : XST05 1=5 1 2 .797; 
XAS . I= 1 1 3 . 1 05;  XPHA5. 1=47.32 1 ;  
X PA05. 1=349.720, XPP5 . 1= 1 08 .0 1 3 ; 
X I 5  1=2007452; SNH5. 1=1 .000; 
SN05 .1=7; SP05. 1=0.042; 
TSS5 1=4205 .076; SS4.1= 1 2 .285; 
XS4 . 1= 1 93.272; XH4 1= 1 6 1 5 . 1 79; 
SNH4.1=8. 1 02 ;  SN04.1=0. 1 80; 
X ST04 1=529.356; XA4. 1= 1 1 1 .960; 
SP04. 1=2.400; XPHA4.1=5S .624; 
X PA04.1=347270; XPP4. 1= 1 05.840; 
X I 4 1=2005 .066; TSS4. 1=4206.83 1 ;  
R l aer 1=484.445;  R l anox.I=5 1 7.849; 
R l anaeLI=729.375;  R2. 1=900.623 ;  
RJ .I= 1 1 03 .248; R4.1=772.2 1 7; 
R5 1= 1 26.508; R6.1=325.6 1 9; 
R 7 . 1=42.762; R8.1= I 02 .559; 
R9.1= 1 4.0 1 5 ; R I O  1=56.553; 
R I I I = 1 6.966; R I 2. 1= 1 .482; 
P I . I= 1 566. 1 57;  P2 1=96.76 1 ;  
P3 . J=89.948; P4. 1= 1 54.667; 
P5 1=33 .6 1 3 ;  P6.1=69.944; 
P7 1=6.068; P8. 1=2 1 .6032, 
P9. 1=2 .5 1 5 ;  P I  0. 1=9.464; 
P 1 1 . 1= 1 .322; 
* Bounds 
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Q2 10= I e-6; Q2.up= 1 e6; 
Q8 10= l e-6, Q8 up= l e6, 
TSS2 10= l c-6. TSS2 up= l e6.  
TSS8. 10= I e-6 ,  TSS8.1Ip=80000; 
q 10=30; q l1p= 1 20, 
Ap.lo= l c-6; Ap up= l e6; 
Qr. lo= l e-6. Qr 1Ip= l e6; 
Q9.10= I c-6, Q9.11p= l e6; 
TSS7. 10= I e-6, TSS7.up=l e6,  
qf \0= 1 6; qfllp=32; 
Aflo= l e-6; Af.up= l e6, 
Q2.lo= l c-6, Q2 up= l e6; 
Q 10= 1 e-6; Q8.up= l e6, 
Vaer 10= l e-6: Vaer.lIp= l e6,  
Qrr  10= l e-6, Qir .lIp= l e6� 
Vanox lo= l e-6. Vanox.1Ip= l e6; 
Vanaer. lo= l e-6; Vanaer.up= I e6; 
X 3 . 10= I e-6; XS3.1Ip= l e6; 
XH3 10=l e-6, XH3.up= l e6; 
X PA03. lo= l e-6. X PA03.up= l e6;  
XPP3. 10= I e-6, XPP3.up= l e6; 
XPHA3.10= I e-6; XPHA3.up= I e6; 
TSS3 10= l e-6; TSS3.up= l e6; 
SS3 10= l e-6; SS3.lIp= l e6; 
S H3 .lo= l e-6; SNH3.up= l e6; 
SP03. lo= l e-6; SP03 l1p= l e6; 
X I4 .10= l e-6, X I4 .up= l c6; 
XS4.10= l e-6, XS4.lIp= l e6; 
XH4. 10= l e-6; X H4.lIp= l e6; 
XST04.lo= I e-6; X ST04.up= I e6; 
X PA04.lo= l e-6; X PA04.up= l e6;  
X PP4. 10= 1 e-6; XPP4.up= l e6;  
