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Abstract  

 

This dissertation is concerned with the land surface deformations related to 

anthropogenic activities and how a monitoring strategy can be established for 

nationwide studies. The main objective of this dissertation is to study land surface 

fluctuations in regional and local scales over the dry semi-arid climate of the United 

Arab Emirates with the relation to subsurface layers mechanisms and groundwater 

dynamics. Radar Interferometry techniques have been developed to detect and monitor 

land surface movement from space with very high accuracy. This dissertation 

investigates the implementation of these techniques over highly decorrelated surfaces. 

The detected land surface movements have been correlated with groundwater and 

geophysical data. The study shows significant findings of various land surface 

subsidence zones with extensive subsidence over desert landcover. The study detected 

a maximum land surface subsidence rate over two distinctive zones of Remah and Al 

Wagan with a subsidence rate of -60 mm/year and -55 mm/year, respectively with an 

accuracy measurement of ±2 mm/year in the period between 2017 to 2021. Results 

from Radar Interferometry have been confirmed by field observations where clear 

signs for ground movement have been observed. This dissertation implements Radar 

Interferometry techniques using the parallelization concept which aims to reduce the 

processing time that is always challenging for Radar Interferometry processing. Also, 

this dissertation processed time-series of radar imageries to observe smaller ground 

movement with reliable accuracy. Moreover, this dissertation holds an integration 

between radar remote sensing and geophysical investigation which unveils a hidden 

relationship between ground motion from space and subsurface mechanisms. This 

dissertation shows that the land surface subsidence detected in the previous study by 

(Liosis et al., 2018) is still active and more severe than before. Also, land surface 

movement over new areas that are unknown before have been detected and fully 

investigated with ground truth data. 

 

Keywords: Radar Interferometry, Synthetic Aperture Radar, Groundwater, Surface 

Subsidence, Microgravity, Big data.  
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Title and Abstract (in Arabic) 

 

 الإستشعار عن بعد بالرادار لدراسة سطح الأرض فوق الإمارات العربية المتحدة

 ص الملخ

هذه الأطروحة تركز على دراسة تشوهات مستوى سطح الأرض و علاقته بالممارسات  

على   التغييرات  تلك  لمراقبة  إستراتيجية  وضع  كيفية  و  للإنسان  الدولة المختلفة  يشمل  مستوى 

إن الغرض الأساسي من هذه الأطروحة هو دراسة تغيير مستوى سطح الأرض على  بأكملها. 

المستوى المحلي و الإقليمي في المناخ الجاف و شبه الصحراوي لدولة الإمارات و علاقته مع  

بصورة    اعتمدت الدراسة  آلية تغيير الطبقات تحت سطح الأرض و تغيير مستوى المياه الجوفية.

أساسية على تقنيات قياس التداخل بالانتثار عن طريق الرادار التي تتميز بدقة عالية جدا لكشف و  

مراقبة تغييرات الهبوط و الإرتفاع لمستوى سطح الأرض. هذه الاطروحة تختبر التطبيق العملي  

ا الهبوط و  تغييرات  نتائج  الانتثار.  ثبات  بعدم  تتميز  أماكن  التقنيات على  لإرتفاع لمستوى  لهذه 

الجيوفيزياء. و  الجوفية  المياه  بيانات  تم ربطها  نتائج مهمة   سطح الأرض  الدراسة وجدت  هذه 

لنطاقات هبوط سطح الأرض مع إكتشاف هبوط حاد لمستوى سطح الأرض لمنطقة صحراوية  

مم بالسنة   60- تتوسطها بعض المزارع. أقصى معدل هبوط كشفت عنه هذه الدراسة كان بمقدار 

. النتائج المكتشفة تم تأكيدها  2021و    2017مم بالسنة في الفترة بين عامي    2  ±معدل تغيير  ب

في  بعمل مسح حقلي لمعاينة نطاقات الهبوط حيث تم رصد دلائل لهبوط مستوى سطح الأرض.

هذه الأطروحة تم معالجة المرئيات المسجلة عن طريق تقنية قياس التداخل بالانتثار عن طريق  

الرادار بإستخدام مفهوم الموازاة حيث يهدف لتقليل زمن المعالجة لعدد كبير من المرئيات و اللذي 

يعتبر عائقا و تحديا في معالجة مرئيات الرادار بتقنية قياس التداخل بالانتثارعن طريق الرادار.  

ريق مجسات أيضا هذه الأطروحة تطرقت لطرق معالجة البيانات الكبيرة للمرئيات المسجلة عن ط

الرادار بهدف اكتشاف درجات هبوط سطح الأرض الصغيرة مع الحفاظ على الدقة العالية للنتائج. 

هذه الأطروحة أيضا تضم دمج لتقنيات الاستشعار عن بعد بالرادار و الجيوفيزياء، حيث ساعد  

كة الطبقات هذا الدمج على التعرف على علاقات جديدة بين نتائج معالجة الاستشعار عن بعد و حر

هذه الدراسة توضح ايضا أن هبوط مستوى سطح الأرض اللذي تم اكتشافه   تحت سطح الأرض.

اكتشاف مناطق   تم  أنه  الهبوط. كما  بإزدياد في معدل  السابقة ما يزال مستمرا و  الدراسات  في 

ل  جديدة لظاهرة الهبوط و الإرتفاع لمستوى سطح الأرض لم يتم الكشف عنها مسبقا و قد تم عم 

 دراسة تفصيلية حول تلك المناطق بالإستعانة بالبيانات الحقلية. 
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Chapter 1: Introduction 

 

1.1 Overview 

Land surface monitoring plays a crucial role in understanding the environment 

and changes that happened on the Earth such as global warming, ice melting, sea level 

rising, forest fires, and climate changes. Observing land surface changes over a very 

wide area can be difficult and confusing especially using a traditional field survey. 

Remote sensing satellites provide very wide coverage with consistent temporal 

acquisitions which ease the land surface monitoring. In recent years, scientists all 

around the world used satellite imageries for land surface monitoring such as land use 

and landcover changes (El Jazouli et al., 2019; MohanRajan, Loganathan, and 

Manoharan, 2020; Olorunfemi et al., 2020), vegetation health (Fang et al., 2019; 

Kureel et al., 2021; Petersen, 2018), geological exploration (Bikeeva et al., 2021; 

Frutuoso, Lima, and Teodoro, 2021; Rajan Girija et al., 2019; Svigkas et al., 2017), 

land surface deformations (Imamoglu et al., 2019; Pawluszek-Filipiak and Borkowski, 

2020; Peng et al., 2019), and ice sheet studies (Baumhoer et al., 2018; Liang, Li, and 

Zheng, 2019; Sasgen et al., 2019). 

Land surface deformations phenomena can be categorized as catastrophic 

events that can result in the loss of lives and infrastructures. Land surface deformations 

can occur from either natural causes, e.g. earthquake and volcanic activities, or 

anthropogenic activities, e.g. underground mining, extraction of underground 

resources (pumping groundwater, oil, gas, etc.), and underground constructions (He et 

al., 2020; Kim et al., 2007). The land surface subsidence refers to the moving of the 

Earth’s surface downward relevant to a reference location (Holzer et al., 2005). 
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The rapid population growth in the world changed natural land covers to urban 

areas and depleted the natural resources due to overconsumption. The United Arab 

Emirates (UAE) is one of the fastest developing countries in the world during the last 

two decades. The population of the UAE has increased gradually from 3 million in 

2000 to 10 million in 2020. This growth urged the demand to increase urban areas, 

farming activities, and water supply. These anthropogenic activities can impact the 

land surface negatively with overloading the soil, dumping the garbage, and extracting 

the underground resources. 

Radar remote sensing techniques have been developed in the last decades to 

detect and monitor land surface deformations by the interferometry technique. This 

technique, also known as Synthetic Aperture Radar Interferometry (InSAR), relies 

mainly on measuring the distance difference between the radar sensor in the space and 

ground targets from two different locations. This technique allowed the detection of 

the first land surface deformations from an earthquake over Landers, California 

(Massonnet et al., 1993). The development of the InSAR techniques through time has 

been utilized to study land surface deformations due to landslides (Dong et al., 2019; 

Tong and Schmidt, 2016), volcanic activities (Papoutsis et al., 2013 ; Pepe et al., 2019), 

extraction of underground resources (Chen et al., 2020; Fokker et al., 2016; Staniewicz 

et al., 2020), and urbanization (Dong et al., 2014; Papoutsis, Kontoes, and Paradissis, 

2017). 

1.2 Research Objectives 

The main objective of this research is to study land surface fluctuations, 

moving up or down, in regional and local scales over the dry semi-arid climate of the 

UAE using the Synthetic Aperture Radar Interferometry technique. The land surface 
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of the UAE can be considered stable tectonically and there are no active faults have 

been found; therefore, any land surface deformations detected could be caused by 

anthropogenic activities. Except for the northern emirates can be affected by tectonic 

events in neighboring countries. 

The specific research objectives are: 

1) To detect and monitor land surface subsidence and uplift over the whole 

territory of the UAE using Radar Interferometry techniques. 

2) To investigate which landcover types are affected and define the driving 

mechanisms for the land surface movement. 

3) To investigate the subsurface mechanism and its relation to the surface 

movement detected from space. 

1.3 Dissertation Organization 

This dissertation is composed of six chapters and is organized based on the 

outcomes of the three papers listed below. Chapter one introduces the research 

problem with a clear definition for the research objectives alongside how the 

dissertation is organized. Chapter two presents a concise review of radar remote 

sensing techniques for monitoring land surface studies with an outlook for big radar 

imageries data processing. Chapter three presents the methods and techniques that 

were applied and developed along with the outcomes of the observed land surface 

deformations over the whole territory of the UAE. Chapter four presents a case study 

of monitoring land surface subsidence using radar remote sensing and ground truth 

data over agricultural areas. Chapter five presents an integration of radar remote 

sensing with geophysical methods with a case study over the Al Ain city. Chapter six 

presents a summary and conclusion with an outlook for future research. 
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Chapter 2: Satellite Radar Interferometry 

 

2.1 Synthetic Aperture Radar Interferometry 

In recent years the advantages of radar remote sensing systems over optical 

systems have been clearer and more noticeable. One of these advantages is the ability 

to measure the phase along with the amplitude of the backscattered signal from the 

Earth's surface. Signal amplitude is the scattering characteristic of the targeted pixels 

which is controlled by the scattering mechanisms. While the phase of a signal is related 

to the distance between the radar satellite and the target where the signal has been 

scattered back to the satellite. Thus, in radar remote sensing to discriminate between 

pixels, data of amplitude and phase were sampled for each pixel. Mathematically, the 

signal is expressed by complex numbers due to the necessity of measuring and 

processing two linked variables; amplitude and phase. Then the reflectivity of a pixel 

in a radar satellite image can be expressed by 

p = |A2|ej∅     2.1 

where A is the amplitude recorded for that pixel and ∅ is the phase difference between 

transmitted and backscattered signals from the pixel. Accordingly, separated targets 

will be discriminated clearly in the radar image if there is a difference in their phase 

difference angles. If the distance between the radar sensor and ground target can be 

expressed by R, also known as slant range distance, then the signal traveled a distance 

of 2R when transmitted from the sensor to when recorded at the radar sensor, and it 

can be expressed by 

∅ =
4π

λ
R      2.2 

where λ is the wavelength. Phase measurements are the basis of radar interferometry. 
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 Imaging the same Earth’s surface location with two radar sensors, or apertures, 

with the same characteristics but from different locations in space rise the opportunity 

to image the same target with different angles. Thus, the same target on the Earth’s 

surface will have two phase difference angles due to the different range distances. 

From Figure 2.1 we can assume that we have ϕ1 and ϕ2 as the phase difference angles, 

R1 and R2 as the range distances, for acquisition 1 and acquisition 2, and θ is the 

incidence angle, then we can express the difference between the two phase angles as  

∆∅ = ∅1 − ∅2 =
4π

λ
(R1 − R2) =

4π

λ
ΔR    2.3 

this measurement is known as Interferometric Phase Angle. 

 

 

Figure 2.1: InSAR viewing geometry. 
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For more practical uses the interferometric phase angle is expressed in system 

parameters instead of the range distant. The separation between the two radar sensors 

is known as a baseline (B) and the normal between the two range distances is known 

as a perpendicular baseline (B⊥) (Figure 2.1). Thus, Equation 2.3 can be written as 

∆∅ =
4πΒsinθ

λ
     2.4 

 Interferometry techniques were applied from the product of one image by the 

complex conjugate of the second image pixel by pixel. The complex conjugate of a 

complex number is the complex number with the negative sign to the Imaginary part 

of that complex number. So, the formed image from this product is a complex number 

where it is Real part is the product of the two images intensity while it is Imaginary 

part is the phase difference between the two images, the interferometric phase angle. 

This product is called Interferogram and can be expressed mathematically by 

i(x, y) = ρ1ρ2e
jΔϕ    2.5 

 Since the interferometric phase angle is incidence angle dependent, then the 

interferogram will vary across swath in the range direction without any variation in 

elevation. This is known as the Flat Earth Phase component. 

 From the baseline point of view, radar interferometry can be achieved by 

separating antennas in either the cross-track direction or the along-track direction, and 

so-called Cross-Track Interferometry or Along-Track Interferometry. Also, 

interferometry can be achieved either in a single-pass where the platform carries two 

separated antennas or repeat-pass where the platform collected radar images in two 

separate passes at different times. Both Cross-Track and Along-Track Interferometry 

can operate in single-pass and repeat-pass, while Cross-Track Interferometry single-
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pass is sensitive to height variations, Along-Track Interferometry repeat-pass is very 

sensitive to elevation changes between passes. 

 Coherence is an important statistical measure for the interferogram to be 

considered significant. It is the degree of correlation between the two images that 

formed the interferogram. Assuming that the interferogram was formed from two 

images e1 and e2, then the coherence (γ) is the complex cross-correlation between the 

two images and can be expressed by 

γ =
|e1e2

∗ |

√|e1|2|e2
∗ |
2
     2.6 

Coherence ranges from 0 to 1, where 0 indicates no statistical correlation between the 

two images and also this case called decorrelated images, while 1 indicates a statistical 

correlation between the images and known as fully correlated. 

 Coherence measurement can be decomposed into various components where 

each component is attributed to a specific decorrelation mechanism. The first 

component is related to the geometry of the radar interferometry (Figure 2.1), the 

interferometric phase angle is dependent on the baseline and the incidence angle 

(Equation 2.4). The incidence angle varies with topography and across the swath 

(varied from pixel to pixel) but the baseline is a system parameter and can be known 

for each interferogram generated. A greater baseline will result in a higher 

interferometric phase angle which means a higher interferometer sensitivity but in 

order to convert the elevation changes between pixels, the interferometric phase angle 

changes from pixel to pixel should not exceed 2π. This can be achieved by calculating 

the baseline from Equation 2.4 when the Δϕ is equal to 2π and the other parameters 

are fixed for any radar system. This measure is known as the Critical Baseline where 
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beyond this value the inter-pixel phase change cannot be recognized. This component 

is known as geometry or baseline decorrelation (γgeom). 

 The second component of coherence is related to the scattering change in the 

pixel between acquisitions. This change can occur either from changing the looking 

angle between acquisitions or changes that occurred at the land cover resulting in a 

different scattering mechanism. Land cover changes are not necessary to change from 

type to type it can be during the phenological cycle of vegetation, glacier movement, 

or moisture content changes. This coherence component is called Temporal 

Decorrelation (γtemp) because these factors are time-dependent and occur between the 

acquisitions. 

 The next coherence component is related to the noise in the radar systems that 

have been used. One way to measure that is by using the Signal-to-Noise ratio (SNR) 

of the two radar receivers. High SNR indicates less noise which means low 

decorrelation between images. This component is known as Noise Decorrelation 

(γnoise). The coherence of an interferogram can be generated by multiplying all 

decorrelation components 

γ = γgeomγtempγnoise     2.7 

 The interferometric phase angle, also known as total interferometric phase 

difference, is related to the range difference between the two acquisitions as derived 

in Equation 2.3. In practice, the interferometric phase can be divided into several 

components where each one contributes to the total interferometric phase difference 

and they can be expressed by 

Δ𝜙 = Δ𝜙𝑡𝑜𝑝𝑜 + Δ𝜙𝑑𝑖𝑠𝑝 + Δ𝜙𝑎𝑡𝑚 + Δ𝜙𝑛𝑜𝑖𝑠𝑒 + Δ𝜙𝑒𝑟𝑟  2.8 
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where Δϕtopo is the phase component related to topography, Δϕdisp is the phase 

component related to surface displacement, Δϕatm is the phase component related to the 

signal delay in the atmosphere, Δϕnoise is the phase component related to the noise in 

the radar systems, and Δϕerr is the phase results from uncertainty. 

 The range difference is the key for topography mapping using radar remote 

sensing from space. Utilizing the trigonometry with the radar interferometry geometry 

shown in Figure 2.1 the change in elevation (h) from pixel to pixel can be related to 

the total interferometric phase difference between pixels as 

d(Δϕ)

dh
=

4πB┴ cosθ

λHsinθ
⇒ Δϕtopo =

4πB┴ cosθ

λHsinθ
Δh   2.9 

where H is the radar satellite altitude.  

If there is a topographic movement between the acquisitions t1 and t2 then the total 

interferometric phase difference will be related to the topography and the topographic 

movement. These two relations can be expressed by 

Δϕ = Δϕ(h, Δr)             2.10 

where Δr is the topographic change in slant range direction. The first order of the 

previous can result in 

Δϕ =
4πB┴ cosθ

λH sinθ
Δh +

4π

λ
Δr             2.11 

where the second term is the surface displacement phase component (Δϕdisp). 

