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Abstract

Recent advances in geometry have shown the wide application of hyper-

bolic geometry not only in Mathematics but also in real-world applications. As

in two dimensions, it is now clear that most three-dimensional objects (con�gu-

ration spaces and manifolds) are modeled on hyperbolic geometry. This point of

view explains a great many things from large-scale cosmological phenomena, such

as the shape of the universe, right down to the symmetries of groups and geomet-

ric objects, and various physical theories. Kleinian groups are basically discrete

groups of isometries associated with tessellations of hyperbolic space. They form

the fundamental groups of hyperbolic manifolds. Over the last few decades, the

theory of Kleinian groups has �ourished because of its intimate connections with

low-dimensional topology and geometry, especially with three-manifold theory.

The universal constraints for Kleinian groups in part arise from a novel

description of the moduli spaces of discrete groups and generalize known universal

constraints for Fuchsian groups - discrete subgroups of isometries of the hyperbolic

plane. These generalizations will underpin a new understanding of the geometry

and topology of hyperbolic three-manifolds and their associated singular spaces,

hyperbolic three-orbifolds.

The novel approach in this dissertation is to use a fundamental result

concerning spaces of �nitely generated Kleinian groups: they are closed in the

topology of algebraic convergence. Indeed, this is also true in higher dimen-

sions when fairly minor additional and necessary conditions are imposed � for

instance, giving a uniform bound on the torsion in a sequence, or asking that the

limit set is in geometric position. In fact, this property holds more generally for

groups of isometries of negatively curved metrics because of the Margulis-Gromov

lemma. In particular, new polynomial trace identities in the Lie group SL(2; C)

are discovered to expose various quanti�able inequalities (including Jørgensen�s

inequality) in a more general setting for Kleinian groups and the geometry of

associated three-manifolds. This approach o¤ers further substantive advances to
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address the quite complicated analytic and topological properties of hyperbolic

orbifolds, thereby advancing the solutions of important unsolved problems.

Keywords: Kleinian groups, moduli spaces, quanti�able inequalities, triple of

complex parameters, universal constraints, hyperbolic geometry.
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 القيود الشاملة لزمر كلاينين و الهندسة الزائدية

 صالملخ

 في الرياضيات تللهندسة الزائدية ليس الهندسة العديد من التطبيقات فيالحديثة أظهرت التطورات      

أصبح من الواضح الآن فقد  الأبعاد الثنائية،. كما هو الحال في الحياتيةتطبيقات ال أيضا في فحسب لكن

. فهذا زائديةالهندسة ي الف يمكن نمذجتهاثلاثية الأبعاد )مساحات التكوين والمشعبات(  شياءأن معظم الأ

وصولًا إلى تماثل  ،شكل الكون . فعلى سبيل المثالالكونية واسعة النطاق رشرح العديد من الظواهالأمر ي

. زمر كلاينين يمكن وصفها ببساطة على المجموعات والأشياء الهندسية والنظريات الفيزيائية المختلفة

الأساسية من  زمرال، وتشكل الفضاء الزائدي زيئاتجمنفصلة من القياسات المترافقة مع  إنها زمر

بسبب روابطها زمر كلاينين  ازدهرت نظرية ،على مدى العقود القليلة الماضيةفالمشعبات الزائدية. 

 .ثلاثيالخاصة مع نظرية المشعب ، وذات الأبعاد المنخفضة والهندسة بولوجياتمع ال وثيقةال

ومن  المعيارية للمجموعات المنفصلة فراغاتمن وصف جديد لللزمر الكلاينين  تنشأ القيود العالمية  

منفصلة من قياسات المستوى  جزئية زمر تعميم القيود الشاملة لزمر الفيوجين والتي هي عبارة عن

والمساحات  ولوجيا المشعبات الثلاثة الزائديةوتب هندسةلل الجديد الفهم ستدعم هذه التعميمات .الزائدي

 الثلاثية. يةالزائد المدارية والمزدوجات ،مفردة المرتبطة بهاال

التي تم فراغات زمر الكلاينين استخدام نتيجة أساسية تتعلق ب هي في هذه الأطروحة ةالجديد ةطريقال 

 العليافي الأبعاد أيضا صحيح  . هذا الأمروبولوجيا التقارب الجبريةتبشكل نهائي: فهي مغلقة في  إنشاؤها

أو طلب أن  متسلسلة، على سبيل المثال إعطاء حد موحد للالتواء فيف ،يتم فرض شروط إضافيةعندما 

 زمرمن القياساتبشكل أعم ل تحققهذه الخاصية تفي الحقيقة،  في وضع هندسي. نهاية المجموعةيكون 

أنشأنا  ،على وجه الخصوص زسينهوس.غروموف -مارجوليس نتيجة المقاييس المنحنية سلباً بسببذات 

قابلة للقياس الكمي  متباينات مختلفةلكشف  زمر لي شبة البسيطةمتعددة الحدود في جديدة هويات تتبع 

والهندسة من ثلاثة مشعبات  لزمر الكلاينين( في وضع أكثرعمومية Jørgensen متباينة)بما في ذلك 

المعقدة تمامًا التبولوجية يلية مرتبطة. يقدم هذا النهج تقدمًا جوهرياً إضافياً لمعالجة الخصائص التحل

 .مشكلات المهمة التي لم يتم حلهاللوبالتالي تطوير حلول  ،للمجموعات المدارية الزائدية

 ، عوامل ثلاثية معقدةكمية،  متباينات، فراغات معيارية زمر الكلاينين ، : مفاهيم البحث الرئيسية

 .قيود شاملة ، هندسة زائدية
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Chapter 1: Introduction

Euclidean geometry is too limited to explain many of the various phe-

nomena in the real world. Recent advances in geometry have shown the wide ap-

plication of hyperbolic geometry not only in Mathematics but also in real-world

applications. As in two dimensions, it is now clear that most three-dimensional

objects (con�guration spaces and manifolds) are modeled on hyperbolic geome-

try. This point of view explains a great many things from large-scale cosmological

phenomena, such as the shape of the universe, right down to the symmetries of

groups and geometric objects, and various physical theories.

Kleinian groups were introduced by Poincaré in the 1880�s as subgroups

of the Möbius group M�ob(C) acting discontinuously on some open domain of the

Riemann sphere C: Nowadays the term �Kleinian group�is being often used for

a discrete subgroup of hyperbolic isometries [29]. A Kleinian group is adopted

as a non-elementary discrete group in this dissertation. Thus, Kleinian groups

are basically discrete groups of hyperbolic isometries associated with tessellations

of hyperbolic space. They form the fundamental groups of hyperbolic manifolds.

Over the last few decades, the theory of Kleinian groups has �ourished because of

its intimate connections with low-dimensional topology and geometry, especially

with 3-manifold theory [53, 54].

The identi�cation of precise inequalities for discrete groups of Möbius

transformations started with Jørgensen�s famous inequality [35] from 1976, after

earlier results of Shimizu from 1963 [51] and Leutbecher from 1967 [37] which gave

estimates in the important special case when a generator is parabolic. Jørgensen�s

inequality is the �rst important universal constraint in studying the geometry of

Kleinian groups. It is natural and interesting to generalize Jørgensen�s inequal-

ity, there are many papers concerning such generalizations, for example, those
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published by Brooks and Matelski [5], Gilman [32], Rosenberger [50], and Tan

[52]. The universal constraints for Kleinian groups generalize the known universal

constraints for Fuchsian groups - discrete subgroups of isometries of hyperbolic

plane [1]. The fundamental result concerning spaces of �nitely generated Kleinian

groups is that they are closed in the topology of algebraic convergence (see Jør-

gensen Theorem 3.2.13). Indeed this is also true in higher dimensions when fairly

minor additional conditions are imposed, for instance, giving a uniform bound

on the torsion in a sequence, or asking that the limit set be in geometric position

[39]. In fact, this property holds more generally for groups of isometries of nega-

tively curved metrics because of the Margulis-Gromov lemma [4, 18] which gives

an estimate of the norm of iterated commutators [40].

The purposes of this dissertation are to expose various non-trivial quan-

ti�able inequalities (including Jørgensen�s inequality) in a more general setting

for Kleinian groups and the geometry of associated 3-manifolds and to identify

various sharp inequalities building on earlier work of Martin and his collabora-

tors [39, 20, 21]. This approach o¤ers further substantive advances to address

the quite complicated analytic and topological properties of hyperbolic orbifolds,

thereby advancing the solutions of important unsolved problems. In particular,

these generalizations will underpin a new understanding of the geometry and

topology of hyperbolic 3-manifolds and hyperbolic 3-orbifolds [9, 26, 27, 28].

The work of the dessertation in part arise from a novel description of the

moduli spaces of discrete groups. One can describe the space of two-generator

Kleinian groups hf; gi as a subspace of the three complex dimensional space C3

via the mapping

hf; gi 7�! (
 (f; g) ; � (f) ; �(g)) :

Indeed, every two-generator Kleinian group hf; gi can be determined uniquely up

to conjugacy by a triple of complex parameters (
 (f; g) ; � (f) ; �(g)) (Theorem

2.3.2).

A number of important tools are characterized, such as the �nite order
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of elliptic elements by the explicit formula (Theorem 2.3.5), the classi�cation of

hyperbolic isometries by the conjugation and by the number of �xed points (The-

orems 2.1.17 and 2.2.7), the clari�cation about the key concepts with multiple

de�nitions in the literature (e.g., elementary groups in Theorem 2.4.6, discontinu-

ity in Theorem 3.1.14, and the limit set in Lemma 3.1.6), the feature of elementary

groups (Theorem 2.4.6), and the list of possible parameters for discrete elemen-

tary groups given by Tables 1; 2; and 3. These characterizations play key roles

in enhancing the theory of Kleinian groups in Chapter 3 and in establishing the

universal constraints for Kleinian groups in Chapter 4.

The novel approach here to establish the universal constraints for Kleinian

groups is to use the closedness of the following subspaces, that is an essential

tool for the scheme of establishing the quanti�able inequalities. The dissertation

extends that the subspace D of triples of parameters for Kleinian groups:

D =
�
(
; �; �0) 2 C3 : (
; �; �0) are the parameters of a Kleinian group hf; gi

	

is closed in C3 in the usual topology (Theorem 3.2.15), and that the subspace D2

of the �rst two parameters for Kleinian groups

D2 = f(
; �) : for some �0 such that (
; �; �0) are the parameters of a Kleinian groupg:

is a closed in two complex dimensional space C2 in the usual topology (Theorem

3.3.4) by considering two projections: one is from D to D2 and the other is from

D to the subspace on the slice z3 = �4 in C3:

This dissertation discovers in�nitely many polynomial trace identities in

the Lie group SL(2; C) that are useful for establishing various quanti�able in-

equalities for Kleinian groups and obtaining geometric information about Kleinian

groups. These trace polynomials can be expressed simply in terms of the Cheby-

shev polynomial (Theorem 4.1.1 and Theorem 4.1.2). The Chebyshev polyno-
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mials were developed by Chebyshev in the mid-19th century for a completely

di¤erent purpose and that they form an orthogonal system of polynomials which

makes them of great use in Numerical Analysis and Approximation Theory that

are very di¤erent �elds from that of the current �eld Geometric Analysis.

The scheme of establishing the following sorts of quanti�able inequalities

is implemented for two-generator Kleinian groups hf; gi :

j
 (f; g)� 
0j+ j� (f)� �0j � r;

where 
0 = 
 (�;  ) and �0 = � (�) are the parameters for a discrete elementary

two-generator group h�;  i (Theorems 4.3.4, 4.3.5, 4.3.7, 4.3.8 and 4.3.10). How-

ever, the challenge here is how to �nd the various greatest lower bounds and to

choose suitable trace polynomials.

An important application of the quanti�able inequalities shall be devel-

oped is in an explicit description of certain moduli spaces of Kleinian groups. The

�rst such exploration of these moduli spaces appears to be that of Lyndon and

Ullman [38] who used the Shimizu-Leutbecher inequality to describe the space

of Kleinian groups generated by two parabolic elements, depending on how you

look at it this is the moduli space of the punctured torus, or the four times punc-

tured sphere. These early investigations led Riley to his important description

of what is now known as the �Riley slice". Recent, the moduli space of Kleinian

groups generated by elliptic elements of order 2 and 3 has been illustrated by

the Figure 1.1 (see [41, 57]). Outside the bounded region (topologically a disk)

the group is free on these generators, inside the groups are represented by iso-

lated points and are rigid groups. Inside circles represent inequalities for groups

with these generators. These descriptions of moduli spaces are successfully used

in completing the solution to Siegel�s famous problem on hyperbolic lattices in

three dimensions [48, 42, 44] and also in the identi�cation of the �nitely many

two-generator arithmetic Kleinian groups with elliptic or parabolic generators.
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Figure 1.1: The (2; 3) commutator plane

Using these inequalities it is possible give quanti�able universal constraints

on the geometry and topology of hyperbolic n-manifolds. Especially in the case of

3-manifolds and orbifolds, these inequalities underpin various computer searches

for extremal hyperbolic manifolds, orbifolds, and groups. For instance,

� Bounds on the thick and the decomposition of hyperbolic 3-manifolds [3].

� That the projective general linear group PGL(2;O(
p
�3)) is the smallest

co-volume non-compact hyperbolic lattice [47] and also is the smallest co-

volume lattice with singular set of degree p � 6 [19].

� The proof that homotopy hyperbolic 3-manifolds are hyperbolic [11, 14].

� Estimates on the �rst Betti number of closed hyperbolic 3-manifolds [7]

� That the orientable cusped hyperbolic 3-manifolds of minimum volume is

the �gure 8-knot complement and its sister [8].

� That the Fomenko-Weeks manifold as minimal volume hyperbolic 3-manifold

[12, 13].
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� That the Z2-extension of the 3-5-3 Coxeter group is the smallest co-volume

hyperbolic lattice [22, 31, 48].

� The Margulis constants associate with discrete groups [23, 24].

In fact there are many more of these sorts of things, and higher dimensional

versions of these quanti�able inequalities allow some estimates for hyperbolic n-

manifolds, see for instance [39, 34, 55].
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Chapter 2: Parameters of Groups of Isometries

It is reasonable that one can associate two kinds of structures with a set.

A topological group is both an algebraic group and a topological space and the

two structures are related. Precisely, a group G is a topological group if the

following two maps are continuous: G�G �! G by (x; y) 7�! xy and G �! G

by x 7�! x�1: Two topological groups can be naturally identi�ed if there exists

a group isomorphism between them that is a homeomorphism as well. Though

out the dissertation, a topological space is always non-empty and a neighborhood

refers to an open neighborhood. Let C be the complex plane, and let C = C[f1g

be the extended complex plane, it is also known as the Riemann sphere .

There are at least three di¤erent ways of thinking about groups in this

dissertation: as subgroups of the hyperbolic isometry group Isom+(H3) on the

Poincaré upper half-space model, as subgroups of Möbius groupM�ob+
�
C
�
, and as

subgroups of the projective special linear group PSL(2;C): Each of these groups

has its own topology, however the topological isomorphism tells that the concept

of discreteness is the same (see Theorem 2.2.3 in Section 2:2). The following three

elements will be identi�ed throughout this dissertation: a Möbius transformation

in M�ob+(C); a hyperbolic isometry in Isom+(H3); and a matrix in PSL(2;C).

Thus, one can interact between Complex Analysis, Abstract Algebra, Hyperbolic

Geometry, and Topology.

An advanced tool for studying two-generator Kleinian groups is the triple

of complex parameters for each two-generator group that is introduced in De�-

nition 2.3.1. Several important tools are characterized, such as the �nite order

of elliptic elements by the explicit formula (Theorem 2.3.5), the classi�cation of

hyperbolic isometries by the conjugation and by the number of �xed points (The-

orems 2.1.17 and 2.2.7), the clari�cation about di¤erent de�nitions of elementary

groups in the literature (Theorem 2.4.6), the feature of elementary groups (The-
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orem 2.4.6), and the list of parameters for discrete elementary groups given by

Tables 1; 2; and 3. These characterizations play key roles in enhancing the theory

of Kleinian groups in Chapter 3 and in establishing the universal constraints for

Kleinian groups in Chapter 4.

2.1 Representations of Möbius groups

One of important tools is conjugation. There are three classi�cations of

the special Möbius group M�ob+(C) according to the conjugation in Theorem

2.1.17 (including the standard representation by matrices) and the conjugate

invariants such as the trace in De�nition 2.1.6 and the number of �xed points

that is prepared in Lemma 2.1.14 and will be �nalized in Theorem 2.2.7 in the

next section. The image of an invariant set (including the set of �xed points in

C) under a conjugation is described in Theorem 2.1.9.

De�nition 2.1.1 A linear fractional transformation of the following form is

called a Möbius transformation on the Riemann sphere C :

f(z) =
az + b

cz + d
; a; b; c; d 2 C and ad� bc 6= 0:

Denote M�ob(C) the set of all Möbius transformations on C :

M�ob(C)=
�
az + b

cz + d
: a; b; c; d 2 C and ad� bc 6= 0

�
:

Clearly, M�ob(C) is a group under composition, M�ob(C) is simply said a

Möbius group on C:
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Furthermore, M�ob(C) is a topological group under composition with the

topology induced by the following metric:

d(f; g) = Supz2C (q(f(z); g(z));

where q denotes the chordal distance in the Riemann sphere C :

q(z1; z2) =

8><>:
2jz1�z2j

(1+jz1j2)
1
2 (1+jz2j2)

1
2
; if z1; z2 2 C;

2

(1+jz1j2)
1
2
; if z1 2 C and z2 =1:

:

Each Möbius transformation

f(z) =
az + b

cz + d
2 M�ob

�
C
�

is associated with a matrix

f =

0B@a b

c d

1CA ;

where, f is the associated matrix of each element f(z) in M�ob
�
C
�
:

Note that each element of M�ob(C) will keep the same if one multiplies

both numerator and denominator of az+b
cz+d

by any non-zero number, but the corre-

sponding matrix

0B@a b

c d

1CA may be changed. One can take
p
ad� bc to normalize

M�ob(C) by introducing the following subgroup of M�ob(C) :

M�ob+(C) =
�
f 2 M�ob(C) : f(z) = az + b

cz + d
; ad� bc = 1

�
:

Obviously, M�ob+(C) is a topological subgroup of M�ob(C):
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Consider the special linear group SL(2;C) of 2� 2 matrices over C under

multiplication:

SL(2;C) =

8><>:
0B@a b

c d

1CA : a; b; c; d;2 C and ad� bc = 1

9>=>; :

Then consider the projective special linear group PSL(2;C) of the following quo-

tient group:

PSL(2;C) = SL(2;C)= f�Idg

=

8><>:�
0B@a b

c d

1CA : a; b; c; d;2 C and ad� bc = 1

9>=>; ;

where Id is the 2�2 identity matrix. Both matrices�

0B@a b

c d

1CA can be regarded as
being the same as they lead to the same Möbius transformation on the Riemann

sphere C:

As a quotient group, PSL(2;C) preserves the group structure of the group

SL(2;C): Clearly, SL(2;C) and PSL(2;C) are topological groups under multipli-

cation with the topology induced by the following norm:









0B@a b

c d

1CA







 =
p
a2 + b2 + c2 + d2:

Each Möbius transformation of M�ob+(C) will be identi�ed with the 2� 2

matrix of PSL(2;C) because of the following well known theorem.

Theorem 2.1.2 The topological groupsM�ob+(C) and PSL(2;C) are topologically

isomorphic:

M�ob+(C) �= PSL(2;C):
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De�nition 2.1.3 Consider a topological group G. Suppose that � and �0 are

subgroups of G; �0 is said to be conjugate to � in G if there exists h 2 G such

that

�0 = h � � � h�1 =
�
hgh�1 : g 2 �

	
;

denoted by �0 � � and h is called a conjugator . In particular, two elements g

and g0 of G are conjugate in G if there exists h 2 G such that g0 = h � g � h�1;

denoted by g0 � g:

For example, let � and �0 be two subgroups of M�ob(C); if there is � 2

M�ob(C) such that �0 = � �� � ��1; then �0 is conjugate to � in M�ob(C): Clearly,

the following three statements are equivalent:

(a) f is self conjugate by h:

(b) f and h commute.

(c) The commutator [f; h] = I:

Let f; g; f 0; g0 and h be elements of a topological group G; then two sub-

groups � and �0, which are generated by f; g and f 0; g0, respectively, are conjugate

by h if and only if the generators f and f 0; g and g0 are conjugate by h; respec-

tively.

Furthermore, it is natural to expect the conjugation is an equivalence

relation on the subgroups of a topological group in the following proposition,

that is the conjugation provides a partition for a topological group.

Proposition 2.1.4 Suppose that G is a topological group acting on a topological

space. Then the following are true.

(a) Every subgroup � of G : � � �:

(b) Every pair of two subgroups �and �0 of G : � � �0 implies �0 � �:
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(c) Every triple of subgroups �; �0; �00 of G : � � �0 and �0 � �00 implies � �

�00:

Proof. The part (a) and (b) are trivial.

(c) Since � � �0 and �0 � �00; there exist �1; �2 2 G such that � =

�1 � �0 � ��11 and �0 = �2 � �00 � ��12 : It follows that

� = �1 �
�
�2 � �00 � ��12

�
� ��11 = (�1 � �2) � �00 � (�1 � �2)�1:

Thus there exists � = �1 � �2 2 G such that � = � � �00 � ��1; i.e., � � �00: �

Most interest things in the geometry of Möbius groups are conjugate in-

variants. This dissertation will pay the attention to the information "up to con-

jugacy". Notice that the trace is the �rst conjugate invariant of matrices and

therefore on SL(2;C); but the trace is not well de�ned in PSL(2;C): Fortunately

it is well de�ned up to sign in PSL(2;C): Thus, one can de�ne tr2(f) for each f

2 M�ob+(C) by the square of the trace of �

0B@a b

c d

1CA 2 PSL(2;C) :

tr2(f) = (a+ d)2:

Remark 2.1.5 In Linear Algebra, it is known that if two matrices are conjugate

then they have the same trace but the converse need not be held. However, Bear-

don showed in ([2], Theorem 4:3:1:) that two non-identity elements f and g of

M�ob+(C) are conjugate if and only if tr2(f) = tr2(g):

Now using the square of the trace de�ne three types of non-identity ele-

ments in Möbius group M�ob+(C):

De�nition 2.1.6 A non-identity element f of M�ob+(C) is said to be

(a) elliptic if tr2(f) 2 [0; 4);
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(b) parabolic if tr2(f) = 4;

(c) loxodromic if tr2(f) 2 C� [0; 4] :

The second conjugate invariant is the number of �xed points. Here is the

de�nition of �xed points of homeomorphisms.

De�nition 2.1.7 A subset S of a topological space X is said to be invariant

under a self-homeomorphism f if f (S) = S: A point x in X is called a �xed

point of f if the singleton S = fxg is an invariant set under f: In the case of

X = C and f 2 M�ob(C); the set of �xed points of f in C is denoted by Fix (f) :

Fix (f) =
�
z 2 C : f (z) = z

	
:

Moreover, denote the set of �xed points of a group G by Fix (G) :

Fix (G) =
�
z 2 C : f (z) = z for all f 2 G

	
:

Proposition 2.1.8 Suppose that G is a topological group acting on a topological

space X; x is a point of X; and g is an element of G: If g �xes x then the cyclic

group hgi �xes x and hence gn �xes x for n 2 Z:

Proof. Since g 2 G �xes x; g�1 �xes x: Thus, gn �xes x for each n 2 Z

because that:

gn (x) = g � � � � � g (x) = x; for n = 0; 1; 2; � � �

gn (x) = g�1 � � � � � g�1 (x) = x; for n = �1;�2; � � �

It follows that the cyclic group hgi = fgn : n 2 Zg �xes x. �
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Theorem 2.1.9 Suppose that G is a topological group acting on a topological

space X: Let g and h be two distinct elements of G: Let S be a subset of X:

Proposition 2.1.10 (a) If S is invariant under g; then the image h (S) is in-

variant under the conjugacy h � g � h�1:

(b) If S is the set of �xed points of g; then h (S) is the set of �xed points

of h � g � h�1:

Proof. (a) Since S is invariant under g; h (S) = S; and hence h � g �

h�1 (h(S)) = h�g(S) = h(S); i.e., h (S) is invariant under the conjugacy h�g�h�1:

(b) Let f = h�g�h�1; and let F be the set of the �xed points of h�g�h�1:

It needs to show h (S) = F:

First to show h (S) � F : Assume x is a �xed point of g, i.e., g (x) = x:

Then h (x) is a �xed point of f because that f (h (x)) = h � g � h�1 (h (x)) =

h (g (x)) = h (x) :

Second to show F � h (S) : Since f is conjugate to g by h; g is conjugate

to f by h�1: So by the �rst part, h�1 (F) � S: And then perform h on both sides:

h � h�1 (F) � h (F) gives F � h (S) : �

In particular, the previous proposition gives the following corollary.

Corollary 2.1.11 Suppose that two Möbius transformations f and g inM�ob+(C)

are conjugate by h in M�ob(C); then f = h � g � h�1 and

Fix (f) = Fix
�
h � g � h�1

�
= h (Fix(g)) :

Traditionally, a map f is conformal in a domain D of C if f is analytic

and f 0(z) 6= 0 for z 2 D: It is an orientation preserving mapping, i.e., preserving

size and orientation of the angles. Since an injective analytic function f of D

implies that f 0(z) 6= 0 for z 2 D; every conformal mapping here is a traditional
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conformal mapping and hence an orientation preserving mapping. By contrast,

a traditional conformal mapping needs not to be a conformal mapping given by

the following de�nition, for example, f(z) = ez:

De�nition 2.1.12 Let D and D0 be two domains in C: A map f : D ! D0 is

called a conformal mapping if it is bijective and analytic. If D = D0; the set of

conformal mappings is denoted by Conf (D) : Clearly, Conf (D) is a group under

composition, simply say Conf (D) is the conformal group on D:

In the cases D = D0 = C or C; the detailed proof of a known fact is

showed in the following theorem.

Theorem 2.1.13 (a) A map f : C! C with f (1) =1 is a conformal mapping

(i.e., the restriction f jC is a self conformal mapping on C) if and only if f(z) =

az+ b; for some a 6= 0; b 2 C: Denote the group of self conformal mappings on C

by Conf (C) ;

Conf (C) = faz + b : a 6= 0; b 2 Cg :

(b) A map f : C! C is a conformal mapping if and only if f 2 M�ob(C).

That is the group Conf
�
C
�
coincides with the Möbius group M�ob

�
C
�
:

Conf
�
C
�
= M�ob

�
C
�
:

Proof. (a) It is obvious that f(z) = az + b with a 6= 0 is conformal on

C and f(z) = az+b
cz+d

with ad� bc 6= 0 is conformal on C: Now show the necessity.

Since the conformal mapping f is analytic in C, the Taylor series expansion of

f(z) is

f(z) = �1n=0anz
n; for z 2 C:
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Since f cannot be a constant, there is n 2 N such that an 6= 0; and then

the isolated singularity of f at 1 is an essential singularity or a pole. Set

g(z) = f(
1

z
) = �1n=0

an
zn
;

then g is analytic in C � f0g: Recall the Casorati-Weierstrass theorem: If g is

analytic in a deleted open disk U of z0 and has an essential singularity at z0; then

g(U) is dense in C:

One can assume that g has an essential singularity at z0 = 0 : let U0 and

U1 be the open disks with radius 1
3
centred at z0 = 0 and z1 = 1; respectively,

then U0 \ U1 = ?: By Casorati-Weierstrass theorem, g(U0) is dense in C and

hence g (U0)\ g (U1) 6= ?; but U0 \U1 = ?. Let w0 2 g (U0)\ g (U1) ; then there

exist z0 2 U0 and z00 2 U1; such that f
�
1
z0

�
= f

�
1
z00

�
= w0 for z = 1

z0 and
1
z00 2 C:

It follows that f(z) is not injective in C: It is the contradiction to the bijection

of f in C: Thus, z0 = 0 is not an essential singularity of g and hence g has the

unique pole of some order m at z0 = 0: It follows that g(z) = f(1
z
) = �mn=0

an
zn
; so

am 6= 0 for some m � 1 and an = 0 for all n � m+ 1: Thus, f is the polynomial

of degree m � 1 :

f (z) = a0 + a1z + :::::::+ amz
m

and hence f has exactly m roots, say z1; z2; � � � ; zm such that f (z1) = f (z2) =

� � � = f (zm) = 0: On the other hand side, f is bijective, then m = 1: Therefore,

f (z) = a0 + a1z:

(b) Suppose f (1) = 1: Since f is conformal in C; the restriction f jC is

a self conformal mappings on C:

By the previous part (a); f jC = az + b for some a 6= 0; b 2 C; and hence

f = az + b for some a 6= 0; b 2 C:
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Suppose f (1) 6=1; then f (1) = w0 2 C: Set

g (z) =
1

f (z)� w0
:

Then g (1) = 1 and the restriction gjC is a self conformal mappings on

C: It follows from (a) that

g (z) = cz + d

for some c 6= 0; d 2 C: Thus,

f (z) = w0 +
1

cz + d
=
az + b

cz + d
2 M�ob(C):

where a = w0c and b = w0d+ 1 2 C: �

The relationship between the discriminant and the trace motivates the

following lemma about the characterization of M�ob+(C) by the number of �xed

points in C:

Lemma 2.1.14 Let f be a non-identity element in M�ob+(C); then

(a) f is parabolic if and only if it �xes exactly one point in C:

(b) f is either elliptic or loxodromic if and only if it �xes exactly two

distinct points in C:

Proof. Let f be a non-identity element in M�ob+(C) and hence f = az+b
cz+d

;

for a; b; c; d;2 C and ad� bc = 1:

The �xed points in C can be found by solving the equation:

az + b

cz + d
= z:
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Equivalently, solving the quadratic equation gives

cz2 + (d� a)z � b = 0:

Notice the following discriminant,

4 = (d� a)2 + 4bc

= (d� a)2 + 4 (ad� 1)

= (d+ a)2 � 4

= tr2(f) � 4:

Thus, f has exactly one �xed point in C if and only if tr2(f) = 4 and two distinct

�xed points in C if and only if tr2(f) 6= 4. Now it is straight forward to complete

the proof by De�nition 2.1.6. �

Moreover, the standard form of conjugation can be presented in the fol-

lowing lemma.

