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Abstract  

 

In cities worldwide, increasing urbanization causes major land use and land cover 

changes on the surface of the Earth. It has been identified as being one of the most 

important anthropogenic effects on the climate. As a result, rapid population growth 

and the rise in industrialization in the United Arab Emirates (UAE) may have created 

substantial environmental stress and consequence for life quality. Remote sensing-

based Land Surface Temperature (LST) is significantly essential for different studies. 

Satellite images obtained by the Moderate Resolution Imaging Spectroradiometer 

(MODIS) are used to retrieve LST. This research consists of introduction and five 

components of some MODIS LST application over the UAE: (1) detect the thermal 

anomaly for groundwater flow after rainy day; (2) investigate the relationship between 

soil salinity and LST; (3) estimate the air temperature; (4) study the night Surface 

Urban Heat Island (SUHI); (5) detect the effect of the lockdown of COVID-19 on air 

pollutants and SUHI. The results demonstrate that the thermal anomaly was identified 

following a rainy day, which can be utilized to predict the optimal groundwater 

resources. The salinity of the soil showed a high correlation with MODIS LST at night. 

In addition, the air temperature estimation study indicated the significance of the 

MODIS LST as a credible proxy for air temperature. As regards the SUHI over the 

city of Dubai, it has risen gradually with the growth of the city. Furthermore, the 

increased amount of SUHII is mostly concentrated in high and dense buildings. 

Further, the maximum SUHI intensity was registered by Dubai International Airport. 

In comparison, due to the COVID-19 pandemic lockdown in the UAE, SUHI and air 

pollutants have declined. 

 

Keywords: Remote Sensing, MODIS, LST, Thermal Anomaly, Soil Salinity, Air 
Temperature, SUHI, COVID-19. 
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Title and Abstract (in Arabic) 
 

 تطبيقات درجة حرارة السطح من الاقمار الصناعية على دولة الامارات العربية المتحدة

صالملخ  

حدوث تغيرات كبيرة في يتسبب التوسع الحضري السريع في المدن في جميع أنحاء العالم في 

صنف كاحد الألأ التاثيرات اللألألأيلأ على حيث ، علأى لأطلأ الألأضات وغطاء الاراضي استخدام

قد يتسبب في ..د كبير  ،المناخ. ونظراً للنمو السكاني السريع في دول الامارات العربية المتحدة

المستمدة من الاستشعار  السطح على البيئة والتي تؤدي الى عواقب على جودة الحياة. درجة حرارة

تم الحصول على درجة حرارة  في هذا البحث عن بعد لها اهمية متزايدة في دراسات مختلفة.

الحساس موديس.  خمسة اجزاء عن بعض تطبيقات درجة  المقدمة و فصل يضموالسطح من 

) كشف 1على دولة الامارات العربية المتحدة. وهي كالتالي: (موديس  حرارة السطح المستمدة من

) دراسة العلاقة بين الملوحة ودرجة 2الشذوذ الحراري لكشف المياه الجوفية بعد يوم ممطر (

) 5) دراسة جزيرة الحرارة الحضرية الليلية و (4) تقدير درجة حرارة الهواء (3حرارة السطح (

على ملوثات الهواء و جزيرة الحرارة الحضرية  19-كشف تاثير الحظر بسبب فايروس كوفيد

الليلية. تشير النتائج انه بعد يوم ممطر تم الكشف عى الشذوذ الحراري بسبب المياه الجوفية ومنه 

يمكن التنبؤ بالمواقع المثلى للمياه الجوفية. اظهرت ملوحة التربة ارتباطاً وثيقاً مع درجة حرارة 

وديس كبيديل اشارت دراسة تقدير درجة حرارة الهواء الى اهمية م ،السطح الليلية. بالاضافة

دبي  موثوق لدرجة حرارة الهواء. فيما يتعلق بالجزيرة الحرارية الحضرية فقد زادت  ،في امارة 

يجي مع تطور المدينة. بالاضافة انها تتركز في الغالب على المباني ذات الكثافة العالية  بشكل تدر

كما سجل مطار دبي الدولي اعلى كثافة لجزيرة الحرارة الحضرية. بينما انخفضت  ،والمرتفعة

 .في دولة الامارات العربية المتحدة 19-مع ملوثات الهوالا لالال فترة حظر كوفيد

 ،الشذوذ الحراري ،درجة حرارة السطح ،موديس ،: الاستشعار عن بعدمفاهيم البحث الرئيسية

 .19-كوفيد ،رية الحضريةالجزيرة الحرا ،ملوحة التربة
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Chapter 1: Introduction 

 

1.1 Overview  

Rapid urbanization in cities causes major land use and land cover changes on 

the surface of the Earth. It has been classified as one of the climate's most significant 

anthropogenic influences (Zhou et al., 2011). United Nations show that by 2025, 60 to 

70% of all population will reside in cities, and most of the fastest-growing regions for 

urban development will happen in arid regions. Interestingly, by 2019, in the United 

Arab Emirates (UAE), approximately 87% of people reside in urban areas (United 

Nations, 2019). In addition, in the UAE, Dubai City is rated as one of the ten growing 

cities globally, having growth rates ranging 6.3% to 9.3% each year as per United 

Nations (UN DESA, 2019). Economic growth, other than everything else, contributes 

to the growth of the population and is related to urban growth. As a result of the 

massive population expansion and industrialization growth in the UAE, the 

environment and consequences for quality of life, including public health and 

wellbeing, quality of air, energy and water use, and far more, could have caused 

tremendous stress. Therefore, physical consequences should be considered. 

