
Emirates Journal for Engineering Research Emirates Journal for Engineering Research 

Volume 29 Issue 3 Article 1 

6-2-2024 

ASSESSMENT OF AN ASSUMED STRAIN-BASED TRIANGULAR ASSESSMENT OF AN ASSUMED STRAIN-BASED TRIANGULAR 

MEMBRANE ELEMENT MEMBRANE ELEMENT 

Abdelhak Kherfi 
Laboratory of Development in Mechanics and Materials (LDMM), University of Djelfa Djelfa, Algeria, 
a.kherfi@univ-djelfa.dz 

Kamel Zouggar 
Structures and Solid Mechanical Laboratory (LMSS), Mechanical Department, Faculty of Technology 
Djillali Liabes University of Sidi Bel Abbes, Algeria., kamel.zouggar@dl.univ-sba.dz 

Khelifa Guerraiche 
Mechanical Engineering Department, Faculty of Technology, University of Batna 2, Batna, Algeria, NMISSI 
Laboratory, Faculty of Science and Technology, Biskra University, Biskra, Algeria., guer.khelifa@yahoo.com 

Djemaa Guerraiche 
Applied Energy Physics Laboratory (LPEA), Department of Physics, Faculty of Matter Sciences, University 
of Batna 1, Algeria., djem_ta@yahoo.fr 

Antar Tahiri 
Laboratory of Mechanical and Materials Development, LDMM, University of Djelfa, Djelfa, Algeria., 
antar.tahiri@univ-djelfa.dz 

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/ejer 

 Part of the Applied Mechanics Commons 

Recommended Citation Recommended Citation 
Kherfi, Abdelhak; Zouggar, Kamel; Guerraiche, Khelifa; Guerraiche, Djemaa; and Tahiri, Antar (2024) 
"ASSESSMENT OF AN ASSUMED STRAIN-BASED TRIANGULAR MEMBRANE ELEMENT," Emirates Journal 
for Engineering Research: Vol. 29: Iss. 3, Article 1. 
Available at: https://scholarworks.uaeu.ac.ae/ejer/vol29/iss3/1 

This Article is brought to you for free and open access by Scholarworks@UAEU. It has been accepted for inclusion 
in Emirates Journal for Engineering Research by an authorized editor of Scholarworks@UAEU. For more 
information, please contact EJER@uaeu.ac.ae. 

https://scholarworks.uaeu.ac.ae/ejer
https://scholarworks.uaeu.ac.ae/ejer/vol29
https://scholarworks.uaeu.ac.ae/ejer/vol29/iss3
https://scholarworks.uaeu.ac.ae/ejer/vol29/iss3/1
https://scholarworks.uaeu.ac.ae/ejer?utm_source=scholarworks.uaeu.ac.ae%2Fejer%2Fvol29%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/295?utm_source=scholarworks.uaeu.ac.ae%2Fejer%2Fvol29%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/ejer/vol29/iss3/1?utm_source=scholarworks.uaeu.ac.ae%2Fejer%2Fvol29%2Fiss3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:EJER@uaeu.ac.ae


 

ASSESSMENT OF AN ASSUMED STRAIN-BASED TRIANGULAR 

MEMBRANE ELEMENT  

 Abdelhak Kherfi1*, Kamel Zouggar2, Khelifa Guerraiche3, Djemaa Guerraiche4, Antar Tahiri5 

1, Laboratory of Development in Mechanics and Materials (LDMM), University of Djelfa, Djelfa, Algeria 

a.kherfi@univ-djelfa.dz  

2 Structures and Solid Mechanical Laboratory (LMSS), Mechanical Department, Faculty of Technology Djillali Liabes      

University of Sidi Bel Abbes, Algeria. 

zouggarkamel.zk@gmail.com 

 
3, Mechanical Engineering Department, Faculty of Technology, University of Batna 2, Batna, Algeria, NMISSI 

Laboratory, Faculty of Science and Technology, Biskra University, Biskra, Algeria. 

guer.khelifa@yahoo.com  

 
4, Applied Energy Physics Laboratory (LPEA), Department of Physics, Faculty of  Matter  Sciences, University of 

Batna 1, Algeria. 

djem_ta@yahoo.fr  

 
5, Laboratory of Mechanical and Materials Development, LDMM, University of Djelfa, Djelfa 17000, Algeria. 

antar.tahiri@univ-djelfa.dz   

(Received on 30th January and Accepted on 2nd June 2024) 

 

 

 
Abstract 

 This paper presents a novel triangular strain-based element designed to address plane stress and strain, 

axisymmetric, and dynamic problems. The proposed element has four nodes, three of which are located at the 

vertices and one of which is located at the midpoint of the diagonal. The corner nodes have three essential external 

degrees of freedom (u, v, θ), while the central node has two degrees of freedom (u, v) on one of the triangle edges. 

A static condensation-based treatment of the central node is employed to streamline the model and reduce 

computational overhead. This triangular element is applicable to both linear and dynamic analyses. Its performance 

is evaluated using a suite of membrane and axisymmetric problems. The obtained results demonstrate the robustness 

and accuracy of the proposed element. 