 In most cases, the radar interferometry is applied to either for mapping 

topography or detecting surface displacement, the first and second phase components 

in Equation 2.8. Mapping topography can be achieved by utilizing cross-track 

interferometry in a single-pass in order to avoid temporal changes on the ground or 
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elevation such as Shuttle Radar Topography Mission (SRTM) which produces the 

global Digital Elevation Model (DEM). On the other hand, detecting land surface 

displacement is achieved better with along-track interferometry and repeat-passes 

where the phase component related to the topography is minimal. In practice, the radar 

sensors in repeat-passes interferometry will be separated in both cross-track and along-

track. Thus, for detecting land surface displacement removing the phase component 

related to the topography is required. This is known as Differential Synthetic Aperture 

Radar Interferometry (DInSAR). The topographic phase can be estimated by two 

methods; the first is by utilizing three SAR images two images to generate the 

topography phase component (Equation 2.9), while the second method is by using 

DEM data to generate the topography phase component, then subtracting it from the 

total phase interferometric difference. Noteworthy, the total interferometric phase 

difference contains other phase components than the topography phase as shown in 

Equation 2.8, so detecting land surface displacement with high precision requires 

estimating and removing each of these phase components. Furthermore, a small phase 

component related to noise can be achieved by performing the DInSAR process on 

pixels that exhibit small phase noise. 

 The remaining phase after removing all phase components and leaving only 

the phase component related to the land surface displacement ranges from 0 to 2π due 

to the sinusoidal function of the radar wave. This type of phase is called the wrapped 

phase where this signal records the same interferometric phase difference for each 

difference equal to the wavelength of the signal (Figure 2.2). The wrapped phase 

appears in the image as repeated cycles of, or discontinuities in, the phase angle 

wherever its value exceeds 2π. This leads to an ambiguity in number cycles that the 
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signal traveled between the radar sensor and the target and it is affecting the precision 

of detecting land surface displacement and mapping topography. 

 

 

 

Figure 2.2: Wrapped phase of the radar wave. 

  

Discontinuities in the interferometric phase can be converted to a continuous 

phase to resolve the ambiguity in the wrapped phase, this process is called the phase 

unwrapping. It is considered to be the most challenging step in the radar interferometry 

techniques because in most cases there is a change between pixels exceeding 2π which 

makes it difficult to generate a continuous surface. For simple cases the phase jumps 
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can be determined between each cycle, then 2π can be added or subtracted based on 

the gradient of the phase along each transect. 

2.2 InSAR Time-Series Techniques 

As above mentioned, processing pixels or targets with small phases will result 

in smaller phase components related to noise then more reliable surface displacement 

measurement. Selecting those pixels was a challenge in the development of radar 

interferometry processing techniques in the late 1990s and the beginning of the 2000s. 

Research studies showed two approaches to select pixels where their phase noise at 

minima, the first is determining a strong target scatterer in the pixel where its response 

remains constant for a long period of time and this is called the Persistent or Permanent 

Scatterer (PS), while the second is determining pixels with a constant response for a 

period of time from different targets within the pixel and this is called the Distributed 

Scatterer (DS). The developed DInSAR techniques over the last two decades employed 

either PSs, DSs, or combined both. Moreover, the DInSAR techniques can be 

classified based on the deformation model utilized to convert the displacement phase 

component into surface deformation time-series. Most of the techniques performed 

linear deformation model to the sake of it is simple assumption while other techniques 

performed a non-linear deformation model by applying spatial smoothness or 

deploying different deformation models. 

The first approach to select PSs, which paved the road for the advanced 

approaches, was proposed by (Ferretti, Prati, and Rocca, 2001) by testing the time-

series of the amplitude values for pixels rather than spatial averaging over many pixels. 

They proposed computing the Amplitude Dispersion (DA) for each target, or pixel, in 

all available SAR images as follow 
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𝐷𝐴 =
𝜎𝐴

𝜇𝐴⁄              2.12 

where σA and µA represent the standard deviation and mean of the pixel amplitude 

values. The main two advantages of this approach are being fast processing since the 

equation is quite simple and there is no resolution loss as in spatial averaging. This 

technique is called the Persistent Scatterer Interferometry (PSI) technique. This 

technique requires large temporal (five to six years) and geometrical baselines (near 

the critical baseline) with SAR images of more than 30 in order to be able to reduce 

the phase component related to the atmospheric contribution and detect land 

displacement at a millimetric level. The accurate estimation of the atmospheric phase 

contribution depends on the number of available images and PSs density. 

Interferograms were generated between the available images and one selected 

reference image known as a master image. Moreover, this technique assumes that the 

land displacement is constant over time, as many geophysical modeling and uses linear 

deformation model in time. 

 The disadvantages of the PSI technique were the low PSs density in non-urban 

or vegetated areas and the continuous SAR images are not available everywhere, in 

some cases, there are some gaps in SAR acquisitions which is degrading the 

displacement measurement accuracy. The second approach proposed by (Berardino et 

al., 2002) to solve the gaps in SAR acquisitions by dividing the available SAR images 

into small subsets to generate higher number of interferograms, then link all small 

subsets to fill the gaps between the subsets, this technique is called Small Baseline 

Subset (SBAS). The pixel selection process in this technique is achieved by selecting 

the pixels with coherence higher than a specified threshold. The interferograms 

generated by this technique are much higher than those generated by the PSI technique 
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which means a larger number of unknowns and infinite numbers of solutions to 

estimate the land displacement. For this purpose, the Singular Value Decomposition 

(SVD) was suggested to solve the problem and convert the phase into land 

displacement with the assumption of spatial smoothness deformation. This technique 

provided a solution for non-urban and vegetated areas where they appear highly 

decorrelated in the previous technique, but this technique lacks the sensitivity to detect 

local deformation because it is performed on multi-looked data which results in 

resolution loss. 

 The solution for this limitation has been provided by Lanari et al. (2004) by 

dividing the SBAS processing single-look and multi-look interferograms into low-pass 

and high-pass components. This approach showed a successful solution for the local 

deformation detection problem which suggested on the first hand generating low-pass 

components with the same procedures proposed by (Berardino et al., 2002) using 

multi-look interferograms which include large-scale deformations, low-pass 

topographic errors, and atmospheric phase components. On the other hand, high-pass 

components were generated by subtracting multi-look interferograms from single-look 

interferograms, thus processing high-pass components to estimate high-pass 

topographic signal, deformation velocity, and non-linear deformation velocity where 

the latter was achieved by implementing the SVD technique. 

 An extension to the PSI technique has been developed by (Hooper et al., 2004) 

by enhancing the PS selection step in order to increase the PS density in natural and 

non-urban areas. Hooper et al. (2004) proposed selecting PS candidates based on their 

phase characteristics and not only based on the amplitude dispersion where it works 

with the pixels characterized by high SNR. They proposed forming the differential 



16 

 

 

 

 

interferograms first, then subtracting the phase of each pixel from the averaging phase 

of neighbor pixels over a specified distance and measuring the temporal coherence for 

that pixel as a phase stability indicator. Moreover, they suggested the 3D phase 

unwrapping (2D in space as conventional InSAR and 1D in time) by calculating the 

phase differences for each PS in time, then unwrapping from a reference PS in space, 

finally integrating in time to generate unwrapped phase time-series. Furthermore, 

unlike the assumption of the linear deformation model proposed by (Ferretti et al., 

2001), this approach requires no assumption about the temporal deformation and 

models the deformation by its naturally spatial correlation. This technique has been 

enhanced in many steps to achieve more reliable displacement measurements, this 

enhancement results in one of the most using InSAR software packages the Stanford 

Method for Persistent Scatterer (StaMPS) (Hooper, Segall, and Zebker, 2007). 

 The co-registration step has been enhanced by estimated mapping functions by 

using an amplitude-based algorithm to estimate the offset between each slave image 

and the master image. Furthermore, the phase stability estimation has been improved 

by developing band-pass filtering that depends on the phase gradient rather than 

averaging over specified distance as in (Hooper et al., 2004). Then, subtracting the 

modeled phase correlated in space, estimated from the previous filtering, leave the 

phase uncorrelated in space which includes the look angle error and the noise phases. 

The former was estimated using least-squares inversion then subtracted from the 

remaining phase, the variation of this residual phase was considered as a measure of 

coherence in time. Finally, PS pixels have been selected based on the coherence and 

amplitude dispersion probability of each pixel to be PS pixel. This technique suggested 

that the phase unwrapping step is better to be applied via one of the unwrapping 

algorithms proposed in (Hooper and Zebker, 2007). 
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 An approach that combined PS and DS scatterers has been proposed by 

(Hooper, 2008) to increase the processed pixels which increased the reliability of the 

detected displacement. Hooper (2008) suggested that to select pixels from each 

technique separately then combining all candidates before the phase unwrapping 

process. For the PS technique, PS candidates were the same as in (Hooper et al., 2007), 

while for the SBAS technique a new method was proposed to select pixels, called 

Slowly Decorrelated Filtered Phase (SDFP) pixels. SBAS interferograms were 

generated to minimize perpendicular, temporal, and doppler baselines, then a filter in 

azimuth direction was applied followed by a filter in range direction. Finally, SDFP 

pixels were selected with the same approach as PS pixels in (Hooper et al., 2007) but 

from different data sets.  

 Another approach that combines PS and DS scatterers has been developed by 

(Ferretti et al., 2011) and the technique was called SqeeSAR. In this technique, the DS 

scatterers have been selected by an algorithm called DespecKS developed to identify 

the Statistically Homogenous Pixels (SHP) groups around each pixel. DS scatterers 

have been defined by SHP pixels over a specified threshold. Then, all selected DSs 

were linked by a Phase Triangulation Algorithm (PTA) and refined the DS selection 

by a coherence threshold. Finally, process the selected PSs and DSs with the 

conventional PSI processing chains (Ferretti et al., 2001). 

2.3 InSAR Applications over Different Landcover Types 

 InSAR techniques have been performed to detect and monitor land surface 

deformations in so many cases; land subsidence, uplift, volcanic activities, landslides, 

earthquakes, and material abstraction from undergrounds such as oil, gas, and 

groundwater. Moreover, these techniques have been applied to different deformation 
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scales such as over wide area on small scale like surface deformations from 

earthquakes (Massonnet et al., 1993) and a small area on large scale like displacement 

in an individual infrastructure (Yang et al., 2016). InSAR time-series techniques rely 

mainly on identifying a high density of scatterers, PSs or DSs, in order to achieve 

reliable surface displacement measurements. The density of PSs and/or DSs depends, 

of course, on the method of scatterers identification as explained in the previous 

section, but choosing which method to use depends on the ground target of the area 

under investigation, i.e., landcover types. In the following sections, a bibliography on 

InSAR applications over different landcover types is provided. 

2.3.1 Desert 

 Desert areas are characterized by similar targets which have less decorrelation 

to shorter radar wavelengths. In the case of the desert with dominant rocks, performing 

PSI on X-band or C-band to observe ground displacement over desert areas is very 

efficient because there is a great possibility to obtain high PS density. In the case of 

the desert with dominant sand, especially sand dunes, the StaMPS technique can 

achieve higher PS density because it analyzes the phase history. Gonnuru and Kumar 

(2018) and Chang, Ku, and Hanssen (2018) studied surface deformations over an oil 

field in desert areas using X-band SAR data obtained from TerraSAR-X. The former 

study investigated the land surface subsidence in the Burgan oil field, Kuwait in the 

period between 2008 and 2011 using the PSI technique and concluded that there is a 

subsidence rate of 7.2 – 10 mm/year during the mentioned period. The latter study 

aimed to detect and monitor land surface deformations due to hydrocarbon activities 

by generating a spatiotemporal variogram model for the InSAR measurements. The 

time-series results showed that the spatial pattern was smoothly subsiding during oil 
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extraction and then it had sudden upward movement after the injection activities and 

finally went down when the mine closed. The study on a hydrocarbon extraction area 

demonstrated that this method can better model the InSAR deformation time series, 

and identify sudden uplift or subsidence, at most about 4 cm, due to hydrocarbon 

production activities. 

 Another study over desert landcover was performed by Amighpey and Arabi 

(2016) in Yazd-Ardakan desert, central Iran by utilizing the SBAS technique with 

ENVISAT C-band SAR data between 2003 and 2006. This study concluded a positive 

correlation between the rate of water level reduction and the land surface subsidence 

attributed to aquifer-system compaction. 

2.3.2 Glaciers 

 Glacier surfaces are considered moving fast relative to other landscapes, so 

selecting which radar frequencies to detect and monitor glacier motion is less 

significant. Glacier surface motion over Viedma icefield, Argentina has been estimated 

by utilizing SBAS technique with COSMO-SkyMed X-band SAR data between April 

2012 to January 2013 by Euillades et al. (2016). This study concluded that the 

technique’s capability to obtain a high ice displacement rate with a mean surface 

velocity of 800 mm/year with a high spatial correlation between the topographic slope 

and displacement mean velocity. Short et al. (2014) aimed to quantify the seasonal 

ground deformation over permafrost terrain using DInSAR measurements at Iqaluit 

airport in Nunavut region, Canada using Radarsat-2 C-band SAR data. This study 

revealed land subsidence up to 12.5 cm with a strong correlation with the surface 

geology and field electrical conductivity measurements. 
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 Unlike the previous study, Strozzi, Antonova, Günther  et al. (2018) utilized 

Sentinel-1 C-band SAR data to investigate ground deformations over permafrost 

landscapes. This investigation concluded that near-surface soil properties control 

seasonal subsidence and there is a relationship between ground thermal and subsidence 

measurements. Singhroy et al. (2014) and Singhroy and Li (2015) studied the surface 

deformations from steam injected to the subsurface in the process of oil sands over 

Athabasca and Alberta respectively, Northern Canada. Both studies used 

RADARSAT-2 and COSMO-SkyMed with SBAS algorithm, leveling, gravimeters, 

tiltmeters, inclinometers, and GPS. Both studies showed a strong correlation between 

the uplift rates over the horizontal injector wells and the rate of steam injection. 

Moreover, the reservoir thickness and surface deformations are not correlated. 

2.3.3 Mountains 

 Mountainous areas have a high probability to identify high PS density from 

various radar frequencies and InSAR techniques due to the high coherence and phase 

stability of their rocky surface. In the case of vegetation cover, lower frequency, higher 

wavelength, is preferable due to its ability to penetrate through leaves. Also, larger 

frequencies, like X-band, have a higher atmospheric contribution due to high terrain 

and redirecting the radar signal. 

 Investigations over the Kilauea volcano in Hawaii islands were conducted by 

Hue et al. (2017) and Jo, Jung, and Won (2017) to detect land displacement from 

volcanic activities. The former constructed a joint model to measure 3D surface 

displacement from the traditional InSAR stacking measurements using L-band ALOS 

SAR data. This study showed higher accuracy than the traditional InSAR technique 

and succeeded to retrieve a vertical displacement with a maximum of -16 cm and 
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horizontal displacement toward the caldera by -6 cm. The limitations of this model are 

that it requires prior knowledge about the study area and the model requires to be 

reconstructed for each radar frequency. While the latter investigation assessed the 

surface displacement generated from X-band TerraSAR-X using the traditional InSAR 

stacking by comparing its surface displacement to GPS measurements. This 

comparison showed a lower accuracy due to the high atmospheric contribution in X-

band measurement over mountainous terrain with RMS for the deformation 

measurement was 3.26 ±1.32 cm and 2.95 ± 0.77 cm from ascending and descending 

datasets, respectively. 

 Other studies retrieved surface deformations successfully from X-band 

TerraSAR-X. Raucoules, Michele, Malet, and Ulrich (2013) performed the offset 

tracking technique to detect landslides over La Valette landslide, South French Alps 

between 2010 and 2011. This study observed maximum horizontal displacement rate 

maximum vertical displacement rates of 14 m/year and 11 m/year, respectively, in 

agreement with the ground-based observations. Gama et al. (2017) investigated land 

surfaced deformations over Carajás open-pit iron mine in Brazil using the SBAS 

technique and the study observed up to 500 mm/year surface deformations and 

validated with leveling measurements. 

 Baek, Jung, and Chae (2018) and Kimura (2017) studied land surface 

deformations due to the Kumamoto earthquake using L-band ALOS-2 SAR data 

acquired along ascending and descending orbits. The former applied the traditional 

InSAR stacking technique and retrieved surface deformations of 2 m in vertical and 

horizontal directions. While the latter study decomposed surface deformations into 

three components with 70, 50, and 30 cm for eastward, northward, and upward, 
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respectively. The comparison between InSAR deformations components and GNSS 

measurements showed strong agreement with eastward and upward components and 

less agreement with the northward component. 

 A combination of X-band and C-band SAR data has been applied to detect land 

surface deformations (Polcari et al., 2017; Sansosti et al., 2014). An investigation of 

small effects from the central Italy seismic sequence 2016-2017 using X-band 

COSMO-SkyMed and C-band Sentinel-1 SAR data with traditional InSAR stacking 

technique (Polcari et al., 2017). The same SAR data combination, but with C-band 

ERS1/2 and ENVISAT instead of Sentinel-1, has been utilized with SBAS technique 

to investigate surface displacements over Campi Flegrei and Mountain Etna, also L-

band ALOS SAR data added, volcanic areas in Italy (Sansosti et al., 2014). Involving 

X-band SAR data allowed to unveil the driving process behind the deformation while 

the SBAS technique retrieved the non-linear deformations. 

 An integration between InSAR measurements and GRACE (Gravity Recovery 

And Climate Experiment) has been performed by Zheng et al. (2018) in order to 

analyze surface deformations over Xuzhou coalfield, China. This study is based on 

Temporarily Coherent Point (TCP) InSAR which does not require the TCP to be 

coherent during the entire monitoring period and does not require phase unwrapping. 