Lemma 2.1.15 Let f be a non-identity element in M�ob+(C): Then:

(a) If f is parabolic then f is conjugate in M�ob(C) to p(z) = z + 1:

(b) If f is either elliptic or loxodromic then f is conjugate in M�ob(C) to

h(z) = rei�z; for � 2 (0; 2�): Furthermore,

tr2(h) =
�
r + r�1

�
cos � + 2 + i

�
r � r�1

�
sin �:

Proof. (a) Since f is parabolic, by Lemma 2.1.14, f has a unique �xed

point z0 in C: Take z1 6= z0 2 C and let z2 = f(z1) then z2 6= z1 and z2 6= z0: It

is well known that M�ob(C) is transitive on the set of triples of distinct points in
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C: Thus there is a unique g 2 M�ob(C) such that

g(z0) =1; g(z1) = 0; g (z2) = 1:

By Corollary 2.1.11, gfg�1 �xes the unique point g(z0) = 1: It follows from

Theorem 2.1.13 that

gfg�1 (z) = az + b for a 6= 0; b 2 C:

Moreover,

gfg�1 (0) = gf(z1) = g (z2) = 1:

Thus, gfg�1 (0) = 1 gives b = 1: Since gfg�1 has the unique point 1; so a = 1:

Otherwise, gfg�1 has another �xed point z = 1
a�1 : Now gfg�1 = p and hence f

is conjugate in M�ob(C) to p(z) = z + 1:

(b) Since f is either elliptic or loxodromic, by Lemma 2.1.14, f has two

distinct �xed points, say z0 and z1 in C. Let z2 2 C � fz0; z1g : Applying for

the transitivity of M�ob(C) on the set of triples of distinct points in C; there is a

unique g 2 M�ob(C) such that

g(z0) =1; g(z1) = 0; g(z2) = 1:

By Corollary 2.1.11, gfg�1 �xes two points g(z0) = 1 and g(z1) = 0: Applying

for Theorem 2.1.13 for the �xed point 1 of gfg�1; gfg�1 = az + b for some

a = rei�; b 2 C: On the other hand, the �xed point 0 of gfg�1 gives b = 0: One

may assume � 2 [0; 2�] : Since f is a non-identity element in M�ob+(C); a 6= 1 and

hence � 2 (0; 2�): Otherwise, � = 0; 2� give a = r cos � + ir sin � = 1: It follows

that

gfg�1 = rei�z = h(z); for � 2 (0; 2�):
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Thus, f is conjugate in M�ob(C) to h(z): Furthermore, the associated matrix and

the trace are the following:

0B@r 12 ei�=2 0

0 r�
1
2 e�i�=2

1CA ;

tr2(h) =
�
r
1
2 ei�=2 + r�

1
2 e�i�=2

�2
= rei� + r�1e�i� + 2

=
�
r + r�1

�
cos � + 2 + i

�
r � r�1

�
sin �:

�

Now summarize the matrix representation associated with �xing or inter-

changing 0 and 1; it is a useful tool in the dissertation.

Lemma 2.1.16 Let f be an non-trivial element in M�ob(C):

(a) If f �xes 0 then f(z) = az
cz+d

for a; c; d 2 C; ad 6= 0; and (a; c) 6= (d; 0) :

The associated matrix is

f =

0BB@� 0

� 1
�

1CCA 2 PSL(2;C)

for some � 6= 0; � 2 C and (�; �) 6= (�1; 0) :

(b) If f �xes 1 then f(z) = az + b for a 6= 0; b 2 C and (a; b) 6= (1; 0) :

The associated matrix is

f =

0BB@� �

0 1
�

1CCA 2 PSL(2;C)
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for some � 6= 0; � 2 C and (�; �) 6= (�1; 0) :

(c) If f �xes 0 and 1 then f (z) = az for a 6= 0; 1 2 C: The associated

matrix is

f =

0BB@� 0

0 1
�

1CCA 2 PSL(2;C)
for some � 6= 0;�1 2 C:

(d) If f interchanges 0 and1 then f (z) = b
z
for b 6= 0 2 C: The associated

matrix is

f =

0BB@0 ��
1
�

0

1CCA 2 PSL(2;C)
for some � 6= 0 2 C:

Proof. First of all, since f 2 M�ob(C); One can assume f = a0z+b0

c0z+d0 for

a0; b0; c0; d0 2 C and a0d0 � b0c0 6= 0: If b0 = c0 = 0 then a0 6= d0:

(a) Since f �xes 0; f (0) = b0

d0 = 0 and hence b
0 = 0 and d0 6= 0; which give

f = az
cz+d

; where a = a0; c = c0; d = d0 6= 0 2 C: Since b0 = 0; a0d0 � b0c0 = a0d0 =

ad 6= 0 and (a; c) 6= (d; 0) : Moreover, the normalization provides the matrix

representative, f =

0B@� 0

� 1
�

1CA 2 PSL(2;C); where � =pa
d
6= 0; � = cp

ad
2 C; and

(�; �) 6= (�1; 0) as (a; c) 6= (d; 0) :

(b) Since f �xes 1; by Theorem 2.1.13, f(z) = az + b; where a = a0 6=

0; b = b0 2 C: Since c = c0 = 0 and d = d0 = 1; (a; b) 6= (1; 0) : After normalization,

the matrix representative is f =

0B@� �

0 1
�

1CA 2 PSL(2;C); where � = pa 6= 0;

� = bp
a
2 C; and (�; �) 6= (�1; 0) as (a; b) 6= (1; 0) :

(c) Obviously, it is the consequences of the previous parts (a) and (b).

(d) Since f interchanges 0 and 1;

f (0) =
b0

d0
=1; f (1) = a0

c0
= 0:
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It follows that d0 = 0; a0 = 0; b0 6= 0; and c0 6= 0; which gives f (z) = b
z
; where b =

b0

c0 6= 0 2 C: By normalizing, the matrix representative becomes f =

0B@0 ��
1
�

0

1CA 2
PSL(2;C); where � = i

p
b 6= 0 2 C: �

Finally, the elements of M�ob+(C) are classi�ed by the conjugations in the

following theorem.

Theorem 2.1.17 Let f be a non-identity element of M�ob+(C); then

(a) f is parabolic if and only if it is conjugate in M�ob(C) to the translation

p(z) = z + 1: The associated matrix is

p =

0BB@ 1 1

0 1

1CCA 2 PSL(2;C):

(b) f is loxodromic if and only if it is conjugate in M�ob(C) to a dilation

h(z) = rei�z; for � 2 (0; 2�) and r 6= 1: Let �2 = rei�; then the associated matrix

is

h =

0BB@ � 0

0 1
�

1CCA 2 PSL(2;C); for j�j 6= 0; 1
(c) f is elliptic if and only if it is conjugate in M�ob(C) to a rotation about

the origin O through an angle � : e(z) = ei�z; for � 2 (0; 2�): Let �2 = ei�; then

the associated matrix is

e =

0BB@ � 0

0 1
�

1CCA 2 PSL(2;C) where j�j = 1; � 6= �1:

Proof. First of all, applying for Remark 2.1.5, two non-identity elements

f and g of M�ob+(C) are conjugate if and only if tr2(f) = tr2(g):
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(a) The necessity is the part (a) of Lemma 2.1.15. Conversely, suppose

that f is conjugate in M�ob(C) to p(z) = z + 1: Thus,

tr2(f) = tr2(p) = 4:

Thus, f is parabolic by De�nition 2.1.6. The proof of (a) is completed.

(b) Suppose that f is loxodromic, by Lemma 2.1.15, f is conjugate in

M�ob(C) to h(z) = rei�z for � 2 (0; 2�); and the trace is given by

tr2(h) =
�
r + r�1

�
cos � + i

�
r � r�1

�
sin � + 2:

By De�nition 2.1.6, the loxodromic element f gives tr2(f) 2 C� [0; 4] and hence

r 6= 1: Otherwise, if r = 1 then

tr2(h) = 2 cos � + 2 = 4 cos2
�
�

2

�
:

Since � 2 (0; 2�); 0 � tr2(h) < 4 and hence tr2(f) 2 [0; 4) � [0; 4] ; it is contradict

to tr2(f) 2 C � [0; 4] : Thus, f is conjugate in M�ob(C) to h(z) = rei�z; for

� 2 (0; 2�) and r 6= 1:

Conversely, suppose that f is conjugate in M�ob(C) to h(z) = rei�z; for

� 2 (0; 2�) and r 6= 1: By Lemma 2.1.15, the trace is given by

tr2(h) =
�
r + r�1

�
cos � + 2 + i

�
r � r�1

�
sin �:

If tr2(h) 2 R then either r � r�1 = 0 or sin � = 0: Since r � r�1 = 0 gives r = 1

that contradicts r 6= 1; so sin � = 0: It follows that � = � and hence

tr2(h) = �r � r�1 + 2

= �
�p

r �
p
r�1
�2
� 0:
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If �
�p

r �
p
r�1
�2
= 0; then r = 1 that contradicts to r 6= 1; so tr2(h) < 0 and

hence

tr2(h) 2 C� [0;1) � C� [0; 4] :

Therefore, f is loxodromic by De�nition 2.1.6. The proof of (b) is completed.

(c) Suppose that f is elliptic, then f is neither parabolic nor loxodromic.

By Lemma 2.1.15 and the necessity of the previous (a) and (b); f is conjugate in

M�ob(C) to e(z) = ei�z; for � 2 (0; 2�):

Conversely, suppose that f is conjugate in M�ob(C) to e(z) = ei�z; for

� 2 (0; 2�); again by Lemma 2.1.15,

tr2(e) = 2 cos � + 2 = 4 cos2
�
�

2

�
:

Since � 2 (0; 2�); 0 � tr2(e) < 4 and hence 0 � tr2(f) < 4: Thus, f is elliptic by

De�nition 2.1.6. The proof of (c) is completed. �

Now the convergence group is introduced in the following de�nition (see

[25, 33]).

De�nition 2.1.18 A group G of self-homeomorphisms of C is said to be a con-

vergence group if it has the convergence property: Each in�nite subfamily of

G contains an in�nite sequence of distinct elements ffjg such that one of the

following is true.

(a) There exists a self-homeomorphism f of C such that

lim
j!1

fj = f and lim
j!1

f�1j = f�1

uniformly in C:
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(b) There exists points xo; yo in C such that

lim
j!1

fj = yo and lim
j!1

f�1j = xo

uniformly on all compact subsets of Cnfxog and Cnfyog, respectively.

Recall an important lemma at the end of this section so that the results

based on discrete convergence group by Martin [25] can be cited later.

Lemma 2.1.19 Every subgroup of M�ob(C) is a convergence group.

2.2 Isometry groups on hyperbolic 3-space

There are many useful models of hyperbolic space such as the upper half-

space model, the open ball model, the hemisphere model, the Klein model, and

the hyperboloid model. Each model has its own metric, lines, isometries, and

so on. For convenience, it is taken the upper half-space model H3 known as the

Poincaré upper half-space model for hyperbolic 3-space throughout this disserta-

tion, henceforth the boundary of H3 is the Riemann sphere C and denote H3 [C

by H3:

It is useful that the elliptic and loxodromic elements of Isom+(H3) can

be represented by their axes that are introduced in De�nition 2.2.5. The images

of �xed points in H3 and the axes under a conjugation are described, and then

complete the classi�cation of the elements in Isom+(H3) by the �xed points in

Theorem 2.2.7. One of important tools used in the dissertation is given by the

fundamental Theorem 2.2.3 so that one can interact between Complex Analysis,

Abstract Algebra, Hyperbolic Geometry, and Topology.
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De�nition 2.2.1 The upper half-space model of hyperbolic 3-space is de�ned by

H3 =
�
x = (x1; x2; x3) 2 R3 : x3 > 0

	

equipped with an (in�nitesimal) hyperbolic metric :

ds =
jdxj
x3

=

p
dx21 + dx22 + dx23

x3
:

Both Euclidean straight lines perpendicular to the x1x2-plane and vertical Euclid-

ean semicircles centred on the x1x2-plane are called hyperbolic lines in H3.

As a result, if 
 is a smooth arc with the parametric equation in H3 :

(x1; x2; x3) = (x1(t); x2(t); x3(t)) ; a � t � b;

then the hyperbolic length of 
, denoted by LH(
); is given following:

LH(
) =

Z



p
d2x1 + d2x2 + d2x3

x3
=

Z b

a

p
(x01(t))

2 + (x02(t))
2 + (x03(t))

2dt

x3(t)
:

There are two typical planes interested here. First, consider any smooth

curve 
 on the horizontal plane x3 = c with c > 0: Since dx3 = 0; the hyperbolic

length becomes

LH(
) =
1

c

Z



p
d2x1 + d2x2:

In the case c = 1; the the hyperbolic length coincides with its Euclidean length,

and hence the hyperbolic geometry on the plane x3 = 1 can be regarded as the

Euclidean geometry there.

Second, consider any smooth curve 
 on the vertical upper half-plane
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x1 = a 2 R with x3 > 0: Since dx1 = 0; the hyperbolic length becomes

LH(
) =

Z



p
d2x2 + d2x3

x3
;

which is clearly identical to the hyperbolic length of 
 in the upper half-plane

modelH2 for hyperbolic plane. In other words, the restriction of three-dimensional

hyperbolic length on H3 to a vertical upper half-plane can be regarded as the

two-dimensional hyperbolic length on H2: Further, it is not di¢ cult to see the

following lemma.

Lemma 2.2.2 Let P (a; b; c1) and Q(a; b; c2) be two points in H3 with 0 < c1 � c2;

let q be a vertical Euclidean semi-circle in H3 with center C (a; b; 0) and radius

r; and let S and T be points of q such that the radii CS and CT make angles �

and � (� � �) with the projection of q onto x1x2 plane, respectively. Then the

hyperbolic lengths of the geodesics segments are

LH(PQ) = ln
c2
c1

and LH(ST ) = ln
csc � � cot �
csc�� cot�:

Let Isom+(H3) be the set of the orientation preserving hyperbolic isome-

tries ofH3; then it is a topological group under composition with topology induced

by the hyperbolic metric. It is well known that each element of Isom+(H3) pre-

serves the set of the hyperbolic lines. Together with Theorem 2.1.2, now the

following fundamental theorem is reached.

Theorem 2.2.3 The hyperbolic isometry group Isom+(H3), the Möbius group

M�ob+
�
C
�
, and the projective special linear group PSL(2;C) are topologically iso-

morphic:

M�ob+(C) �= PSL(2;C) �= Isom+(H3):
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In fact, the plane x3 = 0 can be viewed as the complex plane C by

(x1; x2; 0) ! z = x1 + x2i; and hence every Möbius transformation f = az+b
cz+d
2

M�ob+(C) has an extension to an isometry from H3 to H3 by using the Poincarè

extension. In fact, each f 2 M�ob+(C) is composition of translations f1 = z + b;

dilations f2 = �z; and inversions f3 = 1
z
; for some b and � 2 C: Furthermore,

these three forms of mappings can be extended to H3 as follows:

a "horizontal" translation ef1 : (z; x3) 7! (z + b; x3);

a "horizontal" rotation or dilation ef2 : (z; x3) 7! (�z; x3); and

an inversion ef3 : (z; x3) 7! �
z

jzj2+x23
; x3
jzj2+x23

�
:

Conversely, every orientation preserving isometry g ofH3 extends to the boundary

C; eg : H3 ! H3; and then the restriction egjC is a conformal mapping of C, and
hence, by Theorem 2.1.13, it is a Möbius transformation, so egjC 2 M�ob+(C):

Now turn the attention to the �xed points in H3: Let f be a hyperbolic

isometry in Isom+(H3): Denote FixH3 (f) by the set of �xed points of f in H3: It

is clear that

FixH3 (f) \ C = Fix (f) :

As a special case of Proposition 2.1.9, the following corollary is obtained

directly.

Corollary 2.2.4 Let g be an element of Isom+(H3), and let h be the natural

extension of an element of M�ob(C): Then

FixH3
�
h � g � h�1

�
= h (FixH3(g)) :

Next, introducing the axes to represent elliptic and loxodromic elements

in Isom+(H3) as they have two �xed points in C. Notice that each parabolic

element has a unique �xed point in H3 that is indeed in C: Thus there are not
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any axes for parabolic elements in Isom+(H3):

De�nition 2.2.5 Let f be an elliptic or loxodromic element of Isom+(H3): The

hyperbolic line in H3 joining the end points that are the �xed points of f on the

boundary C is called the axis of f; denoted by axis(f):

The following Figure 2.1 illustrates two axes.

010

­10

x y
00

z 5

­10

10

10

Figure 2.1: The two axes of isometries

It is clear that

axis(f) \ C = Fix (f) : (2.1)

Lemma 2.2.6 Let g be an element of Isom+(H3), and let h be the natural exten-

sion of an element of M�ob(C): Then

(a) axis(g) is invariant under g :

g(axis(g)) = axis(g):

(b) the axis of a conjugation is given by

axis(h � g � h�1) = h(axis(g)):
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Proof. According to De�nition 2.2.5, axis(f) is determined by the �xed

point set Fix(f):

(a) As a result, axis (g) is determined by Fix(g) that is the set of �xed

points of g; and hence g(axis(g)) and axis(g) have the same ending points, so

g(axis(g)) = axis(g):

(b) Applying for Corollary 2.1.11, Fix (f) = h (Fix(g)) and hence the

ending points of the axis h (axis(g)) coincide with Fix (h � g � h�1) : Therefore,

axis(h � g � h�1) = h(axis(g)): �

Now it is ready to classify the elements of M�ob+(C) in the following the-

orem by using the �xed points in H3:

Theorem 2.2.7 Suppose that f is a non-identity element of M�ob+(C); then

(a) f is parabolic if and only if f has a single �xed point in C (and no

�xed points in H3).

(b) f is elliptic if and only if f has two �xed points in C and axis (f)is the

�xed point set.

(c) f is loxodromic if and only if f has two �xed points in C and no �xed

points in H3 (axis (f) could be an invariant set under f):

Proof. (a) It is that the part (a) of Lemma 2.1.14 states. Further,

applying for Theorem 2.1.17, f is conjugate to a translation p = z +1 and hence

the natural extension, recall p 2 Isom+(H3) has no �xed points in H3:

(b) Applying for Theorem 2.1.17, f is elliptic if and only if it is conjugate

to a rotation e = ei�z with 0 < � < 2�: It is clear that

Fix (e) = f0;1g � C and FixH3 (e) = x3-axis = axis (e) :

Choose a Möbius transformation g 2 M�ob(C) such that f = geg�1: Further,
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applying for Corollary 2.2.4 and Lemma 2.2.6,

FixH3 (f) = FixH3
�
geg�1

�
= g

�
FixH3(e)

�
= g (axis (e)) = axis (f) :

Thus, axis (f) is the �xed point set of f in H3: Conversely, suppose that

FixH3 (f) = axis (f) : One may assume that f has two �xed points 0 and 1 in C

by a conjugation if necessary, then axis (f) = x3-axis as whose end points are 0

and 1: Thus, it is a rotation f = ei�z with 0 < � < 2�:

(c) Applying for Theorem 2.1.17, f is loxodromic if and only if it is con-

jugate by g in M�ob(C) to a dilation h(z) = rei�z; for � 2 (0; 2�) and r 6= 1; i.e.,

f = ghg�1: It is clear that Fix (h) = f0;1g � C and the natural extension has

no �xed points in H3; i.e., FixH3(h) = ?: By Corollary 2.2.4 and Lemma 2.2.6,

FixH3 (f) = FixH3
�
ghg�1

�
= g

�
FixH3(h)

�
= g (?) = ?:

Thus, if f is loxodromic then it has two �xed points in C and no �xed

points in H3: Conversely, if f has two �xed points in C and no �xed points in H3.

Thus, f is loxodromic as it is neither parabolic nor elliptic by the parts (a) and

(b): �

2.3 Parameters of two-generator groups

An advanced tool for studying Kleinian groups is the triple of complex

parameters that determine uniquely up to conjugacy the two-generator group

(Theorem 2.3.2). This dissertation characterizes the �nite order of elliptic ele-

ments by the explicit formula (Theorem 2.3.5) and use the elementary method

showing a number of trace identities in SL(2;C) including Fricke identity (Propo-

sitions 2.3.8 and 2.3.9). At the end of this section, some impressive geometric

quantities are introduced, such as translation length, holonomy, and complex
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hyperbolic distance.

De�nition 2.3.1 Consider the group hf; gi generated by a pair of elements f

and g in Isom+(H3); and the multiplicative commutator [f; g] = fgf�1g�1: The

following three complex numbers


 (f; g) = tr([f; g])� 2; � (f) = tr2(f)� 4; �(g) = tr2(g)� 4

are called parameters for the two-generator group hf; gi :

Notice that two groups Isom+(H3) and PSL(2;C) are isomorphic, thus for

each f in Isom+(H3) there is a unique representative matrix A in PSL(2;C); and

hence tr (f) = tr (A) : So the triple of parameters (
 (f; g) ; � (f) ; �(g)) of the

group hf; gi is independent of the choice of representative matrices in M�ob(C)

for f and g 2 Isom+(H3): Further, Lemma 2.2 [17] gives the following theorem.

Theorem 2.3.2 Let � = hf; gi be a group generated by f and g in Isom+(H3);

then � is determined uniquely up to conjugacy by its triple of parameters

(
 (f; g) ; � (f) ; �(g))

with 
 (f; g) 6= 0:

Remark 2.3.3 (1) The restriction 
 (f; g) 6= 0 is necessary. For instance if

f =

0BB@1 1

0 1

1CCA ; g =

0BB@1 2

0 1

1CCA ; and h =

0BB@1 i

0 1

1CCA ; then the parameters of two

groups hf; gi and hf; hi are the same,

(
 (f; g) ; � (f) ; �(g)) = (
(f; h); � (f) ; �(h)) = (0; 0; 0):
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But the �rst group is free abelian of rank 1 and the other is free abelian of rank

2 and thus they are di¤erent groups and not conjugate with the same parameters

(see introduction to free group at the end of Section 3:1).

(2) A two-generator group may have various presentations generated by

di¤erent pairs of generators. For example, consider a two-generator group � =

hf; gi with the triple of parameters (
; �;�4): Let u = f and v = gf then f =

u; g = vu�1; and hence � = hf; gfi with the triple of parameters (
; 
���4;�4)

(see the identity (4:16) in Section 4:1). Thus, the same group may have di¤erent

triples of parameters accordingly. Theorem 2:3:2 above states that each group

generated by each pair of two generators is determined uniquely up to conjugacy

by its triple of parameters.

Now one can use the complex parameter � (f) to give an alternate de�-

nition of parabolic, elliptic, and loxodromic elements f in Isom+(H3) that were

de�ned by the traces in De�nition 2.1.6 as elements of M�ob+(C):

De�nition 2.3.4 Let f be a non-identity element in Isom+(H3); then

(a) f is parabolic if � (f) = 0:

(b) f is elliptic if � (f) 2 [�4; 0):

(c) f is loxodromic if � (f) 2 C� [�4; 0]:

Recall that an element ap of a non-trivial cyclic group G = hai of order n

generates G if and only if (p; n) = 1; so any single element of the following set

generates G :

fap : 1 � p < n and (p; n) = 1g :

For example, if � is a cyclic group of order n generated by a rotation centered at

the origin with the angle 2�
n
; then any single element of the following set generates
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� : �
2p�

n
: 1 � p < n and (p; n) = 1

�
:

Theorem 2.3.5 Let f be a non-trivial element in Isom+(H3); then f is elliptic

of order n if and only if

� (f) = �4 sin2(p�
n
); for 1 � p < n and (p; n) = 1:

Proof. (1) Suppose that � (f) = �4 sin2(p�
n
); for 1 � p < n and (p; n) =

1: Since 0 � sin2(p�
n
) � 1 and p and n are co-prime, 0 < sin2(p�

n
) � 1 and hence

� (f) 2 [�4; 0): By Corollary 2.3.4, f is elliptic, then by Theorem 2.1.17, f is

conjugate to the rotation e = ei�z for � 2 (0; 2�) and so cos � 6= 1: Now the

associated matrix of f in PSL(2;C) is

0B@ei�=2 0

0 e�i�=2

1CA :

It follows that

� (f) = (ei�=2 + e�i�=2)2 � 4

= ei� + e�i� � 2

= 2(cos � � 1):

On the other hand side, � (f) = �4 sin2(p�
n
) = �2(1� cos 2p�

n
): Thus,

cos � = cos
2p�

n
;

which gives � = �2p�
n
+ 2k�; where k 2 Z: Therefore, the rotation angle � = 2p�

n
:

Without losing generality, take p = 1 then the order of f is equal to n: In fact, if
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p 6= 1; then 1 < p < n with (p; n) = 1; so n
p
=2 N: It follows that 2p�

2p�
n

= n:

(2) Suppose f is elliptic of order n; then by using Theorem 2.1.17 f is

conjugate to ei�z; and the rotation angle � = 2p�
n
with (p; n) = 1: It is deduced

that

� (f) = (ei�=2 + e�i�=2)2 � 4

= 4

�
cos2

�

2
� 1
�

= �4 sin2(p�
n
):

�

Theorem 2.3.5 gives some special cases in the following corollary that will

be used frequently.

Corollary 2.3.6 Let f be a non-identity element in Isom+(H3):

(a) f is elliptic of order 2 if and only if � (f) = �4:

(b) f is elliptic of order 3 if and only if � (f) = �3:

(c) f is elliptic of order 4 if and only if � (f) = �2:

(d) f is elliptic of order 5 if and only if � (f) =
p
5�5
2
; or �

p
5+5
2
:

(e) f is elliptic of order 6 if and only if � (f) = �1:

Proof. By Theorem 2.3.5, f is elliptic of order n if and only if � (f) =

�4 sin2(p�
n
); for 1 � p < n and (p; n) = 1: In particular,

(a) n = 2 : (p; 2) = 1 gives p = 1: Thus, � (f) = �4 sin2(�
2
) = �4:

(b) n = 3 : (p; 3) = 1 gives p = 1 and 2; and hence

� (f) = �4 sin2(�
3
) = �4 sin2(2�

3
) = �3:
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(c) n = 4 : (p; 4) = 1 gives p = 1 and 3; so

� (f) = �4 sin2(�
4
) = �4 sin2(3�

4
) = �2:

(d) n = 5 : (p; 5) = 1 gives p = 1; 2; 3; and 4. Therefore, there are the

following two distinct values of � (f) :

� (f) = �4 sin2(�
5
) = �4 sin2(4�

5
) =

p
5� 5
2

;

� (f) = �4 sin2(2�
5
) = �4 sin2(3�

5
) = �

p
5 + 5

2
:

(e) n = 6 : (p; 6) = 1 gives p = 1 and 5; and hence

� (f) = �4 sin2(�
6
) = �4 sin2(5�

6
) = �1:

�

Note that De�nition 2.3.1 gives tr2 (f) = 4+� (f) : Applying for Theorem

2.3.5, if f is elliptic of order n then tr2 (f) = 4 � 4 sin2(p�
n
) = 4 cos2(p�

n
); for

1 � p < n and (p; n) = 1: This is the following corollary.

Corollary 2.3.7 Let f be a non-trivial element in Isom+(H3); if f is elliptic of

order n then

tr (f) = �2 cos(p�
n
); for 1 � p < n and (p; n) = 1:

Using the elementary method prove the following trace identities in SL(2;C)

including Fricke identity (see [10]). One can see that the second identity (2.3) is

a kind of formula similar to the one for "integration by parts".
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Proposition 2.3.8 Let f and g be two Möbius transformations in SL(2;C); then

the following three identities are held.

tr(f) = tr(f�1). (2.2)

tr(fg) = tr(f)tr(g)� tr(fg�1): (2.3)

tr[f; g] = tr2(f) + tr2(g) + tr2(fg)� tr(f)tr(g)tr(fg)� 2: (2.4)

Proof. (1) Let �1 and �2 be the eigenvalues of f; then the characteristic

equation is �2 � (�1 + �2)� + �1�2 = 0: Notice that �1 + �2 = tr(f) and �1�2 =

det(f); the characteristic equation becomes �2 � tr(f) �+ det(f) = 0:

Applying Cayley-Hamilton Theorem for f :

f 2 � tr(f)f + det(f)Id = 0: (2.5)

Since f 2 SL(2;C); det(f) = 1: Multiplying (2:5) by f�1 gives

f + f�1 = tr(f)Id: (2.6)

It follows from taking trace for (2:6) that

tr( f) + tr(f�1) = 2tr( f):

Which gives the �rst well known trace identity (2:2) :

tr(f) = tr(f�1).
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(2) Multiplying the identity (2:6) by g from the right,

fg + f�1g = tr(f)g:

Taking the trace for this identity,

tr(fg) + tr(f�1g) = tr(f)tr(g):

By the �rst trace identity(2:2),

tr(f�1g) = tr(f�1g)�1 = tr(g�1f) = tr(fg�1):

Thus, the previous identities implies

tr(fg) = tr(f)tr(g)� tr(fg�1):

It is the second well known identity (2:3).