 

Keywords: Strain approach, Drilling rotation, Triangular element, Linear analysis, Dynamic analysis, 

Axisymmetric.
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Nomenclature 

𝑎𝑖 Constants in the displacement fields 𝑥, 𝑦, 𝑧 coordinates system 

w Displacement in the z-direction [𝜑] displacement matrix 

[𝐷]  Elasticity matrix 

[𝐾e]  Element stiffness matrix 

𝐷 
Flexural rigidity of plate ( )3 212 1  D Eh né ù= -ê úë û

 

{𝛿𝑒} Nodal displacement vector 

𝐿 Length of plate 

𝜈 Poisson’s ratio 

𝑅1,2 Radius of circular plate 

𝛽x, 𝛽y Rotations about y and x axes respectively 

[𝑄] Strain matrix 

t Thickness of plate 

[𝐶] Transformation matrix 

𝐸 Young’s modulus 

Ref. Solu Reference solution 

Exact solu Exact solution 

Anal. solu Analytical solution 

SBFNT Strain Based Four Node Triangular element 

FEM finite element method  
 

 

1. INTRODUCTION 

Engineering problems often find effective solutions 

through numerical methods such as finite elements, 

finite volumes, finite differences, and discrete 

elements methods. Among these techniques, the 

finite element method (FEM) holds a prominent 

position due to its robust mathematical foundation 

and versatility, making it the preferred choice for 

numerous applications[1], [2], [3]. Pioneering work 

by Turner et al.[4] introduced linear (constant-

strain) triangles and bilinear rectangles within the 

framework of standard displacement-based 

elements, while Taig[5] contributed standard 

bilinear quadrilaterals. These elements have gained 

widespread adoption in two-dimensional structures, 

particularly for plane-stress, plane-strain, and 

axisymmetric-solid models. However, their 

propensity for excessive stiffness in scenarios 

dominated by linear strain gradients and their 

susceptibility to mesh distortions and bending issues 

arising from aspect ratio degradation became 

apparent during computational investigations. 

These challenges spurred the development of 

improved or entirely new elements. Researchers 

have explored alternative strategies like hybrid 

stress elements[6], [7], [8], assumed strain or 

enhanced assumed strain elements[9], [10], [11], 

[12], quasi-conforming elements [13], [14], and 

generalized conforming elements[1], [15], [16], 

demonstrating their advantages over traditional 

finite elements. At the heart of solid mechanics 

research lies the pursuit of efficient and 

straightforward finite elements for structural 

analysis. One notable class of elements emerged 

from the strain-based approach, where displacement 

fields are enriched with higher-order terms without 

introducing additional degrees of freedom. This 

approach results in more accurate displacement 

solutions, eliminating shear locking and parasitic 

shear effects. Strains in this context encompass rigid 

body motions, constant strains, and higher-order 

strains. 

Ashwell et al.’s approach[17], initially targeting 

curved structures, has been expanded to encompass 

plane elasticity[18], [19], [20], [21], [22]. Early 

work summaries are available in references[23], 

[24] , encompassing three-dimensional elasticity 

problems[10], [25], [26], [27], [28] , plate 

bending[10], [25], [26], [27], and shell 

structures[15], [29], [30], [31]. Ongoing research 

delves into nonlinear problems[15], [22], [32] , 

composite materials[25], functionally graded 

plates[25], [33] , and fracture mechanics[3]. These 

investigations have demonstrated the resilience, 

efficiency, and pragmatic utility of this approach in 

crafting robust finite elements adept at withstanding 

prevalent challenges like mesh sensitivity and 

locking problems. Significant progress has been 

made in applying the strain-based plane elements to 

solve problems on static, free and forced 

vibration[34], [35]. 

Building upon the extensive research and 

advancements in strain-based triangular elements, 

this study proposes an enhanced element with 

improved strain accuracy, computational efficiency, 

and mitigation of parasitic and shear-related issues. 

This element features three degrees of freedom per 

node (u, v, θ) for enhanced strain accuracy (𝜀x, 

𝜀y, 𝛾xy). To further improve analysis precision and 

computational efficiency for plane structures, an 

edge central node with two degrees of freedom  

(u, v) is introduced. Subsequently, static 
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condensation [21], [22] eliminates this edge central 

node, resulting in a simplified three-node triangular 

element. Each node retains three essential 

translational degrees of freedom, effectively 

eliminating parasitic and shear-related issues while 

maintaining insensitivity to mesh distortions. 

Through a comprehensive set of numerical 

experiments covering plane elasticity, axisymmetric 

cases, and dynamic simulations, the proposed 

element proves to be significantly more accurate and 

computationally efficient than conventional plane 

elements. 

 

2. MATHEMATICAL FRAMEWORK FOR 

THE ELEMENT  

The newly developed element, designated as 

SBFNT (Strain Based Four Node Triangular 

element), adopts a triangular shape. Each corner 

node possesses three degrees of freedom 

corresponding to two translations (u, v) and a 

rotation θ. Additionally, the internal node introduces 

two supplementary translations (u, v) (Figure 1). 

  

 

 

 
Figure 1. Strain Based Four node element (SBFNT) 

 

For plane elasticity problems in the Cartesian 

coordinate system, the strain-displacement relations 

of the element can be expressed as: 

{
 
 

 
 𝜀𝑥 =

𝜕𝑢

𝜕𝑥

𝜀𝑦 =
𝜕𝑣

𝜕𝑦

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

                                                     1 

 
𝜕2𝜀𝑥

𝜕𝑦2
+

𝜕2𝜀𝑦

𝜕𝑥2

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦2
= 0                                                   2 

 

Let u and v represent the displacements along the x 

and y axes, respectively. The normal strains are 

denoted by 𝜀𝑥 and 𝜀𝑦, while 𝛾𝑥𝑦  represents the shear 

strain. The displacement field for rigid body modes 

is obtained by setting the three deformations in 

equation (1) to zero and integrating. This leads to the 

following expressions: 

 

{

𝑢 = 𝑎1 − 𝑎3𝑦
𝑣 = 𝑎2 + 𝑎3𝑥
𝜃 = 𝑎3

                                                                3 

 

To account for the element’s drilling degree of 

freedom, the following equation is employed: 

𝜃 =
1

2
(
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)                                                           4 

The SBFNT element possesses eleven independent 

degrees of freedom, necessitating eleven 

independent constants within the displacement field. 