This integration allowed to understand the relationship between groundwater storage 

change and surface deformation. This study concluded that the main reason for surface 

subsidence, with a rate of -25.6 mm/year, was underground mining and the main 

reason for the surface uplift, with a rate of 10.3 mm/year, was groundwater rise after 

closing the mine. 
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 StaMPS technique has been performed with C-band ENVISAT SAR data by 

Dwivedi et al. (2017) and Papoutsis et al. (2013). The first one proposed PTA to 

provide wrapped the interferometric phase before phase unwrapping in StaMPS. This 

methodology successfully extracted enough measurement pixels in non-urban areas 

compared to standalone PSI processing with detected surface displacements of -20 to 

25 mm/year. The latter one investigated the inflation episode in Santorini Island, 

Greece by combining both PSI and SBAS on the StaMPS approach. This study 

retrieved land surfaced displacements ranging from -10 to 150 mm/year in agreement 

with GPS velocity measurements. 

 The combination of poly-interferogram rate and time-series estimator 

algorithm (Π-RATE) were applied on SAR data acquired over Linfen-Yuncheng 

Basin, China, and allowed to observe the surface displacement of the basin (Zhao et 

al., 2018). Π-RATE employs a pixel-wise approach to calculate deformations rates at 

pixels that are coherent in different numbers of interferograms, thus ensuring that 

useful information about the magnitude and spatial extent of the deformations field 

can be retrieved. 

2.3.4 Rural 

 Rural areas are characterized by aspects from urban areas such as buildings 

that produce permanent scatterers for a long time either from building materials or 

corner reflection mechanisms. Also, rural areas have some aspects from desert areas 

where distributed scatterers are located. Thus, in order to obtain a significant PS 

density over rural areas StaMPS approach is effective due to its ability to identify PS 

scatterers based on amplitude, works well with urban aspects, and based on phase 

stability, captures good PS density in desert areas. 
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 Raucoules, Cartannaz, Mathieu, and Midot (2013) delineated subsidence over 

Hilsprich village, north of France, by performing PSI technique with C-band 

ENVISAT and L-band ALOS-1 SAR data. This study was conducted over a small 

rural area of 0.3 km2 and retrieved a subsidence rate of 9 cm/year. Zhang et al. (2014) 

as well performed the PSI technique but with X-band TerraSAR data over Tianjin city 

of China and applied the LOS deformations to an integrated model in order to separate 

it into main and periodic deformations. 

 Strozzi, Klimeš, Frey et al. (2018) combined C-band SAR data from ENVISAT 

and Sentinel-1 with L-band ALOS-1 SAR data to observe landslides over Carhuaz, 

Peru using the PSI technique. This study classified 27% of the study area as landslides 

with 42 landslides divided into active state motion, continuously active landslides, and 

episodic active landslides. Demonstration of the potential of the Quasi-Coherent 

Targets (QCTs) based InSAR analysis using ALOS-1 in the subsidence monitoring of 

large scale over Tianjin, China (Tao et al., 2012). This study observed a subsidence 

rate larger than 2 cm/year in agreement with survey and leveling measurements. 

 Dong et al. (2018) proposed a new approach to investigate landslides by 

combining persistent scatterer targets with distributed scatterer targets called Coherent 

Scatterer InSAR (CSI) with C-band ENVISAT and L-band ALOS-1 SAR data. This 

method was conducted in three steps; first, the persistent scatterer targets and 

distributed scatterer targets were identified, then their optimal phases were estimated, 

finally, they were processed to calculate the deformation measurements. This study 

found that the main factor behind Jiaju landslide instability is the fluvial erosion from 

the Dajinchaum River. The comparison between CSI and traditional InSAR showed 

that; CSI five times in time-consuming, CSI four times in storage, CSI density points 
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are ten times, and CSI with L-band data provided high-quality points over vegetated 

areas. CSI method is facing the challenge of Sentinel-1 huge collection, this research 

recommended a massive parallelization of the CSI. 

2.3.5 Vegetation 

 Since InSAR techniques rely mainly on identifying pixels that remain coherent, 

or slowly decorrelated, for a long period of time, vegetation landcover can be 

considered more complicated than others for InSAR time-series analysis due to its 

changing in scattering mechanisms rapidly. Thus, InSAR techniques with DSs are 

most usable over vegetated landcover, and also due to fast change in vegetation SBAS 

techniques are appropriate to increase the PSs and DSs density. 

 Wei and Sandwell (2010) assessed the coherency of C-band ERS and L-band 

ALOS-1 over vegetated areas in California by quantifying the temporal decorrelation 

for both satellites. Interferograms generated from both satellites were remained 

coherent over pixels with NDVI (Normalized Difference Vegetation Index) less than 

0.3, NDVI was captured from MODIS (Moderate Resolution Imaging 

Spectroradiometer) satellite data. The comparison between ALOS and ERS showed 

that ALOS interferograms showed higher coherence than ERS generally, but it was 

less over sandy surfaces. 

 Reeves, Knight, and Zebker (2014) investigated the uncertainty of 

implementing the SBAS technique to estimate surface deformations over agricultural 

areas in San Luis Valley (SLV), Colorado. This study relied on calculating the 

coherence for each interferogram using Gaussian distribution, then using these 

coherence values to estimate the uncertainty in the interferometric phase. The method 
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proposed in this study allowed to estimate the uncertainty on a pixel by pixel before 

performing SBAS analysis. This method showed a significant correlation between 

mean coherence measured by the Gaussian distribution and the mean standard 

deviation of the estimated deformation. 

 Liosis et al. (2018) investigated land surface subsidence over an agricultural 

area south of the Al Ain region, Abu Dhabi, UAE, by utilizing the SBAS technique 

with C-band ENVISAT and L-band ALOS-1 SAR data. This investigation observed a 

subsidence rate of -18 cm/year between 2003 and 2010 with a cumulative displacement 

of more than -1 m in the same period. It suggested future work to include accurate field 

measurements using GNSS to validate the SAR time-series deformation. Land surface 

deformations over the Gippsland Basin, Australia, have been studied by (Ng, Ge, and 

Li, 2015) using the SqueeSAR technique with L-band ALOS-1 SAR data in the period 

between 2007 and 2011. This research concluded that the basin is relatively stable with 

displacement rates between -10 mm/year to 10 mm/year at 98% of the measured 

points. This study represented the capability of the InSAR techniques for large-scale 

land surface deformations monitoring. 

2.3.6 Urban Areas 

 Applications of InSAR techniques over urban areas are massive due to the 

severe anthropological effects on urban environments and studying their consequences 

is inevitable. Another reason for these massive applications can be the coherent aspect 

of the urban environment that presents a high PS density over most radar frequencies 

and InSAR techniques. 
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 Normand and Heggy (2015) studied the ground deformation over Montreal city 

in the period between 2008 and 2010 using the SBAS technique with C-band 

RADARSAT-2. The observed displacement measurements were ranged from -2 to 1 

mm/year and were attributed to the change in the hydraulic conductivity. Pepe et al. 

(2016) investigated land displacement over Hawaii Island using the SBAS technique 

with C-band ENVISAT SAR data during the time span between 2003 and 2009. This 

study decomposed the LOS deformation into up-down, east-west, and north-south 

components with an accuracy of 8 mm, 9 mm, and 2 cm, respectively. Horst et al. 

(2018) delineated the subsidence zone in Yangon, Myanmar, using PSI technique with 

C-band Sentinel-1 SAR data and retrieved a subsidence rate of 120 mm/year. 

 Scifoni et al. (2016) investigated ground deformations over Rome city using 

C-band from ERS-1/-2 and ENVISAT with the SBAS technique in the period between 

1992 and 2012. This investigation concluded displacements on buildings of recent 

construction with about 1 cm/year and displacements on historic buildings in central 

Rome up to a few millimeters per year. Calò et al. (2015) and Aslan et al. (2018) 

inspected land surface deformations over the city of Istanbul, Turkey, where the former 

utilized SBAS technique with X-band TerraSAR-X SAR data, while the latter applied 

PSI technique with C-band from ERS-1/-2, ENVISAT, and Sentinel-1 SAR data. The 

latter study observed a subsidence rate ranging 5 – 15 mm/year while the former study 

concluded total subsidence of 3 cm. 

 X-band TerraSAR-X SAR data have been utilized by Bai et al. (2016) with the 

StaMPS technique to monitor land surface deformations over Wuhan city, China. This 

study obtained a deformation rate between -67 to 17 mm/year. Chaussard et al. (2014) 

and Castellazzi et al. (2018) inspected land surface deformations over the city of 
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Mexico using L-band ALOS SAR data. The former study implemented the SB 

technique and retrieved land subsidence with a maximum of 30 cm, whereas the latter 

study integrated InSAR deformations measurements with GRACE data and observed 

maximum subsidence of 20 cm. Tong and Schmidt (2016) analyzed L-band ALOS 

SAR data with the SBAS technique in order to correlate its measurement with 

landslide over the Cascade Landslide Complex in Washington. This study concluded 

that the landslide is active in winter with a high correlation between observed 

deformations and precipitation. A comparison between surface deformations observed 

using C-band and X-band showed that the latter radar frequency can estimate surface 

deformations with higher accuracy, furthermore, can detect surface deformations over 

areas that the former radar frequency assumed its stable (Calò et al., 2014; Costantini 

et al., 2015; Yu et al., 2017). 

 Qu et al. (2015) inspected land surface deformations around Houston-

Galveston, Texas, by combining C-band ERS and ENVISAT with L-band ALOS SAR 

data and utilizing the StaMPS technique with PSs and DSs. This study observed land 

subsidence rate up to 53 mm/year and uplift rate up to 20 mm/year between 1993 and 

2000, also a subsidence rate up to 11 mm/year was observed between 2004 and 2011. 

Land surface fluctuations were attributed to groundwater and hydrocarbon dynamics. 

 Qu et al. (2014) investigated land surface subsidence over Xi’an city, China, 

by utilizing X-band TerraSAR-X, C-band ENVISAT, and L-band ALOS SAR data 

with SBAS technique in the period between 2005 and 2012. This study detected land 

surface subsidence zones within the study area with a maximum subsidence rate of 9 

mm/year. The same approach has been implemented by Haghighi and Motagh (2019) 

to detect land surface deformations over Tehran plain, Iran, where observed three 
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dominant subsidence zones mainly occurred over agricultural areas with subsidence 

up to 25 cm attributed to groundwater overexploitation and sediments load. 

 Chet et al. (2015) presented experimental results of the Ground-Based 

Synthetic Aperture RADAR (GBSAR) in surface deformations monitoring at 

Peninsular Malaysia using Ku-band. GBSAR has proved significant in-ground 

deformations monitoring by the capability of applied over broad areas, avoiding 

weather conditions, and high change detection capability (sub-millimeter). The 

experiment showed that the GBSAR is capable of detecting sub-centimeter changes 

with an error of 5 mm and could attain a significantly high coherence of more than 0.9 

between interferometric image pairs. 

2.4 Satellite Interferometry and Big Data Processing 

 This section dives into the emergence of new technologies for finding faster, 

cost-effective ways to process big Earth Observation data at scale. The focus of this 

part of the review is on the processing of big interferometric synthetic aperture radar 

datasets, rather than on generic remote sensing assets. Emerging technologies can be 

explored under three axes: (i) the availability of cloud infrastructures and high-

Performance computing environments that allow efficient multi-temporal PSI 

processing, even at a national scale, (ii) the organization of interferometric datasets in 

advanced geospatial databases called Data Cubes, which allow enhanced management 

of long time-series of interferometric measurements, and (iii) the prospects of using 

machine/deep learning algorithms powered by advanced cloud computing 

infrastructure to either generate more robust radar interferometry products or mine new 

information hidden within InSAR products and associated land-surface deformations, 

extract new knowledge and develop novel value-adding processing chains. 
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2.4.1 Interferometric Processing on the Cloud 

 The new generation of Earth Observation satellites from the Sentinel missions 

generate vast amounts of data that are not easily integrated into processing chains 

outside the ground segments of space agencies. Very often, public and private 

institutions aiming at delivering end-user services based on Earth Observation data do 

not possess the computing power and storage capacity to profit from these new data 

flaws. 

 The Helix Nebula Initiative1 started as a Public-Private-Partnership (PPP) to 

evaluate the needs of European compute-intense scientific research organizations and 

their exploitation of a Cloud Computing Infrastructure. Through the Helix Nebula 

Science Cloud initiative, a partnership was established between leading IT providers 

and some of Europe’s biggest research centers that deployed and tested the 

infrastructure. One of the critical Use Cases of the Helix Nebula initiative is the one 

led by the European Space Agency (ESA), forming the ESA Super Sites Exploitation 

Platform (SSEP) Flagship. 

 SSEP developments comprised an instance of an exploitation platform for 

radar imagery in the context of geo-hazards, for the sharing of SAR data, and the 

exploitation of interferometry processing on those data focusing on earthquake and 

volcano research. A large amount of SAR data is accessible to science communities 

dealing with interferometry, landslide, and change detection. The SSEP project brings 

together existing software components and EO data in a portal that allows geohazard 

scientists to apply their algorithms and tools to analyze the data. Instead of 

 
1 https://www.helix-nebula.eu/ 

https://www.helix-nebula.eu/
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downloading the data and applying their tools, users are presented with a wide 

selection of tools that they can apply within the portal, using cloud and grid 

technologies to achieve high performance and efficient use of communications links. 

 The SSEP flagship use case enabled Helix Nebula to mature its federated Cloud 

architecture and ultimately allowed ESA to analyze the feasibility and benefits of cloud 

deployments and paved the way to the development of the Thematic Exploitation 

Platform (TEP) initiatives. The TEP’s canonical scenarios have moved the processing 

to the data, rather than the data to the users, thereby enabling ultra-fast data access and 

processing. This idea is an evolution of the Agency’s Grid Processing on Demand (G-

POD) system, the SSEP, and the integration of scientific applications and services for 

the FP7 EC projects (e.g. GEOWOW, SenSyF) and the experience gained with 

integration and deployment APIs leveraged within the Helix Nebula initiative. 

 Since 2018 and in order to facilitate and standardize access to data, the 

European Commission has funded the deployment of five cloud-based platforms 

providing centralized access to Copernicus data and information, as well as to cloud 

processing tools (open source and/or on a pay-per-use basis). These platforms are 

known as the DIAS, or Data and Information Access Services (DIAS). DIAS’s 

objective is to become breeding grounds for innovative applications or “algorithm 

factories” allowing users to discover, manipulate, process and download Copernicus 

data and information. 

 Considering the processing of interferometric stacks on the cloud, there have 

recently been some research activities to automate PSI and/ or SBAS processing 

chains. De Luca et al. (2015) have developed G-POD, a web tool for the unsupervised 

retrieval of Earth’s surface deformation velocities using an online Parallel Small 
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Baseline Subset (P-SBAS) approach (Casu et al., 2014) tailored for ERS and Envisat 

datasets. The ESA funded G-POD is a generic GRID-based operational environment 

coupled with high-performance and sizeable computing resources managed by GRID 

technologies. The architecture of the platform includes over 200 Working Nodes and 

more than 70 TB of EO data online. There are links with data providers and satellite 

imagery repositories. 

 The evolution of G-POD, so that it accommodates Sentinel-1A&B datasets, 

has been recently published by Manunta et al. (2019). The CNR-IREA team has put 

into place a methodology to automatically process co-registered interferometric vast 

swath stacks using enhanced spectral diversity (Fattahi, Agram, and Simons, 2017). It 

makes use of both multicore and multimode programming techniques and consists of 

an ad hoc designed distributed storage implementation (Manunta et al., 2019), aimed 

at providing scalable performances for massive amounts of data to be processed (Zinno 

et al., 2017; Zinno et al., 2015; Zinno et al., 2016). The approach has been tested for 

the whole Italian territory consisting of 2740 Sentinel-1 slices, while the results have 

been validated by nearly 500 GPS stations scattered over Italy. 

 There are a few other research activities to perform national scale mapping 

using PSI on the cloud, which has not been published yet. These include the InSAR 

Norway project2, managed and coordinated by the Geological Survey of Norway. The 

project has processed Sentinel-1 SAR data from both ascending and descending orbits 

to generate deformation rate histories for two lines of sight vectors, therefore, 

unmixing vertical and horizontal displacements. Besides, the National Observatory of 

Athens developed a similar application that aims at national scale deformation 

 
2 https://insar.ngu.no/ 

https://insar.ngu.no/
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mapping in Greece. The observatory has developed implementations of the InSAR 

Scientific Computing Environment (ISCE) and StaMPS software for interferogram 

formation and PSI analysis respectively, to be executed in distributed cloud 

environments (Papoutsis et al., 2020). 

 Finally, there are two similar applications for mapping land motion over the 

United Kingdom since 2015, TRE ALTAMIRA and Geomatic Ventures Limited 

(GVL). TRE ALTAMIRA has processed more than 7000 satellite radar images to 

generate a nationwide database of displacement measurements, while GVL uses its in-

house advanced InSAR analysis of over 2000 Sentinel-1 to generate a relative land 

motion map3. 

2.4.2 Data Cubes for SAR Interferometry Datasets 

 EO data cube is a relatively new term, which describes the organization (or 

“cubing”) of raster data into a database-like structure that enables the efficient Spatio-

temporal querying and processing of satellite images. EO data, having the 5Vs of big 

data (Velocity, Volume, Value, Variety, and Veracity), have an inherent challenge; 

how to optimize information extraction from these data cubes? The opportunity that is 

addressed by the data cube concept is the exploitation of past and daily satellite 

observations to learn from the past, identify trends hidden in the big EO data, extract 

new knowledge, and potentially short-term forecast some environmental variables. 

