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Abstract

The growing demand for higher data processing speed and capacity motivates the replace-
ment of the current electronic data processing by optical data processing in analogy with
the successful replacement of electronic data communication by optical data communi-
cation. In a quest to achieve a comprehensive optical data processing we aim at using
solitons in waveguide arrays to perform all-optical data processing operations. Solitons
are special nonlinear waves appreciated for their ability to conserve their shape and ve-
locity before and after scattering. They are observed naturally in diverse fields of science,
namely, nonlinear physics, mathematics, hydrodynamics, biophysics and quantum field
theory, etc with potential applications in telecommunication systems, routers, switches,
multiplexors, logic gates and computers.

The dissertation deals with solitons and we target to design waveguide arrays that allow
for useful data processing such as switching, routing, steering, logic gating, unidirectional
flow, and ultimately computing. The dissertation is started by characterizing the discrete
solitons dynamical behaviour, including their interaction and scattering off potentials, and
then exploiting these properties to design the optical data processing devices. Theoretical
method such as variational method, and numerical computation has been used to investi-
gate the performance of the designed devices. Chapter 1 provides a brief overview about
the topic and shows significance of the study. Chapter 2, is devoted to present a protocol
for adding binary numbers using discrete solitons in waveguide arrays where it is shown
that the nonlinear interaction between discrete solitons in waveguide arrays can be ex-
ploited to design half and full adders. Chapter 3 deals with a protocol to achieve an essen-
tial feature of an optical transistor, namely the amplification of input signal with the use
of discrete solitons in waveguide arrays. Chapter 4, studies a bound state of two discrete
solitons in a two-dimensional waveguide array to investigate the effect of binding on the
mobility of the two solitons. Chapter 5 deals with Skyrmion-like topological excitations
for a two-dimensional spin-1/2 system mapped to a Manakov system. Chapter 6 is de-
voted to investigate the dynamics of two component bright-bright (BB) solitons through
reflectionless double potential barrier and well in the framework of a Manakov system
governed by the coupled nonlinear Schrödinger equations to achieve unidirectional flow.
Chapter 7 provides a protocol for the quantum controlled-NOT gate which is based on two
qubits operation by investigating the soliton scattering through a reflectionless potential
well in an optical system. This protocol demonstrates the prospect of soliton scattering
by a potential well for quantum information processing. Chapter 8 concludes the whole
learned lessons and future directions of research.
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We believe that this dissertation is an important contribution to the effort made towards
the realization of optical devices in achieving a soliton based all-optical data processing.

Keywords: Solitons, Discrete solitons, Optical solitons, Waveguide arrays, All-optical

data processing, All-optical devices.
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Chapter 1: Introduction

1.1 Overview

Solitons are localized solitary waves which have very special properties such as a) they

propagate at constant speed without change in their shape, b) they are extremely robust

to perturbations, and in particular to collisions with small amplitude linear waves and c)

they are even stable with respect to collisions with other solitons. When two solitons col-

lide, they pass through each other and emerge with their original speed and shape after

the interaction. It is to be noted that the interaction is not a simple superposition of the

two waves. Moreover, after the collision, the trajectories of the two waves will be shifted

with respect to the trajectories without the collision. In other words, the outcome of the

collision of two solitons is only a simple phase shift of individual waves [3, 2, 1].

In addition to the soliton in telecommunications, they also find application in the con-

struction of optical splitters, routers and switches [4, 5, 6, 7]. In case of optical switches,

the propagation of one optical pulse affects the other, the ‘signal’ pulse by the ‘control’

pulse. Here it behaves like the control pulse opening a gate for a signal pulse, so as to

allow it to pass through. Photonic logic gates operate on this principle. Hence, logic gates

can also be realized using solitons. In medicine, they are recently applied in neuroscience

to describe the signal transfer between the cell membranes [8]. Solitary type solutions

are also used to explore the minute suspended particles in the dusty plasmas [9]. Also,

topological type of solitons also found to occur in different parts of super gravity as well

as string theory to investigate the defects in cosmic strings and domain walls [10]. They

also found to occur in fluid dynamics and exploited to understand the sophisticated and

complicated rogue wave dynamics [11]. They also paved the way for the rapid devel-

opment in the field of Bose-Einstein condensates for the creation of 2D and 3D solitary

waves for higher order nonlinear system [12].
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Other very important applications of optical solitons are generating ultrashort pulses

through pulse compression technique. Ultrashort pulses are needed in many branches of

science, which have been using nanosecond and picosecond pulses. Optical solitons help

in the generation of ultrashort pulses through pulse compression technique in fiber [13].

An optical sensor based on Kerr induced phase shift is also developed for measurement

of pressure, speed, temperature and intensity [14].

1.2 Aim and Objectives

We aim at using solitons in waveguide arrays to perform all-optical data processing op-

erations. To the applied level, we target to design waveguide arrays that allow for useful

data processing such as switching, routing, steering, logic gating, unidirectional flow, and

ultimately computing. The dissertation is started by characterizing the discrete solitons

dynamical behaviour, including their interaction and scattering off potentials, and then ex-

ploiting these properties to design the optical data processing devices. Theoretical method

such as variational method, and numerical computation has been used to investigate the

performance of the designed devices.

The major challenge is to design devices that perform logic gating, diode behaviour, tran-

sistor, and ultimately lead to data processing including filtering, routing, and computation.

The devices have to be robust against the different kinds of perturbations in real systems

such as all kinds of noise, imperfections in the array, energy losses, etc.

Specifically, we use the idea of modulating the coupling, dispersion, and nonlinearity

of the waveguides to manipulate the solitons dynamics. This dissertation is distinguished

by: i) the focus on soliton-soliton interaction and soliton-potential interaction, ii) the uti-

lization of the solitons dynamics in designing clear and realistic optical components for

all-optical technologies. In addition, the unique feature of solitons dispersionless prop-

agation is favorable for designing optical instruments that control the data in a network.

This is the main reason that we consider solitons in this dissertation.
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There are many fundamental issues involved including the quantum effects of the solitons’

dynamics. Unlike classical transport, the phase of the soliton plays here an important role

in, for instance, creating an effective repulsive force between colliding solitons, the low-

velocity quantum reflection from an attractive potential well, the quantum reflection from

surfaces, the nonlinear soliton tunneling and soliton ejection, and the resonant tunnel-

ing in potential barriers and wells. All of these phenomena are of valuable importance for

the advancement of our understanding of the quantum nature of such macroscopic objects.

There are important technological applications that exploit the novel nonclassical features

of solitons. Due to their dispersionless nature, optical solitons have proven to be a reli-

able, robust, and efficient data communication and memory storage systems. In addition,

solitons can be used as ultrafast clean optical switches, logic gates, and optical routers

which are essential for optical communication networks and quantum computation. In

comparison with electronic components, all-optical operations are much faster and more

efficient. Although soliton-soliton and soliton-impurity interaction is a well-studied sub-

ject, much less is known about designing all optical components for data processing. In

summary, the topics addressed by this dissertation are of both fundamental depth and

important technological impact.

1.3 Literature Review

Solitons appear in diverse fields of science and engineering, most importantly in non-

linear physics, data communication systems, biophysics, hydrodynamics, quantum field

theory, etc., owing to their invariant shape and velocity, before and after collisions [15].

In optical systems, they manifest themselves as ‘optical solitons’, realized through a deli-

cate balance between nonlinearity and dispersion/diffraction which play an indispensable

role in long haul communications systems, data processing devices, switching devices,

routers and computers [16, 17, 18, 19, 20]. In order to realize these functionalities, di-

verse configurations, namely, photonic circuitry [21], silicon-on-silicon waveguides [22],
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X-junctions [23], fused-fiber couplers [24], liquid crystals [25, 26], nonlinear waveguide

arrays [27, 28], Mach-Zehnder interferometer [29], etc., [30, 31, 32, 33, 34, 35] have been

proposed.

The increasing demand on higher speed and capacity of data processing motivates re-

placing current electronic data processing by optical data processing in an analogy with

the successful replacement of electronic data communication by optical data communi-

cation [16, 17, 18, 19]. In a quest to achieve a comprehensive optical data processing,

many of the main ingredients have been already proposed in the literature considering

various setups [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. Prominent among these is

discrete solitons in waveguide arrays [21, 22]. Optical solitons have been suggested as

data carriers due to their unique feature of preserving their integrity over long distances of

propagation and their particle-like inelastic scattering with each other and with external

potentials [36, 37, 38, 39, 40]. Discrete solitons are also characterised by this appealing

feature. In addition, the propagation of discrete solitons in waveguide arrays can be most

feasibly controlled through the dispersion or nonlinearity management [41, 42]. Disper-

sion management is achieved by varying the separations between the waveguides resulting

in an effective potential [43]. The profile of separations’ variations can be set such that

a particular type of reflectionless potential is realized [41]. In such a case, the soliton

will scatter off the potential elastically with minimized radiation losses. This results in

clean particle-like soliton scattering. The nonlinear interaction together with the disper-

sion management allow for a host of setups where various data processing components

can be devised. For instance, unidirectional flow has been shown to exist in waveguide

arrays with dispersion management [43] and nonlinearity management [44] in a similar

manner as for the continuum cases in optical fibers with double potential wells [45], PT-

symmetric potentials [46], and nonlinearity management [47].

Discrete solitons were shown to exist in arrays of coupled waveguides [48, 49] exhibit-

ing unique behaviour in contrast with their continuum counterparts. This was revealed
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through a number of phenomena [50, 51, 52, 50, 53, 54, 55, 56, 57, 58]. Prominent among

these is the dissipative flow due to the presence of the Peierls-Nabarro (PN) effective po-

tential [54, 55, 56, 57]. Due to its crucial effect on the solitons’ stability and dynamics,

the height and profile of the PN potential were extensively investigated by many authors

[55]. Interest in discrete solitons was then boosted by their application in the all-optical

operations [59]. The experimental observation of discrete solitons in two-dimensional

(2D) optically-induced nonlinear photonic lattices [60], stimulated further interest due to

the additional advantages brought by the dimensionality [61, 62, 63]. Three fundamental

types of 2D stationary solitons were found, namely the site-centred, bond-centred, and

hybrid solitons [64]. Recently, we have shown that with anisotropic waveguide arrays the

hybrid soliton splits into two types named as hybrid-X and hybrid-Y solitons [65]. We

have also shown that anisotropy enhances greatly on the mobility of discrete soltions. In

general, two dimensional discrete solitons exhibit poor or no mobility due to their strong

pinning by the PN potential. Several ideas have been proposed to enhance the mobil-

ity for both one-dimensional [66] and two-dimensional [67] waveguide arrays including

also modulated nonlinearity [68], defects [69], PT symmetric couplers [70], etc. The

binding mechanism between solitons in optical fibres is a subject of interest from both

the fundamental and applied point of views due to the increase of data rates in optical

telecommunication [71]. Similarly, it is interesting to investigate the possibility of form-

ing a bound state of two solitons in 2D waveguide arrays.

The vector nonlinear Schrödinger equation (NLSE) describes spinor systems and the in-

teraction between its field components. The model has also various applications in differ-

ent areas of physics, for instance, the propagation of electromagnetic waves with arbitrary

polarization in a self-focusing media [72], and the evolution of waves in plasma [73]. It

is also shown [74] that the vector NLSE governs the average dynamics of dispersion-

managed solitons which are considered as a key element for optical communication. The

soliton robustness to polarisation-mode dispersion has a strong dependence on both chro-

matic dispersion and soliton energy [75]. It is known that the two-component vector
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NLSE or the Manakov system is completely integrable and is solvable by the inverse

scattering transform (IST) method. Recently, Manakov spatial solitons were observed

in AlGaAs planar waveguides [76]. More recently, the Si-based waveguides using sim-

ilar phenomena are served as optical biosensors [77]. The similarity reductions of the

2D coupled NLSE have been studied by Lie’s method. It is shown that the 2D cou-

pled NLSE is reduced to the 1D-NLSE by the similarity transformations [78]. The the-

oretical investigation for the evolution of and interaction between collective excitations

in the two-dimensional NLSE was numerically studied by using shooting method and

split-step Fourier method as well as the modulation instability method [79]. The an-

alytical bright one- and two-soliton solutions of the (2+1)-dimensional coupled NLSE

under certain constraints were presented in [80] by employing the Hirota method. Hirota

method was also applied on the mixed-type solitons for a (2+1)-dimensional N-coupled

nonlinear Schrödinger system in nonlinear optical-fiber communication [81]. The exact

soliton solutions for the (2+1)-dimensional coupled higher-order NLSE in birefringent

optical-fiber communication is given in [82]. The dynamical evolution of two-component

Bose-Einstein condensates trapped in cylindrical well is numerically investigated by solv-

ing the coupled Gross-Pitaevskii equations and different numbers of unstable ring dark

(gray) solitons were generated [83]. The study of dark-bright (DB) ring solitons in

two-component Bose-Einstein condensates is conducted in [84]. The Newton relaxation

method was used in [85] to obtain stationary discrete vector solitons in two-dimensional

nonlinear waveguide arrays. These results may also be applicable to two-component

Bose-Einstein condensates trapped in a two-dimensional optical lattice. The two dimen-

sional discrete solitons in optically induced nonlinear photonic lattices were observed in

[86]. The homotopy analysis method was also used to solve cubic and coupled nonlinear

Schrödinger equations [87]. The interaction of optical beams with arbitrary polarizations

in self-focusing media is studied in [88] by using the direct scattering problem. Their

physical schemes deal with spatial solitons, and the dynamics is formally described by

the initial value problem for the Manakov system. The ferromagnetic Bose-Einstein con-

densate allows for pointlike topological excitations, i.e., skyrmions [89]. The stability of
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skyrmions in a fictitious spin-1/2 condensate is investigated in [90]. The monopoles in an

antiferromagnetic Bose-Einstein condensate and their static and dynamic properties were

shown in [91]. Topological protection of photonic mid-gap defect modes is demonstrated

in [92]. The description of topological phase transitions in photonic waveguide arrays is

discussed in [93].

The evolution and scattering of solitons through various external scattering potentials,

namely, walls or barriers [94, 95, 96, 97, 98, 99, 100], steps [101, 102, 103, 104, 105,

106, 107], wells [108, 109, 110], and surfaces [111, 112] necessitates the nonlinear in-

teraction and wave nature of the solitons. Optimal channelization of such potentials al-

low the possibility to procure soliton based switches, signal processing devices, routers,

and diodes [21, 27, 113, 45]. Diverse studies in nonlinear materials also reported en-

hancing the nonlinear properties for applications in photonic devices, optoelectronics

and optical amplifier [114, 115, 116]. Nonlinear control and soliton management, em-

ploying complex Ginzburg-Landau equation has been investigated for diverse nonlinear

systems to explore their role on the transmission speed, pulse width and period of the

solitons[117, 118, 119, 120, 121]. Analytical form for an external potential has been used

to investigate the possibility of stable solitonic propagation regimes as well as an unsta-

ble regime, where the initial soliton profile decays to breathing decaying solitons [122].

Two-dimensional self-trapped optical waves in the presence of Laguerre-Gaussian and

harmonic potentials were also investigated considering the closed-form expressions for

the soliton solutions and the conservation laws for the norm and the Hamiltonian. The

nonlinear modes obtained are found to be stable below a certain threshold norm value

[123]. Further, the parameter which allows controllability of the solitonic properties

in PT-symmetric Mathieu lattices, namely, shape, dynamics and stability has also been

pointed out for efficient light control [124]. Recently, the unidirectional flow of bright

solitons through a specific combination of asymmetric potential wells was demonstrated

where transmission of solitons were defined by the critical velocity, below which reflec-

tion dominates [45]. Moreover, such special flow of solitons were also found to occur in
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the solitons scattering through the parity-time symmetric potentials. The physics behind

such phenomenon was found to be related to an energy exchange interaction that occurred

between the soliton internal modes and its center of mass dynamics during unidirectional

scattering [46]. Furthermore, Reference [43] predicted the realization of such unidirec-

tional flow through photonic waveguide arrays with two asymmetric potential wells by

appropriate modulation of the coupling coefficients. In this line of research, [125] re-

alized the discrete version of this problem and accomplished the discrete solitons based

operation of all-optical logic gates, switches, filters and optical diodes through suitable

adjustment of a control soliton power in the waveguide arrays with an effective potential.

A detailed study describing the interplay between the bound states of the potential well

and incident soliton revealed the insignificance of trapping on the unidirectional flow of

the solitons. Moreover, it hints to the origin of the unidirectional flow as being related to

the excitation of breathing modes in the scattering region [47].

Recently, the atomic interactions in a two-component Bose-Einstein condensate through

the propagation of vector two solitons like matter waves passing across a Gaussian barrier

were investigated [126]. This study reported the importance of the interspecies interac-

tions which allows the wave packet to propagate like a breather. Also, elaborated the role

of the interspecies interaction, relative velocity, barrier and relative phase on the collision

dynamics. Furthermore, the splitting of composite solitons scattering through a narrow

potential barrier were proposed for designing a two-component soliton interferometer in

presence of self-attraction and cross-attraction between the components. This analysis

identified the existence of substantial parameter range over which one component under-

goes full transmission through the barrier, while the other one undergoes full reflection

[127]. Additionally, the diode functionality has also been realized through diverse nonlin-

ear discrete lattices, such as a layered nonlinear, non-mirror-symmetric model [128], two

parallel-coupled discrete nonlinear Schrödinger inhomogeneous chains [129], and nonlin-

ear lattice with asymmetric defects [130]. Further numerical and analytical investigations

reported the significance of the scattering of solitons as well as plane waves through the
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localized nonlinear potentials to account for the best operational regimes of the interfer-

ometer [131]. The one-dimensional model for a cavity equipped with saturated gain and

Kerr nonlinearity has also been investigated to sustain the state of shuttle motion of the

solitons [132].

Lastly, the promise of tremendous computational power, coupled with the development of

robust error-correcting schemes [133], has fuelled extensive efforts [134] to build a quan-

tum computer. The requirements for realizing such a device are confounding: scalable

quantum bits (two-level quantum systems, or qubits) that can be well isolated from the

environment, but also initialized, measured and made to undergo controllable interactions

to implement a universal set of quantum logic gates [135]. The usual set consists of single

qubit rotations and a controlled-NOT (CNOT) gate, which flips the state of a target qubit

conditional on the control qubit being in the state 1.

In this dissertation, we also achieve an unambiguous numerical demonstration and com-

prehensive implementation of quantum CNOT operation in an optical system where we

consider soliton scattering by a reflectionless potential well. In particular, the interac-

tions of solitons through different external scattering potentials, namely, potential barriers

[94, 95, 96, 97, 98, 99, 100], step potentials [101, 102, 103, 104, 105, 106, 107], potential

wells [108, 109, 110], and surfaces [111, 112] demand the interplay of nonlinearity and

waveform of the solitons. Through suitable engagement of these potentials with selective

parameters allowed the implementation of the logic gates, switches, signal processing

devices and diodes [21, 27, 113, 45]. Through the optical soliton switches, a function

for controlled-NOT (CNOT) gate has been proposed through logic gates conversion us-

ing reversible logic elements [136]. Through the optical soliton switches, a function for

controlled-NOT (CNOT) gate has been proposed through logic gates conversion using

reversible logic elements [136]. The difficulty in achievement of optical quantum com-

puting with two-photon interactions via a two qubit gate through quantum phase gate, has

been also addressed (although considerable progress has been made in the cavity quan-
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tum electrodynamics systems, the field transformation is considered only through a simple

model [137]). The collisions of the Manakov solitons in a nonlinear system allowed the

description of a polarization state through linear fractional transformations, where a se-

quence of solitons operates on other sequences. Such collisions of solitons allowed the

realization of diverse logic gates including CNOT gates. Such a study is found to be

fruitful for implementing quantum computation in the bulk nonlinear medium with self-

restoring as well as reusable qualities, without interconnecting components [138].

Further considerable efforts have been made to achieve collision based computing in di-

verse substrates involving, physical, chemical and biological systems, where there exists

localization [139]. Furthermore, the possibility of quantum logic through the numerical

investigation of the vector solitons collision is demonstrated, where the qubit is defined

by the polarization of a vector soliton and its state change is determined through colliding

with a register soliton [140]. Conversely, the simulated quantum logic is not completely

error-free, owing to the variation in the system parameters during propagation. A further

study, offered an algorithm for minimizing the information processing error in diverse

situations and two soliton transmission lines [141, 142].

1.4 Research Methodology

1.4.1 Analytical Tools

In order to gain physical insight of optical pulse dynamics through the guiding medium,

many of the researchers mostly relied on numerical methods and analytical techniques

like the Lagrangian variational method (LVM) [1], Hamiltonian method [143], projection

operator method (POM) [144, 145], non-Lagrangian collective variable (CV) approach

[146], CV technique [147] and the moment method [1] to study the pulse dynamics in

fiber systems of various pulse parameters with respect to the fiber parameters. The LVM

was first introduced for solitons in plasma physics and it was applied in optical fibers to

estimate interaction length and to find the solution of optical beam propagation described
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by the NLS equation [148]. In the variational methods, a variational functional is for-

mulated; the minimization based on Ritz-optimization procedure gives rise to a set of

Euler-Lagrange equations, which are then solved numerically. The CV treatment reduces

the dynamics of the pulse field, which involves an infinite number of degrees of freedom,

to the dynamics of a simple mechanical system having only a few degrees of freedom,

each called a collective variable, which could be then associated with a relevant physical

parameter of the pulse. The achievement of this approach results in the possibility of

transforming the partial differential equation for the original field into a set of ordinary

differential equations (ODEs) for the collective variables. Among the aforementioned

techniques, we have chosen the LVM to investigate the pulse propagation in fiber. Hence,

a short description of this method will be provided.

1.4.1.1 Lagrangian Variational Method

The variational method was first applied to the NLSE by Anderson and that for coupled

NLSE by Pare to derive the first order dynamical equations [149, 150]. From suitable

input trial wave function and by employing a Ritz optimization procedure, approximate

dynamical solutions are obtained for the evolution of pulse parameters during propaga-

tion. The results obtained by using Lagrangian formulation was in good agreement with

that achieved from inverse scattering techniques and numerical methods. Hence, LVM

has been used obtaining dynamical equations to explore the physical insight of the sys-

tem. The dynamical equations for the pulse parameters of an optical pulse propagating

through fiber governed by NLSE can be obtained by employing LVM as follows. The

Lagrangian for the NLSE is provided by

L =
1
2

✓
U

∂U⇤

∂ z
�U⇤∂U

∂ z

◆
+

ib2

2

����
∂U
∂T

����
2
� ig

2
|U |4 (1.1)

considering the suitable input wave function U(z,T ). For our illustration, we consider the

Gaussian pulse of the following form;

U(z,T ) = A(z)exp(�rT 2 + iq(z)) (1.2)
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where A(z) and q (z) represents the amplitude and phase of the input pulse with constant

r . The reduced Lagrangian for the problem is given by

< L >=
Z •

�•
LdT (1.3)

Substituting (1.2) in (1.1) and applying (1.3), we reach at reduced Lagrangian

< L >=

✓
i
p

p A(z)2
✓
�2g A(z)2 +

p
2
�
e2 iq(z)r b2 �2q(z)0

�◆◆�
(8
p
(r))(1.4)

By substituting above reduced Lagrangian in the Euler-Lagrange equations and varying

with respect to variational parameters, we obtain two differential equations for A(z) and

q (z) as follows

A0(z) =�1
2

i e2iq(z)r A(z)b2 (1.5)

q 0(z) =
�4g A(z)2 +

p
2e2iq(z)r b2

2
p

2
(1.6)

From the obtained dynamical equations, the evolution of pulse parameters over a desired

length can be achieved by employing Runge-Kutta method. Hence, the variational method

provides a very convenient way for finding an explicit approximate solutions. And they

provide simple expression for any physical quantities at desired problem where exact

analytical solutions are not obtainable.

1.4.2 Numerical Techniques

1.4.2.1 Finite Element Method

The finite element method (FEM) is widely accepted as a very powerful computational

technique for electromagnetic problems, in particular, for modeling and simulation of

wave propagation in guided wave optics. It is well suited numerical approach to design

photonic crystal fiber (PCF) for the calculation of propagation constants in particular,

effective refractive index and leakage loss. Using FEM, one can obtain comparable and



13

accurate propagation constants of PCF which has been verified by experiments. The

major advantage of the FEM is its ability to work with complex design of PCF in solving

Maxwell’s equation for obtaining propagation constants. This direct approach of FEM

can treat PCFs with arbitrarily shaped and arbitrarily arranged air holes. In particular,

the FEM can select the order and the number of triangular elements, depending on the

required computational accuracy [151, 152].

