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Abstract

Recent advances in geometry have shown the wide application of hyper-
bolic geometry not only in Mathematics but also in real-world applications. As
in two dimensions, it is now clear that most three-dimensional objects (configu-
ration spaces and manifolds) are modeled on hyperbolic geometry. This point of
view explains a great many things from large-scale cosmological phenomena, such
as the shape of the universe, right down to the symmetries of groups and geomet-
ric objects, and various physical theories. Kleinian groups are basically discrete
groups of isometries associated with tessellations of hyperbolic space. They form
the fundamental groups of hyperbolic manifolds. Over the last few decades, the
theory of Kleinian groups has flourished because of its intimate connections with
low-dimensional topology and geometry, especially with three-manifold theory.

The universal constraints for Kleinian groups in part arise from a novel
description of the moduli spaces of discrete groups and generalize known universal
constraints for Fuchsian groups - discrete subgroups of isometries of the hyperbolic
plane. These generalizations will underpin a new understanding of the geometry
and topology of hyperbolic three-manifolds and their associated singular spaces,
hyperbolic three-orbifolds.

The novel approach in this dissertation is to use a fundamental result
concerning spaces of finitely generated Kleinian groups: they are closed in the
topology of algebraic convergence. Indeed, this is also true in higher dimen-
sions when fairly minor additional and necessary conditions are imposed — for
instance, giving a uniform bound on the torsion in a sequence, or asking that the
limit set is in geometric position. In fact, this property holds more generally for
groups of isometries of negatively curved metrics because of the Margulis-Gromov
lemma. In particular, new polynomial trace identities in the Lie group SL(2, C)
are discovered to expose various quantifiable inequalities (including Jorgensen’s
inequality) in a more general setting for Kleinian groups and the geometry of

associated three-manifolds. This approach offers further substantive advances to



viii
address the quite complicated analytic and topological properties of hyperbolic

orbifolds, thereby advancing the solutions of important unsolved problems.

Keywords: Kleinian groups, moduli spaces, quantifiable inequalities, triple of

complex parameters, universal constraints, hyperbolic geometry.
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Chapter 1: Introduction

Euclidean geometry is too limited to explain many of the various phe-
nomena in the real world. Recent advances in geometry have shown the wide ap-
plication of hyperbolic geometry not only in Mathematics but also in real-world
applications. As in two dimensions, it is now clear that most three-dimensional
objects (configuration spaces and manifolds) are modeled on hyperbolic geome-
try. This point of view explains a great many things from large-scale cosmological
phenomena, such as the shape of the universe, right down to the symmetries of
groups and geometric objects, and various physical theories.

Kleinian groups were introduced by Poincaré in the 1880’s as subgroups
of the Mobius group Mob(C) acting discontinuously on some open domain of the
Riemann sphere C. Nowadays the term “Kleinian group” is being often used for
a discrete subgroup of hyperbolic isometries [29]. A Kleinian group is adopted
as a non-elementary discrete group in this dissertation. Thus, Kleinian groups
are basically discrete groups of hyperbolic isometries associated with tessellations
of hyperbolic space. They form the fundamental groups of hyperbolic manifolds.
Over the last few decades, the theory of Kleinian groups has flourished because of
its intimate connections with low-dimensional topology and geometry, especially

with 3-manifold theory [53, 54].

The identification of precise inequalities for discrete groups of Mobius
transformations started with Jorgensen’s famous inequality [35] from 1976, after
earlier results of Shimizu from 1963 [51] and Leutbecher from 1967 [37] which gave
estimates in the important special case when a generator is parabolic. Jgrgensen’s
inequality is the first important universal constraint in studying the geometry of
Kleinian groups. It is natural and interesting to generalize Jgrgensen’s inequal-

ity, there are many papers concerning such generalizations, for example, those



published by Brooks and Matelski [5], Gilman [32], Rosenberger [50], and Tan
[52]. The universal constraints for Kleinian groups generalize the known universal
constraints for Fuchsian groups - discrete subgroups of isometries of hyperbolic
plane [1]. The fundamental result concerning spaces of finitely generated Kleinian
groups is that they are closed in the topology of algebraic convergence (see Jgr-
gensen Theorem 3.2.13). Indeed this is also true in higher dimensions when fairly
minor additional conditions are imposed, for instance, giving a uniform bound
on the torsion in a sequence, or asking that the limit set be in geometric position
[39]. In fact, this property holds more generally for groups of isometries of nega-
tively curved metrics because of the Margulis-Gromov lemma [4, 18] which gives
an estimate of the norm of iterated commutators [40].

The purposes of this dissertation are to expose various non-trivial quan-
tifiable inequalities (including Jgrgensen’s inequality) in a more general setting
for Kleinian groups and the geometry of associated 3-manifolds and to identify
various sharp inequalities building on earlier work of Martin and his collabora-
tors [39, 20, 21]. This approach offers further substantive advances to address
the quite complicated analytic and topological properties of hyperbolic orbifolds,
thereby advancing the solutions of important unsolved problems. In particular,
these generalizations will underpin a new understanding of the geometry and
topology of hyperbolic 3-manifolds and hyperbolic 3-orbifolds [9, 26, 27, 28].

The work of the dessertation in part arise from a novel description of the
moduli spaces of discrete groups. One can describe the space of two-generator
Kleinian groups (f, g) as a subspace of the three complex dimensional space C?

via the mapping

(f 9) — (v (f, 9),8(f),B(9))-

Indeed, every two-generator Kleinian group (f, g) can be determined uniquely up
to conjugacy by a triple of complex parameters (v (f, g),3(f),8(g)) (Theorem
2.3.2).

A number of important tools are characterized, such as the finite order



of elliptic elements by the explicit formula (Theorem 2.3.5), the classification of
hyperbolic isometries by the conjugation and by the number of fixed points (The-
orems 2.1.17 and 2.2.7), the clarification about the key concepts with multiple
definitions in the literature (e.g., elementary groups in Theorem 2.4.6, discontinu-
ity in Theorem 3.1.14, and the limit set in Lemma 3.1.6), the feature of elementary
groups (Theorem 2.4.6), and the list of possible parameters for discrete elemen-
tary groups given by Tables 1, 2, and 3. These characterizations play key roles
in enhancing the theory of Kleinian groups in Chapter 3 and in establishing the
universal constraints for Kleinian groups in Chapter 4.

The novel approach here to establish the universal constraints for Kleinian
groups is to use the closedness of the following subspaces, that is an essential
tool for the scheme of establishing the quantifiable inequalities. The dissertation

extends that the subspace D of triples of parameters for Kleinian groups:

D ={(v,8,8) € C*: (v,,) are the parameters of a Kleinian group (f, g}

is closed in C3 in the usual topology (Theorem 3.2.15), and that the subspace D,

of the first two parameters for Kleinian groups

Dy = {(v, B) : for some 3’ such that (v, 3, 3") are the parameters of a Kleinian group}.

is a closed in two complex dimensional space C? in the usual topology (Theorem
3.3.4) by considering two projections: one is from D to D, and the other is from
D to the subspace on the slice z3 = —4 in C3.

This dissertation discovers infinitely many polynomial trace identities in
the Lie group SL(2, C) that are useful for establishing various quantifiable in-
equalities for Kleinian groups and obtaining geometric information about Kleinian
groups. These trace polynomials can be expressed simply in terms of the Cheby-

shev polynomial (Theorem 4.1.1 and Theorem 4.1.2). The Chebyshev polyno-



mials were developed by Chebyshev in the mid-19th century for a completely
different purpose and that they form an orthogonal system of polynomials which
makes them of great use in Numerical Analysis and Approximation Theory that
are very different fields from that of the current field Geometric Analysis.

The scheme of establishing the following sorts of quantifiable inequalities

is implemented for two-generator Kleinian groups (f, g) :

v (fs 9) = Yol +1B(f) = Bol =,

where 75 = v (¢, %) and B, = B (¢) are the parameters for a discrete elementary
two-generator group (¢, 1) (Theorems 4.3.4, 4.3.5, 4.3.7, 4.3.8 and 4.3.10). How-
ever, the challenge here is how to find the various greatest lower bounds and to

choose suitable trace polynomials.

An important application of the quantifiable inequalities shall be devel-
oped is in an explicit description of certain moduli spaces of Kleinian groups. The
first such exploration of these moduli spaces appears to be that of Lyndon and
Ullman [38] who used the Shimizu-Leutbecher inequality to describe the space
of Kleinian groups generated by two parabolic elements, depending on how you
look at it this is the moduli space of the punctured torus, or the four times punc-
tured sphere. These early investigations led Riley to his important description
of what is now known as the “Riley slice". Recent, the moduli space of Kleinian
groups generated by elliptic elements of order 2 and 3 has been illustrated by
the Figure 1.1 (see [41, 57]). Outside the bounded region (topologically a disk)
the group is free on these generators, inside the groups are represented by iso-
lated points and are rigid groups. Inside circles represent inequalities for groups
with these generators. These descriptions of moduli spaces are successfully used
in completing the solution to Siegel’s famous problem on hyperbolic lattices in
three dimensions [48, 42, 44] and also in the identification of the finitely many

two-generator arithmetic Kleinian groups with elliptic or parabolic generators.



Figure 1.1: The (2,3) commutator plane

Using these inequalities it is possible give quantifiable universal constraints
on the geometry and topology of hyperbolic n-manifolds. Especially in the case of
3-manifolds and orbifolds, these inequalities underpin various computer searches

for extremal hyperbolic manifolds, orbifolds, and groups. For instance,

e Bounds on the thick and the decomposition of hyperbolic 3-manifolds [3].

e That the projective general linear group PGL(2,O(y/—3)) is the smallest
co-volume non-compact hyperbolic lattice [47] and also is the smallest co-

volume lattice with singular set of degree p > 6 [19].
e The proof that homotopy hyperbolic 3-manifolds are hyperbolic [11, 14].
e Estimates on the first Betti number of closed hyperbolic 3-manifolds [7]

e That the orientable cusped hyperbolic 3-manifolds of minimum volume is

the figure 8-knot complement and its sister [8].

e That the Fomenko-Weeks manifold as minimal volume hyperbolic 3-manifold

12, 13].



e That the Zs-extension of the 3-5-3 Coxeter group is the smallest co-volume

hyperbolic lattice [22, 31, 48].

e The Margulis constants associate with discrete groups [23, 24].

In fact there are many more of these sorts of things, and higher dimensional
versions of these quantifiable inequalities allow some estimates for hyperbolic n-

manifolds, see for instance [39, 34, 55].



Chapter 2: Parameters of Groups of Isometries

It is reasonable that one can associate two kinds of structures with a set.
A topological group is both an algebraic group and a topological space and the
two structures are related. Precisely, a group G is a topological group if the
following two maps are continuous: G x G — G by (z,y) — zy and G — G
by x —— 27!, Two topological groups can be naturally identified if there exists
a group isomorphism between them that is a homeomorphism as well. Though
out the dissertation, a topological space is always non-empty and a neighborhood
refers to an open neighborhood. Let C be the complex plane, and let C = CU {oo}
be the extended complex plane, it is also known as the Riemann sphere .

There are at least three different ways of thinking about groups in this
dissertation: as subgroups of the hyperbolic isometry group Isom™ (H?®) on the
Poincaré upper half-space model, as subgroups of Mébius group Mob™ (@) , and as
subgroups of the projective special linear group PSL(2, C). Each of these groups
has its own topology, however the topological isomorphism tells that the concept
of discreteness is the same (see Theorem 2.2.3 in Section 2.2). The following three
elements will be identified throughout this dissertation: a Mobius transformation
in Mob™(C), a hyperbolic isometry in Isom™*(H?), and a matrix in PSL(2,C).
Thus, one can interact between Complex Analysis, Abstract Algebra, Hyperbolic
Geometry, and Topology.

An advanced tool for studying two-generator Kleinian groups is the triple
of complex parameters for each two-generator group that is introduced in Defi-
nition 2.3.1. Several important tools are characterized, such as the finite order
of elliptic elements by the explicit formula (Theorem 2.3.5), the classification of
hyperbolic isometries by the conjugation and by the number of fixed points (The-
orems 2.1.17 and 2.2.7), the clarification about different definitions of elementary

groups in the literature (Theorem 2.4.6), the feature of elementary groups (The-



orem 2.4.6), and the list of parameters for discrete elementary groups given by
Tables 1, 2, and 3. These characterizations play key roles in enhancing the theory
of Kleinian groups in Chapter 3 and in establishing the universal constraints for

Kleinian groups in Chapter 4.

2.1 Representations of Md&bius groups

One of important tools is conjugation. There are three classifications of
the special Mobius group Méb'(C) according to the conjugation in Theorem
2.1.17 (including the standard representation by matrices) and the conjugate
invariants such as the trace in Definition 2.1.6 and the number of fixed points
that is prepared in Lemma 2.1.14 and will be finalized in Theorem 2.2.7 in the
next section. The image of an invariant set (including the set of fixed points in

C) under a conjugation is described in Theorem 2.1.9.

Definition 2.1.1 A linear fractional transformation of the following form is

called a Mobius transformation on the Riemann sphere C :

az+0b
f(z)fm, a,b,c,d € C and ad — be # 0.

Denote Mob(C) the set of all Mébius transformations on C :

_ b
Méb(C):{ZId cabedeC andad—bc;éo}.

Clearly, Mob(C) is a group under composition, M&éb(C) is simply said a

Mébius group on C.



Furthermore, M6b(C) is a topological group under composition with the

topology induced by the following metric:

d(f,9) = Sup.ce (4(f(2),9(2)),

where ¢ denotes the chordal distance in the Riemann sphere C :

2|z1—22 . .
2|1 | 1, if 21,20 € G
(I+]z117) 2 (1+]22]7) 2

Q(’Z17 22) -

m, 1fZl € C and Z9 = OQ.
21

Each Mobius transformation

is associated with a matrix

f= ,

where, f is the associated matrix of each element f(z) in Méb (C).

Note that each element of M6b(C) will keep the same if one multiplies
both numerator and denominator of %Lbl by any non-zero number, but the corre-

a b
sponding matrix may be changed. One can take v/ad — bc to normalize

c d
M&b(C) by introducing the following subgroup of Mb(C) :

Méb+(T) = {f € Mab(C) : f(z) = %’ ad — be = 1} |

Obviously, M6b™ (C) is a topological subgroup of Mob(C).
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Consider the special linear group SL(2,C) of 2 x 2 matrices over C under

multiplication:

a b
SL(2,C) = ca,b,c,d, € Cand ad —bec =1
c d

Then consider the projective special linear group PSL(2, C) of the following quo-

tient group:

PSL(2,C) = SL(2,C)/ {+Id}

a b
=<{+ ca,b,c,d,e Candad—bc=1},
c d
a b
where Id is the 2 x 2 identity matrix. Both matrices & can be regarded as
c d

being the same as they lead to the same Mobius transformation on the Riemann
sphere C.

As a quotient group, PSL(2, C) preserves the group structure of the group
SL(2,C). Clearly, SL(2,C) and PSL(2,C) are topological groups under multipli-

cation with the topology induced by the following norm:

= Va2 + b+ 2+ d2.

Each Mobius transformation of Méb™ (C) will be identified with the 2 x 2

matrix of PSL(2, C) because of the following well known theorem.

Theorem 2.1.2 The topological groups Mob™ (C) and PSL(2, C) are topologically
1somorphic:

Mob™(C) = PSL(2,C).
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Definition 2.1.3 Consider a topological group G. Suppose that T' and T" are
subgroups of G, I'" is said to be conjugate to I' in G if there exists h € G such
that

F’:hoFoh_lz{hgh_lzgef},

denoted by IV ~ T" and h is called a conjugator . In particular, two elements g
and ¢’ of G are conjugate in G if there exists h € G such that ¢ = hogo h™1,
denoted by ¢’ ~ g.

For example, let I and I be two subgroups of Méb(C), if there is ¢ €
M&b(C) such that I" = ¢oT' o ¢!, then I" is conjugate to I' in Mob(C). Clearly,
the following three statements are equivalent:

(a) f is self conjugate by h.

(b) f and h commute.

(¢) The commutator [f,h| = I.

Let f, g, f', ¢ and h be elements of a topological group G, then two sub-
groups I and I, which are generated by f, g and f’, ¢, respectively, are conjugate
by h if and only if the generators f and f’, g and ¢’ are conjugate by h, respec-
tively.

Furthermore, it is natural to expect the conjugation is an equivalence
relation on the subgroups of a topological group in the following proposition,

that is the conjugation provides a partition for a topological group.

Proposition 2.1.4 Suppose that G is a topological group acting on a topological

space. Then the following are true.
(a) Every subgroup T of G: T ~T.

(b) Every pair of two subgroups T'and T of G : T' ~ T" implies T ~ T.
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(c) Ewvery triple of subgroups T', T', T" of G : T' ~ I" and T ~ T implies T ~
.
Proof. The part (a) and (b) are trivial.

(c) Since I' ~ TV and IV ~ I, there exist ¢,,¢, € G such that I' =
0T 0y and TV = ¢, 0T 0 ¢, . It follows that

I'=¢ 0 (gbz oo ¢2_1) ° le_l = (¢r0py) 0T 0 (¢ 0 ¢2)_1-

Thus there exists ¢ = ¢, 0 ¢, € G such that ' = poI" o0 ¢ ' ie, I ~T". O
Most interest things in the geometry of Mobius groups are conjugate in-
variants. This dissertation will pay the attention to the information "up to con-
jugacy". Notice that the trace is the first conjugate invariant of matrices and
therefore on SL(2, C), but the trace is not well defined in PSL(2, C). Fortunately

it is well defined up to sign in PSL(2,C). Thus, one can define tr?(f) for each f

_ a b
€ Méb ' (C) by the square of the trace of + € PSL(2,C) :

c d

tr?(f) = (a + d)*.

Remark 2.1.5 In Linear Algebra, it is known that if two matrices are conjugate
then they have the same trace but the converse need not be held. However, Bear-
don showed in ([2], Theorem 4.3.1.) that two non-identity elements f and g of

M&bt(C) are conjugate if and only if tr?(f) = tr?(g).

Now using the square of the trace define three types of non-identity ele-

ments in Mobius group Mob™ (C).
Definition 2.1.6 A non-identity element f of Mob™ (C) is said to be

(a) elliptic if tr*(f) € [0,4),
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(b) parabolic if tr?(f) = 4,
(c) lozodromic if tr*(f) € C —[0,4].

The second conjugate invariant is the number of fixed points. Here is the

definition of fixed points of homeomorphisms.

Definition 2.1.7 A subset S of a topological space X is said to be invariant
under a self-homeomorphism f if f(S) = S. A point z in X is called o fixed
point of f if the singleton S = {z} is an invariant set under f. In the case of

X =C and f € M&b(C), the set of fived points of f in C is denoted by Fix (f) :

Fix(f)={z€C: f(z) =z}.

Moreover, denote the set of fixed points of a group G by Fix (G) :

Fix(G):{zE@:f(z):zforallfeG}.

Proposition 2.1.8 Suppose that G is a topological group acting on a topological
space X, x is a point of X, and g is an element of G. If g fixes x then the cyclic

group (g) fixes x and hence g" fizes x for n € Z.

Proof. Since g € G fixes z, g~! fixes z. Thus, ¢" fixes x for each n € Z

because that:

g"(r)=go---og(x)=u, forn=0,1,2,---

g (@) =g oog () =, forn = —1,-2,--

It follows that the cyclic group (g) = {¢" : n € Z} fixes x. O
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Theorem 2.1.9 Suppose that G is a topological group acting on a topological

space X. Let g and h be two distinct elements of G. Let S be a subset of X.

Proposition 2.1.10 (a) If S is invariant under g, then the image h(S) is in-
variant under the conjugacy h o go h™*.
(b) If S is the set of fized points of g, then h(S) is the set of fixed points

of hogoh™.

Proof. (a) Since S is invariant under g, h(S) = S, and hence h o g o
h=t (R(S)) = hog(S) = h(S), i.e., h (S) is invariant under the conjugacy hogoh™'.

(b) Let f = hogoh™', and let F be the set of the fixed points of hogoh™.
It needs to show h (S) = F.

First to show h(S) C F : Assume z is a fixed point of g, i.e., g(z) = x.
Then h (z) is a fixed point of f because that f(h(x)) = hogoh ™t (h(x)) =
h(g(x)) = h(z).

Second to show F C h (S) : Since f is conjugate to g by h, g is conjugate
to f by h™1. So by the first part, h~! (F) C S. And then perform & on both sides:
hoh™ (F)C h(F)gives F Ch(S). O

In particular, the previous proposition gives the following corollary.

Corollary 2.1.11 Suppose that two M&bius transformations f and g in Méb™ (C)

are conjugate by h in Méb(C), then f = hogoh™! and

Fix (f) =Fix (hogoh™") = h(Fix(g)).

Traditionally, a map f is conformal in a domain D of C if f is analytic
and f'(z) # 0 for z € D. It is an orientation preserving mapping, i.e., preserving
size and orientation of the angles. Since an injective analytic function f of D

implies that f'(z) # 0 for z € D, every conformal mapping here is a traditional
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conformal mapping and hence an orientation preserving mapping. By contrast,
a traditional conformal mapping needs not to be a conformal mapping given by

the following definition, for example, f(z) = e?.

Definition 2.1.12 Let D and D' be two domains in C. A map f : D — D' is
called a conformal mapping if it is bijective and analytic. If D = D', the set of
conformal mappings is denoted by Conf (D). Clearly, Conf (D) is a group under

composition, simply say Conf (D) is the conformal group on D.

In the cases D = D’ = C or C, the detailed proof of a known fact is

showed in the following theorem.

Theorem 2.1.13 (a) A map f : C — C with f (00) = 00 is a conformal mapping
(i.e., the restriction f|c is a self conformal mapping on C) if and only if f(z) =
az +b, for some a # 0,b € C. Denote the group of self conformal mappings on C
by Conf (C),

Conf (C)={az+b:a#0,be C}.

(b) A map f: C — C is a conformal mapping if and only if f € M&b(C).

That is the group Conf (@) coincides with the Mdébius group Mob (@) :

Conf (@) = Mob (@) .

Proof. (a) It is obvious that f(z) = az + b with a # 0 is conformal on
C and f(z) = %Ig with ad — bc # 0 is conformal on C. Now show the necessity.

Since the conformal mapping f is analytic in C, the Taylor series expansion of
f(z) s

f(z) =32 ya,2", for z € C.
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Since f cannot be a constant, there is n € N such that a,, # 0, and then
the isolated singularity of f at oo is an essential singularity or a pole. Set

Qn

1
= —) = EOO_ e
o(2) = 1) = S,
then g is analytic in C — {0}. Recall the Casorati-Weierstrass theorem: If g is
analytic in a deleted open disk U of z; and has an essential singularity at zg, then
g(U) is dense in C.

One can assume that g has an essential singularity at zg = 0 : let Uy and

1

5 centred at zp = 0 and z; = 1, respectively,

U, be the open disks with radius
then Uy N U; = @. By Casorati-Weierstrass theorem, ¢(Up) is dense in C and
hence g (Up) Ng (Uy) # @, but UyNU; = &. Let wy € g (Up) Ng (Uy), then there
exist 2’ € Uy and 2" € Uy, such that f (%) =f (ﬁ) = wy for z = % and ﬁ e C.
It follows that f(z) is not injective in C. It is the contradiction to the bijection
of f in C. Thus, 2y = 0 is not an essential singularity of g and hence g has the
unique pole of some order m at zy = 0. It follows that g(z) = f(2) = Em %, so
Ay, # 0 for some m > 1 and a,, = 0 for all n > m + 1. Thus, f is the polynomial
of degree m > 1:

f(z)=a+az+ ... + @y 2"

and hence f has exactly m roots, say zi, 22, , 2z, such that f(z1) = f(z2) =

-+« = f(2m) = 0. On the other hand side, f is bijective, then m = 1. Therefore,
f(z) =ap+ az.

(b) Suppose f (00) = co. Since f is conformal in C, the restriction f|c is
a self conformal mappings on C.
By the previous part (a), f|c = az + b for some a # 0,b € C, and hence

f =az+ b for some a # 0,b € C.
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Suppose f (00) # oo, then f(00) = wy € C. Set

1

A e

Then g (00) = oo and the restriction g|c is a self conformal mappings on
C. It follows from (a) that

g(z)=cz+d

for some ¢ # 0,d € C. Thus,

where ¢ = wgc and b = wed +1 € C. O

The relationship between the discriminant and the trace motivates the
following lemma about the characterization of Mob™ (C) by the number of fixed

points in C.

Lemma 2.1.14 Let f be a non-identity element in Mob™ (C), then
(a) f is parabolic if and only if it fires exactly one point in C.
(b) f is either elliptic or loxodromic if and only if it fizes exactly two

distinct points in C.

Proof. Let f be a non-identity element in Méb*(C) and hence f = %,
for a,b,c,d, € C and ad — bc = 1.

The fixed points in C can be found by solving the equation:

az+b
=z
cz+d
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Equivalently, solving the quadratic equation gives

c?+(d—a)z—b=0.

Notice the following discriminant,

A = (d—a)® + 4bc
=(d—a)*+4(ad—1)
=(d+a)*—4

=tr’(f) —4.

Thus, f has exactly one fixed point in C if and only if tr?(f) = 4 and two distinct
fixed points in C if and only if tr?(f) # 4. Now it is straight forward to complete
the proof by Definition 2.1.6. [

Moreover, the standard form of conjugation can be presented in the fol-

lowing lemma.

Lemma 2.1.15 Let f be a non-identity element in Mob™ (C). Then:
(a) If f is parabolic then f is conjugate in MSb(C) to p(z) = z + 1.
(b) If f is either elliptic or lovodromic then f is conjugate in Mob(C) to

h(z) =rez, for 0 € (0,2n). Furthermore,

tr’(h) = (r+7r"")cos@+2+i(r—r")sinb.