(3) Let tr(f) = x; tr(g) = y; and tr(fg) = z: Then using two trace

identities (2:2) and (2:3) obtain the following expressions:

tr(f 2) = tr2(f)� tr(ff�1) = x2 � 2: (2.7)

tr(f�1g) = tr(f�1)tr(g)� tr(f�1g�1) (2.8)

= tr(f)tr(g)� tr((gf)�1)

= xy � tr(gf) = xy � tr(fg):

and hence

tr(f�1g) = xy � z: (2.9)
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Now using the trace identity (2:3) and two expressions (2:7) and (2:9) ;

tr(fgf�1g) = tr(fg)tr(f�1g)� tr
�
fgg�1f

�
= tr(fg)tr(f�1g)� tr

�
f 2
�

= z(xy � z)� (x2 � 2):

Thus,

tr(fgf�1g) = xyz � z2 � x2 + 2:

It follows that

tr[f; g] = tr
�
fgf�1g�1

�
= tr

�
fgf�1

�
tr
�
g�1
�
� tr(fgf�1g)

= tr2 (g)� tr(fgf�1g)

= y2 � xyz + z2 + x2 � 2:

By substitution of x; y; and z; it gives the Fricke identity (2:4) :

tr[f; g] = tr2(f) + tr2(g) + tr2(fg)� tr(f)tr(g)tr(fg)� 2:

�

Proposition 2.3.9 Suppose that f; g 2 Isom+(H3): Then following identities are

held.

(a)

� (f) = �(f�1):

(b)

�(fg) = �(gf):
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(c)


 (f; g) = � (f) + �(g) + �(fg)� tr(f)tr(g)tr(fg) + 8: (2.10)

(d)


 (f; g) = 
(g; f) = 
(f; g�1): (2.11)

(e) If g is elliptic of order 2, then

�(fg) = 
 (f; g)� � (f)� 4:

Proof. (a) Using De�nition 2.3.1 and the identity (2:2),

� (f) = tr2(f)� 4

= tr2(f�1)� 4 = �(f�1):

(b) Using the identities (2:3) and (2:2),

tr(fg) = tr(f)tr(g)� tr(fg�1)

= tr(f)tr(g)� tr
�
(fg�1)�1

�
= tr(g)tr(f)� tr(gf�1) = tr(gf):

It follows from De�nition 2.3.1 that

�(fg) = tr2(fg)� 4

= tr2(gf)� 4 = �(gf):
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(c) By De�nition 2.3.1, Fricke identity (2:4) can be read as


 (f; g) + 2 = � (f) + 4 + �(g) + 4 + �(fg) + 4� tr(f)tr(g)tr(fg)� 2;


 (f; g) = � (f) + �(g) + �(fg)� tr(f)tr(g)tr(fg) + 8:

(d) Applying for (c) and (b),


 (f; g) = � (f) + �(g) + �(fg)� tr(f)tr(g)tr(fg) + 8

= �(g) + � (f) + �(gf)� tr(g)tr(f)tr(gf) + 8

= 
(g; f):

Applying for the trace identity (2:3),


 (f; g) = tr(fgf�1g�1)� 2

= tr(f)tr
�
gf�1g�1

�
� tr(f

�
gf�1g�1

��1
)

= tr(f)tr
�
f�1
�
� tr(fgfg�1):


(f; g�1) = tr(fg�1f�1g)� 2

= tr(f)tr
�
g�1f�1g

�
� tr(f

�
g�1f�1g

��1
)

= tr(f)tr
�
f�1
�
� tr(fg�1fg)

= tr(f)tr
�
f�1
�
� tr(fgfg�1):

Thus, 
 (f; g) = 
(f; g�1) and hence 
 (f; g) = 
(g; f) = 
(f; g�1).

(e) Since g is elliptic of order two; tr(g) = 0 and �(g) = �4: Now the

identity (2:10) in (c) becomes:


 (f; g) = � (f)� 4 + �(fg) + 8

= � (f) + �(fg) + 4:
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That is, �(fg) = 
 (f; g)� � (f)� 4: �

De�nition 2.3.10 A non-trivial element f in Isom+(H3) is called to be primitive

elliptic of order n if � (f) = �4 sin2(�
n
):

The part (a) of Proposition 2.3.9 implies immediately the following corol-

lary.

Corollary 2.3.11 Let f be a non-identity element in Isom+(H3): Then f is prim-

itive elliptic if and only if its inverse f �1 is primitive elliptic.

A detailed proof for the following well-known fact is included now. The

condition 
 (f; g) 6= 0 is necessary for Kleinian groups in the next chapter, and

hence Fix(f) \ Fix(g) = ? is necessary for Kleinian groups as well.

Theorem 2.3.12 Let � be generated by f and g in Isom+(H3) with parameters

(
 (f; g) ; � (f) ; �(g)) ; then 
 (f; g) 6= 0 if and only if Fix(f) \ Fix(g) = ?:

Proof. (1) The necessity is that 
 (f; g) 6= 0 implies Fix(f)\Fix(g) = ?:

Equivalently, Fix(f) \ Fix(g) 6= ? implies 
 (f; g) = 0: Since f and g have

a common �xed point in C; one may assume that f and g �x 1: Apply for

Theorem 2.1.13, f =

0B@ 1 b1

0 1

1CA and g =

0B@ 1 b2

0 1

1CA : Thus,

[f; g] =

0B@ 1 b1

0 1

1CA
0B@ 1 b2

0 1

1CA
0B@ 1 �b1

0 1

1CA
0B@ 1 �b2

0 1

1CA
=

0B@ 1 0

0 1

1CA :

So 
 (f; g) = 0:

(2) Suppose that Fix(f) \ Fix(g) = ?: There are two cases to consider.
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Case 1: If f is parabolic, by using Theorem 2.1.17, one may assume the

following

f =

0B@ 1 1

0 1

1CA ; g =

0B@ a b

c d

1CA ; where ad� bc = 1 and c 6= 0:

Computing the commutator,

[f; g] =

0B@ 1 1

0 1

1CA
0B@ a b

c d

1CA
0B@ 1 �1

0 1

1CA
0B@ d �b

�c a

1CA
=

0B@ ac+ ad� bc+ c2 ad� ac� bc� a2

c2 ad� ac� bc

1CA :

Notice that ad� bc = 1;

tr [f; g] = 2ad� 2bc+ c2 = 2 + c2:

Since c 6= 0; tr[f; g] 6= 2; and hence 
 (f; g) = tr[f; g]� 2 6= 0:

Case 2: If f is not parabolic, one may assume the following by Theorem

2.1.17,

f =

0B@ � 0

0 1
�

1CA ; g =

0B@ a b

c d

1CA where � 6= 0;�1; ad� bc = 1; b and c 6= 0:

The commutator is

[f; g] =

0B@ � 0

0 1
�

1CA
0B@ a b

c d

1CA
0B@ 1

�
0

0 �

1CA
0B@ d �b

�c a

1CA
=

0B@ ad� bc�2 �ab+ ab�2

cd
�2
� cd �bc

�2
+ ad

1CA :
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Using ad = 1 + bc;

tr [f; g] = ad� bc�2 + �bc
�2

+ ad

= �bc(�2 + 1

�2
) + 2 + 2bc

= �bc(�� 1
�
)2 + 2:

Since b and c 6= 0; tr[f; g] 6= 2; and hence 
 (f; g) = tr[f; g]� 2 6= 0: �

Remark 2.3.13 Suppose that two non-identity elements f and g in Isom+(H3)

have a common �xed point in C; i.e., Fix(f) \ Fix(g) 6= ?; then of course


 (f; g) = 0 by the previous theorem. Furthermore, Theorem 4:3:5 in [2] gives the

following two speci�c cases:

(a) If Fix(f) = Fix(g); then [f; g] = Id and fg = gf:

(b) If Fix(f) 6= Fix(g); then [f; g] is parabolic and fg 6= gf:

The triple of parameters for a two-generator group conveniently encode

various other important geometric quantities such as the following translation

length (see [30]), holonomy, and complex hyperbolic distance.

De�nition 2.3.14 Let f and g be elliptic or loxodromic elements of M�ob+(C);

and suppose that p is a hyperbolic line perpendicular to axis(f):

(1) The hyperbolic distance between two hyperbolic lines p and f (p) is

called the translation length of f; denoted by � f :

(2) The dihedral angle between the plane containing axis(f) and p and the

plane containing axis(f) and f (p) is called the holonomy of f; denoted by �f :

(3) The complex number � + i� is called the complex hyperbolic distance

between the axes of f and g if � is the hyperbolic distance between axis(f) and
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axis(g) and � is the holonomy of the element ofM�ob+(C) whose natural extension

moves axis(f) to axis(g), and whose axis contains the common perpendicular

between axis(f) and axis(g):

Remark 2.3.15 (a) The translation length � f and holonomy �f of f are inde-

pendent of choice of the perpendicular hyperbolic line p:

(b) The easiest way to see the holonomy �f is to use a conjugacy to arrange

things so that axis(f) lies on x3-axis, then it is simply the angle between the

vertical projections to C of p and f (p) at the origin.

(c) Martin [19] established a way to �nd the parameters of a two-generator

group hf; gi in terms of geometric quantities � f ; �f ; and � + i� as following:

� (f) = 4 sinh2
�
� f + i�f
2

�
; (2.12)

�(g) = 4 sinh2
�
� g + i�g
2

�
; (2.13)


 (f; g) =
� (f) �(g)

4
sinh2(� + i�): (2.14)

Corollary 2.3.16 Let f and g be two non-parabolic Möbius transformations in

M�ob+(C): If axis(f)\ axis(g) 6= ?; then


 (f; g) =
�� (f) �(g)

4
sin2(�):

Proof. Let � be the hyperbolic distance between axis(f) and axis(g):

Since axis(f)\ axis(g) 6= ?; then � = 0, and hence the formula (2.14) becomes


 (f; g) =
� (f) �(g)

4
sinh2(i�):



46

Notice that

sinh(i�) = i sin(�):

Finally,


 (f; g) =
�� (f) �(g)

4
sin2(�):

�

Recall the following useful formulas from Lemma 4.4 in [15] that are de-

rived from above identities (2.12)-(2.14):

cosh(� f ) =
j� (f) + 4j+ j� (f) j

4
(2.15)

cos(�f ) =
j� (f) + 4j � j� (f) j

4
(2.16)

cosh(2�) =

���� 4
(f; g)� (f) �(g)
+ 1

����+ ���� 4
(f; g)� (f) �(g)

���� (2.17)

cos(2�) =

���� 4
(f; g)� (f) �(g)
+ 1

����� ���� 4
(f; g)� (f) �(g)

���� : (2.18)

It is often concerned with the case where one of the isometries, say g is of

order 2, in which case �(g) = �4, and (2.17) and (2.18) take the simpler form

cosh(2�) = j1� 
 (f; g)

� (f)
j+ j
 (f; g)

� (f)
j: (2.19)

cos(2�) = j1� 
 (f; g)

� (f)
j � j
 (f; g)

� (f)
j: (2.20)

Notice that for �xed � (f) 2 C and �xed cosh(2�) at (2.19), the set of

possible values for 
 (f; g) form an ellipse, while for �xed cos(2�) and � (f) 2 C

at (2.20) one can get hyperbola. Thus � and � give very appealing geometric

orthogonal coordinates on C n [�; 0].



47

2.4 Parameters of elementary groups

One will see that Kleinian groups are non-elementary discrete groups in

the �rst section of the next chapter. Thus, the dissertation pays the attention

�rst to elementary groups in the last section of the current chapter. A number

of important results about elementary groups are obtained, such as the clari�ca-

tion about di¤erent de�nitions of elementary groups in the literature (Theorem

2.4.6), the classi�cation of elementary groups (Theorem 2.4.9), the features of

elementary groups (Theorem 2.4.6), and the list of the possible parameters for

two-generator discrete elementary groups with non-zero parameter 
(f; g) in three

tables (Tables 1; 2; and 3): These characterizations and tables play key roles in

enhancing the theory of Kleinian groups in Chapter 3 and in establishing the

universal constraints for Kleinian groups in Chapter 4.

De�nition 2.4.1 A topological group is a discrete group if its topology is dis-

crete. In particular, a subgroup of a topological group is a discrete subgroup if its

induced topology is discrete. Otherwise, the group is called a non-discrete group .

It is equivalent that if a topological group G is a non-discrete group then

there is an in�nite sequence of distinct elements in G converging to the identity.

Every subgroup of a discrete group is of course discrete. In addition, conjugations

preserve the discreteness that is stated in the following proposition.

Proposition 2.4.2 Let G and H be topological groups acting on the topological

space X: Suppose that � and �0 are subgroups of G: Suppose that �0 is conjugate

to � in H: If � is a discrete subgroup of G then �0 is a discrete subgroup of G:

Proof. Assume that �0 is a non-discrete subgroup, then there is an in�nite

sequence fg0ng of distinct elements of �0 such that

lim
n!1

g0n = Id:
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Since �0 is conjugate to � in H; there exists h 2 H such that

�0 = h � � � h�1 =
�
g0 = hgh�1 : g 2 �

	
:

It follows that there is an in�nite sequence fgn = h�1g0nhg of distinct elements of

�: Notice that h�1 is continuous,

lim
n!1

gn = lim
n!1

h�1g0nh = Id:

Thus, � is a non-discrete group, a contradiction. �

De�nition 2.4.3 Suppose that a topological group G of homeomorphisms acts

on a topological space X and let S be a subset of X: The set stabilizer of S in

G; denoted by StabG(S); is de�ned by

StabG(S) = fg 2 G : g(S) = Sg � G:

If S = fxg : StabG(fxg) is called the stabilizer of the point x in X; denoted by

Gx:

If StabG(S) = G : S is called to be invariant under G, or simply say S is

G-invariant.

For each point x in X; the following set is called an orbit of x under G

and denoted by G(x) :

G(x) = fg (x) 2 X : g 2 Gg � X:

It is clear that the following lemma is given immediately by the de�nition

of orbit.
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Lemma 2.4.4 Let G be a topological group acting on the topological space X;

then every orbit of G is invariant under G: In particular, if the orbit G(x) = fxg

then x is a �xed point of the group G:

De�nition 2.4.5 Let G be a discrete group of isometries acting on H3: The set of

all accumulation points of the following orbit is called the limit set of G; denoted

by L (G) :

fg ((0; 0; 1)) : g 2 Gg ;

where (0; 0; 1) is a point in H3: The discrete group G is said to be elementary

if the limit set L (G) contains at most two points. Otherwise, G is said to be

non-elementary .

Notice that discreteness will imply that the orbit can only accumulate on

the boundary C and hence

L (G) � C:

There are three characterizations of an elementary group in the following

theorem.

Theorem 2.4.6 Let G be a discrete group of hyperbolic isometries acting on H3;

then the followings are equivalent:

(a) G is elementary.

(b) G has a �nite orbit in H3:

(c) G has a �nite orbit �xed point-wise by each element of G up to an

integer power.

(d) G is one of the following three types:

i) If the �nite orbit meets H3 or it is in C with at least three distinct points

(Type I ), then every non-trivial element is elliptic of �nite order.
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ii) If the singleton orbit � C (Type II), then G is conjugate to a subgroup of

M�ob(C) �xing1 whose every element is parabolic of the form az+b (a 6= 0 2 C) :

iii) If the doubleton orbit � C (Type III), then G is conjugate to a subgroup

of M�ob(C) leaving the set f0;1g invariant whose every element is of the form

azs (a 6= 0 2 C; s = �1) :

Proof. (a) =) (b) : Since G is elementary, the limit set L(G) contains at

most two accumulation points. Notice that Proposition 3.1.10 states later that

the limit set L(G) is invariant under G. Thus, L(G) includes a orbit containing

one or two points in H3:

(b) =) (c) : Suppose there exists a �nite orbit ofG; sayO = fx1; x2; : : : ; xng :

By Lemma 2.4.4, the orbit O is invariant under G: In particular, for each element

g of G and each xi 2 O satis�es

�
gk (xi) : k = 0; 1; 2; � � �

	
� fx1; x2; : : : ; xng :

Thus, there exist two distinct non-negative integers ki > li such that gki (xi) =

gli (xi) ; i.e., gki�li (xi) = xi: Let mi = ki � li then gmi (xi) = xi: Set m =

m1m2 � � �mn; then

gm (xi) =
gmi � � � � � gmi (xi)| {z }

m1 � � �mi�1mi+1 � � �mn times
= xi;

and hence gm �xes all the points x1; x2; : : : ; and xn:

(c) =) (d) : Obviously, G falls into the following three types.

Type I: If the �nite orbit has one point in H3; say x0: then, by (c), there

exists a non-negative m for each g 2 G such that gm �xes x0: By Theorem 2.2.7,

gm is elliptic or identity, and hence gm has a �nite order, say (gm)k = Id for some

k 2 N: So gmk = Id gives that g is elliptic (order mk) or identity.
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If the �nite orbit does not meet H3; then it has three distinct points in

C: Thus, there exists a non-negative m for each g 2 G such that gm �xes those

three distinct points, so gm = Id gives that g is of order up to m and hence g is

elliptic or identity.

Type II: Since the singleton orbit in C, by Lemma 2.4.4, G �xes the

singleton, say z0: Let h = 1
z�z0 ; then G is conjugate to subgroup hGh

�1 that �xes

h (z0) =1: By Corollary 2.1.16, every element of hGh�1 is parabolic of the form

az + b (a 6= 0; b 2 C) :

Type III: Since the doubleton �nite orbit in C; by Lemma 2.4.4, the dou-

bleton, say fz1; z2g ; is invariant under G: Let h = z�z1
z�z2 then G is conjugate to

subgroup hGh�1 that leaves the set fh (z1) ; h (z2)g = f0;1g invariant. Now

applying for Corollary 2.1.16. If f0;1g is a �xed point set of hGh�1 then every

element of hGh�1 is of the form az (a 6= 0 2 C) : Otherwise, hGh�1 interchanges

0 and 1; so every element is of the form az�1 (a 6= 0 2 C) :

(d) =) (a) : If G has a �nite orbit of Type I, then L(G) = ? by Theorem

5.7 in [25] and hence G is elementary. If G has a �nite orbit of Type II, then L(G)

is a singleton by applying for Theorem 5.10 in [25] and hence G is elementary. If

G has a �nite orbit of Type III, then L(G) contains two accumulation points by

Theorem 5.11 in [25] and hence G is elementary. �

Now a discrete group is elementary if and only if it has a �nite orbit, it

is the characterization of an elementary group provided in Theorem 2.4.6. Now

using this characterization show the features of elementary groups in the following

theorem.

Theorem 2.4.7 The following subgroups of M�ob(C) acting on H3 are elemen-

tary:

(a) Finite subgroup.

(b) Stabilizer of each point in H3:

(c) Subgroup with �nitely many common �xed points in H3:
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(d) Subgroup hf; gi with g (Fix (f)) = Fix (f) :

(e) Subgroup of an elementary group.

Proof. (a) Let G be a �nite subgroup, say G = fg1; g2; � � � ; gng : Let x

be a point in H3; then there is a �nite orbit

G (x) = fg1 (x) ; g2 (x) ; � � � ; gn (x)g :

By Theorem 2.4.6, G is elementary.

(b) Let G be the stabilizer of a point x in H3; then there is a singleton

orbit G (x) = fxg : So Theorem 2.4.6 gives that G is elementary.

(c) Let G be a subgroup with �nitely many common �xed point in H3;

say z1; z2; � � � ; and zn: So there are �nite orbits fz1g ; fz2g ; � � � ; and fzng, and

hence G is elementary by Theorem 2.4.6.

(d) Notice that f has either one or two �xed points in C: If f has one

unique �xed point, say Fix (f) = fz1g ; then g (Fix (f)) = Fix (f) gives g (z1) = z1

and hence hf; gi has a common �xed point in H3: So hf; gi is elementary by the

previous part (c). Otherwise, f has two �xed points, say Fix (f) = fz1; z2g ; then

g interchanges the �xed points of f; i.e., g (z1) = z2 and g (z2) = z1; then there

exists a �nite orbit

G (z1) = G (z2) = fz1; z2g :

Thus, G is elementary by using Theorem 2.4.6.

(e) Let S be a subgroup of an elementary group G; and let x be a point

in H3; then the orbits satisfy

S(x) � G(x):

Thus, there exists a �nite orbit under G implies there exists a �nite orbit under

S: Now Theorem 2.4.6 guarantees S is elementary. �

A group G is said to be virtually abelian if there is a �nite index abelian

subgroup of G. In particular, an abelian group is of course a virtually abelian.
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The following proposition tells that every virtually abelian is elementary.

Proposition 2.4.8 If G is virtually abelian subgroups of M�ob(C); then G is el-

ementary.

Proof. Let G be an abelian subgroup, then either G contains only elliptic

elements and the identity Id orG contains some parabolic or loxodromic elements.

If G is the former case, by Theorem 4.3.7 [2], G has a common �xed point in H3;

so G is elementary by Corollary 2.4.7 part (c). If G is the latter case, by Theorem

4.3.6 (iii) [2, Section 5.1], either G has two common �xed point in C and hence

G is elementary by Corollary 2.4.7 part (c), or there are at least a pair f and g

such that Fix (f) \ Fix (g) = ? and they have a common �xed point in H3: �

Note that Euclidean triangle groups can be regarded as two-generator

groups

�(p; q; r) = hf; g : fp = gq = (fg)r = Idi;

where 1
p
+ 1

q
+ 1

r
= 1 and hence

(p; q; r) = (2; 3; 6); (2; 4; 4); (3; 3; 3);

Assume that a; b;and c are the sides of the triangle counterclockwise on the com-

plex plan C opposite the angles �
p
; �
q
; and �

r
; respectively. Recall that a; b;and c

are the corresponding re�ections about the sides and hence a2 = b2 = c2 = Id:

It follows that f = bc; g = ca; and fg = ba are the rotations of order p; q; and

r; centered at the corresponding vertices of the triangle, counterclockwise from

the corresponding axis to the other axis, respectively. Thus, the counterclockwise

rotation angles of f; g; and fg are double two interior angles 2�
p
; 2�
q
; and double

exterior angle 2�
�
1� 1

r

�
; respectively. Similarly, the comments here are valid for

�nite spherical triangle groups on the unit sphere S2 just replacing 1
p
+ 1

q
+ 1

r
= 1

by 1
p
+ 1

q
+ 1

r
> 1: Furthermore, Hagelberg, MacLachlan, and Rosenberger studied

discrete generalized triangle groups, see [36] for the more details.
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It is discussed the classi�cation of discrete elementary groups in Section

5:1 of Beardon�s book [2] that is one of main reference books. The classi�cation

of discrete elementary groups will be reformulated in the following theorem.

Theorem 2.4.9 (Classi�cation of discrete elementary groups) Let G be an

elementary discrete group of Isom+(H3). Then G is isomorphic to one of the fol-

lowing group. In case where p = 1; no relation of the form ap = Id or bp = Id

should be imposed.

(a) A cyclic group Zp = ha : ap = Idi; for some p = 1; 2; � � � ;1:

(b) A dihedral group Dp
�= Zp n Z2 = ha; b : ap = b2 = Id; bab�1 = a�1i;

for some p = 1; 2; � � � ;1:

(c) The group (Zp � Z)n Z2 or Zp � Z for some p = 1; 2; � � � ;1 :

ha; b; c : aba�1b�1 = bp = c2 = Id; cac�1 = a�1; cbc�1 = b�1i:

(d) A Euclidean translation group Z� Z:

(e) A Euclidean triangle group �(2; 3; 6), or �(2; 4; 4); or �(3; 3; 3):

(f) A �nite spherical triangle group A4 = �(2; 3; 3), or S4 = �(2; 3; 4);

or A5 = �(2; 3; 5):

The following lemma shows that if the parameter 
(f; g) = 0 then the

two-generator group hf; gi is elementary, but the converse need not be true.

One can identify the two-generator elementary groups between 
(f; g) = 0 and


(f; g) 6= 0:

Lemma 2.4.10 Let � = hf; gi be a two-generator group with the parameters

(
; �; �0). If 
 = 0 then � is elementary. Equivalently, if � is non-elementary

then 
 6= 0:
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Proof. It is a direct consequence of the result of Theorem 2.3.12 which

implies that if 
 = 0; then f and g have a common �xed point z0 in �C. It follows

that � �xes z0 and has a �nite orbit fz0g. Therefore � is elementary. �

Lemma 2.4.11 Suppose that � = hf; gi is a group generated by f and g in

Isom+(H3): If � is a cyclic group then the parameter 
 (f; g) = 0:

Proof. Since � = hf; gi is a cyclic group, one may assume � =
�
ak : k 2 Z

	
for some a 2 Isom+(H3): Thus, f = ak and g = al for some k; l 2 Z: Therefore,


 (f; g) = tr
�
fgf�1g�1

�
� 2

= tr
�
akala�ka�l

�
� 2

= tr (Id)� 2 = 0:

�

Lemma 2.4.12 Let � = hf; gi be a discrete group with a triple of parameters

(
; �;�4): If 
 = � then � is elementary. Moreover, � is isomorphic to a dihedral

group Dp, for some p = 1; 2; 3; � � � ;1:

Proof. There are two cases to consider: Suppose f is parabolic. Then

� = 0 = 
 and therefore by lemma 2.4.10 � is elementary.

Suppose f is not parabolic. One may assume the following by Theorem

2.1.17,

f =

0B@ � 0

0 1
�

1CA ; g =

0B@ � �

� �

1CA where � 6= 0; � 6= �1; �� � �� = 1
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Computing the commutator,

fgf�1g�1 =

0B@ � 0

0 1
�

1CA
0B@ � �

� �

1CA
0B@ 1

�
0

0 �

1CA
0B@ � ��

�� �

1CA
=

0B@ �� � �2�� ��2�� ��
1
�2
�� � �� �� � 1

�2
��

1CA ;

and hence the parameters are


 = tr [f; g]� 2

= 2�� � �2�� � 1

�2
�� � 2

= 2�� � ��2� � 1

�2
��

= ���(�� 1
�
)2;

� = tr2(f)� 4 = (�� 1
�
)2:

Assuming 
 = �

���(�� 1=�)2 = (�� 1
�
)2

��� = 1

Hence �� � �� = 1; so �� = 0: As assumed, �(g) = �4; and hence tr(g) = 0. It

follows that �+ � = 0, hence � = 0: Then

g =

0B@ 0 �

� 0

1CA
=

0B@ 0 �

�1=� 0

1CA
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Therefore, g(z) = ��2

z
. As g interchanges �xed points of f , hence � has a �nite

orbit and is elementary.

Since �(g) = �4; g is order 2: Recall, f and g

f =

0B@ � 0

0 1
�

1CA and g =

0B@ 0 �

�1
�

0

1CAwhere � 6= 0; � 6= 0:
Computing

gfg�1 =

0B@ 0 �

�1
�

0

1CA
0B@ � 0

0 1
�

1CA
0B@ 0 ��

1
�

0

1CA
=

0B@ 1
�
0

0 �

1CA = f�1

Thus, gfg�1 = f�1: By Theorem 2.4.9 � is dihedral group Dp, for some p =

1; 2; 3; � � � ;1: �

Let f and g be elliptic of order m 2 f2; 3; 4; 5g in M�ob+(C); and let � be

the angle subtended at the origin between axis(f) and axis(g) and hence � = 0:

Then one can compute sin2(�) by using Lemmas 6.19, 6.20, and 6.21 in [41], �nd

the parameters � (g) and � (f) from Corollary 2.3.6, and calculate the parameter


 (f; g) by using Corollary 2.3.16. Thus, with these elementary observations and

spherical trigonometry, the list of triples of parameters with non-zero parameter


(f; g) can be obtained in the following Tables 1; 2; and 3 (including the cases

in the Zhang�s dissertation [56]). The list of parameters occurring in these three

tables is called the exceptional set of parameters.
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Table 1: Commutator parameter: 2; m.

m sin2(�) 
 Group Parameters

3 2
3

�2 A4 (�2;�3;�4)

3 1
3

�1 S4 (�1;�3;�4)

3 3�
p
5

6
�3�

p
5

2
A5 (�3�

p
5

2
;�3;�4)

3 3+
p
5

6
�3+

p
5

2
A5 (�3+

p
5

2
;�3;�4)

3 1 �3 D3 (�3;�3;�4)

4 1
2

�1 S4 (�1;�2;�4)

4 1 �2 D4 (�2;�2;�4)

5 5�
p
5

10
�3�

p
5

2
A5 (�3�

p
5

2
;�5�

p
5

2
;�4)

5 5�
p
5

10
�1 A5 (�1;�5+

p
5

2
;�4)

5 5+
p
5

10
�1 A5 (�1;�5�

p
5

2
;�4)

5 5+
p
5

10
�3+

p
5

2
A5 (�3+

p
5

2
;�5+

p
5

2
;�4)

5 1 �5�
p
5

2
D5 (�5�

p
5

2
;�5�

p
5

2
;�4)

5 1 �5+
p
5

2
D5 (�5+

p
5

2
;�5+

p
5

2
;�4)

Table 2: Commutator parameter: 3; m.

m sin2(�) 
 Group Parameters

3 4
9

�1 A5 (�1;�3;�3)

3 8
9

�2 A4 (�2;�3;�3)

4 2
3

�2 S4 (�2;�2;�3)

5 10�2
p
5

15
�3�

p
5

2
A5 (�3�

p
5

2
;�5�

p
5

2
;�3)

5 10�2
p
5

15
�1 A5 (�1;�5+

p
5

2
;�3)

5 10+2
p
5

15
�1 A5 (�1;�5�

p
5

2
;�3)

5 10+2
p
5

15
�3�

p
5

2
A5 (�3�

p
5

2
;�5+

p
5

2
;�3)

Notice that the angle between intersecting axes of elliptics of order 4 in

a discrete group is always either 0 when they meet on the Riemann sphere C or

�=2. This yields the additional parameter (�1;�2;�2) for the elementary group
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S4 when generated by two elements of order 4.