The time dependent Maxwell’s equations are

— · Ē =
r
e

; —⇥ Ē =�µ ∂ H̄
∂ t

; (1.7)

— · H̄ = 0; —⇥ H̄ = J̄+ e ∂ Ē
∂ t

, (1.8)

where Ē and H̄ are the electric and magnetic field vectors, respectively, e and µ are the

permittivity and permeability of the medium, r is the electric charge density, and J̄ is the

electric current density. For the electric field, since r = 0 and J̄ = s Ē, we can derive the

equation for Ē by taking the curl:

—2Ē �µs ∂ Ē
∂ t

�µe ∂ 2Ē
∂ t2 = 0, (1.9)

where s is the electrical conductivity. From the above equation, the basic equation for the

FEM analysis can be reduced by setting Ē(x,y,z, t) = Ē0(x,y,z)eiwt . It follows that [152]

1
µ

—2Ē +w2ecĒ = 0, (1.10)

where ec = e � i s
w is complex permittivity and w = 2pc

l . c is the speed of the light and

l is the wavelength. When applying full-vector FEM, the PCF cross section domain

is divided into sub-domain with triangular element where any refractive index profiles

can be properly represented. Dividing the PCF cross section into a number of triangular

elements, from (1.10) we can obtain the following eigenvalue equation:

([A]�n2
e f f [B]){h}= 0 (1.11)
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where [A] and [B] are the finite element matrices, {h} is the discretized electric field

vector consisting of the edge and nodal variables. The matrices [A] and [B] are sparse

allowing an efficient resolution of the equation by means of high performance algebraic

solvers for both real and complex problems. The boundaries of the triangles can be con-

nected with the help of the transition conditions just mentioned. This scheme leads to a

matrix eigenvalue system, which can be solved numerically.

1.4.2.2 Split Step Fourier Technique

As the NLSE does not have an analytical solution for the case of arbitrarily shaped pulses

introduced through the fiber. However, numerical tools have been developed over the

years to solve it. There are two major numerical schemes that are generally applied to

the NLSE, the finite difference methods, namely the Ablowitz and Ladik [153, 154] and

Crank-Nicolson [155] schemes and the function approximation method such as split step

fourier method (SSFM). Out of these techniques, the SSFM has been found to be the

more robust. Ever since the study by Hasegawa and Tappert [156] in 1973, the SSFM

is the most commonly used, and also chosen for our present study. The main attraction

of SSFM for solving the NLSE are its speed and easy implementation compared to other

techniques, particularly time domain finite difference methods [1].

In SSFM, the first step involves the separation of the dispersion and nonlinearity terms in

the NLSE. The operators D̂ represents dispersion and loss in the linear medium and the

nonlinear operator N̂ accounts for the fiber nonlinearities and both are assumed to be act

independently from each other over a short fiber distances Dz.

D̂ =�a
2

U �
4

Â
n=2

bn
in�1

n!
∂ nU
∂T n (1.12)

and

N̂ = ig
✓
|U |2U +

i
w0

∂ (|U |2U)
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�TRU

∂ |U |2

∂T

◆
(1.13)
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where U(z,T ) is the complex field envelope at time T and step z. The NLSE can be

further written in the operator form as

∂U
∂ z

=
�
D̂+ N̂

�
U (1.14)

The algorithm involves the splitting of fiber in terms of Dz steps of numerical integration,

in which only the terms that account for nonlinearity N̂ = 0 in NLSE are considered at the

first step and terms of dispersion alone D̂ = 0 in NLSE are considered in the second step.

And the corresponding equations obtained are solved by transformation using Fourier

transform at the subsequent stage.

Mathematically expressed by

U(z+h,T )⇡ exp
�
hD̂
�

exp
�
hN̂
�

U(z,T ) (1.15)

The exponential operator (exp(hD̂)) can be estimated in the Fourier domain by using

exp
�
hD̂
�

B(z,T ) = F�1
T exp

�
hD̂(�iw)

�
FT B(z,T ) (1.16)

where FT denotes the Fourier transform, D̂(�iw) is obtained from (1.12) by replacing

the operator ∂/∂T by �iw , and w is the frequency in the Fourier domain. As D̂(iw) is

just a magnitude in the Fourier space, the evaluation of (1.16) is much simple. The linear

operator D̂ is most effectively solved in the spectral domain, and for nonlinear operator

N̂ can be favorably solved in the temporal domain. Assuming a discrete signal in the

time and frequency domain, the Fast Fourier Transform (FFT) can be used for converting

between both domains. The advantage of the FFT algorithm is it makes the numerical

evaluation relatively fast. Hence, for this reason SSFM is faster by up to two orders of

magnitude compared with most finite difference schemes. The accuracy of the SSFM

can be improved by adopting a different procedure for optical pulse propagation over one

segment from z to the other z+h. In this procedure (1.15) can be replaced by

U(z+h,T )⇡ exp
✓

h
2

D̂
◆

exp
✓Z z+h

z
N̂(z0)dz0

◆
exp
✓

h
2

D̂
◆

U(z,T ) (1.17)



16

The effectiveness of the SSFM depends on the time (or frequency) domain resolution as

well as on the distribution of step sizes considered along the fiber. If Dz, the split step

size, becomes too large, the condition for separable calculation of D̂ and N̂ breaks, and

the algorithm ends with wrong results. Hence, a careful determination of the optimal split

step size is considered to be much important in case of minimal computational effort for

a particular accuracy. Typically, step size is adaptively adjusted towards very small value.

The Dz should be a minimum fraction, thereby involves > 1000 steps/(shortest linear or

nonlinear length) along the length of the fiber. As the speed of the FFT is proportional

to Nt log2 Nt , where Nt is the number of signal samples in the time or frequency do-

main, careful determination of the simulation bandwidth and the time window is vital for

minimizing computational effort with given specific accuracy constraints. For temporal

and spectral computation windows spanning Tspan and Fspan, respectively, the sampling

theorem imposes the condition TspanFspan=Np, where NP is the number of discretization

points.

1.5 Structure of the Dissertation

This dissertation investigates the study of the all optical data processing through solitons

in waveguides arrays by employing analytical and numerical methods. The summary of

the chapters are provided below.

Chapter 2 presents a design to add binary numbers using discrete solitons in waveguide

arrays. We show that the nonlinear interaction between discrete solitons in waveguide

arrays can be exploited to design half and full adders. By modulating the separation be-

tween waveguides and introducing control solitons, we achieve the performance of an

XOR gate. We construct the half and full adders using the XOR gate together with the

previously- designed OR and AND gates. To facilitate the experimental realization, we

calculate the profile of separations between the waveguides that will lead to the perfor-

mance of the XOR gate.



17

Chapter 3 presents a protocol to achieve an essential feature of an optical transistor,

namely the amplification of input signal with the use of discrete solitons in waveguide

arrays. We consider the scattering of a discrete soliton by a reflectionless potential in the

presence of a control soliton. We show that at the sharp transition region between full

reflectance and full transmittance, the intensity of the reflected or transmitted soliton is

highly sensitive to the intensity of the control soliton. This suggests a setup of signal am-

plifier. For realistic purposes, we modulate the parameters of the reflectionless potential

well to achieve a performance of amplifier with a controllable amplification. To facilitate

the experimental realization, we calculate the amplification factor in terms of the parame-

ters of the potential well and the input power of the control soliton. The suggested signal

amplifier device will be an important component in the all-optical data processing.

In Chapter 4, we consider a bound state of two discrete solitons in a two-dimensional

waveguide array. Using numerical and variational calculations we investigate the effect

of binding on the mobility of the two solitons, which we found to be marginal. Consider-

ing anisotropic waveguides, where coupling in one direction is stronger than in the other,

we show that mobility is enhanced considerably along the weaker-coupling direction. We

show also that a stable bound state of two solitons exists in such a setup where each one of

the two solitons is located at a different waveguide. The stability of the resulting soliton

molecule is provided by the Peierls-Nabarro potential and the mobility of the individual

solitons is facilitated by the anisotropy. Considering a combination of two out-of-phase

solitons we find that they form a metastable state of a single soliton that suddenly splits

into two solitons propagating away from each other.

In Chapter 5, we find Skyrmion-like topological excitations for a two-dimensional spin-

1/2 system. Expressing the spinor wavefunction in terms of a rotation operator maps the

spin-1/2 system to a Manakov system. We employ both analytical and numerical methods

to solve the resulting Manakov system. Using a generalized similarity transformation, we

reduce the two-dimensional Manakov system to the integrable one-dimensional Manakov
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system. Solutions obtained in this manner diverge at the origin. We employ a power series

method to obtain an infinite family of localized and nondiverging solutions characterized

by a finite number of nodes. A numerical method is then used to obtain a family of local-

ized oscillatory solutions with an infinite number of nodes corresponding to a skyrmion

composed of concentric rings with intensities alternating between the two components

of the spinor. We investigate the stability of the skyrmion solutions found here by cal-

culating their energy functional in terms of their effective size. It turns out that indeed

the skyrmion is most stable when the phase difference between the concentric rings is p ,

i.e., alternating between spin up and spin down. Our results are also applicable to doubly

polarized optical pulses.

In Chapter 6, we investigate the dynamics of two component bright-bright (BB) soli-

tons through reflectionless double barrier and double well potentials in the framework of

a Manakov system governed by the coupled nonlinear Schrödinger equations. The objec-

tive is to achieve unidirectional flow and unidirectional segregation/splitting, which may

be used in the design of optical data processing devices. We observe how the propaga-

tion of composite BB soliton is affected by the presence of interaction coupling between

the two components passing through the asymmetric potentials. We consider Gaussian

and Rosen-Morse double potential barriers in order to achieve the unidirectional flow.

Moreover, we observe a novel phenomenon which we name "Polarity Reversal" in the

unidirectional flow. In this situation, the polarity of the diode is reversed. To understand

the physics underlying these phenomena, we perform a variational calculation where we

also achieve unidirectional segregation/splitting using an asymmetric double square po-

tential well. Our comparative study between analytical and numerical analysis lead to an

excellent agreement between the two methods.

Chapter 7 presents a protocol for the quantum controlled-NOT gate which is based on

two qubits operation by investigating the soliton scattering through a reflectionless poten-

tial well in an optical system. We consider the set up of two input solitons with different
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intensities scattered by a reflectionless potential well with a control soliton placed at the

centre of the potential. The two input solitons correspond to the target qubit while pres-

ence or absence of control soliton corresponds to the control qubit. We achieve the desired

performance of the quantum logic gate by exploiting the intensity difference between the

two input solitons and we find this to be possible within a finite width of a velocity of inci-

dence for the two solitons. The calculation of transport coefficients ensures the feasibility

of building a quantum controlled-NOT gate. This protocol demonstrates the prospect

of soliton scattering by a potential well for quantum information processing. Chapter 8

concludes the whole learned lessons and recommendations for this dissertation.
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Chapter 2: Logic Gates and Adders

In this chapter, we present a design and protocol to add binary numbers using discrete

solitons in waveguide arrays. We show that the nonlinear interaction between discrete

solitons in waveguide arrays can be exploited to design half and full adders. By modulat-

ing the separation between waveguides and introducing control solitons, we achieve the

performance of an XOR gate. We construct the half and full adders using the XOR gate

together with the previously- designed OR and AND gates. To facilitate the experimental

realization, we calculate the profile of separations between the waveguides that will lead

to the performance of the XOR gate.

2.1 Introduction

Logic gates have been proposed using the same dispersion management method men-

tioned in last chapter [72]. Control solitons were introduced to propagate through the

potential wells and were shown to be an effective tool to modulate the depth of the po-

tential well. The output was then controlled by the intensity of the control solitons and

the AND, OR, NAND, and NOR logic gates were all achieved with a single devise but

different protocols. Here, we follow the same procedure building on this previous work

and achieve the XOR gate which is instrumental in realising half and full adders of bi-

nary number. The XOR gate is designed out of a modification on the OR gate where we

introduce a third potential well and control soliton that further disperses the outputs of

the OR gate based on small center-of-mass speed difference. When a soliton scatters off

the potential wells it will suffer from a reduction in its center-of-mass speed due to excit-

ing internal modes. The third potential well and control soliton are capable of detecting

this reduction in speed and directing the soliton to an opposite direction compared with

the case in OR gate. The propagation of solitons in the proposed device is modeled by

the discrete nonlinear Schrödinger equation in the tight-binding approximation with site-

dependent dispersion coefficients. The potentials are introduced through pre-calculated
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profiles for the waveguides’ separations. At first, the stationary solutions are obtained

which were then used as control and signal solitons for the time evolution of solitons in

the waveguide. Transport coefficients in terms of the soliton’s speed are then calculated

and the window in the velocity domain for which the device functions in the desired man-

ner are identified.

To construct half and full adders, a number of gates have to be connected, namely the

output of a certain gate needs to be the input of another gate. Since the typical output of

a gate is a reflected or transmitted signal soliton and the input is a control soliton, which

are in general different in intensity, we invoke the concept of a converter. This is a pulse

source that generates an output of standard intensity. It is triggered by an input pulse of

any intensity. The intensity of the output pulse is a characteristic of the converter and

is independent of that of the input pulse. We believe such a pulse source is realisable.

One-bit half adder can be connected in this manner to result in a one-bit full adder and,

hence, one-bit full adder can be connected to obtain an n-bit full adder. In the present

paper, we show only how one-bit half and one-bit full adders can be constructed since it

is well-established how to obtain the n-bit adders from the one-bit adders.

The rest of the chapter is organized as follows. In Section 2.2, we present the setup and

theoretical model. In Section 2.3, we show how the OR gate can be modified to generate

an XOR gate. This section starts with a review of the setup and performance of the OR

gate followed by the setup modification and performance of the XOR gate. In Section 2.4,

we show how the gates can be connected to give half and full adders. Finally, in Section

2.5, we summarize our main conclusions.

2.2 Theoretical Framework and Setup

The propagation of solitons in a one-dimensional array of N waveguides with focusing

nonlinearity can be described, in the tight-binding approximation, by the following dis-
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crete nonlinear Schrödinger equation (DNLSE) [157],

i
∂Yn

∂ z
+Cn,n�1Yn�1 +Cn,n+1Yn+1 + g|Yn|2Yn = 0, (2.1)

where Yn is the normalized mode amplitude and n is an integer associated with the waveg-

uide channel, z is the propagation distance, Cn,m are the coupling coefficients between

different waveguide channels n and m, and g is the strength of the focusing nonlinearity.

Here we used g = 1 for numerical simulation.

The modulation of the coupling constants via changing the separation between waveg-

uides leads to an effective potential and Equation (3.1) will be rewritten as [41]:

i
∂Yn

∂ z
=�CS

n�1Yn�1 �CS
n+1Yn+1 � g|Yn|2Yn, (2.2)

where

CS
n±1 =

q
(C+ |YAL

n |2)(C+ |YAL
n±1|2). (2.3)

For the effective potential to be reflectionless, we use the integrable Ablowitz-Ladik

model

i
∂Yn

∂ z
+(Yn�1 +Yn+1)(C+ |Yn|2) = 0, (2.4)

with the exact soliton solution

YAL
n =

p
csinh(µ)sech[µ(n�n0)]exp(ib z), (2.5)

where b = 2ccosh(µ), µ is the inverse width of the soliton, n0 corresponds to the location

of the soliton peak, and c is an arbitrary real constant. We refer to reflectionless as a clean
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scattering where all of the soliton intensity is either transmitted or reflected. The coupling

strength between pulses in neighboring waveguides decays exponentially in terms of the

waveguides separation, as [73, 158]

CS
n,n±1 =C exp

⇣
1�

Dn,n±1

D0

⌘
, (2.6)

where Dn,n±1 is the separation between waveguides n and n± 1, and D0 and C are pos-

itive constants. Thus, the separation between waveguides that gives rise to an effective

potential is obtained by inverting the last equation, namely

Dn,n±1 = D0

"
1� log

 
CS

n,n±1

C

!#
. (2.7)

This practical relation is used to design specific effective potentials.

All solitons used here are the stationary states of Equation (3.1). They are generated us-

ing the Newton-Raphson method and trial solution is given by Yn = Aexp(�a|n�n0|),

where a�1 and n0 are parameters that set the width and peak location of the soliton re-

spectively. As usual, two stationary modes result out of this procedure, namely, the Page

mode and the Sievers-Takeno mode [159]. Therefore, the initial soliton used in our pro-

tocol can be written generally as

Y = Ys eivn + r Yc1 + s Yc2 + p Yp, (2.8)

where Ys, Yc1 , Yc2 , and Yp are signal soliton, input-1 control soliton, input-2 control

soliton, and partitioner control soliton, respectively, which are generated by the scheme

described above. Their profiles are given by the AL solution, Equation (2.5). The coef-

ficient eivn corresponds to the kick-in velocity of the signal soliton with velocity, v. The

parameters r, s, and p control the intensities of the control solitons. Typically we use

r = s = 0.16 and p = 0.1.
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The intensity of the control soliton is sech2(x)-shaped and the modulation of the dis-

persion coefficients is also sech2(x)-shaped. The control soliton is located at the region

where the dispersion is modulated. Therefore, the incident soliton will encounter two

effective potentials when it is scattered. The first comes from the modulation in the dis-

persion coefficients and the second comes from the nonlinear interaction with the control

soliton. Since the two effective potentials have the sech2(x) shape, the net interaction

energy will be determined by the relative values of the strengths of the two potentials.

By controlling the intensity of the control soliton, we tune the strength of the effective

potential resulting from the modulation in dispersion coefficients.

The consideration of input and output of the logic gate with this scheme is described

in next section. The use of discrete solitons for the addition of binary numbers requires

an XOR gate which is designed in the next section by modifying our previous scheme for

the OR gate [72].

2.3 The XOR Gate

The XOR gate we are proposing here is a variation of the OR gate by [72]. We start in the

next subsection by reviewing the OR gate and showing how it can be modified to function

as an XOR gate.

2.3.1 The OR Gate

We follow a similar scheme of controlling the scattering of the signal soliton by injecting a

control soliton into a potential well as described in [72]. The schematic figure representing

the OR gate that includes two potential wells, is shown in Figure 2.1. An effective single

potential well can be obtained from Equation (3.3) with the modulated coupling constants

CS
n±1 = C{[1+ sinh2(µ)sech2 µ(n�n0)]⇥ [1+ sinh2(µ)sech2 µ(n±1�n0)]}1/2

. (2.9)



25

This is achieved by the waveguides separations profile given by Equation (2.7), namely

Dn,n±1 = D0

h
1� 1

2
log[1+ sinh2(µ)sech2(µ(n�n0))]

� 1
2

log[1+ sinh2(µ)sech2(µ(n±1�n0))]
i
. (2.10)

Similarly, a double potential well is obtained by generalizing Equation (2.9) as follows

CS
n,n±1 = [(C+ |YAL

1,n|2 + |YAL
2,n|2)⇥ (C+ |YAL

1,n±1|2 + |YAL
2,n±1|2)]1/2, (2.11)

where YAL
1,2 are two exact solitonic solutions centered at different waveguides which take

the form

YAL
i,n =

p
csinh(µi)sech[µi(n�ni)]exp(ibiz), i = 1,2, (2.12)

with bi = 2ccosh(µi), µi is the inverse width of the i-th soliton and ni corresponds to the

location of the i-th soliton’s peak.

Figure 2.1: Schematic figure representing the OR gate having two potential wells injected with
two control solitons.
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To achieve the performance of OR gate, we solve Equation (3.1) using the above men-

tioned coupling coefficients. All solitons used at the start of the time evolution, whether

signal or control solitons, are the stationary solitons of Equation (3.1). The input signals

of the logic gate are taken as 1 if there is a control soliton in the potential well and 0 oth-

erwise, such that 11 corresponds to two equal control solitons in the two potential wells,

01(10) corresponds to a control soliton in the right (left) potential well, and 00 corre-

sponds to no control solitons in the potential wells. The output is taken from the scattered

soliton which can be reflected, transmitted, or trapped. It is clear from the spacio-temporal

plots shown in Figure 2.2 that for the 00 case the scattered soliton is reflected while for

all other options of the input, the scattered soliton is transmitted. The performance of the

OR gate is thus obtained if the output is taken from the transmission port. Hence, obeying

the Boolean expression for the OR gate.

Now, we present the calculation of the transport coefficients which are defined as fol-

lows: reflection R = Ân1�dn
1 |Yn|2/ÂN

1 |Yn|2, transmission T = ÂN
n2+dn |Yn|2/ÂN

1 |Yn|2

and trapping L = Ân2+dn
n1�dn |Yn|2/ÂN

1 |Yn|2, where N is the number of waveguides and dn

is roughly equal to the width of the soliton in order to avoid the inclusion of the tails of

the trapped soliton with the reflected or transmitted ones. It should be noted that we use

throughout all numerical calculated soltions that are in-phase with each other. We realize

that phase differences may affect in the output of the scattering of solitons. Therefore, we

chose for simplicity not to incorporate this additional factor in our protocol. A preliminary

investigation of the scattering outcomes in terms of the potential and soliton parameters

including potential depth, width, location, soliton initial speed, phase, and type, gives an

idea of the ranges of parameters for which the useful applications could be obtained. The

transport coefficients curves for the OR gate are presented in Figure 2.3 which show a

reasonably wide window of velocity for the operation of OR gate.
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Figure 2.2: Spacio-temporal plots representing the function of OR gate with initial soliton speed
v = 0.22. The two potential wells are separated by 4 waveguides, Dn = 4, the amplitude of the
control soliton is multiplied by the power control parameter r = 0.16, as defined by Equation (3.7)
the waveguide arrays range from n = 1 to n = 124 and time ranges from z = 0 to z = 317. Other
parameters used are c = 1 and µ = 1.5. For clarity purpose, the control solitons are not shown
here.
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Figure 2.3: Transport Coefficients of OR gate. Red curves correspond to reflection (R), green
curves correspond to transmission (T), and black curves correspond to trapping (L). Filled circles
correspond to the presence of control solitons in both wells (11). Up and lower triangles corre-
spond to the presence of a control soliton in the left or right well (10 or 01), respectively. Empty
circles correspond to the absence of control solitons from both wells (00). All parameters used are
the same as in Figure 2.2.

2.3.2 The XOR Gate: A Modified OR Gate

The modification we make on the OR gate is based on distinguishing the scattered solitons

according to their center-of-mass speeds. The trajectories of discrete solitons are charac-

terized by quick jumps between the waveguides (large speed) and temporary pinning at
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the waveguides (small speeds), as shown in Figure 2.4. The speed will then have two dif-

ferent values and an averaging procedure is therefore needed. We conduct this averaging

by calculating the speed over a time interval corresponding to a number of waveguides.

The result is shown in Figure 2.4. Applying the averaging procedure to all possible cases

for the action of OR gate, we notice a clear difference in the speeds of the output soliton,

as shown in Figure 2.5.

The free propagation of signal soliton, which we take as a benchmark, preserves the high-

est state of velocity among all. This is of course expected due to the absence of potential

wells which are main sources of dissipation. The speed of the (11) case is noticeably

lower than that of the (01) and (10) cases. The speed for the (00) case is negative since it

is reflection. This difference in speeds is the key element for designing the XOR gate.
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Figure 2.4: Spacio-temporal plot representing the free propagation of a signal soliton in the setup
of OR gate with both potential wells and control solitons switched off. The trajectory of the
signal soliton with initial speed v = 0.214 is represented by blue line. The left subfigure in lower
panel shows two possible values of speed, namely v = 0 corresponding to soliton pinning, and
v ⇡ 0.39 corresponding to transition from site to site. The right subfigure in lower panel shows the
averaging of the two speeds over several waveguides. Waveguides range from n = 1 to n = 124
and time ranges from z = 0 to z = 400. Other parameters used are c = 1 and µ = 1.5.
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Figure 2.5: The effect of the potential wells on the speed of signal soliton in the OR gate. All cases
have same initial the speed v = 0.214. The free propagation of signal soliton leads the highest state
among all. The (00) corresponds to reflection. The speeds of the 01 and 10 are closer to each other
and are noticeably larger than the (11) state.

We exploit this difference by introducing a third potential well and control soliton that

reflect the (11) case but not the (01) and (10). This is possible due to the fact that the crit-

ical speed at which the solitons reflect or transmit can be controlled by the intensity of the

control soliton. Tuning the intensity of the third control soliton, we managed to achieve

the function of the XOR gate. Schematically, the XOR gate is represented by Figure 2.6.