As depicted in equation (3), the three constants 

𝑎1, 𝑎2, and 𝑎3 represent the rigid body mode 

displacement fields. Consequently, the remaining 

eight constants (𝑎4, 𝑎5⋯𝑎11) characterize the 

imposed strains of the elements, expressed as: 

{

𝜀𝑥 = 𝛼4 + 𝛼7𝑦 + 𝛼9𝑥 + 𝛼11𝑥𝑦
2

𝜀𝑦 = 𝛼5 + 𝛼8𝑥 + 𝛼10𝑦 − 𝛼11𝑥
2𝑦

𝛾𝑥𝑦 = 𝛼6 + 𝛼11(𝑥
2𝑦 − 𝑦2𝑥 − 2𝑦 + 2𝑥)

              5 

The strain functions for the current element adhere 

to the compatibility equation (2). They are expressed 

in matrix form as follows: 

 
{𝜀} = [𝑄]{𝑎}                                                           6 

Matrix [Q] establishes the relationship between the 

strain fields and the unknown constants. It is defined 

as follows: 
[𝑄] =

[

0 0 0 1 0 0 𝑦 0 𝑥 0 𝑥𝑦2

0 0 0 0 1 0 0 𝑥 0 𝑦 −𝑥2𝑦

0 0 0 0 0 1 0 0 0 0 𝑥2𝑦 − 𝑦2𝑥 − 2𝑦 + 2𝑥

]

 7 
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By performing the integration of equations (5) and 

utilizing equations (3) as substitutions, we arrive at 

the final displacement functions 

{
 
 

 
 𝑢 = 𝛼1 − 𝛼3𝑦 + 𝛼4𝑥 +

1

2
𝛼6𝑦 + 𝛼7𝑥𝑦 −

1

2
𝛼8𝑦

2 +
1

2
𝑥2𝛼9 + 𝛼11 (

𝑥2𝑦2

2
− 𝑦2)

𝑣 = 𝛼2 + 𝛼3𝑥 + 𝛼5𝑦 +
1

2
𝛼6𝑥 −

1

2
𝛼7𝑥

2 + 𝛼8𝑥𝑦 +
1

2
𝛼10𝑦

2 + 𝛼11 (𝑥
2 −

𝑥2𝑦2

2
)

𝜃 = 𝛼3 − 𝛼7𝑥 + 𝛼8𝑦 + 𝛼11 (𝑥 + 𝑦 −
𝑥𝑦2

2
−

𝑥2𝑦

2
)

                                                  8 

 

The aforementioned relationships can be 

represented in matrix form as follows: 
{𝑢} = [𝑇]{𝑎}                                                               9 

For which the matrix [T] takes the following form: 

[𝑇] = (
[𝑃]

[𝑅]
)                                                              10 

 

The constituent matrices [P] and [R] are defined as 

follows: 
[𝑃] =

[
1 0 −𝑦 𝑥 0

𝑦

2
𝑥𝑦

−𝑦2

2

𝑥2

2
0

𝑥2𝑦2

2
− 𝑦2

0 1 𝑥 0 𝑦
𝑥

2
−
𝑥2

2
𝑥𝑦 0

𝑦2

2
𝑥2 −

𝑥2𝑦2

2

]

  11 
[𝑅] =

[0 0 1 0 0 0 −𝑥 𝑦 0 0 𝑥 + 𝑦 − (
𝑥𝑦2

2
−
𝑥2𝑦

2
)]

  12 

The displacements at the nodes and the coefficients 

in the vector {a} are related by: 
{𝑞𝑒} = [𝐶]{𝑎}                                                                13 

where: 
{𝑞𝑒} =
{𝑢1 𝑣1 𝜃1 𝑢2 𝑣2 𝜃2 𝑢3 𝑣3 𝜃3 𝑢4 𝑣4}

𝑇

  14 
{𝑎} =
{𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11}𝑇

  15 

 

In addition, the 11x11 matrix [C] acts as a 

mathematical representation of the structural 

relationships between the coefficients (𝑎1 to 𝑎11) 

and the resulting nodal displacements. This mapping 

is expressed as follows: 

[𝐶] =

(

 
 
 
 
 

𝑃(𝑥1, 𝑦1)

𝑅(𝑥1, 𝑦1)

𝑃(𝑥2, 𝑦2)
𝑅(𝑥2, 𝑦2)

𝑃(𝑥3, 𝑦3)

𝑅(𝑥3, 𝑦3)

𝑃(𝑥4, 𝑦4))

 
 
 
 
 

                                                   16 

Based on equation (13), we can deduce: 
{𝑎} = [𝐶]−1{𝑞𝑒}                                                                17 

Substituting equation (17) into equations (6) and (9) 

yields: 
{𝑈} = [𝑃][𝐶]−1{𝑞𝑒} = [𝑁]{𝑞𝑒}                                 18 

and 
{𝜀} = [𝑄][𝐶]−1{𝑞𝑒} = [𝐵]{𝑞𝑒}                                   19 

where: 

{
[𝑁] = [𝑃][𝐶]−1

[𝐵] = [𝑄][𝐶]−1
                                                    20 

where: [N] and [B] represent respectively the shape 

functions and the matrix that link deformation to 

nodal displacement {𝑞𝑒} 
The mathematical representation of stress and strain 

is: 
{𝜎} = [𝐷]{𝜀}                                                           21 

Where [D] represents the elasticity matrix for plane 

stress and plane strain, as defined in Appendix A. To 

derive the element stiffness matrix, the following 

steps are involved: 

The weak form, which is given in the following 

equation: 