Furthermore, the angle between intersecting axes of elliptics of order 5 in

a discrete group is either arcsin 2p
5
or its complement arcsin �2p

5
. After possibly

taking powers of the generator of order 5, the three additional parameters can be

obtained in the following table.

Table 3: Commutator parameter: 4; 4 and 5; 5.

m;m sin(�) 
 Group Parameters

4; 4 1 �1 S4 (�1;�2;�2)

5; 5 2
p
5
5

�3�
p
5

2
A5 (�3�

p
5

2
;�5�

p
5

2
;�5�

p
5

2
)

5; 5 2
p
5
5

�1 A5 (�1;�5+
p
5

2
;�5�

p
5

2
)

5; 5 2
p
5
5

�3+
p
5

2
A5 (�3+

p
5

2
;�5+

p
5

2
;�5+

p
5

2
)

Remark 2.4.13 (1) The axes of elliptics both of order 2 can intersect at an

angle k�
n
for any k and n � 2 giving the Dihedral group Dn with parameters�

�4 sin2 k�
n
;�4;�4

�
:

(2) The axes of elliptics of order p and q, p � q, in a discrete group meet

on the Riemann sphere C, i.e., meeting with angle 0, if and only if

(p; q) 2 f(2; 2); (2; 3); (2; 4); (2; 6); (3; 3); (3; 6); (4; 4); (6; 6)g

For all of these groups 
 (f; g) = 0:

In particular, Euclidean triangle groups�(2; 3; 6), �(3; 3; 3), and�(2; 4; 4)

have 
 (f; g) = 0: Furthermore, Lemma 2:4:11 below tells that cyclic groups

have 
 (f; g) = 0: Euclidean translation groups have 
 = 0 as well. Thus, the

two-generator elementary groups with 
 (f; g) 6= 0 are the dihedral groups (if


 (f; g) = � (f) and �(g) = �4) or the �nite spherical triangle groups.
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(3) The axes of elliptics elements of orders 2 and p, p � 3, can meet at

right-angles. In this case, the dihedral group Dp with parameters are

�
�4 sin2 �

p
;�4 sin2 �

p
;�4

�
:

At the end of this section, it is observed that the group generated by two

distinct elements of order 2 is elementary.

Theorem 2.4.14 Let � = hf; gi be a discrete subgroup of Isom+(H3); where f

and g are distinct elements of order 2: Then � is elementary.

Proof. (1) Assume axis(f)\ axis(g) = ?: Let � be the common perpen-

dicular between two axes axis(f) and axis(g). Since f and g are both rotation

of order 2; each of them interchanges the ending points of � and �xes � setwise.

Thus, the product fg �xes the ending points of � and �xes � setwise. It follows

that axis(fg) = � and hence axis(fg) is �xed setwise by fg: Therefore, fg is lox-

odromic. Again since f and g are both rotation of order 2; by using Proposition

2.3.9,


(f; fg) = 
(fg; f)

= �(f 2g) + �(fg) + 4

= �(g) + �(fg) + 4

= �(fg):

That is, 
(f; fg) = �(fg): Notice that hf; gi = hf; fgi �= D1: This shows that

hf; gi is an elementary group.

(2) Suppose axis(f)\ axis(g) 6= ? in H3; then f and g have a common

�xed point in H3: Since f and g are rotations of order 2 about their �xed axes

axis(f) and axis(g) in H3; the product fg is a rotation of order 2 about axis(fg)
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that is perpendicular to axis(f) and axis(g) and passing through the common

�xed point. It follows that gfg�1 = f�1 and hence hf; gi = hf; fgi �= Dn: That

is hf; gi is an elementary group.

(3) Suppose axis(f)\ axis(g) 6= ? in C, then by (2.1), f and g have one

common �xed point in C and hence by Remark 2.3.13, fg = gf: There are two

cases to consider for the common �xed point, say z0 2 C:

Case 1: z0 2 C : Since both f and g are rotations of order 2 with the

common center in C; the product fg is a rotation of order 2: Thus, gfg�1 = f�1

and hence hf; gi �= D1: This shows that hf; gi is an elementary group.

Case 2: z0 =1 : Now f and g �x 1; so axis(f) and axis(g) are vertical

hyperbolic lines. Since both f and g are rotations of order 2 with distinct centers.

On the other hand, both rotation angles are � and the sum is 2�: It follows that

the product fg is a translation and hence fg is parabolic �xing1: It follows that

the group hf; gi �xes1: Thus, by Theorem 2.4.6 hf; gi is elementary of type II.

�
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Chapter 3: Moduli Space of Kleinian Groups

One can describe the space of two-generator groups by three complex

dimensional space C3 via the mapping

hf; gi 7�! (
 (f; g) ; � (f) ; �(g)) :

Indeed, every two-generator Kleinian group hf; gi can be determined uniquely

up to conjugacy by a triple of complex parameters (
 (f; g) ; � (f) ; �(g)). Thus,

the space of two-generator Kleinian groups can be identi�ed with a subspace

D of C3: Note that conjugations preserve the triples of complex parameters for

two-generator Kleinian groups, one can normalize a two-generator Kleinian group

and even more a sequence of two-generator Kleinian groups or passing to a sub-

sequence at any stage if necessary.

A fundamental result about the spaces of two-generator Kleinian groups

is that they are closed in the topology of algebraic convergence (Jørgensen The-

orem 3.2.13). This dissertation extends that the set D of triples of parameters

for Kleinian groups is closed subspace in C3 in the usual topology (in Theorem

3.2.15), and that the set D2 of the pairs of the �rst two parameters for Kleinian

groups is a closed subspace in two complex dimensional space C2 in the usual

topology (Theorem 3.3.4) by considering two projections, one is from D to D2

and the other is from D to the subspace on the slice z3 = �4 in C3: So that

there is an alternate proof of Jørgensen�s inequality (Theorem 3.4.1) based on

the closed subspace D2 in C2 before looking at the more general cases in the next

chapter.
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3.1 Kleinian groups

Nowadays the term �Kleinian group�is being often used for a discrete sub-

group of hyperbolic isometries, a Kleinian group is adopted as a non-elementary

discrete group of hyperbolic isometries in this dissertation. Kleinian groups were

introduced by Poincaré in the 1880�s as subgroups of the Möbius group M�ob(C)

acting discontinuously on some domain of C: In this section, the discontinuous

groups are characterized in Theorem 3.1.11 and the key concepts with di¤erent

de�nitions in the literature are clari�ed, such as discontinuity in Theorem 3.1.14,

and the limit set L (G) in Lemma 3.1.6.

As mentioned at the beginning of Chapter 2, there are three di¤erent ways

of thinking about subgroups with the same concept of discreteness: as subgroups

of Isom+(H3), as subgroups of M�ob+
�
C
�
, and as subgroups of PSL(2;C): Thus,

one can de�ne Kleinian groups as subgroups of Isom+(H3) as follows.

De�nition 3.1.1 The subgroup G of Isom+(H3) is called a Kleinian group if it

is discrete and non-elementary.

Thus, Kleinian groups are not elementary discrete groups studied in Sec-

tion 2:4. Applying for Theorem 2.4.9 there, the hyperbolic triangle groups

�(p; q; r) =

�
f; g : fp = gq = (fg)r = Id;

1

p
+
1

q
+
1

r
< 1

�

are two-generator Kleinian groups.

Example 3.1.2 The hyperbolic triangle group

�(2; 4; 5) =


f; g : f 2 = g4 = (fg)5 = Id

�

is a Kleinian group. By Corollary 2.3.6, � (f) = �4; �(g) = �2; and �(fg) =
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p
5�5
2

or �
p
5�5
2

: It follows that tr(f) = 0 and then Proposition 2.3.9 gives


 (f; g) = � (f) + �(g) + �(fg)� tr(f)tr(g)tr(fg) + 8

= �(g) + �(fg) + 4

= 2 +

p
5� 5
2

or 2�
p
5 + 5

2

=

p
5� 1
2

or �
p
5 + 1

2
:

Thus, the triple of parameters for the Kleinian group�(2; 4; 5) is
�p

5�1
2
;�2;�4

�
or
�
�
p
5+1
2
;�2;�4

�
:

Example 3.1.3 There are in�nitely many Kleinian groups given by the hyper-

bolic triangle groups

�(2; 3; p) =


f; g : fp = g2 = (fg)3 = Id; p � 7

�
:

Then the corresponding triples of parameters are (1 + �; �;�4) ; where � = � (f) :

In fact, applying for Corollary 2.3.6, �(g) = �4 (so tr(g) = 0) and �(fg) = �3:

So Proposition 2.3.9 gives


 (f; g) = � (f) + �(g) + �(fg)� tr(f)tr(g)tr(fg) + 8

= 1 + �:

A necessary condition of two-generator Kleinian groups hf; gi is that the

parameter 
 (f; g) 6= 0 in the following corollary, which is directly from Lemma

2.4.10. Moreover, by Lemma 2.3.12, the condition 
 (f; g) 6= 0 is equivalent to

the disjoint �xed point sets: Fix(f) \ Fix(g) = ?:
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Corollary 3.1.4 Let � = hf; gi be a two-generator Kleinian group with the pa-

rameters (
; �; �0); then 
 6= 0:

Next introduce discontinuous groups and some properties.

De�nition 3.1.5 Let X be a topological space and G be the group of homeomor-

phisms acting on X: The group G is called to be discontinuous at x 2 X if there

is a neighborhood U of x such that

g(U) \ U = ?; for all but �nitely many g 2 G:

The set of all x 2 X at which G is discontinuous is called the ordinary

set of G and denoted by O (G) : A group G is called a discontinuous group acting

on X if O(G) 6= ?; i.e., there is a point x 2 X at which G is discontinuous.

Maskit de�ned freely discontinuous in his book [46], it is clear that a

group G is freely discontinuous at a point x then it is discontinuous at x: Thus,

the discontinuity here generalizes the free discontinuity.

Clearly, if G is discontinuous at all points of an open subset D of X then

D � O(G): Furthermore, the ordinary set O(G) can not contain any points �xed

by the group G: Thus,

Fix (G) \O(G) = ?:

Lemma 3.1.6 Let G be a discrete group of isometries acting on H3: Then the

limit set is the complement set of the ordinary set O(G) :

L(G) = H3 �O(G):

Proof. Notice that L (G) is set of all accumulation points of the orbit

fg ((0; 0; 1)) : g 2 Gg :
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(1) Let x 2 L(G); and let U be any neighborhood of x: Then there is a

sequence fgjg in G such that

gj ((0; 0; 1)) 2 U; for all j:

In particular, g1 ((0; 0; 1)) 2 U; and hence (0; 0; 1) 2 g�11 (U) : Let hj =

gj � g�11 ; then gj ((0; 0; 1)) 2 gj � g�11 (U) = hj (U) : It follows that

hj(U) \ U 6= ?;

for all j: Thus, the group G is not discontinuous at x; so x 2 H3 � O(G)

and hence L(G) � H3 �O(G):

(2) Let x 2 H3�O(G); then the group G is not discontinuous at x: Apply

for Lemma 2.1.19 and Lemma 4.1 in [25], there exists a point x0 in H3 � O(G)

and a sequence fgjg in G such that

lim
j!1

gj = x (3.1)

uniformly on all compact subsets of H3nfx0g: It�s clear that the point

(0; 0; 1) is not �xed under G: There are two cases to consider.

If x0 6= (0; 0; 1) ; then limj!1 gj ((0; 0; 1)) = x; so x 2 L(G) and hence

H3 �O(G) � L(G):

If x0 = (0; 0; 1) ; then there exists g 2 G such that g ((0; 0; 1)) 6= x0; and

hence limj!1 gj � g ((0; 0; 1)) = limj!1 gj (g ((0; 0; 1))) = x; so x 2 L(G) and

hence H3 �O(G) � L(G):

Therefore, it is proved that L(G) = H3 �O(G): �

Thus, the set of points �xed by the group G is included in the limit set

L(G): Actually, the limit set L(G) is de�ned in the Beardon�s book [2] as the

closure of the set of points �xed by some loxodromic element of G in C; and
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hence

Fix (G) � L(G) � C:

It follows that if G is a discrete subgroup of Isom+(H3) then H3 � O(G) and

hence H3 \ Fix (G) = ?: Moreover, Lemma 3.1.6 gives that the limit set L(G) is

the set of all accumulation points of the orbit of a point of H3 under the group

G:

Next, show that the discreteness is necessary for a discontinuous group in

the following proposition.

Proposition 3.1.7 Let X be a topological space and G be a discontinuous group

acting on X: Then G is a discrete group.

Proof. Suppose that G is a non-discrete group, then there is a sequence

fgjg of elements of G converging to the identity:

lim
j!1

gj = Id:

Thus for every x 2 X; limj!1 gj (x) = x; so for every neighborhood U of x there

are in�nitely many gk 2 fgjg such that

gk(U) \ U 6= ?:

So G is not discontinuous at any point, and hence G is not a discontinuous

group, it is a contradiction. �

The following proposition shows that the discontinuity is preserved under

a conjugation.

Proposition 3.1.8 Let G be topological group acting on the topological space

X: Suppose that � and �0 are conjugate subgroups of G: If � is a discontinuous
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subgroup of G then �0 is a discontinuous subgroup of G:

Proof. Since �0 is conjugate to �; there exists h 2 G such that

�0 = h � � � h�1 =
�
g0 = hgh�1 : g 2 �

	
:

On the other hand, � is a discontinuous group, so there is x 2 X such that

� is discontinuous at x; and hence there is a neighborhood U of x such that

g(U) \ U = ?; for all but �nitely many g 2 �: It follows that h (g(U) \ U) = ?:

Thus, there is a neighborhood h (U) of h (x) such that

g0(h (U)) \ h (U) = hgh�1(h (U)) \ h (U)

= h (g (U)) \ h (U)

= h (g(U) \ U) = ?;

for all but �nitely many g0 2 �0: Therefore �0 is discontinuous at h (x) 2 X; so �0

is a discontinuous group. �

Lemma 3.1.9 Let X be a topological space and G be the group of homeomor-

phisms acting on X. If G is discontinuous at x; then G is discontinuous at g(x)

for all g 2 G:

Proof. Since G is discontinuous at x, there exists a neighborhood U of x

such that h(U)\U = ?, for all but �nitely many h 2 G. Therefore, there exists a

neighborhood g(U) of g(x) such that h(g(U))\g(U) = ?; for all but �nitely many

h 2 G and hence G is discontinuous at g(x): In fact, if h(g(U)) \ g(U) 6= ?; for

in�nitely many h 2 G then there exists t0 2 h(g(U))\g(U) such that t0 2 h(g(U))

and t0 2 g(U). Thus, there exists x1 2 U such that t0 = g(x1) and there exists

x2 2 U such that t0 = h(g(x2)), so g(x1) = h(g(x2)) and then x1 = g�1h(g(x2))

where g�1hg 2 G; thus g�1h (g(U)) \ U 6= ? for in�nitely many h 2 G. Let g0 =
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g�1hg, then g�1h1g = g�1h2g if and only if h1 = h2 and hence g0(U)\U 6= ? for

in�nitely many g0 2 G; it is a contradiction to that G is discontinuous at x: �

Proposition 3.1.10 Let X be a topological space and G be the group of homeo-

morphisms acting on X. Then

(1) the ordinary set O(G) is an open set in X and is G-invariant.

(2) the limit set L(G) is a closed set in X and is G-invariant.

Proof. (1) Assume O(G) 6= ?, otherwise O(G) is already open. Let

x0 2 O(G), then there exists a neighborhood U of x0 such that g(U)\U = ?; for

all but �nitely many g 2 G. Thus, for all x 2 U : g(U)\U = ?; for all but �nitely

many g 2 G, so x 2 O(G) and hence U � O(G). Thus, O(G) is open in X: Now

applying for Lemma 3.1.9, if x 2 O(G) then g(x) 2 O(G); i.e., g(O(G)) � O(G);

for all g 2 G: On the other hand, since g�1 2 G; g�1(O(G)) � O(G) and hence

O(G) = g (g�1(O(G))) � g (O(G)) : Thus, g(O(G)) = O(G); for all g 2 G: So

O(G) is G-invariant.

(2) It is clear that L(G) is closed in X as the complement of an open set is

closed. Since the entire spaceX andO(G) areG-invariant, then L(G) = X�O(G)

is G-invariant. �

Remark that the limit set L(G) of a non-elementary group is a perfect

set (i.e., it is closed and has no isolated points). Thus, if a limit set L(G)

contains three distinct points then it has uncountably many points. It is that

motivates De�nition 2.4.5 of an elementary group. The following theorem gives

two characterizations of discontinuous groups.

Theorem 3.1.11 Let X be a topological space and G be a group of homeomor-

phisms on X; then the following statements are equivalent.

(1) G is a discontinuous group on X:
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(2) There exists a point x in X and a neighborhood U of x such that

f(U) \ g(U) = ?;

for all but �nitely many pairs of distinct f and g 2 G:

(3) There exists a point x in X and a neighborhood U of x such that

g(U) \ U = ?; for g 2 G�Gx

where the stabilizer Gx is �nite.

Proof. (1) =) (2) : Since G is a discontinuous group on X; there is

x 2 X at which G is discontinuous, i.e., there exists a neighborhood U of x such

that g(U) \ U = ?; for all but �nitely many g 2 G: Suppose for in�nitely many

pairs of distinct f and g 2 G : f(U) \ g(U) 6= ?: Taking g�1 2 G;

g�1f(U) \ U = g�1f(U) \ g�1g(U) = g�1 (f(U) \ g(U)) 6= g�1 (?) = ?:

Let h = g�1f 2 G; then h 6= Id as f and g are distinct. It follows that h(U)\U 6=

? for in�nitely many h 2 G; it is a contradiction to the discontinuity of G at x:

(2) =) (1) : Suppose there exists a point x in X and a neighborhood U

of x such that f(U) \ g(U) = ?; for all but �nitely many pairs of distinct f and

g 2 G: In particular, taking g = Id; then f(U) \ U = ? for all but �nitely many

f 2 G: Thus G is discontinuous at x 2 X and hence G is a discontinuous group

on X:

(1) =) (3) : Since G is a discontinuous group on X; there exists a point

x in X; where G is discontinuous. Thus, there exists a neighborhood U of x such

that g(U) \ U = ?; for all but �nitely many g 2 G:

Let g 2 Gx then g(x) = x and hence x 2 g(U) \ U; so g(U) \ U 6= ?:
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Therefore,

Gx � fg 2 G : g(U) \ U 6= ?g = S:

Notice that S is �nite and hence the stabilizer Gx is �nite.

Moreover, S � Gx is �nite, so there is n 2 N such that S � Gx =

fg1; g2; � � � ; gng: Set the following interior set

U 0 = (U � [nk=1 (gk(U) \ U))
�

then U 0 is a neighborhood of x such that g(U 0) \ U 0 = ?; for g 2 G�Gx:

(3) =) (1) : Suppose there exists a point x in X and a neighborhood

U of x such that g(U) \ U = ?; for g 2 G � Gx where Gx is �nite. Thus, G is

discontinuous at x 2 X and hence G is a discontinuous group on X: �

Next turn the attention to the groups which are properly discontinuous in

the Riemann sphere C:

De�nition 3.1.12 Let G be the group of self-homeomorphisms acting on C; and

let D be an open subset of C: The group G is called to be properly discontinuous

in D if for every compact subset K of D satis�es

g(K) \K = ?;

for all but �nitely many g 2 G:

Proposition 3.1.13 Let G be the group of self-homeomorphisms acting on C;

and let D be an open subset of C: If G is properly discontinuous in D then it is

discontinuous at each point in D:

Proof. Suppose that x is an arbitrary point in the open set D; then

there exists an open disk V centered at x such that x 2 V � V � D and hence
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the closed disk V centered at x is a compact subset of D: Since G is properly

discontinuous in D; then

? � g(V ) \ V � g(V ) \ V = ?;

for all but �nitely many g 2 G; i.e., g(V ) \ V = ?; for all but �nitely many

g 2 G. Thus, G is discontinuous at x 2 D: �

Notice that the converse in Proposition 3.1.13 is not true in general, how-

ever, the converse holds for subgroups of M�ob(C) in the next theorem.

Theorem 3.1.14 A subgroup G of M�ob(C) is properly discontinuous in CnL(G)

if and only if G is a discontinuous group in C:

Proof. (1) Suppose that G is properly discontinuous in CnL(G): By

Proposition 3.1.13, G is a discontinuous at each point in CnL(G) � C and hence

G is a discontinuous group in C:

(2) Suppose that G is a discontinuous group in C: By Proposition 3.1.7,

G is discrete. Notice that G is a subgroup of Möbius group M�ob(C), by Lemma

2.1.19, G is a convergence group. Now apply for Theorem 4:8 in [25], since

G is discrete, convergence, discontinuous group, G is properly discontinuous in

CnL(G): �

Proposition 3.1.15 Every Kleinian group is countable.

Proof. Let G be a Kleinian group acting on H3; then there is x 2 H3

such that G is discontinuous at x:

Let G(x) and Gx be the orbit of x and the stabilizer of x; respectively.

Since G is discontinuous at x; by Theorem 3.1.11, Gx is �nite and hence all cosets

are �nite. Thus, G is countable if and only if G�Gx is countable.

It is well known in Abstract Algebra that G�Gx and G(x) have the same

cardinality. Thus, G is countable if and only if G(x) is countable. It needs to
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show G(x) is countable. If G(x) is uncountable subset in H3 � R3; then it

is well known in Topology that G(x) contains a convergent distinct sequence

fgj (x)g to a limit point x0; where gj 2 G and x0 2 G(x): It follows that the set

K = [1j=1 fgj (x)g [ fx0g is compact and gj (K) \K 6= ? for in�nitely many j:

G can not be properly discontinuous in H3: �

Now turn the attention to a �nitely generated free group that is a group

generated with no non-trivial relations on at least one generator, i.e., a group is

free if there exists at least one free generator. The number of free generators is

called rank . For example, if a group has n free generators then it is a free group of

rank n: Thus, a non-trivial �nite group cannot be a free group. Martin [41] has

discussed a very interesting family of polynomial trace identities which can be

used to obtain geometric information about Kleinian groups. Also Marshall and

Martin [45] give a thorough account and complete proofs of the polynomial trace

identities by relating them to a determinant condition in a quaternion algebra.

Recall the following de�nition and theorem from [41] at the end of this section.

De�nition 3.1.16 Let ha; bi be the free group on the two letters a and b. Any

written product of a; b; a�1; and b�1 is called a word in ha; bi; and denote w(a; b)

by a word starting and ending in a: A word w(a; b) is called a good word if it can

be written as

w(a; b) = as1br1as2br2 � � � asm�1brm�1asm (3.2)

where the exponents of a alternate in sign, i.e., s1 2 f�1g and sj = (�1)j+1s1;

and rj 6= 0 but are otherwise unconstrained.

In particular, if one assumes that a2 = Id, then the alternating sign

condition is redundant since ak = a = a�1 or Id for k 2 Z and hence every word

w(a; b) is good. For example, in the free group hf; gi with the triple (
; �;�4);

every word w(g; f) is good, where f; g 2 PSL(2;C): Recall the following well
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known theorem that is a key tool used in the study of the moduli spaces of

discrete groups.

Theorem 3.1.17 Suppose that hf; gi is free group with � = � (f) and 
 =


 (f; g). Let w = w(f; g) be a good word in hf; gi : Then there is a monic poly-

nomial pw of two complex variables having integer coe¢ cients with the following

property:

pw (
; �) = 
 (f; w (g; f)) ; (3.3)

where w (g; f) is the good word in hf; gi by interchanging f and g in w (f; g) :

The monic polynomial 
 (f; w (g; f)) is referred to trace polynomial in this

dissertation.

Lemma 3.1.18 Let hf; gi be a free group with (
; �) = (
 (f; g) ; � (f)) ; and let

w = w(f; g) be a good word. Then

pw (
; �) = 
 (f; w0) = 
 (f; fmw0fn) ; for m;n 2 Z

where w0 = w (g; f) is the good word in hf; gi by interchanging f and g in

w (f; g) :

Proof. Applying for Theorem 3.1.17, pw (
; �) = 
 (f; w0) : It needs to

show 
 (f; w0) = 
 (f; fmw0fn) only.

By De�nition 2.3.1,


 (f; fmw0fn) = tr [f; fmw0fn]� 2

= tr
�
ffmw0fnf�1f�nw0�1f�m

�
� 2

= tr
�
fmfw0f�1w0�1f�m

�
� 2:
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Since fmfw0f�1w0�1f�m is conjugate to fw0f�1w0�1 by fm; then by Remark 2.1.5,

tr (fmfw0f�1w0�1f�m) = tr (fw0f�1w0�1) : Thus, 
 (f; fmw0fn) = 
 (f; w0) ; for

m;n 2 Z: �

3.2 Space of two-generator Kleinian groups

The dissertation pays the attention to two-generator Kleinian groups from

this section. A fundamental result concerning spaces of �nitely generated Kleinian

groups is that they are closed in the topology of algebraic convergence (see Jør-

gensen Theorem 3.2.13). The approach here is to use the fundamental result

extending the closedness of the space of two-generator Kleinian groups to that

the set D of triples of parameters for Kleinian groups is a closed subspace in three

complex dimensional space C3 in the usual topology (see Theorem 3.2.15).

One of the most important subgroups of a Kleinian group hf; gi is hf; gfg�1i

that generated by two elements of the same trace and Theorem 3.2.6 guarantees

that hf; gfg�1i is a Kleinian group if f is not elliptic of order p � 6: There are a

further two Kleinian groups �� = hf; �i and � = hf;  i in Corollary 3.2.9 once

hf; gfg�1i is Kleinian. These three Kleinian groups play a signi�cant role later

on.

A group is said to have a property virtually if it has a subgroup with a

�nite index that has the property. Thus, G is a virtually Kleinian group if G

has a Kleinian subgroup of �nite index. Lemma 3.2.3 and Theorem 3.2.4 state

that discrete groups and Kleinian groups are equivalent to the virtually discrete

groups and the virtually Kleinian groups, respectively. Furthermore, Theorem

3.2.5 shows that every non-trivial subgroup of �nite index in a Kleinian group

remains Kleinian.

Starting with the next lemma in part from [16] include an alternate proof

as some of the ideas that suggests an approach to the related problems in this

dissertation.
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Lemma 3.2.1 Let hf; gi be a two-generator group, and let 
 = 
 (f; g) and

� = � (f) : Then the subgroup hf; gfg�1i of hf; gi has

(1) the triple of parameters

�

(f; gfg�1); � (f) ; �

�
gfg�1

��
= (
 (
 � �) ; �; �) : (3.4)

(2) index two in hf; gi whenever g is elliptic of order 2; and the Z2-extension of

hf; gfg�1i can be expressed as the union of the right cosets of hf; gfg�1i :

hf; gi =


f; gfg�1

�
[ g


f; gfg�1

�
:

Proof. (1) By the de�nition of the parameters � and 
;

tr2(f) = � + 4 and tr [f; g] = 
 + 2:

Let h = gfg�1 then tr(f) = tr(h) and hence � (gfg�1) = � (h) = � (f) = �:

Applying for the identities (2.3) and (2.4),

tr(fh) = tr(f)tr(h)� tr(fh�1)

= tr2(f)� tr [f; g] = � � 
 + 2;


(f; gfg�1) = tr [f; h]� 2 = 2tr2(f) + tr2(fh)� tr2 (f) tr (fh)� 4

= 2 (� + 4) + (� � 
 + 2)2 � (� + 4) (� � 
 + 2)� 4

= 
(
 � �):

(2) Since g is elliptic of order 2; (gfg�1)p = gfpg�1 = gfpg for each p 2 Z:

So every element w in hf; gfg�1i can be expressed as

w = fp1gfp2gfp3g : : : gfpn ;
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where p1; p2; p3; : : : ; pn�1; pn 2 Z. Since the generator gfg�1 = gfg consists of

two time of g; each element w in hf; gfg�1i if and only if w consists of even

number of g: If w consists of odd number of g then gw 2 hf; gfg�1i and hence

w 2 g�1 hf; gfg�1i = g hf; gfg�1i : Thus hf; gi = hf; gfg�1i [ g hf; gfg�1i and

hf; gfg�1i has index two in hf; gi : �

Lemma 3.2.2 Let hf; gi be a two-generator group. If g is not elliptic of order

2; then

Fix(f) \ Fix(gfg�1) = ?:

Proof. Observe that by Corollary 2.1.11 Fix(gfg�1) = g(Fix(f)): There

are two cases to consider.