Proof. (a) Since f is parabolic, by Lemma 2.1.14, f has a unique fixed

point zp in C. Take z; # 2y € C and let 2, = f(z1) then 2, # z; and 2z # 2. It

is well known that Mob(C) is transitive on the set of triples of distinct points in
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C. Thus there is a unique g € Mob(C) such that

9(z0) = 00, g(z1) =0, g(22) = 1.

By Corollary 2.1.11, gfg~* fixes the unique point g(z9) = oo. It follows from
Theorem 2.1.13 that

gfg ' (2) =az+bfora+#0,beC.

Moreover,

9f971(0) = gf(z1) = g () = 1.

Thus, gfg~*(0) = 1 gives b = 1. Since gfg~! has the unique point oo, so a = 1.

1

Otherwise, gfg~! has another fixed point z = ﬁ Now gfg~" = p and hence f

is conjugate in Mob(C) to p(z) = z + 1.

(b) Since f is either elliptic or loxodromic, by Lemma 2.1.14, f has two
distinct fixed points, say 2o and z; in C. Let 2, € C — {20, 2} . Applying for
the transitivity of M&b(C) on the set of triples of distinct points in C, there is a

unique g € M6b(C) such that

9(20) = 00, g(z1) =0, g(z2) = 1.

By Corollary 2.1.11, gfg~! fixes two points g(z9) = oo and g(z;) = 0. Applying

I = gz + b for some

for Theorem 2.1.13 for the fixed point co of gfg~!, gfg~
a = re? b € C. On the other hand, the fixed point 0 of gfg~! gives b = 0. One
may assume 6 € [0,27] . Since f is a non-identity element in M6b™ (C), a # 1 and
hence 0 € (0,27). Otherwise, § = 0,27 give a = rcosf + irsinf = 1. It follows
that

gfg "t =re®z = h(z), for § € (0,2n).
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Thus, f is conjugate in M6b(C) to h(z). Furthermore, the associated matrix and

the trace are the following:

1 .
r2ei/? 0

0 rze i

, N2
tr(h) = (r%ew/z + r_%e_wm)
=re +r7tem 42

= (r+7“_1) cos@—|—2+i(r—7’_1) sin 6.

Now summarize the matrix representation associated with fixing or inter-

changing 0 and oo, it is a useful tool in the dissertation.

Lemma 2.1.16 Let f be an non-trivial element in Mob(C).

(a) If f fives O then f(2) = = fora,c,d € C,ad # 0, and (a, c) # (d,0).

The associated matriz is

f= € PSL(2,C)

=
>

for some X\ # 0, € C and (A, ) # (£1,0) .
(b) If f fizes oo then f(z) = az +b for a # 0,b € C and (a,b) # (1,0).

The associated matriz is

o
f= € PSL(2,C)

>
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for some X # 0, € C and (A, ) # (£1,0).
(¢) If f fixres 0 and oo then f(z) = az for a # 0,1 € C. The associated

matriz 1s

A0
f= € PSL(2,C)

>

for some A # 0,+1 € C.

(d) If f interchanges 0 and oo then f (z) = & forb # 0 € C. The associated

Tz

matrix 18

e}

-\
f= € PSL(2,C)

0

>

for some A # 0 € C.

Proof. First of all, since f € M6b(C), One can assume f = ‘i;jig: for

a,b,d,d e Cand d'd —bd #0.If b/ = =0 then o # d'.
(a) Since f fixes 0, f (0) = Z—l, = 0 and hence ¥ = 0 and d’ # 0, which give

f = %5, where a = a,c=cd,d=d #0€C. Sincet/ =0, dd —bcd =dd =

ad # 0 and (a,c) # (d,0). Moreover, the normalization provides the matrix

A

0
representative, f = € PSL(2,C), where A = \/g #0, u= \/cj € C, and
1 a
KX

(\ 1) # (£1,0) as (a,¢) £ (d,0) .
(b) Since f fixes oo, by Theorem 2.1.13, f(z) = az + b, where a = o’ #

0,b=b€C.Sincec=c =0andd =d =1, (a,b) # (1,0). After normalization,

=

A

the matrix representative is f = € PSL(2,C), where A\ = y/a # 0,
U

p= L e C and (A ) £ (£1,0) s (a,8) £ (1,0

(¢) Obviously, it is the consequences of the previous parts (a) and (b).

(d) Since f interchanges 0 and oo,
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It follows that d' = 0,4’ =0, ¥ # 0, and ¢ # 0, which gives f (z) = g, where b =

, 0 =X
% # 0 € C. By normalizing, the matrix representative becomes f = €
0

>

PSL(2,C), where A\ =ivb#0€ C. O
Finally, the elements of M&b ' (C) are classified by the conjugations in the

following theorem.

Theorem 2.1.17 Let f be a non-identity element of Mob™ (C), then
(a) f is parabolic if and only if it is conjugate in Mob(C) to the translation

p(2) = z+ 1. The associated matriz is

p= € PSL(2,C).
(b) f is lozodromic if and only if it is conjugate in Mob(C) to a dilation
h(z) = re?z, for 0 € (0,27) and r # 1. Let \* = re', then the associated matriz
18

h= € PSL(2,C), for [\ #0,1

>

(¢) f is elliptic if and only if it is conjugate in M6b(C) to a rotation about
the origin O through an angle 0 : e(2) = €z, for 0 € (0,27). Let \> = ¢, then

the associated matrix is

e= € PSL(2,C) where |\ =1, # +1.

>

Proof. First of all, applying for Remark 2.1.5, two non-identity elements

f and g of M6b™(C) are conjugate if and only if tr?(f) = tr?(g).
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(a) The necessity is the part (a) of Lemma 2.1.15. Conversely, suppose

that f is conjugate in M6b(C) to p(z) = z + 1. Thus,

Thus, f is parabolic by Definition 2.1.6. The proof of (a) is completed.
(b) Suppose that f is loxodromic, by Lemma 2.1.15, f is conjugate in

Mo6b(C) to h(z) = rez for 6 € (0,27), and the trace is given by
tr*(h) = (r+7r"")cos@+i(r—r")sinf +2.

By Definition 2.1.6, the loxodromic element f gives tr?(f) € C — [0, 4] and hence

r # 1. Otherwise, if » = 1 then
2 2 (0
tr*(h) = 2cosf + 2 = 4 cos (§> :

Since 6 € (0,27), 0 < tr?(h) < 4 and hence tr?(f) € [0,4) C [0,4], it is contradict
to tr2(f) € C — [0,4]. Thus, f is conjugate in M&b(C) to h(z) = re?z, for
0 € (0,27) and r # 1.

Conversely, suppose that f is conjugate in Mob(C) to h(z) = rez, for

0 € (0,27) and r # 1. By Lemma 2.1.15, the trace is given by
tr*(h) = (r+r ") cosf+2+i(r—r"")sin6.

If tr*(h) € R then either r —r~! = 0 or sin = 0. Since r —r~! = 0 gives r = 1

that contradicts r # 1, so sinf = 0. It follows that § = m and hence
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2
If — <\/_ - r*1> = 0, then 7 = 1 that contradicts to r # 1, so tr*(h) < 0 and
hence

tr?(h) € C —[0,00) € C — [0,4].

Therefore, f is loxodromic by Definition 2.1.6. The proof of (b) is completed.

(¢) Suppose that f is elliptic, then f is neither parabolic nor loxodromic.
By Lemma 2.1.15 and the necessity of the previous (a) and (b), f is conjugate in
Mo6b(C) to e(z) = ez, for 6 € (0,27).

Conversely, suppose that f is conjugate in M6b(C) to e(z) = ez, for

0 € (0,27), again by Lemma 2.1.15,
2 2 (0
tr(e) = 2cosf + 2 = 4 cos 5 )

Since 0 € (0,27),0 < tr?(e) < 4 and hence 0 < tr?(f) < 4. Thus, f is elliptic by

Definition 2.1.6. The proof of (¢) is completed. [

Now the convergence group is introduced in the following definition (see

[25, 33]).

Definition 2.1.18 A group G of self-homeomorphisms of C is said to be a con-
vergence group if it has the convergence property: Fach infinite subfamily of
G contains an infinite sequence of distinct elements {f;} such that one of the
following 1s true.

(a) There exists a self-homeomorphism f of C such that

lim f; = f and lim fj_1 = f!
j—o0

J—00

uniformly in C.
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(b) There exists points x,,y, in C such that
lim f; =y, and lim f;l =z,
j—00 j—o0

uniformly on all compact subsets of C\{xz,} and C\{y,}, respectively.

Recall an important lemma at the end of this section so that the results

based on discrete convergence group by Martin [25] can be cited later.

Lemma 2.1.19 FEvery subgroup of Méb(@) 1S a convergence group.

2.2 Isometry groups on hyperbolic 3-space

There are many useful models of hyperbolic space such as the upper half-
space model, the open ball model, the hemisphere model, the Klein model, and
the hyperboloid model. Each model has its own metric, lines, isometries, and
so on. For convenience, it is taken the upper half-space model H?® known as the
Poincaré upper half-space model for hyperbolic 3-space throughout this disserta-
tion, henceforth the boundary of H? is the Riemann sphere C and denote H? U C
by H3.

It is useful that the elliptic and loxodromic elements of Isom™ (H?) can
be represented by their axes that are introduced in Definition 2.2.5. The images
of fixed points in H3 and the axes under a conjugation are described, and then
complete the classification of the elements in Isom™ (H?) by the fixed points in
Theorem 2.2.7. One of important tools used in the dissertation is given by the
fundamental Theorem 2.2.3 so that one can interact between Complex Analysis,

Abstract Algebra, Hyperbolic Geometry, and Topology.
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Definition 2.2.1 The upper half-space model of hyperbolic 3-space is defined by

H3 = {a: = (71,79, 23) € R : 23 > 0}

equipped with an (infinitesimal) hyperbolic metric :

|dz|  \/dx?+ dad + dad
oas 3 '

ds

Both FEuclidean straight lines perpendicular to the xixo-plane and vertical Fuclid-

ean semicircles centred on the x1x5-plane are called hyperbolic lines in H3.

As a result, if v is a smooth arc with the parametric equation in H? :

(21, 29, 3) = (21(t), 22(t), 23(t)) ,a < t < b,

then the hyperbolic length of v, denoted by Lg(7), is given following:

Lty - [V PR TS _ [V CHOT T GOy

T3 xg(t)

There are two typical planes interested here. First, consider any smooth
curve «v on the horizontal plane x3 = ¢ with ¢ > 0. Since drs = 0, the hyperbolic

length becomes

1
LH(')/) = E/\/ dziﬂl + d2ZU2.
0

In the case ¢ = 1, the the hyperbolic length coincides with its Euclidean length,
and hence the hyperbolic geometry on the plane x5 = 1 can be regarded as the
Fuclidean geometry there.

Second, consider any smooth curve v on the vertical upper half-plane
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x1 = a € R with x3 > 0. Since dx; = 0, the hyperbolic length becomes
d?zy + d?x
Lu(y) = [ Y2
¥ x3

which is clearly identical to the hyperbolic length of v in the upper half-plane
model H? for hyperbolic plane. In other words, the restriction of three-dimensional
hyperbolic length on H? to a vertical upper half-plane can be regarded as the
two-dimensional hyperbolic length on H2. Further, it is not difficult to see the

following lemma.

Lemma 2.2.2 Let P(a,b,c1) and Q(a, b, c3) be two points in H? with 0 < ¢; < ¢y,
let ¢ be a vertical Euclidean semi-circle in H? with center C (a,b,0) and radius
r, and let S and T be points of q such that the radii C'S and C'T" make angles o
and B (o < ) with the projection of q onto xixs plane, respectively. Then the
hyperbolic lengths of the geodesics segments are

Lu(PO) =02 and Ly(ST) = In P =05
c1 csca — cot o

Let Isom™ (H3) be the set of the orientation preserving hyperbolic isome-
tries of H3, then it is a topological group under composition with topology induced
by the hyperbolic metric. It is well known that each element of Isom™ (H?) pre-
serves the set of the hyperbolic lines. Together with Theorem 2.1.2, now the

following fundamental theorem is reached.

Theorem 2.2.3 The hyperbolic isometry group Isom™ (H?), the Mdébius group
Mob™ (@) , and the projective special linear group PSL(2,C) are topologically iso-
morphic:

Méb™*(C) = PSL(2,C) = Isom™ (H?).
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In fact, the plane 3 = 0 can be viewed as the complex plane C by
(x1,22,0) «— 2z = 21 + x9i, and hence every Mobius transformation f = % €

M&b ' (C) has an extension to an isometry from H? to H? by using the Poincaré
extension. In fact, each f € Mob™(C) is composition of translations f; = z + b,
dilations fy, = Az, and inversions f3 = %, for some b and A\ € C. Furthermore,

these three forms of mappings can be extended to H? as follows:

a "horizontal" translation f : (z,23) — (2 + b, z3),
a "horizontal" rotation or dilation f : (z,25) — (Az,z3), and

. . s . z xr3
an 1mversion N A = =, 7] .
f3 ( ) 3) <|z\2+az§’ |Z‘2+$§>

Conversely, every orientation preserving isometry g of H? extends to the boundary
C, g : H3 — H3, and then the restriction |z is a conformal mapping of C, and

hence, by Theorem 2.1.13, it is a Mobius transformation, so glz € Mob™ (C).

Now turn the attention to the fixed points in H3. Let f be a hyperbolic
isometry in Isom™ (H?*). Denote Fixgz (f) by the set of fixed points of f in H3. It

is clear that

Fixgs (f) N C = Fix (f).

As a special case of Proposition 2.1.9, the following corollary is obtained

directly.

Corollary 2.2.4 Let g be an element of Isom™ (H?), and let h be the natural

extension of an element of Mob(C). Then

Fixgs (hogoh™) = h (Fixms(g)).

Next, introducing the axes to represent elliptic and loxodromic elements
in Isom™ (H®) as they have two fixed points in C. Notice that each parabolic

element has a unique fixed point in H? that is indeed in C. Thus there are not
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any axes for parabolic elements in Isom™ (H?).

Definition 2.2.5 Let f be an elliptic or loxodromic element of Isom™ (H?). The
hyperbolic line in H? joining the end points that are the fived points of f on the
boundary C is called the axis of f, denoted by axis(f).

The following Figure 2.1 illustrates two axes.

Figure 2.1: The two axes of isometries

It is clear that

axis(f) N C = Fix (f). (2.1)

Lemma 2.2.6 Let g be an element of Isom™ (H?), and let h be the natural exten-

sion of an element of Mob(C). Then

(a) axis(g) is invariant under g :

g(axis(g)) = axis(g).

(b) the axis of a conjugation is given by

axis(h o go h™') = h(axis(g)).
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Proof. According to Definition 2.2.5, axis(f) is determined by the fixed
point set Fix(f).
(a) As a result, axis(g) is determined by Fix(g) that is the set of fixed

points of g, and hence g(axis(g)) and axis(g) have the same ending points, so
g(axis(g)) = axis(g).

(b) Applying for Corollary 2.1.11, Fix(f) = h(Fix(g)) and hence the
ending points of the axis h (axis(g)) coincide with Fix (h o goh™'). Therefore,
axis(h o goh™!) = h(axis(g)). O

Now it is ready to classify the elements of Mob™ (C) in the following the-

orem by using the fixed points in H3.

Theorem 2.2.7 Suppose that f is a non-identity element of Mob™ (C), then

(a) f is parabolic if and only if f has a single fixed point in C (and no
fized points in H? ).

(b) f is elliptic if and only if f has two fived points in C and axis (f)is the
fixed point set.

(¢) f is lozodromic if and only if f has two fized points in C and no fived

points in H> (axis (f) could be an invariant set under f).

Proof. (a) It is that the part (a) of Lemma 2.1.14 states. Further,
applying for Theorem 2.1.17, f is conjugate to a translation p = z + 1 and hence
the natural extension, recall p € Isom™ (H?) has no fixed points in H3.

(b) Applying for Theorem 2.1.17, f is elliptic if and only if it is conjugate

to a rotation e = ez with 0 < 0 < 2x. It is clear that

Fix (e) = {0, 00} C C and Fixgs (e) = z3-axis = axis (e) .

Choose a Mobius transformation g € Mob(C) such that f = geg™!. Further,
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applying for Corollary 2.2.4 and Lemma 2.2.6,

Fixgs (f) = Fixgs (9eg™") = g (Fixgs(e)) = g (axis (€)) = axis (f) .

Thus, axis (f) is the fixed point set of f in H3. Conversely, suppose that
Fixgs (f) = axis (f) . One may assume that f has two fixed points 0 and oo in C
by a conjugation if necessary, then axis (f) = z3-axis as whose end points are 0
and co. Thus, it is a rotation f = ¢z with 0 < § < 2.

(¢) Applying for Theorem 2.1.17, f is loxodromic if and only if it is con-
jugate by g in M&b(C) to a dilation h(z) = re?z, for 6 € (0,27) and r # 1, i.e.,
f = ghg™*. Tt is clear that Fix (h) = {0,00} C C and the natural extension has

no fixed points in H?, i.e., Fixgs(h) = @. By Corollary 2.2.4 and Lemma 2.2.6,

Fixgs (f) = Fixgs (ghg_l) =g (Fix@(h)) =g(9)=0.

Thus, if f is loxodromic then it has two fixed points in C and no fixed
points in H®. Conversely, if f has two fixed points in C and no fixed points in H3.

Thus, f is loxodromic as it is neither parabolic nor elliptic by the parts (a) and

(b). O

2.3 Parameters of two-generator groups

An advanced tool for studying Kleinian groups is the triple of complex
parameters that determine uniquely up to conjugacy the two-generator group
(Theorem 2.3.2). This dissertation characterizes the finite order of elliptic ele-
ments by the explicit formula (Theorem 2.3.5) and use the elementary method
showing a number of trace identities in SL(2, C) including Fricke identity (Propo-
sitions 2.3.8 and 2.3.9). At the end of this section, some impressive geometric

quantities are introduced, such as translation length, holonomy, and complex
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hyperbolic distance.

Definition 2.3.1 Consider the group (f, g) generated by a pair of elements f
and g in Isom™ (H?), and the multiplicative commutator [f,g] = fgf tg~t. The

following three complex numbers

v(f, 9) = te([f,9) =2, B(f) =t*(f) — 4, Bg) = tr*(g) — 4

are called parameters for the two-generator group (f, g) .

Notice that two groups Isom™ (H?) and PSL(2, C) are isomorphic, thus for
each f in Isom™ (H?) there is a unique representative matrix A in PSL(2,C), and

hence tr (f) = tr(A). So the triple of parameters (v (f, g),5(f),B(g)) of the

group (f, g) is independent of the choice of representative matrices in Mo6b(C)

for f and g € Isom™ (H?). Further, Lemma 2.2 [17] gives the following theorem.

Theorem 2.3.2 Let I = (f, g) be a group generated by f and g in Isom™ (H?),

then T' is determined uniquely up to conjugacy by its triple of parameters

(v (f, 9),8(f),B(9))

with v (f, g) # 0.

Remark 2.3.3 (1) The restriction v (f, g) # 0 is necessary. For instance if

11 1 2 1 4
[ = , g = , and h = , then the parameters of two

01 0 1 01
groups (f, g) and (f, h) are the same,

(v (f, 9),8(f),B(9)) = (v(f, h), B (), B(h)) = (0,0,0).
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But the first group is free abelian of rank 1 and the other is free abelian of rank
2 and thus they are different groups and not conjugate with the same parameters
(see introduction to free group at the end of Section 3.1).

(2) A two-generator group may have various presentations generated by
different pairs of generators. For example, consider a two-generator group I' =
(f, gy with the triple of parameters (vy,5,—4). Let uw = f and v = gf then f =
u,g =vu"t, and hence T = (f, gf) with the triple of parameters (v,v— 3 —4, —4)
(see the identity (4.16) in Section 4.1). Thus, the same group may have different
triples of parameters accordingly. Theorem 2.3.2 above states that each group
generated by each pair of two generators is determined uniquely up to conjugacy

by its triple of parameters.

Now one can use the complex parameter 3 (f) to give an alternate defi-
nition of parabolic, elliptic, and loxodromic elements f in Isom™ (H?) that were

defined by the traces in Definition 2.1.6 as elements of Mob™ (C).

Definition 2.3.4 Let f be a non-identity element in Isom™ (H?), then
(a) f is parabolic if B (f) = 0.
(b) f s elliptic if B(f) € [—4,0).

(¢) f is lozodromic if B (f) € C—[—4,0].

Recall that an element a” of a non-trivial cyclic group G = (a) of order n
generates G if and only if (p,n) = 1, so any single element of the following set
generates G :

{a?:1<p<mnand (p,n)=1}.

For example, if I" is a cyclic group of order n generated by a rotation centered at

the origin with the angle 27”, then any single element of the following set generates
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2
{£:1§p<nand (p,n):l}.
n

Theorem 2.3.5 Let f be a non-trivial element in Isom™ (H?), then f is elliptic

of order n if and only if

B(f) = —4sin2(%), for1<p<mn and (p,n)=1.

Proof. (1) Suppose that 8 (f) = —4sin*(2), for 1 < p < n and (p,n) =
1. Since 0 < sin*(2%) < 1 and p and n are co-prime, 0 < sin®(2°) < 1 and hence
B(f) € [—4,0). By Corollary 2.3.4, f is elliptic, then by Theorem 2.1.17, f is
conjugate to the rotation e = €z for § € (0,27) and so cos # 1. Now the

associated matrix of f in PSL(2,C) is

€i9/2 0

0 6—ic9/2

It follows that

B(f) — (ei0/2 + 67i9/2)2 —4
= e -2

= 2(cosf —1).

On the other hand side, 3 (f) = —4sin®(2) = —2(1 — cos 27). Thus,

n

2pm
cosf = cos —,
n

which gives 6 = iQ%W + 2km, where k € Z. Therefore, the rotation angle 6 = 2’%.

Without losing generality, take p = 1 then the order of f is equal to n. In fact, if
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p# 1, then 1 < p <n with (p,n) =1, so > ¢ N. Tt follows that 322 = n.

n

(2) Suppose f is elliptic of order n, then by using Theorem 2.1.17 f is

conjugate to ¢z, and the rotation angle § = 2’% with (p,n) = 1. It is deduced
that
B(f) = (P2 4 e~/2)2 _ 4
=4 (COS2 g — 1)
= —4 Sin2(]%).
O

Theorem 2.3.5 gives some special cases in the following corollary that will

be used frequently.

Corollary 2.3.6 Let f be a non-identity element in Isom™ (H3).
(a) f is elliptic of order 2 if and only if B (f) = —4.
(b) f is elliptic of order 3 if and only if 5 (f) = —3.
(c) f is elliptic of order 4 if and only if B (f) = —2.

(d) f is elliptic of order 5 if and only if 5 (f) = \/52757 or —_\/5;5-

(e) f is elliptic of order 6 if and only if B(f) = —1.

Proof. By Theorem 2.3.5, f is elliptic of order n if and only if 3 (f) =

—4sin*(2), for 1 < p < n and (p,n) = 1. In particular,

(

a)n : (p,2) =1 gives p = 1. Thus, 8 (f) = —4sin*(3) = —4.
(b) n

2
3

: (p,3) =1 gives p =1 and 2, and hence
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(c)n=4:(p,4) =1 gives p=1 and 3, so

(d)n=5:(p,5) =1gives p = 1,2,3, and 4. Therefore, there are the
following two distinct values of 5 (f) :

5(7) = ~sint(D) = —asn(4) = 225,

B(f) = —4Sin2(2§) = —4sin2(3§) _ _ﬁ; 5

(e)n=6:(p,6) =1 gives p=1 and 5, and hence

B(f) = —4sin®(5) = —4sm2(5§) "y

Note that Definition 2.3.1 gives tr? (f) = 4+ 3 (f) . Applying for Theorem
2.3.5, if f is elliptic of order n then tr*(f) = 4 — 4sin*(2*) = 4 cos?(E*), for

1 <p<mnand (p,n) = 1. This is the following corollary.

Corollary 2.3.7 Let f be a non-trivial element in Isom™ (H3), if f is elliptic of

order n then

tr (f) :j:QCOS(Z%), for1 <p<mn and (p,n) = 1.

Using the elementary method prove the following trace identities in SL(2, C)
including Fricke identity (see [10]). One can see that the second identity (2.3) is

a kind of formula similar to the one for "integration by parts".
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Proposition 2.3.8 Let f and g be two Mébius transformations in SL(2,C), then

the following three identities are held.

() = (/) 2.2)
tr(fg) = tr(f)tr(g) — tr(fg~"). (2.3)
tr[f, g] = tr*(f) + tr’(g) + tr*(fg) — tr(f)tr(g)tr(fg) — 2. (2.4)

Proof. (1) Let A\; and Ay be the eigenvalues of f, then the characteristic

equation is A* — (A; + A2)A + A Ay = 0. Notice that A\; + Ay = tr(f) and Ay =

det(f), the characteristic equation becomes A\* — tr(f) A + det(f)

Applying Cayley-Hamilton Theorem for f :

f2—=tr(f)f +det(f)Id = 0.

Since f € SL(2,C),det(f) = 1. Multiplying (2.5) by f~! gives

f+ft=t(f)Id

It follows from taking trace for (2.6) that

tr( f) + tr(F ) = 262 ).

Which gives the first well known trace identity (2.2) :

=0.

(2.5)

(2.6)
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(2) Multiplying the identity (2.6) by ¢ from the right,

fg+ fg=1tr(f)g.