∫ 𝛿
𝑉𝑒

{𝜀}𝑇{𝜎}𝑑𝑉 = ∫ 𝛿
𝑉𝑒

{𝑈}𝑇{𝑓𝑣}𝑑𝑉               22 

Substituting the values from equations (18), (19), 

and (21) into equations (22) results in: 

𝛿{𝑞𝑒}
𝑇(∫ [𝐵]𝑇

𝑉𝑒
[𝐷][𝐵]𝑑𝑉){𝑞𝑒} =

𝛿{𝑞𝑒}
𝑇(∫ [𝑁]𝑇

𝑉𝑒
{𝑓𝑉}𝑑𝑉)                                                23 

where: 

[𝐾𝑒] = ∫ [𝐵]𝑇
𝑉𝑒

[𝐷][𝐵]𝑑𝑉                                         24 

[𝐾𝑒] = 𝑡[𝐶]
−𝑇(∬[𝑄]𝑇 [𝐷][𝑄]𝑑𝑥𝑑𝑦)[𝐶]−1

 25 

With ‘t’ denoting the thickness 

[𝐾𝑒] = 𝑡[𝐶]
−𝑇[𝐾0][𝐶]

−1                                          26 

The juxtaposition of equations (25) and (26) leads to 

[𝐾0] = ∬[𝑄]𝑇 [𝐷][𝑄]𝑑𝑥𝑑𝑦                                    27 

Through the application of numerical integration 

techniques: 

[𝐾0] = ∫ ∫ [𝑄]𝑇[𝐷][𝑄]𝑑𝑒𝑡|𝐽|𝑑𝜉
+1

−1
𝑑𝜂

+1

−1
              28 

Where [J] denotes the Jacobian matrix and the 

element nodal body forces vector is given by: 

{𝐹𝑏} = ∫ [𝑁]𝑇{𝑓𝑣}𝑉𝑒
𝑑𝑉 = [𝐶]−𝑇(∫ [𝑃]𝑇{𝑓𝑣}𝑉𝑒

𝑑𝑉)

 29 

Once all the elements have been assembled, the 

overall stiffness [K] is fed into the static equations 

as follows: 

[𝐾]{𝑞} = {𝐹}                                                           30 

2.1 Case of Axisymmetric  

Under the assumption of axisymmetric conditions, 

the strain components are expressed as: 

{
 
 

 
 𝜀𝑟 =

𝜕𝑢

𝜕𝑟

𝜀𝑧 =
𝜕𝑣

𝜕𝑧

𝛾𝑟𝑧 =
𝜕𝑢

𝜕𝑧
+

𝜕𝑣

𝜕𝑟

𝜀𝜃 =
𝑢

𝑟

                                                          31 

In the context of axisymmetric analysis, the element 

stiffness matrix takes the following form: 

[𝐾𝑒] = ∫ [𝐵]𝑇
𝑉𝑒

[𝐷][𝐵]𝑟𝑑𝑉                                         32 

The radial coordinate is denoted by ‘r’, and the 

axisymmetric elasticity matrix is represented by [D], 

5
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as detailed in Appendix A. It is important to note that 

our numerical integration employs the Gauss 

quadrature technique. Moreover, in instances of 

forced vibration, the complex response method is 

utilized, as described in[36] .

3. NUMERICAL VALIDATION 

This section presents a comprehensive evaluation of 

the element’s accuracy under various analysis types, 

including plane strain, plane stress, axisymmetric, 

and dynamic. The performance of the proposed 

element is benchmarked against the following 

established elements: 

SBQM[19]  5-node quadrilateral element with in-plane rotation based on the strain approach 

Q4  Standard four-nodes quadrilateral element. 

Q8  Standard eight-nodes quadrilateral element. 

Q6[20]  Quadrilateral element with six nodes. 

FRQ[9]  4-node quadrilateral element based on the “Plane Fiber Rotation” concept 

CST[37] Constant strain triangle CST-3/6C 

LST[38]  Linear Strain Triangle 

CST Hybrid[37] Cook's plane hybrid triangle 

SBT3[38] An assumed strain based on triangular element with drilling rotation 

CPS8[19]  Classic 8-node quadrilateral element in-plane stress with exact integration (Abaqus). 

SBRIEIR [39]  Element with strain field at four nodes with in-plane rotation. 

Q4CST[20]  The constant strain quadrilateral. 

QM5[20]  Plane stress element and Verbeke plate element boundary element formulation. 

SBQ5 [40]  Strain-based quadrilateral element with five nodes. 

SBE[41]  Strain Based Element 

CQUAD4[42] MSC/NASTRAN 

SBTDR[43] Strain-based triangular element  

3.1 PLANE LINEAR ELASTICITY TESTS 

3.1.1.  MCNEAL’S BEAM 

The susceptibility of the proposed element to mesh 

distortion is assessed using the McNeal beam 

depicted in Figure 2. Three distinct meshes, namely 

rectangular, parallelogram, and trapezoidal, are 

employed. The McNeal and Harder[44] test, widely 

recognized as the benchmark for evaluating mesh 

distortion sensitivity, is utilized. Two loading 

scenarios are considered: pure bending and 

transverse linear bending. The pertinent mechanical 

and geometrical parameters are presented in Figure 

2. Table 1 summarizes the results obtained by the 

proposed element compared to other elements. 