In addition, severe water deficits are affecting the UAE, along with the lack of 

perpetual streams or rivers and lakes. Additionally, in keeping with capita water 

consumption, the UAE has the highest in the world (Alam et al., 2017). It is, therefore, 

crucial for groundwater exploration to be acknowledged in order to meet the growing 

requirement for freshwater in such a region. Moreover, the scarcity of perennial water 

supplies makes groundwater in the UAE surely the only source of water. So, it is 

essential to recognize groundwater exploration. 
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Also, either human or natural induced, soil salinity is deemed an environmental 

hazard that is a major issue of land degradation, low economic yields, low agricultural 

productivity, as well as soil erosions are some of the effects of salinity. Furthermore, 

it influences urban infrastructure due to of corrosion, subsidence, and the quality of 

groundwater. Soil salinity must, however, also be taken into account. 

One of the most crucial climatological variable and the global change is Air 

Surface Temperature (Ta). Within the hydrosphere, atmosphere, and biosphere, it 

controls multiple physical and biological processes. Accurate mapping its spatial-

temporal distribution is therefore beneficial in a broad variety of applications in the 

field of hydrology, agriculture, climate change, environment, ecology, and social 

applications (El Kenawy et al., 2019b; Hooker et al., 2018; Huang et al., 2015; Janatian 

et al., 2017; Meyer et al., 2016; Noi et al., 2016; Shah et al., 2012; Sun et al., 2014; 

Zhu et al., 2013). 

Additionally, the change of land surface from natural to impervious changes 

surface properties because of urban growth, leading in reduced albedo, a larger 

proportion of latent and sensible heat flux, and more massive surface energy storage 

in urban areas. As a result, urban areas generate hotter temperatures than the 

surrounding rural areas, which called Urban Heat Island (UHI) phenomena (Hu & 

Brunsell, 2013; Miles & Esau, 2017). On the basis of air temperature, UHI is 

calculated. While the Surface UHI (SUHI) is performed utilizing satellite-derived 

Land Surface Temperature (LST) data. Besides, the air pollutants emissions are the 

most critical component of human activities. It is one of the features of the new era, 

with both the growing use of natural gas and oil fuels in different sides of life. Many 

air pollutants such as Nitrogen Dioxide (NO2) and aerosols originating from industrial 

operations or various transport systems are dispersed in the environment. The air 
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pollutants correlated to respiratory health problems and has adverse environmental 

effects like water and soil acidification (Griffin et al., 2019; Mulenga & Siziya, 2019; 

Xu et al., 2020). The effect of the lockdown of COVID-19 on SUHI and air pollutants 

has therefore been studied.  

1.2 Thermal Remote Sensing 

Remote sensing is known as the art and science of extracting information about 

areas, objects, or phenomenon under investigation by a device from distance (Lillesand 

et al., 2004). The advantage of utilizing remote sensing are that wide areas can be 

covered with less time, which is comparatively inexpensive than field measurements. 

Remote sensing utilizes multiple parts of the electromagnetic spectrum for 

different applications in which Thermal Infrared (TIR) remote sensing deals with the 

processing and interpretation of data obtained mainly in the thermal infrared part of 

the electromagnetic spectrum. All objects consist of particles composed of random 

motion over absolute zero Kelvin. As they collide, based on an object's kinetic 

temperature, they alter their energy state and release electromagnetic radiation. The 

electromagnetic radiation emitted by an object is termed as radiant flux and calculated 

in Watts (Cohen, 2009). The measurement of the amount of radiant flux energy 

released from an object is its radiant temperature. A high positive association typically 

occurs between an object's kinetic temperature and the amount of radiant flux emitted 

from the object. Hence, to calculate its radiant temperature, radiometers are positioned 

at any distance from the object, which corresponds well with the kinetic temperature 

of the object. This is the starting point of TIR remote sensing (Dash et al., 2002). TIR 

remote sensing calculates the emitted radiation from the surface of the earth, in 

comparison to optical remote sensing, where it generally measures the reflected 
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radiation from the surface of the earth. The radiation released by the earth's surface is 

much larger than the solar reflected radiations in the TIR field of the electromagnetic 

spectrum. Sensors working in the TIR wavelength region thus detect mainly the 

thermal radiative properties of the Earth surface (Chuvieco, 2009). The Earth has a 

mean temperature of approximately 300 K, as well as its electromagnetic emitted 

radiance peak is situated in the electromagnetic spectrum region of around 9.7 μm 

(Figure 1.1). 