X PHA4.lo= 1 e-6;  XPHA4.up= I e6; 
XA4. 10= l e-6; XA4.up= l e6; 
TSS4.lo= l e-6; TSS4.up= l e6; 
SS4. 10= I e-6. SS4.up= l e6; 
S H4 .10= l e-6; SNH4.l1p= l e6;  
SN04. lo= l e-6; SN04.up= l e6; 
SP04.lo= I c-6; SP04.up= 1 e6; 
XIS . lo= l e-6; X IS . lIp= l e6; 
XSS. lo= l e-6 ;  XSS.up= l e6; 
XSTOS .lo= l e-6; XSTOS.up= l e6;  
X PAOS. lo= l e-6. X PA05.up= l e6; 
XPHAS.lo= l e-6; XPHAS.up= l e6; 
XHS lo= l e-6; XHS .up= l e6; 
XAS. lo= l e-6; XAS .up= l e6;  
SSS. 10= l e-6, SSS up=O.S; 
SNHS .lo= l e-6; SNHS.lIp= l ;  
SNOS.lo= l e-6; SN05.up=7; 
SPOS . 10= I e-6, SPOS.up= l ;  
TSS6. 1o= l e-6, TSS6.up= I S ; 
XPPS . lo= l c-6; XPPS.up= l e6; 
TSSS. 10=3000; TSSS.up=SOOO; 
R I aer.lo= I e-6; R l  aer.up= I e6; 
R l anox.lo= l e-6; R l anox.up=l e6; 
R I anaer.lo= I e-6; R I anaer.up= I e6; 
R2 10= l e-6, R2 IIp= l c6; 
R3.10= 1 e-6; R3.up= l e6; 
R4.lo= l e-6; R4.lIp= l c6; 
RS. lo= l e-6; RS.up= l e6; 
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R6.10= I c-6; R6 up= l e6;  
R7. lo= l e-6; R7 up= l e6;  
RS. lo= l c-6; RS.up= l e6;  
R9 10= l c-6; R9.up= l e6 .  
R I O  10= l c-6; R I O.up= l e6; 
R i l 10= l c-6 , R I l .up= l e6;  
R 1 2 10= l e-6; R I 2 .up= l e6 ;  
P I  10= l c-6; PI up= l c6 ;  
P2 10= l e-6; P2.up= l e6;  
P3. lo= l e-6, P3 .up= l e6;  
P4 10= l e-6; N.up= l e6; 
PS 10= l e-6, PS .up= l e6, 
P6. lo= l e-6, P6.up= J e6; 
P7. lo= l e-6, P7 .up= l e6; 
PS 10= l e-6. PS .up= l e6;  
P9 10= l e-6. P9.up= l e6; 
P I 0.lo= l e-6; P I O.up=l e6; 
P l l . lo= l e-6, P l l .up= l e6; 
SRTaer.10=24; S RTaer.up=4S0; 
ROH. lo= l e-6; ROH.up= l e6;  
ROA 10= l e-6, ROA.up= l e6;  
AFR.10= I e-6; AFR.up= l e6; 
Ir  10= I ;  ILUP= l e6;  
r 10=0 2;  r up=O.S;  
SRTtot.l0=4, S RTtoLUp=27; 
Display 
X l l ,S S I ,XS l ;  
model BIOP 1 2  /all/ ; 
option nip = CONOPT2; 
solve B IOP J 2  using n ip mmimizing Obj fun ; 
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Appen d i x  B CAMS Model  Output  Fi le 