Taking the trace for this identity,

tr(fg) +tr(f'g) = tr(f)tr(g)-

By the first trace identity(2.2),

tr(flg) = te(f ) =te(g7 ) = te(fg ).

Thus, the previous identities implies

tr(fg) = tr(f)tr(g) — tr(fg™").

It is the second well known identity (2.3).
(3) Let tr(f) = =z, tr(g) = vy, and tr(fg) = z. Then using two trace

identities (2.2) and (2.3) obtain the following expressions:

(%) = () — (1) = a? - 2. (2.7)

tr(f'g) = tr(ftr(g) —te(f g7 (2.8)
= tr(f)tr(g) — tr((gf) ")

=zy — tr(g9f) = zy — tr(fg).

and hence

tr(f'g) = 2y — 2. (2.9)
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Now using the trace identity (2.3) and two expressions (2.7) and (2.9),
tr(fgf g) = tr(fg)tx(f'g) — tr (fgg~'f)

= tr(fo)tr(ftg) — tr (f?)

= z2(zy — 2) — (2* = 2).

Thus,

tr(fof ') = zyz — 2% — 2* + 2.

It follows that

trlf, g] =tr (fof'g")
=tr (fgf ") tr(g7") —tr(fgf'g)
=t (9) — tr(fgf " 'g)

=y —ayz + 22+ 27— 2.

By substitution of x,y, and z, it gives the Fricke identity (2.4) :

tr[f,g) = 1*(f) + u?(g) + *(fg) - tr(f)tr(g)tx(fg) — 2.

g

Proposition 2.3.9 Suppose that f,g € Isom™ (H?3). Then following identities are

held.

(@)

B(fg) = Bgf).



v(fy 9) = B(f)+B(g) + B(fg) — tr(f)tr(g)tr(fg) + 8.

v(f, 9) =g, ) =~(f.g7").

(e) If g is elliptic of order 2, then

B(fg)=~(f,9)—B(f) —4

Proof. (a) Using Definition 2.3.1 and the identity (2.2),

(b) Using the identities (2.3) and (2.2),

tr(fg) = tr(ftr(g) — tr(fg™")
= tr(f)tr(g) — tr ((fg~")7)
= tr(g)tr(f) — tr(gf ") = tr(gf).

It follows from Definition 2.3.1 that

B(fg) = tr*(fg) —4
=tr’(gf) — 4= B(gf).

40

(2.10)

(2.11)
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(¢) By Definition 2.3.1, Fricke identity (2.4) can be read as

Y(f, 9) +2=B(f) +4+B(9) +4+ B(fg) +4 —tr(f)tr(g9)tr(fg) — 2,

v(f, 9) = B(f) + B(g) + B(fg) — tr(f)tr(g)tr(fg) + 8.

(d) Applying for (c¢) and (b),

v (f, 9) =B (f)+B(g) + B(fg) — tr(f)tr(g)tr(fg) +8
= B(g) + B (f) + B(gf) — tr(g)tr(f)tr(gf) +8
=(9, f)-

Applying for the trace identity (2.3),

v(fs9) =tr(fof g7 2
= tr(f)tr (9f L) —tr(f (9f g7V )
= tr(f)tr (') —te(fgfg ).
Y(fg7h) =te(fg ' flg) — 2
= te(f)tr (g7 fg) — tr(f (g7 'g) )
= tr(f)tr (f71) —te(fg~ ' f9)
= tr(f)tr (f71) — tr(fafg™ ).

Thus, v (f, 9) = v(f,¢g~") and hence v (f, g) = v(g, f) =(f,97").

(e) Since g is elliptic of order two, tr(g) = 0 and 5(g) = —4. Now the

identity (2.10) in (c¢) becomes:

v(f, 9) =B(f) —4+B(fg) +8
=B +8(fg9)+4
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Definition 2.3.10 A non-trivial element f in Isom™ (H?) is called to be primitive

elliptic of order n if B (f) = —4sin*(%).

The part (a) of Proposition 2.3.9 implies immediately the following corol-

lary.

Corollary 2.3.11 Let f be a non-identity element in Isom™ (H?). Then f is prim-

1

itive elliptic if and only if its inverse f ~" is primitive elliptic.

A detailed proof for the following well-known fact is included now. The
condition v (f, g) # 0 is necessary for Kleinian groups in the next chapter, and

hence Fix(f) N Fix(g) = @ is necessary for Kleinian groups as well.

Theorem 2.3.12 Let I' be generated by f and g in Isom™ (H?) with parameters

(v(f, 9),B8(f),B(g)), then v (f, g) # 0 if and only if Fix(f) NFix(g) = @.

Proof. (1) The necessity is that v (f, g) # 0 implies Fix(f) NFix(g) = 2.
Equivalently, Fix(f) N Fix(g) # @ implies v (f, g) = 0. Since f and g have

a common fixed point in C, one may assume that f and g fix co. Apply for

1 bl 1 b2
Theorem 2.1.13, f = and g = . Thus,
0 1 0 1
1 bl 1 bg 1 _bl 1 _b2
[f. 9] =
0 1 0 1 0 1 0 1
10
0 1
So v (f, 9)=0.

(2) Suppose that Fix(f) N Fix(g) = @. There are two cases to consider.
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Case 1: If f is parabolic, by using Theorem 2.1.17, one may assume the

following

—_
—_
IS

S

f= , = , where ad — bc =1 and ¢ # 0.

e}
—_
o

S8

Computing the commutator,

1 1 a b 1 -1 d —b
[f 9] =
01 c d 0 1 —c a

ac+ ad — bc+ & ad — ac — be — a?

2 ad — ac — be

Notice that ad — bc = 1,

tr[f,g] = 2ad — 2bc + ¢ = 2+ ¢*.

Since ¢ # 0, tr[f, g] # 2, and hence 7 (f, g) = tr[f,g] — 2 # 0.

Case 2: If f is not parabolic, one may assume the following by Theorem

2.1.17,

A b
f= , g = where A # 0,+1,ad — bc =1, b and ¢ # 0.

>

The commutator is

[f,g] =

S >

o _ od = 4 ad
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Using ad = 1 + be,

tr[f,g]:ad—bcA2+_)\—l;C+ad
1
= —bC(/\2+F) + 2+ 2bc

1
= —be(A— ) +2.
c( )\)—l—

Since b and ¢ # 0, tr[f, g] # 2, and hence v (f, g) = tr[f,g] —2#0. O

Remark 2.3.13 Suppose that two non-identity elements f and g in Isom™ (H3)
have a common fized point in C, i.e., Fix(f) N Fix(g) # @; then of course
v (f, g) = 0 by the previous theorem. Furthermore, Theorem 4.3.5 in [2] gives the
following two specific cases:

(a) If Fix(f) = Fix(g), then [f,g] = Id and fg = gf.

(b) If Fix(f) # Fix(g), then [f,g] is parabolic and fg # gf.

The triple of parameters for a two-generator group conveniently encode
various other important geometric quantities such as the following translation

length (see [30]), holonomy, and complex hyperbolic distance.

Definition 2.3.14 Let f and g be elliptic or lovodromic elements of Mob™(C),
and suppose that p is a hyperbolic line perpendicular to axis(f).

(1) The hyperbolic distance between two hyperbolic lines p and f (p) is
called the translation length of f, denoted by 7.

(2) The dihedral angle between the plane containing axis(f) and p and the
plane containing axis(f) and f (p) is called the holonomy of f, denoted by 6.

(3) The complex number § + i6 is called the complex hyperbolic distance

between the axes of f and g if § is the hyperbolic distance between axis(f) and
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azis(g) and 0 is the holonomy of the element of Mob™ (C) whose natural extension
moves axis(f) to aris(g), and whose azis contains the common perpendicular

between axis(f) and axis(g).

Remark 2.3.15 (a) The translation length T and holonomy 0 of f are inde-
pendent of choice of the perpendicular hyperbolic line p.

(b) The eastest way to see the holonomy 0 is to use a conjugacy to arrange
things so that azxis(f) lies on x3-axis, then it is simply the angle between the
vertical projections to C of p and f (p) at the origin.

(¢) Martin [19] established a way to find the parameters of a two-generator

group (f, g) in terms of geometric quantities T¢,0¢, and 6 + 6 as following:

— 4sinh? (Tf i Zef) (2.12)
= 4sinh? (Tg 0 ) : (2.13)
v(f, 9) = w sinh?(§ + 46). (2.14)

Corollary 2.3.16 Let f and g be two non-parabolic Mébius transformations in

Mob™(C). If axis(f) N axis(g) # @, then

1(f, g) = 212 (]2 9 v p),

Proof. Let ¢ be the hyperbolic distance between axis(f) and axis(g).
Since axis(f) N axis(g) # <, then § = 0, and hence the formula (2.14) becomes
B(f) By

v(f, 9) = T() sinh?(i).
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Notice that

sinh(i0) = isin(0).

Finally,
14, g) = 20D gy

Recall the following useful formulas from Lemma 4.4 in [15] that are de-

rived from above identities (2.12)-(2.14):

6 (f) +4[+ 15 ()]

cosh(7y) = 1 (2.15)
| +(f,9) 47 f,

cosh(20) = 30 Blo) + 1‘ ‘ (2.17)
_| M9 ] 47 f,

cos(20) = FGED + 1‘ ‘ (2.18)

It is often concerned with the case where one of the isometries, say g is of

order 2, in which case 5(g) = —4, and (2.17) and (2.18) take the simpler form

e, (i g)
cosh(26) = |1 307) | + | 307 |. (2.19)
g, a(f9)
cos(20) = |1 307) | — | 307) |. (2.20)

Notice that for fixed §(f) € C and fixed cosh(20) at (2.19), the set of
possible values for v (f, g) form an ellipse, while for fixed cos(26) and g (f) € C
at (2.20) one can get hyperbola. Thus § and 6 give very appealing geometric

orthogonal coordinates on C\ [, 0].
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2.4 Parameters of elementary groups

One will see that Kleinian groups are non-elementary discrete groups in
the first section of the next chapter. Thus, the dissertation pays the attention
first to elementary groups in the last section of the current chapter. A number
of important results about elementary groups are obtained, such as the clarifica-
tion about different definitions of elementary groups in the literature (Theorem
2.4.6), the classification of elementary groups (Theorem 2.4.9), the features of
elementary groups (Theorem 2.4.6), and the list of the possible parameters for
two-generator discrete elementary groups with non-zero parameter v(f, g) in three
tables (Tables 1, 2, and 3). These characterizations and tables play key roles in
enhancing the theory of Kleinian groups in Chapter 3 and in establishing the

universal constraints for Kleinian groups in Chapter 4.

Definition 2.4.1 A topological group is a discrete group if its topology is dis-
crete. In particular, a subgroup of a topological group is a discrete subgroup if its

induced topology is discrete. Otherwise, the group is called a non-discrete group .

It is equivalent that if a topological group G is a non-discrete group then
there is an infinite sequence of distinct elements in G' converging to the identity.
Every subgroup of a discrete group is of course discrete. In addition, conjugations

preserve the discreteness that is stated in the following proposition.
Proposition 2.4.2 Let G and H be topological groups acting on the topological
space X. Suppose that T' and I are subgroups of G. Suppose that I is conjugate
to in H. If T is a discrete subgroup of G then I is a discrete subgroup of G.

Proof. Assume that I is a non-discrete subgroup, then there is an infinite

sequence {g,, } of distinct elements of I'" such that

lim g, = Id.

n—oo
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Since I is conjugate to I in H, there exists h € H such that
I'=holoh' ={¢g=hgh™':g€eT}.

It follows that there is an infinite sequence {g,, = h™'g/,h} of distinct elements of

I". Notice that h~! is continuous,

lim g, = lim h'g/h = Id.

n—oo
Thus, I' is a non-discrete group, a contradiction. [

Definition 2.4.3 Suppose that a topological group G of homeomorphisms acts
on a topological space X and let S be a subset of X. The set stabilizer of S in

G, denoted by Stabs(S), is defined by

Stabg(S) = {g € G : g(S) = S} C G.

If S = {x} : Stabg({z}) is called the stabilizer of the point x in X, denoted by
Gy

If Stabg(S) = G : S is called to be invariant under G, or simply say S is
G-invariant.

For each point x in X, the following set is called an orbit of x under G

and denoted by G(z) :

Gz)={9(zx)e X:ge G} CX.

It is clear that the following lemma is given immediately by the definition

of orbit.
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Lemma 2.4.4 Let G be a topological group acting on the topological space X,
then every orbit of G is invariant under G. In particular, if the orbit G(z) = {x}

then x is a fized point of the group G.

Definition 2.4.5 Let G be a discrete group of isometries acting on H3. The set of
all accumulation points of the following orbit is called the limit set of G, denoted
by L (G) :

{9((0,0,1)) : g € G},

where (0,0,1) is a point in H3. The discrete group G is said to be elementary
if the limit set L (G) contains at most two points. Otherwise, G is said to be

non-elementary .

Notice that discreteness will imply that the orbit can only accumulate on
the boundary C and hence
L(G)cC.

There are three characterizations of an elementary group in the following

theorem.

Theorem 2.4.6 Let G be a discrete group of hyperbolic isometries acting on H3,
then the followings are equivalent:

(a) G is elementary.

(b) G has a finite orbit in H3.

(¢) G has a finite orbit fized point-wise by each element of G up to an
integer power.

(d) G is one of the following three types:

i) If the finite orbit meets H* or it is in C with at least three distinct points

(Type I ), then every non-trivial element is elliptic of finite order.
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ii) If the singleton orbit C C (Type II), then G is conjugate to a subgroup of

M6b(C) fizing oo whose every element is parabolic of the form az+b (a # 0 € C).
iii) If the doubleton orbit C C (Type III), then G is conjugate to a subgroup
of Mob(C) leaving the set {0, 00} invariant whose every element is of the form

az® (a#0€C,s ==1).

Proof. (a) = (b) : Since G is elementary, the limit set L(G) contains at
most two accumulation points. Notice that Proposition 3.1.10 states later that
the limit set L(G) is invariant under GG. Thus, L(G) includes a orbit containing
one or two points in H3.

(b) = (c) : Suppose there exists a finite orbit of G, say O = {1, xa,..., T, } .
By Lemma 2.4.4, the orbit O is invariant under G. In particular, for each element

g of G and each x; € O satisfies

{gk(mi):kzo,l,Z,---} CH{xy,ma,... 20}

Thus, there exist two distinct non-negative integers k; > I; such that g% (z;) =
g (x;), ie., g7l (2;) = x5 Let my = k; — I; then g™ (1) = x;. Set m =
mims - - - My, then

grio---og™ ()

m /
9" () = ~ = T
My~ Mi_1Mypq1 - - - My, times

and hence g™ fixes all the points z1, xs, ..., and z,.

(¢) = (d) : Obviously, G falls into the following three types.

Type I: If the finite orbit has one point in H?, say x¢. then, by (c), there
exists a non-negative m for each g € G such that g™ fixes xy. By Theorem 2.2.7,
g™ is elliptic or identity, and hence g™ has a finite order, say (¢™)" = Id for some

k € N. So g™ = Id gives that g is elliptic (order mk) or identity.
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If the finite orbit does not meet H?, then it has three distinct points in
C. Thus, there exists a non-negative m for each g € G such that g™ fixes those
three distinct points, so ¢ = Id gives that ¢ is of order up to m and hence g is
elliptic or identity.

Type II: Since the singleton orbit in C, by Lemma 2.4.4, G fixes the
singleton, say zo. Let h = ﬁ, then G is conjugate to subgroup hGh™! that fixes
h (z) = co. By Corollary 2.1.16, every element of hGh™! is parabolic of the form
az+b(a#0,beC).

Type III: Since the doubleton finite orbit in C, by Lemma 2.4.4, the dou-
bleton, say {z1, 22}, is invariant under G. Let h = % then G is conjugate to
subgroup hGh™! that leaves the set {h(21),h(22)} = {0,00} invariant. Now
applying for Corollary 2.1.16. If {0, 00} is a fixed point set of hGh™' then every
element of hGh™! is of the form az (a # 0 € C) . Otherwise, hGh™! interchanges
0 and oo, so every element is of the form az™! (a #0 € C).

(d) = (a) : If G has a finite orbit of Type I, then L(G) = @ by Theorem
5.7 in [25] and hence G is elementary. If G has a finite orbit of Type II, then L(G)
is a singleton by applying for Theorem 5.10 in [25] and hence G is elementary. If
G has a finite orbit of Type III, then L(G) contains two accumulation points by
Theorem 5.11 in [25] and hence G is elementary. [

Now a discrete group is elementary if and only if it has a finite orbit, it
is the characterization of an elementary group provided in Theorem 2.4.6. Now
using this characterization show the features of elementary groups in the following

theorem.

Theorem 2.4.7 The following subgroups of M&éb(C) acting on H3 are elemen-
tary:

(a) Finite subgroup.

(b) Stabilizer of each point in H3.

(¢) Subgroup with finitely many common fived points in H3.
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(d) Subgroup (f, g) with g (Fix (f)) = Fix (f).

(e) Subgroup of an elementary group.

Proof. (a) Let G be a finite subgroup, say G = {g1,92, - ,gn}- Let z

be a point in H3, then there is a finite orbit

G(x) ={91(2),92 (), gn ()}

By Theorem 2.4.6, G is elementary.

(b) Let G be the stabilizer of a point 2 in H3, then there is a singleton
orbit G (z) = {z} . So Theorem 2.4.6 gives that G is elementary.

(¢) Let G be a subgroup with finitely many common fixed point in H?,
say 21,22, -, and z,. So there are finite orbits {21}, {22}, -+, and {z,}, and
hence G is elementary by Theorem 2.4.6.

(d) Notice that f has either one or two fixed points in C. If f has one
unique fixed point, say Fix (f) = {21}, then g (Fix (f)) = Fix (f) gives g (1) = 2
and hence (f, g) has a common fixed point in H3. So (f, g) is elementary by the
previous part (c¢). Otherwise, f has two fixed points, say Fix (f) = {21, 22}, then
g interchanges the fixed points of f, i.e., g(z1) = 22 and ¢ (23) = 21, then there

exists a finite orbit

G (z1) = G (z2) = {21, 22} .

Thus, G is elementary by using Theorem 2.4.6.
(e) Let S be a subgroup of an elementary group G, and let = be a point
in H3, then the orbits satisfy
S(xz) C G(x).

Thus, there exists a finite orbit under G implies there exists a finite orbit under
S. Now Theorem 2.4.6 guarantees S is elementary. [J
A group G is said to be wvirtually abelian if there is a finite index abelian

subgroup of GG. In particular, an abelian group is of course a virtually abelian.
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The following proposition tells that every virtually abelian is elementary.

Proposition 2.4.8 If G is virtually abelian subgroups of Mob(C), then G is el-
ementary.

Proof. Let G be an abelian subgroup, then either G' contains only elliptic
elements and the identity Id or G contains some parabolic or loxodromic elements.
If G is the former case, by Theorem 4.3.7 [2], G has a common fixed point in H?,
so G is elementary by Corollary 2.4.7 part (c). If G is the latter case, by Theorem
4.3.6 (iii) [2, Section 5.1], either G' has two common fixed point in C and hence
G is elementary by Corollary 2.4.7 part (c), or there are at least a pair f and g

such that Fix (f) N Fix (g) = @ and they have a common fixed point in H?. [

Note that Euclidean triangle groups can be regarded as two-generator
groups

Ap,q,r) = (f,g: fP =97 = (fg9)" = Id),

where % + % + % = 1 and hence

(p7 q, T) = (27 37 6)7 (27 47 4)7 (3’ 37 3)7

Assume that a, b,and c are the sides of the triangle counterclockwise on the com-

s

plex plan C opposite the angles %, o and T, respectively. Recall that a,b,and c
are the corresponding reflections about the sides and hence a? = V? = ¢ = Id.
It follows that f = bc, g = ca, and fg = ba are the rotations of order p, ¢, and
r, centered at the corresponding vertices of the triangle, counterclockwise from

the corresponding axis to the other axis, respectively. Thus, the counterclockwise

rotation angles of f, g, and fg are double two interior angles 27”, 27”, and double

exterior angle 27 ( 1-— %) , respectively. Similarly, the comments here are valid for
finite spherical triangle groups on the unit sphere S? just replacing % + % + % =1
by ]l)—l— é —|—% > 1. Furthermore, Hagelberg, MacLachlan, and Rosenberger studied

discrete generalized triangle groups, see [36] for the more details.
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It is discussed the classification of discrete elementary groups in Section
5.1 of Beardon’s book [2] that is one of main reference books. The classification

of discrete elementary groups will be reformulated in the following theorem.

Theorem 2.4.9 (Classification of discrete elementary groups) Let G be an
elementary discrete group of Isom™ (H?). Then G is isomorphic to one of the fol-
lowing group. In case where p = oo, no relation of the form a? = Id or b? = Id
should be imposed.

(a) A cyclic group Z, = (a : a? = Id), for some p =1,2,--- , 0.

(b) A dihedral group D, = Z, X Zy = (a,b : a? = b* = Id,bab~" = a™ 1),
for somep =1,2,---  00.

(¢) The group (Z, X Z) X Zg or Z, X Z for somep =1,2,--- ,00:

{a,byc:aba bt =W =c* =Id,cact =a ', cbhct =b71).

(d) A Euclidean translation group Z X 7.
(e) A Euclidean triangle group A(2,3,6), or A(2,4,4), or A(3,3,3).
(f) A finite spherical triangle group Ay = A(2,3,3), or Sy = A(2,3,4),

or As = A(2,3,5).

The following lemma shows that if the parameter v(f,g) = 0 then the
two-generator group (f, g) is elementary, but the converse need not be true.

One can identify the two-generator elementary groups between (f,g) = 0 and

v(f,9) # 0.

Lemma 2.4.10 Let I' = (f, g) be a two-generator group with the parameters
(v,8,8). If v = 0 then T is elementary. FEquivalently, if T is non-elementary

then v # 0.
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Proof. It is a direct consequence of the result of Theorem 2.3.12 which
implies that if v = 0, then f and g have a common fixed point z, in C. It follows

that T fixes zo and has a finite orbit {zy}. Therefore I' is elementary. [

Lemma 2.4.11 Suppose that I' = (f, g) is a group generated by f and g in

Isom™* (H3). If T is a cyclic group then the parameter y (f, g) = 0.

Proof. SinceI" = (f, g) is a cyclic group, one may assume I" = {ak ke Z}

for some a € Isom™ (H?®). Thus, f = a* and g = a' for some k,[ € Z. Therefore,

v(f, 9) =tr (fofg™") —2
=tir (akala_ka_l) -2

=tr(ld)—2=0.

Lemma 2.4.12 Let I' = (f, g) be a discrete group with a triple of parameters
(v, B, —4). If v = 3 then T is elementary. Moreover, I' is isomorphic to a dihedral
group D, for somep=1,2,3,--- ,00.

Proof. There are two cases to consider: Suppose f is parabolic. Then
B = 0 = v and therefore by lemma 2.4.10 T" is elementary.

Suppose f is not parabolic. One may assume the following by Theorem

2.1.17,

f= ;9= where A # 0,\ # +1,av — ud =1

>
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Computing the commutator,

A0 a W L0 v —u
fof g™t = ’
0 % o v 0 A -0 «
av —Nud oy —ap
%(SU —ov av— %ué
and hence the parameters are
v=tr[f,g] -2
1
= 2av — A\ pud — ?ué —2
1
= 210 — pA*6 — FN(S
1
= —M5<)\ - X)Qa
1
F=w(f)—4= ()"
Assuming v =
2 Lo
—pd =1/ = (A= 5)
—pd =1

Hence av — pud =1, so av = 0. As assumed, 5(g) = —4, and hence tr(g) = 0. It

follows that o + v = 0, hence @ = 0. Then

0 p
g:
0
0 pn
—1/p 0
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Therefore, g(z) = —“Z—Q. As g interchanges fixed points of f, hence I' has a finite
orbit and is elementary.

Since (3(g) = —4, g is order 2. Recall, f and ¢

A0 0 u
f= and g = where A # 0, u # 0.
0 1 =1 g
Computing
- 0 u A0 0 —p
9fg" =
=10 0 % L0
u ©
1
3! = f
0 A

Thus, gfg~' = f~'. By Theorem 2.4.9 T is dihedral group D,, for some p =
1,2,3,-- 00, O

Let f and g be elliptic of order m € {2,3,4,5} in M6b™ (C), and let # be
the angle subtended at the origin between axis(f) and axis(g) and hence 6 = 0.
Then one can compute sin?(f) by using Lemmas 6.19, 6.20, and 6.21 in [41], find
the parameters ( (¢) and 8 (f) from Corollary 2.3.6, and calculate the parameter
v (f, g) by using Corollary 2.3.16. Thus, with these elementary observations and
spherical trigonometry, the list of triples of parameters with non-zero parameter
~v(f,g) can be obtained in the following Tables 1,2, and 3 (including the cases
in the Zhang’s dissertation [56]). The list of parameters occurring in these three

tables is called the exceptional set of parameters.