The distribution of control solitons for the XOR gate are as follows: For the 00 gate,

we have no control solitons in the input ports, for the 01 gate we have only one control

soliton in the second input port, for the 10 gate, we have only one control soliton in the

first input port, and for the 11 gate, we have two control solitons in the input ports. The

third control soliton on the right side of the input ports with different control power is

used particularly to reflect the (11) case in order to achieve the performance of XOR gate.

In Figure 2.7, the desired performance is clearly seen to have been achieved. The (00) and

(11) reflect while (01) and (10) transmit. The transport coefficients for the XOR gate are

presented in Figure 2.8. It is seen from the figure that the working window of velocity

for the XOR gate is reasonably comparable to and overlaps with the OR gate.
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Figure 2.6: Schematic figure showing the XOR gate having two modified potential wells of the
same control power and a third potential well is introduced with different control power to reflect
the (11) case in order to achieve the performance of XOR gate. The first two potential wells extend
only up to about half of the evolution time in order not to affect the reflected signal in the (11) case.
Beyond this point, the separations return back to their uniform values away from the potentials.

Figure 2.7: Spacio-temporal plots representing the function of XOR gate with initial soliton speed
v = 0.22. The two modified potential wells are separated by 4 waveguides, Dn = 4, and take the
same position as in the OR gate. The third potential well is placed at 15 waveguides from the
centre. The control solitons are invisible for clear density plots. The parameter setting the power
of the control solitons in the first two wells is r = 0.16, as in the OR gate, while in the third well
p = 0.1. Time ranges from z = 0 to z = 423. The reflection for the (11) case is enhanced by cutting
off the first two potential wells at z = 212. Other parameters used are c = 1 and µ = 1.5.

For the feasibility of experimental realization, we plot the waveguides separation in µm

and the corresponding coupling strength in mm�1 corresponding to potential wells used

in Figure 2.8, as calculated by using Equations (2.6) and (2.7) and shown in Figure 2.9.
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Figure 2.8: Transport Coefficients of XOR gate: Red curves correspond to reflection (R), green
curves correspond to transmission (T), and black curves correspond to trapping (L). Filled circles
correspond to the presence of control solitons in both wells (11). Up and lower triangles corre-
spond to the presence of a control soliton in the left or right well (10 or 01), respectively. Empty
circles correspond to the absence of control solitons from both wells (00). The working window
of velocity for OR and XOR gate are considerably comparable. All parameters used here are the
same as in Figure 2.7.

2.4 One-bit Half Adder and Full Adder

Adders are type of digital circuits designed to perform the addition of numbers. There are

two types: half adders and full adders. As shown in the left subfigure in Figure 2.10, the

half adder has two inputs, assigned A and B, and two outputs S (Sum) and C (Carry). The

half adder is able to add two single binary digits and provides two digit outputs (sum and

carry). The C (carry) value is an AND output of the inputs A and B while the S (Sum)

value is the output from XOR gate. Therefore, the common representation of the half

adder simply uses an XOR logic gate and an AND logic gate [160]. Similarly, we design

our scheme for the half adder with the use of discrete solitons in waveguides arrays, com-

posed of an AND gate and an XOR gate. Our half adder takes two inputs, A and B, and

delivers two outputs S (sum) and C (carry). A and B inputs are attached to the potential

wells by injecting the control solitons. The output S is collected from the XOR gate upon

the transmittance of the discrete soliton.
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Figure 2.9: Left subfigure in the upper panel shows waveguides separation, Dn,n+1. The right
subfigure in the upper panel shows waveguides coupling, Cn,n+1. The calibration values D0 =
24 µm and C0 = 0.45 mm�1 were taken from the experiment of [73] for the l = 543 nm pulse.
The lower panel consist of four subfigures corresponding to 00, 01, 10, and 11. The blue dashed
line represents the intensity of the control solitons.

In addition, the output C is taken from the AND gate upon the transmittance. In order

to maintain the universal features of the signal soliton, a converter is introduced in our

scheme. The purpose of the converter is to allow for devices connectivity and hence scal-

ability. It refers to a pulse generator that produces an output signal that is always of the

same characteristics regardless of the input signal. For instance, the input signal of a

converter can be an output (reflected or transmitted) soliton. It takes the output signal of

a device and converts it to an input signal to another device. Our half adder scheme is

shown in Figure 2.10.
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Figure 2.10: Left subfigure shows the typical electronic scheme of half adder designed with the
combination of AND and XOR gate. A and B are the two inputs while S (sum) and C (carry) are
the outputs. Right subfigure shows our scheme of half adder designed with the discrete solitons in
waveguide arrays. c in box is a converter modulates the intensity of a input soliton to match that
of a control soliton.

Figure 2.11: Upper subfigure shows the electronic scheme of full adder designed with the combi-
nation of two half adders. A, B and Cin are the three inputs while S (sum) and Cout (carry) are the
outputs. Lower subfigure represents our scheme of full adder designed with the combination of
two half adders shown in Figure 2.10.

The full adder extends the concept of the half adder by providing an additional carry-

in (Cin) input [161]. It adds three single-digit binary numbers, two inputs and a carry-in
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bit. The third input makes it eligible for scaling n-bits. The full adder outputs two num-

bers, a Sum and a Carry bit. Upper subfigure in Figure 2.11 shows the electronic scheme

of full adder with three inputs: A, B and Cin, which adds the three input numbers and

generates a Carry out (Cout) and a Sum (S). As a result, placing two half adders together

with the use of an OR gate results in a one-bit full adder. In order to add more n-bits, n-

full adders are connected in cascade to perform the addition. We construct the full adder

by following the electronic scheme in structure. It has three inputs, A, B, and Cin, and

two outputs the S (sum) and C (carry) as shown in the lower subfigure in Figure 2.11. A

converter is also introduced in this scheme.

2.5 Conclusion

We have shown that by modifying the setup of the previously-proposed OR gate in a

waveguide array, an XOR gate can be obtained. The modification includes the introduc-

tion of a third potential well in addition to the two potential wells in the OR gate. A

control soliton is injected into the new potential well. The role of the new potential well

and its control soliton is to disperse the (11) output signal from the (10) and (01) outputs

exploiting a difference in their center-of-mass speed. We found this to be possible within

a finite width of a velocity of incidence that is comparable with that of the OR gate. To fa-

cilitate the experimental realization, the profiles of the waveguides separations have been

calculated in real units, as given by Figure 2.9. We have also shown how the AND, OR,

and XOR gates can be connected to result in half and full adders. We believe this proposal

will be a useful step towards achieving all-optical data processing.
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Chapter 3: Optical Amplifier

This chapter presents a design and protocol to achieve an essential feature of an optical

transistor, namely the amplification of input signal with the use of discrete solitons in

waveguide arrays. We consider the scattering of a discrete soliton by a reflectionless

potential in the presence of a control soliton. We show that at the sharp transition region

between full reflectance and full transmittance, the intensity of the reflected or transmitted

soliton is highly sensitive to the intensity of the control soliton. This suggests a setup of

signal amplifier. For realistic purposes, we modulate the parameters of the reflectionless

potential well to achieve a performance of amplifier with a controllable amplification. To

facilitate the experimental realization, we calculate the amplification factor in terms of the

parameters of the potential well and the input power of the control soliton. The suggested

signal amplifier device will be an important component in the all-optical data processing.

3.1 Introduction

The main objective of the present work is to achieve amplification which is an essential

feature of an optical transistor in all-optical operations. The main functions of an optical

transistor are switching and amplifying optical signals. The device is the optical analog

of the electronic transistor that forms the basis of modern electronic devices. Optical tran-

sistors introduce the possibility of controlling light using only light and has applications

in optical computing and fiber-optic communication networks. Such technology has the

potential to exceed the speed of electronics, while saving more power [162]. The present

work is a continuation of our previous works in which switch, diode and logic gates have

been proposed [43, 72], in addition to our recent design of a scheme and protocol to add

binary numbers using discrete solitons in waveguide arrays [34].

We consider a discrete nonlinear Schrödinger equation with dispersion management through

modulating the separations between waveguides and in the presence of a control soliton
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located at the minimum of the potential. We solve the equation numerically and calcu-

late the transport coefficients from which the amplification factor is determined at the

transition region between full reflection and full transmission. As the ideal reflectionless

potential leads to an output power that is very sensitive to the input power, we propose

lowering such unrealistic sensitivity by perturbing the parameters of the potential such

that the scattering of the soliton will not be totally reflectionless. In other words, we al-

low for some radiation to be emitted resulting in cross-over-like type of transition rather

than a sharp transition.

The rest of the chapter is organized as follows. In Section 3.2, we present the setup and

theoretical model. In Section 3.3, we present our main results and discussion. Finally, in

Section 3.4, we summarize our main conclusions.

3.2 Theoretical Model

The propagation of solitons in a one-dimensional array of N waveguides with focusing

nonlinearity can be described, in the tight-binding approximation, by the following dis-

crete nonlinear Schrödinger equation (DNLSE) [157],

i
∂Yn

∂ z
+Cn,n�1Yn�1 +Cn,n+1Yn+1 + g|Yn|2Yn = 0, (3.1)

where Yn is the normalized mode amplitude and n is an integer associated with the waveg-

uide channel, z is the propagation distance, Cn,m are the coupling coefficients between

different waveguide channels n and m, and g is the strength of the focusing nonlinearity.

Here we used g = 1 for numerical simulation. The discrete nonlinear Schrödinger equa-

tion is also associated with the supratransmission phenomenon which is characterized by

the propagation of nonlinear localized modes (gap solitons) [163, 164]. The modulation

of the coupling constants through changing the separation between waveguides leads to
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an effective potential and Equation (3.1) will be rewritten as [41]:

i
∂Yn

∂ z
+CS

n�1Yn�1 +CS
n+1Yn+1 + g|Yn|2Yn = 0, (3.2)

where

CS
n±1 =

q
(C+ |YAL

n |2)(C+ |YAL
n±1|2). (3.3)

For the effective potential to be reflectionless, we use the integrable Ablowitz-Ladik (AL)

model

i
∂Yn

∂ z
+(Yn�1 +Yn+1)(C+ |Yn|2) = 0, (3.4)

The above equation is one of the basic discrete equations of the integrable hierarchy. As

such, it serves as a model for the application of a range of techniques for obtaining exact

solutions. The Ablowitz-Ladik equation is one of the early examples of an equation to

which the inverse scattering technique has been applied. Various other methods, such as

Darboux and Bäcklund transformations, have also been applied to solve this equation.

Generally speaking, every technique applicable to the basic NLSE equation can also be

applied, with some modifications, to the AL equation. Here, we find a stationary bright

soliton solution to the AL model, Equation (3.4), using the ansatz method. Substitute the

following ansatz in Equation (3.4):

yn = Asech(b (n�n0))ei µ z, (3.5)

where A, b , and µ are unknown real constants. Then, expand the resulting equation in

powers of n�n0. Equating coefficients of powers of n�n0 to zero, gives A =
p

C sinhb

and µ = 2C coshb . For these two expressions, the whole power series vanishes and thus
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the solution of Equation (3.4) will be given by

YAL
n =

p
C sinh(b )sech[b (n�n0)]exp(iµz), (3.6)

where b is the inverse width of the soliton, n0 corresponds to the location of the soliton

peak, and C is an arbitrary real constant. A similar procedure, with the ansatz yn =

A tanh(b (n� n0))ei µ t , leads to the dark soliton solution. All solitons used here are the

stationary states of Equation (3.1). They are generated using the Newton-Raphson method

and trial solution is given by Yn = Aexp(�a|n�n0|), where a�1 and n0 are parameters

that set the width and peak location of the soliton respectively. As usual, two stationary

modes result out of this procedure, namely, the Page mode and the Sievers-Takeno mode

[159]. Therefore, the initial condition used in our protocol can be written generally as

Yn(0) = Ys eivn + r Yc, (3.7)

where Ys is the signal soliton and Yc represents input control soliton, they are both gen-

erated by the Newton-Raphson method. The coefficient eivn corresponds to the kick-in

velocity of the signal soliton with velocity, v, used to control the motion of discrete soli-

ton. This method has the benefit of preserving the norm and it is the same kick or thrust

which is used in [165] to control the evolution of two solitons solution in time. The pa-

rameter r controls the intensity of the input control soliton Iin, related by Iin = r2. The

intensity of the control soliton is sech2(x)-shaped and the modulation of the dispersion

coefficients is also sech2(x)-shaped. The control soliton is located at the region where

the dispersion is modulated. Therefore, the incident soliton will encounter two effective

potentials when it is scattered. The first comes from the modulation in the dispersion

coefficients and the second comes from the nonlinear interaction with the control soliton.

Since the two effective potentials have the sech2(x) shape, the net interaction energy will

be determined by the relative values of the strengths of the two potentials. By controlling

the intensity of the control soliton, we tune the strength of the effective potential resulting
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from the modulation in dispersion coefficients. The parameter r refers to an external con-

trol on the intensity of the input soliton. It can be done through tuning the intensity of the

laser pulse injected into the waveguide. A more sophisticated control could be achieved

by injecting the control soliton into a bean splitter where only a fraction of the soliton

transmits. That fraction can be used as the input control soliton in our scheme. The calcu-

lation of amplification factor is obtained through transport coefficients which are defined

as: reflection R = Ân1�dn
1 |Yn|2/ÂN

1 |Yn|2, transmission T = ÂN
n2+dn |Yn|2/ÂN

1 |Yn|2 and

trapping L = Ân2+dn
n1�dn |Yn|2/ÂN

1 |Yn|2, where N is the number of waveguides and dn is

roughly equal to the width of the soliton in order to avoid the inclusion of the tails of the

trapped soliton with the reflected or transmitted ones. In our amplification protocol, we

consider the intensity of the control soliton, Iin, as the input signal and the intensity of

the reflected soliton, R, as the output signal. Amplification is thus measured by the rate

of change in the output intensity, DR, with respect to a change in the input intensity, DIin,

namely

M =
DR
DIin

. (3.8)

3.3 Results and Discussion

3.3.1 Reflectionless Potential

We consider the ideal situation with a reflectionless potential. As expected and shown in

Figure 3.1, sharp transitions occur at a critical speed, vc. The intensity of control soliton

will merely shift the location at which the sharp transition occurs. Since the amplification

factor is proportional to the slope of transport coefficient at the transition region, unreal-

istically high amplification values will be obtained. Smearing the curve is thus needed.

We will achieve this in the following by perturbing the potential such that the scattering

of the soliton will not be totally reflectionless.
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Figure 3.1: Reflectionless potential (Ideal case): 3D plot representing the dependence of the output
intensity, R, on the input intensity, Iin, and signal soliton speed, v. The left subfigure in the lower
panel corresponds to constant-Iin cross sections from the 3D plot with Iin reaching to Iin = 0.12,
for the curve with lowest critical speed, from 0.02 by an increment of 0.006. The right subfigure in
the lower panel shows the critical speed in terms of the control soliton intensity. A reflectionless
potential with b = 1 is used.
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3.3.2 Modulated Potential

In order to design the device with an amplification feature, we need to have a finite slope

in the transition region replacing the sudden jump in the transport coefficients, as shown

previously in Figure 3.1. This can be achieved by using a potential that is not fully re-

flectionless such as using YAL
n =

p
C sinh(b )sech[b (n�n0)]exp(iµz) with b 6= 1. Using

values of b other than 1, leads to smearing the sharp transition in the transport coefficient,

as shown in Figure 3.2.

0. 0.16 0.32 0.48 0.64 0.8
0.0

0.2

0.4

0.6

0.8

1.0

v

R

Figure 3.2: 3D plot representing the dependence of the output intensity, R, on the signal soliton
speed, v, and the parameter of the potential well, b , for Iin = 0 (no control soliton). The right
subfigure shows constant-b cross-sections.

To investigate in more detail the effect of modulating the potential, we monitor the changes

in the intensity of the reflected soliton in terms of changes in the intensity of control soli-

ton and signal soliton speed for three different cases of modulated potential.
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Figure 3.3: Modulated potential (non-reflectionless potential): 3D plots representing the depen-
dence of the output intensity, R, on the input intensity Iin, and the signal soliton speed, v for three
values of b . Subfigures on the right correspond to constant-Iin cross-sections.

By fixing critical speed, vc = 0.33 in Figure 3.3, we investigate the dependence of intensity

of reflected soliton on the intensity of control soliton for all three cases of modulated po-

tential. The three curves in Figure 3.4 represent each case of modulated potential shown

in Figure 3.3 with fixed critical speed. In Figure 3.4, amplification M is shown in the right
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subfigure corresponding to the slope of left subfigure. The figure shows that amplification

factors M ⇡ 17 are achieved for the considered values of b . As mentioned previously,

much larger amplification rates can be reached with values of b approaching 1.
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Figure 3.4: The left subfigure represents the relation between the output intensity, R, and the
input intensity of control soliton, Iin, for three different cases of modified potential well b = 1.10,
b = 1.11, and b = 1.12. The right subfigure shows the slope of left subfigure that determines
amplification. For all curves the initial soliton speed is v = 0.33.

3.4 Conclusion

We exploit the sharp transition region between full reflectance and full transmittance to

achieve optical signals amplification. We find that the transition region is highly sensitive

to the intensity of the input control soliton. For reflectionless potential, the sensitivity is

too high to be experimentally realized. Therefore, we modulate the reflectionless potential

well to achieve a realistic performance of amplifier with a controllable amplification. We

also show that amplification value can be controlled by the intensity of a control soliton

located at the centre of potential well and the modulation of the potential well parameters,

mainly its width. We performed a detailed numerical investigation of the effect of all

parameters regimes in order to optimize the performance. The separations between the

waveguides can be calculated and set to achieve such a potential profile, as previously was

performed for logic gates and unidirectional flow [72]. We believe this to be an important

and useful step towards achieving a soliton transistor and all-optical data processing. Fig-

ure 3.4 shows that the amplification factor is also dependent on the intensity of the input

signal. This leads to nonlinear amplification, which we believe is not favorable from a
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practical point of view. In an ideal situation, the amplification factor aught to be constant

so that no modulation of the relative amplitudes or profile of the input signal is performed

while amplifying it. We consider this as a challenge for a future work where we aim at

obtaining an amplification scheme with constant amplification factor within a finite range

of input signal intensities.
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Chapter 4: Discrete Soliton Molecules

In this chapter, we consider a bound state of two discrete solitons in a two-dimensional

waveguide array. Using numerical and variational calculations we investigate the effect of

binding on the mobility of the two solitons, which we found to be marginal. Considering

anisotropic waveguides, where coupling in one direction is stronger than in the other, we

show that mobility is enhanced considerably along the weaker-coupling direction. We

show also that a stable bound state of two solitons exists in such a setup where each one

of the two solitons is located at a different waveguide. The stability of the resulting soliton

molecule is provided by the Peierls-Nabarro potential and the mobility of the individual

solitons is facilitated by the anisotropy. Considering a combination of two out-of-phase

solitons we find that they form a metastable state of a single soliton that suddenly splits

into two solitons propagating away from each other.

4.1 Introduction

This chapter is building on our previous work [65] where we have shown that discrete soli-

tons become highly mobile in 2D waveguide arrays with anisotropic coupling strengths.

Specifically, our main objectives include: i) studying the effect of the binding between

the two solitons on their mobility, ii) calculating the force and potential of interaction be-

tween the two solitons, iii) calculating the PN potential for the two solitons and how the

soliton-soliton interaction modulates it, and iv) investigating the possibility that a robust

stable bound state between two solitons exists.

Stability and dynamics of discrete solitons are well described by the discrete nonlinear

Schrödinger equation (DNLSE) which is nonintegrable but can be solved using varia-

tional, perturbative and numerical methods [166, 167, 168, 169, 170, 171, 172]. Using

both numerical and variational calculations, we achieve all of the above-mentioned ob-

jectives, and specifically we show that a robust unpinned soliton molecule indeed exists
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in anisotropic waveguides. Another interesting phenomenon is a soliton molecule fission

where a bound state of two out-of-phase solitons suddenly splits into two solitons propa-

gating away from each other.

The rest of the chapter is organised as follows. In Section 4.2 we present the DNLSE

model that describes the evolution of the solitons. In Section 4.3, we solve the model

numerically to obtain the equilibrium width and ground state energy of the two solitons.

In Section 4.4, we present a variational calculation and calculate the energy functional

and the PN potential. In this section, we reproduce the equilibrium properties of the soli-

ton molecules obtained numerically, calculate the PN potential, and the soliton-soliton

interaction. In Section 4.5, we investigate the soliton molecule and soliton fission in an

anisotropic waveguide array. Finally, we end up with summarising our main results in

Section 4.6.

4.2 Model Equation

The propagation of discrete solitons in two-dimensional waveguide arrays is described,

within the tight-binding model [59], by the scaled 2D discrete nonlinear Schrödinger

equation

i
∂
∂ t

Ym,n +(dxYm+1,n +dxYm�1,n +dyYm,n+1 +dyYm,n�1 �2(dx +dy)Ym,n)

+g|Ym,n|2Ym,n = 0,

(4.1)

where Ym,n is the field envelope at the site (m,n), g is the strength of the nonlinearity

which is considered here positive in order to analyse bright solitons, and the coupling co-

efficients between waveguides in the horizontal and vertical directions are represented by

dx and dy, respectively, and t corresponds to the distance along the waveguides. We have

already used this model in [65] to study the stability and mobility of single 2D discrete

solitons in isotropic and anisotropic waveguides. Here, we consider a soliton molecule
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instead of a single soliton in an anisotropic waveguide array such that the coupling be-

tween the waveguides along one direction is stronger than the other. There are three

stationary 2D soliton types known in the literature for the isotropic version of Equation

(4.1) which are named as the site-centered (SC), bond-centered (BC), and hybrid solitons.

Some references might use other names. As we have pointed out recently [65], for the

anisotropic case the hybrid soliton splits into two different forms namely, hybrid-X (HX),

and hybrid-Y (HY). In principle, we can consider each soliton in the molecule to be any

of these types. However, for simplicity, we consider both solitons to be the site-centered

type.

The purpose of this work is to investigate the stability and mobility of such a discrete

soliton molecule in 2D waveguide arrays. Specifically, we will investigate the effect of

binding on mobility. It is established that a single 2D soliton exhibits very weak mobil-

ity in 2D waveguide arrays. The question we will address here is whether a 2D soliton

molecule would be more mobile than a single soliton or not. The existence and mobil-

ity of the 2D solitons molecules will be investigated in both isotropic and anisotropic

waveguide arrays. To that end, we consider, in general different horizontal and vertical

coupling strengths. In reality this can be easily realized by modulating the waveguide sep-

arations. In the following two sections, we investigate this problem first numerically and

then variationally. The numerical calculation leads to the equilibrium width and ground

state energy. The variational calculation reproduces these results and helps to derive an

analytical expression of the soliton-soliton and soliton-waveguide interaction potentials.

4.3 Equilibrium Width and Energy: Numerical Solution

In this section, we calculate the equilibrium properties of the soliton molecule and then

study its mobility by solving the model Equation (4.1) numerically. This will allow us to

find the possible stable soltion molecule states. We employ the finite difference method of

[170] that is slightly modified to take into account the possibility of having an anisotropic

waveguide array. We assume an L ⇥ L dimensional square lattice. The initial condition is
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given in matrix form [H] of the following type, namely

[H]M,N = 2dx +2dy � g|YM,N |2, (4.2)

[H]M+1,N = [H]M�1,N =�dx, (4.3)

[H]M,N+1 = [H]M,N�1 =�dy, (4.4)

where, M = m+(l � 1)n and N = n+(l � 1)m, l = 1,2, ....L for the square lattices of

size L⇥ L. Solving the linear eigenvalue problem refines the prediction of Ym,n as the

eigenfunction corresponding to the most negative eigenvalue. This procedure is repeated

until the desired precision is obtained.

Figure 4.1: In-phase (upper panel) and out-of-phase (lower panel) soliton molecule profiles ob-
tained by numerical solution of Equation (4.1) with isotropic waveguide array. The plots on the
right hand side show the two cross-section profiles. Parameters used: L = 30,P = 2,g = 4,dx =
dy = 0.5.