lODEL STATISTICS 

1 1 5 SINGLE EQUATIONS 1 1 5 
1 1 9 SINGLE VARJABLES 1 1 9 

B LOCKS OF EQUATIONS 

B LOCKS OF VARIABLES 

ON ZERO ELEMENTS 
DERrv ATIVE POOL 

6 1 3  NON LI EAR N-Z 484 
2 1  CO STANT POOL 1 03 

CODE LE GTH 688 1 

GE ERA TIO TlME 0.020 SECO DS 1 .9 Mb WIN 1 97- 1 1 9  

EXECUTlON TlME 0.020 SECONDS 1 .9 Mb W IN 1 97- 1 1 9  
GAMS Rev 1 1 9 W indows NT/95/98 0511 8/06 1 6:05: 1 1  PAGE 66 
G e n e r a l  A l g e b r a i c  M o d e l i n g S y s t e m  

S O L V E  S U M M A R Y  

MODEL BioP I 2  
TYPE L P  
SOLVER CO OPT2 

OBJECTIVE Obj fun 
DI RECTlON MINIMIZE 

F ROM LINE 796 

* * ** SOLVER STATUS 
* * * *  MODEL STATUS 
* ** *  OBJECTlVE VALUE 

I NOIUv1AL COMPLETION 
2 LOCALLY OPTI MAL 

2344 1 38 .6389 

RESOURCE USAGE, LIMIT 
ITERA TIO COUNT, L IMIT 
EVALUATION E RRORS 

0. 1 29 
46 

1 000.000 
1 0000 

o o 

C O N  0 P T 2 Windows NT/95/98 version 2 .07 1 F-007-042 
Copyright (C) A RKl Consulting and Development AlS 

Bagsvaerdvej 246 A 
DK-2880 Bagsvaerd, Denmark 

Using default control program. 

* *  Warning * *  The variance of the derivatives in the m itial 
point is large (= 4.7 ) . A better initial 
point, a better scalIng, or better bounds on the 
variables will probably help the optimization. 

* *  Optimal solutIon. There are no superbasic variables. 

CONorT time Total 0. 1 2 1  seconds 
of whIch: Function evaluations 0.059 = 48 .4% 

Derivative evaluations 0.000 = 0.0% 
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Work length = 0 32 Mbytes 
Estimate = 0 32 Mbytes 
�Inx llsed = 0 1 7  Mbytes 

--- - EQU C I  
---- EQU C2 
---- EQU C3 
---- EQU C4 
---- EQU C5 
---- EQU C6 
---- EQU C7 
---- EQU C8 
---- EQU C9 
---- EQU C I O  
---- EQU C l 1 
---- EQU C I 2  
---- EQU C I 3  

---- EQU C I 4  
---- EQU C I 5  
---- EQU C I 6  
---- EQU C I 7  
---- EQU C 1 8  
---- EQU C I 9  
---- EQU C20 
---- EQU Cl i 
---- EQU cn 
---- EQU C23 
---- EQU C24 
---- EQU C25 
---- EQU C26 
---- EQU cn 
---- EQU C28 
---- EQU C29 
---- EQU C30 
---- EQU C3 1 
---- EQU C32 
---- EQU C33 
--- EQU C34 
---- EQU C35 
---- EQU C36 
---- EQU C37 
---- EQU C38 
---- EQU C39 
---- EQU C40 
---- EQU C4 1 
---- EQU C42 
---- EQU C43 
---- EQU C44 
---- EQU C45 
--- - cQU C46 
---- EQU C47 
---- EQU C48 
---- EQU C49 

LOWER LEVEL UPPER IARGINAL 

- 1 500.000 - 1 500.000 - 1 500.000 -556.269 
85.5 1 8  

230.000 230.000 230.000 3 1 2 .599 
-0.080 

-3.450E+5 -3.450E+5 -3.450E+5 -2.707 
1 4. 1 39 

-26.430 -26.430 -26.430 6268.534 
- 1 .225E+4 

1 40 652 
2 .353 
1 3 .5 1 1 
2 .625 
0. 1 73 

LOWER LEVEL UPPER fARGINAL 

0.832 
-46.833 

- 1 22.823 
-400. 1 09 
546.9 1 7  
388.523 
275 .603 
-35 .28 1 

3998.976 
-3486.9 1 7  
-477 1 .753 

-42.45 1 
6 1 .485 
1 . 565 

- 1 62.664 
-395.35 1 
874.092 
695.0 1 2  
25.736 
32.775 

436. 1 07 
1 82.849 

1 .045 
1 .052 
1 . 1 1 5  
0.678 
0.678 
0.677 
4.858 

8 1 .569 
80.860 
80.860 
80.862 
-0.785 
-0.674 
-0.673 
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---- EQ U  C50 
---- EQU C5 1 
---- EQU C52 
---- EQU C53 
---- EQU C54 
---- EQU C55 
---- EQU C56 
---- EQU C57 
---- EQU C58 
---- EQ U  C59 
---- EQU C60 
---- EQU C6 1 
---- EQU C62 
---- EQU C63 
---- EQU C64 