 Some of the most successful representations of the EO data cube concept 

implementations are the Australian Geoscience Data Cube (AGDC4), (Lewis et al., 

 
3 https://www.geomaticventures.com/uk-map. 
4 http://www.datacube.org.au/. 

https://www.geomaticventures.com/uk-map
http://www.datacube.org.au/
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2017), the EO Data Cube (EODC5), the Earth System Data Cube (ESDC6), the Swiss 

Data Cube (Giuliani et al., 2017), the Common Sensing Data Cube (CSDC), the Ghana 

Data Cube (Haarpaintner, Killough, Ofori-Ampofo, and Boamah, 2018), Earth on 

Amazon Web Services (EAWS7), and Google Earth Engine (GEE8). In contrast to 

traditional database structure, which cannot handle, either at all or not in scale, 

geospatial data, the AGDC, EODC, and ESDC rely on open source geospatial 

relational databases (e.g. PostgreSQL/PostGIS and Rasdaman, as by (Baumann, 

Misev, Merticariu, and Huu, 2019) to implement the EO cube concept. Less scalable 

GEE adopts a different approach to implement the concept and EAWS, which uses 

proprietary cloud software and infrastructure to process the data in a file system-based 

concept. 

 Currently, most known Data Cube implementations rely on optical imagery 

(Baumann et al., 2018; Dhu et al., 2017), and only a few of them offer access to SAR 

products. Currently, two Data Cubes implementations focus exclusively on the use of 

SAR imagery. These are the SAR-Enabled Australian Data Cube (Ticehurst et al., 

2019) and the Swiss Data Cube (Truckenbrodt et al., 2019). Both of them rely on the 

Open Data Cube (ODC9) initiative (Killough, 2018), populated with SAR data 

following the CEOS Analysis Ready Data (ARD) specifications. ODC is an open-

source geospatial data management and analysis software project which has at its core 

a set of Python libraries and PostgreSQL database to allow working with geospatial 

raster data. 

 
5 http://eodatacube.eu/. 
6 http://earthsystemdatacube.net/. 
7 https://aws.amazon.com/earth/.  
8 https://earthengine.google.com/.  
9 https://www.opendatacube.org/.  

http://eodatacube.eu/
http://earthsystemdatacube.net/
https://aws.amazon.com/earth/
https://earthengine.google.com/
https://www.opendatacube.org/
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 The Swiss Data Cube, in particular, is based on a cloud computing platform 

hosting 35 years and several TB of radiometrically terrain corrected SAR gamma 

naught backscatter data over the entire county. The Australian Data Cube, on the other 

hand, has created a unique dataset based on satellite interferometry by-products. This 

consists of multi-temporal coherence layers, which can be used for land-cover change 

(Plank, 2014) and/or vegetation growth (Tamm, Zalite, Voormansik, and Talgre, 2016) 

studies. 

 An excellent example, although still at a concept level, for exploiting Data 

Cubes for deformation monitoring using interferometric techniques is presented by 

Lazecky et al. (2016). In this approach, a special geo-database is designed to ingest, 

store and manage co-registered Sentinel-1 bursts directly. Burst stacks are then 

processed on demand for user-selected areas of interest, using PSI as implemented by 

StaMPS software. At a post-processing phase, a data mining approach is applied for 

detecting deformation outlier estimates (Bakon, Oliveira, Perissin, Sousa, and Papco, 

2017) and creating a more reliable ground velocity pattern. 

2.4.3 Deep/Machine Learning for Satellite Interferometry 

 While research on artificial intelligence has experienced significant growth 

over the last decade and data science has nearly become a commodity in various 

industries, deep learning has been one of the fastest-growing trends in big data analysis 

and was deemed one of the ten breakthrough technologies of 2013. In-depth learning 

research has been extensively pushed by Internet companies, such as Google, Baidu, 

Microsoft, and Facebook, for several image analysis tasks, including image indexing, 

segmentation, and object detection. However, it is only very recently that deep learning 
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technologies were introduced to the EO research community (Zhu et al., 2017) for data 

mining and information extraction from big satellite data. 

 According to Soenen (2019), the ever-broadening use of deep learning in 

remote sensing is due to two trends: 1) availability of cloud computing infrastructure 

and resources, including Graphic Processing Units (GPUs); 2) the development of easy 

to use machine learning libraries like Google’s Tensorflow10, AWS SageMaker11, sci-

kit learn12, and other open-source frameworks; and 3) an expanding ecosystem of 

services for creating labeled training data (Scale13, Figure Eight14) as well as open-

labeled datasets tailored for satellite imagery, like SpaceNet on AWS15.  

 The use of deep learning on interferometric synthetic aperture radar data is 

discussed below. This is a new field that has started to gain increased attention in the 

past two years, and it is expected that the number of research projects will kick off. 

There are currently two families of research works related to deep learning on InSAR; 

the first one focuses on the automatic detection of ground deformation for setting-up 

an alert mechanism. This is accomplished through the recognition of interferometric 

phase fringes associated with ground deformation and eliminating background noise 

and fringes. The second family of deep learning processing chains is motivated by the 

well-formulated, ill-posed problem of phase unwrapping on satellite interferometry 

and medical imaging. 

 

 
10 https://www.tensorflw.org/.  
11 https://aws.amazon.com/sagemaker/.  
12 https://scikit-learn.org/stable/.  
13 https://scale.com/.  
14 https://www.fiure-eight.com/.  
15 https://spacenetchallenge.github.io/datasets/datasetHomePage.html.  

https://www.tensorflw.org/
https://aws.amazon.com/sagemaker/
https://scikit-learn.org/stable/
https://scale.com/
https://www.fiure-eight.com/
https://spacenetchallenge.github.io/datasets/datasetHomePage.html


37 

 

 

 

 

2.4.3.1 Volcanic Ground Deformations Detection 

 Anantrasirichai et al. (2018) were the first ones ever to use deep learning on 

SAR interferograms to detect deformation. In their pioneer work, they processed more 

than 30,000 short-term wrapped interferograms to automatically detect volcanic 

ground deformation at over 900 volcanic areas around the world. They pre-train the 

network using an older archive of interferograms for ESA’s Envisat satellite. Since 

most of the interferograms do not contain any deformation and in order to balance the 

training sample classes through data augmentation, the authors increase the number of 

positive examples (i.e. interferograms containing volcanic deformation) through 

shifting, flipping, rotating, and distorting the shape of positive examples. They then 

employ a transfer learning strategy for the AlexNet Pre-trained Convolutional Neural 

Network (CNN). The model identified 104 positive results contained concentric 

fringes around the volcano, and for which even experts were unable to determine from 

a single interferogram whether the fringes were caused by volcanic deformation or 

atmospheric artifacts. Overall, the Anantrasirichai et al. (2018) proof-of-concept study 

demonstrated the ability of CNNs to identify rapidly deforming systems that generate 

multiple fringes in wrapped interferograms, which for a 12-day C-band interferogram, 

corresponds to a deformation rate of 1.8 m/year. 

 Valade et al. (2019) build upon the study of Anantrasirichai et al. (2018) and 

trained a CNN on synthetically generated interferograms. The main progress is that 

Valade et al. (2019) is better at augmenting the deformation samples to prevent 

overfitting. They produce synthetic training data, allowing the generation of an 

unlimited number of interferograms, and avoiding the time-consuming task of labeling 

interferograms where deformation is identified through photo-interpretation. Besides, 
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Valade et al. (2019) output clean phase gradients that can be used directly to quantify 

volcanic deformation, whereas Anantrasirichai et al. (2018) estimate the probability a 

certain interferogram contains deformation fringes. Lastly, instead of using AlexNet 

as a pre-trained network, Valade et al. (2019) were designed from scratch and trained 

on a synthetic dataset, thereby allowing more flexibility. 

 Anantrasirichai and colleagues, however, in a new study by Anantrasirichai et 

al. (2019) also used synthetic interferograms to train the CNN model, however, based 

on analytic models simulating realistic deformation sources in volcanic settings. The 

synthetic interferograms in (Anantrasirichai et al., 2019) are generated from i) 

synthetic deformation signals produced using simple elastic sources for earthquakes, 

dykes, sills, and point pressure changes at magma chambers, ii) stratified atmospheric 

interferograms obtained from the Generic Atmospheric Correction Online Service 

(Yu, Li, and Penna, 2018), and iii) turbulent atmospheric interferograms simulated 

using the statistical characteristics of correlated noise in real interferograms (Biggs et 

al., 2007). This enhanced approach achieves better performance than Anantrasirichai 

et al. (2018) that uses real interferograms alone, decreasing the number of false 

positives by >80%. 

 The MATTCH project – Machine Learning methods for SAR-derived Time 

Series Trend Change Detection – has a similar objective to the research works 

presented above. MATTCH aims to apply Machine Learning techniques to InSAR 

data, for identifying persistent scatterers exhibiting displacement time series 

characterized by a change in trend or, more generally, an “anomalous behavior”. To 

capture the temporal dependencies in the long displacement time series, the leading 
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Deep Learning architectures proposed by MATTCH for the analysis are Long Short-

term Memory (LSTM) and Gate Recurrent Unit (GRU). 

2.4.3.2 Phase Unwrapping 

 Phase unwrapping is a classic signal processing problem that refers to 

recovering the original phase value (integer ambiguities) from its wrapped, modulo 2π 

form. Two-dimensional phase unwrapping problem arises in many applications such 

as optical measurement techniques (e.g., digital holographic interferometry and fringe 

projection profilometry, InSAR and Magnetic Resonance Imaging (MRI). 

 Feng et al. (2019) were one of the first works to train deep neural networks to 

perform fringe analysis, for a fringe projection profilometry use case. Spoorthi, Gorthi, 

and Gorthi (2018) propose a new framework for unwrapping the interferometric phase, 

formulating a semantic segmentation problem, and using deep Fully Convolutional 

Neural Networks (FCN). Their model, termed PhaseN consists of an encoder network, 

a corresponding decoder network followed by a pixel-wise classification layer. 

Training is performed using simulated data of wrapped and the corresponding 

unwrapped interferograms. This model achieves excellent performance under severe 

noise conditions and is computationally fast. Zhang et al. (2019), also formulate a 

semantic segmentation and propose a similar deep CNN, named DeepLabV3þ, the 

problem for phase unwrapping. Zhang et al. (2019) performed benchmarks and 

showed that their deep learning model outperforms the conventional path-dependent 

and path-independent algorithms. 

 Given these latest advancements, there are new research projects that exploit 

computing depth and surface orientation maps directly from single images to derive 
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an automated solution to unwrapping. Using deep networks with linked pipelines 

working at different spatial scales, the output maps are gradually refined, with 

information passing down from coarser to more beautiful scales. These research works 

have not yet published any results. 

2.4.4 Semantic Data Mining 

 Sentinel-1 data for interferometric analysis, on the other hand, have two 

distinct characteristics: 1) they are made available on a free and open basis and 2) they 

are big data: indicatively the data volume of one month of Sentinel-1A acquisitions 

accounts for the entire ERS and Envisat archive. Similarly, Copernicus data sources 

are variable ranging from raw Sentinel data to in-situ information and model outputs 

(e.g. CAMS) with different quality standards, and in some instances such as the 

Sentinel-4 mission, data will arrive at high velocity. 

 Pure availability and accessibility of the plain interferometric data is only a 

first step. The EO data gains value only once it is s analyzed, correlated, enriched with 

other data sources, and turned into information and knowledge. The sheer volume of 

the interferometric data - both per time and aggregated over time poses data 

management and analysis challenges that exceed the capabilities of current data 

management and analysis solutions for EO data.  

The next logical step is to describe the data, products, and tools tailored for satellite 

interferometry, to create in other words ontologies that link different types of resources 

together, for a specific application. Koubarakis et al. (2016), argue on the use of the 

linked data paradigm for significant data discovery and integration, using optical 

remote sensing use cases. 
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 Semantic representation of interferometric data could pave the way for the use 

of other technologies, such as data mining and semantic querying. These technologies 

enable semantic-based data mining. Indicatively, using these technologies one could 

ask the virtual database and retrieve suitable satellite imagery to conduct time-series 

interferometry, in previously high earthquake hazard areas in Chile, which contain or 

are close to cities with more than 50,000 inhabitants. Semantics-based data mining can 

lead the way for employing analytics applications and discovering patterns in the 

available interferometric data. 
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Chapter 3: Land Surface Deformations over the United Arab Emirates 

 

3.1 Introduction 

This chapter presents the implementation of the InSAR technique over the 

UAE using the Sentinel-1 SAR dataset to detect the deformed zones. A detailed 

discussion of implementing the PSI technique over a national scale is also provided 

within this chapter. There are several studies aimed to implement the InSAR over a 

national scale; such as mapping surface deformations over the whole Italian territory 

using ERS, ENVISAT, and COSMO-SkyMed SAR datasets (Costantini et al., 2017), 

monitoring and mapping surface deformations over Norway (Dehls et al., 2019), 

mapping ground deformation over Germany (Haghshenas Haghighi and Motagh, 

2017), and ground motion using Sentinel-1 data over Greece (Papoutsis et al., 2020). 

3.2 The Landscape of the UAE 

UAE is located within the Asia continent in the eastern part of the Arabian 

Peninsula at the edge of the Rub’ Al Khali desert with an international border with 

Saudi Arabia (457 km) in the south and west and Sultanate of Oman (609 km) in the 

east (Figure 3.1). UAE is bounded from the north by the Arabian Gulf and the northeast 

by the Oman Sea. Also, it occupies an area of 83,600 km2 and is characterized by an 

arid climate with precipitation less than 100 mm per year and average annual 

evapotranspiration of 2-3 m (Mohamed, 2014). 

The terrain of the UAE is varied from the flat barren coastal plain in the west 

along the coastline to sand dunes in the middle and south of the country while 

mountains occupy the eastern part. Most cities of the UAE are located at the flat coastal 

plain area such as Abu Dhabi (The Capital), Dubai, Sharjah, Ajman, Umm Al Quwain, 
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Ras Al Khaimah, and others. The first three cities represent about 85% of the UAE 

population. Sand dunes cover the south part of the country and most of the middle part 

with more than 75% of the total area of the UAE. 

Mountains in the UAE are located in the east, specifically in the Al Ain and 

Fujairah, and northeast, in Ras Al Khaimah. The most known mountain is Jebel Hafit 

southeast of the Al Ain city with an elevation of 1,250 m and it is shared with Sultanate 

Oman. This mountain is characterized by a wide cave system. The highest mountain 

in the UAE is Jebel Yibir, also known as Jebel Al Mebrah, with an elevation of 1,727 

m southeast of Ras Al Khaimah. Another known mountain in the Ras Al Khaimah is 

Jebel Jais which is famous for touristic activities. In addition, other landforms 

campaign with mountains is hot springs which are located in close distances to the 

mountains. Two hot springs, Mubazzarah and Al Ain Al Fayda, are located near Jebel 

Hafit, while Ain Khatt hot spring is located near Jebel Yibir. 

Generally, these are the landscapes of the UAE in addition to some islands, 

natural and artificial, such as Sir Abu Nu'Ayr, Sir Baniyas, and Abu Al Abyad islands. 

Also, there are oases such as Al Ain and Liwa in Abu Dhabi emirate in addition to 

wetlands such as Ras Al Khor in Dubai. 

There are several agricultural activities distributed around the country where 

most of these activities are concentrated in the Abu Dhabi Emirate specifically in the 

Al Ain region, represented by Al Khazna, Remah, Al Araad, and Al Wagan, and in the 

Al Dhafra region represented by Liwa. 



 

 

 

 

Figure 3.1: Location of United Arab Emirates. 
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3.3 InSAR Dataset & Analysis 

SAR interferometry techniques were widely implemented to detect and 

monitor land surface deformations over various landcover types as discussed in 

chapter 2. Also, selecting the SAR dataset and InSAR technique depend on many 

factors that are related in most cases to the physical characteristics of the area under 

investigation. As shown in the previous section the UAE is covered mainly by sand 

dunes with urban and vegetated areas. This supports the idea of utilizing the SBAS 

technique to ensure that sand dunes will not decorrelate the signal and result in low PS 

density as in the case of utilizing the PSI technique. But the idea of utilizing the 

StaMPS technique was still possible due to its success in identifying a significant PS 

density over desert and vegetation landcover types but it requires a huge series of SAR 

datasets. Since the free SAR dataset from Sentinel-1 are massive and covered the 

targeted area for more than 4 years, then implementing the StaMPS technique with the 

available Sentinel-1 dataset could obtain a high PS density with reliable surface 

velocity measurements. 

3.3.1 Sentinel-1 Dataset 

Sentinel-1 remote sensing mission consists of two satellites constellation, 

Sentinel-1A and Sentinel-1B, at near-polar sun-synchronous orbit at 698 km above the 

Earth ground. Both satellites are located in the same orbit plane with 180 degrees 

phased in orbit. The Sentinel-1 mission is operating in C-band (5.405 GHz) with a 

repeat cycle of 12 days for each satellite and 6 days for the constellation. Sentinel-1 

satellites operate in four SAR imaging modes (Figure 3.2); Interferometric Wide 

Swath (IW), Extra Wide Swath (EW), Stripmap (SM), and Wave mode (WV) with the 
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IW as the default mode (Yagüe-Martínez et al., 2016). IW and EW are characterized 

by a wide swath of 250 km and 400 km, respectively, while SM and WV are 

characterized by a narrower swath of 80 km and 100 km, respectively. The latter modes 

are characterized by smaller spatial resolution, 5 m for both range and azimuth, while 

the former modes are characterized by the range and azimuth resolutions of 5 m and 

20 m  for IW and 20 m and 40 m for EW, respectively. The IW, EW, and SM modes 

are supported by single polarization (HH or VV) and dual-polarization (HH+HV or 

VV+VH) while the WV is supported only by single polarization (HH or VV). 

The SM mode covers a constant ground coverage and produces a swath width 

of 80 km with a spatial resolution of 5 by 5 m. This mode is capable of changing the 

incidence angle and elevation beamwidth to cover a new swath within the same 

azimuth and further in range. This capability is limited to six beams where six 

overlapping swaths can be generated to cover a whole range of 375 km. 
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Figure 3.2: Sentinel-1 imaging modes 

 

The IW mode is operating by implementing Terrain Observation with 

Progressive Scans (TOPS) to provide large swath width as ScanSAR mode with 

uniform SNR and Distributed Target Ambiguity Ratio (DTAR). TOPS reduces the 

azimuth resolution and scalloping effects by the antenna footprint effect to the ground 

target rather than antenna pattern slicing. This enhancement provides a better azimuth 

resolution because there is only one azimuth look available and balancing the 

radiometric look is not feasible. The IW mode, the default mode, divides the SAR 

Sentinel-1 scene into three sub-swaths by steering the antenna in the range direction 

and divides each sub-swath into nine bursts by steering the antenna electronically in 
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the azimuth direction. The antenna is switching from burst to burst to capture multiple 

sub-swaths pseudo-simultaneously (Torres et al., 2012). 