The region of 3 μm to 35 μm is commonly termed as the TIR area in terrestrial 

remote sensing. Nevertheless, the TIR region is somewhat separately described by 

various authors. Data acquisitions are only performed in regions with minimum 

spectral absorption defined as the atmospheric window for remote sensing of the 

surface of the earth throughout all mission planned of remote sensing for land 

applications. Although, there is no negligible emission and atmospheric absorption 

within these atmospheric windows. As shown in Figure 1.2, the electromagnetic 

spectrum region of the atmospheric window locates between 3-5 μm and 8-14 μm. The 

attenuation caused by the atmospheric constituents is the lowest in the 3 to 5 μm 

atmospheric window area. However, The at Sensor/ Top of Atmosphere (TOA) 

radiance in the 3-5 μm region is influenced by reflecting solar radiation demonstrated 

in Figure 1.2 during the daytime. In this region, the solar radiance is around 8 to 10 

times the emitted radiance at 300 K from the surface of the Earth. On the other side, 

the surface of the earth releases roughly 80% of the energy obtained by the satellite-

based TIR sensor in the region of 10.5 to 12.5 μm (Figure 1.1). Within this region, 

there is a small contribution from the solar scattering and solar reflected radiation, 

allowing the Land Surface Temperature (LST) retrieved most suitable in this region 

(Jensen, 2009; Waring & Running, 2007). 
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Figure 1.1: The Solar irradiance and Earth-emitted radiance. Adapted from (Dash et 
al., 2002) 

 

 

Figure 1.2: Range of the transmission of the IR spectra ground atmospheric 
windows. Adapted from (Olaguer, 2017) 

 

1.3 Methods for LST Retrieval 

Many attempts have been made to build methods for retrieve the LST from the 

remote sensing data. According to Li et al. (2013) and Du et al. (2015), these 

algorithms have been broadly classified into three classifications: (1) single-channel, 

(2) multichannel (e.g., the temperature and emissivity separation method and the split-

window algorithm); and (3) multi-time methods (e.g., two-temperature method, the 

temperature-independent spectral indices method and the physical day and night 

algorithm). 
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The single-channel method will approximate LST from sensors for a single 

TIR channel. While multi-channel and multi-time methods can estimate LST and Land 

Surface Emissivity (LSE) from sensors with multi-TIR channels like Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Very 

High-Resolution Radiometer (AVHRR), Moderate Resolution Imaging 

Spectroradiometer (MODIS), etc. In this study, the concentration was on methods such 

as split-window and physical day and night algorithms being used to approximate LST 

from MODIS. 

The split-window methods use two TIR bands are usually situated in the 

atmospheric window within 10 and 12 μm. The most common method for LST 

retrieval from the satellite data is the split-window algorithm (Wang et al., 2019b). For 

the MODIS data, LST retrieval is carried out primarily through the implementation of 

split-window methods (Zhao et al., 2009). Researchers have developed numerous 

split-window algorithms focused on variation and impact of the atmosphere and 

emitting surface (Mao et al., 2005; Sobrino et al., 2003; Wan, 2014; Wan & Dozier, 

1996; Wang et al., 2019b). 

LSE and LST are obtained simultaneously by the MODIS Day / Night 

Algorithm (A physical algorithm). To retrieve LST and LSE from MODIS day and 

night data, Wan and Li (1997) proposed the MODIS Day / Night Algorithm. For the 

solution of land-surface and atmospheric parameters, fourteen equations are developed 

based on day/night measurements of the seven infrared MODIS channels, from which 

LST and LSE can be obtained. In the day and night observation, geometrical 

corrections are required to reference the two scenes (Liang et al., 2012). 

Latest retrieval approaches are constantly being established in the ongoing 

quest to enhance the accuracy of LST estimation via remote sensing, allowing 
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utilization of the latest satellite sensors and leveraging growing computing power for 

data processing and analysis. There are numerous different satellite remote sensing 

platforms with many sensors in the TIR spectrum, offering the current meteorologist 

a variety of potentially valuable datasets for LST measuring. Datasets are available for 

various time periods, at various resolutions, with differing accuracy. The different 

datasets available are thus summarized in Table 1.1. Notice that this table does not 

include private or commercial satellites, as they are typically not as accessible to 

researchers. 