---- EQU C65 
---- EQU C66 

-0.397 
-0.385 
-0.385 
1 . 1 47 
1 . 1 47 
l . 1 5 1  

23.629 
23.638 
-2.504 
-2.493 
-3 .405 
-3 .405 
-3 .388 
4 .909 
4.909 
4.909 
EPS 
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G e n e r a l  A l g e b r a i c  M o d e l i n g S y s t e m  

LOWER LEVEL UPPER MARGINAL 

---- EQU C67 
---- EQU C68 
---- EQU C69 
---- EQU C70 
---- EQU C7 1 
---- EQU C72 

---- EQU C73 

---- EQU C74 
---- EQU C75 
---- EQ U  C76 
---- EQU C77 
---- EQU C78 
---- EQU C79 
---- EQU C80 
---- EQU C8 1 
---- EQU C82 
---- EQU C83 
---- EQU C84 
---- EQU C85 
---- EQU C86 
---- EQU C87 
---- EQU C88 
---- EQU C89 
---- EQU C90 
---- EQU C9 1 
---- EQU C92 
---- EQU C93 
---- EQU C94 
---- EQU C95 
---- EQ U  C96 
---- EQU C97 

---- EQU C98 
---- EQU C99 
---- EQU C I OO 
---- EQU C l 0 1  
---- EQU C I  02 

EPS 
1 . 595 
1 .595 
1 .595 

1 090.392 
55 . 1 04 
55 . 1 04 

434.88 1 
1 435.067 +INF 
- INF -86 1 0.400 

+INF 1 06. 1 57 
0.432 
0.432 
0.432 
0.432 
0.432 
0.432 
0.432 
0.432 
0.432 
0.432 
8.000 
8.000 
8 .000 
8 .000 
8 .000 
8.000 
8.000 
4.863 
4.863 
4.863 
4 .863 
4.863 
4 .863 
0.050 
0.050 
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---- EQU C I 03 
---- EQU C I O-i 
---- EQU C I OS 
---- EQU C I 06 
---- EQU C I 07 
---- EQU C l  08 
---- EQU C I 09 
---- EQU C l i O  
--- - EQU C l l l  
---- EQU C l 1 2  
---- EQU C I l 3  
---- EQU c l 1 4  
---- EQU e l l S  

--- - VAR q 
---- VAR Ap 
---- VAR q f  
---- V A R  Af 
---- V AR Vanaer 
---- V AR Vanox 
---- VAR Vaer 
---- VAR r 
---- VAR ir 
---- VAR SRTtot 
---- V AR TSS6 
---- VAR SSS 
---- V AR SNHS 
---- V AR SNOS 
---- V AR SP05 
---- V AR TSS5 
---- VAR Q6 
---- VAR Q98 
---- V AR sludge 
---- VAR AFR 
---- V AR Obj fun 
---- VAR Q2 
---- VAR Q9 
---- VAR Q8 
---- VAR XIS  
---- VAR XSS 
---- VAR XHS 
---- V AR XSTOS 
---- V AR X PAOS 
---- VAR XPPS 
---- V AR XPHAS 
---- VAR XAS 
---- V AR TSS2 
---- VAR TSS8 
---- V AR TSS7 
---- VAR Qr 
---- VAR XS3 
---- VAR XH3 
---- VAR XPA03 
---- V AR XPP3 
---- VAR X PHA3 
---- VAR TSS3 
---- VAR SS3 

LOWER 

30.000 
1 .0000E-6 
1 6.000 

1 .0000E-6 
1 .0000E-6 

1 .0000E-6 
1 .0000E-6 
0.200 
1 .000 
4.000 
1 .0000E-6 
1 .0000E-6 

1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
3000.000 
- INF  
- I F 
- INF  
1 .0000E-6 
- INF  
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 

1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 

1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 
1 .0000E-6 

o OSO 
o OSO 

438.000 
438.000 

1 .000 
1 .000 

--i3 1 .78 1 
EPS 
EPS 
EPS 
EPS 

EPS 
EPS 

LEVEL UPPER MARGINAL 

1 20.000 1 20.000 - I S4.647 
299.797 1 .0000E+6 
2 1 .940 32 .000 
1 627.970 1 .0000E+6 
1 00S.639 1 .0000E+6 
SS08.SS2 1 .0000E+6 
430S .:WO 1 .0000E+6 
0.23S O.SOO 
3 000 3 .000 -6 .472E+S 
7.S0 1 27 .000 
I S.000 I S .OOO - 1 .023E+4 
0.246 O.SOO 
1 .000 1 .000 - 1 . 527E+4 
7.000 7.000 -4.943 E+S 
1 000 1 .000 -6634.07 1 