For the initial profile, one can in principle choose a combination of any soliton type out

of the four types of stationary soliton profiles. Here, for the sake of simplicity, we choose



49

only SC type trial functions, as follows

Ym,n = A

 
e
� (m�n1x)2

h12 � (n�n1y)2

h22 + e
� (m�n2x)2

h12 � (n�n2y)2

h22 +if
!
, (4.5)

where, A is the normalization constant and n1x,1y and n2x,2y are the coordinates peak posi-

tions of the first and second solitons, h1,2 are the widths of the first and second soliton in

horizontal and vertical directions respectively, and f is the phase difference between the

two solitons.

We solve the model Equation (4.1) using a trial function of the form given by Equa-

tion (4.5) to find the two ground state stationary soliton molecule states as shown in Fig-

ures 4.1 and 4.2. In these figures the upper panel displays the in-phase stationary profiles

for a combination of two solitons and lower panel shows the out-of-phase profiles for

an isotropic waveguide array. Considering anisotropic waveguide arrays by changing the

coupling strength as, for instance, dx=2 and dy=0.15 leads to elongation of the width of

the soliton molecule in one direction. A comparison of solitons cross-sections in isotropic

and anisotropic waveguides is shown in Figure 4.3.

Figure 4.2: In-phase (upper panel) and out-of-phase (lower panel) soliton molecule profiles ob-
tained by numerical solution of Equation (4.1) with anisotropic waveguide array. Parameters used
are same as for the isotropic case in Figure 4.1 but with dx=1.0 and dy=0.2.



50

Figure 4.3: Comparison between the cross-sections of isotropic and anisotropic in-phase soliton-
molecule profiles from Figures 4.1 and 4.2. Dashed red and solid blue lines correspond to isotropic
and anisotropic waveguide arrays, respectively.

4.4 Variational Calculation

The advantage of using a variational calculation is to derive an analytical expression for

Peierls-Nabarro (PN) potential which helps us to calculate the barrier in both horizontal

and vertical directions. We start from the lagrangian corresponding to Equation (4.1)

which takes the following form:

L =
•

Â
m=�•

•

Â
n=�•


i
2

✓
Ym,n

∂
∂ t

Y⇤
m,n �Y⇤

m,n
∂
∂ t

Ym,n

◆
�E

�
, (4.6)

where, the dispersion and nonlinear terms define the energy functional

E = �
•

Â
m=�•

•

Â
n=�•

⇥
Y⇤

m,n (dx Ym�1,n +dx Ym+1,n +dyYm,n�1

+ dyYm,n+1 �2(dx +dy)Ym,n)+
1
2

g |Ym,n|4
�
. (4.7)

There are three kinds of trial functions which have been used widely in the literature to

calculate the energy function namely, (i) gaussian, (ii) exponential and (iii) secant func-

tion. As mentioned in [173], using a secant trial function the summations in the lagrangian

can not be performed in compact form and only asymptotic expressions can be obtained.

This is not the case with exponential and gaussian trial functions where it is possible to

perform the sums and generate a compact lagrangian form. Here we use the gaussian trial
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function since it results in simpler expressions and requires no prior assumptions on the

location of the peak of the solitons. This enables us to consider the hopping of the soliton

across the sites of the waveguide. The exponential trial function will be used only in Sec-

tion 4.5.2 to confirm the expression obtained for the potential of interaction in a soliton

molecule obtained using the gaussian trial function.

We start the variational calculation by normalising the trial function given by Equation

(4.5) to the constant power P

P =
•

Â
m=�•

•

Â
n=�•

|Ym,n|2, (4.8)

which gives A in terms of the elliptical function J3 (x,y)

A =

p
Pq

p
2

p
h1h2 (A1 +(A2 +A3))

, (4.9)

where,

A1 =
J3 (�n1xp,X1)J3

�
�n1yp,X2

�

exp
⇣
�n1x2+n2x2

4h12 � (n1y�n2y)2

4h22 � if
2

⌘ ,

A2 =
⇣

1+ e2mf
⌘

J3

✓
�1

2
(n1x +n2x)p,X1

◆
⇥J3

✓
�1

2
(n1y +n2y)p,X2

◆

⇥ exp
✓
�n1x

2 �4n1xn2x +n2x
2

2h12 �
(n1y �n2y)2

2h22 � if
◆
,

A3 =
J3 (�n2xp,X1)J3

�
�n2yp,X2

�

exp
⇣
�n1x2+n2x2

4h12 � (n1y�n2y)2

4h22 � if
2

⌘ ,

and X1 = e�
1
2 p2h1

2
and X2 = e�

1
2 p2h2

2
.

We then calculated the energy functional using of the above normalized trial function

which is given in Appendix A. The variational and numerical equilibrium profiles of the

isotropic waveguide array are shown in Figure 4.4.
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Figure 4.4: In-phase and out-of-phase isotropic soliton molecules obtained by both numerical (red
dots) and variational method (blue solid line) for the choice of parameters L = 20,P = 2,g =
4,dx = dy = 0.5 with the assumption of f = 0 and p to achieve in-phase (left) and out-of-phase
(right) solitons.

The left and right subfigures are displaying the isotropic soliton molecule profiles for in

phase, f = 0, and, out-of-phase, f = p , cases, respectively. Here, we fixed both solitons

on the x-axis, n1y = n2y = 0, fixed the first soliton at origin, n1x = 0, and left the position

of the second soliton on the x-axis, n2x, to vary. The figures show that, the variational and

numerical profiles are in excellent agreement with each other.

4.4.1 Equilibrium Width and Energy

At this stage, the energy functional is a function of the two soliton peak positions and

widths, i.e., E = E(n1x,n1y,n2x,n2y,h1,h2). To find the solitons equilibrium widths, the

energy needs to be minimized with respect to h1 and h2

∂E
∂h1

|h1=h10 = 0,
∂E
∂h2

|h2=h20 = 0, (4.10)

where, h10 and h20 are the equilibrium widths. We assume h2=h1 and then minimize

the energy with respect h1. There are two possible schemes to achieve this: either by

considering the trial function for a single soliton only or by fixing the first soliton at

origin n1x = n1y = 0 while the second soliton is placed remotely: n2x = 0 and n2y = •.

The equilibrium profiles for both schemes turns out to be the same, as it should be. By

substituting h10 and h20 in the ansatz function, we find the equilibrium profiles while

substituting them into the energy functional we obtain the PN potential as a function



53

of n2x and n2y. The profiles of PN potential for in-phase and out-of-phase solitons are

displayed in Figures 4.5 and 4.6, respectively. To generate these plots, we set one soliton

at origin (n1x = 0 and n1y = 0) and thus we obtained the PN potential in terms of the

coordinates of the second soliton, VPN =VPN(n2x,n2y).
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Figure 4.5: In-phase PN potential for the isotropic case (upper panel) and the two cross sections
of the PN potential (lower panel). The parameters used are P = 2, g=4, n1x = n1y=0, h1=h10 and
h2=h20, dx=dy=0.5 with f=0. Red dashed corresponds to n2y = 0 and n2x = 0 for the left and
right subfigures, respectively. Solid blue corresponds to n2y = 1 and n2x = 1, and dotted green
corresponds to n2y = 2 and n2x = 2.

The numerical diagonalization scheme of the system given by Equations (5.30)-(4.4)

generates at once the whole spectrum of eigenenergies and eigenfunctions including the

ground state and excited states of the soliton molecule. This enables us to compare nu-

merical ground state energy with the variational one, as in Figure 4.7. The variational

calculation clearly captures the ground state of the soliton molecule for many soliton sep-

arations.
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Figure 4.6: Out-of-phase PN potential for the isotropic case (upper panel), and its two cross-
sections (lower panel). Parametes used are same as in Figure 4.5 but with f=p . Red dashed
corresponds to n2y = 0 and n2x = 0 for the left and right subfigures, respectively. Solid blue
corresponds to n2y = 1 and n2x = 1, and dotted green corresponds to n2y = 2 and n2x = 2.

Figure 4.7: The PN potential for separation of solitons calculated variationally for two choices
of phases: In-phase (blue solid line) and out-of-phase (red dashed line). Numerically calculated
points are presented by black dots for the choice of parameters P=2, g=4, dx=dy=0.5.
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One can clearly notice in this figure the modulation brought by the interaction between

solitons to the PN potential. When the two solitons are widely separated, the PN potential

is periodic as for single solitons. However, when the solitons are close the PN potential

acquires an additional potential well (barrier) for in-phase (out-of-phase) soltions.

4.4.2 Characteristics of PN Potential

To study the role of binding on mobility, we investigate the dependence of the PN potential

on the location of the molecule, its orientation with respect to the direction of motion,

and bond length. We plot the PN potential for varying molecule’s center-of-mass with

solitons’ separation Dn = 1,2,3,4 and 5, as shown in Figure 4.8.

�n=1 �n=3�n=2 �n=4 �n=5

0 1 2 3 4 5
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Figure 4.8: The PN potential versus the molecule’s position for different solitons separation Dn =
n2x �n1x. The parameters used are P=2, g=4, n2x = n2y=0, h1=h10, h2=h20, dx = dy=0.5.

This figure, indicates that the PN potential is lowest for the two solitons with the closest

separation. By increasing the separation between the two solitons, the barrier of the poten-

tial increases. For separations Dn �3, the PN potential remains the same. Consequently,

separations Dn > 2 will not effect the PN potential since the interaction between the two

solitons becomes negligible. This figure suggests that, in principle, mobility should be

enhanced for the two solitons with closest separation. However, numerical investigations
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show that solitons are immobile for this case due to the increse in the barrier height.

Now, we investigate the mobility in terms of the molecule’s direction of movement. We

considered two trajectories: (i) parallel to the molecule’s axis and (ii) at 45� with respect to

the molecule’s axis. Figure 4.9 show that when the two solitons are moved in the diagonal

direction, the PN barrier becomes higher and it is harder now to move the solitons.

4.4.3 Soliton-Soliton Interaction

The PN potential is the sum of the soliton-soliton interaction potential and the interaction

between the solitons and the waveguide array

VPN =VSS +V •
PN , (4.11)

where VSS is the soliton-soliton interaction and V •
PN is the limit of VPN when the two

solitons are widely separated such that their VSS vanishes. We may thus calculate VSS

using for instance

VSS(n2x) =VPN |n1y=0
n2y=0
n1x=0

�VPN | n1y=0
n2y=0
n1x!•

. (4.12)

Figure 4.10 shows VSS in terms of separation between solitons, namely n2x since we have

fixed one soliton at origin. While out-of-phase solitons repel, due to the potential bar-

rier, the in-phase solitons attract and experience a molecular-type interaction potential.

In principle, the soliton-soliton interaction allows for the formation of a soliton molecule.

However, the magnitude of the potential depth (bond strength) is in this case much smaller

than the PN potential barrier. Therefore, binding will have no effect on the mobility or

pinning of solitons.

The concept of a soliton molecule in this case is excluded. On the other hand, we will

show in the next section that when the two solitons are located at different waveguides
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Figure 4.9: The PN potential for two orientations (q=0 (red dotted), q=45 (blue dashed)) for
in-phase f=0 and (q=0 (green dotdashed), q=45 (brown tiny-dashed)) for out-of-phase f=p re-
spectively with three different fixed separations Dn = n2x �n1x=1 (left), Dn=2 (middle) and Dn=3
(right). Parameters used are P=2, g=4, and dx = dy = 0.5.
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with high anisotropy, the soliton-soliton interaction will be dominant and a stable soliton

molecule forms.

In-phase
Out-of-phase

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
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Figure 4.10: The soliton-soliton interaction given by Equation (4.12) for the choice of parameters
P=2, g=17, dx = dy = 0.1

4.5 Anisotropic Waveguide Arrays

We have shown in a recent work that 2D solitons become mobile in anisotropic waveg-

uides [65]. We have also shown in the present paper that binding between solitons in

an isotropic waveguide has no effect on their mobility. Therefore, we consider soliton

molecules in anisotropic waveguides expecting the binding to enhance on their mobility.

4.5.1 Equilibrium Profiles and Mobility

The PN potentials for an in-phase and out-of-phase combination of two solitons with

anisotropic waveguide array is shown in Figures 4.11 and 4.12, respectively. The figures

show that mobility should be high in the horizontal direction compared to that in the

vertical direction.

By comparing the cross sections of Figure 4.11 with Figure 4.5, we can see that the PN

potential is not periodic as it was in the isotropic case. The variational and numerical

equilibrium profiles of the anisotropic waveguide are shown in Figure 4.13. Agreement
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Figure 4.11: In-phase PN potential for the anisotropic case (upper panel) and its two cross section
profiles (lower panel). The parameters used are P = 2, g=4, n1x = n1y=0, h1=h10 = 3.86 and
h2=h20 = 0.760, dx=3, dy=0.15 with f=0. Red dashed corresponds to n2y = 0 and n2x = 0 for the
left and right subfigures, respectively. Solid blue corresponds to n2y = 1 and n2x = 1, and dotted
green corresponds to n2y = 2 and n2x = 2.

between the variational and numerical profiles is clear in this figure.

4.5.2 Formation of Soliton Molecule

We have already found that 2D soliton molecules are completely immobile in isotropic

waveguide arrays [65]. Hence, the anisotropy was invoked and therefore we consider

anisotropic waveguide array with coupling in the horizontal (x-)direction to be much

weaker than in the vertical (y-)direction.

With high anisotropy, the PN potential in the horizontal direction, VPNx, is shown to be

almost monotonic potential well with a global minimum at zero separation between the

two solitons while the PN potential in the vertical direction, VPNy, is oscillatory, as shown

in Figure 4.11. The cross-sections of the PN potantial shown in Figure 4.11 indicate that
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Figure 4.12: Out-of-phase PN potential for the anisotropic case (upper panel), and its two cross-
section profiles (lower panel). Parameters used are the same as in Figure 4.11 but with f=p . Red
dashed corresponds to n2y = 0 and n2x = 0 for the left and right subfigures, respectively. Solid
blue corresponds to n2y = 1 and n2x = 1, and dotted green corresponds to n2y = 2 and n2x = 2.

Figure 4.13: In-phase and out-of-phase anisotropic soliton molecules obtained by both numerical
(red dots) and variational method (blue solid line) for the choice of parameters L = 20,P = 2,g =
4,dx = 2 and dy = 0.2 with f = 0 (left) and p (right).

if the two solitons are located at the same waveguide, they will coalesce.

Locating the solitons at different waveguides prevents them from coalescing due to the

potential barrier existing in between them. Nonetheless, the two solitons can still interact
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through the overlap of their tails across the waveguides. Therefore, while the two solitons

will be completely mobile in the horizontal direction, they are restricted to move only

along their respective waveguides. This results in a special kind of a soltion molecule

where the stability is provided by the PN potential and energy exchange is provided by

the soliton-soliton interaction. Comparing Figures 4.11 and 4.12 shows that molecule

formation is possible only for the in-phase soltions. Out-of-phase solitons are always

expelled out of the waveguide because their force of interaction is expulsive.

Figure 4.14: Soliton molecule in anisotropic PN potential (in-phase) given in Figure 4.11 along
horizontal direction by means of numerical simulation of Equation (4.1) and using the parameters
L = 30, P=2, g=3, dx =3, dy =0.15. The two solitons are located initially at n1x = L/2�2, n2x =
L/2+2, n1y = L/2, n2y = L/2+2.
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Inspired by the above prediction of the variational calculation, we performed a numerical

simulation of the two in-phase solitons separated initially by two waveguides in the y-

direction and by an arbitrary nonzero initial separation in the x-direction. The dynamics

of the solitons is then obtained by solving numerically the DNLSE, Equation (4.1). The

resulting dynamics is shown in Figure 4.14. The two solitons oscillate around their center

of mass indicating the formation of a soliton bound state. The trajectories of the two

solitons are shown in Figure 4.15.
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Figure 4.15: Trajectories of the two solitons corresponding to the soliton molecule of Figure 4.14.

The potential of interaction between the two solitons can be obtained from their trajec-

tories. By calculating the soliton separation Dn(t)=n2x(t)� n1x(t) and differentiating it

twice to obtain the force F = µd2/dt2Dn(t), where µ is the reduced effective mass of the

two solitons, we then calculate the potential by integrating the force with respect to Dn(t),

V =�
Z Dnxmax

Dnxmin

F(Dn)d(Dn), (4.13)

where Dnmin and Dnmax are the minimum and maximum solitons separation.

In Figure 4.16, we show the potential calculated numerically from Equation (4.1). The

potential is parabolic and the force of interaction is linear. This indicates that the soliton

molecule can be modeled by a classical system of two masses attached to a spring. It
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will be constructive to compare the numerical potential with the variational one. This is

performed using both a gaussian ansatz, as given by Equation (4.5), and an exponential

ansatz given by

Ym,n = A
✓

e�
|m�n1x|

h1
� |n�n1y|

h2 + e�
|m�n2x|

h1
� |n�n2y|

h2
+if
◆
. (4.14)

Figure 4.16: The potential of interaction between two solitons in a soliton molecule obtained by:
i) the numerical solution of Equation (4.1) and the trajectories of the two solitons in Figure 4.15
(blue solid line), ii) variational calculation using a gaussian ansatz, Equation (4.5), (red dashed
line), and iii) variational calculation using an exponential trial function, Equation (4.14), (green
dotted line). The dashed-dotted line corresponds to the simplified analytical expression Equation
(4.15). Parameters used are those of Figure 4.14.

Both trial functions lead to excellent agreement between the variational and numerical

results, as Figure 4.16 clearly shows. It should be noted that an arbitrary constant of

integration resulting from the integration in Equation (4.13) gave us the freedom to shift

the numerical potential vertically in order to match the variational one. The curvature,

on the other hand fits naturally. The above-mentioned analogy with the classical two-

masses-spring system suggests that the potential of interaction between the solitons to be

parabolic in terms of their separation. Indeed, an accurate simplified analytical expression

for the potential of interaction between the two solitons in terms of their separation, Dn,



64

can be derived by expanding the energy functional to the quadratic order, as given by

VPN =V0 +
1
2

k Dn2, (4.15)

where V0 and k are given in terms of the parameters dx, dy, g , and the soliton widths h1

and h2, as detailed in Appendix 8. In a classical system of two masses attached to a spring,

the period of oscillation is given by t = 2p
p

µ/k. The period of the soliton molecule can

thus be estimated for a specific setup. For instance, for the parameters used to generate the

soliton molecule shown in Figure 4.14, the spring constant k can be calculated as given

by Equation (A.12). The effective mass of a single soliton is given by the inverse of the

second derivative of the energy with respect to the momentum, which in our case will be

2Pdx. The reduced mass of the two solitons is thus µ = 1/2dx. For the parameters of

Figure 4.14, the estimate leads to t ⇡ 39, which is less the 10% off the numerical value

of t = 43.5. This indicates that the force between the two solitons is indeed a Hooke-type

of restoring force

F =�k Dn. (4.16)

It should be noted, however that this applies for short solitons separations. For larger

separations, the potential becomes constant and the force decays exponentially. This cor-

responds to the constant plateaus in the x-cross section of the VPN potential for large

solitons separation, as shown in Figures 4.16 and A.1.

4.5.3 Soliton Fission

We consider a soliton molecule of two out-of-phase solitons placed at different waveg-

uides. Basically this is similar to the soliton molecule considered in the previous section

but with out-of-phase solitons that are initially not separated from each other. Interest-

ingly, we found this to be a metastable state with a long lifetime after which it suddenly

splits into two solitons propagating away from each other. We named this behavior as
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‘soliton fission’. Figure 4.17 shows the splitting of the soliton molecule.

We see that the solitons remain coalescing up to t = 80 which is almost double the period

of the soliton molecule of the previous case. The two solitons keep their coalescence as

one soliton and exhibit only a small vibration in the amplitude. The soliton molecule then

suddenly splits into two solitons propagating away from each other. Figure 4.18 shows

the trajectories of two solitons before and after splitting.

Figure 4.17: Splitting of the soliton molecule. Parameters used: P=2, g=4, dx =3, dy =0.15,
h1=3.86 and h2=0.76, f = p , and initial positions n2x = n1x=L/2, n1y = L/2, n2y = L/2+1.
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Figure 4.18: Trajectories of the two solitons forming the soliton molecule of Figure 4.17.

4.6 Conclusions

We have used both numerical and variational calculations to obtain the equilibrium pro-

files and ground state of discrete two-soliton molecules in 2D waveguide arrays. Using a

gaussian variational trial function, Equation (4.5), with six variational parameters corre-

sponding to the coordinates peak positions and widths of the two solitons, we calculated

the PN potential and the interaction potential between the solitons. We have investigated

the mobility of the soliton molecule and found that binding does not enhance on the mo-

bility. Neither the bond length nor the direction of the molecule’s motion had a tangible

effect of the mobility. We have shown the existence of stable discrete soliton molecules

in two-dimensional waveguide arrays. Analogy was made to the classical diatomic model

with linear restoring force. A simplified expression for the force and potential of interac-

tion were derived, Equations (4.15) and (4.16). We have also found a unique behavior of

a meta stable state of a soliton molecule made of two out-of-phase solitons each place in

a different waveguide. Such a molecule shows a sudden splitting into two solitons prop-

agating away from each other. We believe our results will be valuable for the all-optical

applications using solitons to perform optical data processing.
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Chapter 5: Mapping the Spin-1/2 System to 2D Manakov System

In this chapter, we find Skyrmion-like topological excitations for a two-dimensional spin-

1/2 system. Expressing the spinor wavefunction in terms of a rotation operator maps the

spin-1/2 system to a Manakov system. We employ both analytical and numerical methods

to solve the resulting Manakov system. Using a generalized similarity transformation, we

reduce the two-dimensional Manakov system to the integrable one-dimensional Manakov

system. Solutions obtained in this manner diverge at the origin. We employ a power series

method to obtain an infinite family of localized and nondiverging solutions characterized

by a finite number of nodes. A numerical method is then used to obtain a family of local-

ized oscillatory solutions with an infinite number of nodes corresponding to a skyrmion

composed of concentric rings with intensities alternating between the two components

of the spinor. We investigate the stability of the skyrmion solutions found here by cal-

culating their energy functional in terms of their effective size. It turns out that indeed

the skyrmion is most stable when the phase difference between the concentric rings is p ,

i.e., alternating between spin up and spin down. Our results are also applicable to doubly

polarized optical pulses.

5.1 Introduction

We are motivated to investigate the behaviour and stability of two-dimensional topologi-

cal excitations in spin-1/2 system through a novel approach. We start with the calculation

of rotation operator which is used to map the spin 1/2 system into a Manakov system that

is considered as a model of wave propagation in fiber optics and provides the spin texture

of skyrmions. The challenge is to solve the obtained 2D Manakov system, in order to find

the nontrivial spin texture. We solved the 2D Manakov system through various analytical

and numerical techniques. We used similarity transformation and found all solutions to

diverge at the origin, r = 0. Then, we found nondiverging densities through power series

method but with trivial textures. Finally, we used a numerical method to find nondiverging
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and nontrivial spin textures. The stability of these nondiverging and nontrivial skyrmions

is also investigated. We show that the two spin states (spin up and spin down) are in fact

responsible for the stability of two-dimensional topological excitations.

This chapter is organized as follows. In Section 5.2 we calculate the spinor wavefunc-

tion and texture for all the possible cases of rotations. Mapping the spin-1/2 system to a

2D Manakov system is described in Section 5.3. In Section 5.4, we solve the Manakov

system to obtain nondiverging and nontrivial skrmions. We applied similarity transfor-

mation in Section 5.4.1, power series method in Section 5.4.2 and numerical method in

Section 5.4.3. The stability of the nondiverging and nontrivial skyrmions is investigated

in Section 5.5. Finally, we conclude by summarizing our main results in Section 5.6.

5.2 Two-Dimensional Skyrmions

A spinor wavefunction contains two degrees of freedom: total density n(r, t) and the

spinor z (r) which has two components since we consider spin-1/2. The total wavefunc-

tion is thus written as

Y(r, t) =
p

n(r, t) z (r), (5.1)

which obeys the NLSE

i
∂
∂ t

Y(r, t) =�—2Y(r, t)� g |Y(r, t)|2Y(r, t). (5.2)

The spin part of the wavefunction, z (r), can be parametrized by a rotation operator as

z (r) = exp
n
� i

S
w(r).S

o
z . (5.3)

Here S is the spin matrix, S=sxx̂+syŷ+szẑ, with sx, sy and sz being the Pauli matrices.