 
Figure 2. McNeal’s cantilever beam (a) rectangular (b) trapezoidal (c) parallelogram 

 

Table 1. Normalized deflection at the tip of the McNeal’s beam 

 LOAD P LOAD M 

 MESH TYPE MESH TYPE 

ELEMEN

T 

Rectangula

r 

(a) 

Parallelogra

m 

(b) 

Trapezoida

l  

(c) 

Rectangula

r 

(a) 

Parallelogra

m 

(b) 

Parallelogra

m (c) 

SBQM[19] 0.993 0.964 0.972 1.00 1.00 1.00 

Q4 0.093 0.035 0.003 0.093 0.031 0.022 

Q8 0.951 0.919 0.854 1.00 0.994 0.939 

6

Emirates Journal for Engineering Research, Vol. 29 [2024], Iss. 3, Art. 1

https://scholarworks.uaeu.ac.ae/ejer/vol29/iss3/1



 
 

 

The strain-based elements SBFNT, SBQM, SBTDR 

and SBE, along with the standard eight-node 

quadrilateral element Q8, exhibit low sensitivity to 

mesh distortion under both loading cases in 

trapezoidal and parallelogram meshes. Specifically, 

SBQM and SBE outperform slightly SBFNT in 

shear testing due to their quadrilateral shape. 

The SBFNT element demonstrates negligible 

sensitivity across all mesh types, outperforming 

other elements in terms of accuracy, particularly in 

flexion in cases (b) and (c). However, the transverse 

shear locking propensity of the standard four-node 

quadrilateral element Q4, arising from its excessive 

rigidity, adversely affects its results. After statically 

condensing the central edge node, resulting in a 

simplified triangular element with three nodes, the 

SBFNT (Strain Based Four Node Triangular 

element) element offers significant computational 

advantages. Its straightforward structure enhances 

both time efficiency and cost-effectiveness in 

computational analyses. 

3.1.2. BEAM IN-PLANE BENDING 

To validate the developed element’s performance in 

the context of the cantilever beam problem subjected 

to a uniform vertical load, as illustrated in Figure 3, 

references[9], [18] were consulted. The vertical 

displacement at the beam’s free end is computed 

using five meshes depicted in Figure 3. 

 
Figure 3. Visualization of data and meshes for beam in-plane bending analysis 

For reference purposes, Timoshenko’s beam theory 

was implemented: 

𝑉𝑐
𝑟𝑒𝑓

=
𝑃𝐿3

3𝐸𝐼
+

6𝑃𝑧𝐿

5𝐺𝐴
                                                   33 

Table 2 presents the results obtained by the SBFNT 

element for various meshes (M1, M2, M3, M4, and 

M5). These results are compared against those 

reported in the literature for selected membrane 

elements, revealing the following observations: 

⎯ The SBFNT element consistently 

outperforms the Q4, FRQ, and 

SBRIEIR elements in terms of 

accuracy. 

⎯ For regular meshes (M1, M2, and M3), 

the SBFNT element demonstrates 

comparable results to the SBT3, LST, 

and Q8 elements. 

⎯ In the presence of distorted meshes 

(M4 and M5), the SBFNT element 

exhibits superior insensitivity 

compared to other membrane 

elements. 

Table 2. Vertical displacement of a beam in plane 

Mesh 

Type 
FRQ[9] Q4 [18] Q8[18] LST[38] CST[38] SBT3[38] SBRIEIR[19] SBQM[19] SBFNT 

M1 2.76 0.10 3.03 3.00 0.05 2.88 2.86 3.02 3.03 

M2 3.44 0.38 3.7 370 0.13 2.90 3.57 3.77 3.77 

M3 3.56 0.75 3.84 3.84 0.25 2.93 3.71 3.91 3.91 

M4 1.09 0.12 0.64 3.02 0.06 2.92 2.92 3.04 3.047 

M5 1.61 0.22 1.76 3.09 0.10 2.97 3.04 3.14 3.13 

Ref. Solu[18] 4.03 

 

  

SBT3[38] 0.964 0.950 0.950 0.989 0.988 0.988 

SST[37] 0.994 0.943 0.921 1 1 1 

SBE[41] 1.00 0.976 0.978 1.00 0.989 0.989 

SBTDR[43

] 
0.992 0.904 0.888 1.00 1.00 1.00 

SBFNT 0.993 0.880 0.930 1.00 1.00 1.00 

Ref. 

Solu[44] 
- 0.1081 − 0.0054 
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3.1.3. COOK’S SKEW BEAM 

The Cook’s skew beam, depicted in Figure 4, is a 

widely recognized benchmark problem for assessing 

the performance of planar elements. Numerous 

researchers have investigated this problem, as 

documented in[45], [46], [47] . Due to the absence 

of an analytical solution, the reference solution is 

obtained using ABAQUS’s CPS8 element with a 

refined 6464 mesh. The mechanical properties, 

geometrical dimensions, and loading conditions for 

the analyzed structure are presented in Figure 4. The 

results for the vertical deflection at point C are 

summarized in Table 3. 

 
Figure 4. Cook’s skew beam 

The SBFNT element demonstrates satisfactory 

agreement with the reference solution, even with a 

relatively coarse mesh compared to the Q4, 

SSQUAD[24], CQUAD4[42], SBQM [19], 

CPS8[19] and SBTDR[43] elements. This 

observation underscores the SBFNT element’s 

robustness and efficiency in handling complex stress 

distributions. 

 

Table 3. Tip vertical deflection of the Cook’s skew beam 

 Vertical displacement at point C 

 Mesh 

Element 2×2 4×4 8×8 16×16 

Q4 11.80 18.29 22.08 23.43 

SSQUAD[16] 25.65 24.27 24.01 23.96 

CQUAD4[42] 21.05 23.02 23.69 23.94 

SBQM[19] 23.2173 23.4350 23.7376 23.9817 

CPS8[19] 23.35 24.54 23.8793 23.8596 

CSTHybrid[37] 19.41 22.17 23.37 23.77 

SST[37] 20.94 23.84 24.18 24.13 

SBTDR[43] 15.85 20.96 25.55 - 

SBFNT 22.31 23.92 23.98 23.98 

Ref. Solu[36] 23.96 

3.1.4 THICK-WALLED CYLINDER UNDER 

INTERNAL PRESSURE 

To assess the performance of the proposed element 

in handling variable material properties  

(a variable Poisson’s ratio), a thick-walled cylinder 

subjected to uniform internal pressure is analyzed. 