In order to utilize TOPS SAR images for interferometry analysis, bursts 

synchronous is required between repeat-pass datasets. The burst duration for IW TOPS 

mode is ranging from 0.82 to 0.54 seconds. Antenna steering in azimuth direction 

results in Doppler Centroid (DC) variations of 5.5 kHz within bursts, so burst 

synchronous of less than 5 milliseconds is required. This requires a phase de-ramp 

after the co-registration process because the DC variations cause azimuth phase ramp 

for small misregistrations. 

The EW mode is implementing TOPS, also as IW mode, but to cover a wider 

area. This mode is more suitable for maritime, e.g., polar regions, while the IW mode 

is more suitable for land. The WV mode is acquiring several scenes with either HH or 

VV polarizations as independent images. The same incidence angle scenes are 

separated in azimuth by 200 km and swath can be taken at near range angle (23º) or 

far range angle (36.5º). The WV mode is applied over the ocean where longwave mode 

data is captured per orbit. 

3.3.2 InSAR Data Processing 

StaMPS technique has been implemented via the StaMPS software package 

which does not generate the interferograms or pre-process the raw SAR data. For this 

purpose, another software was implemented, the ISCE developed by NASA at Jet 

Propulsion Laboratory, California Institute of Technology, in order to process raw 

SAR data into interferometric products. Pre-processing steps for SAR Sentinel-1 data 

are more complex than other SAR datasets due to it is imaging mode with TOPS. 

Sentinel-1 image characterized by three sub-swaths; each swath divided into nine 
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bursts. The complexity arises from the demand to pre-process each sub-swath 

individually then merge the three sub-swaths for each Sentinel-1 image in the selected 

dataset (Figure 3.3).  

 

 

Figure 3.3: The InSAR processing steps using ISCE2 and StaMPS software 

packages. 

 

The first step in the ISCE software to process Sentinel-1 image was to unpack 

the Single Look Complex (SLC) images and store each sub-swath in a separate folder 

that includes files for each burst. Then, define the matched bursts between master 

image and slaves images to estimate rough baselines. DEM data for the study area is 

required, along with the orbital information, for the co-registration process. SRTM 

data was used for this purpose. Since radar remote sensing is imaging in oblique mode, 

each image is recorded along its Line-of-Sight (LOS) and can be called a radar 

coordinate system. To avoid mislocation, unifying all images with the DEM into the 

master image LOS coordinate system was performed by computing pixel-by-pixel 

latitude, longitude, height, and LOS for master acquisition. Each data category was 
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stored separately for each burst and categorized in a sub-swath folder. Then, the 

overlap region between bursts was extracted and stored in a sub-folder to estimate 

coarse range and azimuth offsets for each burst overlap region. These offset values 

were implemented for coarse co-registration between master and slave for burst 

overlap regions only. 

Furthermore, interferograms were generated for burst overlap regions, also 

known as coarse interferograms. In order to refine the co-registration and increase it is 

accuracy, the Enhanced Spectral Diversity (ESD) method was applied to estimate 

azimuth misregistration. While the range misregistration was estimated using 

amplitude correlation of burst overlap regions. The refined range and azimuth 

misregistration values were used along with the master radar geometry obtained at the 

beginning of the process to estimate fine offsets for full bursts. Moreover, fine offsets 

were used to generate fine co-registration between the master image and each slave 

image then generate fine interferograms. Finally, burst interferograms were merged to 

generate a full sub-swath interferogram. This process was iterated for the three 

Sentinel-1 sub-swaths to generate interferograms for the whole Sentinel-1 image 

scene. Generated interferograms were exported to the StaMPS software package to 

proceed with the InSAR time-series processing. 

The imported interferograms to StaMPS were used in an iterative step to 

estimate the phase noise by modeling the topographic error. A threshold of 5 m was 

applied to increase the estimated coherence and the measured reliability. Within one 

squared kilometer from the selected pixels, 20% of the PSs with random phase were 

selected as PS candidates. A threshold of 1.0 was selected for the standard deviation 

of the phase noise for neighboring pixels to preserve PSs with low decorrelation 

signals. Then, the wrapped phase interferograms were corrected for spatially-
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uncorrelated look angle error iteratively, bad interferograms were dropped, by filtering 

the phase in space to remove spatially-correlated components and re-estimate the 

spatially-uncorrelated component until the variance converge. 

Furthermore, the wrapped phase interferograms were unwrapped using the 3D 

phase unwrapping technique to estimate the ambiguous cycles number. After that, 

errors related to spatially-correlated DEM were estimated and removed along with the 

master atmosphere and orbit error. Finally, the atmospheric phase component was 

corrected by implementing the open-source Toolbox of Reducing Atmospheric InSAR 

Noise (TRAIN) by phase-based linear correction (Bekaert, Walters, and Wright, 

2015). 

Processing huge Sentinel-1 SAR datasets for long time-series can be 

considered time-consuming and requires high-performance computing and large disk 

storage. Generally, analysis of a full Sentinel-1 SAR scene to produce time-series land 

surface displacements can take up to two weeks depending on the running machine. 

Reducing processing time for the InSAR analysis can be achieved by running the 

InSAR processing in a parallelized manner as discussed by Papoutsis et al. (2020). The 

implemented version for SAR dataset pre-processing and interferograms generation 

was the ISCE2 which uses a topsStack processor to create the co-registered SLC stack 

(Fattahi et al., 2017). The ISCE2 topsSatack processor creates a set of commands for 

the required steps for the co-registration processing. These commands can be used in 

batch processing to facilitate and reduce time processing for a huge SAR dataset. 

Parallelizing all processing steps is still infeasible due to the dependencies for some 

steps to complete the previous steps. The estimation of range and azimuth 

misregistration depends on using the co-registered stack of bursts overlap to create 

differential overlap interferograms (coarse interferograms).  These commands can not 
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be executed in parallel due to their dependency on the previous steps. Moreover, the 

co-registration of full bursts (fine co-registration) requires the geometrical offsets and 

misregistration values for fine co-registration of full bursts. The fine co-registration 

step uses a subprocess that utilized all the available cores, so executing this step in 

parallel is infeasible as well. 

The StaMPS technique divided the exported data from the ISCE software, the 

co-registered stack of SLC, into several patches of equal areas with a uniform grid to 

avoid the memory crashing due to a large number of PS candidates. Nonetheless, these 

patches are not equal in time processing because the number of PS candidates is 

different in each patch depending on the underlying landcover type. In most cases 

construction sites can be located adjacent to vegetated areas or urban areas can be 

surrounded by a desert and studying the land surface deformations over a specific 

location with surrounding areas is required, this could result in a big variation between 

adjacent patches in the PS density and eventually, big time-consuming in processing. 

The ideal concept to divide the co-registered SLC is by considering the number of the 

PS candidates so all patches consume almost the same time processing. This approach 

divides the study area into n groups of patches for n cores of the running machine 

which can be executed simultaneously and reduce the processing time. The standard 

patches division included in the StaMPS was used first to divide the study area into 

equal areas, then patches were aggregated into groups according to their PS candidates 

numbers. This approach reduces the time-consuming for StaMPS steps 1-5, but it does 

not divide the patches into equally sized groups because of the inherent inequalities in 

the patches division. 

StaMPS steps 1-5 can be processed in a parallelized way by running the same 

procedures simultaneously on the balanced groups of patches. The parallelized 
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approach showed a significant reduction of time-consuming for the whole SAR 

interferometry processing from capturing the SAR dataset to obtaining land surface 

deformations. The InSAR processing for the full Sentinel-1 scene takes about two 

weeks using the sequential approach, the parallelized approach completed the 

processing within 6 days. The parallelization approach for the InSAR processing was 

implemented by Python libraries for controlling process steps in ISCE2 and StaMPS 

software packages. 

3.4 InSAR Investigation over the UAE 

Investigations of land surface deformations over the UAE have been performed 

by implementing the processing chain presented in (Figure 3.3). The investigations 

have been conducted with the Sentinel-1A SAR dataset, where 3 scenes cover the UAE 

as shown in Figure 3.4. The UAE territory can be divided, according to the Sentinel-1 

frames, into North (Path 130 Frame 78), Center (Path 130 Frame 73), and West (Path 

28 Frame 72) frames. The processing chain has been implemented for each frame 

sequentially. The Sentinel-1 SAR dataset utilized for the processing was 291 SLC 

images acquired in the period between March 2017 to March 2021.  

The North frame covers the northern emirates of the UAE, shown as a green 

rectangle in Figure 3.4, where land cover types are generally desert, built-up, 

vegetation, and mountains areas. This frame does not cover any land in the upper left 

triangle where it covers the Arabian Gulf. The processing succeeds in identifying more 

than 11 million (11,083,237) PS candidates. The SAR image acquired on March 22, 

2019, has been selected as the master because of its smallest geometrical and temporal 

baselines. Due to the larger part that is covered by the sea, more than half of the frame 

is covered by the Arabian Gulf, the parallelized processing faced some technical 
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issues. The original StaMPS package was programmed to divide the area of interest 

into equal-area patches with at least one PS candidate at each patch. The proposed 

method to divide the area of interest into patches with a similar number of PS 

candidates results in generating patches with zero PS candidates. 

Also, because the numbering of patches is completely random and does not 

follow spatial consideration, identifying the empty patches was not straightforward. 

This issue has been solved by running the parallelized StaMPS iteratively over a group 

of patches according to their PS candidates. The first iteration of the parallelized 

StaMPS showed the number of PS candidates at each patch and the empty patches 

have been excluded from the processing. The rest of the iterations were performed to 

avoid memory crashing due to high variation between time processing for patches 

because there was a big difference in the PS candidates between these patches. The 

variation in the PS candidates between patches occurred at the east and northeast of 

the North frame where mountains are located, in contrast with the south and southwest 

of the North frame where the land cover is desert. 

The above-mentioned technical issues consumed more time processing than 

expected for this frame. This results in the longest time consumed between the three 

frames of 15 days from pre-processing to obtain the LOS deformations rate. The 

processing of the North frame required disk space of 2 TB including the raw SLC 

Sentinel-1A images and the intermediate files, but after removing all intermediate files 

the disk space was 387 GB excluding the raw SLC dataset. 

 

 



 

 

 

 

 

Figure 3.4: Sentinel-1A frames cover the UAE. The North, Center, and West frames are shown as green, red, 

and blue rectangles, respectively. 
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The Center frame covers the middle and east parts of the Abu Dhabi Emirate, 

shown as a red rectangle in Figure 3.4, where Abu Dhabi city is located at the west of 

the Center frame with the Arabian Gulf and the Al Ain city is located at the east with 

international border with the Sultanate of Oman. This frame covers land cover types 

of built-up, vegetation, desert, and mountains areas where the most dominant land 

cover type is the desert. Mountains are represented by the Jebel Hafit at the east and 

Oman Mountains where they are located outside of the UAE boundaries. 

In the Center frame, more than 15 million (15,991,204) PS candidates have 

been identified. The selected master image for the Center frame was on the same day 

as for the North frame (March 22, 2019) for the same reason. The processing of the 

Center frame faced slow progress due to the huge amount of PS candidates over the 

Oman mountains. Since these patches are located outside of the targeted area they have 

been excluded after they have been identified using the iterative procedures as 

explained in the North frame processing. This iteration increased the time processing 

for this frame the expected time consuming when it took 12 days from pre-processing 

to obtain the LOS deformations rate. The processing of the Center frame occupied 2.4 

TB of the disk space including the raw SLC Sentinel-1A images and the intermediate 

files, but after removing all intermediate files the disk space was 592.1 GB excluding 

the raw SLC dataset. 

The West frame covers the Al Dhafra Region of the Abu Dhabi Emirate, shown 

as a blue rectangle in Figure 3.4, where small cities are located such as Madinat Zayed, 

Ghayathi, and Al Ruwais. This frame covers a small part of the Arabian Gulf with 

small islands such as Abu Al Abyad Island at the north and most of the land cover type 

is the desert with vegetation areas at the south (Liwa). 



57 

 

 

 

 

Finally, the processing of the West frame has identified more than 6 million 

(6,552,059) PS candidates. For the West frame the image acquired on April 08, 2018, 

was selected as the master image due to its smallest geometrical and temporal 

baselines. The processing of this frame was the fastest one with the typically expected 

time processing of 6 days from pre-processing to obtain the LOS deformations rate. 

The processing of the West frame occupied disk storage of 2 TB including the raw 

SLC Sentinel-1A images and the intermediate files, but after removing all intermediate 

files the disk space was the least one with 109.6 GB excluding the raw SLC dataset. 

3.5 Land Surface Deformations over the UAE 

The InSAR techniques have been performed using ISCE2 and StaMPS 

software packages with the Sentinel-1 SAR dataset to detect land surfaced 

deformations over the UAE in the period between March 2017 and March 2021. The 

StaMPS technique succeed in identifying more than 30 million (33,626,494) PS 

candidates over the UAE. The detected land surface deformations showed a significant 

land surface subsidence in several areas over regional and local scales in the UAE 

(Figure 3.5). 

The detected land surface deformations over a regional scale were land surface 

subsidence in the Al Ain and Al Dhafra regions at the east and west of the Abu Dhabi 

Emirate, respectively. The former regional land surface subsidence phenomena were 

the highest detected land surface deformations with a maximum subsidence rate of -

55 mm/year. The later regional land surface subsidence phenomena were medium land 

surface deformations with a maximum subsidence rate of -20 mm/year. 



 

 

 

 

 
Figure 3.5: LOS displacement over the whole UAE. Yellow and red colors represent land surface 

subsidence while green and blue colors represent the stable ground. The red rectangles show the regional 

land surface subsidence. 
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The maximum land surface subsidence over the Al Ain region has been 

detected over the Remah, Al Araad, and Al Wagan areas. These areas are characterized 

by agricultural activity since the 1980s’. Moreover, due to the lack of resources for 

surface fresh water in these areas, farmers have relied mainly on groundwater 

resources for irrigation purposes. Deep details are provided in the next chapter where 

more InSAR investigations with groundwater data and field observations have been 

conducted over the agricultural areas in the Al Ain region. 

The land surface subsidence over the Al Dhafra region has been detected over 

three distinctive zones; north of Madinat Zayed, east of Ghayathi and west of Madinat 

Zayed, and Asab at the southwest, as shown in Figure 3.5. 

Moreover, smaller land surface subsidence phenomena were observed over 

different locations in the Northern Emirates such as Al Dhaid, landfill location south 

of  Dubai, and industrial area in Sharjah (Figure 3.6). Al Dhaid is a city in the Sharjah 

Emirate located in the east part known for its safari park and the craggy outcrop of 

fossil rock. Also, there are farming activities in the Al Dhaid area where dates palms 

and fruits were cultivated (SEWA, 2018). The maximum detected land surface 

subsidence was at a rate of -12 mm/year in the southern part but it extends toward the 

south of the Al Dhaid city and covers the safari park area (Figure 3.6 (a)). 

A faster land surface subsidence rate has been observed over a landfill, known 

as Al Bayada Landfill, located in the Dubi Emirate near Dubi-Al Ain Road (E66) with 

a maximum rate of -15 mm/year (Figure 3.6 (b)). Land surface subsidence at a landfill 

site can be attributed to two mechanisms; mechanical compression and biochemical 

processes. The former is occurred because of the primary consolidation and secondary 

compression of the waste material mass. While the latter is occurred due to the organic 
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matter decomposition. Both mechanisms result in voids and pores collapsing by 

oxidation, corrosion, or decay of water materials. 

Finally, a slow land surface subsidence has been detected over the industrial 

areas in the Sharjah Emirate, Emirates Industrial City and Sajaa Industria Area. The 

detected land surface subsidence was in the order of -7 mm/year in the middle of the 

Industrial area and -4 mm/year around the Industrial area (Figure 3.6 (c)). The main 

industrial activities in the industrial area are car customizations, auto-used spare parts, 

and warehouses. 

 



 

 

 

 

 

 
Figure 3.6: Small land surface subsidence over the Northern Emirates. (a) Al Dhaid. (b) Al Bayada 

Landfill. (c) Sharjah Industrial Areas. 
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Chapter 4: Land Surface Subsidence over Agricultural Areas 

 

4.1 Introduction 

In the Emirate of Abu Dhabi, about 89% of groundwater wells are used for 

agriculture and forest irrigation. Accordingly, to monitor the change of groundwater 

level and salinity, the government of the Abu Dhabi Emirate initiated the project 

Groundwater Wells Inventory and Salinity Mapping for Abu Dhabi Emirate (EAD, 

2018). 

The big challenge facing the UAE is the overexploitation of groundwater 

resources which can result in environmental impacts, such as altering the hydrological 

system, degradation of vegetation, land surface deformations, and water quality 

deterioration (Zektser, Loáiciga, and Wolf, 2005). Monitoring the groundwater level 

in the UAE is systematically achieved by establishing a well-distributed network of 

monitoring wells (Taylor and Alley, 2002). Nevertheless, a corresponding network, or 

at least random measurements or studies, for detecting possible surface deformations 

due to overexploitation of the aquifers are not available.  Measuring the effect of 

groundwater change on the land surface has been under investigation for decades with 

well-known techniques, such as survey leveling, GPS, and InSAR. Utilizing satellite 

remote sensing, SAR missions, for monitoring land surface deformations provide 

larger spatial coverage than the traditional techniques with a millimetric resolution of 

the deformation (Galloway and Burbey, 2011). 