(a) If Fix(f) has one element, say z; i.e., Fix(f) = fzg, then Fix(gfg�1) =

fg(z)g. Since hf; gi is Kleinian, g(z) 6= z. Thus, Fix(f) \ Fix(gfg�1) = ?.

(b) The second case is that Fix(f) has two elements, say z1 and z2, then

Fix(gfg�1) = fg(z1); g(z2)g: Since hf; gi is Kleinian, f and g cannot share any

�xed points, thus

g(z1) 6= z1; g(z2) 6= z2: (3.5)

By Beardon�s Theorem 5.1.2 in [2], f and gfg�1cannot share exactly one �xed

point. Thus, if Fix(f) \ Fix(gfg�1) 6= ; then Fix(f) = Fix(gfg�1); the only

possibility is that g interchange the �xed points of f , so g(z1) = z2 and g(z2) =

z1 and hence

g2(z1) = g(g(z1) = g(z2) = z1

g2(z2) = g(g(z2) = g(z1) = z2:

This implies that g2 �xes z1and z2 but that are not �xed by g: By using Propo-

sition 2.1.8, g2 and g �x the same points, so g has at least one �xed point z0

di¤erent from z1 and z2. It is concluded that g2 has at least three �xed points
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being z1; z2; and z0: This implies that g2 is the identity and hence g has order

2: It is contradicting to the assumption that g does not have order 2. Therefore

Fix(f) \ Fix(gfg�1) = ? and the proof is completed. �

It is natural and interesting to ask if a group has a property when it

has a subgroup with the property. The following lemma and theorem give the

con�rmative answers to discrete groups and Kleinian groups in the case of a

subgroup with a �nite index.

Lemma 3.2.3 A group G is discrete if and only if it is a virtually discrete group.

Proof. (1) If G is a discrete group then it is a virtually discrete group

because that the discrete group G is the subgroup of G of order 1:

(2) Since G is a virtually discrete group, there is a discrete subgroup H of

G of �nite index. Suppose that G is not discrete, then there is a sequence fgng

of elements of G that converges to the identity Id :

lim
n!1

gn = Id:

As H has a �nite index in G; one may assume

G = �1H [ �2H [ � � � [ �nH;

where �1 = Id; �2; � � � ; �n 2 G for some n: Thus, there exists at least one coset,

say �iH for some 1 � i � n; has a subsequence fgnkg converges to Id: On

the other hand side, �1; �2; � � � ; �n are homeomorphisms, H;�2H; � � � ; �nH are

discrete and hence there does not exist any convergent sequence. It follows a

contradiction. So G is a discrete group. �

Theorem 3.2.4 Let G be a subgroup of Isom+(H3); then G is a Kleinian group

if and only if it is a virtually Kleinian group.
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Proof. The su¢ ciency is trivial because that the Kleinian group G is the

subgroup of G of order 1: First show the necessity. Suppose that G is a virtually

Kleinian group, so there is a subgroup H that is Kleinian with a �nite index and

hence H is discrete. One may assume

G = H [H1 [ � � � [Hn;

where H;H1; � � � ; Hn are the all left cosets of G under H:

It follows from Lemma 3.2.3 that G is discrete. Suppose that G is elemen-

tary, then there exists a �nite orbit of a point x0 2 H3; say G (x0) ; thus

G (x0) = H (x0) [H1 (x0) [ � � � [Hn (x0) :

Therefore, H has a �nite orbit H (x0) : This contradicts that H is Kleinian. Thus,

G is non-elementary and hence G is a Kleinian group. �

Notice that the su¢ ciency of the proof for the previous theorem is obtained

by the trivial subgroup G. Do non-trivial subgroups of �nite index in Kleinian

groups remain Kleinian? It is con�rmed in the following lemma.

Lemma 3.2.5 Suppose that G is a Kleinian group. If H is a two-generator

non-trivial subgroups of �nite index in G; then H is a Kleinian group.

Proof. Since G is a Kleinian group, according to Theorem 3.2.14, the

two-generator subgroup H is discrete.

Claim that subgroup H of non-elementary group G is non-elementary as

well and hence H is a Kleinian group.

Suppose that H is an elementary subgroup of G; then there exists a �nite

orbit H (x0) of a point x0 2 H3: Since H has a �nite index in G; one may assume

G = H [ g1H [ g2H [ � � � [ gnH;
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where g1; g2; � � � ; gn 2 G for some n 2 N: Thus,

G (x0) = H (x0) [ g1H (x0) [ g2H (x0) [ � � � [ gnH (x0) :

Let H (x0) = fx1; x2; � � � ; xkg some k 2 N; then

gjH (x0) = fgj (x1) ; gj (x2) ; � � � ; gj (xk)g

is �nite for j = 1; 2; � � � ; n: It follows that G (x0) has a �nite orbit of a point

x0 2 H3 and hence G is an elementary group, it contradicts to G is a Kleinian

group. �

Theorem 3.2.6 Suppose that hf; gi is a Kleinian group. If f is loxodromic or

parabolic or elliptic of order p � 6, then hf; gfg�1i is a Kleinian group.

Proof. (a) Suppose that g is elliptic of order 2: By Lemma 3.2.1 hf; gfg�1i

has index 2 in hf; gi : Thus applying for Lemma 3.2.5, Kleinian group hf; gi im-

plies that hf; gfg�1i is a Kleinian group.

(b) Suppose that the order of g is not 2. The Kleinian group hf; gi gives

the following two facts. First, it is non-elementary and hence it is not abelian

by Proposition 2.4.8. Second, applying for Theorem 3.2.14 hf; gfg�1i is discrete.

It needs to show that hf; gfg�1i is non-elementary. Otherwise, if hf; gfg�1i is

elementary, then there are three types by Theorem 2.4.6:

(i) Suppose hf; gfg�1i is an elementary group of type I, each non-trivial

element of G is elliptic. Since the order of f is not 2; 3; 4 or 5, the order of gfg�1 is

not 2; 3; 4 or 5; and hence, by using the Tables 1, 2 and 3, hf; gfg�1i is not a �nite

spherical triangle group A4; S4; and A5 or the dihedral groups D3; D4; and D5.

Suppose hf; gfg�1i is a �nite cyclic group. By Lemma 2.4.11, 
 (f; gfg�1) = 0;

and then Theorem 2.3.12 gives Fix(f) \ Fix(gfg�1) 6= ;; but this contradicts to

Lemma 3.2.2.
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(ii) Suppose hf; gfg�1i is an elementary group of type II. By Corollary

2.4.7, hf; gfg�1i is conjugate to a subgroup of M�ob(C) �xing 1 whose every

element is parabolic of the form az + b (a 6= 0 2 C) : Thus, the group hf; gfg�1i

is abelian and hence g (Fix(f)) = Fix(gfg�1) = Fix(f); it is a contradiction to

Kleinian group hf; gi.

(iii) Suppose hf; gfg�1i is an elementary group of type III. Then both f

and gfg�1 are elliptic or both are loxodromic. In either case hf; gfg�1i is abelian

and as above this is a contradiction. It is now shown that hf; gfg�1i cannot be

elementary if g does not have order 2. Hence in all cases hf; gfg�1i is a Kleinian

group. �

In a Kleinian group hf; gi ; if f is non-parabolic, then so is h = gfg�1 and

hence the axes axis(f) and axis(h) exist. Thus, there are two elliptic elements

� and  of order 2 such that 'f��1 = h and  f �1 = h�1: Actually, � and  

have their axes axis(�) and axis( ) as the �xed point sets at right-angles to one

and other and also their axes bisect the common perpendicular between the axes

axis(f) and axis(gfg�1) (see [15]). This is a useful tool that plays an important

role in this chapter. For convenience, the tool is summarized in the following

lemma.

Lemma 3.2.7 Let hf; gi be a Kleinian group and let f be a non-parabolic ele-

ment. Then there are two elliptic conjugators � and  of order 2 such that � acts

on f via conjugating f by g and  acts on f via inverting f and then conjugating

by g :

�f��1 = gfg�1 and  f �1 = gf�1g�1;

where � and  have their axes axis(�) and axis( ) as the �xed point sets at

right-angles to one and other and also their axes bisect the common perpendicular

between the axes axis(f) and axis(gfg�1) :
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Lemma 3.2.8 Let hf; gi be a Kleinian group with the triple of parameters (
; �; �0);

where f is non-parabolic. Then there are two elliptic � and  of order 2 such that

�� = hf; �i and � = hf;  i are discrete groups containing hf; gfg�1i with index

2 and their triples of parameters are (
; �;�4) and (� � 
; �;�4), respectively.

Proof. Let hf; gi be a Kleinian group with parameters (
; �; �0):

Since f is either elliptic or loxodromic, so there exists axis(f) in H3: Let

h = gfg�1 then h�1 = gf�1g�1 and h has the same trace as f and hence axis(h)

exists in H3: By Lemma 3.2.7, there are two elliptic � and  of order 2 such that

�f��1 = h and  f �1 = h�1:

First, claiming that two groups �� = hf; �i and � = hf;  i are discrete.

Let � = hf; hi ; then

� = hf; hi =


f; �f��1

�
;

� = hf; hi =


f; h�1

�
=


f;  f �1

�
:

It follows that � is a subgroup of each �' and � : By Lemma 3.2.1, � is of index

two in �� and

�� = � [ ��: (3.6)

Since hf; gi is a Kleinian group, by Theorem 3.2.14, the subgroup � of hf; gi is

discrete and hence �� is discrete as � is is an homeomorphism. It follows from

(3.6) that �� is discrete. Similarly, � is discrete.

Second, claiming that the parameters for �� and � are one (
; �;�4) and

the other one (� � 
; �;�4):

The parameters for �� are (
1; �;�4) and those of � are (
2; �;�4). Now
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using the identity (3.4) and Proposition 2.3.9 imply that


(
 � �) = 
(f; h) = 
(f; �f��1) = 
1(
1 � �);


(
 � �) = 
(f; h) = 
(f; h�1) = 
(f;  f �1) = 
2(
2 � �):

It gives the following two quadratic equations


21 � �
1 � 
(
 � �) = 0


22 � �
2 � 
(
 � �) = 0:

Solving the �rst quadratic equation: 
1 =
��
p
�2+4
(
��)
2

= ��(��2
)
2

= 
; or

� � 
:

Similarly, by the second quadratic equation: 
2 = 
; or � � 
: That is,

f
1; 
2g = f
; � � 
g as (2.19) shows both possibilities occur.

Thus, after relabeling, the parameters for �� are (
; �;�4) and those of

� are (� � 
; �;�4):

By Lemma 3.2.7, �f��1 = gfg�1 and  f �1 = gf�1g�1; so



f; gfg�1

�
=


f; �f��1

�
=


f;  f �1

�
:

Since � and  are elliptic of order 2; by Lemma 3.2.1, hf; gfg�1i is subgroup of

each �� and � with index 2: This completes the proof. �

Remark that �� 
 6= 0 in Lemma 3.2.8. Otherwise, it is a dihedral group

by Lemma 2.4.12. It contradicts to Kleinian group hf; gi.

Now the natural question is to determine whether the two discrete groups

�� and � produced by Lemma 3.2.8 are actually Kleinian. Since they contain

hf; gfg�1i that is of index 2; it only needs to decide if hf; gfg�1i is Kleinian. By

Theorem 3.2.4, if hf; gfg�1i is a Kleinian group then the following corollary is

obtained immediately that �� and � are Kleinian groups.
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Corollary 3.2.9 Suppose that hf; gi is a Kleinian group. If that f is loxodromic

or parabolic or elliptic of order p � 6, then the groups �� = hf; �i and � = hf;  i

produced in Lemma 3.2.8 are Kleinian groups.

Lemma 3.2.10 Let hf; gi be a Kleinian group with f not of order 2. Suppose

that the triple of parameters (
 (f; g) ; � (f) ;�4) is not one of those exceptional

groups listed in Table 1: Then the subgroup hf; gfg�1i is Kleinian.

Proof. Applying for Theorem 3.2.14 the subgroup hf; gfg�1i of Kleinian

group hf; gi is discrete. It needs to show that hf; gfg�1i can not be elementary.

Let 
 = 
 (f; g) and � = � (f) : By Lemma 3.2.8 there is an elliptic � of order

2 such that �� = hf; �i is discrete group containing hf; gfg�1i with index 2

and the triple of parameters for �� is (
; �;�4). By the hypothesis, (
; �;�4)

is not one of those exceptional groups listed in Table 1; then �� is not a �nite

spherical triangle group A4; S4; and A5: Thus, hf; gfg�1i can only be elementary

if hf; gfg�1i = 
 (
 � �) = 0; i.e., 
 = 0 or 
 = �: Since hf; gi is Kleinian, 
 6= 0:

So it can only be 
 = � and hence it is the dihedral group. In this case, since f

is not of order two,

gfg�1 = f�1:

In the case gfg�1 = f; it gives g (Fix(f)) = Fix(gfg�1) = Fix(f) and hence g is

elliptic of order 2 (Lemma 3.2.2) �xing or interchanging the �xed points of f in

C. In the case gfg�1 = f�1; g might be a power of f . In either case hf; gi is not

Kleinian, contradiction. �

It has been showed in Example 3.1.3 that each Kleinian group given by

the hyperbolic triangle group �(2; 3; p) =


f; g : fp = g2 = (fg)3 = Id; p � 7

�
has the triple of parameters (1 + �; �;�4) ; where � = � (f) : Thus, Lemma 3.2.1

gives the triple of parameters (1 + �; �; �) for the subgroup hf; gfg�1i :
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Theorem 3.2.11 Let � = hf; gi be a Kleinian group with the parameters (1 +

�; �; �). Then there are two elliptics elements of orders 3 and 2 generating �:

Proof. Let u = fg�1and v = fg�2; then f = uv�1u and g = v�1u: Thus,

� = hf; gi = hu; vi :

Now show that u and v are elliptics elements of orders 3 and 2; respectively.

By hypothesis the parameters (
 (f; g) ; � (f) ; � (g)) = (1 + �; �; �); the

following equations are obtained,


 (f; g) = 1 + � (f) and � (f) = � (g) ;

i.e., tr[f; g]� 2 = 1 + tr2(f) � 4 and tr2(f) � 4 = tr2(g)� 4: Thus,

tr[f; g] = tr2(f)� 1; (3.7)

and tr2(f) = tr2(g): One may assume that tr(f) = tr(g) by replacing f

by �f if necessary. Thus, the identity (2.3) becomes

tr(fg) + tr(fg�1) = tr2(f): (3.8)

Applying for the Friche�s identity (3.7),

tr2(f)� 1 = tr[f; g]

= tr2(f) + tr2(g) + tr2(fg)� tr(f)tr(g)tr(fg)� 2

= 2tr2(f) + tr2(fg)� tr2(f)tr(fg)� 2:
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Rearranging and using the identity (3.8),

1 = tr2(f) + tr2(fg)� tr2(f)tr(fg)

= tr2(f) + tr2(fg)�
�
tr(fg) + tr(fg�1)

�
tr(fg)

= tr2(f)� tr(fg�1)tr(fg);

which gives

tr(fg)tr(fg�1) = tr2(f)� 1: (3.9)

Using the above identities (3.9) and (3.8),

�
tr(fg)� tr(fg�1)

�2
=
�
tr(fg) + tr(fg�1)

�2 � 4tr(fg�1)tr(fg)
= tr4(f)� 4tr2(f) + 4

=
�
tr2(f)� 2

�2
:

By replacing g by �g if necessary, one may assume that

tr(fg)� tr(fg�1) = tr2(f)� 2: (3.10)

Using the equations (3.8) and (3.10),

tr(fg�1) = 1 (3.11)

and hence � (fg�1) = �3; so u = fg�1 is elliptic of order 3:
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Finally, using the identities (2.3), (2.2), and (3.11):

tr(fg�2) = tr(fg�1g�1)

= tr(fg�1)tr(g�1)� tr(fg�1g)

= tr(fg�1)tr(g)� tr(f)

= tr(fg�1)tr(g)� tr(g)

= tr(g)
�
tr(fg�1)� 1

�
= 0;

which gives tr(fg�2) = 0 and hence � (fg�2) = �4; therefore, v = fg�2 is elliptic

of order 2:

By Proposition 2.3.9 (d), 
 (u; v) = 
 (u; v�1)



�
u; v�1

�
= tr

�
uv�1u�1v

�
� 2

= tr
�
fg�1g2fgf�1fg�2

�
� 2

= tr
�
fgf�1g�1

�
� 2

= 
 (f; g) :

Hence, 
 (u; v�1) = 1 + �: �

Now turn the attention to �algebraic convergence�for n-generator groups.

However two-generator groups are mainly concerned in this dissertation.

De�nition 3.2.12 One say a sequence �j of subgroups of M�ob(C) converges

algebraically to a subgroup � of M�ob(C) provided that each �j may be expressed

as hfj;1; fj;2; � � � ; fj;ni, that � may be expressed as hf1; f2; � � � ; fni; and that for

each k = 1; 2; � � � ; n the sequence fj;k converges uniformly to fk in the spherical

metric of C:

A fundamental result concerning spaces of �nitely generated Kleinian

groups is that they are closed in the topology of algebraic convergence due to
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Jørgensen. Recall the result as the following Jørgensen Theorem. Here note the

fact that if instead of a sequence f�jg1j=1 of Kleinian groups it is a continuous

family f�tgt2[0;1], then all the groups are in fact isomorphic and this isomorphism

is induced by the map back.

Theorem 3.2.13 (Jørgensen) The space of n-generator Kleinian groups is closed

in the topology of algebraic convergence. Equivalently, if a sequence of n-generator

Kleinian subgroups �j = hfj;1; fj;2; � � � ; fj;ni converges algebraically to a n-generator

subgroup � = hf1; f2; � � � ; fni in M�ob(C) then � is a Kleinian group.

Moreover, the map back is an eventual homomorphism. That is for all

su¢ ciently large j the map �! �j de�ned by fk 7�! fj;k extends to a homomor-

phism of the groups.

Typically the proof of the above Jørgensen Theorem is one of the �rst

applications of Jørgensen�s inequality (see Section 3:4). Another important ap-

plication of Jørgensen inequality is the characterization of a Kleinian group by

two-generator subgroups that is recalled from Martin [41] in the following theo-

rem.

Theorem 3.2.14 A subgroup G of Isom+(H3) is Kleinian if and only if every

two-generator subgroup of G is discrete.

It is going to extend the closedness to the set of triples of complex para-

meters of Kleinian two-generator in the following important theorem. One can

describe the space of Kleinian groups generated by two generators f and g 2 G

(up to conjugacy) as a subset of the three complex dimensional space C3 via the

map

hf; gi 7�! (
 (f; g) ; � (f) ; �(g)) :
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Theorem 3.2.15 Let subset D be de�ned by

D =
�
(
; �; �0) 2 C3 : (
; �; �0) are the parameters of a Kleinian group hf; gi

	
;

then D is closed in the three complex dimensional space C3 in the usual topol-

ogy. Equivalently, let (
j; �j; �
0
j) be a sequence of parameters for two-generator

Kleinian groups hfj; gji: If (
j; �j; �0j) ! (
; �; �0); then (
; �; �0) is a triple of

parameters for a two-generator Kleinian group.

Proof. The proof is broken down into two cases. For each case, it needs to

construct a sequence of two-generator Kleinian groups hfj; gji with the parameters

(
j; �j; �
0
j) and then, by Theorem 3.2.13, the algebraic convergence limit group

hf; gi is a Kleinian group. It will be shown that the limit triple (
; �; �0) is the

parameters for the limit group hf; gi

(a) Suppose (�; �0) 6= (0; 0) : One may assume � 6= 0; then �j 6= 0; for all

but �nitely many j: For the sequence of parameters (
j; �j; �
0
j); by Theorem 2.3.2,

there is a sequence of Kleinian groups hfj; gji up to conjugacy for all but �nitely

many fj are non-parabolic elements. Passing to a subsequence if necessary, recall

hfj; gji; for all fj are non-parabolic elements, and �j 6= 0 for all j: Thus, applying

for Theorem 2.1.17, one may assume the following with �j 6= 0;�1 :

fj =

0B@ �j 0

0 1
�j

1CA and gj =

0B@ aj bj

cj dj

1CA 2 PSL(2;C);

such that (
j; �j; �
0
j) is a triple of parameters for hfj; gji: Further, bj 6= 0 and

cj 6= 0 for all j, otherwise fj and gj share a common �xed point and hfj; gji is

elementary, if it is discrete.
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First, by De�nition 2.3.1,

�j = (�j +
1

�j
)2 � 4 = (�j �

1

�j
)2;

which gives �2
j
�
p
�j�j � 1 = 0: Solving the quadratic equation gives

�
j
=

p
�j �

p
�j + 4

2
:

Since �j converges to �; certainly �j converges to � =
p
��
p
�+4

2
and hence 1

�j

converges to 1
�
: Thus,

fj ! f =

0B@ � 0

0 1
�

1CA and �j ! � = (�� 1
�
)2: (3.12)

Second, consider the conjugacy of group hfj; gji by a diagonal matrix conjugator

hj =

0B@ �j 0

0 1
�j

1CA :

Since hj commutes with fj and with f; fj and f are conjugate to themselves.

The conjugacy of gj is also given,

hjgjh
�1
j =

0B@ �j 0

0 1
�j

1CA
0B@ aj bj

cj dj

1CA
0B@ 1

�j
0

0 �j

1CA =

0B@ aj bj�
2
j

cj�
�2
j dj

1CA :

Now choose �j =
1p
bj
; then bj�2j = 1 and cj�

�2 = cjbj: One assume recall that

gj =

0B@ aj 1

cj dj

1CA :
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Then, by De�nition 2.3.1,

�0j + 4 = (aj + dj)
2: (3.13)

Computing the commutator,

[f
j
; gj] = fjgjf

�1
j g�1j =

0B@ ajdj � cj�2j �aj + aj�
2
j

cjdj
�2j
� cjdj � cj

�2j
+ ajdj

1CA ;

and hence the parameter is


j = tr [fj; gj]� 2

= ajdj � cj�2j �
cj

�2j
+ ajdj � 2

= �cj

 
�2j +

1

�2j

!
+ 2 (1 + cj)� 2

= �(�j �
1

�j
)2cj

= ��jcj:

Finally, since cj =

j
��j

; 
j = ��jcj ! 
; and �j ! � 6= 0;

cj ! c; for some c 2 C:

Notice that det (gj) = ajdj � cj = 1; gives the product ajdj is convergent

and hence bounded

ajdj = 1 + cj ! 1 + c:

Since the sequence �0j is convergent, �
0
j is bounded. The identity (3.13)

gives the sum aj + dj =
q
�0j + 4 is bounded. Let the product ajdj = sj and the

sum aj + dj = tj; then aj =
sj�
p
s2j�4tj
2

and dj = sj �
sj�
p
s2j�4tj
2

; so aj and dj are

in terms of sum aj + dj and product ajdj by the continuous operations aj and dj

are bounded. So aj and dj admit convergent subsequences, say the limits are a
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and d; respectively. It follows that gj is convergent to g =

0B@ a 1

c d

1CA ; passing to

a corresponding subsequence if necessary.

The calculation of parameter 
 :


 = tr [f; g]� 2

= ad� c�2 � c

�2
+ ad� 2

= �c
�
�2 +

1

�2

�
+ 2 (1 + c)� 2

= �(�� 1
�
)2c

= ��c:

In summary of the part (a), by the identities (3.12), (3.13).

�j ! � = (�� 1
�
)2

�0j = (aj + dj)
2 � 4! (a+ d)2 � 4 = �0:


j = ��jcj ! ��c = 
:

Therefore, the triple of parameters of hf; gi is (
; �; �0); and hence hf; gi is

Kleinian by Theorem 3.2.13.

(b) Suppose that (�; �0) = (0; 0) : For each fj and gj has at least one �xed

point, to avoid common �xed points, say fj �xes z1 and gj �xes z2 with z1 6= z2:

Let z3 2 C � fz1; z2g : Since M�ob
�
C
�
acts transitively on triples of points in

C, there exists h 2 M�ob
�
C
�
taking (z1; z2; z3) to (1; 0; 1) : Thus, hfjh�1 �xes

h (z1) = 1 and hgjh�1 �xes h (z2) = 0: Recall hfjh�1 and hgjh�1 as fj and gj;

respectively. So one may assume by conjugacy that for each j a �xed point of

each fj is 1 and that a �xed point of each gj is 0.
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Then, by Corollary 2.1.16, choose fj and gj as following,

fj =

0B@ �j aj

0 1
�j

1CA and gj =

0B@ �j 0

bj
1
�j

1CA ;

where �j ! 1; �j ! 1; and bj ! b; with aj 6= 0 and bj 6= 0, otherwise fj and gj
would share a �xed point and would thus generate an elementary group.

Notice that fj (z) = �2jz+�jaj; one may normalize that fj(0) = �jaj = 1;

so aj = 1
�j
! 1: It follows that

fj ! f =

0B@ 1 1

0 1

1CA and gj ! g =

0B@ 1 0

b 1

1CA
and hence

� (f) = � (g) = 0;

� (fj) =

�
�j +

1

�j

�2
� 4 =

�
�j �

1

�j

�2
! 0 = � (f) ; as �j ! 1

� (gj) =

�
�j +

1

�j

�2
� 4 =

�
�j �

1

�j

�2
! 0 = � (g) ; as �j ! 1:
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Then the parameters of commutators can be computed by using Proposition 2.3.9,


 = 
 (f; g) = � (f) + �(g) + �(fg)� tr(f)tr(g)tr(fg) + 8

= b2 + 4b� 4b� 8 + 8 = b2:


i = �(fi) + �(gi) + �(figi)� tr(fi)tr(gi)tr(figi) + 8

=

�
�2i + 1

�2
�2i

+
(�2i + 1)

2

�2i
+
(�i�i (�i�i + aibi) + 1)

2

�2i�
2
i

�
�
�2i + 1

�
(�2i + 1) (�i�i (�i�i + aibi) + 1)

�2i�
2
i

� 4

=
aibi
�i�i

�
�2i�

2
i � �2i + aibi�i�i � �2i + 1

�
= aibi

�
(�2i � 1)(�2i � 1)

�i�i
+ aibi

�
! b2 = 
; as �i ! 1; �i ! 1; and bi ! b:

So it can be deduced that 
i ! 
 and the result follows exactly as before. By

Theorem 3.2.13 the triple of parameters of hf; gi is (
; �; �0); and hence hf; gi is

Kleinian. �

3.3 Projections of Kleinian groups

Every two-generator Kleinian group can be represented by a triple of

complex parameters (
 (f; g) ; � (f) ; �(g)) : Those who familiar with Jørgensen�s

inequality for Kleinian groups hf; gi know that it involves only two parameters


 (f; g) and � (f) of the triple of complex parameters. It can not immediately

follow from Theorem 3.2.15 that the subspace D2 of pairs (
 (f; g) ; � (f)) of

the �rst two complex parameters of a Kleinian group is closed in two complex

dimensional space C2:

The current approach is to consider two projections: one is from the

subspace D in three complex dimensional space C3 to the subspace D2 in two

complex dimensional C2 and the other is from D to the subspace on the slice

z3 = �4 in C3 (see Proposition 3.3.1 and Theorem 3.3.2). Then show that the
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set D2 is a closed subspace of C2 in the usual topology in Theorem 3.3.4 by two

di¤erent proofs. That D2 is a closed subspace in C2 is an essential result for the

approach to establish the inequalities in the scheme.

Consider the projection from the subspaceD in three complex dimensional

space C3 = f(z1; z2; z3) : z1; z2; z3 2 Cg to the subspace D� on the slice z3 = �4

of the space C3 :

D� = f(
; �;�4) : all these triples for two-generator Kleinian groupsg :

The following proposition shows directly that D� is closed in C3 in the usual

topology.

Proposition 3.3.1 Let f�jg be a sequence of two-generator Kleinian groups

such that the corresponding sequence of parameters f(
j; �j;�4)g converges to

(
; �;�4). Then, up to conjugation and subsequence, f�jg converge algebraically

to a group � with parameters (
; �;�4):

Proof. The approach is to show that one can �nd a sequence of pairs of

two-generators f(fj; gj)g and a pair of two-generators (f; g) such that fj ! f;

gj ! g; � = hf; gi ; and �j =


fj; gj

�
with the triple of parameters (
j; �j;�4)

for each j: The fact that the limit (
; �;�4) is the triple of parameters of hf; gi

follows immediately by construction.

First, it needs to show that the generators for the groups �j =


f
j
; gj
�

converge to � = hf; gi : It is proceed by considering two cases: up to subsequence,

f
j
is parabolic for all j or not.

(a) Suppose f
j
is parabolic for all j: By Theorem 2.1.17, conjugate each

�j so that the �rst generator is now represented by the matrix

f
j
=

0B@ 1 1

0 1

1CA :
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Then f
j
is constant and thus converges to f , say.

f
j
! f =

0B@ 1 1

0 1

1CA and �j ! � = 0 = � (f) :

Recall the resulting group �
j
=


f
j
; g

j

�
also, it remains to show that the sequence

fg
j
g also converges. Suppose the matrix for second generator is

g
j
=

0B@ aj b
j

cj d
j

1CA :

Since �0
j
= �

�
g
j

�
= tr2

�
g
j

�
� 4 = �4; tr

�
g
j

�
= 0 and hence a

j
+ d

j
= 0; i.e.,

d
j
= �a

j
:

Also, since the group �j is Kleinian, cj 6= 0; otherwise fj and gj would share a

�xed point and would thus generate an elementary group.