Table 1: Commutator parameter: 2, m.

m | sin®(0) ¥ Group Parameters

3 2 -2 Ay (—2,-3,—4)

3 3 -1 Sy (—1,-3,—4)

3 3—6\/5 _3—2\/5 As (_%57_37_4)
3| 3B | 3B 4 (—35 3 —4)

3 1 -3 D; (—3,—3,—4)

4| 1 -1 Sy (—1,-2,—4)

4 1 —2 D, (=2, -2, —4)

5 SE -0 A | (-5, -8 )
5| =8 | -1 As (—1, -5 4
5| s | As (—1, 355, —4)
I s L e s e
5 1 | =555 Dy | (=555, 6y
5 1 | =55 Dy | (55, Ly

Table 2: Commutator parameter: 3, m.

m | sin?() Y Group Parameters

3 3 -1 As (—1,-3,-3)
3 5 -2 Ay (—2,-3,-3)

4| 2 9 S, (—2, -2, —3)

5 103?‘/5 _372\/5 As (_ 372\/57 - 572\/5’ _3)
5SS 1 | 4 (-1, -5, -3)
| 5| g As (-1, -85, -3)
3 T P

o8

Notice that the angle between intersecting axes of elliptics of order 4 in

a discrete group is always either 0 when they meet on the Riemann sphere C or

7/2. This yields the additional parameter (—1, —2, —2) for the elementary group
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S4 when generated by two elements of order 4.
Furthermore, the angle between intersecting axes of elliptics of order 5 in
a discrete group is either arcsin \/lg or its complement arcsin \7—% After possibly

taking powers of the generator of order 5, the three additional parameters can be

obtained in the following table.

Table 3: Commutator parameter: 4,4 and 5, 5.

m,m | sin(6) 0% Group Parameters

44 | 1 1 S, (—1,-2,-2)

5,5 %g B 3_2\/5 As (_ 3_2\/57 B 5_2\/5’ - 5_2\/5)
5,5 %5 -1 As (_17_5%67_%5)
55 %5 _%5 As (_3+2\/57_5+2\/57 _5+2\/5)

Remark 2.4.13 (1) The azes of elliptics both of order 2 can intersect at an
angle %" for any k and n > 2 giving the Dihedral group D, with parameters
(—4sin® 2 —4 —4).

(2) The azes of elliptics of order p and q, p < q, in a discrete group meet

on the Riemann sphere C, i.e., meeting with angle 0, if and only if

(P, ) €{(2,2),(2,3),(2,4),(2,6),(3,3),(3,6),(4,4), (6,6)}

For all of these groups v (f, g) = 0.

In particular, Euclidean triangle groups A(2,3,6), A(3,3,3), and A(2,4,4)
have v (f, g) = 0. Furthermore, Lemma 2.4.11 below tells that cyclic groups
have v (f, g) = 0. Euclidean translation groups have v = 0 as well. Thus, the
two-generator elementary groups with v (f, g) # 0 are the dihedral groups (if

v(f, 9) = B(f) and B(g) = —4) or the finite spherical triangle groups.
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(3) The azes of elliptics elements of orders 2 and p, p > 3, can meet at

right-angles. In this case, the dihedral group D, with parameters are

(—4 sin? z, —4sin? z, —4) .
D p

At the end of this section, it is observed that the group generated by two

distinct elements of order 2 is elementary.

Theorem 2.4.14 Let T' = (f, g) be a discrete subgroup of Isom™ (H?), where f

and g are distinct elements of order 2. Then I' is elementary.

Proof. (1) Assume azis(f)N axis(g) = &. Let a be the common perpen-
dicular between two axes axis(f) and axis(g). Since f and g are both rotation
of order 2, each of them interchanges the ending points of o and fixes o setwise.
Thus, the product fg fixes the ending points of o and fixes « setwise. It follows
that azis(fg) = o and hence axis(fg) is fixed setwise by fg. Therefore, fg is lox-
odromic. Again since f and g are both rotation of order 2, by using Proposition

2.3.9,

W f9) =(fg. f)
= B(f*9) + B(fg) +4
= B(g) + B(fg) +4
= B(f9).

That is, v(f, fg) = B(fg). Notice that (f, g) = (f, fg) = Ds. This shows that
(f, g) is an elementary group.

(2) Suppose axis(f)N azxis(g) # @ in H?, then f and g have a common
fixed point in H?. Since f and g are rotations of order 2 about their fixed axes

axis(f) and axis(g) in H?, the product fg is a rotation of order 2 about azis(fg)
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that is perpendicular to axis(f) and azis(g) and passing through the common
fixed point. It follows that gfg~' = f~! and hence (f, g) = (f, fg) = D,,. That
is (f, g) is an elementary group.

(3) Suppose azis(f)N azis(g) # @ in C, then by (2.1), f and g have one
common fixed point in C and hence by Remark 2.3.13, fg = ¢f. There are two
cases to consider for the common fixed point, say z, € C.

Case 1: zy € C : Since both f and g are rotations of order 2 with the
common center in C, the product fg is a rotation of order 2. Thus, gfg~! = f~1
and hence (f, g) = D. This shows that (f, ¢g) is an elementary group.

Case 2: zp = 00 : Now [ and g fix 0o, so axis(f) and axis(g) are vertical
hyperbolic lines. Since both f and g are rotations of order 2 with distinct centers.
On the other hand, both rotation angles are m and the sum is 2x. It follows that
the product fg is a translation and hence fg¢ is parabolic fixing co. It follows that
the group (f, g) fixes co. Thus, by Theorem 2.4.6 (f, g) is elementary of type II.
O
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Chapter 3: Moduli Space of Kleinian Groups

One can describe the space of two-generator groups by three complex

dimensional space C3 via the mapping

(f 9) — (v (f, 9),8(f),B(9))-

Indeed, every two-generator Kleinian group (f, g) can be determined uniquely
up to conjugacy by a triple of complex parameters (v (f, g),3(f),(g)). Thus,
the space of two-generator Kleinian groups can be identified with a subspace
D of C3. Note that conjugations preserve the triples of complex parameters for
two-generator Kleinian groups, one can normalize a two-generator Kleinian group
and even more a sequence of two-generator Kleinian groups or passing to a sub-
sequence at any stage if necessary.

A fundamental result about the spaces of two-generator Kleinian groups
is that they are closed in the topology of algebraic convergence (Jorgensen The-
orem 3.2.13). This dissertation extends that the set D of triples of parameters
for Kleinian groups is closed subspace in C? in the usual topology (in Theorem
3.2.15), and that the set Dy of the pairs of the first two parameters for Kleinian
groups is a closed subspace in two complex dimensional space C? in the usual
topology (Theorem 3.3.4) by considering two projections, one is from D to D,
and the other is from D to the subspace on the slice z3 = —4 in C3. So that
there is an alternate proof of Jgrgensen’s inequality (Theorem 3.4.1) based on
the closed subspace D, in C? before looking at the more general cases in the next

chapter.
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3.1 Kleinian groups

Nowadays the term “Kleinian group” is being often used for a discrete sub-
group of hyperbolic isometries, a Kleinian group is adopted as a non-elementary
discrete group of hyperbolic isometries in this dissertation. Kleinian groups were
introduced by Poincaré in the 1880’s as subgroups of the Mobius group Mob(C)
acting discontinuously on some domain of C. In this section, the discontinuous
groups are characterized in Theorem 3.1.11 and the key concepts with different

definitions in the literature are clarified, such as discontinuity in Theorem 3.1.14,

and the limit set L (G) in Lemma 3.1.6.

As mentioned at the beginning of Chapter 2, there are three different ways
of thinking about subgroups with the same concept of discreteness: as subgroups
of Isom™ (H3), as subgroups of Méb™ (@), and as subgroups of PSL(2,C). Thus,

one can define Kleinian groups as subgroups of Isom™ (H?) as follows.

Definition 3.1.1 The subgroup G of Isom™ (H?®) is called a Kleinian group if it

15 discrete and non-elementary.

Thus, Kleinian groups are not elementary discrete groups studied in Sec-

tion 2.4. Applying for Theorem 2.4.9 there, the hyperbolic triangle groups
P q T 1 1 1
Ap.gr)={f9:f'=¢"=fg) =1d —++ <1

are two-generator Kleinian groups.

Example 3.1.2 The hyperbolic triangle group

A(2,4,5)={f,g: f*=g"=(fg)° = Id)

is a Kleinian group. By Corollary 2.3.6, 5(f) = —4,8(g) = —2, and B(fg) =



64

\/52_5 or _\/25_5. It follows that tr(f) = 0 and then Proposition 2.3.9 gives

v(fs 9) = B(f) +B(g) + B(fg) — tr(f)tr(g)tr(fg) + 8

= B(g) + B(fg) +4
V5 -5 V5 +5

=2+ 5 or 2 — 5

V5 —1 V5 +1

or — .

2 2

Thus, the triple of parameters for the Kleinian group A (2,4,5) is <@, -2, —4)

2
or (—@, -2, —4> .

Example 3.1.3 There are infinitely many Kleinian groups given by the hyper-

bolic triangle groups

A2.3,p)=(f.9: [ =9"=(f9)"=1d, p>T).

Then the corresponding triples of parameters are (1 + 3,3, —4) , where 5 = [ (f) .
In fact, applying for Corollary 2.3.6, 5(g) = —4 (so tr(g) =0) and 5(fg) = —3.

So Proposition 2.5.9 gives

v(fy 9) =B () +B(g9) + B(fg) — tr(f)tr(g)tr(fg) + 8

— 145

A necessary condition of two-generator Kleinian groups (f, g) is that the
parameter v (f, g) # 0 in the following corollary, which is directly from Lemma
2.4.10. Moreover, by Lemma 2.3.12, the condition 7 (f, g) # 0 is equivalent to

the disjoint fixed point sets: Fix(f) N Fix(g) = @.
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Corollary 3.1.4 Let I' = (f, g) be a two-generator Kleinian group with the pa-

rameters (7, 3,3'), then v # 0.

Next introduce discontinuous groups and some properties.

Definition 3.1.5 Let X be a topological space and G be the group of homeomor-
phisms acting on X. The group G is called to be discontinuous at z € X if there

s a netghborhood U of x such that

g(U)NU = @, for all but finitely many g € G.

The set of all x € X at which G is discontinuous is called the ordinary
set of G and denoted by O (G). A group G is called a discontinuous group acting
on X if O(G) # &, i.e., there is a point x € X at which G is discontinuous.

Maskit defined freely discontinuous in his book [46], it is clear that a
group G is freely discontinuous at a point x then it is discontinuous at z. Thus,
the discontinuity here generalizes the free discontinuity.

Clearly, if G is discontinuous at all points of an open subset D of X then
D C O(G). Furthermore, the ordinary set O(G) can not contain any points fixed

by the group G. Thus,
Fix (G)NO(G) = 2.

Lemma 3.1.6 Let G be a discrete group of isometries acting on H3. Then the

limit set is the complement set of the ordinary set O(G) :

L(G) = B — 0(G).

Proof. Notice that L (G) is set of all accumulation points of the orbit

19((0,0,1)) : g € G} .
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(1) Let © € L(G), and let U be any neighborhood of z. Then there is a

sequence {g;} in G such that

g5 ((0,0,1)) € U, for all j.

In particular, g; ((0,0,1)) € U, and hence (0,0,1) € g;* (U). Let h; =
g; o gy, then g; ((0,0,1)) € gjo gy ' (U) = h; (U). It follows that

h;(U)NU # @,

for all j. Thus, the group G is not discontinuous at z, so = € H3 — O(G)
and hence L(G) C H? — O(G).

(2) Let 2 € H3 — O(G), then the group G is not discontinuous at z. Apply
for Lemma 2.1.19 and Lemma 4.1 in [25], there exists a point 2/ in H? — O(G)

and a sequence {g;} in G such that

jlirilo gj =1 (3.1)
uniformly on all compact subsets of H3\{z'}. It’s clear that the point
(0,0,1) is not fixed under G. There are two cases to consider.

If 2 # (0,0,1), then lim; . g;((0,0,1)) = z, so € L(G) and hence
H3 - O(G) C L(G).

If 2/ = (0,0,1), then there exists g € G such that ¢((0,0,1)) # 2/, and
hence lim; . g; 0 ¢ ((0,0,1)) = lim; .o g; (9((0,0,1))) = =z, so z € L(G) and
hence H? — O(G) C L(G).

Therefore, it is proved that L(G) = H3 — O(G). O

Thus, the set of points fixed by the group G is included in the limit set
L(G). Actually, the limit set L(G) is defined in the Beardon’s book [2] as the

closure of the set of points fixed by some loxodromic element of G in C, and
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hence

Fix (G) C L(G) C C.

It follows that if G is a discrete subgroup of Isom™ (H?) then H?* C O(G) and
hence H* N Fix (G) = @. Moreover, Lemma 3.1.6 gives that the limit set L(G) is

the set of all accumulation points of the orbit of a point of H?® under the group

G.

Next, show that the discreteness is necessary for a discontinuous group in

the following proposition.

Proposition 3.1.7 Let X be a topological space and G be a discontinuous group
acting on X. Then G is a discrete group.
Proof. Suppose that GG is a non-discrete group, then there is a sequence

{g;} of elements of G' converging to the identity:

lim g; = Id.

Jj—00

Thus for every = € X, lim; ., g; (x) = z, so for every neighborhood U of x there

are infinitely many g, € {g;} such that

g(U)NU # 2.

So G is not discontinuous at any point, and hence G is not a discontinuous

group, it is a contradiction. [J

The following proposition shows that the discontinuity is preserved under

a conjugation.

Proposition 3.1.8 Let G be topological group acting on the topological space

X. Suppose that T' and I are conjugate subgroups of G. If I is a discontinuous
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subgroup of G then I'" is a discontinuous subgroup of G.

Proof. Since I is conjugate to I', there exists h € G such that

I"=holoh™' ={¢g =hgh™':geT}.

On the other hand, I' is a discontinuous group, so there is € X such that
I' is discontinuous at z, and hence there is a neighborhood U of x such that
g(U)NU = @, for all but finitely many g € I'. It follows that h (¢(U)NU) = 2.
Thus, there is a neighborhood h (U) of h (z) such that

g (h(U) N (U) = hgh™ (h (U)) N1 (V)

=h(gU))Nh(U)

for all but finitely many ¢’ € I'. Therefore I'" is discontinuous at h (z) € X, so I

is a discontinuous group. [

Lemma 3.1.9 Let X be a topological space and G be the group of homeomor-
phisms acting on X. If G is discontinuous at x, then G is discontinuous at g(z)

forall g € G.

Proof. Since G is discontinuous at x, there exists a neighborhood U of x
such that h(U)NU = @, for all but finitely many h € GG. Therefore, there exists a
neighborhood ¢(U) of g(x) such that h(g(U))Ng(U) = @, for all but finitely many
h € G and hence G is discontinuous at g(z). In fact, if h(g(U)) N g(U) # @, for
infinitely many h € G then there exists tg € h(g(U))Ng(U) such that t, € h(g(U))
and ty € g(U). Thus, there exists 21 € U such that ¢ty = g(x;) and there exists
x5y € U such that to = h(g(x2)), so g(z1) = h(g(z2)) and then z; = g~ h(g(xs))

where g~*hg € G, thus ¢g7*h (g(U)) NU # & for infinitely many h € G. Let ¢’ =
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g 'hg, then g7'hig = g~ thyg if and only if hy = hy and hence ¢'(U)NU # & for

infinitely many ¢’ € G, it is a contradiction to that G is discontinuous at z. [J

Proposition 3.1.10 Let X be a topological space and G be the group of homeo-
morphisms acting on X. Then
(1) the ordinary set O(G) is an open set in X and is G-invariant.

(2) the limit set L(G) is a closed set in X and is G-invariant.

Proof. (1) Assume O(G) # @, otherwise O(G) is already open. Let
zo € O(G), then there exists a neighborhood U of z( such that ¢(U)NU = @, for
all but finitely many g € G. Thus, forall x € U : g(U)NU = @, for all but finitely
many g € G, so x € O(G) and hence U C O(G). Thus, O(G) is open in X. Now
applying for Lemma 3.1.9, if x € O(G) then g(z) € O(G), i.e., g(O(G)) C O(G),
for all g € G. On the other hand, since g~! € G, ¢~ }(O(G)) C O(G) and hence
O(G) = g(¢g71(0(@))) C g(O(@)). Thus, g(O(G@)) = O(G), for all g € G. So
O(G) is G-invariant.

(2) It is clear that L(G) is closed in X as the complement of an open set is
closed. Since the entire space X and O(G) are G-invariant, then L(G) = X—0(G)
is G-invariant. [

Remark that the limit set L(G) of a non-elementary group is a perfect
set (i.e., it is closed and has no isolated points). Thus, if a limit set L(G)
contains three distinct points then it has uncountably many points. It is that
motivates Definition 2.4.5 of an elementary group. The following theorem gives

two characterizations of discontinuous groups.

Theorem 3.1.11 Let X be a topological space and G be a group of homeomor-
phisms on X, then the following statements are equivalent.

(1) G is a discontinuous group on X.
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(2) There ezists a point x in X and a neighborhood U of x such that

fU)NgU) =2,

for all but finitely many pairs of distinct f and g € G.

(3) There exists a point x in X and a neighborhood U of x such that

gU)NU =2, forge G -G,

where the stabilizer G, s finite.

Proof. (1) = (2) : Since G is a discontinuous group on X, there is
x € X at which G is discontinuous, i.e., there exists a neighborhood U of x such
that ¢g(U) N U = &, for all but finitely many g € G. Suppose for infinitely many
pairs of distinct f and g € G : f(U)Ng(U) # @. Taking ¢! € G,

g fU)NU =g fU)Ng g(U) =g (fU)NgU)) #g " (@) =2.

Let h = g7'f € G, then h # Id as f and g are distinct. It follows that h(U)NU #
@ for infinitely many h € G, it is a contradiction to the discontinuity of G at .

(2) = (1) : Suppose there exists a point z in X and a neighborhood U
of z such that f(U)Ng(U) = @, for all but finitely many pairs of distinct f and
g € G. In particular, taking g = Id, then f(U)NU = & for all but finitely many
f € G. Thus G is discontinuous at x € X and hence G is a discontinuous group
on X.

(1) == (3) : Since G is a discontinuous group on X, there exists a point
2 in X, where GG is discontinuous. Thus, there exists a neighborhood U of x such
that ¢(U) N U = @, for all but finitely many g € G.

Let g € G, then g(x) = x and hence x € g(U)NU, so g({U)NU # @.
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Therefore,

G C{geG:glU)NU # @} =S.

Notice that S is finite and hence the stabilizer GG, is finite.
Moreover, S — G, is finite, so there is n € N such that S — G, =

{91,92,* "+, gn}. Set the following interior set

U'= (U—=Uiz (ge(U) NU))

then U’ is a neighborhood of = such that ¢g(U")NU" = @, for g € G — G,.
(3) = (1) : Suppose there exists a point = in X and a neighborhood
U of z such that g(U)NU = @, for g € G — G, where G, is finite. Thus, G is

discontinuous at x € X and hence G is a discontinuous group on X. [

Next turn the attention to the groups which are properly discontinuous in

the Riemann sphere C.

Definition 3.1.12 Let G be the group of self-homeomorphisms acting on C, and
let D be an open subset of C. The group G is called to be properly discontinuous

i D if for every compact subset K of D satisfies

gK)NK =g,

for all but finitely many g € G.

Proposition 3.1.13 Let G be the group of self-homeomorphisms acting on C,
and let D be an open subset of C. If G is properly discontinuous in D then it is
discontinuous at each point in D.

Proof. Suppose that x is an arbitrary point in the open set D, then

there exists an open disk V centered at = such that x € V C V C D and hence
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the closed disk V centered at z is a compact subset of D. Since G is properly
discontinuous in D, then

gCgV)NV Cg(V)NV =g,

for all but finitely many g € G, i.e.,, g(V) NV = &, for all but finitely many
g € G. Thus, G is discontinuous at x € D. [
Notice that the converse in Proposition 3.1.13 is not true in general, how-

ever, the converse holds for subgroups of Méb(C) in the next theorem.

Theorem 3.1.14 A subgroup G of Mob(C) is properly discontinuous in C\L(G)

if and only if G is a discontinuous group in C.

Proof. (1) Suppose that G is properly discontinuous in C\L(G). By
Proposition 3.1.13, G is a discontinuous at each point in C\L(G) C C and hence
G is a discontinuous group in C.

(2) Suppose that G is a discontinuous group in C. By Proposition 3.1.7,
G is discrete. Notice that G is a subgroup of Mobius group Méb(C), by Lemma

2.1.19, G is a convergence group. Now apply for Theorem 4.8 in [25], since

G is discrete, convergence, discontinuous group, G is properly discontinuous in

C\L(G). O

Proposition 3.1.15 Fvery Kleinian group is countable.

Proof. Let G be a Kleinian group acting on H3, then there is x € H?
such that G is discontinuous at x.

Let G(z) and G, be the orbit of = and the stabilizer of z, respectively.
Since G is discontinuous at z, by Theorem 3.1.11, (G, is finite and hence all cosets
are finite. Thus, G is countable if and only if G /G, is countable.

It is well known in Abstract Algebra that G /G, and G(x) have the same

cardinality. Thus, G is countable if and only if G(x) is countable. It needs to



73

show G(z) is countable. If G(x) is uncountable subset in H?* C R3, then it
is well known in Topology that G(z) contains a convergent distinct sequence
{g; (x)} to a limit point xy, where g; € G and x¢ € G(z). It follows that the set
K = U2, {g; (x)} U{zo} is compact and g; (K) N K # @ for infinitely many j.

G can not be properly discontinuous in H3. [

Now turn the attention to a finitely generated free group that is a group
generated with no non-trivial relations on at least one generator, i.e., a group is
free if there exists at least one free generator. The number of free generators is
called rank. For example, if a group has n free generators then it is a free group of
rank n. Thus, a non-trivial finite group cannot be a free group. Martin [41] has
discussed a very interesting family of polynomial trace identities which can be
used to obtain geometric information about Kleinian groups. Also Marshall and
Martin [45] give a thorough account and complete proofs of the polynomial trace
identities by relating them to a determinant condition in a quaternion algebra.

Recall the following definition and theorem from [41] at the end of this section.

Definition 3.1.16 Let (a,b) be the free group on the two letters a and b. Any
written product of a,b,a™*, and b= is called a word in {(a,b), and denote w(a,b)
by a word starting and ending in a. A word w(a,b) is called a good word if it can

be written as

w(a,b) = a®b™a’b™ .- a®mrp g (3.2)

where the exponents of a alternate in sign, i.e., sy € {£1} and s; = (—1)7"tsy,

and r; # 0 but are otherwise unconstrained.

In particular, if one assumes that a? = Id, then the alternating sign

condition is redundant since a*

=a=a"'or Id for k € Z and hence every word
w(a,b) is good. For example, in the free group (f, ¢g) with the triple (v, 5, —4),

every word w(g, f) is good, where f,g € PSL(2,C). Recall the following well
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known theorem that is a key tool used in the study of the moduli spaces of

discrete groups.

Theorem 3.1.17 Suppose that (f, g) is free group with = [(f) and v =
v(f, g). Let w = w(f,g) be a good word in {f, g). Then there is a monic poly-
nomial p,, of two complex variables having integer coefficients with the following
property:

Po (1, 8) =7 (fiwl(y, f)), (3.3)

where w (g, f) is the good word in (f, g) by interchanging f and g in w (f, g).

The monic polynomial v (f,w (g, f)) is referred to trace polynomial in this

dissertation.

Lemma 3.1.18 Let (f, g) be a free group with (v,5) = (v (f, g9),8(f)), and let

w=w(f, g) be a good word. Then

pw (7, 8) =~ (f,w') =~ (f, frw' f"), form,n €Z

where w' = w (g, f) is the good word in (f, g) by interchanging f and g in

w(f, g).

Proof. Applying for Theorem 3.1.17, p, (v, 5) = v (f,w’). It needs to

show  (f,u) = 7 (f, f™w'f") only.
By Definition 2.3.1,

S ) =t f ] - 2
= 1ir (ffmw/fnf—lf—nw/—lf—m) )
= ir (fmfw/f—lw/—lf—m) —92.
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Since f™ fw' f~1w'~! f~™ is conjugate to fw’ f~lw'~! by f™, then by Remark 2.1.5,

tr (fmfw' [l 7 ™) = b (fo! fT' ") Thus, v (f, fmw' f*) = v (f,w'), for

m,n € Z. U

3.2 Space of two-generator Kleinian groups

The dissertation pays the attention to two-generator Kleinian groups from
this section. A fundamental result concerning spaces of finitely generated Kleinian
groups is that they are closed in the topology of algebraic convergence (see Jor-
gensen Theorem 3.2.13). The approach here is to use the fundamental result
extending the closedness of the space of two-generator Kleinian groups to that
the set D of triples of parameters for Kleinian groups is a closed subspace in three
complex dimensional space C? in the usual topology (see Theorem 3.2.15).

One of the most important subgroups of a Kleinian group (f, ¢) is {f, gfg ")
that generated by two elements of the same trace and Theorem 3.2.6 guarantees
that (f, gfg~!) is a Kleinian group if f is not elliptic of order p < 6. There are a
further two Kleinian groups I'* = (f, ¢) and T'Y = (f, ) in Corollary 3.2.9 once
(f, gfg™') is Kleinian. These three Kleinian groups play a significant role later
on.

A group is said to have a property virtually if it has a subgroup with a
finite index that has the property. Thus, G is a virtually Kleinian group if G
has a Kleinian subgroup of finite index. Lemma 3.2.3 and Theorem 3.2.4 state
that discrete groups and Kleinian groups are equivalent to the virtually discrete
groups and the virtually Kleinian groups, respectively. Furthermore, Theorem
3.2.5 shows that every non-trivial subgroup of finite index in a Kleinian group

remains Kleinian.

Starting with the next lemma in part from [16] include an alternate proof
as some of the ideas that suggests an approach to the related problems in this

dissertation.
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Lemma 3.2.1 Let (f, g) be a two-generator group, and let v = ~(f, g) and

B =pB(f). Then the subgroup {f, gfg~*) of {f, g) has

(1) the triple of parameters

(v(f,9fa ). 8(f),B(afg™")) =(v(v—8),8,8). (3.4)

(2) index two in (f, g) whenever g is elliptic of order 2, and the Zy-extension of

(f, gfg™") can be expressed as the union of the right cosets of {f, gfg ') :

(f,9)=(f.9fg7")Vg(f afg™").