 

Table 1.1: Summary of current Typical Thermal Infrared (TIR) sensors aboard 
satellite platforms for land surface temperature 

Sensor/Satellite Channel(s) TIR spectral range 
(µm) 

Spatial 
resolution (m) 

OLI/Landsat 8 
10 10.6-11.2 

100 
11 11.5-12.5 

ETM+/Landsat 7 6 10.4-12.5 60 

TM/Landsat 5 6 10.4-12.5 120 

AVHRR/NOAA 
4 10.30-11.30 

1100 
5 11.50-12.50 

MODIS/Aqua; 
Terra 

31 10.78-11.28 
1000 

32 11.77-12.27 

ASTER/Terra 

10 8.125-8.475 

90 

11 8.475-8.825 

12 8.925-9.275 

13 10.25-10.95 

14 10.95-11.65 
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Table 1.1: Summary of current Typical Thermal Infrared (TIR) sensors aboard 
satellite platforms for land surface temperature (Continued) 

Sensor/Satellite Channel(s) TIR spectral range 
(µm) 

Spatial 
resolution (m) 

AATSR/ENVISAT 
11 Central wavelength: 

10.85 & 12.0 1000 
12 

SLSTR/Sentinel-3 

S7 Central wavelength: 
3.74, 10.85 & 12.0 

1000 S8 Channel width: 0.38, 
0.9 & 1.0 S9 

SEVIRI/MSG 
9 Central wavelength: 

10.8 & 12.0 3000 
10 

IRMSS/CBRES-1 9 10.4-12.5 300 

MERSI/FY-3 5 Central wavelength: 
11.25 1000 

IRMSS/HJ-1B 4 10.5-12.5 300 

S-VISSR/FY-2 
IR1 10.3-11.3 

5000 
IR2 11.5-12.5 

GOES 
4 10.2-11.2 

4000 
5 11.5-12.5 

VIRR/FY-3 
4 10.3-11.3 

1100 
5 11.5-12.5 

Source: (Hulley et al., 2019; Sattari & Hashim, 2014; Tomlinson et al., 2011) 

 

1.4 LST Definition and Terminology 

Land Surface Temperature (LST) is the temperature of the skin of the Earth. It 

reflects the amount of radiation emitted from the surface and sub-surface of the Earth 

(Weng et al., 2019). LST is a vital variable in the inland surface processes, 



9 
 
environmental and climatological studies as it has a crucial role in the energy exchange 

in between both the atmosphere and the surface of the Earth in different forms (Song 

et al., 2018b). Turbulent sensible and latent heat fluxes, long-wave radiation flux, and 

ground heat storage are included in these forms (Benas et al., 2017). LST knowledge 

is a core component of the science of other Earth systems (Li et al., 2013). it has been 

utilized in evapotranspiration, soil moisture, evapotranspiration, urban heat island as 

well as other studies (Peng et al., 2018; Song et al., 2018a; Zhao et al., 2016). LST 

obtained from satellites is extensively utilized in numerous scientific areas related to 

the assessment of land surface conditions, from local to global scales including climate 

change, the energy budget, the monitoring of vegetation, the hydrological cycle, and 

the climatology of urban (Ermida et al., 2020; Khandelwal et al., 2011; Voogt & Oke, 

2003). 

1.5 Statement of the Problem 

The UAE has been established in 1971. It is approaching its fifty years of 

establishment with great fanfare and celebrations. During the past fifty years the UAE 

has undergone massive transformations and change and has become an attractive 

tourist place in the region. During these last fifty years the country has set it economic 

and social programs in transforming the desert place into a highly advanced urbanized 

country. Large residential cities were created, impressive and modern infrastructure, 

and a vibrant and growing economy. Such rapid changes have been mostly achieved 

only in the last fifty years.  

Urbanization, tourism, and socio-economic development comes at a price. 

There has been an associated changes in the local environment and major disturbances 

to both the terrestrial and marine ecosystems in the country. One major impact is the 
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expansion in agricultural practices leading to significant depletion of the limited 

ground water resources. In a desert and semi-arid regions this is a major challenge that 

impacts any future agricultural expansion.  

The massive residential and infrastructure development has impacted the desert 

surface and to a limited extent, so far, has disturbed the ancient salt flats ecology with 

its diverse wildlife habitats. The construction of large residential centers and towns has 

an adverse effect of creating urban heat islands within the desert landscape that has not 

been present before and also lead to low urban air quality. 

Studying the impacts of urbanization, ground water depletion, and soil 

degradation are important environment issues to address. Without proper assessment 

of the impacts of these environmental issues the consequences might derail and impact 

any future developments within the country. 

Remotely sensed data provides an ideal source of data for studying 

environmental problems at global, regional and local scales. Such data usually covers 

large geographic regions, comes with high quality at different spectral ranges, and 

provides continuous repetitive coverage. Of the different types of earth observation 

data is thermal data collected over terrestrial surfaces. Thermal remotely sensed data 

is particularly concerned with measured the thermal radiance emitted from terrestrial 

surfaces due to their thermal energy. For tacking some of environmental issues facing 

the UAE thermal remote sensing offers a wide suit of applications, in particular to the 

issues raised earlier of ground water assessment, urban heat islands phenomenon, 

retravel of air temperature in remote and vast areas, salinization, and urban air quality. 