Finally, as a
j
dj � bjcj = 1; ajdj � 1 = bjcj: Then

b
j
=
a
j
dj � 1
c
j

= �
a2
j
+ 1

cj
:

In total,

g
j
=

0B@ a
j
�
a2
j
+1

cj

c
j
�a

j

1CA :

Consider the conjugacy of the group


f
j
; g

j

�
by the following form of upper tri-

angular matrix conjugator

hj =

0B@ 1 s
j

0 1

1CA :

Since f
j
commutes with hj; fj is left unchanged under conjugation. It is expected
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that the conjugacy of g
j
becomes

h
j
g
j
h�1
j
=

0B@ � 1

c
j
��

1CA :

Set s
j
=

�aj+i
p
1+cj

cj
; then

h
j
=

0B@ 1
�aj+i

p
1+cj

cj

0 1

1CA ;

h
j
g
j
h�1
j
=

0B@ 1
�aj+i

p
1+cj

cj

0 1

1CA
0B@ a

j
�
a2
j
+1

cj

cj �a
j

1CA
0B@ 1

aj�i
p
cj+1

cj

0 1

1CA
=

0B@ i
p
1 + c

j
1

ci �i
p
1 + c

j

1CA :

Without loss of generality, recall the resulting group as �j =


f
j
; g

j

�
:

Thus, the commutator is

[f
j
; g

j
] = f

j
gjf

�1
j
g�1j =

0B@ c
j
i
p
1 + c

j
+ c2

j
+ 1 2� ic

j

p
1 + c

j
+ c

j

c2
j

�c
j
i
p
1 + c

j
+ 1

1CA :

Hence the parameter 
j is


j = tr([fj ; gj ])� 2

= cji
p
1 + cj + c2

j
+ 2� cji

p
1 + cj � 2

= c2
j
:

Since 
j converges to 
, c
2
j
is convergent. So

n
c2
j

o
is bounded and hence fcjg

is bounded. It follows that cj converges to a complex number, up to a subse-

quence, say c, and hence 
j ! c2: Thus passing to a corresponding subsequence
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if necessary, gj converges to an element g in PSL(2;C) :

g =

0B@ i
p
1 + c 1

c �i
p
1 + c

1CA ;

and hence �0 = � (g) = tr2 (g)� 4 = �4: Calculating


 (f; g) = tr([f; g])� 2

= ci
p
1 + c+ c2 + 2� ci

p
1 + c� 2

= c2 = 
:

In summary of the part (a),

�j ! � = 0

�0j ! �0 = �4


j ! 
 = c2:

Therefore, the triple of parameters of hf; gi is (
; �;�4):

(b) Suppose that now fj is not parabolic for all j. By Theorem 2.1.17 one

may assume that f
j
is represented by the matrix up to conjugation each �j;

f
j
=

0B@ �
j
0

0 1
�j

1CA ;

where �j 6= 0;�1: Thus the parameter �j = (�j � 1
�j
)2; which gives �2

j
�
p
�j�j �

1 = 0 and hence �
j
=

p
�j�
p
�j+4

2
: Since �j ! �; �i converges to � =

p
��
p
�+4

2
:

Noting that � 6= 0;�1 for either choice of �, it is concluded that fj converges to
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an element f represented by a matrix

f
j
! f =

0B@ � 0

0 1
�

1CA and �j ! � = (�� 1
�
)2:

It remains to show that the order 2 elements gj also converge. As in the previous

case the matrix for g
j
can be written as

g
j
=

0B@ a
j
�1+aj

2

cj

c
j
�a

j

1CA :

Consider the conjugacy of the group hf
j
; gji by the following form of a diagonal

matrix conjugator.

�j =

0B@ �
j
0

0 1
�
j

1CA :

Since f
j
commutes with �

j
; f

j
is left unchanged under the conjugation. Set

�
j
= i
q

cj
1+a2

j

; then �
j
becomes

�
j
=

0BB@ i
q

cj
1+a2

j

0

0 �i
r

1+a2
j

cj

1CCA ;

and recall gj the conjugacy �jgj�
�1
j
:

g
j
=

0B@ a
j

1

�(1 + a2
j
) �a

j

1CA :

Recall the resulting group �
j
= hf

j
; gji: Thus, the commutator is

[f
j
; gj] = f

j
gjf

�1
j
g�1j =

0B@ �a2
j
+ �2j(1 + a

2
j
) �aj + �2

j
aj

aj

�
1+a2

j

�
�2
j

� aj(1 + a2j )
1+aj

2

�2
j

� a2
j

1CA :
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Hence the parameter 
j for the group hfj; gji is


j = tr([fj ; gj])� 2

= a2
j

 
�2
j
+
1

�2
j

� 2
!
+ �2

j
+
1

�2
j

� 2

= a2
j

�
�
j
� 1

�
j

�2
+

�
�
j
� 1

�
j

�2

=
a2
j

�
�2
j
� 1
�2
+
�
�2
j
� 1
�2

�2
j

:

Thus, 
j =
a2
j

�
�2
j
�1
�2
+

�
�2
j
�1
�2

�2
j

: Solving for aj yields

a2
j
=

j�

2
j
�
�
�2
j
� 1
�2

�
�2
j
� 1
�2 ;

As �
j
! � and 
j ! 
;

a2
j
!


�2 �
�
�2 � 1

�2�
�2 � 1

�2 :

Let a2 =

�2�(�2�1)

2

(�2�1)
2 ; then a2

j
! a2: So

n
a2
j

o
is bounded and hence aj is bounded.

It follows up to a subsequence, that aj converges to a and thus gj converges to

the element g of PSL(2;C) represented by the matrix

0B@ a 1

�(1 + a2) �a

1CA :

Since 
j ! 
 and 
j =
a2
j

�
�2
j
�1
�2
+
�
�2
j
�1
�2

�2
j

! a2(�2�1)
2
+(�2�1)

2

�2
; 
 =

a2(�2�1)
2
+(�2�1)

2

�2
:
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Calculating


 (f; g) = tr([f; g])� 2

= a2
�
�2 +

1

�2
� 2
�
+ �2 +

1

�2
� 2

= a2
�
�� 1

�

�2
+

�
�� 1

�

�2
=
a2
�
�2 � 1

�2
+
�
�2 � 1

�2
�2

= 
:

In summary of the part (b),

�j ! � = (�� 1
�
)2 = � (f)

�0j ! �0 = �4 = � (g) :


j ! 
 =
a2
�
�2 � 1

�2
+
�
�2 � 1

�2
�2

= 
 (f; g) :

Therefore, the triple of parameters of hf; gi is (
; �;�4) in the part (b):

Now it is shown in both cases (a) and (b) that fj ! f; gj ! g; and the

triple of parameters for the group hf; gi is (
; �;�4): �

In the proof of above Proposition 3.3.1 is not based on Jørgensen�s The-

orem 3.2.13. However, if one applies for Jørgensen�s Theorem 3.2.13, it can be

obtained directly from Theorem 3.2.15 and the limit group � is a Kleinian group.

Furthermore, it is clear that if there is no control on one of the generators, then

one cannot apply directly for Jørgensen�s Theorem 3.2.13. It is the case in the

following theorem.

Theorem 3.3.2 Suppose that �j = hfj; gji is a sequence of two-generator Kleinian

groups with the parameters
�

j; �j

�
and

�

j; �j

�
! (
; �) ; where � 6= �4. Then

either 
j = 
 and �j = � for some j, or there is a sequence of Kleinian groups

��j = hfj; hji with the parameters
�

j; �j;�4

�
and a Kleinian group � = hf; hi



102

with the parameters (
; �;�4) such that ��j converges algebraically to �:

Proof. Notice that 
j 6= 0 for all j as �j is Kleinian. Since �j ! � 6= �4;

�j 6= �4 for all but �nitely many j: One may assume, passing to a subsequence

if necessary, �j 6= �4 for all j; that is fj is not of order two for all j: For each j;

by Lemma 3.2.7, there is an elliptic conjugator hj of order 2 such that

hjfjhj = gjfjg
�1
j ;

where hj is essentially a rotation of order two (i.e., �(hj) = �4) through

the bisector of the common perpendicular between the axes of fj and gjfjg�1j . It

follows that

hjf
�1
j h�1j = gjf

�1
j g�1j :

In fact, hjfjh�1j = gjfjg
�1
j and then hjf�1j h�1j =

�
hjfjh

�1
j

��1
=
�
gjfjg

�1
j

��1
=

gjf
�1
j g�1j : Thus,


(fj; hj) = 
j

as [fj; hj] = fj
�
hjf

�1
j h�1j

�
= fj

�
gjf

�1
j g�1j

�
= [fj; gj] : Now there is a sequence of

groups ��j = hfj; hji with the triple of parameters
�

j; �j;�4

�
: The rest of the

proof is broken down into two parts.

(a) If e�j is not Kleinian. One may assume for in�nitely many j; otherwise,
if ~�j is not Kleinian for �nitely many j; it can go to the part (b) (passing to a

subsequence): e�j is Kleinian for all j; pass to a subsequence if necessary. By
Theorem 3.2.6, fj is elliptic and has order p � 6: It is already excluded the

possibility p = 2 at the beginning. In this case, �j 2
n
�3;�2;�1;

p
5�5
2
;�

p
5+5
2

o
for in�nitely many j: One may pass to a subsequence and, after a conjugacy,

assume the sequences �j = � and fj = f of order p 2 f3; 4; 5; 6g.

On the other hand side, if ~�j is not Kleinian, then it is one of the �-

nitely many �nite spherical triangle groups, because that 
j 6= 0 implies the

Euclidean triangle groups are eliminated by Remark 2.4.13. This means that
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(fj; gjfjg
�1
j ) = 
j(
j � �) can only take �nitely many values, it follows that 
j

can take �nitely many values, so one may assume the sequence 
j = 
 (passing

to a subsequence if necessary). It is shown that �j = � and 
j = 
 for in�nitely

many j. This case gives the required result.

(b) Now a case has to deal with is that ~�j is Kleinian for each j:

By Theorems 3.2.14, 2.3.12, and 2.4.14, ~�j is discrete, 
(fj; gjfjg�1j ) 6= 0;

and �j (fj) = �j
�
gjfjg

�1
j

�
6= �4; respectively. Thus, apply for Theorem 4.1 [6,

Theorem 4.1], the following inequality holds


(fj; gjfjg
�1
j ) = 
j(
j � �j) � 2� 2 cos(

�

7
) = 0:198 06 � � � :

Therefore, limj!1 
j(
j � �j) = 
(
 � �) � 0:198 06 � � � and hence 
 6= 0 and


 6= �: It follows that 
j 9 0 and 
j 9 �; so 
j 6= �j for all but �nitely many j:

Now ��j = hfj; hji contains ~�j = hfj; hjfjh�1j i with index two (at most)

and by Theorem 3.2.4 ��j is Kleinian. Now conjugate each hfj; hji so that hj = h

and h(z) = �z, a �xed element of order two. Then

hj =

0B@ i 0

0 �i

1CA ; fj =

0B@ aj bj

cj dj

1CA 2 PSL(2;C):
Further conjugacy by a diagonal matrix for each j :

�j =

0B@ �j 0

0 1
�j

1CA
leaves hj �xed and the conjugacy of fj is

�jfj�
�1
j =

0B@ aj bj�
2
j

cj�
�2
j dj

1CA :
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Now choose �j =
1p
bj
; then bj�2j = 1 and cj�

�2 = cjbj: Recall that

fj =

0B@ aj 1

cj dj

1CA ;

where ajdj � cj = 1; i.e., ajdj = 1 + cj: By computing, the commutator is

[fj; hj] = fjhjf
�1
j h�1j =

0B@ ajdj + cj 2aj

2cjdj ajdj + cj

1CA ;

and the parameter is


j = 2ajdj + 2cj � 2

= 2 (1 + cj) + 2cj � 2 = 4cj 6= 0:

Hence, cj =

j
4
! c = 


4
: Then by De�nition 2.3.1, (aj + dj)

2 = �j +4

and hence aj + dj =
p
�j + 4!

p
� + 4: Also ajdj � cj = 1 gives ajdj ! 1 + 


4
:

Since aj and dj can be written in terms of aj + dj and ajdj by the continuous

operations, aj and dj admit convergent subsequences, say the limits are a and d;

respectively. After doing so (and after all the normalizations by conjugacy) �nd

the following f and h such that fj ! f; hj ! h; and � = hf; hi with the triple

of parameters (
; �;�4) :

f =

0B@ a 1

c d

1CA and h =

0B@ i 0

0 �i

1CA :

Now the result reduces to Jørgensen�s Theorem 3.2.13. �

Lemma 3.3.3 Let f(
j; �j; �0j)g be a sequence of parameters for two-generator

Kleinian groups hfj; gji ; and let (
; �; �0) be parameters for two-generator group
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hf; gi : Suppose that
�

j; �j

�
converges to (
; �) and f is not elliptic of order

p � 6: Then 
 6= 0 and 
 6= �:

Proof. Since f is not elliptic of order p � 6; fj is not elliptic of order

p � 6 for all j but �nitely many. Otherwise, if fj is elliptic of order p � 6 for

in�nitely many j, then by Corollary 2.3.6 there is a constant sequence f� (fj)g

and hence the limit � (f) has the same constant. So f is elliptic of order p � 6;

it is a contradiction.

Now applying for Theorem 3.2.6, there is a sequence


fj; gjfjg

�1
j

�
of

Kleinian groups with corresponding parameters
�

j
�

j � �j

�
; �j; �j

�
which con-

verge to (
(
 � �); �; �): On the other hand 
j 6= 0 by using Corollary 3.1.4 and


j 6= �j by using Lemma 2.4.12, so one can apply for a result by C.Cao (see

Theorem 5.1 in [6]) which gives a lower bound:


j(
j � �j) � 0:198:

Thus, limj!1 
j(
j � �j) = 
(
 � �) � 0:198: It follows that 
 6= 0 and


 6= �: �

Next consider the projection from subspace D in three complex dimen-

sional space C3 to subspace D2 in two complex dimensional C2: Note that the

image of the projection of a closed set in C3 to C2 need not be closed. For

example, consider the projection of the set F in C3 onto the set E in C2; where

F = f
�
1

n
; 0; n

�
: n 2 Ng and E = f

�
1

n
; 0

�
: n 2 Ng:

The set F is closed in C3 because there are not any limit points in F and hence

the closure F = F: But the set E is not closed in C2 because the limit point (0; 0)

is not in E: However, it is true by the following theorem for the projection of the

closed subspace D in C3 onto the subspace D2 in C2: Also notice that if a triple

(
0; �0; �
0
0) is not the parameters of a Kleinian group, but the triple (
0; �0; �

0
1)
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could be the parameters of a Kleinian group for the same 
0 and �0: Two di¤erent

proofs of the following theorem are provided below and the information revealed

in the proofs plays an important role in studying Kleinian groups.

Theorem 3.3.4 Let subspace D2 be de�ned by

D2 = f(
; �) : for some �0 such that (
; �; �0) are the parameters of a Kleinian groupg:

then D2 is closed in the two complex dimensional space C2 in the usual topology.

Proof 1. Suppose (
j; �j) ! (
; �) with (
j; �j) 2 D2. Consider the

sequence of triples
�

j; �j;�4

�
:

If there are in�nitely many j such that
�

j; �j;�4

�
are the parameters of

Kleinian groups, after passing to a subsequence, recall
�

j; �j;�4

�
; by Theorem

3.2.15, the limit (
; �;�4) is the triple of parameters for a Kleinian group and

hence (
; �) 2 D2:

Otherwise, there are in�nitely many j such that
�

j; �j;�4

�
are not the

parameters of Kleinian groups. Since (
j; �j) 2 D2; Lemma 3.2.8 tells that�

j; �j;�4

�
are the parameters of discrete groups and hence there are in�nitely

many
�

j; �j

�
in a �nite list (at Table 1; in fact) where

�

j; �j;�4

�
are the

parameters of discrete elementary groups. Consequently, there is a triple of pa-

rameters, say (
; �;�4) ; in that �nite list such that (
; �) taking by in�nitely

many
�

j; �j

�
: Thus, after passing to a subsequence if necessary one may as-

sume
�

j; �j

�
= (
; �) for all j: Since each (
j; �j) in the subsequence is already

assumed in D2; so (
; �) 2 D2: �

Proof 2. Suppose f(
j; �j)g is a sequence in D2 with limit (
; �) in

C2: According to the de�nition of D2; there is a sequence
�
(
j; �j; �

0
j)
	
of triples

of parameters of two-generator Kleinian groups, and hence there is a sequence

f�j = hfj; gjig of Kleinian groups with the triples of parameters
�
(
j; �j; �

0
j)
	
by

Theorem 2.3.2.
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It needs to exhibit a two-generator Kleinian group with parameters (
; �; �0)

for some �0 2 C. There are three cases breakdown to prove that the limit gives

the parameters 
 and � for some two-generator Kleinian group � = hf; gi : In

the Cases II & III, �rst show that � is discrete, and then to show it is impossible

that � is elementary. By Theorem 2.4.6 about the classi�cation of elementary

groups, � falls into Type I, II, and III.

Case I: Suppose that, up to subsequence, the parameter entries �j and 
j

are constant for all j; say (
j; �j) = (
; �) for all j. Let � = �j for some j: Then

� is a Kleinian group with parameters (
; �; �0), as required.

Case II: Suppose that, up to subsequence, the parameter entries �j are

constant for all j and the parameter entries 
j are distinct for all j. Since

(
j; �j; �
0
j) are the parameters of a two-generator Kleinian group �j; by Lemma

3.2.8 there exists a sequence of discrete groups f��j =


fj; �j

�
g with correspond-

ing parameters f(
j; �j;�4)g: Thus using the �nite exceptional set of parameters

of discrete elementary groups with �0 = �4, one may assume that all of the groups

��j are Kleinian groups, passing to a subsequence if necessary. Since (
j; �j) con-

verges to (
; �), f(
j; �j;�4)g converges to (
; �;�4): Applying for Proposition

3.3.1, the sequence f��j g converges algebraically to a group �: Jørgensen showed

in Proposition 2 [35] that if � is non-elementary then � must be discrete, hence

� is Kleinian. Now assume to the contrary that � is elementary, then there are

the contradictions in the following three subcases.

(i) Assume that � = hf; gi is of Type I, then each non-trivial element of �

is elliptic. Then f can�t be an irrational rotation as assumed that � = �j; which

implies that fj is an irrational rotation, hence contradicting the assumption that

�j = hfj; gji is discrete and then countable. So, f can only be an elliptic of

�nite order. If one assumes that f is of order 2, then �j = � = �4 for each j

and ��j =


fj; �j

�
is a two-generator group with both generators of order 2. By

Theorem 2.4.14, ��j is elementary, it contradicts that �
�
j is Kleinian. What left is

to consider the case when � is generated by f an elliptic of order n � 3 and g an
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elliptic of order 2. In this case, by Beardon [2, Section 5.1] Theorem 4.3.7, there

is a point in H3 �xed by every element of �, thus it is a point of intersection of

axis(f) and axis(g) in H3 and hence � = 0: Also one can assume that �j = � for

all j. Hence ��j is generated by an elliptic fj of order n � 3 and an elliptic �j of

order 2 for all j also. Since ��j is non-elementary, �(fj; �j) 6= 0 for all j. But by F.

Gehring-G. Martin [15] (Theorem 4.20) there is a lower bound: �(fj; �j) �
b(n)
2
:

Thus, limj!1 �(fj; �j) = �(f; g) � b(n)
2
which leads to a contradiction to � = 0:

(ii) Assume that � = hf; gi is of Type II, then � is conjugate to a subgroup

ofM�ob
�
C
�
that every element is parabolic and � has a common �xed point. Thus,

f is parabolic and hence f can�t be of order 2; 3; 4; 5 or 6; and both f and g have

one �xed point in common then 
 = 0 by using Theorem 2.3.12. It contradicts

to Lemma 3.3.3.

(iii) Assume that � = hf; gi is of Type III, then � is conjugate to a

subgroup of M�ob
�
C
�
that every element of which leaves the set f0;1g invariant

under �. If f is a loxodromic element which shares its axis with g; then f are

not of order 2; 3; 4; 5 or 6 and axis(f) = axis (g) and hence Fix(f) = Fix(g) : By

Theorem 2.3.12, 
 = 0: It is a contradiction from Lemma 3.3.3.

Otherwise f is a loxodromic element and g is an elliptic of order 2 which

interchanges two �xed points of f . One may assume by Theorem 2.1.17 that:

f =

0B@ � 0

0 1
�

1CA and g =

0B@ 0 �

1
�
0

1CA ;

where � 6= 0; � 6= 0: Moreover,


 = tr([f; g])� 2 = (�� 1
�
)2;

� = tr2(f) � 4 = (�� 1
�
)2:

Thus, 
 = �: It is also a contradiction from Lemma 3.3.3.
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Case III: Since there are in�nitely many �j that are the same in Cases

I & II, it is left with the possibility that, there are in�nitely many distinct �j:

One may assume that the �j are distinct for all j, passing to a subsequence

if necessary. In particular, one can assume that the generators fj do not have

order 2; 3; 4; 5 or 6 for all j. By Theorem 3.2.6 �0j =


fj; gjfjg

�1
j

�
is a Kleinian

group for each j, and by Lemmas 3.2.7, there exists an element �j of order 2

such that �jfj�
�1
j = gjfjg

�1
j for each j. Thus, by Corollary 3.2.9 ��j =



fj; �j

�
is a Kleinian group for each j and its triple of parameters is (
j; �j;�4): By

Proposition 3.3.1, it is known that the sequence f��j g converges algebraically to

a group �. By Theorem 3.2.14 showed that if � is non-elementary then � must

be discrete, hence � is Kleinian. Assume to the contrary that � is elementary.

(i) Assume � is elementary of Type 1, then f is elliptic. Since ��j is

Kleinian and hence non-elementary and discrete, by Lemma 2 in [35], the sequence

of �j is constant for all large indices which contradicts the assumptions that �j

are distinct for all j.

(ii) Assume � is elementary of Type II, then it reaches a contradiction as

in (ii) of Case II.

(iii) Assume � is elementary of Type III, then it is a contradiction as in

(iii) of Case II. �

Remark 3.3.5 (1) The consequence of Theorem 3:3:4 is that the complement set

C2nD2 is open. Thus, there is � > 0 such that the open ball

B((0; 0); �) =
�
(z; w) 2 C2 : jzj2 + jwj2 < �2

	
� C2nD2;

i.e., D2 � C2nB((0; 0); �); where (
; �) = (0; 0) are the parameters of the identity

group. It is showing that there is a neighborhood of the parameters (0; 0) for the

identity group which cannot contain the parameters (
; �) for any two-generator

Kleinian group. It is Jørgensen�s inequality which gives a precise bound such that
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there is not any two-generator Kleinian groups �tting the inequality jzj+ jwj < 1:

It follows that there are no Kleinian groups in the unit open "ball" in C2 regarding

to the distance d = d((z; w) ; (0; 0)) = jzj+ jwj : f(z; w) 2 C2 : d < 1g :

(2) D2 can be embedded into C3 :

C2 � D2 �= f(
; �; 0) : (
; �) 2 D2g � C3:

3.4 Jørgensen�s inequality

Jørgensen�s inequality as he established in [35] is the �rst important uni-

versal constraint in studying the geometry of Kleinian groups [49]. Two impor-

tant applications have already been introduced: one is the fundamental result in

Jørgensen Theorem 3.2.13 and the other is Kleinian group�s characterization in

Theorem 3.2.14.

In this section an alternate proof of Jørgensen�s inequality is given based

on Theorem 3.3.4 before looking at the more general cases in Chapter 4. There

are a few reasons for this. First, one will see the most elementary trace poly-

nomial and then show how it can be used to generate an inequality. The steps

in the proof will identify results that will have to be generalized and potential

exceptions lying in lower dimensional subspaces, which will have to be dealt with

using other ideas. In fact using the trace polynomial in (3.4), a number of in-

equalities for discrete groups have been generated in [16]. Earlier, Brooks and

Matelski considered Jørgensen�s matrix iteration procedure for di¤erent initial

con�gurations producing inequalities [5].

Starting with the simple but important trace polynomial pw = 
(f; gfg�1) =


(
 � �) for the word w = gfg�1 from Lemma 3.2.1 and apply for the essential

result Theorem 3.3.4 to give an alternate proof of Jørgensen�s inequality.
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Theorem 3.4.1 (Jørgensen inequality) Let hf; gi be a Kleinian group. Then

j
 (f; g)j+ j� (f)j � 1:

This inequality is sharp for in�nitely many distinct Kleinian groups.

Proof. The proof is broken up into the following four general steps.

(1) Compactness:

Let 
 = 
 (f; g) and � = � (f) ; and let B = f(z; w) 2 C2 : jzj+ jwj � 1g ;

then B is closed and bounded and hence compact in C2 and

D2 = (D2 \B) [ (D2 \Bc) ;

where the complement set Bc = f(z; w) 2 C2 : jzj+ jwj > 1g : Thus,

j
j+ j�j > 1; for (
; �) 2 D2 \Bc: (3.14)

Now set

� = min fj
j+ j�j : (
; �) 2 D2 \Bg :

Since D2 is closed in C2 by Theorem 3.3.4, the bounded closed set D2 \ B is

compact in C2: It follows that the minimum is achieved inD2\B, say at (
0; �0) 2

D2 \B :

� = j
0j+ j�0j � 1: (3.15)

(2) Trace polynomials:

Let hf0; g0i be the Kleinian group whose parameters (
0; �0) achieved the

minimum above, and let the word w = g0f0g
�1
0 and set pw(z) = z(z � �).

One can assume that hf0; wi is Kleinian, then � (f0) = �0 and Theorem
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3.1.17 and the identity (3.4) give


(f0; w) = pw(
0) = 
0 (
0 � �0) : (3.16)

and using the identity (3.15),

j
(f0; w)j+ j�0j = j
0 (
0 � �0)j+ j�0j

� j
0j (j
0j+ j�0j) + j�0j

� j
0j+ j�0j � 1:

then (
(f0; w); �0) 2 D2 \B and hence

j
0j+ j�0j � jpw(
0)j+ j�0j = j
0jj
0 � �0j+ j�0j:

Notice that 
0 6= 0 as it is the parameter for a Kleinian group, which gives

j
0 � �0j � 1: (3.17)

Applying for the triangle inequality for (3.17),

j
0j+ j�0j � j
0 � �0j � 1: (3.18)

Thus, � � 1; so � = 1 by the identity (3.15). Therefore j
j + j�j � � = 1

and hence

j
j+ j�j = 1; for (
; �) 2 D2 \B: (3.19)

Finally, the inequality (3.14) and above identity(3.19) give j
j + j�j � 1

for every Kleinian group hf; gi with the parameters 
 = 
 (f; g) and � = � (f) :

Moreover, by the identities (3.18) the equality j
0j + j�0j = 1 gives j
0 �
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�0j = 1 and hence jpw(
0)j = j
0jj
0 � �0j = j
0j:

(3) Exceptional variety:

Here one must examine the supposition that hf0; wi is Kleinian. As seen

above, this can only fail in two circumstances.

(i) (
0; �0;�4) lies in the exceptional list of Table 1. In this case f is

elliptic of order 2, 3, 4 or 5. In all cases j�0j � 1 and hence j
0j+ j�0j � 1:

(ii) pw(
0) = 
0(
0 � �0) = 0. The set where this polynomial vanishes

forms an exceptional variety. Since 
0 6= 0, 
0 = �0: Thus, the point (
0; �0) must

lie on the variety f
 = �g � C2 and hence hf0; wi must be cyclic or dihedral �

and either of these contradicts the hypothesis that hf0; g0i is Kleinian.

(4) Sharpness:

The proof suggests that sharpness is achieved in a group with parameters

(
0; �0;�4) with jpw(
0)j = j
0j. Under these circumstances, (pw(
0); �0;�4)

would also be the triple of parameters for a group for which equality holds - and

similarly for the iterates of pw = z(z � �). In particular, one should expect that


0 is a periodic point of pw as it is unlikely that there are in�nitely many di¤erent

groups for which sharpness occurs for the same generator f . Let pw(z) = z; then

z(z � �)� z = 0; i.e., z ((z � �)� 1) = 0 gives z = 0, and z = 1 + �. Hence, the

�xed points of pw are 0 and 1 + �: �
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Chapter 4: New Approach to Inequalities for Kleinian
Groups

The Chebyshev polynomials were developed by Chebyshev in the mid-

19th century for a completely di¤erent purpose and that they form an orthogonal

system of polynomials which makes them of great use in Numerical Analysis and

Approximation Theory that are very di¤erent �elds from that of the current �eld

Geometric Analysis. The dissertation discovers in�nitely many trace polynomials

that can be expressed simply in terms of the Chebyshev polynomials in Theorem

4.1.1 and Theorem 4.1.2. These trace polynomials will be useful for obtaining

geometric information about Kleinian groups.

The identi�cation of precise inequalities for discrete groups of Möbius

transformations started with Jørgensen�s famous inequality [35] from 1976. Such

inequalities typically give necessary conditions to force a group to be a Kleinian

group, i.e., give su¢ cient condition to force a group to be a non-Kleinian group.