This operator amounts to a rotation of the constant spin z around the vector w(r). Consid-

ering spherically symmetric spin textures and restricting the general rotation operator to

be around the vector r by an angle of w(r) gives w(r) = w(r)r̂ as depicted schematically
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in Figure 5.1. Average spin at a position r is rotated by an angle w(r)/S from its initial

orientation. An explicit form of w(r) determines a specific texture of the skyrmion. The

constant spin z can be taken as any of the eigenvectors of the Pauli spin matrices, namely

zx =
1p
2

0

B@
1

1

1

CA ; eigenstate for sx, (5.4)

zy =
1p
2

0

B@
1

i

1

CA ; eigenstate for sy, (5.5)

zz =

0

B@
1

0

1

CA ; eigenstate for sz. (5.6)

The rotation operator can be reduced to a useful formula as:

exp
n
� i

S
w(r)r̂.S

o
= Icos[w(r)]�2i(r̂.S)sin[w(r)], (5.7)

where I is the identity matrix. Using this formula, the spinor wavefunction takes the form

Y(r, t) =
p

n(r, t)⇥

0

B@
cos[w(r)]� icos(q)sin[w(r)]

sin(q)
⇣
� icos(f)+ sin(f)

⌘
sin[w(r)]

1

CA , (5.8)

where we have taken z =

0

B@
1

0

1

CA. It is then straightforward to obtain the spin texture in

terms of the average spin components

< Sx >= z †(r)Sxz (r), (5.9)

< Sy >= z †(r)Syz (r), (5.10)

< Sz >= z †(r)Szz (r). (5.11)
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In the present work, we restrict the investigation to two-dimensional spin textures. To

obtain a two-dimensional spin texture, we consider the three possible planes, namely xz-

, yz-, and xy-planes. We consider the three possible initial spinors, namely zx, zy, and

zz and the three possible rotation axes, namely x-, y-, and z-axes. We consider also an

interesting case with rotations in the xy-plane around the r-axis. Inspecting all possible

cases, we found only three fundamentally and nontrivial different types of textures. The

first is constructed by spins rotated around a fixed axis normal to the plane. The second

is obtained when the spins are rotated around a fixed axis parallel to the plane. The third

is obtained when spins are rotated around r in the xy-plane. In the following we show

the details for calculating the three spin textures. Considering rotations around x, y, z, or

r-axis, we replace r̂ by x̂, ŷ, ẑ, or r̂ , respectively.

!

"

#
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Figure 5.1: Schematic figure on left representing the action of the spin rotation operator for a
maximally symmetric skyrmion while on right the rotation is around y-axis in xz-plane with initial
spin along z-axis.

Rotations in the xz-plane: We consider rotations in xz-plane with axis of rotation being the

x-axis, we choose the initial orientation along z-direction and hence use the eigenvector

of Sz, namely, zz, for the operation. The average spin components are given by

(< Sx >,< Sy >,< Sz >) =

✓
0,�sin[2w(r)]

2
,
cos[2w(r)]

2

◆
. (5.12)
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The spinor takes the form

z (r) =

0

B@
cos[w(r)]

�isin[w(r)]

1

CA . (5.13)

This corresponds to spin rotations out of the plane, i.e., around an axis parallel to the

plane.

Considering rotations around the y-axis, the average spin components become

(< Sx >,< Sy >,< Sz >) =

✓
sin[2w(r)]

2
,0,

cos[2w(r)]
2

◆
, (5.14)

and the spinor becomes

z (r) =

0

B@
cos[w(r)]

sin[w(r)]

1

CA . (5.15)

This spin texture corresponds to spin rotations within the plane, i.e., around an axis per-

pendicular to the plane. Considering the rotations around z-axis, we get:

z (r) =

0

B@
cos[w(r)]� isin[w(r)]

0

1

CA , (5.16)

and the average spin components are:

(< Sx >,< Sy >,< Sz >) = (0,0,1/2), (5.17)

which is trivial case because it corresponds to spin rotations around the same axis along

which the spins are aligned, and thus will be ignored. The spinor and the average spin

components for all the possible cases of rotations around fixed axes in xz-plane are listed

in Table 5.1. Considering other planes leads basically to only these two spin textures.
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Table 5.1: All possible cases of rotations in the xz-plane around three possible fixed axes of rota-
tion, x-, y-, and z-axis, with three possible initial spin directions, zx, zy, zz. The spinor wavefunc-
tion, z (r), and the average spin components, < Sx >, < Sy > and < Sz >, are calculated using
Equations (5.8 - 5.11).

Rotations in xz-plane around fixed axes
Axis of rotation Initial Spin Orientation z (r) (< Sx >,< Sy >,< Sz >)

x-axis
q = p/2,
f = 0

zx

⇣
e�iw(r) zx

⌘ �1
2 ,0,0

�

zy

0

BB@

cos[w(r)]+ sin[w(r)]p
2

i(cos[w(r)]� sin[w(r)])p
2

1

CCA

✓
0,

cos[2w(r)]
2

,
sin[2w(r)]

2

◆

zz

✓
cos[w(r)]

�isin[w(r)]

◆ ✓
0,�sin[2w(r)]

2
,
cos[2w(r)]

2

◆

y-axis
q = p/2,
f = p/2

zx

0

BB@

cos[w(r)]� sin[w(r)]p
2

cos[w(r)]+ sin[w(r)]p
2

1

CCA

✓
cos[2w(r)]

2
,0,�sin[2w(r)]

2

◆

zy

⇣
e�iw(r) zy

⌘ �
0, 1

2 ,0
�

zz

✓
cos[w(r)]
sin[w(r)]

◆ ✓
sin[2w(r)]

2
,0,

cos[2w(r)]
2

◆

z-axis
q = 0,
f = p/2

zx

0

BB@

cos[w(r)]� isin[w(r)]p
2

cos[w(r)]+ isin[w(r)]p
2

1

CCA

✓
cos[2w(r)]

2
,
sin[2w(r)]

2
,0
◆

zy

0

BB@

cos[w(r)]� isin[w(r)]p
2

icos[w(r)]� sin[w(r)]p
2

1

CCA

✓
�sin[2w(r)]

2
,
cos[2w(r)]

2
,0
◆

zz

⇣
e�iw(r) zz

⌘ �
0,0, 1

2
�

Table 5.2: All possible cases of rotations in the xy-plane around r with three possible initial spin
directions, zx, zy, zz. The spinor wavefunction, z (r), and the average spin components, < Sx >,
< Sy > and < Sz >, are calculated using Equations (5.8 - 5.11).

Rotations in xy-plane around r
Axis of rotation Initial spin z (r) (< Sx >,< Sy >,< Sz >)

r =
p

x2 + y2

(q = p/2)

zx

0

BB@

cos[w(r)]� ie�if sin[w(r)]p
2

cos[w(r)]� ieif sin[w(r)]p
2

1

CCA

✓
cos2[w(r)]+ cos(2f)sin2[w(r)]

2
,
sin(2f)sin2[w(r)]

2
,�sin(f)sin[2w(r)]

2

◆

zy

0

BB@

cos[w(r)]+ e�if sin[w(r)]p
2

i(cos[w(r)]� eif sin[w(r)])p
2

1

CCA

✓
sin(2f)sin2[w(r)]

2
,
cos2[w(r)]� cos(2f)sin2[w(r)]

2
,
cos(f)sin[2w(r)]

2

◆

zz

✓
cos[w(r)]

e�i( p
2 �f) sin[w(r)]

◆ ✓
sin(f)sin[2w(r)]

2
,�cos(f)sin[2w(r)]

2
,
cos[2w(r)]

2

◆

Rotations in the xy-plane around r: We consider the rotations around r =
p

x2 + y2.

Since the axis of rotation changes with f , the spinor components and the texture demand

also on f , as listed in Table 5.2.
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5.3 Mapping the Spin-1/2 System to 2D Manakov System

We have shown in the previous section that the spinor wavefunction of a skyrmion can be

written in a specific form that corresponds to spin rotations. There are many such specific

forms depending on the plane at which the spins are located in, the axis of spin rotations,

and the initial spin orientation, as summarized by Tables 1 and 2. This procedure is effec-

tively a change of variables amounting to a change in the representation from the spinor

components, y1 and y2, to the total density n and angle of rotation w/S.

Considering one of these specific cases, namely spinors restricted to the xz-plane with

spin rotations around the y-axis as shown schematically in Figure 5.1, the spinor becomes
0

B@
y1(r,f , t)

y2(r,f , t)

1

CA=
p

n(r, t)

0

B@
eil1f cos[w(r)]

eil2f sin[w(r)]

1

CA , (5.18)

where r =
p

x2 + z2 and f is the angle between r and the z-axis. We have added the

phase operator eilf to allow for non-zero angular momentum of any of the two compo-

nents. This accounts for an acquired phase while spins are rotated. This spin-1/2 system

is then mapped to a 2D Manakov system obtained by substituting the spinor (5.18) in the

NLSE, (5.2),

i

0

B@
y1(r,f , t)

y2(r,f , t)

1

CA

t

= �

0

B@
y1(r,f , t)

y2(r,f , t)

1

CA

rr

� 1
r

0

B@
y1(r,f , t)

y2(r,f , t)

1

CA

r

� 1
r2

0

B@
y1(r,f , t)

y2(r,f , t)

1

CA

ff

� g(|y1(r,f , t)|2 + |y2(r,f , t)|2)⇥

0

B@
y1(r,f , t)

y2(r,f , t)

1

CA . (5.19)

The problem then reduces to solving this system, which we describe in the next section.

The solutions y1(r,f , t) and y2(r,f , t) can then be used in (5.18) to obtain two coupled

equations for n(r, t) and w(r). Solving these equations gives the texture of the skyrmion

through < Sx >, < Sy >, and < Sz >, as well as its density profile, n(r, t).
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5.4 Solving the Manakov System

We present different methods of solving the Manakov system (5.19) in order to generate

the non-trivial spin texture. All methods mentioned below are well known and powerful

techniques in analytical and numerical analysis but our desired results are achieved by

the numerical technique described in Section 5.4.3. The other methods paved the way for

developing the numerical technique on a trial function, so we include them in this section.

At first, we attempt to map the 2D Manakov system (5.19) into the 1D Manakov system

which is integrable with many known solutions. While this leads to nontrivial skyrmion

textures, the corresponding spinor densities diverge at r = 0. As an alternative approach

we employ a power series method to find well-behaved spinor densities. However, the

associated skyrmion texture turns out to be trivial for such a case. Finally, well-behaved

spinor densities with nontrivial skyrmion textures are obtained by employing a trial func-

tion that takes into account the spin texture of a specific case of rotation as detailed in

Tables 5.1 and 5.2, and then solving numerically the NLSE for n(r, t) and w(r).

5.4.1 Similarity Transformation

At first, we transform the 2D Manakov system into the fundamental 1D Manakov system

via a simple similarity transformation. This will enable us then to find the new solutions

of 2D Manakov system by using all known solutions of the fundamental 1D Manakov sys-

tem. We start with the simplest case for the solution of 2D Manakov system, namely, the

cylindrically symmetric solution. As there is no f dependence in this case, corresponding

to l1 = l2 = 0, we are left with

i

0

B@
y1(r, t)

y2(r, t)

1

CA

t

= �

0

B@
y1(r, t)

y2(r, t)

1

CA

rr

� 1
r

0

B@
y1(r, t)

y2(r, t)

1

CA

r

� g(|y1(r, t)|2 + |y2(r, t)|2)

0

B@
y1(r, t)

y2(r, t)

1

CA . (5.20)
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To reduce this system into the integrable 1D Manakov system we apply the following

simple transformation

y1,2 = rn F1,2 (5.21)

to the above 2D Manakov system. The system then reduces to the fundamental 1D Man-

akov system for n =�1/2

y1,2 =
1
pr

F1,2. (5.22)

For all solutions of the 1D Manakov system, F1,2, that are finite at r = 0, the solutions

of 2D Manakov system y1,2 diverge at r = 0. This applies to all known solutions of

1D Manakov system which we have used in Appendix 8, except the solution (F1,F2)⇠

(tanh(r),sech(r)). The tanh(r) part of this particular solution is zero at r = 0, and thus

y1 ⇠F1/
pr does not diverge at r = 0. However, the other component y2 ⇠ sech(r)/pr

diverges at r = 0. For all other solutions, both components diverge at r = 0. To establish

the link between the solutions of the 1D and 2D Manakov systems in a rigorous manner,

we consider the following most general form of a similarity transformation

p1

"
i y1t +b11

h
y1rr +

1
r

y1r

i
+
h
b12|y1|2 +b13|y2|2

i
y1 +

h
b14r + ib14i

i
y1

#
= 0,

p2

"
i y2t +b21

h
y2rr +

1
r

y2r

i
+
h
b22|y1|2 +b23|y2|2

i
y2 +

h
b24r + ib24i

i
y2

#
= 0,

(5.23)

where p1, p2, b11, b21, b12, b22, b13, b23, b14r, b24r, b14i, and b24i are all functions of

(r, t), and are arbitrary real coefficients. We apply the following transformation on the

system (5.23)

Y1(~r, t) = A(r, t) eiB1(r,t) F [P(r, t),T (r, t)],

Y2(~r, t) = A(r, t) eiB2(r,t) G[P(r, t),T (r, t)]. (5.24)
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Here, A(r, t), B1(r, t), B2(r, t), P(r, t), and T (r, t) are all defined as real functions.

Substituting (5.24) in (5.23) and requiring the resulting equations to take the form of the

following fundamental Manakov system

iFt(P,T )+a11Frr(P,T )+
h
a12|F(P,T )|2 +a13|G(P,T )|2

i
F(P,T ) = 0,

iGt(P,T )+a21Grr(P,T )+
h
a22|F(P,T )|2 +a23|G(P,T )|2

i
G(P,T ) = 0, (5.25)

gives a set of equations for the unknown functions. Solutions of these equations are

relegated to Appendix 8. We listed few solutions for the 2D Manakov system obtained

using this approach in Appendix 8. Here again, we end up with the solutions having

divergences at r = 0 and therefore they will be discarded for no physical significance.

Seeking solutions which are well-behaved at r = 0, we employ in the next section an

Iterative Power Series (IPS) method [174].

5.4.2 Power Series Method

We apply the IPS method with a stationary solution given by

y1(r, t) = Z1(r)eia1 t ,

y2(r, t) = Z2(r)eia2 t , (5.26)

where Z1(r) and Z2(r) are real functions and a1 and a2 are arbitrary real constants. Using

this solution, Equation (5.20) renders to the following ordinary differential equations

1
r

Z0
1(r)+Z00

1 (r)+Z1(r)
⇥
g Z2

2(r)�a1
⇤
+ g Z3

1(r) = 0,

1
r

Z0
2(r)+Z00

2 (r)+Z2(r)
⇥
g Z2

1(r)�a2
⇤
+ g Z3

2(r) = 0. (5.27)

In the following, we give a brief algorithm description of the IPS method for obtaining a

convergent power series solution to (5.27):

Expand Z1(r) and Z2(r) in power series around an arbitrary real initial point r0:

Z1(r) = a0 +a1 (r �r0)+Ânmax
n=2 an(r �r0)n,
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Z2(r) = b0 +b1 (r �r0)+Ânmax
n=2 bn(r �r0)n.

Set initial values {a0,a1} and {b0,b1} for Z1(r) and Z2(r), respectively.

Substitute in (5.27) to obtain the recursion relation for an and bn in terms of a0, a1, b0,

and b1.

Calculate Z1(D), Z1
0(D), Z2(D), and Z2

0(D), where D = (r � r0)/I and I is an integer

larger than 1.

Assign: a0 = Z1(D), a1 = Z1
0(D), b0 = Z2(D), and b1 = Z2

0(D).

Obtain an and bn in terms of a0, a1, b0, and b1.

Repeat steps 2-6 I times.

At the Ith step, a0 will correspond to the power series of Z1(r) and b0 will correspond to

the power series of Z2(r).
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Figure 5.2: Stationary power series solutions of (5.27) with different number of nodes. Dashed
(red) is Z1(r) and solid (blue) is Z2(r). The left subfigure is single-node solution with a0 =
1.3293391, root at r = 1.85 and the right subfigure is double-node solution with a0 = 1.8079999,
roots at r = 1.58,5.45. Parameters used are: b0 = 1, a1 = b1 = 0, a1 = a2 = 0.5, g = 2, nmax = 2,
I = 5000, and D = 0.0032.

Employing the algorithm above, we obtain a family of infinite number of convergent

solutions by tuning the parameter a0 and fixing the other parameters. In Figure 5.2, we

present two plots showing the single-node and double-node solutions obtained with I =

5000 and nmax = 2. Although this method provides an infinite number of non-divergent

densities, due to the scalar symmetry between y1(r, t) and y2(r, t), the spin textures

corresponding to these solutions which is proportional to y2/y1, turn out to be trivial.
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5.4.3 Numerical Solutions
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Figure 5.3: The numerical solutions of the spinor components given by Equation (5.28) of the
system (5.29) and (5.30). The solutions correspond to alternating spin-up (green) and spin-down
(blue) components of the spinor wave function. The black curve corresponds to w(r). The solid
and dashed curves correspond to the circle and square in Figure 5.10, which represent a stable and
a metastable skyrmion, respectively. Parameters used are: g = c1 = 1/2, and a0 = 2.9.

Here, we introduce a new procedure that leads to nondiverging and nontrivial spin tex-

tures. We start with a trial function which is constructed on the basis of the spinor wave

function for rotation cases listed in Tables 5.1 and 5.2. For instance, we consider a case

of rotation from Table 5.1 in xz-plane with initial spin along z-axis and y-axis is the axis

of rotation.

Our ansatz, for this case becomes:

y1(r, t) = a(r)cos[w(r)],

y2(r, t) = a(r)sin[w(r)], (5.28)

where a(r) =
p

n(r). Substituting this trial function into the system given in Equa-

tion (5.20) and then requesting the coefficients of cos[w(r)] and sin[w(r)] to vanish sep-
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arately, we get two coupled equations in terms of a(r) and w(r)

2a0(r)w 0(r)+a(r)
⇣w 0(r)

r
+w 00(r)

⌘
= 0, (5.29)

g a3(r)+ a0(r)
r

�a(r)
⇣ 1

4r2 +w 02(r)
⌘
+ ra0(r) = 0. (5.30)

We solve Equation (5.29) for w(r) as

w(r) =
Z c1

r a(r)2 dr + c2, (5.31)

where c1 and c2 are constants of integration. By substituting the above relation for w(r)

in Equation (5.30), our problem (5.20) is reduced into the following single equation

c2
1 � g r2 a6 �r a3

⇣
a0+r a00

⌘
= 0. (5.32)

We solve this equation for a(r) numerically. The initial conditions used are a(0) = a0

and a0(0) = 0. We choose a0 as the tuning parameter for the calculation. The results are

shown in Figure 5.3.
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Figure 5.4: In-plane and out-of-plane vector representations of skyrmions in spin-1/2 system for
the case of rotation in xz-plane around y-axis and x-axis, respectively with initial spin along z-axis.
Parameters used are the same as in Figure 5.3.
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Similarly, any of the rotation cases given in Tables 5.1 and 5.2 can be considered for the

substitution of y1(r, t) and y2(r, t). It turns out, however, that all cases of rotations lead

to the same Equation (5.32) with the same relation of w(r) as given in Equation (5.31).

All possible cases of rotations discussed in Table 5.1 correspond to the two fundamental

types of skyrmions which represent rotation either in-plane or out-of-plane. The rotation

of spin around its own axis is a trivial case.
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Figure 5.5: False-colour figures representing the average spin texture modulated by the total den-
sity, namely n < Sz > and n < Sx > for a skyrmion in a spin-1/2 system in xz-plane with initial
spin along z-axis which is given in Table 5.1. The axis of rotation is y-axis. Parameters used are
the same as in Figure 5.3.

The in-plane and out-of-plane spin textures < Sx > and < Sz > given by the expressions in

Table 5.1 for the cases of rotation around y-axis and x-axis, respectively, with initial spin

along z-axis are shown in Figure 5.4. These results are obtained from solving the Equa-

tion (5.32) numerically. The structure of < Sy > is trivial (constant/plain texture) for this
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case. These spin textures are, however, modulated by the total density of both spin com-

ponents. This kind of modulation is applicable for the adjustment of carrier distributions

for current density change and light intensity [175] and also for the nonlinear resonator

[176]. To show such modulations, we plot in Figure 5.5 the quantities n < Sx > and

n < Sz > for the case of in-plane rotations. In order to find the spin texture of skyrmions

for the cases of rotations around r in the xy-plane, as listed in Table 5.2, we follow the

same procedure as discussed above. However, for the case of rotation around r , the spin

texture will be dependent not only on the rotation angle w(r) but also on the projection

angle f , as a result we expect fundamentally different skyrmions.

We consider the system (5.19) to be solved for this case which includes also f depen-

dence. Now, we take an example from Table 5.2 of the rotation around r in xy-plane with

initial spin oriented along z-axis and the trial function becomes

y1(r,f , t) = a(r) eik1f cos[w(r)],

y2(r,f , t) = a(r) eik2f sin[w(r)]⇥ e�i(p/2�f), (5.33)

where k1 and k2 are related as k1 = 1+ k2.

Figure 5.6: The total density for the case of rotation around r in xy-plane with initial spin along
z-axis.
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The total spinor densities for this case are shown in Figure 5.6. It is also noteworthy that

all cases of rotation around r lead to the same Equation, (5.32). The spin texture for the

case of rotation in xy-plane around r with initial spin along z-axis is given in Figure 5.7.

It can be seen from the figure, that the < Sz > component has the same structure as in the

previous case shown in Figure 5.4 because there is no f dependence in this component.

The vector representation of the skyrmions in spin-1/2 system for the above mentioned

rotation is shown below in Figure 5.8. We found two other unique skyrmion textures for

the case of rotation around r which are shown in Figure 5.9. The orientation of initial spin

is along y-axis and the expressions for average spin components are given in Table 5.2.

It is clear from the expressions of average spin components given in Table 5.2 that there

are four distinguished textures for the case of rotation around r , as shown in Figures 5.7

and 5.9. For the case of axial symmetry as discussed in Table 5.1, we have only two

fundamental skyrmion textures which are plotted in Figure 5.4.

5.5 Stability of the Non-Trivial Skyrmions

In order to investigate the stability of the skyrmions, we calculated the energy functional

for both cases i.e rotation around fixed axes (axial symmetry) as given in Table 5.1 and ro-

tations around r which is summarized in Table 5.2. The energy functional corresponding

to system (5.19) reads

E =
Z 2p

0
df
Z •

0

h
a
⇣
|Y1|2 + |Y2|2

⌘
� g

2

⇣
|Y1|2 + |Y2|2 +2|Y1|2|Y2|2

⌘
+ |Y1r |2

+ |Y2r |2 +
1

r2

⇣
|Y1f |2 + |Y2f |2

⌘i
r dr. (5.34)

We substitute the specific trial function in Equation (5.34) to find the expression for the

energy functional of that specific case of rotation. For instance, we substitute the trial

function (5.33) for the case of rotation around r in xy-plane with initial spin along z-axis

in above relation and find the following expression with k1 = 1+ k2,

E =
Z h

� 1
2

g a(r)4 +a0(r)2 +
c4

1
r2 a(r)2 +a a(r)2 +

a(r)2(1+2k2 + k2
2)

r2

i
r dr.

(5.35)
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Figure 5.7: False-colour figures representing the average spin n < Sx >, n < Sy >, and n < Sz > for
a skyrmion in a spin-1/2 system with the rotation around r in xy-plane. The initial spin orientation
is along z-axis.
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Figure 5.8: The vector representation of skyrmions in spin-1/2 system for the case of rotation
around r in xy-plane with initial spin along z-axis.

While considering axial symmetry (5.20), for example, rotation around y-axis with initial

spin along z-axis, we use the trial function (5.28) into (5.34) and obtain the following

result for energy functional

E =
Z h

� 1
2

g a(r)4 +a0(r)2 +a a(r)2 +
c4

1
r2 a(r)2

i
r dr. (5.36)

We find a global minimum in the energy functional as well as many local minima. The

local minima correspond to a state of concentric rings with spins alternating sharply be-

tween 1/2 and -1/2. The total density within a ring is contributed by only one component

of spin, either spin up or spin down. On the other hand, mixed states of spin in which the

total density is contributed by both component of spin, i.e spin up and spin down corre-

spond to a metastable skyrmion. The profile of the two spin components corresponding to

a stable and a metastable skyrmion (circle and square on the energy curve in Figure 5.10)

are shown in Figure 5.3.
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Figure 5.9: False-colour figures representing the average spin n < Sx >, n < Sy >, and n < Sz > for
a skyrmion in a spin-1/2 system with the rotation around r in xy-plane. The initial spin orientation
is along y-axis.
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Figure 5.10: The energy for the case of rotation around y-axis with initial spin along z-axis.