Proof. (1) By the definition of the parameters $ and ~,

tr(f) = B+ 4 and tr[f, g] = v + 2.

Let h = gfg~! then tr(f) = tr(h) and hence 3 (¢fg~') = B (h) = B(f) = B.
Applying for the identities (2.3) and (2.4),

tr(fh) = te(f)te(h) — tr(fh7")
= tr?(f) —tr[f,g] = B — 7 +2,
Wfgfg™) = trlf k] =2 =26%(f) + tr*(fh) — to? (f) tr (fh) — 4
=2(B+4)+(B-7+2)"-(B+4)(B-7+2) -4

=7(v = B).

(2) Since g is elliptic of order 2, (gfg~1)" = gfPg~! = gfPg for each p € Z.

So every element w in {f, gfg~') can be expressed as

w=fgfgfg...gf,
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' = gfg consists of

where p1,p2,p3, ..., Pn_1,Pn € Z. Since the generator gfg~
two time of g, each element w in (f, gfg~') if and only if w consists of even
number of g. If w consists of odd number of g then gw € (f, gfg~!) and hence
we g (f,9fg7") = g(f, gfg"). Thus (f, g) = (f, gfg~") Ug ([, gfg") and

(f, gfg~ ') has index two in (f, g). O

Lemma 3.2.2 Let (f, g) be a two-generator group. If g is not elliptic of order

2, then

Fix(f) NFix(gfg™') = @.

Proof. Observe that by Corollary 2.1.11 Fix(gfg~!) = g(Fix(f)). There
are two cases to consider.

(a) If Fix(f) has one element, say z, i.e., Fix(f) = {z}, then Fix(gfg~!) =
{g(2)}. Since (f, g) is Kleinian, g(z) # 2. Thus, Fix(f) NFix(gfg~!) = @.

(b) The second case is that Fix(f) has two elements, say z; and zs, then
Fix(gfg™') = {g(z1),9(22)}. Since (f, g) is Kleinian, f and g cannot share any

fixed points, thus

9(21) # 21, 9(22) # 2. (3.5)

By Beardon’s Theorem 5.1.2 in [2], f and ¢gfg 'cannot share exactly one fixed
point. Thus, if Fix(f) N Fix(gfg™*) # 0 then Fix(f) = Fix(gfg~!), the only
possibility is that g interchange the fixed points of f, so g(z1) = 22 and g(z2) =

z1 and hence

92(2’1) =g(9(z1) = 9(22) = 21

92(2’2) = g(9(22) = g(21) = 2.

This implies that ¢? fixes z;and 2, but that are not fixed by ¢. By using Propo-
sition 2.1.8, ¢? and ¢ fix the same points, so g has at least one fixed point z,

different from z; and 2. It is concluded that ¢ has at least three fixed points
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being 71, 7, and 2. This implies that ¢? is the identity and hence ¢ has order
2. It is contradicting to the assumption that g does not have order 2. Therefore
Fix(f) NFix(gfg~') = @ and the proof is completed. O

It is natural and interesting to ask if a group has a property when it
has a subgroup with the property. The following lemma and theorem give the
confirmative answers to discrete groups and Kleinian groups in the case of a

subgroup with a finite index.

Lemma 3.2.3 A group G is discrete if and only if it is a virtually discrete group.

Proof. (1) If G is a discrete group then it is a virtually discrete group
because that the discrete group G is the subgroup of GG of order 1.

(2) Since G is a virtually discrete group, there is a discrete subgroup H of
G of finite index. Suppose that G is not discrete, then there is a sequence {g,}

of elements of G that converges to the identity Id :

lim g, = Id.

n—oo

As H has a finite index in G, one may assume

G=¢,HU¢p,HU---Uo H,

n

where ¢; = Id, ¢y -+, ¢, € G for some n. Thus, there exists at least one coset,
say ¢;H for some 1 < i < n, has a subsequence {g,,} converges to Id. On
the other hand side, ¢y, ¢, --- , ¢, are homeomorphisms, H, ¢, H,--- , ¢, H are
discrete and hence there does not exist any convergent sequence. It follows a

contradiction. So G is a discrete group. [J

Theorem 3.2.4 Let G be a subgroup of Isom™ (H?3), then G is a Kleinian group

if and only if it is a virtually Kleinian group.
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Proof. The sufficiency is trivial because that the Kleinian group G is the
subgroup of GG of order 1. First show the necessity. Suppose that G is a virtually
Kleinian group, so there is a subgroup H that is Kleinian with a finite index and

hence H is discrete. One may assume

G=HUH U---UH,,

where H, Hy,--- , H, are the all left cosets of G under H.
It follows from Lemma 3.2.3 that G is discrete. Suppose that G is elemen-

tary, then there exists a finite orbit of a point zy € H3, say G (z) , thus

G (xo) = H (xo) U Hy (z9) U -+ - U H,, (x0) .

Therefore, H has a finite orbit H (z) . This contradicts that H is Kleinian. Thus,
G is non-elementary and hence G is a Kleinian group. U

Notice that the sufficiency of the proof for the previous theorem is obtained
by the trivial subgroup G. Do non-trivial subgroups of finite index in Kleinian

groups remain Kleinian? It is confirmed in the following lemma.

Lemma 3.2.5 Suppose that G is a Kleinian group. If H is a two-generator

non-trivial subgroups of finite index in G, then H is a Kleinian group.

Proof. Since G is a Kleinian group, according to Theorem 3.2.14, the
two-generator subgroup H is discrete.

Claim that subgroup H of non-elementary group G is non-elementary as
well and hence H is a Kleinian group.

Suppose that H is an elementary subgroup of GG, then there exists a finite

orbit H (z4) of a point xy € H3. Since H has a finite index in G, one may assume

G:HUgll-IUgQHU---UgnH,
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where g1, 92 -+, g € G for some n € N. Thus,

G (z0) = H (20) U g1 H (x0) U goH (20) U -+ U g, H (o) -

Let H (z9) = {x1, 22, -+ , 2} some k € N, then

g;iH (z0) = {gj (x1), 95 (v2) -+, g5 (vx) }

is finite for j = 1,2,--- ,n. It follows that G (zo) has a finite orbit of a point
zo € H3 and hence G is an elementary group, it contradicts to G is a Kleinian

group. [J

Theorem 3.2.6 Suppose that (f, g) is a Kleinian group. If f is lozodromic or

parabolic or elliptic of order p > 6, then (f, gfg~') is a Kleinian group.

Proof. (a) Suppose that g is elliptic of order 2. By Lemma 3.2.1 {f, gfg~ ')
has index 2 in (f, g) . Thus applying for Lemma 3.2.5, Kleinian group (f, ¢) im-
plies that (f, gfg~!) is a Kleinian group.

(b) Suppose that the order of g is not 2. The Kleinian group (f, g) gives
the following two facts. First, it is non-elementary and hence it is not abelian
by Proposition 2.4.8. Second, applying for Theorem 3.2.14 (f, gfg~') is discrete.
It needs to show that (f, gfg~') is non-elementary. Otherwise, if (f, gfg~') is
elementary, then there are three types by Theorem 2.4.6:

(i) Suppose (f, gfg~!) is an elementary group of type I, each non-trivial
element of G is elliptic. Since the order of f is not 2, 3,4 or 5, the order of g fg~" is
not 2,3, 4 or 5, and hence, by using the Tables 1, 2 and 3, (f, gfg~!) is not a finite
spherical triangle group A4, Sy, and As or the dihedral groups D3, Dy, and Ds.
Suppose (f, gfg~!) is a finite cyclic group. By Lemma 2.4.11, v (f,gfg™ ') = 0,
and then Theorem 2.3.12 gives Fix(f) N Fix(gfg~') # 0, but this contradicts to
Lemma 3.2.2.
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(ii) Suppose (f, gfg~') is an elementary group of type II. By Corollary
2.4.7, (f, gfg~") is conjugate to a subgroup of Mob(C) fixing co whose every
element is parabolic of the form az + b (a # 0 € C). Thus, the group (f, gfg~!)
is abelian and hence g (Fix(f)) = Fix(¢gfg~') = Fix(f), it is a contradiction to
Kleinian group (f, g).

(i71) Suppose (f, gfg~') is an elementary group of type III. Then both f
and gfg~! are elliptic or both are loxodromic. In either case (f, gfg~') is abelian
and as above this is a contradiction. It is now shown that (f, gfg~!) cannot be
elementary if g does not have order 2. Hence in all cases (f, gfg~!) is a Kleinian
group. [

In a Kleinian group (f, g) , if f is non-parabolic, then so is h = gfg~' and
hence the axes axis(f) and axis(h) exist. Thus, there are two elliptic elements
¢ and 1 of order 2 such that ¢f¢* = h and 1 f1)~" = h~'. Actually, ¢ and 1
have their axes axis(¢) and azis(1)) as the fixed point sets at right-angles to one
and other and also their axes bisect the common perpendicular between the axes
azis(f) and azxis(gfg"') (see [15]). This is a useful tool that plays an important
role in this chapter. For convenience, the tool is summarized in the following

lemma.

Lemma 3.2.7 Let (f, g) be a Kleinian group and let f be a non-parabolic ele-
ment. Then there are two elliptic conjugators ¢ and 1) of order 2 such that ¢ acts
on f via conjugating f by g and 1 acts on f via inverting f and then conjugating
by g :

ofo " =gfg " andpf Tt =gf g,

where ¢ and 1 have their azes axis(¢) and axis(v) as the fived point sets at
right-angles to one and other and also their azes bisect the common perpendicular

between the axes axvis(f) and axis(gfg™!).
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Lemma 3.2.8 Let (f, g) be a Kleinian group with the triple of parameters (v, 3, '),
where f is non-parabolic. Then there are two elliptic ¢ and 1) of order 2 such that
'Y = (f,¢) and TV = (f, %) are discrete groups containing {f, gfg~') with index

2 and their triples of parameters are (v, 3,—4) and (6 — v, 3,—4), respectively.

Proof. Let (f, g) be a Kleinian group with parameters (v, 3, 3').

Since f is either elliptic or loxodromic, so there exists axis(f) in H3. Let
h=gfg~t then h! = gf~'g~! and h has the same trace as f and hence azis(h)
exists in H3. By Lemma 3.2.7, there are two elliptic ¢ and 1) of order 2 such that
¢f¢  =hand pfp~t =h1,

First, claiming that two groups I'? = (f, ¢) and I'¥ = (f,4) are discrete.

Let I' = (f, h), then

L= (f,h)=(fofo"),
L={fh)=(f,h7")=(fofv).

It follows that I is a subgroup of each I'? and I'Y. By Lemma 3.2.1, I is of index
two in I'? and

I =TuUgrl. (3.6)

Since (f, g) is a Kleinian group, by Theorem 3.2.14, the subgroup I' of (f, g) is
discrete and hence ¢l is discrete as ¢ is is an homeomorphism. It follows from
(3.6) that I'? is discrete. Similarly, 'V is discrete.

Second, claiming that the parameters for I'* and 'Y are one (v, 3, —4) and
the other one (5 — v, 8, —4).

The parameters for ['? are (v,, 3, —4) and those of 'Y are (7, 3, —4). Now
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using the identity (3.4) and Proposition 2.3.9 imply that

Yy = B) =(f.h) =7(f. of¢™") =11 (71 — B),
Yy = B) =(f.h) =7(f,h ) = v(f, o fo™) = v5(v2 — B).

It gives the following two quadratic equations

V=B —v(y—6)=0

Vs — By — (v —B) =0.

BEr/ B2 +4v(v—B) BE(B—27)
2

Solving the first quadratic equation: ~; = 5 =
B

Similarly, by the second quadratic equation: v, = v, or § — . That is,

= 7, or

{7172} = {7, B8 — 7} as (2.19) shows both possibilities occur.

Thus, after relabeling, the parameters for I'* are (7, 3, —4) and those of
Y are (8 — 7,3, —4).

By Lemma 3.2.7, ¢f¢ ' = gfg ' and ¢ fyp ' = gf g7, so

(frafg™") = (fs ofo™") = (f, ofe7").

Since ¢ and 1) are elliptic of order 2, by Lemma 3.2.1, {f, gfg~!) is subgroup of
each I'? and I'¥ with index 2. This completes the proof. [

Remark that § —~ # 0 in Lemma 3.2.8. Otherwise, it is a dihedral group
by Lemma 2.4.12. Tt contradicts to Kleinian group (f, g).

Now the natural question is to determine whether the two discrete groups
I'* and I'Y produced by Lemma 3.2.8 are actually Kleinian. Since they contain
(f, gfg™') that is of index 2, it only needs to decide if {f, gfg~') is Kleinian. By
Theorem 3.2.4, if (f, gfg~!) is a Kleinian group then the following corollary is

obtained immediately that I'* and ' are Kleinian groups.
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Corollary 3.2.9 Suppose that (f, g) is a Kleinian group. If that f is lozodromic
or parabolic or elliptic of order p > 6, then the groups T? = (f,¢) and TV = (f, )

produced in Lemma 3.2.8 are Kleinian groups.

Lemma 3.2.10 Let (f, g) be a Kleinian group with f not of order 2. Suppose
that the triple of parameters (v (f, g),B(f),—4) is not one of those exceptional

groups listed in Table 1. Then the subgroup {f, gfg~') is Kleinian.

Proof. Applying for Theorem 3.2.14 the subgroup (f, gfg~') of Kleinian
group (f, g) is discrete. It needs to show that (f, gfg~!) can not be elementary.
Let v =~ (f, g) and 5 = B (f). By Lemma 3.2.8 there is an elliptic ¢ of order
2 such that I'* = (f, ¢) is discrete group containing (f, gfg~') with index 2
and the triple of parameters for I'? is (v, 3, —4). By the hypothesis, (v, 3, —4)
is not one of those exceptional groups listed in Table 1, then I'? is not a finite
spherical triangle group A4, Sy, and As. Thus, (f, gfg~') can only be elementary
if (f, gfg™y=~(y—pB)=0,ie.,v=0o0rvy=}.Since (f, g) is Kleinian, v # 0.
So it can only be v = 3 and hence it is the dihedral group. In this case, since f

is not of order two,

gfg™t =

In the case gfg~' = f, it gives g (Fix(f)) = Fix(¢gfg!) = Fix(f) and hence g is
elliptic of order 2 (Lemma 3.2.2) fixing or interchanging the fixed points of f in
C. In the case gfg~' = f~!, g might be a power of f. In either case (f, g) is not

Kleinian, contradiction. [J

It has been showed in Example 3.1.3 that each Kleinian group given by
the hyperbolic triangle group A(2,3,p) = (f,g: [P =¢* = (f9)® =1Id, p> 7)
has the triple of parameters (1 + (3, 3, —4) , where 5 = S (f) . Thus, Lemma 3.2.1

gives the triple of parameters (1 + (3, 3, 3) for the subgroup (f, gfg~!).
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Theorem 3.2.11 Let ' = (f, g) be a Kleinian group with the parameters (1 +

B,3,3). Then there are two elliptics elements of orders 3 and 2 generating T

Proof. Let u = fg~'and v = f¢g~2, then f = uwv™'u and g = v~'u. Thus,

I'={f, 9) = (uv).

Now show that u and v are elliptics elements of orders 3 and 2, respectively.

By hypothesis the parameters (v (f, 9),8(f),8(9)) = (1 + 3,5, 3), the

following equations are obtained,

v(fy 9) =1+ 5(f) and 5(f) = B(9),

ie., tr[f,g] —2=1+1tr*(f) —4 and tr?(f) — 4 = tr’(g) — 4. Thus,

trlf, gl = 0*(f) — 1, (3.7)

and tr?(f) = tr’(¢g). One may assume that tr(f) = tr(g) by replacing f

by — f if necessary. Thus, the identity (2.3) becomes

tr(fg) +tr(fg~!) = tr*(f). (3.8)

Applying for the Friche’s identity (3.7),

tr*(f) — 1 = tr[f, g]
= tr*(f) +tr*(g) + 1 (fg) — te(f)tr(g)tr(fg) — 2

=2tr*(f) + tr*(fg) — tr*(f)tr(fg) — 2.
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Rearranging and using the identity (3.8),

1= tr?(f) + tr*(fg) — tr(f)tr(fg)
= tr*(f) + t*(fg) — (tr(fg) +tr(fg™")) tr(fg)
= tr?(f) — tr(fg~)tx(f9),

which gives

tr(fg)tr(fg~ ") = tr?(f) — 1. (3.9)

Using the above identities (3.9) and (3.8),

(t(fg) — te(fg )" = (tr(fg) +tr(fg~h)" — 4tx(fg~)tx(fg)

= tr*(f) — 4tr’(f) + 4

= (t*(f) - 2)".
By replacing g by —g if necessary, one may assume that
t(fg) — tr(fg ) = tr3(f) — 2. (3.10)
Using the equations (3.8) and (3.10),
tr(fg~) =1 (3.11)

and hence 3 (fg~!) = =3, so u = fg~! is elliptic of order 3.
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Finally, using the identities (2.3), (2.2), and (3.11):

tr(fg™?) =tr(fg~'g7")
tr(fg~tr(g™") — tr(fg~'g)
tr(fg~")tr(g) — tr(f)
tr(fg~t)tr(g) — tr(g)
= tr(g) (tr(fg~") — 1) =0,

which gives tr(fg=2) = 0 and hence 3 (fg~2) = —4, therefore, v = fg~2 is elliptic
of order 2.

By Proposition 2.3.9 (d), v (u,v) = v (u,v™!)

(07 = tr (ot ) - 2
=tr (fg~'g*fof " fg7%) —2
=tr(fgf'g7") —2
=7(f. 9).

Hence, v (u,v™ ') =1+ 4. O

Now turn the attention to “algebraic convergence” for n-generator groups.
However two-generator groups are mainly concerned in this dissertation.
Definition 3.2.12 One say a sequence I'; of subgroups of M&b(C) converges
algebraically to a subgroup I' of M&b(C) provided that each I'; may be expressed

s (fin, fiz, -+ s fim), that T' may be expressed as (fi, fa, -+, fn), and that for
each k =1,2,--- ,n the sequence fjj converges uniformly to fi in the spherical

metric of C.

A fundamental result concerning spaces of finitely generated Kleinian

groups is that they are closed in the topology of algebraic convergence due to
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Jorgensen. Recall the result as the following Jorgensen Theorem. Here note the
fact that if instead of a sequence {I';}32, of Kleinian groups it is a continuous
family {I'; };c[0,1], then all the groups are in fact isomorphic and this isomorphism

is induced by the map back.

Theorem 3.2.13 (Jargensen) The space of n-generator Kleinian groups is closed
in the topology of algebraic convergence. Fquivalently, if a sequence of n-generator
Kleinian subgroupsT'; = (fj1, fj2, -+, fjn) converges algebraically to a n-generator
subgroup T' = (f1, fa, -+, fn) in Mob(C) then T is a Kleinian group.

Moreover, the map back is an eventual homomorphism. That is for all
sufficiently large j the map I' — T'; defined by fi, — f;r extends to a homomor-
phism of the groups.

Typically the proof of the above Jgrgensen Theorem is one of the first
applications of Jgrgensen’s inequality (see Section 3.4). Another important ap-
plication of Jgrgensen inequality is the characterization of a Kleinian group by

two-generator subgroups that is recalled from Martin [41] in the following theo-

rem.

Theorem 3.2.14 A subgroup G of Isom™ (H?) is Kleinian if and only if every

two-generator subgroup of G is discrete.

It is going to extend the closedness to the set of triples of complex para-
meters of Kleinian two-generator in the following important theorem. One can
describe the space of Kleinian groups generated by two generators f and g € G
(up to conjugacy) as a subset of the three complex dimensional space C? via the

map

(f, 9) — (v (f, 9),8(f),B(9))-
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Theorem 3.2.15 Let subset D be defined by

D = {(7,6,6’) € C*: (v,83,8) are the parameters of a Kleinian group {f, g)} ,

then D is closed in the three complex dimensional space C* in the usual topol-

ogy. Equivalently, let (v, B;, 6;) be a sequence of parameters for two-generator

Kleinian groups (fj, g;). If (v}, 85, 8;) — (v, 8,8"), then (v, B,5') is a triple of

parameters for a two-generator Kleinian group.

Proof. The proof is broken down into two cases. For each case, it needs to
construct a sequence of two-generator Kleinian groups (f;, g;) with the parameters
(7]-, B, ﬁ;) and then, by Theorem 3.2.13, the algebraic convergence limit group
(f, g) is a Kleinian group. It will be shown that the limit triple (v, 3, 3') is the
parameters for the limit group (f, g)

(a) Suppose (5,3") # (0,0) . One may assume (3 # 0, then §; # 0, for all
but finitely many j. For the sequence of parameters (v;, 3;, ﬁ;), by Theorem 2.3.2,
there is a sequence of Kleinian groups (f;, g;) up to conjugacy for all but finitely
many f; are non-parabolic elements. Passing to a subsequence if necessary, recall
(fj,9;), for all f; are non-parabolic elements, and 3; # 0 for all j. Thus, applying

for Theorem 2.1.17, one may assume the following with A\; # 0, £1 :

)‘j 0 Clj bj
fi= and g; = € PSL(2,C),
0 % Cj dj

such that (v;, 8;, ;) is a triple of parameters for (f;,g;). Further, b; # 0 and
¢; # 0 for all j, otherwise f; and g; share a common fixed point and (f;, g;) is

elementary, if it is discrete.
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First, by Definition 2.3.1,

1 1

— (). 4 N2 A= () — 2

which gives )\? —y/B;A, —1 = 0. Solving the quadratic equation gives

A

J

_ VB B
VA

‘/BiT VA+4 and hence /\i
J

Since f3; converges to 3, certainly A; converges to A =

converges to % Thus,

A0 1.,
0 3

Second, consider the conjugacy of group (f;, g;) by a diagonal matrix conjugator

w: 0
hj: /
0 3

Since h; commutes with f; and with f, f; and f are conjugate to themselves.

The conjugacy of g; is also given,

1 2
hg '_1: ,LLJ 0 CLj b] E O _ CLj bj,uj
7937 1 —2

U ¢ d 0 gy cipy - dj

Now choose p; = #, then b;u? = 1 and ¢;u~ = ¢;b;. One assume recall that
J
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Then, by Definition 2.3.1,

B+ 4= (a; +d;)*. (3.13)

Computing the commutator,

2 2
L ajdj — cj/\j —a; + aj)‘j

o) = figifi e = | . ’
Sz Gl —3k+agd;

and hence the parameter is

v; = tr(fj, g5] —2

C.
= (ljdj —Cj/\i — )\—]2 +6Ljdj -2
J

1
:—Cj (/\?—FP) +2<1+CJ)—2

J

Finally, since ¢; = _Lé, v; = —Bc; — v, and §; — B #0,
J
c; — ¢, for some c € C.

Notice that det (g;) = a;d; — ¢; = 1, gives the product a;d; is convergent
and hence bounded

a;dj =1+c¢; —1+c.

Since the sequence 6; is convergent, 6;- is bounded. The identity (3.13)

gives the sum a; + d; = /3 + 4 is bounded. Let the product a;d; = s; and the
o Sj:tq/sj2.74t]‘ and dj =5 _Sji,/sfflltj

sum a; +d; = t;, then a; = 5 5 , 80 a; and d; are
in terms of sum a; + d; and product a;d; by the continuous operations a; and d;

are bounded. So a; and d; admit convergent subsequences, say the limits are a
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and d, respectively. It follows that g; is convergent to g = , passing to

a corresponding subsequence if necessary.

The calculation of parameter v :

y=tr[f,g] -2

:ad—c)\z—%+ad—2

1
__C(AQJFF) +2(1+c¢)—2

12

= —fc.

In summary of the part (a), by the identities (3.12), (3.13).

1

ﬁjﬁﬁ:()‘_xy

B;Z(Gj+dj)2—4—>((l+d)2—4:5/.

Vi = _Bjcj — —fc=".

Therefore, the triple of parameters of (f, g) is (v,,3'), and hence (f, g) is
Kleinian by Theorem 3.2.13.

(b) Suppose that (3, 8") = (0,0) . For each f; and g; has at least one fixed
point, to avoid common fixed points, say f; fixes z; and g; fixes z, with z; # 2.
Let z3 € C — {z1,2}. Since Mob (@) acts transitively on triples of points in
C, there exists h € M&b (C) taking (21, 22, 23) to (00,0,1). Thus, hfjh~"! fixes
h(z1) = oo and hg;h ™' fixes h(z3) = 0. Recall hf;h~' and hg;h™' as f; and g;,
respectively. So one may assume by conjugacy that for each j a fixed point of

each f; is oo and that a fixed point of each g; is 0.
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Then, by Corollary 2.1.16, choose f; and g; as following,

Aioa; . 0
fi= 2 and g; = / ,
0 % b; Mi

where \; — 1,1; — 1, and b; — b, with a; # 0 and b; # 0, otherwise f, and g,
would share a fixed point and would thus generate an elementary group.
Notice that f; (z) = A3z + Aja;, one may normalize that f;(0) = Aja; = 1,

SO aj = /\i — 1. It follows that
J

1 1 1 0
fi—f= and g; — g =
0 1 b 1
and hence
B(f)=p(9) =0,
2 2
5= () 1= (N-g) —o=aw A -
j
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Then the parameters of commutators can be computed by using Proposition 2.3.9,

vy=7(f,9)=B(f)+B(9)+ B(fg) — tx(fitr(g)tr(fg) + 8

=02 +4b—4b— 8+ 8 = 2.

v = B(fs) + B(g:) + B(figi) — tr(fi)tr(gi)tr(figs) + 8
(V1) 2D Qu Qg + aib) + 1)°

= + -
NS T Nu
_ (>\12 + 1) (/%2 + 1) (Nip; (Nip; + aib;) + 1) 4
A
aibi ;9 o 2 2
2 1)\ -1
:aibi((m )\)( ! >+aibi> — b =7, as \; — 1,4, — 1,and b; — b.
il

So it can be deduced that 7, — v and the result follows exactly as before. By
Theorem 3.2.13 the triple of parameters of (f, g) is (v, 3,3'), and hence (f, g) is
Kleinian. [J

3.3 Projections of Kleinian groups

Every two-generator Kleinian group can be represented by a triple of
complex parameters (v (f, g), 5 (f),B(g)). Those who familiar with Jgrgensen’s
inequality for Kleinian groups (f, g) know that it involves only two parameters
v (f, g) and S (f) of the triple of complex parameters. It can not immediately
follow from Theorem 3.2.15 that the subspace Dy of pairs (v (f, g),8(f)) of
the first two complex parameters of a Kleinian group is closed in two complex
dimensional space C2.