The problem is considered under plane strain 

conditions. Due to symmetry, only  

one-quarter of the cylinder is modeled. The 

mechanical properties and geometrical dimensions 

are depicted in Figure 5. The results for the radial 

displacement at the inner radius are presented in  

Table 4. The reference solution is obtained 

from[48]: 
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Figure 5. Thick-walled cylinder under internal pressure 

Table 4. Normalized radial displacements at the inner radius of the thick-walled cylinder 

Poisson’s ratio Q4[46] SBQM[19] Q8 SBQ5[40] SBRIEIR[19] SBFNT Ref. Solu[48] 

0.3 0.986 0,9869 1.184 0.990 0.9698 0.952 4.5825 

0.49 0.845 0,9784 1.108 1.009 0.8532 0.956 5.0399 

0.499 0.398 0,9770 1.037 1.011 0.5200 0.956 5.0602 

0.4999 0.053 0,9768 1.036 1.011 0.1539 0.956 5.0623 

The normalized radial displacement results 

presented in Table 4 demonstrate that the Q8 

elements and the strain-based elements SBFNT, 

SBQM, SBQ5, and SBRIEIR are insensitive to 

locking caused by the variation of Poisson’s ratio. 

Notably, the triangular element SBFNT exhibits less 

accuracy than the quadrilateral ones. Triangular 

elements like SBFNT excel in accommodating 

curved shapes, whereas rectangular elements are 

more suitable for straightforward designs. 

3.1.5 THIN CIRCULAR CONSOLE BEAM 

UNDER SHEAR LOADING 

To assess the performance of the SBFNT element in 

analyzing thin, curved beams, three meshes (61, 

122, and 244) were employed. The geometrical 

dimensions, loading, and boundary conditions are as 

specified in[47] and depicted in Figure 6. 

 
Figure 6. Thin circular console beam modelled with (61) quadrilateral elements 

 

The SBFNT element’s normalized vertical 

displacements at a specific point are compared to 

those of other elements in Table 5. It is evident that 

the SBFNT element’s displacement rapidly 

converges towards the reference solution and 

outperforms the CPS4, SBTDR, SST, and SBRIEIR 

elements. Moreover, its results closely match those 

of the CPS8 element. 
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Table 5. Normalized vertical displacement at point A of a thin circular console beam 

Mesh CPS4[47] CPS8[47] SBTDR[43] SST[37] SBRIEIR[19] SBFNT 

61 0.073 0.881 0.073 0.02536 0.504 0.726 

122 0.247 1.006 0.464 0.09599 0.797 0.878 

244 0.572 1.013 0.797 0.28189 0.936 0.970 

Ref. Solu[47] -0.08734 

3.2 AXISYMMETRIC ELASTICITY TEST 

3.2.1 POINT LOADED CIRCULAR PLATE 

BENDING 

For the analysis an anisotropic simply supported 

circular plate with a thickness of h = 1 and a radius 

of r = 10 is subjected to a point load of P = 10 at the 

center, as illustrated in Figure 7. The analytical 

solution for this problem is derived from 

Timoshenko’s work[49]. 

 
Figure 7. Geometry and mesh of a simply supported circular plate under a concentrated load. 

The analytical formulas for the bending moments 

and the resulting stresses are provided as follows: 

{

𝑀𝑟𝑟 =
𝑃

4𝜋
(1 + 𝜐)ln (

𝑏

𝑎
)

𝑀𝜃𝜃 =
𝑃

4𝜋
((1 + 𝜐)ln (

𝑏

𝑎
) + 1 − 𝜐)

                       34 

{

𝜎𝑟𝑟 =
12𝑀𝑟𝑟𝑧

ℎ3

𝜎𝜃𝜃 =
12𝑀𝜃𝜃𝑧

ℎ3

                                                           35 

where ‘a’ and ‘b’ denote the internal and external 

radii of the plate subjected to a concentrated load, 

respectively. 

As the internal radius ‘a’ approach zero, the bending 

moments and stresses expressed in equations (20) 

and (21) diverge to infinity. To facilitate 

comparisons between analytical and numerical 

solutions, the analytical values of the internal radius 

a will be selected very close to zero 
(𝑟 ≤ 𝑟𝑠𝑡𝑟𝑢𝑐 = 𝑟/1000).The stresses on the bottom 

and top surfaces of the plate are: 

{

𝜎𝑟𝑟 = ±
12𝑀𝑟𝑟(ℎ/2)

ℎ3
= ±6𝑀𝑟𝑟/ℎ

2

𝜎𝜃𝜃 = ±
12𝑀𝜃𝜃(ℎ/2)

ℎ3
= ±6𝑀𝜃𝜃/ℎ

2

                      36 

At a specific radius ‘r’, the precise radial 

displacement is determined as follows: 

{
𝑢𝑟 = −𝑧 ⋅

𝛿𝑢𝑧

𝛿𝑟
=

𝑃

𝑆⋅𝜋⋅𝐷
[
3+𝜐

1+𝜐
− (1 + 2 ⋅ log (

𝑏

𝑎
))] × 𝑟 ⋅ 𝑧

𝑢𝑧 =
𝑃

16⋅𝜋⋅𝐷
[
3+𝜐

1+𝜐
(𝑎2 − 𝑏2) + 2 ⋅ 𝑟2log [

𝑏

𝑎
))

37 

And where: 