5.6 Conclusion

We mapped the spin-1/2 system to a 2D Manakov system through a rotation operator

that gives the spin texture of skyrmions. We have investigated all possible 2D skyrmion

textures, as listed in Tables 1 and 2. We solved the 2D Manakov system using various

analytical and numerical methods. While the similarity transformation method maps all

solutions of the integrable 1D Manakov system to the 2D Manakov system, the solutions

of the latter turn out to diverge at r = 0. Nondiverging solutions were then obtained using

a power series method. However, the spin texture associated with these solutions turned

out to be trivial, i.e., no texture. Finally, we considered a numerical solution of a system

of coupled equations for the skyrmion density, n(r,f), and texture, w(r,f). This led

to nondiverging and nontrivial spin textures. Then, we investigated the stability of these

nontrivial nondiverging skyrmions by calculating their energy functional in terms of their

effective size. It turned out that stable skyrmions correspond to concentric rings of spin

components alternating between spin up and spin down. Metastable states, where energy

is either increasing or decreasing with skyrmion size, correspond to concentric rings of

mixed spin components.

Our results show that, in contrast with the established fact that in two dimensions lo-



87

calized solutions of the NLSE are unstable, the two spin states stabilize each other against

collapse and allow for nontrivial stable two-dimensional topological excitations. Our re-

sults are also applicable to doubly polarized optical pulses. We strongly believe that this

work is an important addition to the effort of realizing topological excitations.
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Chapter 6: Unidirectional Flow and Unidirectional Segregation

In this chapter, we investigate the dynamics of two component bright-bright (BB) soli-

tons through reflectionless double barrier and double well potentials in the framework of

a Manakov system governed by the coupled nonlinear Schrödinger equations. The objec-

tive is to achieve unidirectional flow and unidirectional segregation/splitting, which may

be used in the design of optical data processing devices. We observe how the propaga-

tion of composite BB soliton is affected by the presence of interaction coupling between

the two components passing through the asymmetric potentials. We consider Gaussian

and Rosen-Morse double potential barriers in order to achieve the unidirectional flow.

Moreover, we observe a novel phenomenon which we name "Polarity Reversal" in the

unidirectional flow. In this situation, the polarity of the diode is reversed. To understand

the physics underlying these phenomena, we perform a variational calculation where we

also achieve unidirectional segregation/splitting using an asymmetric double square po-

tential well. Our comparative study between analytical and numerical analysis lead to an

excellent agreement between the two methods.

6.1 Introduction

In this chapter, we are motivated to investigate the scattering of composite solitons which

are solutions of the coupled nonlinear Schrödinger equations (NLSE) known also as Man-

akov system [178], in the presence of external potentials. The combination of bright-

bright (BB ) solitons which are exact solutions of the Manakov system are used as an ini-

tial pulse and then we observe the effect of interaction coupling on the two components

during their time evolution. We consider two types of potentials for numerical simula-

tions. One is an asymmetric Rosen-Morse (RM) double barrier potential and the other

one is an asymmetric Gaussian double barrier potential. We obtain unidirectional flow in

the presence of interaction and observed an exciting behavior which we coined "Polarity

Reversal" in unidirectional flow, which is characterized by polarity reversal of the diode.
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Another main objective of our work is to investigate unidirectional segregation of the

composite solitons, i.e. composite solitons splitting into two components such that one

component is fully transmitted and the other is fully reflected by an asymmetric potential

when propagating from one direction and remain unaffected when transmitted from the

opposite direction. We investigate the regimes of unidirectional flow and unidirectional

splitting/segregation by calculating transport coefficients in terms of the parameters of

the potentials. We also perform an alternative study to enrich our results of unidirectional

segregation using a variational calculation [179, 180] and obtained an excellent agreement

between analytical and numerical methods.

The rest of the chapter is organized as follows. In Section 6.2, we present the setup

and theoretical model. In Section 6.3, we show how the dynamics of the propagation of

composite BB solitons through asymmetric barrier is affected by the presence of strong

interaction coupling between the two components. In Section 6.4, we use variational

calculation and numerical method to perform a comparative study of the unidirectional

segregation. Finally, in Section 6.5, we summarize our main results.

6.2 Theoretical Model

In the presence of an external scalar potential V (x) the dynamics of bright-bright solitons

is governed by the Manakov system of equations,

iy1t = �1
2

y1xx + s[g1|y1|2 +g12|y2|2]y1 +V (x)y1,

iy2t = �1
2

y2xx + s[g2|y2|2 +g12|y1|2]y2 +V (x)y2. (6.1)

where y j, with j = 1,2 denotes the wavefunction of the individual components. Repulsive

or attractive interactions are accounted for by s =+1 or �1, respectively. The nonlinear

local interaction strength of the components y1 and y2 are represented by g1 and g2,

respectively. The strength of the interaction coupling the two components is g12 and V (x)

is the external scalar potential. Since the main focus will be on the effect of the nonlinear

interaction g12, we set s = �1,g1 = g2 = 1 and restrict g12 to [-1,1]. In addition, we
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consider also the special case where we set g1 6= g2 for g12 = 0 and g12 =�0.5. With these

restrictions on the nonlinearities, the Manakov system describes the composite bright-

bright (BB) soliton. For our study, we choose two different types of the potential, V (x),

which have similar profiles. One is the asymmetric double Gaussian barrier of the form

V (x) =V1 exp
⇥
� (x� x1)2

2s2

⇤
+V2 exp

⇥
� (x� x2)2

2s2

⇤
, (6.2)

where V1,2, s , and x1,2 determine the height, width, and position of the center of the first

and second potential barrier, respectively. The second type of the potential V (x) is of the

form

V (x) =V1 sech2[a1(x� x1)]+V2 sech2[a2(x� x2)], (6.3)

which is a combination of two RM potentials. Here, V1,2, a1,2, and x1,2 determine the

height, inverse width, and position of the center of the first and second potential bar-

rier, respectively. Both potentials are asymmetric double barriers and we chose slightly

different heights for both potentials to achieve unidirectional behaviour. The profiles of

the Gaussian and RM asymmetric double potentials indicated by the solid green and red

dot-dashed curves, respectively are displayed in Figure 6.1. In our numerical simulation

we prepared an initial state far away from the potential region and then let it propagate

in real time. We always choose our initial wave functions as the exact solutions of the

homogeneous version of Equation (6.1), namely

y1(x,0) = A eiv1x sech[A(x� x0)],

y2(x,0) = A eiv2x sech[A(x� (x0 +d ))]. (6.4)

where v1,2, x0 are the initial center-of-mass velocity and position, respectively, and d is a

very small shift in the initial position of the component 2, A is an arbitrary real normaliza-

tion constant that we set to unity. For our investigation, we fixed the separation between

the BB soliton components, d = 0.001.
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Figure 6.1: The Gaussian and Rosen-Morse asymmetric double potential barriers plotted for the
Equations (6.2 & 6.3), indicated by solid green and red dot-dashed curves, respectively. The
potential barriers are plotted for the parameters: V1 = 4, V2 = 4.35, s = 0.4, a1 = a2 = 2, x1 = -6
and x2 = 6.

Now, we present the numerical results of our calculation for the transport coefficients: For

the left-to-right-moving soliton with a single potential barrier, we define the reflectance,

transmittance and trapping coefficients as follows:

Ri =
1
N

Z �li

�•
dx|yi (x, t) |2,

Ti =
1
N

Z •

li
dx|yi (x, t) |2,

Li =
1
N

Z li

�li
dx|yi (x, t) |2, (6.5)

respectively, where li u 5/ai, i = 1,2, from the centre of the barrier and N is the normal-

ization of the total soliton intensity given by N =
R •
�•(|y1|2 + |y2|2)dx. For right-to-left-

moving soliton, R and T are interchanged but L remains the same. Here, li represents the

position of measurement of reflectance or transmission, set at a value slightly greater than

the position of the boundary of the barrier, which we represented in terms of the inverse

width of the barrier (ai). For the considered two potential barriers in series, we choose

�li to the left of the left barrier and li to the right of the right barrier.



92

6.3 Propagation of Bright-Bright Solitons through RM Potential Barriers

Figure 6.2: Transport coefficients in terms of velocity for the propagation of the y1 component
through asymmetric RM potential barriers for g1 = g2 = 1, and g12 = 0 from x0 = -10 (upper panel)
and x0 = 10 (lower panel). Solid black line represents reflectance, R, dashed red line represents
transmission, T , and dash-dotted green line represents trapping, L.

The dynamics of the bright-bright solitons described by the two-component Manakov

system scattering through an asymmetric RM potential barriers positioned in series with

slight difference in the height of the two barriers and finite separation will be presented
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in this section. As both RM and Gaussian asymmetric potential barriers portray similar

behavior throughout the analysis, we explain the entire study using RM potential in this

section. In order to avoid redundancy, the results through an asymmetric Gaussian double

potential barrier are given in Appendix 8. For our numerical investigation, we consider

V1 = 4, V2 = 4.35, s = 0.4, a1 = a2 = 2 and x1 = �6,x2 = 6. The evolution of BB

solitons are investigated under the following scenarios: (i) in the absence of mean field

coupling, g12 = 0, (ii) in the presence of an attractive coupling, g12 > 0, and (iii) in the

presence of a repulsive coupling, g12 < 0.

6.3.1 Unidirectional Flow for Uncoupled Components with g12 = 0

The propagation of the BB solitons through an asymmetric RM potential barriers with

g12 = 0 is displayed in Figure 6.2 for initial propagation from locations along the axis

x0 =�10 and x0 = 10. Figure 6.2 displays the transport coefficients namely, reflectance,

R, transmittance, T and trapping, L, in terms of velocity for the left and right moving

BB soliton components through an asymmetric RM double barrier potential indicated

by solid black, dashed red and dotted green lines, respectively, for the component y1.

The corresponding curves for y2 are identical with those of y1. This is obvious because

g12 = 0. The transport coefficients obtained reveal the existence of a particular initial ve-

locity value above which there is a sudden drop in reflectance to its minimum value and a

sudden rise in the transmittance to its maximum value for both components. Furthermore,

this critical velocity required for maximum transmittance appears to be different for right

moving and left moving BB solitons.

For the right moving BB solitons scattered through RM potential barriers, this critical

velocity is found to be vc = 0.324 whereas that for the left moving BB solitons vc = 0.339.

Such differences in critical velocities for soliton propagation in opposite directions en-

ables the realization of soliton diode using asymmetric RM potential wells [45]. While

comparing the case of asymmetric potential wells in [45] with the present study, it is

observed that the same functionality can be realized through the RM potential barriers.
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Moreover, the present scheme with RM potential barriers displays larger velocity win-

dow of 0.324  v  0.338 for the diode functionality compared to the case of [45] with a

smaller velocity window 0.3275 v  0.3375.

The trapping of solitons within a very narrow velocity window about the critical velocity,

as shown by the green dotted curves in Figure 6.2 correspond to an unstable trapped state

at the center of the potential barrier. The peak at the transition region corresponds to a

nonlinear trapped mode by a stationary bound state of the potential. Physically, it cor-

responds to an unstable equilibrium that separates full transmission from full (quantum)

reflection. The transition is so sharp such that the peak is very narrow. Further, trapping

of solitons is absent for the right moving solitons from x = -10, but a small velocity range

over which soliton trapping is found for the left moving solitons from x = 0. This trapping

of left moving soliton appears as a peak near to the critical velocity as indicated by the

lower panel of the Figure 6.2.

RM potential

Figure 6.3: Propagation of composite BB soliton through asymmetric RM potential barriers for
g1 = g2 = 1, and g12 = 0 at v = 0.324. Both components are identical. Left and right subfigures
are results of initial propagation from x0 = -10 and x0 = 10, respectively.

Figure 6.3 portray the spatiotemporal evolution of the composite BB solitons for a partic-

ular initial velocity. In Figure 6.3, the left subfigure describes the propagation of the BB

soliton components y1 and y2 with a critical velocity vc = 0.324, incident from x0 =�10
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through asymmetric RM double potential barriers. The BB soliton components are first

transmitted through the left barrier (V1 = 4.0) positioned at x0 =�6 and then transmitted

through the right barrier (V2 = 4.35) positioned at x0 = 6 with an overall transmittance

T ⇡ 0.97.

Considering the right subfigure of Figure 6.3 for the left moving BB solitons from x0 = 10,

BB solitons are first transmitted through the right barrier (V2) positioned at x0 = 6 and then

reflected to the right by the left barrier (V1) positioned at x0 =�6 and finally transmitted

through the right barrier to the left barrier with an overall reflectance, R ⇡ 0.97. This

asymmetrical behavior in the flow of solitons is due to the appreciable velocity reduction

of the BB solitons while crossing the first barrier, which plays a decisive role on overall

transmission or reflection. For the case of right propagating BB solitons, it suffers a small

velocity reduction when it transmits through the first barrier (V1). But this reduced veloc-

ity is still sufficient to transmit through the second barrier (V2) and propagates through to

the right. On the other hand, the left moving BB solitons suffers an appreciable velocity

reduction when it transmits through its first large barrier (V2). This velocity reduction is

high enough such that the soliton velocity is less than the critical velocity to overcome

the second barrier which makes it impossible to transmit through the second barrier (V1)

and results in its reflection towards the right. This unidirectional flow portrays the diode

behavior of the composite BB solitons through RM potential barriers similar to the one

which we have realized in our previous analysis for a single soliton propagation through

an asymmetrical RM potential wells [45].

Furthermore, we observed a maximum transmission at few lower velocities for g12 =

0 for right moving soliton but no soliton trapping as indicated by the appearance of green

dot-dashed spike in the lower panel of the Figure 6.2. On the other hand for the left

moving soliton there exists trapping as well as maximum transmission for certain lower

velocities with g12 ' 1.
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6.3.2 Polarity Reversal in Unidirectional Flow with g12 > 0

The role of the attractive mean field coupling (g12 > 0) on the propagation of BB soli-

tons through the asymmetrical RM potential barriers will be addressed in this section.

Since, both components y1 and y2 exhibit an identical behavior for both directions of

propagation, we have described our results with the component y1, to avoid redundancy.

Figure 6.4 describes the transmission and reflection coefficients of the component y1

passing through the RM potential barriers from x0= ±10, versus the velocity and positive

mean field coupling.
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Figure 6.4: Transmission and reflection coefficients of the component y1 for g1 = g2 = 1, propa-
gating from x0 = -10 (upper two) and x0 = 10 (lower two) through RM potential barriers versus v
and g12.

In our numerical investigation, we considered varying the incident velocity of the BB

solitons from 0.1 to 1 and g12 was varied from 0 to 1. The results obtained illustrate that
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reflection dominates over the transmission for the composite solitons with incident veloc-

ities v  0.36 for RM barriers throughout the entire range of g12 values. For this range of

the incident velocities, reflection is observed to be around ⇡ 0.98. A sharp transition from

the maximum reflection (R ⇡ 0.98) to the maximum transmission (T ⇡ 0.94) is obtained

for the BB solitons with an initial incident velocity of v = 0.363 for g12 = 0.1. This critical

velocity is found to be larger than that for the case with g12 = 0, where a minimum crit-

ical velocity of 0.324 is required to reach maximum transmission through RM potential

barriers. This indicates that the presence of g12 coupling introduces a shift in the critical

velocity required to reach maximum transmission. For a further increase in g12 value, a

further shift in the velocity, v, is required for maximum transmission to hold.

Next, the propagation dynamics of the BB solitons from x0 = 10 is considered which is

shown in the lower two panels of Figure 6.4. Like the previous case, here also reflection

is found to dominate for BB solitons with incident velocities v  0.39 (for RM barriers).

Thereafter, it shows a sudden sharp transition from higher reflection (R ⇡ 0.95) to the

higher transmission (T ⇡ 0.95) for incident velocities v = 0.391 for RM potential barriers.

Here also, a shift in critical incident velocity is observed with the shift in g12 which al-

lows the diode functionality similarly to the case of g12 = 0. The important characteristic

noticed here is a reverse shift in critical velocity (reduction in critical velocity) for g12

� 0.35, for the left moving solitons. The velocity window for the diode functionality at

different g12 values are tabulated in Table 6.1. For this direction of propagation of BB

solitons, the trapping is also found to be negligible.

Furthermore, we have explored an exciting phenomenon, which we referred to as "po-

larity reversal for an optical diode" and is observed for both kinds of potential barriers

considered. In our investigation, we observed that for the right-moving soliton there is

a critical velocity over which there is a sudden jump from mostly reflectance to mostly

transmittance. A similar behavior exists for the right-moving soliton for another criti-

cal velocity. Moreover, it is observed that there exists different critical velocity for the
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left- and right-moving solitons for full transmission. As a result, there exists an appre-

ciable velocity window or velocity range for which there is almost full transmittance in

one direction and nearly zero transmittance in the other direction, i.e., the soliton shows

directional propagation for this set of parameters. This behavior (unidirectional flow of

solitons) is similar to the diode effect in semiconductor physics. This behavior is observed

in forward direction for up to g12 = 0.323 and 0.312 for RM asymmetric potential barriers

and Gaussian asymmetric potential barriers, respectively (i.e. The right moving solitons,

undergoes full transmission and the left moving solitons undergoes full reflection over the

obtained velocity window).

RM potential

Figure 6.5: Propagation of composite BB soliton through asymmetric RM potential barriers for
g1 = g2 = 1, and g12 = 0.3 at v = 0.418. Both components are identical. Left and right subfigures
are results of initial propagation from x0 = -10 and x0 = 10, respectively.

On the other hand, for g12 values above 0.33 and 0.317 for RM asymmetric potential

barriers and Gaussian asymmetric potential barriers, respectively, we observed the exact

reversal in behavior of diode effect (i.e. The left moving solitons, undergoes full trans-

mission and the right moving solitons undergoes full reflection over the obtained velocity

window irrespective of the barrier height. This variation in propagation behavior of right

and left moving soliton due the effect of interaction coupling, we refer to as “polarity

reversal of the optical diode or polarity reversal in unidirectional flow”). The "right po-
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larity" corresponds to the unidirectional flow towards the right direction in which right

moving composite BB solitons transmit through both potential barriers and left moving

composite solitons reflect through the potential barrier V1 while "left polarity" corresponds

to the unidirectional flow towards left direction in which right moving composite BB soli-

tons reflect through the potential barrier V1 and left moving composite solitons transmit

through both potential barriers.

From the spatiotemporal plots, it is observed that for lower coupling g12  0.323 (for RM

potential), both components exhibit the diode behavior with "right polarity" as shown in

Figure 6.5 obtained for g12 = 0.3 which is similar to the one achieved in the case g12 = 0.

For g12 = 0.324 - 0.329, it is observed that a full transmission exists for BB solitons

propagating from both directions with maximum transmission for the critical incident ve-

locities v � 0.424 through RM potential barriers. For v < 0.424, it exhibits maximum

reflection for both right and left moving composite BB solitons as shown in Figure 6.6.

Further, for g12 � 0.33 (for RM potential), exactly the reverse phenomena is achieved

for g12  0.3, i.e., the right moving BB solitons passing through a smaller barrier (V1)

towards the larger barrier (V2) is getting reflected while that for left moving BB solitons

passing through larger barrier (V2) towards the smaller barrier (V1) is getting transmitted.

Hence, the polarity of unidirectional flow is reversed from right to left polarity which can

be seen by comparing Figure 6.7 with Figure 6.5 for RM potential. This phenomena is

purely due to the increase in g12 above certain critical value 0.329 (for RM potential),

which is demonstrated by Figure 6.8. Moreover, for an attractive interaction (g12 > 0),

the results do not display any segregation or splitting of the BB soliton components and

both components remain intact throughout the propagation.

6.3.3 Unidirectional Segregation with g12 < 0

The influence of repulsive mean field coupling on the propagation of the BB solitons

through an asymmetric RM potential barriers will be examined in this section. We find

segregation or splitting of composite BB solitons scattering through asymmetric double
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potential barriers in the presence of a repulsive coupling (g12 < 0). We also found uni-

directional segregation, i.e., the composite BB soliton components undergo segregation

while passing through the potential barriers for propagation in one particular direction

and remains intact for incident propagation from the opposite direction. The reflection

coefficients of the components of the BB solitons versus velocity and g12 for the initial

propagation from x0 = ± 10 through RM potential barriers are shown in Figure 6.9.

RM potential, v = 0.424

RM potential, v = 0.423

Figure 6.6: Propagation of composite BB soliton through asymmetric RM potential barriers for
g1 = g2 = 1, and g12 = 0.325. Upper panel shows full transmission at v = 0.424 while lower panel
shows full reflection at v = 0.423, from both left and right directions. There is no unidirectional
flow in the range of coupling strength 0.324  g12  0.329.
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RM potential

Figure 6.7: Propagation of composite BB soliton through asymmetric RM potential barriers for
g1 = g2 = 1, and g12 = 0.33 at v = 0.425. Both components are identical. Left and right subfigures
are results of initial propagation from x0 = -10 and x0 = 10, respectively. The polarity reversal
phenomenon in unidirectional flow is achieved by comparing with Figure 6.5.

Polarity Reversal through RM potential

Figure 6.8: Borders of velocity window for the unidirectional flow (vmin,vmax) vs g12 with g1 =
g2 = 1, through the RM potential barriers. Full reflection for v  0.423 and full transmission
for v � 0.424 is obtained with the range of coupling strength 0.324  g12  0.329, hence no
unidirectional flow is observed at this specific range of g12. Away from this point of g12 = 0.329,
we find polarity reversal in unidirectional flow. The shaded region shows the velocity window for
the unidirectional flow. The red color shows the right polarity while the green color shows the left
polarity of the unidirectional flow. The data used to generate this figure is listed in Table 6.1.
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Table 6.1: The velocity window for unidirectional flow of composite BB solitons with different
coupling strengths. For the RM potential barriers with the range of coupling strength 0.324  g12
 0.329 with g1 = g2 = 1, we find full reflection for v  0.424 and full transmission for v � 0.425,
hence no unidirectional flow is observed at this specific range of g12. Away from this point, we
find polarity reversal in unidirectional flow.

Unidirectional flow with composite BB solitons
Interaction strength Velocity window

g12 vmin  v  vmax

0 0.324  v  0.338
0.1 0.363  v  0.39
0.2 0.391  v  0.430
0.3 0.416  v  0.421

0.301-0.303 0.417  v  0.421
0.304-0.306 0.418  v  0.421

0.307 0.418  v  0.422
0.308-0.310 0.419  v  0.422
0.311-0.313 0.420 v  0.422
0.314-0.316 0.421 v  0.422
0.317-0.320 0.421 v  0.423
0.321-0.323 0.423

Rig
ht

po
lar

ity

0.324-0.329 no unidirectional flow
0.33-0.333 0.425

0.334-0.336 0.426
0.337-0.339 0.426 v  0.427

0.34 0.426 v  0.428
0.341 0.427 v  0.429
0.342 0.427 v  0.428

0.343-0.345 0.427 v  0.429
0.346-0.347 0.427 v  0.43

0.348 0.428 v  0.43
0.349-0.35 0.428  v  0.431

0.4 0.438  v  0.449
0.5 0.456  v  0.488
0.6 0.485  v  0.521
0.7 0.487  v  0.547
0.8 0.497  v  0.565
0.9 0.53  v  0.580
1 0.56  v  0.588

Le
ftp

ola
rity

We consider varying the incident velocity of the BB solitons from 0.1 to 1 and g12 varying

from 0 to -0.38 for our numerical investigation. In Figure 6.9, the top surface describes

the reflection coefficient of the component y1 and the bottom one describes the reflection

coefficient of the component y2. When the incident velocity is low (v = 0.1) with g12

up to -0.16, reflection is found to be predominant for both the components. In the range

�0.36  g12  �0.21, at v = 0.1, the reflection of the component y1 is ⇡ 0.05 and that

for the component y2 is ⇡ 0.96. This demonstrates the nearly full separation of the com-
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ponents, i.e., the component y1 undergoes maximum transmission and the component y2

undergoes maximum reflection. For further decrease in g12 from -0.36 to -0.5, we start to

have trapping and T1 gradually reduces and reaches a minimum value of 0.6 (R1 = 0.4)

for g12 = -0.5, while that of T2 shows slight increase and reaches a transmission ⇡ 0.17

(R2 = 0.83). For lower g12 values down to -0.35, the R1 is found to be low but thereafter

increases to the maximum of ⇡ 0.4 for further reduction in g12 values. The R2 shows a

sharp transition from maximum to minimum at velocity v = 0.25 for �0.35 < g12 �0.1.