4205.263 5000.000 
1 488.206 + INF 
1 1 .794 + INF 

7474.727 + INF 
258.3 1 2  1 .0000E+6 
2.344 1 E+6 +fNF 
1 498.986 1 .0000E+6 

1 0.780 1 .0000E+6 
1 .0 1 4  1 .0000E+6 

2048.696 1 .0000E+6 
1 7S .460 1 .0000E+6 
1 87 1 .844 1 .0000E+6 
592.02 1 1 .0000E+6 
1 1 8 .948 1 .0000E+6 
87.038 1 .0000E+6 
1 1 . I 8S 1 .0000E+6 
1 1 6. 1 8 1  1 .0000E+6 
1 76.072 1 .0000E+6 
79949. 1 37 80000.000 
2 1 369.92S 1 .0000E+6 
3S2.S23 1 .0000E+6 
28S .90 1 1 .0000E+6 
1 8 1 1 .093 1 .0000E+6 
I I S .088 1 .0000E+6 
79.467 1 .0000E+6 
24.384 1 .0000E+6 
4 1 9 1 .S67 1 .0000E+6 
1 34.2 1 6  1 .0000E+6 
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---- VAR SNH3 1 0000E-6 2 1 .005 1 .0000£+6 
---- VAR SP03 1 0000E-6 9.069 1 .0000£+6 
---- VAR X l-t 1 .0000E-6 2046.347 1 .0000E+6 
---- VAR XS-I 1 0000E-6 1 89.058 1 .0000£+6 
---- \' AR X H4 1 0000E-6 1 857.256 1 .0000£+6 
---- VAR XST04 1 .0000E-6 6 1 1 .0 1 6  1 .0000E+6 
---- VAR X PAO-l 1 .0000E-6 1 1 8 .084 1 .0000£+6 

---- AR X PP4 1 .0000E-6 85.283 1 .0000£+6 

---- V AR X PHA4 1 .0000E-6 1 4.263 1 .0000E+6 

---- VAR A..t 1 .0000E-6 1 1 5 .032 1 .0000£+6 

--- - V AR TSS-I 1 .0000E-6 4206.333 1 .0000E+6 
---- VAR SS4 1 .0000E-6 1 5 .608 1 .0000E+6 

---- VAR S H4 1 .0000E-6 8.049 1 .0000£+6 

---- VAR S 04 1 .0000E-6 0. 1 55 1 .0000E+6 

---- VAR SP04 1 .0000E-6 2.943 1 .0000£+6 
---- AR Qlr 1 .0000E-6 4496.958 1 .0000£+6 

---- V AR anaer - INF 0.093 + INF 

- - - - V AR anox - I  F 0.509 + INF 

---- \' AR R I aer 1 .0000E-6 48 1 .267 1 .0000£+6 
---- VAR R 1 anox 1 .0000E-6 5 1 4.774 1 .0000E+6 
---- V AR R I anaer 1 .0000E-6 740.766 1 .0000£+6 

---- VAR R2 1 .0000E-6 1 024.945 1 .0000E+6 

---- VAR R3 1 .0000E-6 1 1 70.566 1 .0000£+6 

---- VAR R4 1 .0000E-6 890.633 1 .0000E+6 
---- VAR R5 1 .0000E-6 1 30.598 1 .0000E+6 
---- VAR R6 1 .0000E-6 374.369 1 .0000E+6 

---- VAR R7 1 .0000E-6 44.0 1 9  1 .0000£+6 

---- VAR R8 1 .0000E-6 1 1 8 .404 1 .0000£+6 

---- VAR R9 1 .0000£-6 1 4.482 1 .0000E+6 

---- VAR R I O  1 .0000£-6 58.090 1 .0000E+6 

---- VAR R l l 1 .0000E-6 1 7.427 1 .0000E+6 
---- VAR R I 2  1 .0000£-6 1 .363 1 .0000£+6 
---- VAR P I  1 .0000£-6 599.252 1 .0000£+6 
---- VAR P2 1 .0000E-6 79.536 J .0000E+6 