In this chapter a new approach is provided to establish new types of inequalities

by using some sorts of trace polynomials discovered in the �rst section. These

inequalities generalize the Jørgensen�s inequality so that one can learn more about

Kleinian groups by studying the isolation of elementary discrete groups.

The novel approach here to establish the universal constraints for Kleinian

groups is to use the closedness of D2 in C2 (Theorem 3.3.4) that is an essential

tool for the scheme of establishing the quanti�able inequalities. It follows that

the complement set C2nD2 is open in C2: Now one can consider the following

kind of distance

d = jz � aj+ jw � bj

between the subspace D2 in C2 and the point (
0; �0) in C2nD2, where (
0; �0)

is the pair of parameters for an elementary group (i.e., non-Kleinian group) in
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Tables 1; 2; and 3: Thus, there is a radius r > 0 such that the following open ball:

B =
�
(z; w) 2 C2 : jz � 
0j+ jw � �0j < r

	

in the open set C2nD2 and inside the following Euclidean ball:

B �
�
(z; w) 2 C2 : jz � 
0j

2 + jw � �0j
2 < r2

	
� C2nD2:

Accordingly, one can implement the scheme of establishing the following sorts of

quanti�able inequalities for two-generator Kleinian groups hf; gi in this chapter:

j
 (f; g)� 
0j+ j� (f)� �0j � r; (4.1)

where 
0 = 
 (�;  ) and �0 = � (�) are the parameters for a discrete elementary

two-generator group h�;  i : However, the challenge here is how to �nd the various

greatest lower bounds and to choose suitable trace polynomials.

4.1 Chebychev polynomials

The calculation of the trace polynomial pw from a word w can be a little

tricky except for some short words. For good words w (f; g) such as (gf)ng; (gf)n;

and [g; f ]n in a Kleinian group hf; gi with the triple of parameters (
; �; �0); the

trace polynomial pw of two complex variables 
 = 
 (f; g) and � = � (f) is the

following (see Theorem 3.1.17):

pw (
; �) = 
 (w (g; f) ; f)

and in�nitely many useful trace polynomials can be discovered and expressed

simply in terms of the Chebyshev polynomials in Theorem 4.1.1 and Theorem
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4.1.2.

It is well known that Chebychev polynomials are de�ned by the recursion

formula:

T0(z) = 1; T1(z) = z; Tn+1(z) = 2zTn(z)� Tn�1(z); for n 2 N: (4.2)

or by the explicit formula:

Tn(z) =
1

2

��
z �
p
z2 � 1

�n
+
�
z +
p
z2 � 1

�n�
; for n 2 N: (4.3)

For example, the �rst few Chebychev polynomials are

T0(z) = 1;

T1(z) = z;

T2(z) = 2z
2 � 1;

T3(z) = 4z
3 � 3z;

T4(z) = 8z
4 � 8z2 + 1;

T5(z) = 16z
5 � 20z3 + 5z;

T6(z) = 32z
6 � 48z4 + 18z2 � 1;

T7(z) = 64z
7 � 112z5 + 56z3 � 7z;

T8(z) = 128z
8 � 256z6 + 160z4 � 32z2 + 1:

(4.4)

Also, recall the identity

T2n(z) = (�1)n Tn(1� 2z2); for n 2 N: (4.5)

and the Chebychev polynomials of the �rst kind Tn with the de�ning property

Tn(cosh(z)) = cosh(nz); for n 2 N: (4.6)
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Theorem 4.1.1 Let hf; gi be a Kleinian group with the triple of parameters

(
; �; �0) ; where f is elliptic or loxodromic. Then,

� (fn) = 2Tn

�
1 +

�

2

�
� 2; for n 2 N; (4.7)


(fn; g) =
�(fn)

�

; for n 2 N: (4.8)

In particular,

� (f) = �;

� (f 2) = � (� + 4) ;

� (f 3) = � (� + 3)2 ;

� (f 4) = � (� + 4) (� + 2)2 ;

� (f 5) = �
�
�2 + 5� + 5

�2
;

� (f 6) = � (� + 4) (� + 3)2 (� + 1)2 :

(4.9)


(f; g) = 
;


(f 2; g) = 
 (� + 4) ;


(f 3; g) = 
 (� + 3)2 ;


(f 4; g) = 
 (� + 4) (� + 2)2 ;


(f 5; g) = 

�
�2 + 5� + 5

�2
;


(f 6; g) = 
 (� + 4) (� + 3)2 (� + 1)2 :

(4.10)

Proof. (1) Since cosh2
�
z
2

�
� sinh2

�
z
2

�
= 1 and cosh(z) = cosh2

�
z
2

�
+

sinh2
�
z
2

�
give cosh(z) = 2 sinh2

�
z
2

�
+ 1; therefore,

cosh(nz) = 1 + 2 sinh2
�nz
2

�
; n 2 N: (4.11)
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Assuming that f has two �xed points 0 and 1; up to conjugacy. By

Corollary 2.1.16, f can be represented by f =

0B@ � 0

0 1
�

1CA 2 PSL(2;C) and hence
fn =

0B@ �n 0

0 1
�n

1CA ; where � can be expressed as e
�
2 for a suitable � = � f + i�f :

Thus, � (fn) = (�n � 1
�n
)2 = 4

�
e
n�
2 �e�

n�
2

2

�2
= 4 sinh2

�
n�
2

�
: That is,

� (fn) = 4 sinh2
�n�
2

�
; for n 2 N; � = � f + i�f : (4.12)

where � f and �f are the translation length and the holonomy of f; respectively.

It follows from the identities (4.11) and (4.12) that

cosh(nz) = 1 +
� (fn)

2
; for n 2 N: (4.13)

Applying for the de�ning property (4.6) and the previous identity (4.13), that

give Tn
�
1 + �

2

�
= 1 + �(fn)

2
and hence

� (fn) = 2Tn

�
1 +

�

2

�
� 2; for n 2 N:
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In particular, the �rst few Chebychev polynomials (4.4) give the following:

�
�
f 2
�
= 2T2

�
1 +

�

2

�
� 2 = 2

 
2

�
1 +

�

2

�2
� 1
!
� 2 = � (� + 4) ;

�
�
f 3
�
= 2T3

�
1 +

�

2

�
� 2 = 2

 
4

�
1 +

�

2

�3
� 3

�
1 +

�

2

�!
� 2 = � (� + 3)2 ;

�
�
f 4
�
= 2T4

�
1 +

�

2

�
� 2

= 2

 
8

�
1 +

�

2

�4
� 8

�
1 +

�

2

�2
+ 1

!
� 2 = � (� + 4) (� + 2)2 ;

�
�
f 5
�
= 2T5

�
1 +

�

2

�
� 2

= 2

 
16

�
1 +

�

2

�5
� 20

�
1 +

�

2

�3
+ 5

�
1 +

�

2

�!
� 2 = �

�
�2 + 5� + 5

�2
;

�
�
f 6
�
= 2T6

�
1 +

�

2

�
� 2

= 2

 
32

�
1 +

�

2

�6
� 48

�
1 +

�

2

�4
+ 18

�
1 +

�

2

�2
� 1
!
� 2

= � (� + 4)
�
�2 + 4� + 3

�2
:

(2) Notice that one can represent fn and g as the following:

fn =

0B@ �n 0

0 1
�n

1CA and g =

0B@ a b

c d

1CA 2 PSL(2;C);

where bc 6= 0 because that hf; gi is Kleinian. It follows from Case 2 of the proof

of Theorem 2.3.12 that


(fn; g) = �bc(�n � 1

�n
)2; for n 2 N:

Since f is non-parabolic, � (f) = (�� 1
�
)2 6= 0: Thus,


(fn; g) = �
(�n � 1

�n
)2

(�� 1
�
)2

bc(�� 1
�
)2 =

�(fn)

� (f)

; for n 2 N:
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It is easy to see the following by replacing � with 
 in the previous formulas

(4.9):


(f; g) = 
;


(f 2; g) = 
 (� + 4) ;


(f 3; g) = 
 (� + 3)2 ;


(f 4; g) = 
 (� + 4) (� + 2)2 ;


(f 5; g) = 

�
�2 + 5� + 5

�2
;


(f 6; g) = 
 (� + 4) (� + 3)2 (� + 1)2 :

�

Recall the identity 
(f; fmwfn) = 
(f; w) for m;n 2 Z from Lemma

3.1.18, and take (m;n) = (0; 1) and w = g then


(f; gf) = 
 (f; g) : (4.14)

In case that g is elliptic of order 2, the triple of the parameters is

(
 (f; g) ; � (f) ; �(g)) = (
; �;�4):

Now Proposition 2.3.9 and the identity (4.12) give that

�(gf) = 
 � � � 4 = 4 sinh2(�
2
); (4.15)

where �
2
=

�f+i�f
2

for suitable � :

(
(f; gf); � (f) ; �(gf)) = (
; �; 
 � � � 4) : (4.16)
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Theorem 4.1.2 Suppose that hf; gi is a Kleinian group with the triple of para-

meters (
; �; �0) ; where gf is elliptic or loxodromic. Let 
n+1 = 

�
(gf)n+1 ; f

�
then


n+1 =
Tn+1(cosh(�))� 1
cosh(�)� 1 
; for n 2 N: (4.17)

Further, the following recursion formulas are held:


0 = 0; 
1 = 
; 
n+1 = (
1 � � � 2)
n � 
n�1 + 2
1; for n 2 N:

In particular,


0 = 0; 
1 = 



2 = 
(
 � �)


3 = 
(
 � � � 1)2


4 = 
(
 � �)(
 � � � 2)2


5 = 
(1 + 3� + �2 � 3
 � 2�
 + 
2)2


6 = 
(
 � �)(
 � � � 1)2(
 � � � 3)2


7 = 
(�1� 6� � 5�2 � �3 + 6
 + 10�
 + 3�2
 � 5
2 � 3�
2 + 
3)2


8 = 
(
 � �)(
 � � � 2)2(2 + 4� + �2 � 4
 � 2�
 + 
2)2


9 = 
(
 � � � 1)2(�1� 9� � 6�2 � �3 + 9
 + 12�
 + 3�2
 � 6
2 � 3�
2 + 
3)2


10 = 
(
 � �)(5 + 5� + �2 � 5
 � 2�
 + 
2)2(1 + 3� + �2 � 3
 � 2�
 + 
2)2

Proof. The identity (4.8) gives 
(fn; g) = �(fn)
�

; and the Chebychev
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polynomials of the �rst kind (4.6) gives Tn(cosh(z)) = cosh(nz); it follows that


n+1 =
�((gf)n+1)

� (gf)

 (gf; f)

=
4 sinh2( (n+1) �

2
)

4 sinh2( �
2
)


 (gf; f)

=
cosh((n+ 1) �)� 1

cosh(�)� 1 
 (gf; f)

=
Tn+1(cosh(�))� 1
cosh(�)� 1 
 (gf; f) :

That is, 
n+1 =
Tn+1(cosh(�))�1

cosh(�)�1 
 (gf; f) ; for n 2 N; where 
 (gf; f) = 
 by the

identity (4.14). Thus,


n+1 =
Tn+1(cosh(�))� 1
cosh(�)� 1 
; for n 2 N:

One can express cosh(�) in terms of the parameters 
 and �: From the identity

(4.15),


 � � = 4 + 4 sinh2(�
2
)

= 4 cosh2(
�

2
)

= 2 (1 + cosh(�)) :

It can be deduced that

cosh(�) =
1

2
(
 � � � 2): (4.18)

Now using the recursion formula of Chebychev polynomials (4.2) and the

previous identity (4.18), the identity (4.17) becomes,



123



�
(gf)n+1 ; f

�
= 2 cosh(�)Tn(cosh(�))�Tn�1(cosh(�))�1

cosh(�)�1 
 (gf; f)

= 2 cosh(�)Tn(cosh(�))�2 cosh(�)+2 cosh(�)�Tn�1(cosh(�))�1
cosh(�)�1 
 (gf; f)

= 2 cosh(�) 
((gf)n; f) + 2 cosh(�)�2
cosh(�)�1 
 (gf; f)�

Tn�1(cosh(�))�1
cosh(�)�1 
 (gf; f)

= 2 cosh(�) 
((gf)n; f) + 2
 � 
((gf)n�1; f)

= (
 � � � 2)
n + 2
 � 
n�1; for n 2 N:

Notice that 
n+1 = 

�
(gf)n+1 ; f

�
; it reaches the required identity:


n+1 = (
1 � � � 2)
n � 
n�1 + 2
1; for n 2 N:

Where 
1 = 
 by the identity (4.14), and the formulas of 
0; 
2; � � � ; 
10
can be veri�ed easily. �

4.2 Inequalities for Chebychev polynomials

In this section, one can apply the inequalities generated in Lemma 4.2.5

for the Chebychev polynomial Tn+1 when n = 1; 2; 3; 4; and 7 to establish the

sorts of inequalities for two-generator Kleinian groups hf; gi :

j
 (f; g)j+ j� (f)� �0j � r;

where 
 (�;  ) = 0 and �0 = � (�) are the parameters for a discrete elementary

two-generator group h�;  i : In what follows one will typically cancel the term

j
 � � � 4j and so to avoid division to be zero one should ensure 
 6= � + 4: For

example, under the assumption that g has order 2; �(gf) = 
 � � � 4 by the

identity (4.15). If 
��� 4 = 0 then �(gf) = 0 and hence gf is parabolic. Thus,

if gf is loxodromic or elliptic then one can cancel these terms. However, it follows

from Lemma 4.2.2 and Lemma 4.2.4 that there are no exceptions for inequalities

generated by the particular words (gf)n g:
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Lemma 4.2.1 Let hf; gi be a Kleinian group. If fn is not the identity for n 2 N;

then hfn; gi is a Kleinian subgroup of hf; gi :

Proof. Clearly, hfn; gi is a subgroup of hf; gi : Since hf; gi is a Kleinian

group, by Theorem 3.2.14, hfn; gi is discrete. The only issue is if it is Kleinian.

If f is parabolic, loxodromic, or elliptic of order p � 7, this is true as long as

fn is not the identity. Otherwise, f is elliptic of order p � 6. If fn and g

have a common �xed point for some n 2 N, then so does f and g: If fn and g

have no common �xed points for all n 2 N, by the classi�cation of elementary

groups Theorem 2.4.9, then hfn; gi is one of the �nite spherical triangle groups

A4; S4; and A5 for each n 2 N: Thus, either case hf; gi can�t be Kleinian, it is a

contradiction. �

Lemma 4.2.2 Let f and g be Möbius transformations, then


 ((gf)n g; f) = 

�
(gf)n+1; f

�
; for n 2 N [ f0g :

Proof. Let w = (gf)ng; then 
 (w; f) = 
 (wf; f) for n 2 N [ f0g :

By using Proposition 2.3.9 and Lemma 3.1.18, 
(f; fmwfn) = 
(fmwfn; f) =


 (w; f) : If m = 0 and n = 1; then 
 (wf; f) = 
 (w; f) and hence 
 ((gf)ng; f) =


 ((gf)ngf; f) : �

Corollary 4.2.3 If hf; gi is a Kleinian group, then


((gf)ng; f) 6= 0; for n 2 N:

Proof. Suppose that 
((gf)ng; f) = 0; for some n: Then by Lemma 4.2.2,


((gf)n+1; f) = 0; for some n: It follows from Theorem 2.3.12 that (gf)n+1 and f

share a �xed point for some n: Thus, h(gf)n+1; fi is elementary, a contradiction

to Lemma 4.2.4. �
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In fact, by the following lemma,


(gf)n+1 ; f

�
is a Kleinian group and

hence 
 ((gf)n g; f) = 
 ((gf)n+1; f) 6= 0:

Lemma 4.2.4 Let hf; gi be a Kleinian group. If (gf)n is not the identity for

n 2 N; then h(gf)n ; fi is a Kleinian subgroup of hf; gi :

Proof. It is clear that h(gf)n ; fi is a subgroup of hgf; fi : Since hgf; fi =

hf; gi, hgf; fi is a Kleinian group. Applying for Lemma 4.2.1, h(gf)n ; fi is a

Kleinian subgroup of hgf; fi and hence hf; gi : �

Lemma 4.2.5 Let hf; gi be a Kleinian group with the triple of parameters (
; �; �0)

and suppose that gf is loxodromic or elliptic. Then for all x at a minimum of

the sum j
j+ j� + xj :

j
 � � � 4j � 2
����Tn+1�12(
 � � � 2)

�
� 1
���� ; for n 2 N:

Proof. Since hf; gi is a Kleinian group, by Lemma 4.2.4,


(gf)n+1 ; f

�
is

a Kleinian group.

Since the minimum of the sum j
j+ j� + xj is attained;

j
j+ j� + xj �
��
 �(gf)n+1 ; f���+ j� + xj;

which gives j
j � j

�
(gf)n+1 ; f

�
j: Since Theorem 4.1.2 gives 
((gf)n+1; f) =

Tn+1(cosh(�))�1
cosh(�)�1 
;

j
j �
����Tn+1(cosh(�))� 1cosh(�)� 1

���� j
j:
Since 
 6= 0; dividing by j
j gives

���Tn+1(cosh(�))�1cosh(�)�1

��� � 1: Thus,
jcosh(�)� 1j � jTn+1(cosh(�))� 1j :

By using identity (4.18),
��1
2
(
 � � � 2)� 1

�� � ��Tn+1(12(
 � � � 2))� 1�� :
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Thus, it gives the following inequality at a minimum,

j
 � � � 4j � 2
����Tn+1(12(
 � � � 2))� 1

���� :
�

First, apply Lemma 4.2.5 for the Chebychev polynomial T2, it provides a

new approach of proving Jørgensen�s inequality. In fact, T2 = 2z2 � 1 and hence

j
 � � � 4j � 2
����T2(12(
 � � � 2))� 1

����
= 2

����2�14(
 � � � 2)2
�
� 2
����

=
��(
 � � � 2)2 � 4��

� j
 � � � 4j j
 � �j:

Suppose that 
 6= � + 4; dividing by j
 � � � 4j 6= 0 gives 1 � j
 � �j �

j
j+ j�j: It is the Jørgensen�s inequality:

j
j+ j�j � 1:

Theorem 4.2.6 Let hf; gi be a Kleinian group with the parameters � = � (f)

and 
 = 
 (f; g) 6= � + 4: Then for a minimum of the sum j
j+ j� + 1j ;

j
j+ j� + 1j � 1:
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Proof. Consider the Chebychev polynomial T3(z) = 4z3� 3z; by Lemma

4.2.5,

j
 � � � 4j �
����T3(12(
 � � � 2))� 1

����
= 2

����48(
 � � � 2)3 � 32(
 � � � 2)� 1
����

=
��(
 � � � 2)3 � 3(
 � � � 2)� 2��

=
��(
 � � � 2� 2) (
 � � � 2 + 1)2��

=
��(
 � � � 4) (
 � � � 1)2��

=
��(
 � � � 4) (
 � (� + 1))2��

� j
 � � � 4j j
 � (� + 1) j2:

Since 
 6= � + 4; 
 � � � 4 6= 0: Dividing by j
 � � � 4j ;

1 � j
 � (� + 1) j2:

It follows that 1 � j
 � (� + 1) j � j
j+ j� + 1j: Thus,

1 � j
j+ j� + 1j:

�

Theorem 4.2.7 Let hf; gi be a Kleinian group with the parameters � = � (f)

and 
 = 
 (f; g) 6= � + 4: Then for a minimum of the sum j
j+ j� + 2j :

j
j+ j� + 2j �
p
5� 1
2

:

This inequality is sharp for the (2; 4; 5) hyperbolic triangle group with the para-

meters
�p

5�1
2
;�2;�4

�
:
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Proof. Consider the Chebychev polynomial T4 = 8z4�8z2+1; by Lemma

4.2.5,

j
 � � � 4j � 2jT4(
1

2
(
 � � � 2))� 1j

= 2

���� 816(
 � � � 2)4 � 84(
 � � � 2)2 + 1� 1
����

=
��(
 � � � 2)4 � 4(
 � � � 2)2��

=
��(
 � � � 2)2 �(
 � � � 2)2 � 4���

=
��(
 � � � 2)2(
 � �) (
 � � � 4)��

� j
 � � � 2j2j
 � �j j
 � � � 4j :

Since 
 6= � + 4; 
 � � � 4 6= 0: Dividing by j
 � � � 4j gives

1 � j
 � � � 2j2j
 � �j

= j
 � � � 2j2j
 � � � 2 + 2j

� j
 � � � 2j2 (j
 � � � 2j+ 2) :

Let x = j
 � � � 2j; then x � j
j + j� + 2j and 1 � x2 (x+ 2) : Solving

the latter inequality gives x �
p
5�1
2
: Hence,

p
5�1
2
� x � j
j + j� + 2j: So it is

concluded that

j
j+ j� + 2j �
p
5� 1
2

:

By Example 3.1.2, (2; 4; 5) hyperbolic triangle group is the Kleinian group

hf; gi with the triple of parameters (
 (f; g) ; � (f) ; �(g)) =
�p

5�1
2
;�2;�4

�
:

Thus, j� + 2j vanishes and hence j
j + j� + 2j =
p
5�1
2
; this is the veri�cation

of the sharpness. �

Theorem 4.2.8 Let hf; gi be a Kleinian group with the parameters � = � (f)
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and 
 = 
 (f; g) 6= � + 4: Then for a minimum of the sum j
j+
���� + 3�

p
5

2

��� ;
j
j+

������ + 3�
p
5

2

����� � 3�
p
5

2
:

Proof. Consider the Chebychev polynomial T5 = 16z5 � 20z3 + 5z: Re-

ferring to the inequality in Lemma 4.2.5

j
 � � � 4j � 2jT5(
1

2
(
 � � � 2))� 1j

� 2
����1632(
 � � � 2)5 � 208 (
 � � � 2)3 + 52(
 � � � 2)� 1

���� ;
Thus,

j
 � � � 4j �
��(
 � � � 2)5 � 5(
 � � � 2)3 + 5(
 � � � 2)� 2�� : (4.19)

Notice that 
 6= � + 4 and hence 
 � � � 4 6= 0: Let x = 
 � � � 2; then


 � � � 4 = x� 2 6= 0, and hence the previous inequality (4:19) gives

jx� 2j �
��x5 � 5x3 + 5x� 2��

=
���(x� 2) �x2 + x� 1

�2���
� jx� 2j

��x2 + x� 1
��2



130

Dividing jx� 2j ; which gives 1 � jx2 + x� 1j2 ; i.e., jx2 + x� 1j � 1: Further-

more,

1 � jx2 + x� 1j

=

�����
 
x� �1 +

p
5

2

! 
x� �1�

p
5

2

!�����
=

�����(
 � � � 2)� �1 +
p
5

2

�����
�����(
 � � � 2)� �1�

p
5

2

�����
=

�����
 � � � 3 +
p
5

2

�����
�����
 � � � 3�

p
5

2

����� ;
which gives �����
 � � � 3 +

p
5

2

�����
�����
 � � � 3�

p
5

2

����� � 1: (4.20)

There are two di¤erent ways of argument in the following:

The �rst way of argument starts with rearranging the �rst factor of the

previous inequality (4.20:

1 �
�����
 � � � 3 +

p
5

2

�����
�����
 � � � 3�

p
5

2

�����
=

�����
 � � � 3�
p
5

2
�
p
5

�����
�����
 � � � 3�

p
5

2

�����
�
 �����
 � � � 3�

p
5

2

�����+p5
!�����
 � � � 3�

p
5

2

�����
=

�����
 � � � 3�
p
5

2

�����
2

+
p
5

�����
 � � � 3�
p
5

2

����� :
Let s =

���
 � � � 3�
p
5

2

��� in the inequality above, then the solution of 1 � s2+
p
5s

is s � 3�
p
5

2
� 0: Similarly,

3�
p
5

2
� s =

�����
 � � � 3�
p
5

2

����� � j
j+
������ + 3�

p
5

2

����� :
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Hence,

j
j+
������ + 3�

p
5

2

����� � 3�
p
5

2
: (4.21)

The second way of argument is to rearrange the second factor of the inequality

on (4.20):

1 �
�����
 � � � 3 +

p
5

2

�����
�����
 � � � 3�

p
5

2

�����
=

�����
 � � � 3 +
p
5

2

�����
�����
 � � � 3 +

p
5

2
+
p
5

�����
�
�����
 � � � 3 +

p
5

2

�����
 �����
 � � � 3 +

p
5

2

�����+p5
!

=

�����
 � � � 3 +
p
5

2

�����
2

+
p
5

�����
 � � � 3 +
p
5

2

����� :
Let y =

���
 � � � 3+
p
5

2

��� ; then the inequality above becomes 1 � y2+
p
5y; solving

it gives y � 3�
p
5

2
� 0: Hence,

3�
p
5

2
� y =

�����
 � � � 3 +
p
5

2

����� � j
j+
������ + 3 +

p
5

2

����� :
Thus,

j
j+
������ + 3 +

p
5

2

����� � 3�
p
5

2
: (4.22)

Finally, one can conclude from the inequalities (4.22) and (4.21) that

j
j+
������ + 3�

p
5

2

����� � 3�
p
5

2
:

�

Theorem 4.2.9 Let hf; gi be a Kleinian group with the parameters � = � (f)
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and 
 = 
 (f; g) 6= � + 4: Then for a minimum of the sum j
j+
��� + 2 +p2�� ;

j
j+
���� + 2 +p2��� � 0:117875:

Proof. Now consider the Chebychev polynomial T8(z) = 128z8� 256z6+

160z4 � 32z2 + 1: Applying for Lemma 4.2.5,

j
 � � � 4j � 2jT8(12(
 � � � 2))� 1j

= 2
��128
256
(
 � � � 2)8 � 256

64
(
 � � � 2)6 + 160

16
(
 � � � 2)4 � 32

4
(
 � � � 2)2

�� :
Thus,

j
 � � � 4j �
��(
 � � � 2)8 � 8(
 � � � 2)6 + 20(
 � � � 2)4 � 16(
 � � � 2)2��

Let x = 
 � � � 2; then 
 � � � 4 = x � 2 6= 0 as 
 6= � + 4 and hence the

previous inequality becomes

jx� 2j �
��x8 � 8x6 + 20x4 � 16x2��

=
���x2 (x� 2) (x+ 2) �x2 � 2�2���

� jxj2 jx� 2j jx+ 2j
���x2 � 2���2 ;

which gives 1 � jxj2 jx+ 2j j(x2 � 2)j2 : Furthermore,

1 � jxj2 jx+ 2j
���x2 � 2���2

= j
 � � � 2j2 j
 � �j
��(
 � � � 2)2 � 2��2

= j
 � � � 2j2 j
 � �j
����(
 � � � 2)�p2��(
 � � � 2) +p2����2

�
����
 � � � 2�p2���+p2�2 ����
 � � � 2�p2���+ 2 +p2�

�
���
 � � � 2�p2���2 ����
 � � � 2�p2���+ 2p2�2 :
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Let y =
��
 � � � 2�p2�� then

1 �
�
y +
p
2
�2 �

y + 2 +
p
2
�
y2
�
y + 2

p
2
�2
:

Solving the inequality gives 0:117875 � y and hence

0:117875 � y =
���
 � � � 2�p2���

� j
j+
���� + 2 +p2��� :

Therefore,

j
j+
���� + 2 +p2��� � 0:117875:

�

4.3 Trace polynomials linear in �

In this �nal section, an in�nite family of the trace polynomials of two

complex variables 
 and �, which are linear in �; is given in Theorem 4.3.2, and

then using these polynomials and the established inequalities in the previous sec-

tion complete the quanti�able universal constraints by inequalities in the scheme

including Theorems 4.3.4, 4.3.5, 4.3.7, 4.3.8 and 4.3.10.

Starting with the following lemma show that the subgroups h[g; f ]n ; fi

of Kleinian group hf; gi is Kleinian for n 2 N:

Lemma 4.3.1 Let hf; gi be a Kleinian group. If f is loxodromic or parabolic

or elliptic of order p � 6, and [g; f ]n is not the identity, then h[g; f ]n ; fi is a

Kleinian subgroup of hf; gi for n 2 N:

Proof. Obviously, h[g; f ]n ; fi is a subgroup of h[g; f ] ; fi : Since f is lox-

odromic or parabolic or elliptic of order p � 7; by Theorem 3.2.6, then hf; gfg�1i
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is a Kleinian group. Notice that

h[g; f ] ; fi = hf; [g; f ]i =


f; gfg�1f�1

�
=


f; gfg�1

�
;

so hf; [g; f ]i is a Kleinian group. Applying for Lemma 4.2.1, h[g; f ]n ; fi is a

Kleinian subgroup of hf; gfg�1i and hence hf; gi : �

There are in�nitely many trace polynomials of two complex variables 


and � which are linear in �: For example, if con considers the word w1 (g; f) = g;

then pw1 (
; �) = 
 (f; g) = 
 is of course, a polynomial linear in �: If the

subgroup hf; gfg�1i of hf; gi is Kleinian, then hf; [g; f ]i is Kleinian subgroup

of hf; gi as well, because hf; gfg�1i = hf; gfg�1f�1i = hf; [g; f ]i: The identity

(3.4) gives the following trace polynomial from the word w2 (g; f) = gfg�1 :

pw2 (
; �) = 
(f; gfg�1) = 
 (
 � �) :

By taking w = gfg�1 and (m;n) = (0;�1) ; Lemma 3.1.18 gives the trace poly-

nomial of the word w3 (g; f) = [g; f ] :

pw3 (
; �) = 
 (f; [g; f ]) = 

�
f; gfg�1

�
= 
 (
 � �) : (4.23)

In addition, �([g; f ]) = tr2 ([g; f ])� 4 = (
 (g; f) + 2)2 � 4 = 
2 + 4
; that is

�([g; f ]) = 
(
 + 4): (4.24)

Thus, trace polynomials pw2 (
; �) and pw3 (
; �) are linear in � as well. More-

over, if the subgroup hf; gfg�1i of hf; gi is Kleinian, then hf; [g; f ]n+1i is Kleinian.