In case g12 > -0.35 this transition region shifts to lower velocities around 0.2. In case of

R2, this transition to the minimum reflection is gradual and complete drop in reflection

occurs at the velocity v = 0.45. With this increase in incident velocity v � 0.45, the re-

flection for both the components are observed to be minimum for the entire range of the

g12 values. The obtained results illustrate that repulsion dominates for lower velocities

and higher g12 values. The obtained results demonstrate almost similar dynamics as the

one obtained for the propagation from x0 = -10. But a greater reflection window for the

component y2 over the mid g12 values for velocity ⇡ 0.3 is noticed. Also, a shift in the

incident velocity v � 0.55, required for the minimum reflection is observed.

Furthermore, we report here a phenomenon of unidirectional segregation as is demon-

strated in Figure 6.10. This unidirectional segregation is obtained for BB soliton compo-

nents passing through an asymmetrical RM potential barriers with barriers positioned at

x1 = -4 and x2 = 4 with incident velocity v = 0.34 in the range �0.0045  g12 �0.0033.

For the right moving BB solitons incident from the initial position at x0 = -15, both

components undergo transmission through both barriers and reach the right side with

T1 = T2 = 0.98. On the other hand, for a left moving BB solitons, the component y1

passes through both barriers and shows complete transmission T1 = 0.98 and reaches the

left side. Whereas the component y2 passes through the first barrier and gets reflected by

second barrier, then it again transmits through the first barrier and reaches the right side

with a reflectance R1 = 0.98.
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Figure 6.9: Reflection coefficients of the components y1 and y2 propagating through RM potential
barriers from x0 = -10 (upper two) and x0 = 10 (lower two) versus v and g12. Other parameters are
g1 = 1 and g2 = 1.

This transition is found to be very sensitive to the parameters of the designed reflection-

less potential and the transmitted components of the right moving BB solitons are found

to remain intact in a certain time interval, thereafter one of the components is out of phase

with respect to the other component with a small phase shift but both the components

continue along the same trajectory. This sensitive behavior paves the way to perform a

variational calculation in order to achieve unidirectional segregation and to understand

the physics underlying this phenomenon which we will discuss in the Section 6.4.



105

Unidirectional segregation through RM potential

Figure 6.10: Propagation of components through asymmetric RM potential barriers for g1 = g2 =
1, and g12 =�0.004 at v= 0.34. The parameter of initial position x0= ± 15 is used. Unidirectional
segregation of composite BB soliton is achieved.
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6.3.4 Special Case: g1 6= g2

In this section, we investigate the influence of the nonlinear local interaction strength of

each component on the BB solitons dyanamics (i) in absence of interaction coupling (g12

= 0) and (ii) in presence of the repulsive interaction coupling (g12 < 0), respectively. For

our study, we consider varying the nonlinear local interaction strength of the component

y1, by varying g1 from 1.05 to 1.5 and the velocity is varied from 0.1 to 1.

(a) For g12 = 0

The results obtained for the propagation of BB solitons through the asymmetric RM po-

tential barriers in the absence of interaction coupling (g12 = 0), with g1 varying form 1.05

to 1.5 is illustrated in the Figure 6.11 for initial propagation from x0 = ±10. In Figure

6.11, the top two plots display the results of reflectance of the components y1 and y2, re-

spectively of the BB solitons propagating from the initial position x0 = -10. The lower two

plots provide the results of the transmittance of the components y1 and y2, respectively

of the BB solitons propagating from the initial position x0 = -10. For g1 = 1.05, the value

of R1 is found to be maximum up to the velocity v = 0.346, thereafter it makes a sharp

transition from maximum reflectance to the minimum. On the other hand the R2 maintains

its maximum value up to the velocity v = 0.307 and thereafter reaches sharp minimum.

We infer that the increase in nonlinear local interaction strength introduces a shift in the

velocity required for maximum reflectance. The subsequent shift in the velocity shift for

maximum reflectance R1 is observed for g1 values 1.14, 1.31 and 1.42, respectively. A

similar behavior for shift in velocity to achieve maximum T1 is also observed, as displayed

in the third plot of Figure 6.11. Next, considering the propagation of the BB solitons from

x0 = 10, for extremely low velocities, there exist nonlinear modes with energy trapping

around ⇡ 0.2% throughout the variation of g1, as shown by Figure 6.12. Moreover, the

present case also displays that the existence of the shift in the velocity throughout which

the maximum reflectance of R1 is maintained. The reflectance is found to be maximum

up to the velocity v equals to 0.32, thereafter it undergoes a sharp transition from maxi-
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mum reflection to minimum reflection at g1 = 1.05. Thereafter, it displays the right shift

in the velocity for maximum reflectance as obtained for the propagation from x0 = -10,

but at different g1 values. Furthermore, for the present case, we also have identified the

regimes of the unidirectional segregation as in our previous section. Here, for the g1 val-

ues from 1.03 to 1.1, the system exhibits the unidirectional segregation for the BB soliton

components propagating from initial positions, x0 =±15 with barrier positions, ±4. The

unidirectional flow obtained for these parameters at v = 0.34 is illustrated in Figure 6.13.

In this case, for the right propagating BB solitons, y1 undergo complete reflection in first

barrier meanwhile the component y2 undergoes full transmission crossing both barriers.

On the other hand, the left moving solitons undergo full reflection at the first barrier.
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Figure 6.11: Reflection and transmission coefficients of the components y1 and y2 propagating
through RM potential barriers from x0 = -10 versus v and g1. The parameters used are g12 = 0 and
g2 = 1.
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From x0 = 10
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Figure 6.12: Reflection and transmission coefficients of the components y1 and y2 propagating
through RM potential barriers from x0 = 10 versus v and g1. The parameters used are g12 = 0 and
g2 = 1.

Figure 6.13: Propagation of components through asymmetric RM potential barriers at v= 0.34.
The parameter of initial position x0= ± 15 is used. Unidirectional segregation of composite BB
soliton is achieved. Other parameters used are g12 = 0, g1 = 1.05, and g2 = 1.
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(b) For g12 =�0.5

Additionally, in order to understand the influence of the nonlinear local interaction cou-

pling in presence of repulsive interaction coupling, here, we consider the case g12 = -0.5.

The dynamics of the BB solitons through the RM potential barriers is investigated for g1

varying from 1.05 to 1.5. The results obtained for the BB solitons propagating from x0

= -10 is provided by the Figure 6.14. For lower velocities and low g1 values (g1 < 1.16),

there exist few nonlinear trapping modes. But for higher g1 values above 1.16, the non-

linear trapping modes are absent. Here also the shift in velocity for maximum reflectance

of R1 is found to increase with increasing g1. After certain g1 value above 1.3, the veloc-

ity required for maximum reflectance becomes constant. Next considering R2, for lower

velocities and lower g1 values, more trapping modes are observed. For g1 values above

1.2, the trapping is found to reduce but with around 90% reflectance. As the velocity

increases, reflectance decreases and reaches up to 50%, with around 50% trapping until

the velocity equals to 0.4. During this regime, the reflectance is constant for the all g1

values. For further increase in the velocity, the reflection as well as trapping found to

reduce gradually and reaches minimum. From the transmittance plots of Figure 6.14, it

is illustrated that the dynamics of transmittance of the components are complementary to

that of the reflectance of the components. Next, the propagation of BB solitons from x0

= 10 is considered in the Figure 6.15. It is observed that the existence of the nonlinear

trapping modes are high for the left moving solitons propagating from x0 = 10, where it

encounters the large barrier first. But for higher g1 values, trapping is found to be min-

imum. Here also the results demonstrate the shift in velocity for maximum reflectance

of R1, with increase in the g1 values. Further increase in the velocity above 0.3, the re-

flectance drops from maximum to minimum sharply. On the other hand, R2 portrays,

almost similar dynamical behavior as that of R1, but the drop in reflectance is shifted to

the lower velocity, v = 0.2. Here, also the transmittance of the components show more or

less opposite behavior as that of the reflectance of the respective components. From the

results, it is observed that g12 increases the number of nonlinear modes and reduces the
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transmission of the component around 50%.

Furthermore, from the density plots shown by Figure 6.16, g12 was found to suppress the

unidirectional segregation obtained with same numerical values considered for the case

g12 = 0 and results in bidirectional segregation. For the BB solitons propagating from

x0 = �15, the component y1 undergoes full reflection while the component y2 under-

goes full transmission. Similarly for the BB solitons propagating from x0 = 15, we also

found that the component y1 shows full reflection and the component y2 shows full trans-

mission. Moreover, from our results, we found that even an extremely small value of g12

= -0.004 is sufficient to suppress the unidirectional segregation.
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Figure 6.14: Reflection and transmission coefficients of the components y1 and y2 propagating
through RM potential barriers from x0 = -10 versus v and g1. The parameters used are g12 =�0.5
and g2 = 1.
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Figure 6.15: Reflection and transmission coefficients of the components y1 and y2 propagating
through RM potential barriers from x0 = 10 versus v and g1. The parameters used are g12 =�0.5
and g2 = 1.

Figure 6.16: Propagation of components through asymmetric RM potential barriers at v= 0.34.
The parameter of initial position x0= ± 15 is used. Bidirectional segregation of composite BB
soliton is observed. Other parameters used are g12 =�0.5, g1 = 1.05, and g2 = 1.
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6.4 Variational Approach Versus Numerical Computation

We use a comparative analysis between numerical computation and variational approach

to validate our results for the unidirectional segregation of composite BB soliton. In this

section, we will show how our numerical results for the computation of the unidirectional

segregation are in excellent agreement with those generated by the variational approach.

The starting point of our analysis is the Lagrangian density,

L =
i
2

⇣
y⇤

1
∂y1

∂ t
�y1

∂y⇤
1

∂ t

⌘
� 1

2

���
∂y1

∂x

���
2
+

g1

2
|y1|4 +

i
2

⇣
y⇤

2
∂y2

∂ t
�y2

∂y⇤
2

∂ t

⌘
� 1

2

���
∂y2
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���
2

+
g2

2
|y2|4 +g12|y1|2|y2|2 +V (x)[|y1|2 + |y2|2]. (6.6)

Using the Euler-Lagrange equation with Equation (6.6) we obtain the following coupled

NLSE,

i
∂y1

∂ t
+

1
2

∂ 2y1

∂x2 +
⇥
g1|y1|2 +g12|y2|2 +V (x)

⇤
y1 = 0,

i
∂y2

∂ t
+

1
2

∂ 2y2

∂x2 +
⇥
g2|y2|2 +g12|y1|2 +V (x)

⇤
y2 = 0, (6.7)

which is identical to Equation (6.1). We adopt the following variational ansatz as the BB

soliton solutions to Equation (6.7)

y1(x, t) = Asech
⇣x+x1

a

⌘
ei[f+v1(x+x1)+b(x+x1)

2],

y2(x, t) = Asech
⇣x+x2

a

⌘
ei[f+v2(x+x2)+b(x+x2)

2]. (6.8)

The variational parameters A(t), x1,2(t), a(t), f(t), v1,2(t), and b(t) represent the am-

plitude, center-of-mass position, width, phase, velocity, and the chirp of the solitons,

respectively. We use the normalization condition,

Z •

�•
dx |y|2 = 2A2a = N, (6.9)
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to reduce the number of variational parameters by one variable where we define the am-

plitude as a function of the width, a, and the normalization constant, N. The potential in

Equation (6.7) for both components takes the form,

V (x) = l00 + l01

h
Q(x�q1)�Q(x�q2)

i
+ l02

h
Q(x�q3)�Q(x�q4)

i
, (6.10)

where Q(x) is the Heaviside unit step function, l00, l01, l02, q1, q2, and q3 are potential pa-

rameters to be suitably selected for numerical computations. The choice of this particular

potential simplifies the analytical calculations but will not limit the validity of our main

results. Due to the fact that soliton scattering through a potential well causes its width to

shrink while soliton scattering through a potential barrier will cause its width to expand

substantially, then we selected the usage of potential well rather than barrier in our present

variational approach.

Double square well potential
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Figure 6.17: Asymmetric double well potential. We plot the potential, Equation (6.10), with
parameters: l00 = 0, l01 =�0.15, l02 =�0.05, q1 =�1, q2 =�0.5, q3 = 1, q4 = 1.5.

The double square well potential, Equation (6.10), captures the essential features of the

Gaussian and Rosen-Morse double potential barriers where it allows for a unidirectional

flow too [47]. In Figure 6.17, we plot the potential. In this section we are using the

parameters: g1 = g2 = 1, g12 = 0.05, l00 = 0, l01 = �0.15, l02 = �0.05, q1 = �1, q2 =
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�0.5, q3 = 1, q4 = 1.5, for the variational and numerical calculations unless otherwise

noted. In our analysis, we fix the potential position and change the launching point of the

vector soliton such that when we set b = �1 (b= 1), the BB soliton is coming from the

right (left) of the potential in Figure 6.17. Inserting our variational ansatz Equation (6.8),

into the Lagrangian density, Equation (6.6), and integrating with respect to x from �•

to •, results in the effective Lagrangian of the system as a function of the variational

parameters,

L = � N
3a2 +

(g1 +g2)N2
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]. (6.11)

Applying the Euler-Lagrange equations for each variational parameter yields a system

of ordinary differential equations that describe their time evolution (See Appendix 8).

In Figure 6.18, we plot the BB soliton’s trajectory calculated from the variational ap-

proach (solid lines) and compare the result to the numerical calculation for soliton veloc-

ity v = 0.2. We find that even when we allow for an internal oscillation between the two

components in BB soliton, the agreement is good between the two methods.

The transport coefficients, given in Equation (6.5), can be used to calculate also the re-

flectance, R, transmittance, T, and trapping, L, of the BB soliton obtained from the varia-

tional calculations in terms of velocity. In this case, the integration limits will be from the

box edge to the potential position for R and T depending on whether the soliton comes

from right or left. For the trapping coefficient, the integration covers the potential area

only.
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Unidirectional segregation by variational and numerical method

Figure 6.18: Propagation of components through asymmetric double square well potential, see
Figure 6.17, for g12 = 0.05 at v= 0.2. Solid lines are results from variational calculation. Intensity
plots are results of numerical calculation. Unidirectional segregation of composite BB soliton is
achieved with an excellent agreement between variational and numerical method.

Variational calculation for right moving two component solitons
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Figure 6.19: Analytically calculated transport coefficients in terms of velocity for the propagation
of two right moving components through asymmetric double square potential well for g12 = 0.05.
Upper panel shows first component while lower panel shows second component of the initial wave
functions (6.8). There is no segregation in this direction.

In Figure 6.19, we see that for b = �1 (i.e., sending the BB soliton from the right), the

transport coefficient curves are the same for the two components. That is, the two compo-

nents move through the potential without segregation. But in Figure 6.20, for b = 1, (i.e.,

sending the BB soliton from the left) we find that there is a window for the splitting of the

two components when the velocity range is 0.17 < v < 0.27. For example, a BB soliton

with v = 0.2 as in Figure 6.18, should split in one direction and not the other as seen from

Figures 6.19 and 6.20. In Figures 6.21 and 6.22, we plot the transport coefficients for the
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numerical simulation of a BB soliton interacting with the same potential. We find a good

agreement between the results obtained from the numerical simulation compared to the

variational analysis predictions.

Variational calculation for left moving two component solitons
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Figure 6.20: Analytically calculated transport coefficients in terms of velocity for the propagation
of two left moving components through asymmetric double square potential well for g12 = 0.05.
Upper panel shows first component while lower panel shows second component of the initial wave
functions (6.8). Segregation is observed in this direction.

Numerical calculation for right moving two component solitons
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Figure 6.21: Numerically calculated transport coefficients in terms of velocity for the propagation
of two right moving components through asymmetric double square potential well for g12 = 0.05.
Upper panel shows first component while lower panel shows second component of the initial wave
functions (6.8). There is no segregation in this direction.

6.5 Results and Discussion

We summarize our main results: Firstly, we achieved unidirectional flow of composite BB

soliton passing through asymmetric double potential barriers in the absence of nonlinear

coupling (g12 = 0). Our results for the unidirectional flow are achieved with potential
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barriers rather than potential wells, as in [45]. Secondly, we achieved also a unidirectional

flow of composite BB soliton in the presence of attractive mean field inter-component

coupling, i.e., g12 > 0 using the two selected potentials. Interestingly, we find a change

in polarity in unidirectional flow for g12 > 0.329 for RM potential and g12 > 0.316 for

Gaussian potential. Both components of the BB soliton remained invariant throughout

the propagation. Thirdly, we found segregation or splitting of composite BB soliton into

its two components in the presence of repulsive mean field interaction coupling, g12 < 0,

through both types of considered potentials. We also observed the shuttle motion between

the barriers in our study. However, we restricted ourselves to the parameter regime for the

unidirectional flow and segregation.

Numerical calculation for left moving two component solitons
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Figure 6.22: Numerically calculated transport coefficients in terms of velocity for the propagation
of two left moving components through asymmetric double square potential well for g12 = 0.05.
Upper panel shows first component while lower panel shows second component of the initial wave
functions (6.8). Segregation is observed in this direction.

In addition, we achieved unidirectional segregation by varying nonlinear strength of one

of the components (g1) in the absence of nonlinear interaction coupling (g12 = 0). Fur-

ther, we realised that an extremely small value of repulsive coupling (g12 =�0.004) can

destroy unidirectional segregation for such a case and results in bidirectional segregation.

We also found unidirectional segregation of composite BB soliton using variational calcu-

lations and compared our results with numerical computations. We obtained an excellent

agreement between analytical and numerical analysis. Our results are applicable to all-

optical data processing and we believe that this work is an important contribution to the
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effort made towards the realization of optical devices e.g., optical diode, interferometer.

Another application would be the realization of quantum logic gates where two solitons

are usually needed to code a qubit. The scattering dynamics of the two solitons through

the potential may set up a protocol equivalent to a two-qubit logic gate such as CNOT

gate.
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Chapter 7: All-Optical Quantum Controlled-NOT Gate

In this chapter, we present a protocol for the quantum controlled-NOT gate which is based

on two qubits operation by investigating the soliton scattering through a reflectionless po-

tential well in an optical system. We consider the set up of two input solitons with different

intensities scattered by a reflectionless potential well with a control soliton placed at the

centre of the potential. The two input solitons correspond to the target qubit while pres-

ence or absence of control soliton corresponds to the control qubit. We achieve the desired

performance of the quantum logic gate by exploiting the intensity difference between the

two input solitons and we find this to be possible within a finite width of a velocity of inci-

dence for the two solitons. The calculation of transport coefficients ensures the feasibility

of building a quantum controlled-NOT gate. This protocol demonstrates the prospect of

soliton scattering by a potential well for quantum information processing.

7.1 Introduction

Here, we propose a novel model to implement the quantum CNOT operation, through a

two-soliton scattering in a reflectionless potential well and the presence of control signal

soliton in the considered potential well. Our proposed system is not only well decoupled

from the previous systems considered but also much simpler and easier to implement the

above functionality within a significant velocity and parameter range. The aim of the

present work is to construct a quantum controlled-NOT gate using soliton scattering by

a reflectionless potential well. We introduce a control soliton placed at the centre of the

potential well, which provides more control on the parameters involved in the scattering

through the potential. As quantum controlled-NOT gate is two qubit logic gate, it can not

be realised with a single soliton. We use two solitons as one input qubit (target) with dif-

ferent intensities. We achieve the desired performance by exploiting a difference in their

intensities. The presence or absence of control soliton is considered as the other qubit

(control) of the quantum logic gate.
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The rest of the chapter is organized as follows. In Section 7.2, we present the setup

and theoretical model. In Section 7.3, we show how the quantum controlled-NOT gate

can be achieved by using soliton scattering through a reflectionless potential well. Finally,

in Section 7.4, we summarize our main results.

7.2 Theoretical Framework and Setup

In the presence of an external potential, V (x), the dynamics of bright solitons is gov-

erned by the one-dimensional nonlinear Schrödinger equation, which can be written in

the standard dimensionless form as

i
∂
∂ t

y(x, t) =

"
� 1

2
∂ 2

∂x2 +V (x)+g|y(x, t)|2
#

y(x, t), (7.1)

where, we choose the potential, V (x), of the form

V (x) =�V0 sech[a(x� x0)]
2. (7.2)

Here, V0, a , and x0 determine the depth, inverse width, and the position of the center

of the potential well, respectively. This potential, which is known as the Pöschl-Teller

potential, belongs to the class of reflectionless potentials which may transmit without

reflection in the linear regime. We use the parameters of potential as: V0 = 4, a =
p

V0,

and x0 = 0. The factor g in Equation (7.1) denotes the mean-field interaction strength and

we consider g = �1. In our numerical simulation, we prepare an initial state far away

from the potential region and propagate it in real time. We consider two propagating

solitons as a single qubit (signal/target) and one stationary soliton (control) embedded in

the potential well referred to as control soliton. We choose our initial wave function as

the exact solution of the homogenous version of Equation (7.1), namely

y(x, t) = u1 sech
⇥
u1(vt � x+ x1)

⇤
e

1
2 i
�
(u2

1�v2)t+2v(x�x1)
�
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+ u2 sech
⇥
u2(vt � x+ x2)

⇤
e

1
2 i
�
(u2

2�v2)t+2v(x�x2)
�

+ u3 sech
⇥
u3(v0t � x+ x3)

⇤
e

1
2 i
�
(u2

3�v2
0)t+2v0(x�x3)

�
, (7.3)

where u1,2, x1,2, and v represent intensity, initial center-of-mass position and velocity

of two signal solitons, respectively. The intensity of control soliton is represented by u3

which is chosen greater than u1,2. As control soliton is stationary and located at the origin,

where v0, and x3 take the value zero. Our initial protocol can be summarised as

y = ys1 +ys2 +yc, (7.4)

where ys1 and ys2 are input signal solitons, collectively considered as one qubit, and yc

is the control soliton. The evolution time is taken long enough for the scattered solitons

to be far away from the potential. Then, we calculate the reflectance, trapping, and trans-

mittance coefficients. We define the reflectance, trapping and transmittance coefficients

as follows:

R =
1
N

Z �l

�•
|y (x, t) |2 dx

L =
1
N

Z l

�l
|y (x, t) |2 dx

T =
1
N

Z •

l
|y (x, t) |2 dx, (7.5)

respectively, where l ⇡ 5/a , and N is the normalization of the total soliton intensity given

by N =
R •
�• |y(x, t)|2dx. Here, l represents the position of measurement of reflectance

or transmission, set at a value slightly greater than the position of the boundary of the

potential well, which we represented in terms of the inverse width of the potential a . The

limits in the integrations of the transport coefficients are set such that we obtain individual

transport coefficients for each one of the two signal solitons.
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7.3 The CNOT Gate Protocol

The controlled NOT gate (also C-NOT or CNOT) is a quantum logic gate that is an es-

sential component in the construction of a gate-based quantum computer. It can be used

to entangle and disentangle Einstein-Podolsky-Rosen (EPR) states. Any quantum circuit

can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates

and single qubit rotations. The action of the CNOT gate can be represented by the matrix:

CNOT =

2

66666664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

77777775

(7.6)

The CNOT gate operates on a quantum register consisting of 2 qubits. The CNOT gate

flips the second qubit (the target qubit) if and only if the first qubit (the control qubit)

is |1i. The truth table for the CNOT gate is given in Table 7.1.

Table 7.1: Truth table for CNOT gate

Before After
Control Target Control Target
|0i |0i |0i |0i
|0i |1i |0i |1i
|1i |0i |1i |1i
|1i |1i |1i |0i

In our protocol we consider two solitons of different amplitudes separated by a certain fi-

nite distance which represents the target qubit. The presence or absence of control soliton

represents the control qubit. Our scheme for the propagation of two solitons having differ-

ent intensities or amplitudes through a reflectionless potential well is shown in Figure 7.1.

We observe that when the two solitons propagate with the same velocity, v, through a re-

flectionless potential well in the absence of control soliton, they transmit fully without any

change in their path. So, we conclude that there is no change in target qubit in the absence

of control soliton as shown in upper panel of Figure 7.1. The dashed double lines at the

center of the schematic figure represent the potential. The thin red line between dashed
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double lines represents the presence of control soliton which is shown in the lower panel

of Figure 7.1.