𝐷 =
𝐸ℎ3

12⋅(1−2𝜐)
                                                                 38 

As illustrated in Figures 8, 9, and 10, the vertical 

displacements predicted by the SBFNT and Q8 

elements closely match the theoretical solution. For 

a coarse mesh, the Q4 element produces results that 

deviate significantly from the analytical solution due 

to the shear locking issue arising from its excessive 

rigidity. Although refining the mesh improves the 

accuracy of the Q4 element’s results, they still fall 

short of those obtained with the SBFNT and Q8 

elements. Regarding the radial and hoop stresses, the 

developed elements provide consistently accurate 

results even with a coarse mesh, in contrast to the Q4 

element, which yields erroneous results. 
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Figure 8.  Displacement distribution along the line 𝑧 =
ℎ
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Figure 9. Point Loaded Circular Plate Bending (Hoop stress 𝜎𝜃𝜃 calculated at the center of the elements). 
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Figure 10.  Point Loaded Circular Plate Bending (Radial stress 𝜎𝑟𝑟  calculated at the center of the elements). 
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3.2.2 SIMPLY SUPPORTED CIRCULAR 

PLATE UNIFORMLY LOADED 

A simply supported circular plate subjected to a 

uniform load is analyzed, assuming a plate thickness 

of t=1. Two distinct meshes were employed to 

discretize the plate. The first mesh is a rectangular 

mesh with a distortion factor of e=0, while the 

second is a trapezoidal mesh with a distortion factor 

of e=0.025, as depicted in Figure 11. The reference 

solution for this problem is adopted from[49]. 

𝑤(𝑟) =
𝑃⋅𝑟0

4

64⋅𝐷(1+𝜐)
[2 ⋅ (3 + 𝜐) ⋅ (1 − (

𝑟

𝑟0
)
2

) − (1 +

𝜐) ⋅ (1 − (
𝑟

𝑟0
)
4

)]  

 39 

{

𝑤𝑚𝑎𝑥 = 𝑤(0)

𝑤𝑚𝑎𝑥 =
𝑃⋅𝑟0

4(5+𝜐)

64⋅𝐷⋅(1+𝜐)

                                                    40 

 
Figure 11. Simply supported uniformly loaded circular plate 

Table 6.  Normalized vertical displacement at the center ‘A’ for the uniformly loaded circular plate 

 𝑢𝑧𝐴 

Mesh type 

Element Rectangular Trapezoidal 

Q4 0.696 0.694 

Q8 1.0079 1.0183 

SBFNT 0.993 0.993 

Ref. sol[49] −738.280 

The displacement results presented in Table 6 

demonstrate that the SBFNT element accurately 

approximates the exact solution, closely matching 

the performance of the Q8 element. In contrast, the 

Q4 element yields inferior results. The SBFNT 

element excels in scenarios where bending is the 

predominant stress state. 

3.2.3 INTERNALLY PRESSURIZED THICK 

CYLINDER 

Consider an infinitely long thick cylinder with 

radius ‘r’ subjected to internal pressure. The material 

properties, boundary conditions, and loading 

conditions applied to the model are depicted in 

Figure 12. The problem is analyzed under plane 

strain conditions. Two meshes (14 and 18) 

comprising axisymmetric quadrilateral elements are 

employed to discretize a d=2 ‘slice’ of the thickness, 

as shown in the same figure. The analytical solution 

for a thick cylinder subjected to internal pressure, as 

proposed by Timoshenko (Goodier, 1951), is given 

by: 

{
 
 

 
 𝜎𝑟𝑟 =

𝑃𝑎2

𝑏2−𝑎2
(1 −

𝑏2

𝑟2
)

𝜎𝑧𝑧 =
2𝑃𝑎2𝜐

𝑏2−𝑎2

𝜎𝜃𝜃 =
𝑃𝑎2

𝑏2−𝑎2
(1 +

𝑏2

𝑟2
)

                                               41 

For a given radius r, the exact radial displacement is: 

𝑈𝑟𝑟 =
𝑎2(1+𝜈)

𝐸
 (

𝑏2+𝑟2(1−2𝜈)

(𝑏2−𝑎2)⋅𝑟
)                                     42 

Stress and displacement results obtained for the 

formulated elements and those for elements Q4 and 

Q8 are presented in Figures 13, 14, and 15. The 

numerical results show good agreement with the 

analytical solution for all elements, with stress 

results calculated at the element centers. 

For a coarse mesh size of (14), the SBFNT and Q8 

elements exhibit excellent accuracy. Element Q4 

demonstrates improved accuracy with mesh 

refinement (18), particularly for radial 

displacement. This improvement is attributed to the 

low-stress gradients observed in this case, which 

differ from those in the axisymmetric cylindrical 

shell scenario. 
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Figure 12. Geometry and mesh of a thick cylinder subjected to internal pressure 
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Figure 13.  Displacement distribution along the line (z=0) 
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Figure 14.  Hoop stress distribution at the center of elements 
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Figure 15. Radial stress distribution at the center of elements 

3.2.4 AXISYMMETRIC CYLINDRICAL 

SHELL 

A thin cylindrical shell with a radius-to-thickness 

ratio 𝑅 𝑒⁄ = 168 is subjected to an end moment[20], 

as illustrated in Figure 16. This problem represents 

an example of a thin shell with axisymmetric 

loading, for which an exact solution can be obtained 

using shell theory in the case of infinite length. A 

quadrilateral element is employed through the 

thickness of the shell. The theoretical solution for 

shells[49] is used as a benchmark to compare the 

numerical radial displacements for both the 

proposed element and various other element types. 

The results are presented in Table 7 and  

Figure 17. The proposed element exhibits excellent 

accuracy, which becomes even more evident in 

bending-dominated scenarios. 

 
Figure 16.  Cylindrical shell analysis. 