This research is predominantly focused on the applications of thermal remote sensing 

for addressing some of the environmental problems facing the UAE. In particular this 

research will focus on: 
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i. Detect groundwater flow by thermal anomalies. 

ii. Detect and model the soil salinity using several spectral indices and evaluate 

the relationship between soil salinity and the estimated LST. 

iii. Estimate air temperature across UAE country.  

iv. Assess Surface Urban Heat Island Intensity (SUHII).  

v. Investigate the impact of COVID-19 on the concentration of Nitrogen Dioxide 

(NO2), Aerosol Optical Depth (AOD) and SUHI.     

1.6 Structure of the Dissertation 

Six chapters are contained in this dissertation and the content of the chapters is 

as follows:  

Chapter 1 starts with a brief overview, background of remote sensing Land 

Surface Temperature (LST), it also includes related literature, a statement of the 

problem, as well as the structure of the dissertation as an introduction to the research. 

Chapter 2 includes the thermal anomalies detection in Eastern Abu Dhabi from Remote 

Sensing and Geophysics. Chapter 3 provides modeling soil salinity and investigation 

the relationship between soil salinity and Land Surface Temperature (LST) over arid 

area, UAE.  Chapter 4 covers estimation of air temperature using MODIS LST over 

UAE. Chapter 5 gives the analysis of night Surface Urban Heat Island (SUHI) using 

nighttime MODIS Land Surface Temperature data in Dubai city. Chapter 6 contains 

the impact of COVID-19 lockdown upon air pollutants and SUHI over Northern UAE. 

Finally, it summarizes significant findings of the dissertation. 
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1.7 Review of Literature  

A summary of MODIS characteristics will be presented in this subsection. In 

addition, this subsection concentrates on prior studies linked to some LST applications 

with a concentrate on air temperature estimation, SUHI, the relationship between LST 

and salinity of the soil, thermal anomaly, lockdown effect of COVID-19 on air 

pollutants. 

1.7.1 MODIS Characteristics 

The most typical satellites being used in LST applications are Landsat, 

ASTER, AVHRR and MODIS, among the significant operational remote sensing 

satellite systems listed in Table 1.1 in Section 1.3. In terms of spatial resolution, 

Landsat has tremendous strength, but it has a revisit time of 16 days and lack of night-

time image acquisition is constrained on a temporal scale. In addition, the small size 

of Landsat images, as extended to regional and national regions, numerous images 

must be mosaicked. Furthermore, notwithstanding the fact that ASTER LST standard 

items have been accessible since 2001. In 2016, the entire ASTER data archive was 

made accessible free of cost, so the historical data is restricted. Additionally, like 

Landsat, ASTER has a coarse temporal resolution of 16 days. In addition, due to the 

AVHRR involves complex procedures for pre-processing and AVHRR efficiency, 

LST is not quite as good as MODIS LST (Noi et al., 2017). Furthermore, in calculating 

LST over continental regions, there is high uncertainty (Khorchani et al., 2018). 

Therefore, the MODIS has been selected in this research. 

The strengths of the MODIS instrument comprise its worldwide coverage, high 

temporal resolution (four daily overpasses at about 1:30 AM and 1:30 PM, and at 10:30 

AM and 10:30 PM, local time). It is characterized by high radiometric resolution and 
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dynamic ranges, free and easy to access, and accurate calibration in visible, near-

infrared, and thermal infrared bands. It has been widely utilized in various studies and 

applications, especially on a diverse scale (e.g., local, regional, and worldwide). Thus, 

a considerable amount of attention is paid by scholars to MODIS LST data (Phan & 

Kappas, 2018). In addition, relative to all other sensors that provide higher spatial 

resolution but poorer temporal resolution, or higher temporal resolution but poorer 

spatial resolution, the MODIS sensor is a balance among both normal image 

acquisition and reasonable spatial resolution. Overall, of all the other remotely sensed 

data, MODIS is by far the most prevailing data source. MODIS LST is the most known 

and highly used source for LST applications such as soil moisture estimation, air 

temperature estimation studies, thermal anomaly, UHI phenomena, 

evapotranspiration, as well as drought (Phan & Kappas, 2018). Consequently, the 

publications with the MODIS was highest when compared with Landsat, ASTER and 

AVHRR (Tomlinson et al., 2011; Zhou et al., 2019). 

The MODIS instrument has been onboard NASA's Terra and Aqua Earth 

Observation System satellites. Terra was launched on December 18, 1999, while Aqua 

was launched on May 4, 2002. The MODIS sensors onboard the Terra and Aqua 

satellites have 36 spectral channels with a viewing swath range of 2330 km, spanning 

the electromagnetic spectrum from 0.4 μm to 14 μm. MODIS is in orbit at a low 

altitude (705 km). Furthermore, their orbital parameters are 1-2 days of worldwide 

coverage and include LST four times every day, including daytime and nighttime. 