This chapter shows a study of assessing and monitoring groundwater storage 

and its impact on the land surface in the Al Ain region, specifically over the Remah 

area, in the UAE using primarily remotely sensed and ground truth data. 
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4.2 Geology & Hydrogeology of Remah Area 

Remah is located in the Al Ain region 43 km east of Al Ain city, Emirate of 

Abu Dhabi. The Remah area is characterized geomorphologically by a desert cover, 

with elevation ranging from 80 m a.s.l., in the west, up to 200 m a.s.l., in the east. The 

area illustrates a series of sand dunes disconnected by flat areas known as interdunes. 

On the east side of the study area, there is high topography represented by the Jabal 

Ha fit and Al Hajar Mountains, south and east of Al Ain city respectively, while in the 

west the elevation is decreasing gradually towards the Arabian Gulf. 

The Remah area is occupied by three geological formations: the Barzaman 

formation, Hili formation, and Rub’ al Khali formation (EAD, 2018). Beneath the 

Barzaman formation, a layer of limestone interbedded with anhydrite, dolomite, and 

mudstone appears in some well lithological profiles (Figure 4.1). This layer is 

discontinuous through the study area and it is older than the Barzaman formation. The 

study area is tectonically inactive, as there is no evidence for such activity (Yagoub, 

2015). 

The Barzaman formation is barely exposed on the surface around Abu Samra. 

Its thickness is around 200 m in the north of the study area, decreasing consistently 

towards the south of the study area. The Barzaman formation is composed of fluvial 

sedimentary rocks with conglomerates as the major constituents. It has four coarse-

grain lithofacies; two are conglomerates with different types of clasts. The dominant 

one contains the minor size of clasts with white carbonate matrix, while the other 

conglomerate contains boulder brown clasts probably from mafic and ultramafic 

clasts. The other lithofacies are fine-grain of mottled Dolomitic Mudstone and angular 
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breccia with high plasticity silt (Thomas, Finlayson, Smith, Arkley, and Farrant, 2012). 

The Barzaman formation is unconformably overlaid by the Hili formation. 

 

 

Figure 4.1: Geological map of the Remah area (Thomas et al., 2012). 

 

The Hili formation is clearly observed between sand dunes and it encompasses 

three lithological units: conglomerate and sandstone, siltstone and mudstone, and 

sandstone and siltstone with the secondary conglomerate. The Sandstone is 

characterized by lenses of silty, sandy, gravely, and pebbly conglomerate (Khan, 

Kalbus, Alshamsi, Mohamed, and Liaqat, 2019). The conglomerates encompass clasts 

from UAE-Oman ophiolite (Hajar Mountains) which is sub- to well-rounded 

serpentinite and micro gabbro. The texture of the Hili formation is coarse to fine from 

the east at the Hajar Mountains to the west, where the depositional environment over 

sandy covers to deposit siltstone and mudstone. The thickness of the Hili formation is 

consistent along the Remah area, being less than 100 m. 
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The most covering formation of the study area, and the UAE in general, is the 

Rub’ al Khali formation, which is sand dunes composed of unconsolidated fine to 

medium grain sand. The study area contains three types of dunes: Dune ridges, Star 

Dunes, and Low Dunes (Thomas et al., 2012). Finally, the superficial deposits consist 

of a thin layer of sands, also called sand veneers, and sabkhas. A sand veneer can 

accumulate to form low dunes or encroach over the interdune areas.  

Generally, it has the same composition as the nearby dunes; carbonate in the 

west and rich in quartz (dark orange) in the east. Sabkha is the surface where the wind 

has sagged the ground by erosion above the water-table level within the capillary zone. 

Due to evaporation, sabkha is composed of secondary gypsum form over superficial 

deposits. 

The geological formations of the wider Abu Dhabi Emirate, according to the 

United Arab Emirates National Atlas (Embabi, Yahia, and Al Sharhan, 1993), bear 

four hydrological units: (1) the carbonate aquifers occupying the macro permeable 

carbonate formations in the east side of the Emirate, along the borders with Oman, (2) 

the western gravel aquifer, at the high permeability gravel formation along the foothill 

of the Al Hajar Mountains, also in the east, (3) the sand dune aquifer occupying the 

sand dunes' area covering most of the Emirate, and (4) the coastal aquifer, at the coastal 

Sabkhas, in the west. 

The narrow study area is located at the sand dune aquifers unit. The unconfined 

aquifers of the area occupy the coarse grain layers of the above-described formations 

and they are fed laterally by the carbonate aquifers extending in the east. Practically, 

the groundwater of the deep carbonate aquifer recharges the sand dune aquifers either 

directly or through the western gravel aquifer. 
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Al-Ain region is known as the agricultural region in the Abu Dhabi Emirate, 

with 50% of the agricultural activities of the emirate located there. The area under 

investigation holds 553 farms, 524 of which are active, occupying an area of 20.5 and 

19.5 km2, respectively. Generally, farms in the study area plant fruits (figs, mango, 

pomegranate, etc.) and crops (fodder, cabbage, corn, tomato). Besides farms and crops, 

there is the forest cover for windbreaks which holds an area of 0.078 km2 (ADAFSA, 

2019). 

These agricultural activities are supported by an extensive network of water 

wells exploiting the underground water. The groundwater, although unsuitable for 

irrigation due to its high salinity, is the only source of water in the area. The average 

depth of the water table in the shallow aquifer ranges between 52 and 67 m at the 

narrow study area, due to overexploitation, with annual water discharge of 244 million 

m3 from the aquifers forming a depression cone reaching further down to the depth of 

120 m (EAD, 2018). 

4.3 Materials & Methods 

4.3.1 Dataset 

The water level dataset for the Remah area for the period between 2013 and 

2019 has been provided by the Environment Agency of Abu Dhabi (EAD). The 

generated piezometric contours for this dataset uncovered a huge ongoing depression 

cone as shown in Figure 4.2. The steep decline in water level in 2013 indicates that the 

water level drawdown was in development before the captured depression cone in 

2013. It is clear that the irrigation wells network has been systematically affected the 

unconfined sand dune aquifers and resulted in declining the groundwater level with a 
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maximum drawdown up to 50 m at the center of the depression cone. The water level 

drawdown is gradually decreasing away from the center of the depression cone, but it 

is steeper toward the east than the west. This drawdown can be controlled by many 

factors; pumping rate, aquifer characteristics, lithology, and recharge. As the sand 

dune aquifer is the upper aquifer in the study area, it is expected to have a wide area 

affected by the depression cone, especially around the irrigation wells, because of the 

high groundwater discharge (244 million m3 per year) and the high permeabilities sand 

formations. EAD reported that 95% of the water wells in the Remah area are used for 

farming activities and this is in agreement with the depression cone that is extensive 

over agricultural areas. 

The Sentinel-1 SAR datasets have been extended to cover the period between 

March 2015 and March 2021 to deeply investigate the detected land surface subsidence 

over the Remah areas, presented in the previous chapter, and to overlap the time period 

of the provided water level dataset. The available Sentinel-1 SAR datasets for this area 

are exceeding 130 images and a subset of 97 images was processed. All SAR SLC 

images processed were acquired along ascending direction because of the low number 

of acquisitions along the descending direction, only 15 scenes during the same period. 
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Figure 4.2: Groundwater level contours over the Remah area represented by dotted 

blue lines in 2013 (top) and 2019 (bottom). The depression extended between 2013 

and 2019. 
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4.3.2 InSAR Data Processing 

The InSAR processing chain has been applied as discussed in the previous 

chapter but for a smaller area to study only the land surface subsidence over the 

agricultural zones of the study area and their surroundings. The master image was 

selected that acquired on March 1, 2018, due to its smallest spatial and temporal 

baselines. The spatial, or perpendicular, baselines have a maximum value of 124 m. 

The only change in the pre-processing with the ISCE software package was the 

definition of the narrow study area to restrict the pre-processing from applying the 

commands for the entire scene. 

Geomorphology of the Remah area showed a generally flat terrain with sand 

dunes and interdunes. Thus, the threshold for the modeling topographic error can be 

high because there is not much height variation within the processed area. For this 

reason, a threshold of 20 m was applied to model the topographic error, and 25 % of 

PSs with random phase were selected, in order to increase the PS density. This PSs 

selection has been refined by a threshold for the interferometric noise standard 

deviation of 1.0 which maintained the PSs selection to pixels with lower 

decorrelations. 

4.3.3 Field Observations 

Detecting and monitoring of land surface deformations phenomena require 

field observation survey because identifying the slow deformation rate is feasible only 

by noticing the deformations and failures of the constructions over the deformed area. 

So, field visits have been conducted on January 31, 2020, to the Remah area in order 

to observe and identify signs for damaged and/or failure constructions. These field 
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visits concentrated around farms and known water wells, but as well observations were 

taken over the town to identify the effect over non-agricultural areas (Figure 4.3). 

 

 
Figure 4.3: Locations of the observed land surface subsidence signs. 

 

The first observed sign for the land surface deformations was the fractured 

walls of so many constructions as well as leaning walls in some fences (Figure 4.4). 

This observation can occur due to differential settlements of the construction's 

foundations. This type of land surface deformation can be evidence of failure at the 

construction over the deformed area. 

The second observed sign was the protrusion of some constructions due to the 

land surface subsidence. As presented in (Figure 4.5) the concrete bases around the 

water well casings appear cracked as despite the lowering of the ground surface the 

water well casings remain stable lifting up and cracking the surrounded concrete, the 
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casings remain stable because it is based deep down on an undeformed layer. A typical 

deformation has been observed over a small building as shown in Figure 4.5. 

 

 

Figure 4.4: Examples of differential settlements of the construction’s foundations. 
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Figure 4.5: Examples of constructions protrusion due to land surface subsidence. 
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Furthermore, the electrical pillars in the deformed areas have been observed 

inclined with tension in the wires showing clear evidence for land surface subsidence 

(Figure 4.6). This can occur as ground lowers in some locations more than others and 

subsiding electrical pillars stresses the wires and pull other electrical pillars. 

 

 

Figure 4.6: Examples of inclined electrical pillars. 
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4.4 Surface Deformations Results 

The utilization of the StaMPS technique with the available Sentinel-1 stack 

over the Remah area, which is characterized by fewer anthropogenic structures, 

resulted in high PS density (4000 PSs/km2) as suggested in the processing of the whole 

UAE. Moreover, this proves the ability of the StaMPS approach in identifying PS 

scatterers over desert areas even with vegetation landcover. The InSAR processing 

detected land surface deformations ranging from +5 to -60 mm/year between March 

2015 and March 2021 in the LOS direction (Figure 4.7). The detected displacement 

can be considered vertically with no horizontal displacement due to the absence of the 

tectonic activities in the Remah area (Yagoub, 2015). 

The detected land surface deformations over the Remah area appeared as a land 

subsidence bowl with its major axis extending from the northeast, at the Al Saad city 

by 14 km, to the southwest, by 15 km from Remah city. As expected, the maximum 

subsidence rate was -50 mm/year at the center of the bowl and it decreases gradually 

towards the edge of the bowl with a subsidence rate of -10 mm/year. 
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Figure 4.7: Land surface subsidence in LOS direction between over Remah 2015 and 

2021 measured in mm/year. The red color represents a higher subsidence rate. 

 

In order to illustrate the subsidence laterally, a cross-section has been generated 

along X-X’ line shown as a grey dashed line in Figure 4.7. This line has been drawn 

along the longest diameter of the subsidence bowl. The cross-section is trending from 

the west (X) to the east (X’) which is presenting steep subsidence from the east (Figure 

4.8), the land subsidence changed from -5 to -60 in 2.7 km, and less steep from the 

west, the land subsidence changed from -2 to -43 mm in 6.1 km, toward the center. 

The maximum subsidence was detected toward the west where the subsidence rate was 

steeper. 
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Figure 4.8: Cross-section along X-X’ shown as a dotted grey line in Figure 4.7. 

 

4.5 Discussion 

Implementing the StaMPS technique showed a significant PS density in the 

study area which can produce more reliable surface deformations measurements. But 

StaMPS technique relies on a linear model to estimate the time-series surface 

deformations for the selected PSs. This means that if the deformations rate is non-

linear within the deformed area, then the measured deformations can deviate from its 

the actual value. In order to assess the measured deformations rate, the standard 

deviation for the measured deformations rate was computed, which represents a 

reliable deformations rate measurement when the standard deviation is low. On the 

other hand, when the standard deviation is high that means either the selected PSs have 

incorporated a high level of noise or the linear model of the deformation has not fitted 

well and the estimation of deformations rate by the linear model is not feasible. 

In our processing, however, the standard deviation at the subsidence bowl was 

about 2 mm/year (Figure 4.9) which makes the land surface subsidence rate be 

expressed as -60 mm/year ±2 mm/year. This indicates that there is no evidence for 

non-linear deformations over the Remah area during the studied period. 
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Figure 4.9: Subsidence rate standard deviation for values shown in Figure 4.7. 

 

Since the establishment of the country of the UAE, the Remah area was one of 

the destinations for crops cultivation. This can be attributed to first the abundant flat 

areas between sand dunes, known as interdunes, where growing crops are feasible, and 

second to the available amount of groundwater. In contrast with the surrounded areas, 

the Remah area is characterized by a higher number of interdunes, higher groundwater 

saturated thickness, and lower hydraulic conductivity 1 m/day (EAD, 2018). Remah 

area is located almost in the middle of the UAE where no surface water is available, 

the closest source of surface water is Al Ain Al Fyadah spring which is located more 

than 30 km east of the study area (Othman, 2005). Thus, groundwater can be 

considered the only available source for fresh water. According to EAD reports, the 

annual abstraction of groundwater from the Remah area is more than 240 million m3 
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from more than 6800 operating water wells. Moreover, the low groundwater recharge 

caused by the low hydraulic conductivity prevented the water table to recover and 

caused a continuous lowering in the water table. The above-mentioned explanations 

support the hypothesis that the observed land surface subsidence in the Remah area 

during the studied period can be attributed to the water level lowering. 

Another important finding was the correspondence of the spatial distribution 

between the detected land subsidence bowl and the depression cone presented in the 

contour lines of the piezometric water level in 2019. A comparison between the water 

level drawdown at the GWP-060 monitoring well with the land surface subsidence at 

the PSs around the same monitoring well showed a continuous decline in both values 

during the whole studied period (Figure 4.10). 
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Figure 4.10: The correlation between water level drawdown and land surface 

displacement shown as blue line and dashed orange line, respectively, at GWP-060 

monitoring water well. 

 

Water level changes between 2013 and 2019 have been studied to assess the 

temporal behavior of the water table in order to investigate if there is any change to 

the depression cone with time. This investigation showed that the groundwater 

extraction is growing towards the west of the study area in the above-mentioned period 

due to the increase of the farming activities in that direction.   Therefore, the depression 

cone is extending in areas with lower deformation rates and specifically in areas that 

are expected to deform more rapidly in the future if the depression continues 

extending. Due to the unavailability of any alternative sources for fresh water the land 

deformations are expected to extend. 
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4.6 Land Subsidence over Al Wagan 

A similar phenomenon has been observed over the Al Wagan area south of the 

Al Ain city as shown in Figure 3.5. This area includes Bu Kirayyah, Al Araad, Al 

Wagan, and Al Quaa. This area, also, is characterized by numerous farming activities 

with 1660 farms and 1604 active farms. These farms are known for planting fruits such 

as bananas, cider, orange, and others. Also, there are windbreaks composed of forest 

cover with an area of 0.2 km2. Similar to the Remah area, the agricultural activities are 

supported by an extensive network of water wells discharging the underground water 

with an annual water abstraction of 350 million cubic meters (EAD, 2018). 

The implemented processing for the Remah area has been repeated for the Al 

Wagan area using the same SAR dataset. The Remah and Al Wagan areas are located 

within the same Sentinel-1 frame but in different sub-swath where the former is located 

in IW2 and the latter is located in IW3 sub-swath. Moreover, a field survey was 

conducted to observe land surface deformations signs on February 1, 2020. 

Unfortunately, there is no available water level data in the Al Wagan area which makes 

the correlation with land surface deformations is not possible at the moment. The field 

observations over the Al Wagan showed similar evidence for land surface subsidence 

to those shown for the Remah area (Figure 4.11). The observed differential settlements 

of the construction's foundations and inclined electrical pillars are shown in Figure 

4.11 (ii) and (iii), respectively. 



 

 

 

 

 

Figure 4.11: Field Observations over Al Wagan area. (i) Locations of land surface subsidence signs over the Al Wagan area. (ii) 

Differential settlements. (iii) Inclined electrical pillars. 

    8
1
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The InSAR processing observed land surface deformations in the range of +5 

to -55 mm/year in the same period (Figure 4.12). The maximum deformations rate at 

the southern area of the Al Ain region was observed in the Al Wagan with -55 mm/year 

and a lower deformations rate was observed over the Al Araad with -30 mm/year. 

Also, deformations with -10 mm/year have been observed over the Bu Kirayyah area. 

The observed land surface subsidence over the Al Wagan area is extending from it is 

central to the south by 25 km and decreasing gradually before Al Quaa. 

 

Figure 4.12: Land surface subsidence in LOS direction over Al Wagan between 2015 

and 2021 measured in mm/year. The red color represents a higher subsidence rate. 

 

A cross-section of the observed land subsidence was drawn along the Y-Y’ line 

shown as a grey dashed line in Figure 4.12. The cross-section was drawn from the 

south at the Al Quaa (Y) to the north at the Bu Kirayyah (Y’) (Figure 4.13). The cross-

section showed a steep land surface subsidence south of the Al Wagan where land 



83 

 

 

 

 

subsidence changed from -14 to -58 mm in a distance of 1.8 km, while more gradual 

land subsidence was observed north of the Al Wagan where land subsidence changed 

from -51 to -3 mm in a distance of 9.5 km. The detected land surface subsidence over 

the Al Araad was gradual which changed from -6 to -31 mm in a distance of 7.6 km 

and increased again toward the Bu Kirayyah to -0.5 mm in a distance of 4.6 km. 