Input

Output

I0>

No control soliton

I0>

Input

Output

I1>

No control soliton

I1>

Input

Output

I0>

I1>

Control soliton

Input

Output

I1>

I0>

Control soliton

Figure 7.1: Schematic figure representing the solitons’ scattering implementation of the
controlled-NOT gate. Upper panel: No change in target at output in the absence of control soli-
ton and both solitons show full transmittance through the potential well which is represented by
dashed double line at origin. Lower panel: Flip of target at output in the presence of control soliton
which is represented by thin red line between dashed double lines of potential.

By introducing the control soliton, we observe a flip in the intensities of the two incoming

solitons as they scatter off the potential. This is because, the soliton closer to the potential

well will experience reflectance earlier than the other soliton. We follow a similar scheme

of controlling the scattering of the target two solitons by introducing a control soliton into

a potential well as described in [34]. The input for control qubit of the quantum gate is

taken as |1i, if there is a control soliton in the potential well and |0i otherwise. The other

input qubit for target is designed through the combination of two solitons with different

intensities, one of the combinations is taken as |1i and its opposite combination (flip) is

taken as |0i, as shown in the schematic figure. The output is taken from the scattered
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solitons where both target solitons can be reflected, transmitted, trapped or split i.e., one

soliton reflects and the other soliton transmitted. It should be noted that we use through-

out all numerical calculated solitons that are in-phase with each other. We realize that

phase differences may affect the output of the scattering of solitons. Therefore, we chose

for simplicity not to incorporate this additional factor in our protocol.

CNOT gate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

v

R
,T

Figure 7.2: Transport Coefficients of CNOT gate: Dashed and dashed-Dotted (blue) curves corre-
spond to total reflectance R. Solid and dotted (red) curves correspond to total transmittance T of
the two target solitons. Dashed dotted blue curve and red solid curve correspond to transport coef-
ficients, R,T , in the absence of control soliton while dashed blue and dotted red curves correspond
to transport coefficients, R,T , in the presence of control soliton. The working window of velocity
for quantum controlled-NOT gate is 0.524 v 0.590 and is highlighted by the two green vertical
dashed borders. The parameters used are u1,2 = 1, 1.5, u3 = 2, x1 =�20, and x2 =�40.

A preliminary investigation of the scattering outcomes in terms of the potential and soli-

ton parameters including potential depth, width, location, soliton initial speed, phase, and

type, gives an idea of the ranges of parameters for which the useful applications could be

obtained. The transport coefficients curves for the quantum controlled-NOT gate are pre-

sented in Figure 7.2 which show a reasonably wide window of velocity for the operation

of CNOT gate. The working window of velocity (0.524  v  0.590) for quantum CNOT

gate is highlighted through the green dashed borders. The parameters used are u1,2 = 1,

1.5, u3 = 2, x1 = -20, and x2 = -40.
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No change in target in the absence of control soliton

Flip of target in the presence of control soliton

Figure 7.3: Upper panel: Both solitons show full transmittance through the potential well in the
absence of control soliton and we observe no change in target. Lower panel: Both solitons reflect
through the potential well in the presence of control soliton and we observe a flip in target. The
parameters used are u1,2 = 1, 1.5, u3 = 2, v = 0.525, x1 = -20, and x2 = -40.

It can be seen from Figure 7.2 that both target solitons show full reflectance, i.e., R ⇡ 1,

for v < 0.32 in the absence of control soliton i.e., control qubit = |0i. After that, they start

splitting through the potential well and one soliton reflects and the other one transmits for

v  0.524 which makes the first border of velocity window for quantum controlled-NOT

gate. After this critical velocity, both target solitons show full transmittance, i.e., T ⇡ 1,

which is desired to achieve CNOT gate. We observe no change in the combination of two

scattered solitons of different intensities which is also shown in upper panel of Figure 7.3

at velocity v = 0.525. Furthermore, by introducing the control soliton i.e., control qubit

= |1i, target solitons reflect till v = 0.590 which makes the second border of velocity

window for CNOT gate as mentioned in Figure 7.2. Beyond this value of velocity, they

also show splitting through the potential well. We observe a flip in target at output as the
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two solitons undergo scattering by a reflectionless potential well which is shown in lower

panel of Figure 7.3 at the same velocity v = 0.525. The initial profiles of target solitons

at t = 0 and the final profiles after scattering at t = t f are shown in Figure 7.4.
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Figure 7.4: Initial and final profiles of target solitons corresponding to Figure 7.3. Here left panel is
showing initial profiles of target solitons in the absence and presence of control soliton respectively
i.e., at t = 0 and right panel shows profiles of target solitons after scattering at t = t f = 100 for
each case. The parameters used are the same as in Figure 7.3.
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7.4 Discussion and Conclusion

We have shown that by using soliton scattering through a reflectionless potential well, a

quantum controlled-NOT gate can be achieved. We introduce a control soliton located

at the centre of the potential well, which provides the desired control on the outcome

of scattering. Since quantum controlled-NOT gate is a two-qubit logic gate, we use two

incoming solitons as one input qubit while the other qubit is represented by a control soli-

ton. We achieve the desired performance by exploiting a difference in the intensities of the

two incoming solitons. We find full transmittance of the scattered solitons in the absence

of control soliton for a specific velocity window and full reflectance in the presence of

control soliton. In addition, we observe an intensity flip in input solitons after scattering

through potential well in the presence of control soliton. We find this to be possible within

a considerable finite width of a velocity of incidence. Furthermore, we also observe that

the working velocity window for quantum controlled-NOT gate can be shifted to lower or

higher values by changing the intensity difference in the two input solitons.

A major advancement would be the development of the three single-qubit logic gates

within the setup and protocol described here. This is so since together with the controlled-

NOT gate, the three single-qubit gates form a complete set from which any other quan-

tum logic gate can be constructed. We believe this proposal will be a useful step towards

achieving all-optical quantum logic gates.
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Chapter 8: Conclusion and Recommendations

The dissertation investigates the study of all-optical data processing through solitons in

waveguides arrays and optical fibers by employing analytical and numerical methods. In

Chapter 2, we have shown that by modifying the setup of the previously-proposed OR

gate in a waveguide array, an XOR gate can be obtained. The modification includes the

introduction of a third potential well in addition to the two potential wells in the OR gate.

A control soliton is injected into the new potential well. The role of the new potential well

and its control soliton is to disperse the (11) output signal from the (10) and (01) outputs

exploiting a difference in their center-of-mass speed. We found this to be possible within

a finite width of a velocity of incidence that is comparable with that of the OR gate. We

have also shown how the AND, OR, and XOR gates can be connected to result in half and

full adders. We believe this proposal will be a useful step towards achieving all-optical

data processing.

In Chapter 3, we exploit the sharp transition region between full reflectance and full

transmittance to achieve optical signals amplification. We find that the transition region

is highly sensitive to the intensity of the input control soliton. For reflectionless poten-

tial, the sensitivity is too high to be experimentally realized. Therefore, we modulate the

reflectionless potential well to achieve a realistic performance of amplifier with a con-

trollable amplification. We also show that amplification value can be controlled by the

intensity of a control soliton located at the centre of potential well and the modulation of

the potential well parameters, mainly its width. We performed a detailed numerical inves-

tigation of the effect of all parameters regimes in order to optimize the performance. The

separations between the waveguides can be calculated and set to achieve such a potential

profile. We believe this to be an important and useful step towards achieving a soliton

transistor and all-optical data processing. Our result shows that the amplification factor is

also dependent on the intensity of the input signal. This leads to nonlinear amplification,

which we believe is not favorable from a practical point of view. In an ideal situation, the
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amplification factor aught to be constant so that no modulation of the relative amplitudes

or profile of the input signal is performed while amplifying it. We consider this as a chal-

lenge for a future work where we aim at obtaining an amplification scheme with constant

amplification factor within a finite range of input signal intensities.

In Chapter 4, we have used both numerical and variational calculations to obtain the

equilibrium profiles and ground state of discrete two-soliton molecules in 2D waveguide

arrays. Using a gaussian variational trial function, with six variational parameters corre-

sponding to the coordinates peak positions and widths of the two solitons, we calculated

the PN potential and the interaction potential between the solitons. We have investigated

the mobility of the soliton molecule and found that binding does not enhance on the mo-

bility. Neither the bond length nor the direction of the molecule’s motion had a tangible

effect of the mobility. We have shown the existence of stable discrete soliton molecules

in two-dimensional waveguide arrays. Analogy was made to the classical diatomic model

with linear restoring force. We have also found a unique behavior of a meta stable state of

a soliton molecule made of two out-of-phase solitons each place in a different waveguide.

Such a molecule shows a sudden splitting into two solitons propagating away from each

other. We believe our results will be valuable for the all-optical applications using solitons

to perform optical data processing.

In Chapter 5, we mapped the spin-1/2 system to a 2D Manakov system through a rotation

operator that gives the spin texture of skyrmions and we have investigated all possible

2D skyrmion textures. We solved the 2D Manakov system using various analytical and

numerical methods. While the similarity transformation method maps all solutions of the

integrable 1D Manakov system to the 2D Manakov system, the solutions of the latter turn

out to diverge at r = 0. Nondiverging solutions were then obtained using a power series

method. However, the spin texture associated with these solutions turned out to be trivial,

i.e., no texture. Finally, we considered a numerical solution of a system of coupled equa-

tions for the skyrmion density, n(r,f), and texture, w(r,f). This led to nondiverging
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and nontrivial spin textures. Then, we investigated the stability of these nontrivial nondi-

verging skyrmions by calculating their energy functional in terms of their effective size.

It turned out that stable skyrmions correspond to concentric rings of spin components

alternating between spin up and spin down. Metastable states, where energy is either in-

creasing or decreasing with skyrmion size, correspond to concentric rings of mixed spin

components. Our results show that, in contrast with the established fact that in two dimen-

sions localized solutions of the NLSE are unstable, the two spin states stabilize each other

against collapse and allow for nontrivial stable two-dimensional topological excitations.

Our results are also applicable to doubly polarized optical pulses. We strongly believe

that this chapter is an important addition to the effort of realizing topological excitations.

We summarize our main results of chapter 6: Firstly, we achieved unidirectional flow

of composite BB soliton passing through asymmetric double potential barriers in the ab-

sence of nonlinear coupling (g12 = 0). We considered two types of potentials for our

numerical simulations. We choose asymmetric RM and Gaussian double barrier poten-

tials. Our results for the unidirectional flow are achieved with potential barriers rather than

potential wells. Secondly, we achieved also a unidirectional flow of composite BB soli-

ton in the presence of attractive mean field inter-component coupling, i.e., g12 > 0 using

the two selected potentials. Interestingly, we find a change in polarity in unidirectional

flow for g12 > 0.329 for RM potential and g12 > 0.316 for Gaussian potential. Both

components of the BB soliton remained invariant throughout the propagation. Thirdly,

we found segregation or splitting of composite BB soliton into its two components in

the presence of repulsive mean field interaction coupling, g12 < 0, through both types of

considered potentials. We also observed the shuttle motion between the barriers in our

study. However, we restricted ourselves to the parameter regime for the unidirectional

flow and segregation. In addition, we achieved unidirectional segregation by varying

nonlinear strength of one of the components (g1) in the absence of nonlinear interaction

coupling (g12 = 0). Further, we realised that an extremely small value of repulsive cou-

pling (g12 =�0.004) can destroy the unidirectional segregation for such a case and results
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in bidirectional segregation. We also found unidirectional segregation of composite BB

soliton using variational calculations and compared our results with numerical compu-

tations. We obtained an excellent agreement between analytical and numerical analysis.

Our results are applicable to all-optical data processing and we strongly believe that this

work is an important contribution to the effort made towards the realization of optical de-

vices e.g., optical diode, interferometer. Another application would be the realization of

quantum logic gates where two solitons are usually needed to code a qubit. The scattering

dynamics of the two solitons through the potential may set up a protocol equivalent to a

two-qubit logic gate such as CNOT gate.

In Chapter 7, we have shown that by using soliton scattering through a reflectionless

potential well, a quantum controlled-NOT gate can be achieved. We introduce a control

soliton located at the centre of the potential well, which provides the desired control on

the outcome of scattering. Since quantum controlled-NOT gate is a two-qubit logic gate,

we use two incoming solitons as one input qubit while the other qubit is represented by

a control soliton. We achieve the desired performance by exploiting a difference in the

intensities of the two incoming solitons. We find full transmittance of the scattered soli-

tons in the absence of control soliton for a specific velocity window and full reflectance in

the presence of control soliton. In addition, we observe an intensity flip in input solitons

after scattering through potential well in the presence of control soliton. We find this to

be possible within a considerable finite width of a velocity of incidence. Furthermore,

we also observe that the working velocity window for quantum controlled-NOT gate can

be shifted to lower or higher values by changing the intensity difference in the two in-

put solitons. A major advancement would be the development of the three single-qubit

logic gates within the setup and protocol described here. This is so since together with

the controlled-NOT gate, the three single-qubit gates form a complete set from which any

other quantum logic gate can be constructed. We believe this proposal will be a useful

step towards achieving all-optical quantum logic gates.
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Appendices

Appendix A: Energy Functional

A.1 Variational Energy Functional

The energy functional calculated using the trial function Equation (4.5) in Equation (4.7)
is given by

E = 1
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A.2 Simplified PN Potential

The above full form of potential, Equation (A.1), can be simplified by expanding in pow-
ers of the small quantities e�p2h2

1/4 and e�p2h2
2/4, as follows
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and
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where VPNx and VPNy are the VPN in the horizontal and vertical directions, respectively.
To further simplify this expression, we consider a highly anisotropic waveguide, such as
dx=3, dy=0.15. The equilibrium widths, h10,20, are then calculated by minimizing the
potential with respect to the widths h1,2 which gives h10=3.86, h20=0.76. This further
simplifies the potential as follows.
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where, c1 =�6.81008, c2 = 11.249948, c3 =�0.06711, c4 = 0.03355,
c5 = 1.90572, c6 = 7.54659, c7 =�0.05033, c8 = 23.04872, and

VPNy = �c1 + en2y(c2�c3n2y)(c4 � c5 cos(pn2y))+ en2y(c2�c6n2y)
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where, c1 =�5.14794, c2 = 8.88178x10�16, c3 = 1.7313, c4 =�20.73639, c5 = 9.97285,
c6 = 1.29847, c7 =�27.64852, c8 = 6.64856,c9 = 1.66214
In Figures A.1 and A.2 we plot the approximate and full potential to see that they still
agree very well.
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Figure A.1: The PN potential, given by Equation (A.1), is shown by the blue solid line and the
simplified form for the horizontal direction, given by Equation (A.8), is plotted by the red dashed
line for the choice of parameters P=2, g=4, dx =3, dy =0.15, h10=3.86 and h20=0.76 and n2y=1.
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Figure A.2: The full and approximate PN potential given by Equations(A.1) and (A.9) are plotted
using blue solid and red dashed lines, respectively, for the same parameters used in Figure A.1 but
with n2x=1.
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A.3 VPN for Soliton Molecule

The variational energy functional Equation (A.1) can be simplified for the special case of
a soliton molecule where one soliton is restricted to move along the waveguide n1y =�1
and the other soliton moves along the waveguide n2y = 1, and thus the separation between
the two solitons is essentially determined by Dn = n2x � n1x. The energy functional is
therefore given in terms of the solitons separation as
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2.

For highly anisotropic waveguides the soliton width in the x-direction is at least more than
several waveguides and the soliton width in the y-direction is less than or of order a one
waveguide. Consequently, the quantity e�p2h2

1/4 is very small and hence

J3(np,e�p2h2
1/4)⇡ 1, (A.10)

with arbitrary real n. On the other hand the J3(np,e�p2h2
2/4) function can be expanded

in powers of e�p2h2
2/4, as
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(A.11)

Expanding in powers of Dn and employing the above-mentioned approximations (A.10)
and (A.11), the potential can be put in a parabolic form (4.15), where the spring constant
k is given by
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(A.12)

and the constant energy background is given by
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where a = e
2

h22 +1, b = e
p2h2

2
2 +2 and c = 1

h22 .
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Appendix B: Solutions of the 2D Manakov System

Using the similarity transformation described in Section 5.4.1, we found many new solu-
tions for the 2D Manakov system (5.19), here we mentioned only two of them for their
significance. The full list of solution is compiled by [177].

Solution-1

y1(r, t) =
1
pr

tanh

 r
3
8

r

!
e�i(1�3t) (B.1)

y2(r, t) =
r

5
2

1
pr

sech

 r
3
8

r

!
e

15
8 i(�1+t) (B.2)

The choice of parameters are a11 = �1, a12 = 2, a21 = 1, and a13 = a22 = a23 =
1
2 . See

Figure B.1.
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Figure B.1: Graphical representation of y1(r) and y2(r) for solution-1.

Solution-2

y1(r, t) =
1

3
pr

⇣
�2+3sech2[r]

⌘
e2i(1�t) (B.3)

y2(r, t) =
1
pr

sech2[r] e�2i(1�t) (B.4)

The parameters are a11 = a21 = 1, a12 = a22 =�9
2 , and a13 = a23 =

9
2 . See Figure B.2.
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Figure B.2: Graphical representation of y1(r) and y2(r) for solution-2.
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Appendix C: Similarity Transformation

The results of all the unknown quantities in (5.24) and all the coefficients in (5.23) are
listed below:

For Y1(~r, t):

T (r, t) = g1(t),
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1

eiB1(r,t) A(r, t) g0
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where I =Ptt(r, t)Pr(r, t)+Pt(r, t)Prt(r, t), and N = a2
1 g
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2
r (r, t)+3r2 P2

rr(r, t)�
2r2Pr(r, t)Prrr(r, t)].

For Y2(~r, t):
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where I =Ptt(r, t)Pr(r, t)+Pt(r, t)Prt(r, t), and N = a2
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2
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2r2Pr(r, t)Prrr(r, t)]. Here a11, a12, a13, a21, a22 and a23 are all arbitrary real constants.
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Appendix D: Asymmetric Gaussian Potential Barriers

The transport coefficients for the Gaussian double potential barriers are shown in Fig-
ure D.1. For the right moving BB solitons scattered through Gaussian barriers, the critical
velocity vc = 0.369 whereas that for the left moving BB solitons vc = 0.377. Furthermore,
the velocity window for our new scheme with Gaussian barriers (0.365  v  0.372)
is very much comparable to the previous study of Gaussian potential wells [45] ( 0.304
 v  0.310).

Figure D.1: Transport coefficients in terms of velocity for the propagation of the y1 component
through asymmetric Gaussian barriers for g1 = g2 = 1, g12 = 0 from x0 = -10 (upper panel) and x0
= 10 (lower panel).
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D.1 Unidirectional Flow for Uncoupled Components with g12 = 0

The unidirectional flow is also achieved for uncoupled components of BB solitons through
Gaussian double potential barriers. Figure D.2 shows the propagation of the BB soliton
components y1 and y2 with a critical velocity vc = 0.368, incident from x0 =⌥10 through
asymmetric Gaussian double barrier potentials.

Gaussian potential

Figure D.2: Propagation of composite BB soliton through asymmetric Gaussian potential barriers
for g12 = 0 with g1 = g2 = 1 at v = 0.368. Both components are identical. Left and right subfigures
are results of initial propagation from x0 = -10 and x0 = 10, respectively.

D.2 Polarity Reversal in Unidirectional Flow with g12 > 0

The important characteristic of polarity reversal is also observed through the propagation
of BB solitons via the asymmetrical Gaussian double potential barriers. Figure D.3 de-
scribes the transmission and reflection coefficients of the component y1 passing through
the RM potential barriers from x0= ±10, versus the velocity and positive mean field cou-
pling. From the spatiotemporal plots, it is observed that for lower coupling g12  0.312,
both components exhibit the diode behavior with "right polarity" as shown in Figure D.4
obtained for g12= 0.3 which is similar to the one achieved in the case g12 = 0.
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Gaussian potential, x0 = -10
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Figure D.3: Transmission and reflection coefficients of the component y1 propagating from x0
= -10 (upper two) and x0 = 10 (lower two) through Gaussian barriers versus v and g12. Other
parameters are g1 = g2 = 1.

Gaussian potential

Figure D.4: Propagation of composite BB soliton through asymmetric Gaussian potential barriers
for g12 = 0.3 with g1 = g2 = 1 at v = 0.452. Both components are identical. Left and right
subfigures are results of initial propagation from x0 = -10 and x0 = 10, respectively.
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Table D.1: The velocity window for unidirectional flow of composite BB solitons with different
coupling strengths. For the Gaussian potential barriers with the range of coupling strength 0.313
 g12  0.316 with g1 = g2 = 1, we find full reflection for v  0.453 and full transmission for v �
0.454, hence no unidirectional flow is observed at this specific range of g12. Away from this point,
we find polarity reversal in unidirectional flow.

Unidirectional flow with composite BB solitons
Interaction strength Velocity window

g12 vmin  v  vmax

0 0.365  v  0.372
0.1 0.402  v  0.413
0.2 0.43  v  0.45
0.3 0.451  v  0.454

0.308 0.452  v  0.453
0.309-0.312 0.453 Ri

gh
tp

ol
ar

ity

0.313-0.316 no unidirectional flow
0.317-0.320 0.454

0.321 0.454  v  0.455
0.325 0.454  v  0.456
0.35 0.456  v  0.462
0.4 0.462  v  0.476
0.5 0.471  v  0.5
0.6 0.487  v  0.539
0.7 0.473  v  0.564
0.8 0.502  v  0.583
0.9 0.532  v  0.598
1 0.558  v  0.608

Le
ft

po
la

rit
y

For Gaussian potential barriers, we observe no unidirectional flow in the range of in-
teraction coupling 0.313  g12  0.316 where the composite BB solitons propagating
from both directions show full transmission for v � 0.457, while it exhibits maximum
reflection for both right and left moving composite BB solitons for v < 0.457 as shown
in Figure D.5. The velocity window for the diode functionality at different g12 values
are tabulated in Table D.1. Further, for g12 � 0.317, exactly the reverse phenomena is
achieved through Gaussian potential barriers and the polarity of unidirectional flow is
reversed from right to left polarity which can be seen by comparing Figure D.6 with Fig-
ure D.4. This phenomena is purely due to the increase in g12 above certain critical value
0.316, which is demonstrated by Figure D.7.
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Gaussian potential, v = 0.454

Gaussian potential, v = 0.453

Figure D.5: Propagation of composite BB soliton through asymmetric Gaussian potential barri-
ers for g12 = 0.315 with g1 = g2 = 1. Upper panel shows full transmission at v = 0.454 while
lower panel shows full reflection at v = 0.453, from both left and right directions. There is no
unidirectional flow in the range of coupling strength 0.313  g12  0.316.
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Gaussian potential

Figure D.6: Propagation of composite BB soliton through asymmetric Gaussian potential barriers
for g12 = 0.317 with g1 = g2 = 1 at v = 0.454. Both components are identical. Left and right
subfigures are results of initial propagation from x0 = -10 and x0 = 10, respectively. The polarity
reversal phenomenon in unidirectional flow is achieved by comparing with Figure D.4

Polarity Reversal through Gaussian potential

Figure D.7: Borders of velocity window for the unidirectional flow (vmin,vmax) vs g12 through the
Gaussian potential barriers with g1 = g2 = 1. Full reflection for v  0.453 and full transmission
for v � 0.454 is obtained with the range of coupling strength 0.313  g12  0.316, hence no
unidirectional flow is observed at this specific range of g12. Away from this point of g12 = 0.316,
we find polarity reversal in unidirectional flow. The shaded region shows the velocity window for
the unidirectional flow. The red color shows the right polarity while the green color shows the left
polarity of the unidirectional flow. The data used to generate this figure is listed in Table D.1.



160

D.3 Unidirectional Segregation with g12 < 0

Almost the same behavior is observed in the variation of reflection coefficients for the
BB soliton components propagating through Gaussian potential barriers from x0 = ± 10
versus velocity and g12 values which is shown in Figure D.8.
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Figure D.8: Reflection coefficients of the components y1 and y2 propagating through Gaussian
potential barriers from x0 = -10 (upper two) and x0 = 10 (lower two) versus v and g12. Other
parameters are g1 = g2 = 1.
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Appendix E: Equations of Motion

Using the effective Lagrangian, Equation (6.11), the Euler–Lagrange equations lead to
the following equations of motion for the variational parameters,
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