---- A R P3 1 .0000E-6 1 4.269 1 .0000E+6 

---- VAR P4 1 .0000£-6 54.357 1 .0000E+6 
---- VAR P5 1 .0000£-6 9.099 1 .0000E+6 

---- VAR P6 1 .0000E-6 23. 790 1 .0000E+6 

---- VAR P7 1 .0000£-6 1 . 847 1 .0000E+6 
---- VAR P8 1 .0000E-6 1 7 .408 1 .0000E+6 

---- VAR P9 1 .0000E-6 1 .748 1 .0000E+6 
---- VAR P I 0  1 .0000£-6 2.237 1 .0000E+6 
---- VAR P I I 1 .0000£-6 0.292 1 .0000E+6 
---- VAR ROH 1 .0000£-6 6542.6 1 7  1 .0000£+6 
---- VAR ROA 1 .0000E-6 3789.863 1 .0000E+6 
---- V AR CCAerT -I F 1 .7532E+5 + INF 
---- V AR CCAnoxT - INF 2.0885E+5 +INF 
---- V AR CCAnaerT - INF 62435.974 +INF 
---- V AR CCPST - INF 66540.25 1 + INF 
---- V AR CCFST - INF 2.4485E+5 + INF 
---- V A R  CCDAF - INF 3 .3352£+5 +INF 
---- V AR CCPSP - INF 9943 . 1 70 + INF 
--- - V A R  CCRSP - INF 2.2097E+5 +INF 
---- V AR CClSP -INF 8.5 1 85£+5 +INF 
---- VAR OCPST - INF 806.394 + INF 
---- V A R  OCPSP - INF 37 1 . 1 46 + INF 
---- VAR OCDAF -INF 4268.025 + INF 
- - - - VA R OCFST - INF 2225 .557 + INF 
---- VAR OCRSP - INF 424 1 .083 + INF 
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---- V AR OCISP - INF 1 2252 ..502 
---- V AR MCPST -INF 657. 5 0 1  
---- VAR lCPSP - INF 2 1 5 .9 1 7  
---- VAR MCFST - I F 2J78.80J 
---- VAR MCRSP -INF 9 1 32.999 
---- V AR MCISP -INF 46588.8J2 
---- V A R  PCPSP - I F 1 5 1 . 1 54 
---- VAR PCRSP -TNF 1 05 1 0E+5 
---- V AR PCISP - INF 6.70J3 E+5 
---- V A R  MEAnoxT -INF 77. 1 20 
---- VAR M EAnaerT -INF 1 4 .079 
---- V AR DCOST - INF 8 . 1 848E+5 
---- V AR CCWSP -INF 34802 .7 1 6  
---- V A R  OC\VSP - INF 992.6 1 1  
---- VAR ICWSP - INF 980. 1 66 
---- VAR PCWSP - INF 1 606.950 
---- VAR SRTaer 14.000 7 1 .645 

* * * *  REPORT SU 1l'vtARY : 0 NONOPT 
o I NFEASIBLE 
o UNBOUNDED 
o ERRORS 

+INF 
+INF 
+INF 
+INF 

+INF 
+INF 
+INF 
+1  F 
+INF 
+INF 
+INF 
+INF 
+INF 
+INF 
+INF 
+INF 
480.000 

EXECUTION TIME 0.0 1 0  SECONDS 0.7 Mb WIN I 97- 1 I 9 
USER. GA IS Development Corporation, Washington, DC G87 1 20 I :OOOOXX-XXX 

Free Demo, 202-342-0 1 80, sales@gams.com, www.gamS.cOI11 DC9999 

* * * *  FILE SUM1vlARY 

I PUT C:\DOCUMENTS AND SETT1NGS\NA WRAS\MY DOCUMENTS\MY 
THESIS\GAMS\BIOP 1 2.G 

MS 
OUTPUT C:\ WINDOWS\GAMSDIR\BIOP 1 2.LST 
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