 

 

Figure 4.13: Cross-section along Y-Y’ shown as a dotted grey line in Figure 4.12. 

 

The uncertainty of this processing was checked by calculating the standard 

deviation for the detected land surface displacements as conducted for the Remah area. 

The standard deviation values over the Al Wagan area were within the same range as 

for the Remah area, within 2 mm/year as shown in Figure 4.14. 

The history of the land surface subsidence over the Al Wagan area has been 

investigated by Liosis et al. (2018) who studied the phenomena in two periods, the first 

from 2003 to 2010, and the second from 2016 to 2018. For the first period, Liosis et 

al. (2018) reported that a land surface subsidence rate of -18 cm/year was observed 

using two SAR datasets, C-band ENVISAT and L-band ALOS-1, with the SBAS 

technique. This showed a high correlation coefficient, more than 0.9, between the 

water level drawdown and the land surface subsidence. For the second period, the 
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Sentinel-1 SAR dataset was implemented with the SBAS technique and detected a land 

surface subsidence with a rate of -10 cm/year. Noteworthy, the study concluded that 

the Sentinel-1 results were unreliable due to the small available dataset at the time and 

the lack of an appropriate method for atmospheric correction. 

 

 

Figure 4.14: Subsidence rate standard deviation for velocity values shown in Figure 

4.12. 

 

The investigation of the land surface subsidence over the Al Wagan area using 

97 Sentinel-1 images with the StaMPS technique showed a continuity for the land 

surface subsidence detected in the previous study but with a slower subsidence rate 

which can be caused by sustainable practices for groundwater resources management 

controlled by the Environment Agency of Abu Dhabi. 
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Chapter 5: Integration of InSAR with Geophysical Technique 

 

5.1 Introduction 

Land surface monitoring practices include various techniques and choosing the 

appropriate technique depends mainly on the physiography of the study area and the 

monitoring purposes. Remote sensing data provides information related to the Earth’s 

surface with small and less certain about the subsurface. While geophysical techniques 

provide information related to the subsurface strata from shallow to deep depth. The 

big limitation for the geophysics technique is point data information which collected 

this type of information everywhere is not feasible. On the other hand, remote sensing 

data provides wide coverage with continuous recording over the Earth’s surface. 

The integration between remote sensing and geophysics techniques can fill the 

space gap and provide new insight on monitoring the land surface. In this chapter, an 

integration between the InSAR remote sensing and microgravity geophysical 

techniques is implemented and discussed over the Al Ain city, Abu Dhabi Emirate. 

Integration of these two techniques can unveil unknown behaviors for land 

surface deformations and underground fluid movement (oil, gas, or water). Also, the 

effect of precipitation on the underground mechanism and density distribution can be 

seen from this integration. Furthermore, a better understanding of the relationship 

between microgravity measurements and land surface deformations can be achieved. 

5.2 Geomorphology & Geology of Al Ain Area  

 Al-Ain area is located in the eastern part of the Abu Dhabi emirate on the 

UAE-Oman border (Figure 5.1). Its elevation varies from more than 300 m in the east 
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to about 200 m in the west. The area is characterized geomorphologically by three 

main features: mountains, gravel plains, and sand dunes. The mountains are 

represented by Jabal Hafit and Oman Mountains located southeast and east of the Al 

Ain city, respectively. Jabal Hafit extends northwest-southeast is 29 km long, 5 km 

wide, and with an elevation of 1240 m a.s.l. The gravel plains occupy the western side 

of the Oman Mountains and consist of alluvial fans formed by transported sand and 

gravel through wadis from Oman Mountains. The sand dunes cover almost 76% of the 

UAE and this feature occupies the western part of the Al Ain area. The sand dunes can 

be divided according to the pattern into dune ridges, low dunes, and star dunes. 

 

 

Figure 5.1: Location of Al Ain city within the UAE. 
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The geology of the study area can be divided into six main units (Figure 5.2): 

Rus Formation, Dammam Formation, Asmari Formation, Lower Fars Formation, 

Barzaman Formation, and Quaternary Deposits. The Rus Formation, from the Early 

Eocene epoch, is exposed on the top of Jabal Hafit at the core of the anticline fold. It 

consists mainly of limestone with two units, the lower is generally pale grey 

nummulitic massive limestone with clasts of coral and gastropods, while the upper is 

thinly bedded pale yellow lime mudstone with chert nodules (Ministry of Energy, 

2006). This formation also is characterized by a dolomitization process that occurred 

in the upper part and appears as pale-brown weathering (Saibi, Amrouche, and Fowler, 

2019). 

The Dammam Formation, with a maximum thickness of 600 m, overlies the 

Rus Formation and is exposed in the northern part of Jabal Hafit. This formation is 

dominated by limestone and lime mudstone. The base part consists of creamy grey, 

thickly bedded lime mudstone with marl fillings between the beds. The main unit in 

this formation is composed of grey, poorly bedded pseudonodular nummulitic 

limestone with corals (Ministry of Energy, 2006). In the eastern limb of Hafit anticline, 

two more units are exposed that are believed to belong to the Dammam Formation; 

they are a greenish-brown lime mudstone and a pale brown nummulitic limestone. 

The Dammam Formation is unconformably overlain by the Asmari Formation 

of the Early Oligocene age. El Tokhi et al. (2012) divided this formation into three 

units: the base consists of greenish-grey bedded mudstone with marl formed between 

the beds, while the middle unit consists of poorly bedded to massive dolomitic and 

chalky limestone rich in fossils, and the top consists of massive chalky limestone 

which contains huge amounts of coral heads and nummulites. 
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Figure 5.2: Geological map of Al Ain area (Ministry of Energy, 2006) 
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The Lower Fars Formation, from the Early Miocene epoch, is conformably 

overlays the Asmari Formation and is well exposed 1 km east of Jabal Hafit with a 

small outcrop west of Jabal Hafit. The thickness of this formation is estimated at 330 

m (Ministry of Energy, 2006) and it consists of creamy brown celestite, lime mudstone 

with gypsum veins, lithic sandstones, and pebble conglomerates with clasts of quartz, 

chert, and the Oman-UAE ophiolite (Saibi et al., 2019).  

The overlying formation is the Barzaman Formation from the Middle Miocene 

to Pliocene epoch and it crops out east of Jabal Hafit in the interdune areas, beneath 

Al Jaww plain, and Quaternary deposits. The base of the formation is composed of 

gabbro and harzburgite conglomerates. At the west, where it mostly underlies sand 

dunes, it consists of an interbedded sequence of mudstones, sandstones, and 

conglomerates (EAD, 2018). The mudstones are blocky, pale white with iron and 

manganese. The conglomerates are massive poorly sorted, poorly bedded with clasts 

composed of gabbro, harzburgite, limestone, and chert. Sandstones are soft, 

variegated, cross-bedded, and finning upwards (Ministry of Energy, 2006).  

Quaternary deposits cover more than 76% of the UAE. Quaternary deposits in 

the Al Ain are can be divided into aeolian deposits, alluvial fan deposits, wadi deposits, 

and inland sabkha deposits. Aeolian deposits cover most of the northwestern part and 

southwestern part of the Al Ain area. The aeolian deposits can be divided into dune 

ridges, low dunes, star dunes, and sand veneers. The aeolian sand consists of 

moderately to well-sorted fine sand with sub-rounded quartz grains (El-Sayed, 1999). 

The aeolian deposits vary in color depending on their location. Near the Hajar 

mountains, the aeolian deposits appear darker, a pale to burnt orange, due to the 

increase of dark Fe-Mg rich lithics. While around Jabal Hafit the aeolian deposits tend 
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to appear lighter, pale orange to cream, due to the increase of carbonate grains from 

the erosion of limestone alluvial from Jabal Hafit. 

The alluvial fan deposits occupy most of the east part of the Al Ain area with 

some coverage in central areas. The alluvial fan deposits vary with the distance from 

the mountains and in the Al Ain area, the units vary between differentiated gravels, 

sand, and silt while wadi alluvium consists of unconsolidated very poorly sorted fluvial 

sand and gravel deposits. This unit also contains clasts of ophiolite, limestone, or 

mixed lithology depending on the source area (Ministry of Energy, 2006). 

The hydrogeology of the UAE consists of four main aquifers as shown in 

Figure 5.3: limestone aquifers, ophiolite aquifers, gravel aquifers, and sand dune 

aquifers (Elmahdy and Mohamed, 2015). Limestone aquifers are located in the north 

at Jabal Jais and in the east at Jabal Hafit. The ophiolite aquifer is located at the east, 

and the gravel aquifers can be divided into the east aquifer (east of the ophiolite) and 

the west aquifer (west of the ophiolite). The sand dune aquifer is located in the south 

and west (Rizk and Alsharhan, 2003). The Al Ain area is located within the western 

gravel aquifer which comprises a sequence of alluvial deposits of the piedmont plains 

(Murad, Nuaimi, and Hammadi, 2007). 
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Figure 5.3: The main groups of groundwater aquifers in the UAE. The red rectangle 

shows the position of the study area located over the Western Gravel Aquifer. 

 

The western gravel aquifer consists, at the top section, of sand and gravel with 

thin silt and clay interbedding with thickness ranging from 30 to 60 m. Whereas, 

alluvium deposits from Oman-UAE ophiolite occupy the bottom section. The western 

gravel aquifer in the Al Ain area is underlain by the Lower Fars Formation at the east 

(Al Jaww Plain) and by tectonically thrusted marls and shales (EAD, 2018). Hydraulic 

conductivity in the Al Ain region ranges between 1 and 10 m/day with an average of 

4 m/day. 

The recharge of the aquifer is due to rainfall from the Northern Oman 

Mountains. The recharge mechanism begins with infiltration of rainfall and surface 

flow along Wadis that drain the Oman Mountains, then subsurface flows from lateral 

flow in alluvial channels at the mouths of the drainage basins along the mountain front, 
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and finally lateral flow through fractured bedrock along the mountain front. Three 

main types of groundwater flow systems generated from these mechanisms include 

local flow, intermediate flow, and regional flow. Also, the whole groundwater flow 

system drains from mountains at the east through the plains towards the coast at the 

west (Mohamed, 2014). Al-Ain area is within the local groundwater flow system 

where the hydrologic cycle is fast and the groundwater has a short residence time (Rizk 

and Alsharhan, 2003). 

5.3 Gravity Method 

The gravity geophysical method is a non-destructive geophysical method that 

measures variations in the Earth’s field of gravity between two locations. The field of 

gravity variations depends primarily on the density variations of the subsurface 

materials from one location to another. The gravity geophysical method is based on 

the Universal Law of Gravitation and the Law of Motion. The acceleration due to the 

gravity unit is 1 cm/s2 also known as Gal, named after Galileo, and the gravitational 

acceleration value at the Earth’s surface is almost 980 cm/s2, or 980 Gal. But this value 

varies slightly between locations due to the Earth’s shape. 

It is believed that the Earth’s shape is a flattened sphere, ellipsoid, with the 

major axis towards the equator and the minor axis towards the poles from the Earth’s 

center. This means that the points at the poles are closer to the Earth’s center of mass 

than the points at the equator, therefore, theoretically, the gravity is greatest at the poles 

and decreases toward the equator. This decreasing is occurred due to the centrifugal 

acceleration resulting from the Earth's rotation around its north-south axis. 
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The density of the subsurface rocks plays a pivotal role in the resultant gravity 

at a specific location. Rock densities vary depending generally on the material made 

and the degree of consolidation, this means that sedimentary rocks have a lower 

density than igneous and metamorphic rocks. The density of the sedimentary rocks can 

be affected by their composition, cementation, depth, tectonic process, porosity, and 

pore-fluid type. While for the igneous rocks the silica content controls the density 

variations, where the density increases with the silica content decreases. This means 

that basic igneous rocks have a higher density than acidic ones (Gabbro is denser than 

Granite), and intrusive igneous rocks have a higher density than their volcanic 

equivalents (Gabbro is denser than Basalt). The density variations between 

metamorphic rocks appear chaotic with a general trend to increase with increasing 

grade of metamorphism. 

There are two types of gravity measurements, absolute gravity measurements 

which is the measurement of the entire gravity field at a specific location, and relative 

gravity measurements which is the measurement of gravity differences between two 

locations. Therefore, there are two types of gravity meter, also known as the 

gravimeter, absolute gravity meter and relative gravity meter. Absolute gravity 

measurement requires specific experiment processes and uses either falling body or 

swinging pendulum methods. While relative gravity measurement conducts over a 

network of gravity stations and all gravity data measured during the survey is relative 

to a specific location called the base station. Relative gravimeter is spring-based where 

a specified mass hangs over a very sensitive spring that stretches relatively to the mass 

gravitational acceleration. Gravimeter measures a meter reading that is multiplied by 

an instrumental calibration factor to produce an observed gravity value. Gravity data 
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measurements need to be corrected before they can be interpreted or integrated with 

other measurements. 

The corrections to gravity measurements include instrumental drift, tide, 

latitude, free-air, Bouguer, and terrain corrections. The first two corrections are varied 

with time while the other corrections are varied with location. The instrumental drift 

occurred due to the elastic creep of the spring which changes the gravimeter readings 

with time. The instrumental drift is determined by measuring the gravity at the same 

station repeatedly at various times during the day. Tides' effect on gravimeter 

measurements can be large enough to produce a significant change in 12 hours. The 

tide effect can be corrected by repeated measurements at the same station similar to 

the instrumental drift correction. 

The latitude correction is performed to compensate for the gravity field 

increases away from the equator and closer to the poles. The latitude correction is 

conducted by subtracting the theoretical gravity calculated via the International 

Gravity Formula (Equation 5.1) from the measured gravity. 

𝑔𝜑 = 𝑔0(1 + 𝛼 sin2𝜑 − 𝛽 sin2 2𝜑)         (5.1) 

where 𝑔𝜑 is the theoretical gravity at 𝜑 latitude, 𝑔0 is the gravity field at the 

equator, and 𝛼, 𝛽 are parameters related to the flattening model approximation of the 

Earth. The latitude correction is negative towards poles and positive towards the 

equator. 

The free-air correction (∆𝐺𝐹) is the difference between the gravity field 

measured at the sea level and the gravity field measured at ℎ elevation without rocks 

in the distance between the sea level and ℎ. This correction is performed by using a 
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gradient of 308.6 µGal/m where it is positive for locations above the sea level and 

negative for locations below the sea level. The free-air gravity gradient is increasing 

marginally from the equator to the poles by 0.5 µGal/m. Noteworthy that the elevation 

precision should be around 1-2 cm. 

The Bouguer correction (∆𝐺𝐵) is the compensation for the extra gravitational 

field resulting from the rock mass (𝜌) between the gravity station elevation (ℎ) and the 

sea level (Equation 5.2). The Bouguer correction factor is subtracted from the observed 

gravity for stations located above sea level. 

∆𝐺𝐵 = 2𝜋𝐺𝜌ℎ                     (5.2) 

where 𝐺 is the gravitational constant. 

The two latter corrections are related to elevation of the gravity station measurement 

and usually, these two corrections are processed in one equation, as shown in Equation 

5.3, to avoid misinterpretation 

∆𝐺𝐸 = ∆𝐺𝐹 − ∆𝐺𝐵 = (3.086 − 0.4192𝜌)ℎ             (5.3) 

 

To be able to compare the gravity field measurements between gravity stations 

these measurements should be referred to the same base station. This value is called 

the Bouguer Anomaly which is the difference between the corrected measured gravity 

at each station and the gravity measured at the base station. 

5.3.1 Gravity Survey 

Gravity geophysical survey visits have been conducted over Al Ain city in the 

period between March 2019 and March 2020. The purpose of the gravity survey was 
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to monitor land surface deformations and groundwater dynamics around monitoring 

water wells. The performed gravity geophysical technique for the monitoring purpose 

was the Time-lapse Microgravity (TLMG) technique, also known as 4D microgravity 

which measures gravity in micro values and the fourth dimension is time. TLMG is 

performed by repeated gravity measurements over the same gravity stations for some 

time (Kadir, Santoso, and Alawiyah, 2007). Gravity signals that can be attributed to 

the land surface deformations and groundwater dynamics are very small, therefore, the 

TLMG requires a specific instrument that has a resolution of micro-measurement. The 

gravimeter used for the gravity survey was the Scintrex CG-6 Autograv (Figure 5.4), 

which it is characteristics are listed in Table 5.1. 

 

 

Figure 5.4: Scintrex CG-6 Autograv 
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The Scintrex CG-6 Autograv is characterized by 1 µGal resolution and less 

than 5 µGal standard deviations. This instrument is portable according to its 

dimension, 21.5 x 21x 24 cm, and lightweight of 5.2 kilograms. Moreover, some 

gravity corrections are incorporated automatically, including tide, instrument tilt, 

temperature, and drift corrections (Scintrex, 2018). 

Table 5.1: Scintrex CG-6 Autograv specifications 

Dimension 21.5 cm(H) x21 cm x 24 cm  

Weight 5.2 Kg (11.5 lbs) including batteries 

Reading Resolution 1 microGal 

Standard Deviation <5 microGal 

Automated Corrections Tide, instrument tilt, temperature, noisy sample filter, 

seismic noise filter, drift 

Touch-free operation Handheld Tablet with Bluetooth 

Battery Capacity 2 X 6.8 Ah (10.8 V) rechargeable lithium smart batteries. Full 

day operation at 25°C (77°F) 

Data Output USB and Bluetooth 

 

The gravity field measurements have been taken from 10 locations distributed 

over Al Ain city in order to unveil the fluctuations of the land surface and groundwater 

level during one year. The measurements that have been taken of each station along 

with the gravimeter reading were the position (longitude and latitude) and instrument 

height above the Earth’s surface (in millimeter accuracy). The gravity survey has been 

designed to start from the base station, where it is located at the United Arab Emirates 

University in building E4 as labeled with a red star shown in Figure 5.5 and end at the 

base station. 
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Figure 5.5: Locations of the gravity monitoring sites over Al Ain city. 