Table 7. Radial displacements (u) for the axisymmetric cylindrical shell. 

 Radial Displacements u 

Z Q4CST[20] QM5[20] Q4[20] Q6[20] SBFNT Anal. Solu[20] 

0 39.97 98.56 46.47 100.01 99.9312 100.00 

3 26.04 47.87 29.17 48.98 48.9355 48.88 

6 14.98 13.49 15.69 14.19 14.3776 14.31 

9 6.56 -7.29 5.69 -6.54 -6.5302 -6.57 

12 0.47 -17.77 -1.31 -17.15 -17.1453 -17.16 

15 -3.65 -21.17 -5.82 -20.70 -20.6865 -20.68 

18 -6.16 -20.21 -8.35 -19.88 -19.8693 -19.85 

21 -7.40 -16.97 -9.39 -16.83 -16.7709 -16.75 
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24 -7.68 -12.92 -9.33 -12.85 -12.8413 -12.82 

27 -7.27 -8.98 -8.55 -9.00 -8.9934 -8.95 

30 -6.40 -5.65 -7.32 -5.72 -5.7233 -5.63 

33 -5.27 -3.12 -5.87 -3.23 -3.2319 -3.06 
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Figure 17. Radial displacements (u) for the axisymmetric cylindrical shell. 

The obtained results reveal that the Q4 and Q4CST 

elements yield highly inaccurate values, indicating 

their inability to effectively capture bending 

phenomena. In contrast, the SBFNT, QM5, and Q6 

elements demonstrate a high degree of accuracy in 

approximating the theoretical solution. The 

proposed element stands out for its exceptional 

performance in bending-dominated scenarios. 

 

 

 

3.3 DYNAMIC NUMERICAL VALIDATION 

3.3.1 EIGENVALUES OF A RECTANGULAR 

SOLID WITH LUMPED MASS 

An elastic solid cantilever beam with a flexural 

rigidity of 1/12 and a Poisson’s ratio of 0.3 is 

analyzed under plane strain conditions, as described 

in reference[50] and depicted in Figure 18. Two 

meshes are employed to evaluate the eigenvalues, 

with the results presented in Table 8. 

 
Figure 18. Geometrical and mesh representation of the cantilever beam. 

Table 8.  Eigenvalues of the cantilever beam 

 Frequencies Q4 Q8 SBE [41] SBFNT 

Mesh 3×1 
𝜔1 0.080 0.064 0.064 0.070 

𝜔2 0.353 0.413 0.410 0.376 

Mesh 5×1 
𝜔1 0.068 0.060 0.062 0.066 

𝜔2 0.391 0.391 0.393 0.3928 

Exact Solu[50] 

𝜔1 = 1.875
4 ×

𝐸𝐼

𝜌𝐴𝐿4
                              0.063 

𝜔2 = 𝜋/2𝐿√
𝐸

𝜌
                                      0.393 
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For a coarse mesh (31), the SBFNT, SBE, and Q8 

elements provide accurate approximations of the 

eigenvalues, approaching the exact theoretical 

solution. However, the Q4 element exhibits 

significant deviations from the exact solution. 

Refining the mesh to (15) leads to the convergence 

of the Q4 element’s results towards the exact 

solution. 

3.3.2 Forced vibration of a rectangular solid in-

plane strain 

The present benchmark study evaluates the 

performance of the developed element in a 

rectangular beam subjected to in-plane strain 

conditions, specifically examining its ability to 

analyze forced vibrations using the complex 

response method. The modeled results are compared 

against those obtained by Smith and Griffith[50] for 

the Q8 element, as well as the Q4, SBQ5, and SBRIE 

elements[40]. 

Figure 19 illustrates the geometrical dimensions and 

mechanical properties of the evaluated beam. The 

beam is subjected to a vertical harmonic force 𝐹 =
cos (𝜔𝑡), where the force-frequency is set to 0.3, the 

time step is 1 20⁄ , the period is 2𝜋 𝜔⁄ , and the 

damping ratio is 5%. 

 
Figure 19.  Geometrical and mesh presentation of the console beam subjected to forced vibration. 

The displacements in respect to step time results are 

shown in figure 20. It is evident that the developed 

SBFNT element exhibits close agreement with the 

Q8 element. 
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Figure 20. Displacement as a function of time for a console beam 

 

 

 

3.4. CONCLUSION 

This paper presents a novel strain-based triangular 

plane element. The incorporation of rigid body 

modes, constant strain, and compatibility conditions 

into the assumed strain field ensures and optimizes 

monotonic convergence to the solution. 

The formulated element possesses four nodes with 

eleven degrees of freedom. The fourth node, located 

at the edge element’s center, contributes two degrees 

of freedom (u, v). Static condensation eliminates this 

edge central node, resulting in a simple three-node  

 

 

 

 

element with three essential degrees of freedom (u, 

v, θ) at each corner node. 

The SBFNT linear triangular element demonstrates 

satisfactory performance, mesh distortion 

insensitivity, and exceptional convergence 

characteristics across a variety of numerical 

examples. The proposed membrane element often 

achieves precision comparable to the second-order 

quadrilateral plane element Q8 in static and dynamic 

analyses of plane and axisymmetric structures. 
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Moreover, numerical results obtained using the 

proposed element yield consistent and improved 

outcomes in bending-dominated scenarios. 
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APPENDIX A 

For calculation purpose the following matrices 

are given:  

In plane stress 

[𝐷] =
𝐸

1−𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]                                 (A1) 

In plane strain 

[𝐷] =
𝐸

(1+𝜈).(1−2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1−2𝜈

2

]   (A2) 

Where [D] represents the elasticity matrix for 

plane stress and plane strain, respectively. 
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