Terra ascends past the equator at about 10:30 AM, and at about 10:30 PM, it descends 

past the equator. In contrast, Aqua crosses the equator in opposing directions at around 

1:30 AM and 1:30 PM. Around the same time, satellites pass over the same location 

on Earth every 24 hours. To derive the MODIS LST, two thermal infrared band 
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channels have been used, 31 (10.78 μm–11.28 μm) and 32 (11.77 μm–12.27 μm) 

utilizing the split-window algorithm, (Wan et al., 2002). These MODIS products have 

been submitted for consistent validation. According to the outcomes of ground 

validation of these LST products, the accuracy is 1 Kelvin in most of the cases 

underneath the clear the sky, and therefore can meet criteria for the accuracy of most 

LST modelling applications (Wang et al., 2008). The generalized method of split-

window algorithm rectifies the atmospheric effects, based on dissimilar absorption in 

adjoining infrared bands. Spatial resolution for bands 1 to 2 is 250 m, for bands 3 to7 

is 500 m, and for band 8 to 36 it is 1000 m. All comprehensive explanations of the 

MODIS features are given in Table 1.2, acquired from (https://modis.gsfc.nasa.gov/).  

 
Table 1.2: MODIS spectral bands, associated spatial resolution and its primary use 

Primary use Band no. Bandwidth Spatial 
resolution  

Land/Cloud/Aerosols 
Boundaries 

1 620 - 670 nm 
250 m 

 

2 841 - 876 nm  

Land/Cloud/Aerosols 
Properties 

3 459 - 479 nm 

500 m 

 

4 545 - 565 nm  

5 1230 - 1250 nm  

6 1628 - 1652 nm  

  7 2105 - 2155 nm  

Ocean Color/ 
Phytoplankton/ 

Biogeochemistry 

8 405 - 420 nm 

1000 m 

 

9 438 - 448 nm  

10 483 - 493 nm  

11 526 - 536 nm  

12 546 - 556 nm  

13 662 - 672 nm  

14 673 - 683 nm  

15 743 - 753 nm  

16 862 - 877 nm  

Atmospheric Water 
Vapor 

17 890 - 920 nm 
1000 m 

 

18 931 - 941 nm  

19 915 - 965 nm  
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Table 1.2: MODIS spectral bands, associated spatial resolution and its primary use 
(Continued) 

Primary use Band no. Bandwidth Spatial 
resolution 

Surface/Cloud 
Temperature 

20 3.660 - 3.840 µm 

1000 m 
21 3.929 - 3.989 µm 

22 3.929 - 3.989 µm 

23 4.020 - 4.080 µm 

Atmospheric 
Temperature 

24 4.433 - 4.498 µm 
1000 m 

25 4.482 - 4.549 µm 

Cirrus Clouds 
Water Vapor 

26 1.360 - 1.390 µm 

1000 m 27 6.535 - 6.895 µm 

28 7.175 - 7.475 µm 

Cloud Properties 29 8.400 - 8.700 µm 1000 m 

Ozone 30 9.580 - 9.880 µm 1000 m 

Surface/ Cloud 
Temperature 

31 10.780 - 11.280 µm 
1000 m 

32 11.770 - 12.270 µm 

Cloud Top Altitude 

33 13.185 - 13.485 µm 

1000 m 
34 13.485 - 13.785 µm 

35 13.785 - 14.085 µm 

36 14.085 - 14.385 µm 

        Source: https://modis.gsfc.nasa.gov/about/specifications.php 
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1.7.2 Previous Studies  

In the physics of land surface processes, the knowledge of LST from local to 

global scales is important. In a number of fields, the LST is extensively used. 

Numerous LST applications are briefly presented below. It is noteworthy to mention 

that in this research, targeted applications are linked to all given applications. 

Regarding the thermal anomaly's studies, thermal anomalies associated with 

faults in the Jinhua Quzhou basin of Zhejiang Province, China observed by Wu et al. 

(2012) using Landsat 5 and they found the LST near a fault are higher than in other 

areas and can indicate the strike trend of an underground fault. By using MODIS LST 

data, in China, the thermal anomalies were detected before 2013 Songyuan earthquake 

according to (Zhang et al., 2014b). The western province of Al Najaf in Iraq, a 

phenomenal underground fire was detected by using MODIS LST data (Abbas et al., 

2015). Over northern UAE, the study by Ghoneim (2008) revealed that a large volume 

of groundwater is dissipated into the sea along the eastern coast. A detailed 

examination of MODIS thermal data supports this by revealing cool surface anomalies 

issuing from the mountain range toward both the western desert plain and the Gulf of 

Oman following major rainfall events. 