The current approach is to consider two projections: one is from the
subspace D in three complex dimensional space C® to the subspace D, in two
complex dimensional C? and the other is from D to the subspace on the slice

z3 = —4 in C? (see Proposition 3.3.1 and Theorem 3.3.2). Then show that the



95

set D is a closed subspace of C? in the usual topology in Theorem 3.3.4 by two
different proofs. That D, is a closed subspace in C? is an essential result for the

approach to establish the inequalities in the scheme.

Consider the projection from the subspace D in three complex dimensional
space C* = {(z1, 20, 23) : 21, 22, 23 € C} to the subspace D* on the slice 23 = —4

of the space C3 :

D* = {(v, 3, —4) : all these triples for two-generator Kleinian groups} .

The following proposition shows directly that D* is closed in C? in the usual

topology.

Proposition 3.3.1 Let {I';} be a sequence of two-generator Kleinian groups
such that the corresponding sequence of parameters {(v;,3;,—4)} converges to
(7,8, —4). Then, up to conjugation and subsequence, {I';} converge algebraically

to a group I' with parameters (v, 3, —4).

Proof. The approach is to show that one can find a sequence of pairs of
two-generators {(f;,¢;)} and a pair of two-generators (f,g) such that f; — f,
gi—g, I'=(f,g),and I'; = <fj,gj> with the triple of parameters (v;, 3;, —4)
for each j. The fact that the limit (v, 5, —4) is the triple of parameters of (f, g)
follows immediately by construction.

First, it needs to show that the generators for the groups I'; = < I gj>
converge to I' = (f, g) . It is proceed by considering two cases: up to subsequence,
[, is parabolic for all j or not.

(a) Suppose f, is parabolic for all j. By Theorem 2.1.17, conjugate each

I'; so that the first generator is now represented by the matrix
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Then f; is constant and thus converges to f, say.

fi—=f= and 8; — B=0=0(f).

Recall the resulting group I', = < Iis gj> also, it remains to show that the sequence

{g,} also converges. Suppose the matrix for second generator is

Also, since the group I'; is Kleinian, ¢; # 0, otherwise f, and g, would share a
fixed point and would thus generate an elementary group.

Finally, as a,;d; — b,c; =1, a;d, — 1 = b;c;. Then

J

a,dj —1 a?+1
b, = - =

J .
C. Cj

In total,

Consider the conjugacy of the group < I gj> by the following form of upper tri-

angular matrix conjugator

Since f, commutes with h;, f, is left unchanged under conjugation. It is expected
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that the conjugacy of g, becomes

. * 1
h].gjh]_ =
Cj —%
—a .+t /14c,
Set s, = %, then
1 —aj-l—i\/rcj
hj = “ ,
0 1
h gh_l — Cc J Cj CJ
VAV |
0 1 ¢ —a 0 1
_ z}/1+cj 1

G —iy/1+¢,

Without loss of generality, recall the resulting group as I'; = < I gj>.

Thus, the commutator is

civI+e +c+1 2—ic\/I+¢ +c,
_ -1 —1_ J J 7 J J
[fjagj] - fjgjf] g] - ) ’

c; —cji1/1+cj+1

Hence the parameter v, is

Vi = tr([fj?Qj]) —2
= cjin/T+ ¢+ +2—cjin/1+¢ =2

=
J

Since ; converges to 7, ¢ is convergent. So {0]2} is bounded and hence {c¢;}
is bounded. It follows that c; converges to a complex number, up to a subse-

quence, say ¢, and hence v; — c2. Thus passing to a corresponding subsequence
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if necessary, g; converges to an element g in PSL(2,C) :

W1l+c 1
g = )

c —iv/1+c

and hence 3’ = 3 (g) = tr* (9) — 4 = —4. Calculating

=civVlid+c+A+2—civVl+c—2

=c" =.
In summary of the part (a),
Bj — fB3=0
8= = —4
v, =y =

Therefore, the triple of parameters of (f, g) is (v, 5, —4).
(b) Suppose that now f; is not parabolic for all j. By Theorem 2.1.17 one

may assume that f, is represented by the matrix up to conjugation each I';,

where \; # 0, £1. Thus the parameter §; = (\, — /\ij)z, which gives )\f — /B, —
1 =0 and hence A\, = \/B_]% ”ﬁjH. Since 3; — 3, A; converges to A = ‘/BiT EETSY

Noting that A # 0, %1 for either choice of A, it is concluded that f; converges to
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an element f represented by a matrix

1

A0
f,— 1= and f; — = (A= 3)".

> =

It remains to show that the order 2 elements g; also converge. As in the previous

case the matrix for g, can be written as

l—l—a,.2
a. _ J
o J ¢
gj -
& —Q.
J J

Consider the conjugacy of the group (f,,g;) by the following form of a diagonal

matrix conjugator.

0
ij:

1

H;

2
0

Since f, commutes with gbj, f,; is left unchanged under the conjugation. Set

and recall g; the conjugacy ¢ g, ¢;1 :

a. 1

J

~(1+a?) —a,

J

9, =

Recall the resulting group I', = (f,, g;). Thus, the commutator is

I QRS IR R
[fg?g]] = fjg]f7 -g] = a; (lJra]z.) 2 1+aj2 2
e —a;j(1+a?) = —a;
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Hence the parameter v, for the group (f;, g;) is

Thus, v; = ai ()\jl):; (Ajfl)Z

J

. Solving for a; yields

2
12— (A2 -1)
a =

BCED

As A, = Aand v; — v,
2 — YA~ ()‘2 ~ 1)2
j (W —1)°

A2 (x2-1)?

It follows up to a subsequence, that a; converges to a and thus g; converges to

Let a? =

then af, — a?. So {aQ} is bounded and hence a; is bounded.

the element g of PSL(2, C) represented by the matrix

(1) ()’

Since y; — vy and vy, = 32
i
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Calculating

1 1
:az(A2+P_2)+)‘2+7_2

1\? 1\’
= a /\—X +()\_X)
(A1) + (N2 -1)°
= )\2 = .
In summary of the part (b),
12
5j—>5:()\—x) = B(f)
B, — 8 =—4=p(g).
2N -1+ (N2 —1)
'yj—>7=a( )+ ) =v(f, 9).

Therefore, the triple of parameters of (f, g) is (v, 3, —4) in the part (b).

Now it is shown in both cases (a) and (b) that f; — f, g; — g, and the
triple of parameters for the group (f, g) is (v, 5, —4). O

In the proof of above Proposition 3.3.1 is not based on Jgrgensen’s The-
orem 3.2.13. However, if one applies for Jgrgensen’s Theorem 3.2.13, it can be
obtained directly from Theorem 3.2.15 and the limit group I is a Kleinian group.
Furthermore, it is clear that if there is no control on one of the generators, then
one cannot apply directly for Jgrgensen’s Theorem 3.2.13. It is the case in the

following theorem.

Theorem 3.3.2 Suppose that'; = (f;, g;) is a sequence of two-generator Kleinian
groups with the parameters ('yj,ﬂj) and ('yj,ﬁj) — (v,8), where B # —4. Then
either ov; = v and 3; = 3 for some j, or there is a sequence of Kleinian groups

[% = (fj, hy) with the parameters (vj,ﬁj, —4) and a Kleinian group I' = (f, h)
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with the parameters (v, 3, —4) such that I'; converges algebraically to I'.

Proof. Notice that ; # 0 for all j as T'; is Kleinian. Since 3; — 8 # —4,
B; # —4 for all but finitely many j. One may assume, passing to a subsequence
if necessary, ; # —4 for all j, that is f; is not of order two for all j. For each j,

by Lemma 3.2.7, there is an elliptic conjugator h; of order 2 such that
hjfih; = gjfjgfl,

where h; is essentially a rotation of order two (i.e., 5(h;) = —4) through
the bisector of the common perpendicular between the axes of f; and g; f; gj_l. It

follows that

hif7thit =gif; gt

_ _ _ _ —_1\—1 _1\—1
In fact, hyf;h;" = g;f;g; " and then b f; 0t = (hif;h ") = (g,859,) 7 =
gjf]»’lg;l. Thus,

(55 hy) =,

as [f;, hi] = f; (hjfj_lhj_l) = f; (gjfj_lgj_l) = [f;,9;] - Now there is a sequence of
groups I'; = (fj, h;) with the triple of parameters (’yj, By, —4) . The rest of the
proof is broken down into two parts.

(a) If fj is not Kleinian. One may assume for infinitely many j, otherwise,
if T'; is not Kleinian for finitely many j, it can go to the part (b) (passing to a
subsequence): fj is Kleinian for all j, pass to a subsequence if necessary. By
Theorem 3.2.6, f; is elliptic and has order p < 6. It is already excluded the
possibility p = 2 at the beginning. In this case, §3; € {—3, —-2,—1, @, —@}
for infinitely many j. One may pass to a subsequence and, after a conjugacy,
assume the sequences 3; = § and f; = f of order p € {3,4,5,6}.

On the other hand side, if fj is not Kleinian, then it is one of the fi-
nitely many finite spherical triangle groups, because that v; # 0 implies the

Fuclidean triangle groups are eliminated by Remark 2.4.13. This means that
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v(fi: 951595 D = 7v;(7v; — B) can only take finitely many values, it follows that v,
can take finitely many values, so one may assume the sequence 7; = (passing
to a subsequence if necessary). It is shown that 5; = 3 and ~,; = ~ for infinitely
many j. This case gives the required result.

(b) Now a case has to deal with is that I'; is Kleinian for each j.

By Theorems 3.2.14, 2.3.12, and 2.4.14, fj is discrete, v(f;, gjfjgj_l) # 0,
and 3, (f;) = B, (gjfjgj’l) # —4, respectively. Thus, apply for Theorem 4.1 [6,
Theorem 4.1], the following inequality holds

™

3 930397") = 7,7, = B) 2 2 = 2cos(Z) = 0.19806 -
Therefore, lim; .. v,;(v; — 8;) = v(y — B8) > 0.19806--- and hence v # 0 and
v # 3. It follows that v; - 0 and ~y; -+ (3, so 7; # f3; for all but finitely many j.

Now I'; = (f;, h;) contains r; = (fshif;h; ')y with index two (at most)

and by Theorem 3.2.4 I} is Kleinian. Now conjugate each (f;, h;) so that h; = h

and h(z) = —z, a fixed element of order two. Then
0 i bj
hj = . fi= € PSL(2,C).
0 —¢ c; d;

p; 0

¢j: ’
0 L
Hj

leaves h; fixed and the conjugacy of f; is

_ aj b
¢jfj¢j t= L ’
Cil; d;
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Now choose ji; = #, then b;u = 1 and ¢;u~> = ¢;b;. Recall that

where a;d; — c; = 1, i.e., a;d; = 1 + ¢;. By computing, the commutator is

o ajdj + Cj 2aj
[fis hy) = fibif it = :
Qdej Cljdj + Cj

and the parameter is

’Yj :2ajdj+2cj—2
:2(1+Cj)+20j—2:40j7é0.

Hence’ Cj = % — C = ?ZY Thel’]_ by Deﬁnition 2317 (CL] + d])2 — 6] +4

and hence a; + d; = \/ﬁ]T — /B +4. Also a;d; — ¢; =1 gives a;d; — 1+ I
Since a; and d; can be written in terms of a; + d; and a;d; by the continuous
operations, a; and d; admit convergent subsequences, say the limits are a and d,
respectively. After doing so (and after all the normalizations by conjugacy) find

the following f and h such that f; — f, h; — h, and I' = (f, h) with the triple

of parameters (v, 3, —4) :

Now the result reduces to Jorgensen’s Theorem 3.2.13. [

Lemma 3.3.3 Let {(fyj,ﬁj,ﬁ;-)} be a sequence of parameters for two-generator

Kleinian groups (f;,g;), and let (v, 3, ") be parameters for two-generator group
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(f, g). Suppose that (Vj,ﬁj) converges to (v, 3) and f is not elliptic of order

p <6. Then vy # 0 and v # .

Proof. Since f is not elliptic of order p < 6, f; is not elliptic of order
p < 6 for all j but finitely many. Otherwise, if f; is elliptic of order p < 6 for
infinitely many j, then by Corollary 2.3.6 there is a constant sequence {5 (f;)}
and hence the limit 5 (f) has the same constant. So f is elliptic of order p < 6,
it is a contradiction.

Now applying for Theorem 3.2.6, there is a sequence < e fjgj’l> of
Kleinian groups with corresponding parameters (’yj (’yj —p j) B, 8 j) which con-
verge to (y(y — ), 8, 5). On the other hand ~, # 0 by using Corollary 3.1.4 and
v; # B; by using Lemma 2.4.12, so one can apply for a result by C.Cao (see

Theorem 5.1 in [6]) which gives a lower bound:

Thus, lim; .o v;(v; — B8;) = v(v — ) > 0.198. Tt follows that v # 0 and
y# 6. U

Next consider the projection from subspace D in three complex dimen-
sional space C? to subspace D, in two complex dimensional C?. Note that the
image of the projection of a closed set in C* to C? need not be closed. For

example, consider the projection of the set ' in C3 onto the set E in C2?, where

Fz{(%,O,ﬂ) n € N} andE:{(%,O) :n €N},

The set F is closed in C? because there are not any limit points in ' and hence
the closure F' = F. But the set E is not closed in C? because the limit point (0, 0)
is not in . However, it is true by the following theorem for the projection of the
closed subspace D in C? onto the subspace D5 in C2. Also notice that if a triple

(Yo, Bos Bp) 1s not the parameters of a Kleinian group, but the triple (v, 34, 57)
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could be the parameters of a Kleinian group for the same v, and 3. Two different
proofs of the following theorem are provided below and the information revealed

in the proofs plays an important role in studying Kleinian groups.

Theorem 3.3.4 Let subspace Dy be defined by

Dy = {(v, B) : for some 3 such that (v, 3,3') are the parameters of a Kleinian group}.

then Dy is closed in the two complex dimensional space C? in the usual topology.

Proof 1.  Suppose (v;,3;) — (v, 8) with (v;,3;) € D,. Consider the
sequence of triples (fyj, By, —4) .

If there are infinitely many j such that ('yj, B, —4) are the parameters of
Kleinian groups, after passing to a subsequence, recall (7]-, B, —4) , by Theorem
3.2.15, the limit (v, 3, —4) is the triple of parameters for a Kleinian group and
hence (7, 5) € Ds.

Otherwise, there are infinitely many j such that (’yj, B, —4) are not the
parameters of Kleinian groups. Since (v;,3;) € D;, Lemma 3.2.8 tells that
(yj, B, —4) are the parameters of discrete groups and hence there are infinitely
many (fyj,ﬁj) in a finite list (at Table 1, in fact) where (fyj,ﬁj,—él) are the
parameters of discrete elementary groups. Consequently, there is a triple of pa-
rameters, say (7,3, —4), in that finite list such that (v, 3) taking by infinitely
many (fyj, 6] j) . Thus, after passing to a subsequence if necessary one may as-
sume (yj, Bj) = (7, B) for all j. Since each (v;, 3;) in the subsequence is already
assumed in Dy, so (v, B) € Dy. O

Proof 2.  Suppose {(v,,03;)} is a sequence in Dy with limit (v, 3) in
C2. According to the definition of Ds, there is a sequence {(vj, B;, 6;)} of triples
of parameters of two-generator Kleinian groups, and hence there is a sequence
{T; = (f;,9;)} of Kleinian groups with the triples of parameters {(v;, 3;, B;)} by

Theorem 2.3.2.
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It needs to exhibit a two-generator Kleinian group with parameters (v, 3, ')
for some 3’ € C. There are three cases breakdown to prove that the limit gives
the parameters v and [ for some two-generator Kleinian group I' = (f, ¢). In
the Cases II & III, first show that I' is discrete, and then to show it is impossible
that I' is elementary. By Theorem 2.4.6 about the classification of elementary
groups, I falls into Type I, II, and III.

Case I: Suppose that, up to subsequence, the parameter entries 3; and v,
are constant for all j, say (v;,8;) = (7, () for all j. Let I' = T'; for some j. Then
I is a Kleinian group with parameters (v, 3, 3'), as required.

Case II: Suppose that, up to subsequence, the parameter entries (3, are
constant for all j and the parameter entries v, are distinct for all j. Since
(74, B85 B;) are the parameters of a two-generator Kleinian group I';, by Lemma
3.2.8 there exists a sequence of discrete groups {Ff = < fis ¢j>} with correspond-
ing parameters {(v;, 3;, —4)}. Thus using the finite exceptional set of parameters
of discrete elementary groups with 3° = —4, one may assume that all of the groups
Fj.’ are Kleinian groups, passing to a subsequence if necessary. Since (vj, f3;) con-
verges to (7, ), {(v,,8;, —4)} converges to (v, 3, —4). Applying for Proposition
3.3.1, the sequence {Ff} converges algebraically to a group I'. Jgrgensen showed
in Proposition 2 [35] that if I" is non-elementary then I" must be discrete, hence
I' is Kleinian. Now assume to the contrary that I' is elementary, then there are
the contradictions in the following three subcases.

(1) Assume that I' = (f, g) is of Type I, then each non-trivial element of T
is elliptic. Then f can’t be an irrational rotation as assumed that 8 = 3, which
implies that f; is an irrational rotation, hence contradicting the assumption that
I'; = (fj,9;) is discrete and then countable. So, f can only be an elliptic of
finite order. If one assumes that f is of order 2, then §; = § = —4 for each j
and Ff = < fis ¢j> is a two-generator group with both generators of order 2. By
Theorem 2.4.14, F? is elementary, it contradicts that F? is Kleinian. What left is

to consider the case when I' is generated by f an elliptic of order n > 3 and g an
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elliptic of order 2. In this case, by Beardon [2, Section 5.1] Theorem 4.3.7, there
is a point in H? fixed by every element of I, thus it is a point of intersection of
axis(f) and axis(g) in H® and hence § = 0. Also one can assume that 3; = § for
all j. Hence F“f is generated by an elliptic f; of order n > 3 and an elliptic ¢; of
order 2 for all j also. Since Ff is non-elementary, 6(f;, ¢;) # 0 for all j. But by F.
Gehring-G. Martin [15] (Theorem 4.20) there is a lower bound: §(f;, #;) > @
Thus, lim; .o §(f;,¢;) = 6(f,9) > b(Q—”) which leads to a contradiction to § = 0.

(77) Assume that I' = (f, g) is of Type II, then I' is conjugate to a subgroup
of Mob (@) that every element is parabolic and I" has a common fixed point. Thus,
f is parabolic and hence f can’t be of order 2,3, 4,5 or 6; and both f and ¢ have
one fixed point in common then v = 0 by using Theorem 2.3.12. It contradicts
to Lemma 3.3.3.

(737) Assume that I' = (f, g) is of Type III, then I' is conjugate to a
subgroup of Mo6b (@) that every element of which leaves the set {0, 0o} invariant
under I'. If f is a loxodromic element which shares its axis with ¢, then f are
not of order 2,3,4,5 or 6 and axis(f) = axis (g) and hence Fix(f) = Fix(g) . By
Theorem 2.3.12, v = 0. It is a contradiction from Lemma 3.3.3.

Otherwise f is a loxodromic element and ¢ is an elliptic of order 2 which

interchanges two fixed points of f. One may assume by Theorem 2.1.17 that:

A0 0
f= and g = ",
1 1

Thus, v = (. It is also a contradiction from Lemma 3.3.3.
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Case III: Since there are infinitely many (3, that are the same in Cases
[ & 11, it is left with the possibility that, there are infinitely many distinct f3;.
One may assume that the [3; are distinct for all j, passing to a subsequence
if necessary. In particular, one can assume that the generators f; do not have
order 2,3,4,5 or 6 for all j. By Theorem 3.2.6 I'; = <fj,gjfjgj_1> is a Kleinian
group for each j, and by Lemmas 3.2.7, there exists an element ¢; of order 2
such that ¢jfj¢;1 = gjfjgj’l for each j. Thus, by Corollary 3.2.9 Ff = <fj, ¢j>
is a Kleinian group for each j and its triple of parameters is (v;,3,, —4). By
Proposition 3.3.1, it is known that the sequence {I‘f} converges algebraically to
a group I'. By Theorem 3.2.14 showed that if ' is non-elementary then I' must
be discrete, hence I' is Kleinian. Assume to the contrary that I" is elementary.

(1) Assume I' is elementary of Type 1, then f is elliptic. Since Fj’ is
Kleinian and hence non-elementary and discrete, by Lemma 2 in [35], the sequence
of 3; is constant for all large indices which contradicts the assumptions that (3,
are distinct for all j.

(77) Assume T is elementary of Type II, then it reaches a contradiction as
n (i) of Case II.

(737) Assume I is elementary of Type III, then it is a contradiction as in

(17i) of Case II. OJ

Remark 3.3.5 (1) The consequence of Theorem 3.3.4 is that the complement set

C*\D, is open. Thus, there is § > 0 such that the open ball

B((0,0),0) = {(z,w) € C*: [2|° + |w|* < §*} C C*\Dy,

i.e., Dy C C*\B((0,0),9), where (v, B) = (0,0) are the parameters of the identity
group. It is showing that there is a neighborhood of the parameters (0,0) for the
identity group which cannot contain the parameters (v, 3) for any two-generator

Kleinian group. It is Jorgensen’s inequality which gives a precise bound such that
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there is not any two-generator Kleinian groups fitting the inequality |z|+ |w| < 1.

It follows that there are no Kleinian groups in the unit open "ball" in C? regarding
to the distance d = d((z,w),(0,0)) = |z| + |w| : {(z,w) € C*:d < 1}.

(2) Dy can be embedded into C? :

C2 2 DQ = {(7)670) : (’776) € DQ} g (Cg-

3.4 Jgrgensen’s inequality

Jorgensen’s inequality as he established in [35] is the first important uni-
versal constraint in studying the geometry of Kleinian groups [49]. Two impor-
tant applications have already been introduced: one is the fundamental result in
Jorgensen Theorem 3.2.13 and the other is Kleinian group’s characterization in
Theorem 3.2.14.

In this section an alternate proof of Jgrgensen’s inequality is given based
on Theorem 3.3.4 before looking at the more general cases in Chapter 4. There
are a few reasons for this. First, one will see the most elementary trace poly-
nomial and then show how it can be used to generate an inequality. The steps
in the proof will identify results that will have to be generalized and potential
exceptions lying in lower dimensional subspaces, which will have to be dealt with
using other ideas. In fact using the trace polynomial in (3.4), a number of in-
equalities for discrete groups have been generated in [16]. Earlier, Brooks and
Matelski considered Jgrgensen’s matrix iteration procedure for different initial

configurations producing inequalities [5].

Starting with the simple but important trace polynomial p,, = v(f, gfg™ 1)
v(y = B) for the word w = gfg~! from Lemma 3.2.1 and apply for the essential

result Theorem 3.3.4 to give an alternate proof of Jgrgensen’s inequality.
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Theorem 3.4.1 (Jargensen inequality) Let (f, g) be a Kleinian group. Then

v (fs Ol +18(f)] = 1.

This inequality is sharp for infinitely many distinct Kleinian groups.

Proof. The proof is broken up into the following four general steps.
(1) Compactness:
Let v =7 (f, g) and 8 = 3 (f), and let B = {(z,w) € C*: |2] + [w| < 1},

then B is closed and bounded and hence compact in C? and

DQZ(DQQB)U(DQQBC),

where the complement set B¢ = {(z,w) € C?: |z| + |w| > 1} . Thus,

vl + (8] > 1, for (v, B) € DN B (3.14)

Now set

6 =min{|7[ + |B] : (v, B) € DN B}.

Since D, is closed in C? by Theorem 3.3.4, the bounded closed set Dy, N B is
compact in C?. Tt follows that the minimum is achieved in DyN B, say at (7, B,) €
D2 NB:

0 = |0l + [Bol < 1. (3.15)

(2) Trace polynomials:
Let (fo, go) be the Kleinian group whose parameters (7, 3,) achieved the
minimum above, and let the word w = gofog; ' and set p,(2) = z(z — ).

One can assume that (fo, w) is Kleinian, then 5 (fy) = S, and Theorem
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3.1.17 and the identity (3.4) give

Y(fo, w) = puw(v0) = 7o (Yo — Bo) - (3.16)

and using the identity (3.15),

17 (fo, w)| + 180l = [0 (0 — Bo)| + B0l
< 1ol (Ivol + 18ol) + 180l

< 70l +16o] < 1.

then (v(fo,w), B,) € D2 N B and hence

1Yol + 180l < |Pw (Vo) + 1Bal = [70ll7v0 — Bol + B0l

Notice that v, # 0 as it is the parameter for a Kleinian group, which gives

70 — Bol = 1. (3.17)

Applying for the triangle inequality for (3.17),

1Yol + 180l = |70 — Bol = 1. (3.18)

Thus, 6 > 1, so 0 = 1 by the identity (3.15). Therefore |y| +|5] > d =1
and hence

v+ 18] =1, for (v, B) € DN B. (3.19)

Finally, the inequality (3.14) and above identity(3.19) give |y| + |5] > 1
for every Kleinian group (f, g) with the parameters v =~ (f, g) and 5= 5 (f).