It is natural to ask whether the in�nite family of trace polynomials of the word

w (g; f) = [g; f ]n+1 for each n 2 N is linear in �; the following theorem shows

the con�rmative answer.
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Theorem 4.3.2 Suppose that hf; gi is a Kleinian group with the triple of pa-

rameters (
; �; �0) ; where [g; f ] is elliptic or loxodromic. Then the following

recursion formulas for the trace polynomials 
n+1 = 
(f; [g; f ]n+1) are held,


0 = 0; 
1 = 
(
 � �); 
n+1 = (

2 + 4
 + 2)
n � 
n�1 + 2
(
 � �); for n 2 N:

In particular,


2 = 
(
 � �)(
 + 2)2; (4.25)


3 = 
(
 � �)(
 + 1)2(
 + 3)2; (4.26)


4 = 
 (
 � �) (
 + 2)2
�

2 + 4
 + 2

�2
; (4.27)


5 = 
 (
 � �)
�

2 + 3
 + 1

�2 �

2 + 5
 + 5

�2
: (4.28)

Proof. According to the identity (4.12),

�([g; f ]n) = 4 sinh2(
n�

2
) = 2 cosh(n�)� 2; for n 2 N: (4.29)

In particular, �([g; f ]) = 4 sinh2( �
2
) = 2 cosh(�) � 2: Thus the identity (4.24)

implies

2 cosh(�)� 2 = 
(
 + 4) and cosh(�) =

2 + 4
 + 2

2
: (4.30)
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Applying for the identities (4.8), (4.29), (4.6), and (4.30),


(f; [g; f ]n) =
� ([g; f ]n)

� ([g; f ])

 (f; [g; f ])

=
2 cosh(n�)� 2
2 cosh(�)� 2 
(
 � �)

= (2Tn(cosh(�))� 2)

 � �

 + 4

=

�
2Tn

�

2 + 4
 + 2

2

�
� 2
�

 � �

 + 4

; for n 2 N:

Thus, by Chebychev polynomials recursion formula (4.2),


n+1 =

�
2Tn+1

�

2 + 4
 + 2

2

�
� 2
�

 � �

 + 4

= 4

�

2 + 4
 + 2

2

�
Tn

�

2 + 4
 + 2

2

�

 � �

 + 4

�
�
2Tn�1

�

2 + 4
 + 2

2

�
+ 4

�

 � �

 + 4

=

�
2
�

2 + 4
 + 2

�
Tn

�

2 + 4
 + 2

2

�
� 4
�


 � �

 + 4

�
�
2Tn�1

�

2 + 4
 + 2

2

�
� 2
�

 � �

 + 4

=
�

2 + 4
 + 2

��
2Tn

�

2 + 4
 + 2

2

�
� 2
�


 � �

 + 4

+
�
2
�

2 + 4
 + 2

�
� 4

� 
 � �

 + 4

� 
n�1

= (
2 + 4
 + 2)
n � 
n�1 + 2
(
 � �):

It is clear that 
0 = 0; and the trace polynomial (4.23) gives


1 = 
(f; [g; f ]) = 
(
 � �):

Applying for the recursion formulas 
n+1 = (

2 + 4
 + 2)
n � 
n�1 + 2
(
 � �)
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for n = 2; 3; 4; and 5; the following trace polynomials are given,


2 = (

2 + 4
 + 2)
1 � 
0 + 2
(
 � �)

= (
2 + 4
 + 2)
(
 � �) + 2
(
 � �)

= 
(
 � �)(
 + 2)2;


3 = (

2 + 4
 + 2)
2 � 
1 + 2
(
 � �)

= (
2 + 4
 + 2)
(
 � �)(
 + 2)2 � 
(
 � �) + 2
(
 � �)

= 
(
 � �)(
 + 1)2(
 + 3)2;


4 = (

2 + 4
 + 2)
3 � 
2 + 2
(
 � �)

= (
2 + 4
 + 2)
(
 � �)(
 + 1)2(
 + 3)2 � 
(
 � �)(
 + 2)2 + 2
(
 � �)

= 
 (
 � �) (
 + 2)2
�

2 + 4
 + 2

�2
;


5 = (

2 + 4
 + 2)
4 � 
3 + 2
(
 � �)

= (
2 + 4
 + 2)
 (
 � �) (
 + 2)2
�

2 + 4
 + 2

�2
� 
(
 � �)(
 + 1)2(
 + 3)2 + 2
(
 � �)

= 
 (
 � �)
�

2 + 3
 + 1

�2 �

2 + 5
 + 5

�2
:

�

Next turn the attention to create the inequalities in the following theorems

by using the trace polynomial 
(f; [g; f ]2) = 
(
 � �)(
 + 2)2 or 
(f; [g; f ]3) =


(
 � �)(
 + 1)2(
 + 3)2:

Theorem 4.3.3 Let hf; gi be a Kleinian group, and let 
 = 
 (f; g) and � =

� (f). If f is loxodromic or parabolic or elliptic of order p � 6; then

j
 + 2j+ j�j �
p
2� 1:

Proof. Suppose that j
 + 2j+ j�j < r for some r > 0; then j
 + 2j < r:

By Lemma 4.3.1,


f; [g; f ]2

�
is a Kleinian group and the identity (4.25)



138

gives the parameters 
2 = 
(
 � �)(
 + 2)2; then 
2 and � �t the Jørgensen�s

inequality j
j+ j�j � 1 :

1 � j
2j+ j�j

� j
(
 � �)(
 + 2)2j+ j�j

� (j
 + 2j+ 2) (j
 + 2j+ j�j+ 2j) j
 + 2j j
 + 2j+ j�j:

By the assumption at the beginning,

(r + 2)2rj
 + 2j+ j�j > 1: (4.31)

If (r+2)2r � 1; then (4.31) becomes 1 < (r+2)2rj
+2j+j�j � j
+2j+j�j ;

i.e., j
+2j+ j�j > 1: On the other hand, solving the inequality (r+2)2r � 1 gives

r � 0:205 57 < 1 and infers j
 + 2j + j�j < r < 1: It contradicts to j
 + 2j + j�j

> 1:

Thus, (r + 2)2r > 1; then (4.31) arrives at

1 < (r + 2)2rj
 + 2j+ j�j < (r + 2)2rj
 + 2j+ (r + 2)2rj�j

= (r + 2)2r (j
 + 2j+ j�j) < (r + 2)2r2:

i.e., (r + 2)2r2 > 1, solving the inequality gives r >
p
2� 1:

So if one assumes j
 + 2j + j� + 1j < r then r >
p
2 � 1: Equivalently, if

some r �
p
2� 1 then j
 + 2j+ j�j � r: So one can take the largest lower bound

r =
p
2� 1; then this yields j
 + 2j+ j�j �

p
2� 1: The proof is completed. �

Theorem 4.3.4 Let hf; gi be a Kleinian group, and let 
 = 
 (f; g) and � =

� (f). If f is loxodromic or parabolic or elliptic of order p � 6; then

j
 + 2j+ j� + 2j �
p
5� 1
2

= 0:618 034 � � � :
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This inequality is sharp for the Z2-extension of (4; 4; 5) hyperbolic triangle group

with the triple of parameters
�
�
p
5�3
2

;�2;�4
�
:

Proof. (1) Assume that j
 + 2j + j� + 2j <
p
5�1
2

then there is a contra-

diction.

Recall the inequality from Theorem 4.2.7,

j
j+ j� + 2j �
p
5� 1
2

:

By Lemma 4.3.1,


f; [g; f ]2

�
is a Kleinian group and hence � and 
2 =


(
 � �)(
 + 2)2 giving by the identity (4.25) �t the inequality:

j
2j+ j� + 2j �
p
5� 1
2

:

Since j
 + 2j + j� + 2j <
p
5�1
2
; j
 + 2j < j
 + 2j + j� + 2j <

p
5�1
2

and

j� + 2j < j
 + 2j+ j� + 2j <
p
5�1
2
:

It follows that

p
5� 1
2

� j
(
 � �)(
 + 2)2j+ j� + 2j

� (j
 + 2j+ 2)(j
 + 2j+ j� + 2j)j
 + 2jj
 + 2j+ j� + 2j

< (2 +

p
5� 1
2

)

 p
5� 1
2

!2
j
 + 2j+ j� + 2j

= j
 + 2j+ j� + 2j:

Thus, j
 + 2j+j� + 2j >
p
5�1
2
that contradicts to the assumption j
 + 2j+

j� + 2j <
p
5�1
2
; which gives the inequality

j
 + 2j+ j� + 2j �
p
5� 1
2

= 0:618 034 � � � :

(2) Let f be of order 4, then � = �2 and hence j� + 2j = 0 and j
 + 2j =
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p
5�1
2
; so 
 = �

p
5�3
2

or 
 =
p
5�5
2
:

Now choose the �rst case of 
 :


 =
�
p
5� 3
2

:

Since tr [f; g] = 
 + 2 = 1�
p
5

2
= �2 cos

�
2�
5

�
;

�([f; g]) = tr2 [f; g]� 4

=

�
�2 cos

�
2�

5

��2
� 4

= �4 sin2(2�
5
):

By Theorem 2.3.5, [f; g] is elliptic of order 5: Take f and h = gf�1g�1 elliptics

of order 4 whose product fh = [f; g] is elliptic of order 5: Since hf; gfg�1i =

hf; gf�1g�1i and the identity 2.11, hf; gfg�1i is the (4; 4; 5) hyperbolic triangle

group that is a Kleinian group.

Now choose g of order 2, this gives a Z2-extension � of the group hf; gfg�1i

and hence it is a Kleinian group by Lemma 3.2.5 and the triple of parameters for

� is  
�
p
5� 3
2

;�2;�4
!
;

which gives the sharpness,

j
 + 2j+ j� + 2j =
������
p
5� 3
2

+ 2

�����+ j�2 + 2j
=

������
p
5 + 1

2

����� =
p
5� 1
2

:

�

Theorem 4.3.5 Let hf; gi be a Kleinian group, and let 
 = 
 (f; g) and � =
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� (f). If f is loxodromic or parabolic or elliptic of order p � 6; then

j
 + 2j+ j� + 1j � 0:512876 � � �

Proof. The assumption j
 + 2j + j� + 1j < r for some r > 0 implies

j
 + 2j < j
 + 2j+ j� + 1j < r: i.e., j
 + 2j < r:

Recall the inequality from Theorem 4.2.6

j
j+ j� + 1j � 1

By Lemma 4.3.1,


f; [g; f ]2

�
is a Kleinian group and identity (4.25) gives

the parameters 
2 = 
(
 � �)(
 + 2)2; then 
2 and � �t the inequality:

j
2j+ j� + 1j � 1:

Since j
 + 2j+ j� + 1j < r; j
 + 2j < r and j� + 1j < r gives

1 � j
(
 � �)(
 + 2)2j+ j� + 1j

= j (
 + 2� 2) (
 + 2� 1� � � 1)(
 + 2)2j+ j� + 1j

� (j
 + 2j+ 2) [(j
 + 2j+ 1 + j� + 1j)j
 + 2j] j
 + 2j+ j� + 1j

< (r + 2)(r + 1)rj
 + 2j+ j� + 1j:

i.e., 1 < (r + 2)(r + 1)rj
 + 2j+ j� + 1j:

If (r + 1)(r + 2)r � 1; then the above inequality becomes

1 < (r + 2)(r + 1)rj
 + 2j+ j� + 1j

� j
 + 2j+ j� + 1j:
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That is,

j
 + 2j+ j� + 1j > 1:

On the other hand side, solving the inequality (r + 2)(r + 1)r � 1 gives

r � 0:324 72 and hence r < 1: It follows that j
 + 2j + j� + 1j < r < 1 and this

gives the contradiction to j
 + 2j+ j� + 1j > 1:

Otherwise, if (r+2)(r+1)r > 1, then using the assumption j
+2j+j�+1j <

r gives

1 < (r + 2)(r + 1)rj
 + 2j+ j� + 1j

< (r + 2)(r + 1)r (j
 + 2j+ j� + 1j)

< (2 + r)(1 + r)r2:

Solving (r + 2)(r + 1)r2 > 1 implies r > 0:512876 � � � : Thus, if r �

0:512876 � � � ; then j
 + 3j + j� + 2j � r: Take the largest lower bound r =

0:512876 � � � ; then

j
 + 2j+ j� + 1j � 0:512876 � � � :

�

Theorem 4.3.6 Let hf; gi be a Kleinian group and let 
 = 
 (f; g) and � =

� (f). If � (f) 6= �3, then

j
j+ j� + 3j � 3
�
1� cos �

7

2

� 1
3

= 1:1016 � � � : (4.32)

Proof. If � = �4 there is nothing to prove. So �xing � = �0 6= �4

seek the minimum value for 
, call it 
0. Using the trace polynomial g[3; 
; �] =

(� + 3)2
(
 � �) in [43] one can see that at the minimum

1 � j�0 + 3j2j
0 � �0j: (4.33)
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This estimate alone quickly gives a reasonable bound. But it can be improved

as follows. An extremal group hf; gi is Kleinian and may be assumed to have

parameters (
0; �0;�4). Then, by Theorem 4.1.1, hf 3; gi has parameters

�


�
f 3; g

�
; �
�
f 3
�
; � (g)

�
= (
0(�0 + 3)

2; �0(� + 3)
2; �4):

Thus, by the identity (3.4),


(f 3; gf 3g�1) = 
0(�0 + 3)
2
�

0(�0 + 3)

2 � �0(�0 + 3)2
�

= 
0(�0 + 3)
4(
0 � �0)

and hf 3; gf 3g�1i is a group generated by two elements with the same trace. Thus,

see [6],

j
(f 3; gf 3g�1)j � 2� 2 cos �
7
= 0:198 � � � ;

j
0(�0 + 3)4(
0 � �0)j � 0:198 � � � : (4.34)

Using the inequalities (4.33) and (4.34), it is deduced that

j
0jj�0 + 3j2 � 0:198 � � � :

The function (k � t)t2 has minimum value 4k3

27
on the interval t 2 [0; k].

Thus, with k = j
0j+ j�0 + 3j and t = j� + 3j, it is seen that

j
0j+ j�0 + 3j � 3
�
1� cos �

7

2

� 1
3

= 1:1016 � � � :

�

Theorem 4.3.7 Let hf; gi be a Kleinian group, and let 
 = 
 (f; g) and � =
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� (f). If f is loxodromic or parabolic or elliptic of order p � 6; then

j
 + 2j+ j� + 3j � 0:512876 � � � :

Proof. Suppose j
 + 2j + j� + 3j < r, for some r > 0: Since the order

p � 6; by Theorem 4.3.6,

j
j+ j� + 3j � 1:1016 � � � ;

which gives

j
j+ j� + 3j > 1:

By Lemma 4.3.1,


f; [g; f ]2

�
is a Kleinian group and identity (4.25) gives

the parameters 
2 = 
(
 � �)(
 + 2)2; then 
2 and � �t the inequality:

j
2j+ j� + 3j > 1:

The assumption j
 + 2j+ j� + 3j < r gives j
 + 2j < r; so

1 < j
(
 � �)(
 + 2)2j+ j� + 3j

= j (
 + 2� 2) (
 + 2 + 1� � � 3)(
 + 2)2j+ j� + 3j

� (j
 + 2j+ 2) [(j
 + 2j+ 1 + j� + 3j)j
 + 2j] j
 + 2j+ j� + 3j

< (r + 2)(r + 1)rj
 + 2j+ j� + 3j:

Thus,

1 < (r + 2)(r + 1)rj
 + 2j+ j� + 3j: (4.35)
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If (r + 2)(r + 1)r � 1; then the identity (4.35) becomes

1 < (r + 2)(r + 1)rj
 + 2j+ j� + 3j

� j
 + 2j+ j� + 3j;

That is

j
 + 2j+ j� + 3j > 1:

Solving the inequality (r + 2)(r + 1)r � 1 gives r � 0:324 72 and hence r < 1: It

follows that j
+2j+ j�+3j < r < 1 and this contradicts to j
+2j+ j�+3j > 1:

Otherwise, (r + 2)(r + 1)r > 1; then the assumption j
 + 2j+ j� + 3j < r

becomes

1 < (r + 2)(r + 1)rj
 + 2j+ j� + 3j

< (r + 2)(r + 1)rj
 + 2j+ (r + 2)(r + 1)rj� + 3j

= (r + 2)(r + 1)r (j
 + 2j+ j� + 3j)

< (2 + r)(1 + r)r2

Solving (2 + r)(1 + r)r2 > 1 implies r > 0:512876 � � � . Equivalently, if some

r � 0:512876 � � � then j
+2j+ j�j � r: The largest lower bound r = 0:512876 � � �

gives the result:

j
 + 2j+ j� + 3j � 0:512876 � � � :

�

Now taking the trace polynomial 
3 = 
(f; [g; f ]3) to establish more

inequalities in the following.

Theorem 4.3.8 Let hf; gi be a Kleinian group, and let 
 = 
 (f; g) and � =
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� (f). If f is loxodromic or parabolic or elliptic of order p � 6; then

j
 + 1j+ j�j � 0:324718:

Proof. To get a lower bound for j
 + 1j+ j�j :

j
 + 1j+ j�j � r:

Assume j
 + 1j+ j�j < r; for some r > 0; then j
 + 1j < r and j�j < r:

By Lemma 4.3.1,


f; [g; f ]3

�
is a Kleinian group and identity (4.26) pro-

vides the parameters 
3 = 
(
 � �)(
 + 1)2(
 + 3)2; then 
3 and � �t the Jør-

gensen�s inequality j
j+ j�j � 1 :

1 � j
3j+ j�j

= j
(
 � �)(
 + 1)2(
 + 3)2j+ j�j

� (j
 + 1j+ 1)(j
 + 1j+ j�j+ 1)(j
 + 1j+ 2)2j
 + 1jj
 + 1j+ j�j

< (r + 1)2(r + 2)2rj
 + 1j+ j�j:

Hence, 1 < (r + 1)2(r + 2)2rj
 + 1j+ j�j:

If (r + 1)2(r + 2)2r � 1; then

1 < (r + 1)2(r + 2)2rj
 + 1j+ j�j

� j
 + 1j+ j�j:

On the other hand, by solving the inequality (r + 1)2(r + 2)2r � 1 gives r �

0:159 5 and hencej
 + 1j+ j�j < r < 1: It is a contradiction to j
 + 1j+ j�j > 1:
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Now (r + 1)2(r + 2)2r > 1; so

1 < (r + 1)2(r + 2)2rj
 + 1j+ j�j

< (r + 1)2(r + 2)2r(j
 + 1j+ j�j)

< (r + 1)2(r + 2)2r2

By solving (r + 1)2(r + 2)2r2 > 1 gives r > 0:324718: Therefore, if r � 0:324718;

then j
 + 3j+ j� + 2j � r: Take the largest lower bound r = 0:324718; then

j
 + 1j+ j�j � 0:324718:

�

Theorem 4.3.9 Let hf; gi be a Kleinian group, and let 
 = 
 (f; g) and � =

� (f). If f is loxodromic or parabolic or elliptic of order p � 6; then

j
 + 3j+ j�j � 0:147899:

Proof. Suppose that j
 + 3j + j�j < r; for some r > 0; then j
 + 3j < r

and j�j < r:

By Lemma 4.3.1,


f; [g; f ]3

�
is a Kleinian group and identity (4.26) pro-

vides the parameters 
3 = 
(
 � �)(
 + 1)2(
 + 3)2; then 
3 and � �t the Jør-

gensen�s inequality (j
j+ j�j � 1) :

1 � j
(
 � �)(
 + 1)2(
 + 3)2j+ j�j

� (j
 + 3j+ 3)(j
 + 3j+ j�j+ 3)(j
 + 3j+ 2)2j
 + 3jj
 + 3j+ j�j

< (r + 3)2(r + 2)2rj
 + 3j+ j�j:
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If (r + 3)2(r + 2)2r � 1, then

1 < (r + 3)2(r + 2)2rj
 + 3j+ j�j

� j
 + 3j+ j�j:

Solving (r+3)2(r+2)2r � 1 gives r < 0:02658 and hence j
+3j+ j�j < r

< 1 and this gives a contradiction to j
 + 3j+ j�j > 1:

Otherwise, (r + 3)2(r + 2)2r > 1 and hence

1 < (r + 3)2(r + 2)2rj
 + 3j+ j�j

< (r + 3)2(r + 2)2r (j
 + 3j+ j�j)

< (r + 3)2(r + 2)2r2:

By solving (r+3)2(r+2)2r2 > 1 gives r > 0:147899: Hence, if r � 0:147899; then

j
 + 3j+ j� + 2j � r: Now take the largest lower bound r = 0:147899; then

j
 + 3j+ j�j � 0:147899:

�

Theorem 4.3.10 Let hf; gi be a Kleinian group, and let 
 = 
 (f; g) and � =

� (f). If f is loxodromic or parabolic or elliptic of order p � 6; then

j
 + 3j+ j� + 3j � 2 cos
�
2�

7

�
� 1 = 0:246 9 � � � :

This inequality is sharp for the Z2-extension of the (3; 3; 7) hyperbolic tri-

angle group with the triple of parameters
�
�2� 2 cos

�
2�
7

�
;�3;�4

�
:

Proof. (1) Suppose that the inequality is not held, i.e., it becomes the
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following inequality

j
 + 3j+ j� + 3j < 2 cos
�
2�

7

�
� 1:

It follows that j
 + 3j < 2 cos
�
2�
7

�
� 1 and j� + 3j < 2 cos

�
2�
7

�
� 1:

Since the order p � 6; applying for the inequality in Theorem 4.3.6:

j
j+ j� + 3j � 1:1016 � � � ;

and hence

j
j+ j� + 3j > 2 cos
�
2�

7

�
� 1 = 0:246 9 � � � : (4.36)

By Lemma 4.3.1,


f; [g; f ]3

�
is a Kleinian group and the corresponding

polynomial trace identity (4.26) provides 
3 = 
(
 � �)(
 + 1)2(
 + 3)2; then 
3
and � �t the inequality (4.36):

j
3j+ j� + 3j > 2 cos
�
2�

7

�
� 1:

Therefore,

2 cos
�
2�
7

�
� 1 < j
(
 � �)(
 + 1)2(
 + 3)2j+ j� + 3j

= j (
 + 3� 3) ((
 + 3)� (� + 3)) (
 + 3� 2)2(
 + 3)2j+ j� + 3j

� (j
 + 3j+ 3)(j
 + 3j+ j� + 3j)(j
 + 3j+ 2)2j
 + 3j2 + j� + 3j

� (j
 + 3j+ 3)(j
 + 3j+ j� + 3j)(j
 + 3j+ 2)2j
 + 3jj
 + 3j+ j� + 3j

<
�
2 cos

�
2�
7

�
+ 2
� �
2 cos

�
2�
7

�
� 1
�2 �
2 cos

�
2�
7

�
+ 1
�2 j
 + 3j+ j� + 3j

= j
 + 3j+ j� + 3j:
That is,

j
 + 3j+ j� + 3j > 2 cos
�
2�

7

�
� 1: (4.37)
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It contradicts the assumption at the beginning:

j
 + 3j+ j� + 3j < 2 cos
�
2�

7

�
� 1:

Thus, j
 + 3j+ j� + 3j � 2 cos
�
2�
7

�
� 1 = 0:246 9 � � � :

(2) Consider f of order 3; then � = �3 and hence the term j�+3j vanishes.

It follows that j
+3j = 2 cos
�
2�
7

�
�1; i.e., 
 = �2 cos

�
2�
7

�
�2 or 
 = 2 cos

�
2�
7

�
�4:

Choose the �rst case of 
 :


 = �2 cos
�
2�

7

�
� 2:

Since tr [f; g] = 
 + 2 = �2 cos
�
2�
7

�
;

�([f; g]) = tr2 [f; g]� 4

=

�
�2 cos

�
2�

7

��2
� 4

= �4 sin2(2�
7
):

By Theorem 2.3.5, [f; g] is elliptic of order 7: Take f and h = gf�1g�1 elliptics

of order 3 whose product fh = [f; g] is elliptic of order 7: Since hf; gfg�1i =

hf; gf�1g�1i and the identity 2.11, hf; gfg�1i is the (3; 3; 7) hyperbolic triangle

group and hence it is a Kleinian group.

Now choose g of order 2, this gives a Z2-extension � of the group hf; gfg�1i

and hence it is a Kleinian group by Lemma 3.2.5 and the triple of parameters for

� is �
�2� 2 cos

�
2�

7

�
;�3;�4

�
;
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which gives the sharpness,

j
 + 3j+ j� + 3j =
�����2� 2 cos�2�7

�
+ 3

����+ j�3 + 3j
= 2 cos

�
2�

7

�
� 1:

�

Theorem 4.3.11 Let hf; gi be a Kleinian group, and let 
 = 
 (f; g) and � =

� (f). If f is loxodromic or parabolic or elliptic of order p � 6; then

j
 + 3j+ j� + 2j � 0:185168 � � � :

Proof. Assume the following inequality for some r > 0 :

j
 + 3j+ j� + 2j < r:

Recall the inequality from Theorem 4.2.7,

j
j+ j� + 2j �
p
5� 1
2

:

By Lemma 4.3.1,


f; [g; f ]3

�
is a Kleinian group with the parameters


3 = 
(
 � �)(
 + 1)2(
 + 3)2; then 
3 and � �t the inequality:

j
3j+ j� + 2j �
p
5� 1
2

:
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Since j
 + 3j+ j� + 2j < r; then j
 + 3j < r and j� + 2j < r: Thus,

p
5� 1
2

� j
(
 � �)(
 + 1)2(
 + 3)2j+ j� + 2jj

= j (
 + 3� 3) (
 + 3� (� + 2)� 1) (
 + 3� 2)2(
 + 3)2j+ j� + 2j

� (j
 + 3j+ 3) (j
 + 3j+ j� + 2j+ 1) (j
 + 3j+ 2)2 j
 + 3jj
 + 3j+ j� + 2j

< (r + 3)(r + 1)(r + 2)2rj
 + 3j+ j� + 2j:

If (r + 3)(r + 1)(r + 2)2r � 1; then

p
5� 1
2

< (r + 3)(r + 1)(r + 2)2rj
 + 3j+ j� + 2j � j
 + 3j+ j� + 2j:

(4.38)

i.e.,

p
5� 1
2

< j
 + 3j+ j� + 2j:

On the other hand, solving (r + 3)(r + 1)(r + 2)2r � 1 gives r � 0:07

090 3 <
p
5�1
2
; and hence j
 + 3j + j� + 2j < r <

p
5�1
2
: It is a contradiction to

j
 + 3j+ j� + 2j >
p
5�1
2

Now (r + 3)(r + 1)(r + 2)2r > 1; so the inequality (4:38) becomes

p
5� 1
2

< (r + 3)(r + 1)(r + 2)2rj
 + 3j+ j� + 2j

< (r + 3)(r + 1)(r + 2)2rj (
 + 3j+ j� + 2j)

< (r + 3)(r + 1)(r + 2)2r2:

Solving
p
5�1
2

< (r + 3)(r + 1)(r + 2)2r2 gives r > 0:185168. Thus, if

r � 0:185168; then j
 + 3j + j� + 2j � r: So take the largest lower bound r =

0:185168 � � � ; then

j
 + 3j+ j� + 2j � 0:185168 � � � :

�
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The dissertation will end here, the further research work related to the

project is to create more sharpness and to implement applications in low-dimensional

topology and geometry, especially in 3-manifold theory.
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Appendix

orbit, 46

stabilizer of a set, 46

axis, 27

complex hyperbolic distance, 42

conformal group, 13

conformal mapping, 13

conjugate, 9

conjugator, 9

convergence property, 23

Convergence property , 23

converges algebraically, 83

discont at a point, 62

discontinuous group, 62

discrete group, 45

elementary group, 46

exceptional set of parameters, 54

�xed point, 11

free group, 69

good word, 70

holonomy, 42

hyperbolic lines, 24

hyperbolic metric, 24

invariant, 11

Kleinian group, 60

limit set, 46

Möbius group, 7

Möbius transformation, 7

non-discrete group, 45

non-elementary group, 46

ordinary set , 62

parameters, 30

perfect set, 66

primitive elliptic, 39

projective special linear group, 9

properly discontinuous, 68

property virtually, 72

virtually Kleinian group, 72

rank, 69

Riemann sphere, 6

set stabilizer

invariant, 46

stabilizer, 46

topological group, 6

trace polynomial , 70

translation length, 42


	UNIVERSAL CONSTRAINTS OF KLEINIAN GROUPS AND HYPERBOLIC GEOMETRY
	tmp.1659514937.pdf.P8Ja1

		2022-08-03T12:12:55+0400
	Shrieen