Also, in Dujaila, Iraq Wu et al. (2014a) using Landsat TM and ETM+ for 

mapping soil salinity and they found that LST and soil salinity are relevant. Also, 

Hereher (2017a) addressed the change in LST resulted from the emergence and 

disappearance of Toshka lakes, in the western desert of Egypt as the main Land Use 

and Land Cover (LULC) change in the region to salinized soils.  

Since early 2000 (Terra) and mid-2002 (Aqua) MODIS LST data has received 

much attention and has been used for air temperature estimation also has shown its 

suitability as a proxy for Ta in various regions of the world such as: in  the Canada 
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(Xu et al., 2014), USA (Zeng et al., 2015), Africa (Vancutsem et al., 2010), Antarctica 

(Meyer et al., 2019), Brazil (Neves et al., 2016), Vietnam (Phan et al., 2019), Cyprus 

(Georgiou & Varnava, 2019), UK (Tomlinson et al., 2012), Spain (Serra et al., 2020), 

Croatian (Pepin et al., 2019), Portugal (Benali et al., 2012), China (Rao et al., 2019; 

Zhao et al., 2019), India (Shah et al., 2012, 2013), Tibetan Plateau (Pepin et al., 2019), 

Nepal (Zhou et al., 2017b), Thailand (Misslin et al., 2018), Mongolia (Otgonbayar et 

al., 2019), as well as in Middle East such as, Egypt (El Kenawy et al., 2019a, 2019b; 

Hereher & El Kenawy, 2020), Iran (Janatian et al., 2017) and Oman (Hereher, 2019). 

Additionally, AVHRR images have been used to estimate air temperature over 

Morocco (Hadria et al., 2019). Their results serve as a verification of MODIS products' 

precision that meet the requirements for estimating air temperatures.  

Weng (2003) used three Landsat TM images (from 1989, 1996 and 1997) to 

study the SUHI in Guangzhou, China alongside fractal analysis with the result that two 

significant heat islands existed in the city. Keeratikasikorn and Bonafoni (2018b) 

utilized Landsat 8 to examine the daytime SUHI pattern identification within the 

different land use in Bangkok, Thailand. Their result exhibited that the highest mean 

SUHI intensities were placed in the city core. Using multi-temporal NOAA AVHRR, 

Streutker (2003) quantified the UHI of Houston city, Texas with a 2-D Gaussian 

surface, monitored its growth over 12 years. He found that the magnitude and spatial 

extent of the UHI had closely followed the urban expansion of Houston city in terms 

of population distribution. In Middle East, Rasul et al. (2015) , used Landsat 8 data to 

investigate the spatial variation of LST and the daytime SUHI intensity in 2013 in 

Erbil, Kurdistan Iraq. They concluded that urban areas are cooler than surrounding 

areas, which called Urban Cool Island (UCI). More recently, AVHRR images have 

been used to the assessment of SUHI in three cities (Paris, Riyadh and Manama) 
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Surrounded by different types of land cover. The temperature variation analysis 

showed that the behavior of SUHI is not the same in different cities and dependent on 

the land covers surrounding the city (Sherafati et al., 2018). In the UAE, the UCI 

phenomenon at daytime has been investigated by using ASTER data. The 

investigations showed in the daytime a distinct surface cool island for Dubai and 

surface cool areas at Abu Dhabi city and its surrounding mangrove areas (Frey et al., 

2007). By used MODIS LST data, there are a number of UHI studies. For example, 

within Middle East, (Alahmad et al., 2020; Alali, 2015; Haashemi et al., 2016; 

Hereher, 2017b; Lazzarini et al., 2013; Schwarz et al., 2011).  Globally, (Cheval et al., 

2014; Clinton & Gong, 2013; Imhoff et al., 2010; Peng et al., 2012; Tan & Li, 2015; 

Tran et al., 2006; Yang et al., 2010; Yao et al., 2018a, 2019; Zhang et al., 2014a; Zhou 

et al., 2014, 2016b).  

Atmospheric studies estimate aerosol optical depth (AOD: an important 

influence on the radiation budget) in America, Canada, China and Africa (Liang et al., 

2006), and help detect clear sky, low-level temperature inversions in the polar regions 

(Liu & Key, 2003). Many recent studies have demonstrated a significant reduction in 

the level of air pollutants (e.g. PM2.5, PM10, CO, SO2, NO2, etc.) across the world 

during the COVID-19 pandemic (Archer et al., 2020; Collivignarelli et al., 2020; 

Dantas et al., 2020; Isaifan, 2020; Islam et al., 2020; Kaplan & Avdan, 2020; 