Moreover, by the identities (3.18) the equality |v,| + |5,] = 1 gives |y, —
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Bl = 1 and hence |p.,(7o)| = |70ll70 — Bol = [70l-

(3) Exceptional variety:

Here one must examine the supposition that (fy, w) is Kleinian. As seen
above, this can only fail in two circumstances.

(1) (79, Bg, —4) lies in the exceptional list of Table 1. In this case f is
elliptic of order 2, 3, 4 or 5. In all cases |(,| > 1 and hence |y,| + |8o| > 1.

(17) pw(vo) = Yo(Yo — Bo) = 0. The set where this polynomial vanishes
forms an exceptional variety. Since vy, # 0, v, = B,. Thus, the point (v, 5,) must
lie on the variety {y = 3} C C? and hence {fy,w) must be cyclic or dihedral —
and either of these contradicts the hypothesis that (fy, go) is Kleinian.

(4) Sharpness:

The proof suggests that sharpness is achieved in a group with parameters
(Yo, Bos —4) with [pw(79)| = |7l- Under these circumstances, (pw(7vy), 59, —4)
would also be the triple of parameters for a group for which equality holds - and
similarly for the iterates of p,, = z(z — ). In particular, one should expect that
Yo is a periodic point of p,, as it is unlikely that there are infinitely many different
groups for which sharpness occurs for the same generator f. Let p,(z) = z, then
2(z—=p)—2=0,ie, z((z— ) —1)=0gives z =0, and z = 1 + 3. Hence, the

fixed points of p, are 0 and 1+ 5. [J
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Chapter 4: New Approach to Inequalities for Kleinian
Groups

The Chebyshev polynomials were developed by Chebyshev in the mid-
19th century for a completely different purpose and that they form an orthogonal
system of polynomials which makes them of great use in Numerical Analysis and
Approximation Theory that are very different fields from that of the current field
Geometric Analysis. The dissertation discovers infinitely many trace polynomials
that can be expressed simply in terms of the Chebyshev polynomials in Theorem
4.1.1 and Theorem 4.1.2. These trace polynomials will be useful for obtaining
geometric information about Kleinian groups.

The identification of precise inequalities for discrete groups of Mobius
transformations started with Jergensen’s famous inequality [35] from 1976. Such
inequalities typically give necessary conditions to force a group to be a Kleinian
group, i.e., give sufficient condition to force a group to be a non-Kleinian group.
In this chapter a new approach is provided to establish new types of inequalities
by using some sorts of trace polynomials discovered in the first section. These
inequalities generalize the Jorgensen’s inequality so that one can learn more about
Kleinian groups by studying the isolation of elementary discrete groups.

The novel approach here to establish the universal constraints for Kleinian
groups is to use the closedness of Dy in C? (Theorem 3.3.4) that is an essential
tool for the scheme of establishing the quantifiable inequalities. It follows that
the complement set C*\D, is open in C2. Now one can consider the following
kind of distance

d=|z—a|+|w— b

between the subspace D, in C? and the point (g, 8,) in C*\ Dy, where (7o, 5y)

is the pair of parameters for an elementary group (i.e., non-Kleinian group) in
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Tables 1, 2, and 3. Thus, there is a radius » > 0 such that the following open ball:

B ={(z,w) € C*: |z — 70| + |w — By <7}

in the open set C*\D, and inside the following Euclidean ball:

BC{(z,w)eC?: |z — Yol? + |lw — Bol? < r?} C C*\Ds.

Accordingly, one can implement the scheme of establishing the following sorts of

quantifiable inequalities for two-generator Kleinian groups (f, g) in this chapter:

v (fs 9) =Yl +18(f) = Bol =1, (4.1)

where v, = v (4, %) and B, = S (¢) are the parameters for a discrete elementary
two-generator group (¢, 1)) . However, the challenge here is how to find the various

greatest lower bounds and to choose suitable trace polynomials.

4.1 Chebychev polynomials

The calculation of the trace polynomial p, from a word w can be a little
tricky except for some short words. For good words w (f, g) such as (¢f)"g, (¢9f)",
and [g, f]" in a Kleinian group (f, ¢g) with the triple of parameters (v, 3, 3'), the
trace polynomial p,, of two complex variables v = v (f, g) and = B (f) is the

following (see Theorem 3.1.17):

pw(% B):’Y(w(g, f)?f)

and infinitely many useful trace polynomials can be discovered and expressed

simply in terms of the Chebyshev polynomials in Theorem 4.1.1 and Theorem
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4.1.2.

It is well known that Chebychev polynomials are defined by the recursion

formula:
To(z) =1, Ti(z) = 2z, Tuy1(2) = 22T,(2) — T,,_1(2), for n € N. (4.2)
or by the explicit formula:

To(z) = ((z — \/227—1>n + (z + \/ﬁi—l)n) , forn e N. (4.3)

N | —

For example, the first few Chebychev polynomials are

To(2) =1,

Ti(z) = z,

Ty(z) = 222 — 1,

Ty(z) = 42% — 3z,

Ty(z) =82 — 822 + 1, (4.4)
Ts(z) = 162° — 2023 + 52,

Te(z) = 3225 — 4821 + 1822 — 1,

Tr(z) = 6427 — 11225 4 5623 — 72,

Ty(z) = 12828 — 2562°% + 1602* — 322% + 1.

Also, recall the identity

Ton(2) = (—=1)"T,,(1 — 22%), for n € N. (4.5)

and the Chebychev polynomials of the first kind 7,, with the defining property

T, (cosh(z)) = cosh(nz), for n € N. (4.6)
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Theorem 4.1.1 Let (f, g) be a Kleinian group with the triple of parameters

(7,8, 8, where f is elliptic or loxodromic. Then,

B(f") =2T, (1 + g) —2, forneN, (4.7)
(" g) = 6%”)% forn € N. (4.8)
In particular,
B(f) =25,

B(fA)=B(B+4),
B(f*)=B(8+3),

B =8B+4)(B+2)7,

B(f5) =B (82 +55+5)",
B(fO)=B(B+4)(B+3)°(5+1)".

(4.9)

1(f.9) =,

V(2 9) =7 (B+4),
V(fP9) =7 (B +3)%,
V(f*9) =7 (B+4) (B+2),
V(f°.9) =7 (8*+58+5)°,

Y(f%9) =7 (B+4)(B+3)*(B+1)°.

(4.10)

Proof. (1) Since cosh® (£) — sinh® () = 1 and cosh(z) = cosh? (£) +

2
sinh® () give cosh(z) = 2sinh® (£) + 1, therefore,

cosh(nz) = 1+ 2sinh® (%) , neN. (4.11)
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Assuming that f has two fixed points 0 and oo, up to conjugacy. By

A0
Corollary 2.1.16, f can be represented by [ = € PSL(2,C) and hence

>

A" .
fr= , where \ can be expressed as ez for a suitable 7 = 7 + 0.
nr  _nr\ 2
Thus, 3 (/") = (X" = )2 =4 (<252 )" = 4sinh? (%) . That i,

B(fn):4sinh2 (%) , forn e N, 7 =7, +10;. (4.12)

where 7; and 0 are the translation length and the holonomy of f, respectively.

It follows from the identities (4.11) and (4.12) that

cosh(nz) =1+

P (;m)’ for n € N. (4.13)

Applying for the defining property (4.6) and the previous identity (4.13), that

give T, (1 + g) =1+ @ and hence

B(f")zQTn(Hg)—z for n € N.
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In particular, the first few Chebychev polynomials (4.4) give the following:

5(f2):2T2(1+§)—2:2(2(1+§)2—1>—2=5(ﬁ+4),

%”P)ZMBO+§>‘2:2<4O+§)i*4ﬁ+§))—2=ﬁw+a%

6(f4):2T4(1+§)—2

:2(8(1+§)4—8<1+§>2+1> —2=3(8+4)(8+2),

B(f°) =215 (1+§>—2

5 3
:2<16<1+§> —20(1+§> +5(1+§)>—2:6(62+5ﬁ+5)2,

B(fG):2T6(1+§>—2

B B\° A\ A\?
_2<32<1+§> —48(1+§> +18(1+§> —1)—2

—B(B+4) (B +45+3)°.

(2) Notice that one can represent ™ and g as the following:

A0 a b
= and g = € PSL(2,C),
0 % c d

where bc # 0 because that (f, ¢g) is Kleinian. It follows from Case 2 of the proof
of Theorem 2.3.12 that

1
Y(f", 9) = —bc(\" — F)Q’ for n € N.
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It is easy to see the following by replacing 5 with  in the previous formulas

(4.9):
v(fi9) =1,

(% 9) =v(B+4),

v(f%9) =7 (8+3)%,

Y(fhg) =7 (B+4)(B+2)?,

Y(f%9) =7 (B2 +58+5)",

Y(fS9) =7 (B+4) (B+3)°(B+1)*.
0

Recall the identity ~(f, f™wf™) = ~v(f,w) for m,n € Z from Lemma

3.1.18, and take (m,n) = (0,1) and w = g then

1(f9f) =7 (f 9)- (4.14)

In case that ¢ is elliptic of order 2, the triple of the parameters is

(v(f, 9),8(f),B(9) = (7,8, —4).

Now Proposition 2.3.9 and the identity (4.12) give that

Blgf) =7 — B —4 = 4sin’(3), (4.15)

+if )
where 7 = % for suitable 7.

(v (fs 90),8(f),6(9f) = (v, 8,7 =B —4). (4.16)
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Theorem 4.1.2 Suppose that (f, g) is a Kleinian group with the triple of para-
meters (v, 8,'), where gf is elliptic or loxodromic. Let vy, ., =~ ((gf)”Jr1 . f)

then

~ Thya(cosh(r)) — 1

= . 4.1
’Yn—f—l COSh(T) 1 e fOT’ n e N ( 7)

Further, the following recursion formulas are held:

Yo=0, =7 Y1 =01 = B—=2)7% — Y1 + 27, forneN.

In particular,

Y =0, 7=7

Y2 =7y —5)

Y3 =70y =B —1)?

T =710y =B)y -5 —2)°

Vs = (1436 + 52 =3y — 287y +1°)°

76 =70y = B)(y =B —=1)*(y = 5= 3)°

Y7 =7(=1=68 =53 = 5% + 67 + 1087 + 35%y — 57" = 367> ++°)°

v =7y = B)(v = B —2)°(2+ 48 + 5* — 4y — 28y + %)

Yo =7y =B —=1)>(=1-98-68" — 5° + 97 + 1287 + 3%y — 677 — 387° +1°)°

Yo =70y = B)B+58+ 8% =5y =287+ 7)1+ 38+ 5% — 3v — 28y +1%)°

Proof. The identity (4.8) gives v(f", g) = %7, and the Chebychev
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polynomials of the first kind (4.6) gives T,,(cosh(z)) = cosh(nz), it follows that

Vi1 = %7 (9f, 1)
sin 2 (n+1)7—

B cosh(( 1) T)—1
= o —1 W)

Tyuy1(cosh(r ))
cosh(7) - Y(gf. f)-

That is, v,,, = % (gf, f), for n € N, where v (gf, f) = = by the
identity (4.14). Thus,

~ Thya(cosh(r)) — 1
Tnt1 = cosh(7) — 1

v, for n € N.

One can express cosh(7) in terms of the parameters v and . From the identity

(4.15),

y—B= 4+4sinh2(%)
= 4cosh?(Z
cos (2)

= 2(1 4 cosh(r)).
It can be deduced that
1
cosh(1) = 5(7 — [ —=2). (4.18)

Now using the recursion formula of Chebychev polynomials (4.2) and the

previous identity (4.18), the identity (4.17) becomes,
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~ ((gf)n+1 : f) _ 2 cosh(7) Tn(coszls(h())) Tln 1(cosh(r))— (gf f)

_ 2 cosh(7) Tn(cosh(r)) ~2 cosh(r)+2 cosh(r) =T 1 (cosh(r))
__ 2cos Cos czcs)Sh(T) 1cos 1(cos (gf, f)

=2 cosh(7) Y ()", ) + Sy (9f. ) = Sy (9l )
=2 cosh(7) y((9f)", ) +2v = ((gf)" ", f)

= (7_6_2)7n+27_’7n717 fOI'TLGN.
Notice that v,,, =7 ((¢f ) f ), it reaches the required identity:

Yn+1 = (71 - B - 2)7n — Yn—1 T 2'}/1, for n € N.

Where v, = v by the identity (4.14), and the formulas of vq, V4, , 710

can be verified easily. [

4.2 Inequalities for Chebychev polynomials

In this section, one can apply the inequalities generated in Lemma 4.2.5
for the Chebychev polynomial 7;,.; when n = 1,2,3,4, and 7 to establish the

sorts of inequalities for two-generator Kleinian groups (f, g) :

v (fs DI+ 18 (f) = Bol = 7,

where 7 (¢,1) = 0 and 8, = [ (¢) are the parameters for a discrete elementary
two-generator group (¢,v). In what follows one will typically cancel the term
|7 — 8 — 4| and so to avoid division to be zero one should ensure vy # 3 4 4. For
example, under the assumption that g has order 2, f(gf) = v — 3 — 4 by the
identity (4.15). If v — 5 —4 = 0 then S(gf) = 0 and hence gf is parabolic. Thus,
if g f is loxodromic or elliptic then one can cancel these terms. However, it follows
from Lemma 4.2.2 and Lemma 4.2.4 that there are no exceptions for inequalities

generated by the particular words (gf)" g
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Lemma 4.2.1 Let (f, g) be a Kleinian group. If f™ is not the identity forn € N,

then (f", g) is a Kleinian subgroup of (f, g) .

Proof. Clearly, (f™, g) is a subgroup of (f, ¢) . Since (f, ¢) is a Kleinian
group, by Theorem 3.2.14, (f™, g) is discrete. The only issue is if it is Kleinian.
If f is parabolic, loxodromic, or elliptic of order p > 7, this is true as long as
f™ is not the identity. Otherwise, f is elliptic of order p < 6. If f™ and g¢
have a common fixed point for some n € N, then so does f and g. If f* and g¢
have no common fixed points for all n € N, by the classification of elementary
groups Theorem 2.4.9, then (f", g) is one of the finite spherical triangle groups
Ay, Sy, and Aj for each n € N. Thus, either case (f, g) can’t be Kleinian, it is a

contradiction. [

Lemma 4.2.2 Let f and g be Mébius transformations, then

Y((gf)" 9.F) =~ ((gf)"*". f), forn e NU{0}.

Proof. Let w = (gf)"g, then v (w, f) = ~(wf, f) for n € N U {0}.
By using Proposition 2.3.9 and Lemma 3.1.18, v(f, f™wf™) = v(f™wf", f) =
v (w, f). i m=0andn =1, then v (wf, f) = v (w, f) and hence v ((9)"g, f) =
v((gf)gf. f). O

Corollary 4.2.3 If (f, g) is a Kleinian group, then

v((gf)"g, f) # 0, forn € N.

Proof. Suppose that v((gf)"g, f) = 0, for some n. Then by Lemma 4.2.2,
Y((gf)"*t, f) =0, for some n. It follows from Theorem 2.3.12 that (¢gf)"™ and f
share a fixed point for some n. Thus, {(¢gf)""!, f) is elementary, a contradiction

to Lemma 4.2.4. O
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In fact, by the following lemma, ((g M ) is a Kleinian group and
hence v ((9f)" g, f) = v ((9f)"**. f) #0.
Lemma 4.2.4 Let (f, g) be a Kleinian group. If (gf)" is not the identity for

n €N, then ((gf)", f) is a Kleinian subgroup of (f, g) .

Proof. It is clear that ((gf)", f)isasubgroupof (gf, f).Since (gf, f) =
(f, 9), {9f, [) is a Kleinian group. Applying for Lemma 4.2.1, {((¢gf)", f) is a
Kleinian subgroup of (gf, f) and hence (f, g). O
Lemma 4.2.5 Let (f, g) be a Kleinian group with the triple of parameters (v, 3, 3')
and suppose that gf is loxodromic or elliptic. Then for all x at a minimum of

the sum |y| + |8 + x| :

ly—B8—4] <2

Tn+1 (%(7_5_2)) _1‘7 fOT’ﬂEN.

Proof. Since (f, g) is a Kleinian group, by Lemma 4.2.4, <(gf)n+1 , f> is
a Kleinian group.

Since the minimum of the sum |y| + |5 + x| is attained,

Y+ 18+ < |y ((aH)" ™, )| + 18+,

which gives |y| < |y ((gf)"“,f) |. Since Theorem 4.1.2 gives v((gf)"*, f) =

Tr+1(cosh(r))—1
+closh(T)—l 7

i1 (cosh(r)) — 1‘

< .
= cosh(7) — 1 il
Since 7y # 0, dividing by || gives % > 1. Thus,

|cosh(7) — 1| < |T},41(cosh(T)) — 1].

By using identity (4.18), |3(y — 8 —2) — 1| < [Th1(G(y — 8 —2)) — 1].
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Thus, it gives the following inequality at a minimum,

1
= B-4 <2|Tan(5(r =8 -2) -1

First, apply Lemma 4.2.5 for the Chebychev polynomial 75, it provides a

new approach of proving Jorgensen’s inequality. In fact, 75 = 222 — 1 and hence

Iy —08—4] <2

T3 -6 -2) -

bhncso)
=|(v-8-2"-1

<|y—pB—4ly—8l

Suppose that v # 5 + 4, dividing by |y — 6 — 4| # 0 gives 1 < |y — 3| <

|7] + | |- It is the Jgrgensen’s inequality:

v+ 161 = 1.

Theorem 4.2.6 Let (f, g) be a Kleinian group with the parameters = [ (f)

and v = (f, g) # 6+ 4. Then for a minimum of the sum |y|+ |5+ 1],

v+ |6+ 1] > 1.



127

Proof. Consider the Chebychev polynomial T3(z) = 423 — 32, by Lemma
425,

ly—8—4] <

Ty -6 -2) -
—2f3tr-s-2- S0 -5-9-1)
= |(v-B-2°~3(y-5-2) 2
=|(y=8-2-2)(y-B-2+1)"
=|(v=B8-4(v-B-1)]
=[(y=8-4)(y—(B+1))]

<hy=B-4h-B+D"
Since v # B+ 4,7 — f — 4 # 0. Dividing by |y — 8 — 4/,
1< |y=(B+1)
It follows that 1 < |y — (84 1)| < |y| + |5 + 1]. Thus,
L< |yl +16+1].

g

Theorem 4.2.7 Let (f, g) be a Kleinian group with the parameters 5 = [ (f)
and v =y (f, g) # B+ 4. Then for a minimum of the sum |y| + |5 + 2| :

V5 —1

16+ 2] > =

This inequality is sharp for the (2,4,5) hyperbolic triangle group with the para-

meters (\/52*1, -2, —4) .
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Proof. Consider the Chebychev polynomial Ty = 82*—822+1, by Lemma
4.2.5,

=B -4 <TG~ B - 2) ~ 1

|y =B =D = Sy - f -2 11

=|(v=B8-2)* —4(y - B —2)|
=|(y=8-22((v—B—-27%-4)
=|(v=B8-2>2(v=B)(y—B—4)

Sly=8=2P=Bllv—B8-4]
Since v # 6+ 4,7 — f — 4 # 0. Dividing by |y — f — 4] gives

1< |y—8-2Py-5|
=ly—B-2P-B-2+2

<hy=B-2P(y-8-2[+2).

Let 2 = |y — 8 —2|, then x < |y| + |8+ 2] and 1 < 2% (x + 2) . Solving
the latter inequality gives > ¥Y3-1 Hence, Y5~ < & < |y| + |8 + 2|. So it is
concluded that

Y +18+2[ =

V5 —1
2

By Example 3.1.2, (2,4, 5) hyperbolic triangle group is the Kleinian group

(f,g) with the triple of parameters (v (f, g),5(f),5(g)) = (@,—2,—4) )

Thus, |5 + 2| vanishes and hence |y| + |5 + 2| = ‘/52_1, this is the verification

of the sharpness. [

Theorem 4.2.8 Let (f, g) be a Kleinian group with the parameters 5 = [ (f)
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and v =v(f, g) # 8+ 4. Then for a minimum of the sum |y| + )ﬁ—l— %5),

+V5
2

>3_\/5.

- 2

3
v+ B+

Proof. Consider the Chebychev polynomial 75 = 162° — 2023 + 5z. Re-

ferring to the inequality in Lemma 4.2.5

=4l <2ATs(5 0~ B -2) ~ 1

<oli(r-B-2 - D=5 4 (- -2) 1],
Thus,
B4l < |- B2 5~ B2 45— f-2)—2.  (419)

Notice that v # 4+ 4 and hence vy —  — 4 # 0. Let x = v — 3 — 2, then

v— [ —4=x—2%#0, and hence the previous inequality (4.19) gives

|z —2| < |2° — 52° + 5z — 2|

— ‘(x—Z) (2 +2—1)°

< |z —2| {x2+x—1’2
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Dividing |« — 2|, which gives 1 < |22+ 2z —1]?, i.e., |22 + 2 — 1| > 1. Further-

more,

1< |2 +2—1]

(e (-5

O ] |

2
3+5 3—-5
2

~1-+5
2

v=B8-

= ’)/—ﬁ—

which gives

> 1. (4.20)

There are two different ways of argument in the following:
The first way of argument starts with rearranging the first factor of the

previous inequality (4.20:

1§7—5—32¢57—5—3;¢5
—7—6—3;¢5—¢57—6—3;¢5
§(7—5—37;6+ﬂ@>%—6—3;¢5
%53;¢5:\@753;¢5-

Let s = ’7 - B - %g‘ in the inequality above, then the solution of 1 < s +/5s

is s > %5 > 0. Similarly,

3—5
2

3—5
2

3-5

< Iv| + 5

B+

Sszk—ﬁ—
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Hence,
3—5
2

>3 _2\/5. (4.21)

V] + |8 +

The second way of argument is to rearrange the second factor of the inequality

on (4.20):
Y T L |
=7—6—3+2\/5 7—6—3+2\/5+\/5
< 7—5—3+2\/5 (7—6—3+2\/g +\/5>
2
3+1/5 3+/5
- +2\/_ +\/37_5_ +2\/_'

Lety = [y — B — 35

. . 2 .
5|, then the inequality above becomes 1 <y ++/5y, solving

it gives y > %g > 0. Hence,

3—-+5 3+V5 3+V5
- Sy=[1—B8-—3 SM+|B+ 5 |-
Thus,
3+v5|_ 3—+5
v+ |68+ 2\/_ > 2\/_. (4.22)

Finally, one can conclude from the inequalities (4.22) and (4.21) that

+3i2\/5 23—\/5‘

v] + ‘/3 5

g

Theorem 4.2.9 Let (f, g) be a Kleinian group with the parameters 5 = [ (f)
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and v =~ (f, g) # 8+ 4. Then for a minimum of the sum || + }B+2+\/§|,

] + ‘6 Yo \/5‘ > 0.117875.

Proof. Now consider the Chebychev polynomial Ty(z) = 1282% — 2562° +
160z* — 3222 + 1. Applying for Lemma 4.2.5,
[y =B 4] <2ATx(3(v — 8- 2) — 1
=253 (v =B =2° - F (=B -2+ (B2 - F(v-5-2)?.

Thus,
=B -4 <|(v=B-2)°-8(y=B-2)°+20(y -5 -2)" —16(y - 5 - 2)°|

Let x =y—pf—2,theny—f—-4=2—-2%#0as~y # [+ 4 and hence the

previous inequality becomes

|z — 2| < [2® — 82° + 202" — 162

7 (r —2) (z+2) (x2—2)2

2

Y

< |z |z — 2| |z + 2| | (2 — 2)

which gives 1 < |z|? |z + 2| |(z% — 2)|° . Furthermore,

1< |2z +2|| (2% - 2)|*
=ly—B-2Ply -8l |(y-B-2?2-2
=628 (- 6-2)-v2) (- 8-2) +V3)[
<(h-s-2-v3+va) (h-5-2-vE +2+V2)
-(7—6—2—ﬂ‘Q(‘v—ﬁ—z—\/i(Jrz\/é)Q.
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Let y = ‘7—6—2—\/5‘ then
2 ) 2
1< <y+\/§> (y+2+\/§>y <y+2\/§> .
Solving the inequality gives 0.117875 < y and hence

0.117875§y:‘7—6—2—\/§‘

<hl+|8+2+v2].

Therefore,

| + (6 yoq \/5‘ > 0.117875.

4.3 Trace polynomials linear in 3

In this final section, an infinite family of the trace polynomials of two
complex variables v and /3, which are linear in [, is given in Theorem 4.3.2, and
then using these polynomials and the established inequalities in the previous sec-
tion complete the quantifiable universal constraints by inequalities in the scheme

including Theorems 4.3.4, 4.3.5, 4.3.7, 4.3.8 and 4.3.10.

Starting with the following lemma show that the subgroups ([g, f]", f)

of Kleinian group (f, ¢) is Kleinian for n € N.

Lemma 4.3.1 Let (f, g) be a Kleinian group. If [ is lozodromic or parabolic
or elliptic of order p > 6, and [g, f]" is not the identity, then ([g, f]", f) is a
Kleinian subgroup of (f, g) for n € N.