 

The gravity survey began with measuring gravity at the base station then visited 

the first gravity station and took a gravity field measurement. At every gravity station, 

the gravity measurements have been taken in a two-way measurements protocol, where 

the gravity field was measured in the go direction and the back direction as shown in 

Figure 5.6. The two-way measurement protocol has been performed to reduce the 

reading error (Saibi, 2017). For each measurement, the gravimeter was placed over a 

tripod in a consistent direction to avoid any error related to the instrument azimuth. 

Then the tripod was balanced horizontally for the measurement and the height of the 

gravimeter above the ground was taken. After that, the gravimeter was started the 

gravity field reading and for each measurement, an average of 120 readings was taken 

over two minutes with one reading every second. After measurements have been taken 

over the ten specified gravity stations a final gravity field measurement has been taken 
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at the base station to close the loop. Noteworthy that each loop has been completed in 

less than 4 hours and before midday to reduce the spring creep sensitivity to the change 

in temperature. The gravity survey has been conducted in 11 loops, or visits, in the 

period between March 2019 and March 2020 and the gravity stations have been visited 

in the same order for the eleven loops to keep the consistency. 

 

 

Figure 5.6: Go & Back measurement protocol. 

 

5.3.2 Gravity Data Processing 

After each gravity survey, the measured values have been stored in a separate 

table for further data processing. Each table contains corrected gravity measurements 

(go and back), latitude, longitude, and instrument height for each gravity station. As 

above mentioned in the gravity survey section each gravity survey started and ended 

at the base station, so all gravity measurements should be referred to the base station. 

This has been achieved by subtracting the measured corrected gravity at each gravity 

station (𝑔𝑥,𝑡) from the measured corrected gravity at the base station (𝑔𝐵𝑆,𝑡) within the 

same gravity survey (Equation 5.4). This process has been applied for each gravity 
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survey dataset and named the corrected gravity at time t (∆𝑔𝑥,𝑡), which is the time 

when the gravity survey has been conducted. 

  ∆𝑔𝑥,𝑡 = 𝑔𝑥,𝑡 − 𝑔𝐵𝑆,𝑡                   (5.4) 

The first gravity survey has been conducted in March 2019 and the dataset of this 

survey has been considered the baseline for the TLMG analysis. Therefore, the 

corrected gravity at the first survey is the corrected gravity at the baseline. TLMG 

anomalies have been generated by subtracting the corrected gravity at each gravity 

survey (∆𝑔𝑥,𝑡) from the corrected gravity at the baseline (∆𝑔𝑥,𝑡0) (Equation 5.5The 

subtraction process has been performed between the correspondence gravity station 

(e.g., the corrected gravity at station A in time 𝑡 has been subtracted from the corrected 

gravity at station A in time 𝑡0). 

∆𝑔𝑥,∆𝑡 = ∆𝑔𝑥,𝑡 − ∆𝑔𝑥,𝑡0         (5.5) 

The TLMG anomalies (∆𝑔𝑥,∆𝑡) have been generated to monitor the gravity signals due 

to land surface deformations and groundwater dynamics. 

In order to reveal the spatial and temporal variation of gravity, TLMG 

anomalies have been interpolated using the Kriging interpolation technique to generate 

ten surfaces for all gravity survey measurements. Also, temporal gravity changes for 

each gravity site have been plotted on a linear graph to facilitate the interpretation 

process. 

5.4 InSAR Dataset & Processing 

In order to utilize InSAR processing, a stack of Sentinel-1 images provided by 

the ESA has been captured from the Alaska Satellite Facility 

(https://search.asf.alaska.edu). Thirty Sentinel-1 scenes over Al Ain city in the same 

https://search.asf.alaska.edu/
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period as the gravity survey have been acquired. Sentinel-1 is characterized by a 

temporal resolution and wavelength of 12 days and 5.6 cm (C-band), respectively. 

Moreover, Sentinel-1 images were acquired with high image quality and wide swath 

due to the imaging mode of Interferometric Wide swath mode (IW) (Torres et al., 

2012). The Sentinel-1 images were co-registered to a single master image acquired on 

the 18th of November 2019. This image was selected as a master image because it is 

the shortest perpendicular and temporal baselines. 

The pre-processing steps have been performed by utilizing the open software 

SeNtinel Application Platform (SNAP) which includes applying orbit information, co-

registration, interferogram generation, and spatial subset. The interferometry analysis 

was performed using the StaMPS MT-InSAR software package, so the final step of 

the pre-processing was to export the interferograms to StaMPS (Figure 5.7). The pre-

processing steps have been iterated automatically using a combination of python 

scripts and XML files to facilitate the pre-processing. Ancillary data used in the co-

registration process includes DEM and orbit data. For DEM data, 1 arc-second SRTM 

data was used while precise orbit data have been accessed via SNAP software. 

The PSs have been initially selected with the method of amplitude dispersion 

proposed by (Ferretti et al., 2001). A threshold of 0.4 was chosen to select the PS 

candidates; any pixel with an amplitude dispersion value less than the threshold was 

not be considered as a PS candidate. The topographic error was modeled at a threshold 

of 5 m with a maximum spatial density of 20 PSs/km2 from random phase pixels to 

reduce the uncertainty of the PSs. In order to maintain a low signal decorrelation in the 

PS candidates, the interferometric phase noise standard deviation for all pairs was 

limited to a threshold of 1.0. Then, the topographic phase was estimated from the 
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SRTM data and removed from the interferograms to generate the differential 

interferograms. The remaining interferometric phase was unwrapped using Statistical-

Cost Network-Flow Algorithm for Phase Unwrapping (SNAPHU). The phase 

unwrapping process is the most complicated in InSAR processing as it attempts to 

solve the integer number of the wave cycles between the sensor and each pixel. Then, 

the phase component of the signal delayed in the atmosphere was corrected by 

performing the open-source TRAIN (Bekaert et al., 2015).  

The InSAR processing resulted in a set of PS pixels with an estimated surface 

displacement time-series after removing flat-Earth, elevation, and atmospheric 

components. The estimated displacement is the LOS velocity for each PS and it is 

expressed in mm/year. 

 

 

Figure 5.7: Flowchart for the InSAR processing steps of SNAP and StaMPS. 
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5.5 Results 

The computed TLMG anomalies revealed significant fluctuations in space and 

time as shown in Figure 5.8. The TLMG anomalies varied temporally in a periodic 

shape where the anomaly was at its minimum during summer, dry season, from May 

through August then it was increased in September and October to reach its maximum 

in November. After that, the TLMG anomalies were decreased slowly from December 

through March. On the other hand, the TLMG anomalies were distributed spatially 

with the higher anomalies located at the eastern part (stations B, C, D, E, and F) and 

the lower anomalies located at the southern part (station G) of the study area. The 

minimum TLMG anomaly has been recorded at a station (G) in June 2019 with -36 

µGal while the maximum TLMG anomaly has been recorded at a station (H) in 

November 2019 with 365 µGal. 

Minimum and maximum values of the TLMG anomaly for each gravity survey 

have been listed in Table 5.2. The second and third gravity surveys contain the shortest 

and longest range, respectively, among all gravity surveys. Both gravity surveys were 

recorded the only negative TLMG anomalies for the entire period with -36 and -21 at 

stations (G) and (I) in June and August, respectively. 

Moreover, minimum and maximum TLMG anomalies for each gravity station 

have been listed in Table 5.3. It has been noticed that all the maximum values listed in 

Table 5.3 were measured in November 2019 while the minimum values were measured 

in June 2019 except for station (I) whose minimum was measured in August 2019. 



 

 

 

 

 

Figure 5.8: Time-lapse microgravity anomalies over Al Ain city measured with March 2019 

as a reference time. July data were not gathered.  

   1
0
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The groundwater level in Al Ain city shows a trend of the shallower water table 

in the east than in the west of the city as reported by the Environment Agency of Abu 

Dhabi (EAD, 2018). TLMG anomalies are controlled by many factors such as the 

general elevation of the area under investigation and the depth to the water table. 

Shallow water table zones reflect higher TLMG anomalies than deeper water table 

zones. The computed TLMG anomalies followed this scenario where the high TLMG 

anomalies are combined with a shallow groundwater table at the eastern part of the 

city while the low TLMG anomalies are combined with a deep groundwater table at 

the western part of the city. 

 

Table 5.2: Minimum and maximum TLMG anomalies for each gravity survey. 

Measurement Minimum (µGal) Maximum (µGal) 

May 2019 17 96 

June 2019 -36 108 

August 2019 -21 108 

September 2019 168 290 

October 2019 177 257 

November 2019 274 365 

December 2019 187 274 

January 2020 89 213 

February 2020 143 283 

March 2020 148 249 

 

There are several sources for the signals that generated the TLMG anomalies, 

which include surface sources, such as ground elevation change, and subsurface 
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sources, such as underground fluid movement (e.g., groundwater, oil, gas) or changes 

in the subsurface physical properties (e.g., density). There is an ambiguity in 

identifying the source of the TLMG anomalies source, i.e. where the signal is coming 

from. For example, the TLMG anomaly signal from lowering the ground surface 

(ground subsidence) is similar to the anomaly signal from increasing the subsurface 

density, and the TLMG anomaly signal from groundwater level drawdown is similar 

to the anomaly signal from decreasing the subsurface density (Santoso et al., 2011). 

 

Table 5.3: Minimum and maximum TLMG anomalies for each gravity station. 

Station Minimum (µGal) Maximum (µGal) 

A 52 328 

B 27 319 

C 27 325 

D 33 332 

E 39 330 

F 35 329 

G -36 274 

H 30 365 

I -21 317 

J 14 316 

 

 

The TLMG anomalies and LOS displacement velocity over Al Ain city showed 

a land surface subsidence in combination with a high TLMG anomaly at the 

northeastern part of the city (stations E and F). Also, a land surface uplift was noticed 

in combination with a low TLMG anomaly at the southern part of the city (station G). 

However, as above-mentioned these combinations can be more complicated as the 

high TLMG anomaly at the eastern part can be related to the shallow groundwater. 

Statistical correlations between TLMG anomalies and LOS deformations 

values have been generated in order to better understand the contribution of the land 
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surface deformations to the observed gravity signal (Table 5.4). The significant 

negative correlation coefficients were presented in stations (D, E, H, and G), where 

the first three gravity stations were located at the land surface subsidence zones 

(northeast and west) and the last one was located at the land surface uplift at the south. 

This correlation is in good correspondence with the major findings of the SAR 

interferometry analysis where other locations have detected no significant land surface 

movement. Note that due to many factors contributing to the TLMG anomalies we did 

not expect to find high correlation values between TLMG anomalies and LOS 

deformations. 

 

Table 5.4: Correlation coefficient between LOS displacement and TLMG over the 

gravity monitoring sites. 

Station Correlation 

A 0.15 

B 0.25 

C 0.12 

D -0.55 

E -0.43 

F -0.2 

G -0.39 

H -0.44 

I 0.07 

J -0.31 

 

Al-Ain city is characterized by precipitation events during winter, between 

October and January. During the investigated period the precipitation started in 

October 2019 and increased slowly to reach its maximum in January 2020. The TLMG 

response to the precipitation event can be observed in February 2020 when the TLMG 

anomalies increased significantly from those in January 2020 in all gravity stations 
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(Figure 5.9). Therefore, this can be interpreted as increasing in the subsurface density 

and can lead to rising in the groundwater level. This interpretation can be supported 

by the increasing values of LOS displacement velocity at eight stations in February 

2020 which means this increase in the TLMG anomalies is unattached to land surface 

subsidence. 

Land surface deformations of 1 cm produce a change in the gravity field of 3.4 

µGal where for subsidence it is positive and for uplift it is negative. On the other hand, 

decreasing subsurface density in the amount of 1.94 gr/cc produces a change in the 

gravity field of -0.79 µGal (Allis and Hunt, 1986). Therefore, the contribution of the 

land surface deformation is greater than that for the change in the subsurface density. 

The land surface subsidence zone is located close to Al Ain Oasis where a huge amount 

of groundwater is extracted for irrigation purposes via falajs and boreholes. Therefore, 

groundwater overexploitation can be considered as the driving mechanism for land 

surface subsidence, and due to a contribution from both sources, groundwater table 

drawdown and land surface subsidence, with the above-mentioned explanation, the 

TLMG anomalies include a signal of land surface subsidence with an opposite signal 

from subsurface density increase of return irrigation. The signal separation of all these 

contributions is a big challenge for TLMG anomaly interpretation and yet all proposed 

approaches are not reliable or contain a high level of uncertainty. 

Land surface deformations showed land subsidence (negative measurements) 

at the western part of the study area, while the TLMG anomalies showed low values 

at the same zone. This zone is a typical example of the ambiguity presented with 

TLMG anomalies interpretation where the gravity signal was not followed by the land 

surface deformations. The Environment Agency of Abu Dhabi reported there was a 
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water level drawdown by 3 m at the same zone during the investigated period. Hence, 

the contribution of the groundwater level on the TLMG signal was greater than the 

contribution of the land surface deformations at this zone. Same TLMG anomalies 

signals have been observed at the central part of the study area with no significant 

signal for land surface deformations. These observations have been noticed during 

summer, therefore, can be interpreted also as groundwater level drawdown, it is 

noteworthy that there were no available groundwater level measurements at the central 

part of the study area. 
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Figure 5.9: TLMG anomalies, LOS deformations, and precipitation are shown in the 

graph in blue triangles, orange circles, and light blue bars, respectively, for the gravity 

sites. 
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Figure 5.9: TLMG anomalies, LOS deformations, and precipitation are shown in the 

graph in blue triangles, orange circles, and light blue bars, respectively, for the gravity 

sites. (Continuted) 
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Figure 5.9: TLMG anomalies, LOS deformations, and precipitation are shown in the 

graph in blue triangles, orange circles, and light blue bars, respectively, for the gravity 

sites. (Continuted) 
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Figure 5.9: TLMG anomalies, LOS deformations, and precipitation are shown in the 

graph in blue triangles, orange circles, and light blue bars, respectively, for the gravity 

sites. (Continuted) 
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Figure 5.9: TLMG anomalies, LOS deformations, and precipitation are shown in the 

graph in blue triangles, orange circles, and light blue bars, respectively, for the gravity 

sites. (Continuted)
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Chapter 6: Conclusion 

 

Land surface deformations analysis has been exploited over the whole UAE 

using the interferometric processing of the massive available Sentinel-1 SAR dataset 

in the period between March 2017 and March 2021. UAE is characterized 

geomorphologically by flat barren along the coastline, sand dunes over most of the 

country with flat areas in between known as interdunes, and mountains in the east and 

northeast. The exploited InSAR processing for the first time over the whole UAE 

showed a regional land surface subsidence over the Al Ain and Al Dhafra regions, in 

Abu Dhabi Emirate, with smaller land surface subsidence in the Northern Emirates. 

The implemented approach of InSAR parallelism showed a significant reduction in 

time-consuming for the overall procedure from pre-processing of the SLC SAR image 

to obtain the final land surface displacement map. Also, big InSAR data processing 

was implemented by processing 291 Sentinel-1 SAR datasets for the whole UAE 

divided into three different frames.  

The extensive land surface subsidence cases were detected over the Remah and 

Al Wagan areas. These areas are cultivated land farmed for growing fruits and 

vegetable crops using greenhouses. The time-series for the land surface deformations 

were correlated with the water level measurements at the nearby wells. The detected 

subsidence region from the interferometry processing was found in coincidence with 

the spatial distribution of the irrigated farms. This correlation supports the hypothesis 

that groundwater overexploitation is the main driving mechanism for land surface 

subsidence. The detected land surface subsidence cases have been confirmed with the 

ground truth data of groundwater level data and field observations for constructions 

failures and deformations. 
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A gravity geophysical survey has been conducted over Al Ain city to study the 

seasonal subsurface change between March 2019 and March 2020.  InSAR processing 

has been exploited over the same area within the same time frame to integrate both 

satellite and geophysical measurements. This integration showed an agreement 

between the two measurements over some locations. Geophysical measurements 

contain signals related to surface and subsurface changes whereas InSAR 

measurements can be utilized to separate these signals with the help of water level 

data. 

With the shortage of some data as geotechnical and pumping test data, 

estimating seasonal deformations and determining which layers control the subsidence 

was unfeasible. Nevertheless, this study provides a valuable tool for integrating 

groundwater level measurements with SAR interferometry measurement to monitor 

the environmental impacts of groundwater overexploitation and implement an 

essential tool to control groundwater abstraction. 

Future research will focus on the following points 

• Gathering the missing data either from local agencies or by field data 

collection. These data will help to build a geomechanical model that can 

generate different scenarios for groundwater exploitation and the impact on 

surface and subsurface structure.  

• Investigating the aquifer compaction over the agricultural areas will complete 

the model and guide the practices for groundwater abstraction to avoid 

depleting the aquifer. 
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• Investigate land surface subsidence within cities using other SAR data with 

smaller wavelengths such as X-band to study the smaller displacement over 

constructions. 

•  Deep investigation over the detected land surface subsidence over the Al 

Dhafra region where there is no available in-situ information for these 

subsidence zones. 
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This dissertation shows a detailed study about land surface movement over the whole 

territory of the United Arab Emirates (UAE). This dissertation utilizes the radar remote 

sensing interferometry techniques to map land surface deformations over the UAE. The 

utilization of this technique showed that the main land surface deformation is the land 

subsidence and it has been located in five distinctive zones. These zones are considered 

extensive land subsidence due to their higher subsidence rate and extended for several 

kilometers. This study concluded that the land surface subsidence was occurred due to 

anthropogenic activities. 
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