Proof. Obviously, ([g, f]", f) is a subgroup of ([g, f], f). Since f is lox-

odromic or parabolic or elliptic of order p > 7, by Theorem 3.2.6, then (f, gfg~!)
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is a Kleinian group. Notice that

(g, 11, Y=L 1o Sy ={foafg ' Y =(f, afg7"),

so (f, lg, f]) is a Kleinian group. Applying for Lemma 4.2.1, {[g, f]", f) is a
Kleinian subgroup of (f, gfg~!) and hence (f, g). O

There are infinitely many trace polynomials of two complex variables ~
and [ which are linear in 3. For example, if con considers the word w; (g, f) = ¢,
then py, (v, ) = v(f, g) = 7 is of course, a polynomial linear in 5. If the
subgroup (f, gfg~') of (f, g) is Kleinian, then (f, [g, f]) is Kleinian subgroup
of {f, g) as well, because (f, gfg~ ') = (f,gfg  f~1) = ([, lg, f]). The identity

(3.4) gives the following trace polynomial from the word ws (g, f) = gfg~' :

Pus (7, B) =7(f9fg ) =~v(v—15).

By taking w = gfg~! and (m,n) = (0, —1), Lemma 3.1.18 gives the trace poly-

nomial of the word w3 (g, f) = [g, f] :

Pus (v B) =7 ([ lg. ) =~ (f.9fg7 ") =7v(v=1). (4.23)

In addition, 3([g, f]) =tr*([g, f]) —4= (v (g, f) +2)* — 4 = > + 4, that is

B(lg, f1) =~y +4). (4.24)

Thus, trace polynomials p,, (7, 5) and py, (7, 5) are linear in 3 as well. More-
over, if the subgroup (f, gfg~') of (f, g) is Kleinian, then (f,[g, f]"*") is Kleinian.
It is natural to ask whether the infinite family of trace polynomials of the word
w (g, f) = g, f]"*" for each n € N is linear in 3, the following theorem shows

the confirmative answer.
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Theorem 4.3.2 Suppose that (f, g) is a Kleinian group with the triple of pa-
rameters (v, 3,3'), where |g, f] is elliptic or loxodromic. Then the following

recursion formulas for the trace polynomials v, ., = v(f, |9, 1Y) are held,

Y% =0, 11=70v=8), Y1 = +47+2)7, — Va1 +27(y—B), forn eN.

In particular,

Y2 =y =By +2)%, (4.25)
vs =70y = B)(v +1)%(v + 3)%, (4.26)
T=70=8)(+2)° (P +4y+2)", (4.27)
¥s=7(v=B) (P +37+1)" (1 +57+5)". (4.28)

Proof. According to the identity (4.12),
B(lg, f]") = 4sinh2(%) = 2cosh(n7) — 2, for n € N, (4.29)

In particular, 3([g, f]) = 4sinh®(3) = 2cosh(r) — 2. Thus the identity (4.24)
implies
P4y 42

2cosh(r) =2 =~(v+4) and cosh(7) 5

(4.30)
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Applying for the identities (4.8), (4.29), (4.6), and (4.30),

n B (g, 11")
v(f, g, f]") = Fa ) v (f, 19, f1)

_ 2cosh(nt) —2
~ 2cosh(7) — 2 "y =5)
=B

= (2T, (cosh(7)) — 2) S +d

2414y +2 —
= |27, YAyt —2 u, for n € N.
2 v+4

Thus, by Chebychev polynomials recursion formula (4.2),

2
v A4y +2 v—p
=27, | —————=) -2
Tnt1 ( H( 2 ) )74—4

_4(72+47+2)T (7 +47+2> v -3
B 2 " 2

244 2 —
— (o1, , Ay t2 +4
2 7—1—4

2 |y 42 -
(27+4y+2T<%>—4>7 p

(e (1) )
v+4
— (V2+47+2) <2Tn (%) _2) =P

= (V' + 47 +2)7, — Yur + 29(y = B).
It is clear that 7, = 0, and the trace polynomial (4.23) gives
n = Mg, fI) =y = 8).

Applying for the recursion formulas v,,; = (V> + 47 + 2)7,, — V1 + 27(v — 5)
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for n = 2,3,4, and 5, the following trace polynomials are given,

Y2 = (P 4y + 27— Y0+ 2v(y - B)
= (" + 4y +2)7(y = B) +27(y — B)
= (v = B)(v +2)%,

3= (P +H 4y +2) 7 =1+ 29(v = B)
= (v’ + 4y +2)y(y = B)(v +2)* = (v = B) + 27(y — B)
=y(y = B)(v + 1)*(v +3)%,

Y= (P Ay +2)73 = 72+ 29(7 = B)
= (P + 4y +20( = B)(r + D2 (v +3)° = (v = B)(v +2)° + 29(v = B)
=7(1=-B) (1 +2° (P +47+2),

Vs = (7 + 4y + 275 — 73+ 2v(y = B)
=(P+ar+ 27 (- B8) (v + 2’ (P + 4y +2)°
=y = B)(v + D*(y +3)* + 29(y = B)

=v(v=B) (1 +37+1)" (1* +57+5)".

Next turn the attention to create the inequalities in the following theorems
by using the trace polynomial v(f, [g, f]*) = (v = 8)(y + 2)* or 7(f,[g, fT") =
(v = B) (v +1)% (v +3)*.

Theorem 4.3.3 Let (f, g) be a Kleinian group, and let v = v (f, g) and 5 =

B(f). If f is loxodromic or parabolic or elliptic of order p > 6, then

v +2| + 8] > V2 - 1.

Proof. Suppose that |y + 2| + || < r for some r > 0, then |y + 2| < 7.

By Lemma 4.3.1, <f, lg, f]2> is a Kleinian group and the identity (4.25)
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gives the parameters v, = (v — 3)(7 + 2)?, then v, and 3 fit the Jorgensen’s

inequality |y|+ |8 > 1:

1< |’Y2’ + ’5’
< y(v=B) (v +2)% + 1]

<(v+20+2) (v +21+ 181+ 2D Iy + 21y + 2[ + 8]

By the assumption at the beginning,

(r+2)%r|y +2| + |p] > 1. (4.31)

If (r+2)%r < 1, then (4.31) becomes 1 < (r+2)2r|y+2|+|8] < [v+2|+|3],
i.e., [y+2[+]|8| > 1. On the other hand, solving the inequality (r+2)?r < 1 gives
r < 0.20557 < 1 and infers |y + 2| + 3] < r < 1. It contradicts to |y + 2| + ||
> 1.

Thus, (r + 2)?r > 1, then (4.31) arrives at

1< (r4+2)%y+2|+ 18] < (r+2)%r|y + 2| + (r +2)*r|3]

= (r+2)"r (v + 2 +8]) < (r +2)**.

i.e., (r +2)%r? > 1, solving the inequality gives r > v/2 — 1.
So if one assumes |y + 2| + |8 + 1| < 7 then r > v/2 — 1. Equivalently, if
some 7 < v/2 — 1 then |y + 2| + |3 > r. So one can take the largest lower bound

r = /2 — 1, then this yields |y + 2| + |8| > v/2 — 1. The proof is completed. [J

Theorem 4.3.4 Let (f, g) be a Kleinian group, and let v = v(f, g) and =

B(f). If f is loxodromic or parabolic or elliptic of order p > 6, then

42|+ |5 +2| > =0.618034- - .

V5 —1
2
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This inequality is sharp for the Zy-extension of (4,4,5) hyperbolic triangle group

with the triple of parameters (‘@_3, -2, —4) .

Proof. (1) Assume that |y + 2|+ |5 + 2| < @ then there is a contra-
diction.

Recall the inequality from Theorem 4.2.7,

V5 —1
o

v+ |8+2] >

By Lemma 4.3.1, <f, g, f]2> is a Kleinian group and hence  and v, =

v(v = B)(v + 2)? giving by the identity (4.25) fit the inequality:

Yol + 18 +2] =

V5 —1
R

Since |y + 2|+ |8+ 2| < \/52_1, Iy +2l < |v+2/+[8+2] < \/52_1 and

B+2| < |y+2+|8+2 < &=L

It follows that

V5 —1
2

< vy = B) (v +2)%| + 18 + 2|

< (v +2[+2)(Iy + 2] + B+ 2]y +2[ly + 2| + [8+ 2]
2
<@+V%‘5<“2’j|v+m+W+m

2

= +2[+18+2l

Thus, |y + 2|48 + 2| > % that contradicts to the assumption |y + 2|+

15+ 2| < ‘/52’1, which gives the inequality

Iy 42|+ |5 +2| > = 0.618034--- .

V5 —1
2

(2) Let f be of order 4, then = —2 and hence |f+2| =0 and |y +2| =
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—\/52_1, SO0 v = _\/25_3 or vy = */52_5.

Now choose the first case of v :

/5 -3
5

Since tr [f,g] =~v+2 = 1_2*/3 = —2cos (&),

ﬂ([fag]) :tI‘Q[f’g] —4

()

2m
= —4sin*(—).
sm(5)

By Theorem 2.3.5, [f, g] is elliptic of order 5. Take f and h = gf~'g~! elliptics
of order 4 whose product fh = [f,g] is elliptic of order 5. Since (f, gfg~!) =
(f, gf tg™') and the identity 2.11, (f, gfg~!) is the (4,4,5) hyperbolic triangle
group that is a Kleinian group.

Now choose g of order 2, this gives a Zs-extension I of the group (f, gfg~!)

and hence it is a Kleinian group by Lemma 3.2.5 and the triple of parameters for

<ﬁ7 Py _4> |
2

I'is

which gives the sharpness,

—V5-3
vy +2[+[8+2] = \/_TJFQ + -2 + 2|
=B+l VB
B 2 2

Theorem 4.3.5 Let (f, g) be a Kleinian group, and let v = v (f, g) and =



141

B(f). If f is loxodromic or parabolic or elliptic of order p > 6, then

[y 42|+ |8+ 1] > 0.512876 - - -
Proof. The assumption |y + 2| + |5 + 1| < r for some r > 0 implies

Iy+2<|y+2[+[B+1 <rie,|y+2|<r

Recall the inequality from Theorem 4.2.6

A +18+1 =1

By Lemma 4.3.1, (f,[g, f]2> is a Kleinian group and identity (4.25) gives

the parameters v, = v(y — 3)(y + 2)?, then 7, and f3 fit the inequality:

ol + B+ 1] > 1.

Since |y + 2|+ |8+ 1| <7, |y +2| <rand |3+ 1| <r gives

1< |y(y=B)(v+2)? + 8+ 1]
=|(v+2-2)(y+2-1=8-1)(v+2)*| +|8+1]
<(v+2l+2)[(Iy+2/+1+|B+1)|y+ 2] [y + 2]+ |8 +1]

<(r+2)(r+1rly+2/+|8+1]

e, 1< (r+2)(r+)ry+2|+|3+1]

If (r+1)(r 4+ 2)r <1, then the above inequality becomes

L<(r+2)(r+Drly+2|+1|8+1|

<|y+2/+|8+1]
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That is,

lv+2|+ |6+ 1] > 1.

On the other hand side, solving the inequality (r + 2)(r + 1)r < 1 gives
r < 0.32472 and hence r < 1. It follows that |y + 2|+ |5+ 1| < r < 1 and this
gives the contradiction to |y + 2| + |8+ 1| > 1.

Otherwise, if (r+2)(r+1)r > 1, then using the assumption |y+2|+|8+1| <

r gives

1< (r+2)(r+Drly+2/+|8+1|
<(r+2)(r+r(y+2/+8+1])

<24 7) (147

Solving (r + 2)(r + 1)r* > 1 implies 7 > 0.512876--- . Thus, if r <
0.512876--- , then |y + 3| + |8 + 2| > r. Take the largest lower bound r =
0.512876 - - - , then

Y+ 2|+ |8+ 1] > 0.512876 - - - .

Theorem 4.3.6 Let (f, g) be a Kleinian group and let v = v (f, g) and B =

B(f). If B(f) # =3, then

1—cosZ

%
o1 +3 23 (") = Laoto-. (4.52)

Proof. If 3 = —4 there is nothing to prove. So fixing f = [, # —4
seek the minimum value for v, call it y,. Using the trace polynomial ¢[3,~, 5] =

(8 + 3)%y(y — ) in [43] one can see that at the minimum

1 <18 + 310 — Bol. (4.33)
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This estimate alone quickly gives a reasonable bound. But it can be improved
as follows. An extremal group (f, ¢g) is Kleinian and may be assumed to have

parameters (7, 89, —4). Then, by Theorem 4.1.1, (f3, g) has parameters

(7 (f3a g) 7ﬁ (f3> aﬁ(g)) = (70(60 +3)27 60(6 + 3)27 _4)

Thus, by the identity (3.4),

V(29597 = 10(Bo + 3) (70(Bo + 3)* — Bo(Bo + 3)?)

=%o(Bo + 3)4(70 — Bo)

and (f3, gf3g™"!) is a group generated by two elements with the same trace. Thus,
see [6],

NV (f3, g% Y > 2 - 2cos§ —0.198- -,

7o(Bo + 3)* (70 — Bo)] > 0.198 - - . (4.34)

Using the inequalities (4.33) and (4.34), it is deduced that
[YollB + 37 > 0.198 - - .

The function (k — ¢)? has minimum value % on the interval t € [0, k].

Thus, with k& = |v,| + |8, + 3| and ¢ = |3 + 3|, it is seen that

W=

1—cosZ

|%!+|5o+3!23( 7> —1.1016-- - .

Theorem 4.3.7 Let (f, g) be a Kleinian group, and let v = v (f, g) and =
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B(f). If f is loxodromic or parabolic or elliptic of order p > 6, then

v+ 2|+ |8+ 3| > 0.512876 - - - .

Proof. Suppose |y + 2| + |8 + 3| < r, for some r > 0. Since the order
p > 6, by Theorem 4.3.6,

v+ 16+ 3| >1.1016-- -,
which gives
v+ 18+ 3] > 1.

By Lemma 4.3.1, <f, g, f]2> is a Kleinian group and identity (4.25) gives

the parameters v, = (7 — 3)(v + 2)?, then 7, and § fit the inequality:

Yol +16+3 > 1.

The assumption |y + 2|+ |3 + 3| < r gives |y +2| <1, so

1< |y(y=B)(v+2) + 16+ 3]
=|(v+2-2)(y+2+1-B-3)(v+2)%|+|8+3
S(y+2[+2)[(Iv+2[+1+8+3)y+2[] |y +2| + |3+ 3]

<(r+2)(r+rly+2|+18+3|.

Thus,

1< (r+2)(r+Drly+2[+|5+3|. (4.35)
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If (r+2)(r+ 1)r <1, then the identity (4.35) becomes

1< (r+2)(r+1rly+2/+ |8+ 3]

<y +2/+(8+3

That is

|y +2|+1|8+3 >1.

Solving the inequality (r + 2)(r + 1)r < 1 gives r < 0.324 72 and hence r < 1. It
follows that |y + 2|+ |5+ 3| < r < 1 and this contradicts to |y + 2|+ |5+ 3| > 1.
Otherwise, (r +2)(r + 1)r > 1, then the assumption |y +2| + |5+ 3| <7

becomes

L<(r+2)(r+1rly+2|+|8+3
<(r+2)(r+rly+2|+ (r+2)(r+ 1)r|s+ 3|
=(r+2)r+r(y+2/+8+3])

< (24 7)(1+7r)r?

Solving (2 + r)(1 4+ r)r? > 1 implies r > 0.512876---. Equivalently, if some
r < 0.512876 - - - then |y + 2|4 |5| > r. The largest lower bound r = 0.512876 - - -
gives the result:

v+ 2|+ |8+ 3| > 0.512876 - - - .

Now taking the trace polynomial v3 = ([, [g, f]?’) to establish more

inequalities in the following.

Theorem 4.3.8 Let (f, g) be a Kleinian group, and let v = v (f, g) and =
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B(f). If f is loxodromic or parabolic or elliptic of order p > 6, then

|y + 1| + |B] > 0.324718.

Proof. To get a lower bound for |y + 1| + || :

Y+ 1+ 18] =7

Assume |y 4 1] + |5| < r, for some r > 0, then |y + 1| <r and |5] <.
By Lemma 4.3.1, {f, [g, f]3> is a Kleinian group and identity (4.26) pro-
vides the parameters v; = v(y — 8)(y + 1)*(y + 3)%, then 74 and  fit the Jor-

gensen’s inequality |y| + |8] > 1 :

1< |vs| +18]
= |v(y = B)(v +1)* (v + 3)’| + I8
< (Y + 1+ D)y + 1+ 18]+ )|y + 1]+ 2)*|y + Ly + 1] + 3]

<(r+17>%*r+2)>%y+1]+18|

Hence, 1 < (r + 1)2(r + 2)%r|y + 1| + 3.
If (r +1)%(r + 2)%r < 1, then

1< (r+1D3r+2)2%ry + 1]+ |8

< |y+1+18l.

On the other hand, by solving the inequality (r + 1)*(r + 2)*r < 1 gives r <

0.1595 and hence|y + 1| + || < r < 1. It is a contradiction to |y + 1| + 5] > 1.
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Now (r 4+ 1)2(r +2)%r > 1, so

1< (r4+1D2r+2)2%ry+ 1]+ |3
< (r+ 1%+ 2% (v + 11 + 16

< (r+17>%r+2)>%?

By solving (r + 1)%(r + 2)*r* > 1 gives r > 0.324718. Therefore, if r < 0.324718,

then |y + 3| + |3 + 2| > r. Take the largest lower bound r = 0.324718, then

Iy + 1] + |8] > 0.324718.

Theorem 4.3.9 Let (f, g) be a Kleinian group, and let v = v (f, g) and 5 =

B(f). If f is lorodromic or parabolic or elliptic of order p > 6, then

v+ 3[ + (8] > 0.147899.

Proof. Suppose that |y + 3| + || < r, for some r > 0, then |y + 3| <r
and |B] <.

By Lemma 4.3.1, {f, [g, f]3> is a Kleinian group and identity (4.26) pro-
vides the parameters v; = v(y — 8)(y + 1)*(7 + 3)%, then 75 and  fit the Jor-

gensen’s inequality (|| + |5] > 1) :

1< |y(y = B) (v + 1)*(v + 3)%| + |B]
< (|y+ 3]+ 3)(]v + 3| + 18] + 3) (|7 + 3] + 2)*|y + 3]|y + 3| + |3]

< (r+3)>2(r+2)>%y+3|+18|
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If (r 4+ 3)%(r + 2)?r < 1, then

1< (r+43)%(r+2)%r|y + 3|+ |3

<|y+3[+]8]

Solving (1 +3)2(r +2)?*r < 1 gives r < 0.02658 and hence |y + 3|+ || < r
< 1 and this gives a contradiction to |y + 3| + |5] > 1.

Otherwise, (r + 3)%(r 4+ 2)*r > 1 and hence

1< (r+3)%r+2)%r|y + 3|+ 8|
< (r+3)%(r+2)% (Iv + 3| +5)

< (r+3)>%(r+2)>4%

By solving (r +3)%(r+2)%r? > 1 gives r > 0.147899. Hence, if r < 0.147899, then

|y + 3| + |8 + 2| > r. Now take the largest lower bound r = 0.147899, then

|y + 3| + |8] > 0.147899.

Theorem 4.3.10 Let (f, g) be a Kleinian group, and let v = v (f, g) and B =

B(f). If f is loxodromic or parabolic or elliptic of order p > 6, then
27
v+ 3|+ |5+ 3| > 2cos (7> —1=0.2469--- .

This inequality is sharp for the Zy-extension of the (3,3,7) hyperbolic tri-

angle group with the triple of parameters (—2 — 2cos (27”) , —3, —4) .

Proof. (1) Suppose that the inequality is not held, i.e., it becomes the
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following inequality

2
|y + 3|+ |+ 3| < 2cos (%) - 1.

It follows that |y + 3| < 2cos (2) — 1 and |3 + 3| < 2cos () — 1.

Since the order p > 6, applying for the inequality in Theorem 4.3.6:
7] + |8+ 3| > 1.1016- - - ,
and hence
|v| + 15 + 3] > 2cos (2;) —1=0.2469--- . (4.36)

By Lemma 4.3.1, (f, [g, f]3> is a Kleinian group and the corresponding
polynomial trace identity (4.26) provides v = (v — 3)(y + 1)?(y + 3)?, then ~,4
and [ fit the inequality (4.36):

2
V3| + 8+ 3| > 2cos <77T) —1.

Therefore,
2c0s (Z) =1 < |y(y = B) (v + 1)*(y +3)*| + B8 + 3]
=|(v+3=3)((v+3) = (B+3) (v +3-2)*(v+3)*| + 8+ 3|

< (Iy+31+3)(Iv+ 3|+ B+3)(Iy + 3| +2)* v+ 3> + |3 + 3]

)
< (v +3[+3)(v+3[+18+3])
(2(:08( )+2)(2COS( ) 1

= [y +3l+15+3].
That is,

(
(|7 + 3|+ 2)%y + 3|y + 3| + |5 + 3]
)* (2c0s (Z) +1)° |y + 3| + 8+ 3|

2
|y 43| + |8+ 3| > 2cos (%) - 1. (4.37)
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It contradicts the assumption at the beginning:

2
|y + 3|+ |+ 3| < 2cos (%) - 1.

Thus, |y + 3|+ |3+ 3] > 2cos (3£) — 1 =0.2469- - - .
(2) Consider f of order 3, then = —3 and hence the term |5+ 3| vanishes.
It follows that |[y+3| = 2cos (%) —1,i.e.,v = —2cos () —20ry = 2 cos (%) —4.

Choose the first case of v :

Since tr[f,g] = v +2 = —2cos (&),

6([fag]) :tI'2 [f?g] —4

() -

2m
= —4sin®(=).
sm(7)

By Theorem 2.3.5, [f, g] is elliptic of order 7. Take f and h = gf~*g~! elliptics
of order 3 whose product fh = [f,g] is elliptic of order 7. Since (f, gfg~') =
(f, gf'g™1) and the identity 2.11, (f, gfg~ ') is the (3,3, 7) hyperbolic triangle
group and hence it is a Kleinian group.

Now choose g of order 2, this gives a Zy-extension I' of the group (f, gfg~!)

and hence it is a Kleinian group by Lemma 3.2.5 and the triple of parameters for

2
—-2-2 —|,-3,—4
(-2-20m () -5.-1),

Tis



151

which gives the sharpness,

2
|7+3|+|B+3|=‘—2—2cos<77r)+3’+|—3+3|

2
= 2cos (—W) — 1.
7

Theorem 4.3.11 Let (f, g) be a Kleinian group, and let v = v (f, g) and B =

B(f). If f is loxodromic or parabolic or elliptic of order p > 6, then

v+ 3|+ [6+2] >0.185168 - - - .
Proof. Assume the following inequality for some r > 0 :
Iy +3[+[B+2[ <
Recall the inequality from Theorem 4.2.7,

Y +18+2[ =

V5 —1
2

By Lemma 4.3.1, < f, lg, f]3> is a Kleinian group with the parameters

vs =(y = B)(v + 1)%(7 + 3)?, then 4 and 3 fit the inequality:

sl + 18 +2] =

V5 —1
2
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Since |y + 3|+ |8+ 2| <, then |y + 3| < r and |3 + 2| < r. Thus,

V5 —1

57— <O =B +1)°(y +3)°[ + 18 + 2l

=(7+3=-3)(7+3—-(B+2)— 1) (v +3-2*(v+3)*| + |5 + 2|
< (v +31+3) (v +3|+8+2 + 1) (|7 + 3] +2)° |y + 3| |y + 3| + [B+ 2|

<(r+3)r+Dr+2)>2y+3]+|8+2|

If (r+3)(r +1)(r +2)* <1, then

5—1
2

QI

<(r+3)r+1)(r+22ry+3|+8+2/ < |v+3[+[8+2]

(4.38)

S

-1
2

ie., <|y+3[+16+2].

On the other hand, solving (r + 3)(r + 1)(r + 2)?r < 1 gives 7 < 0.07

0903 < Y=L and hence |y + 3| + |8 +2| < r < ¥3-L Tt is a contradiction to

[y +3|+[8+2] > Y32

Now (r + 3)(r + 1)(r + 2)?>r > 1, so the inequality (4.38) becomes

NG

5— < (r+3)(r +1)(r +2)%r|y+ 3|+ 1|8+ 2|

<(r+3)r+0)0r+2)% | (y+3+18+2))

< (r+3)(r+1)(r+2)7%"

Solving ¥3=1 < (r + 3)(r + 1)(r + 2)*2 gives r > 0.185168. Thus, if

r < 0.185168, then |y + 3| + |3 + 2| > r. So take the largest lower bound r =
0.185168 - - - , then
v+ 3|+ |8+2| >0.185168 - - - .
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The dissertation will end here, the further research work related to the
project is to create more sharpness and to implement applications in low-dimensional

topology and geometry, especially in 3-manifold theory.
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Appendix

orbit, 46 Kleinian group, 60

stabilizer of a set, 46
limit set, 46

axis, 27

Méobius group, 7
complex hyperbolic distance, 42 Mobius transformation, 7
conformal group, 13

non-discrete group, 45
conformal mapping, 13

non-elementary group, 46
conjugate, 9

conjugator, 9 ordinary set , 62

convergence property, 23
parameters, 30

Convergence property , 23
& PToperty perfect set, 66

lgebraically, 83
CONVErges algebralcally, primitive elliptic, 39

discont at a point, 62
discontinuous group, 62

discrete group, 45

projective special linear group, 9
properly discontinuous, 68

property virtually, 72

virtually Kleinian group, 72
elementary group, 46

exceptional set of parameters, 54 rank, 69

i h
fixed point, 11 Riemann sphere, 6

free group, 69 set stabilizer

good word, 70 invariant, 46

stabilizer, 46
holonomy, 42

hyperbolic lines, 24 topological group, 6

trace polynomial , 70 sotal sl il ncls (29
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