Karuppasamy et al., 2020; Kerimray et al., 2020; Nakada & Urban, 2020; Ranjan et 

al., 2020a; Tobías et al., 2020; Wang & Su, 2020). For the Middle East, a limited 

number of studies can be found in the literature. Otmani et al. (2020) studied the level 

of air pollutants over Morocco, while Nemati et al. (2020) studied the same changes 

in Iran. Similarly, they reported noticeable improvements in air pollution during the 

pandemic. 
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During the review in the relevant literature, the following gaps and areas were 

discovered that require more concentration: (i) no research has used thermal anomaly 

using LST data to detect groundwater flow in Abu Dhabi emirate, (ii) or assessed the 

relationship between LST and soil salinity over UAE, (iii) several studies estimated 

air temperature by using satellite data, but no research has been undertaken to estimate 

air temperature over the UAE. (iv) a literature search revealed few studies that 

investigated the spatiotemporal variation of UCI in arid climates. UHI has not been 

studied in UAE, (v) all previous studies have explored the impact of COVID-19 

lockdown on air pollutants. Still UHI was not investigated during the pandemic 

lockdown. 
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Chapter 2: Thermal Structure Anomalies in Eastern Abu Dhabi from 

Remote Sensing and Geophysics 
 

Abstract 

In mid-August 2018, thermal anomalies were identified in the eastern Abu Dhabi 

Emirate (UAE). The thermal anomalies were obtained through satellite data from 

MODIS Aqua and were found to coincide with low Bouguer anomalies. The MODIS 

Aqua satellite data showed a drop in the land surface temperature (10.5ºC on 17th 

August and 2.5ºC on 24th August 2018) in some areas of eastern Abu Dhabi compared 

to surrounding areas. UAE's Bouguer gravity map shows a low tendency of Bouguer 

anomalies (-90 mGal to -40 mGal) in NW-SE over the same anomalies of thermal 

remote sensing. The low Bouguer anomalies are described as a graben structure which 

facilitates groundwater channeling from the recharge zones in Oman Mountains to the 

Arabian Gulf, thus producing the low thermal anomaly observed by the area's remote 

sensing data. The technique used facilitates the prediction of optimum groundwater 

resources in the eastern Abu Dhabi, which also may use in elsewhere in arid areas. 

 
Keywords: Land Surface Temperature, Abu Dhabi, MODIS, Thermal Anomaly, 
Bouguer. 

 

2.1 Introduction 

Water is an integral component of mankind's life on Earth, covers about two 

thirds of the surface of the world. However, the fact is that less than 2.5% of the overall 

amount of water is freshwater, much of which is frozen in ice caps and glaciers (Gleick, 

1993). These freshwater resources have an unequal geographical distribution on the 
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surface of the earth. Although some areas of the world suffer from excess water, others 

face extreme water shortages including the absence of permanent streams or lakes; the 

second category is the United Arab Emirates (UAE) (Alam et al., 2017). Rapid 

population growth, Climate change, urbanization, industrial development and 

agricultural irrigation demand will all affect future UAE water resources. According 

to Alam et al. (2017) report, the UAE has the world's maximum in keeping with capita 

water consumption, with the domestic consumption of only 13%, while 80% of water 

is utilized for different greening projects. Therefore, it is important to recognize 

groundwater exploration to meet the increasing demand for freshwater in such a 

region.  The shortage of perennial water resources renders groundwater the only source 

of water in the UAE. So, the identification of groundwater exploration is important. 

Rainwater is the main groundwater recharge water source within the study region. 

During the winter months (December to February) approximately 80% of the annual 

rainfall occurs as a result of depressions and sometimes eastward-moving cold fronts 

from the Mediterranean. Moreover, the UAE area sits under the influence of monsoon 

rainfall during the summer (June through August). Hot surface temperatures and an 

uncertain layer in the lower atmosphere are sometimes responsible for the 

development of short-lived thunderstorms over the Oman Mountains and into the 

eastern UAE that may generate intense precipitation over small regions and short 

periods of time (Sherif et al., 2014).   

Land Surface Temperature (LST) is an essential factor in the field of 

atmospheric sciences as it integrates the effects of all earth-atmosphere interactions 

and energy fluxes seen between the ground and the atmosphere (Song et al., 2018b). 

As a result, LST shows a positive indicator of the Earth's surface energy balance at 

local, regional, and global scales.  



22 
 

Due to the availability of groundwater in the shallow aquifer, the sand dune 

corridors served as an advantageous area for farming activity. The study area is 

characterized by three different types of flow systems: local, intermediate, and regional 

flow system (Alsharhan et al., 2001). As can be seen in Figure 2.8, the overall 

groundwater movement is generally from the east (Oman Mountain) to the west 

(Arabian Gulf).  

The objectives of this research are to provide an approach that will help in 

identifying potential groundwater accumulation sites in the eastern part of Abu Dhabi 

by detecting groundwater flows in the period from 17 to 24 August 2018. For this, the 

thermal infrared imagery from MODIS Aqua and TRMM data to detect the thermal 

anomaly after a rainy day. Utilizing surface property details like land caver and the 

Digital Elevation Model (DEM) obtained from satellite remote sensing. In addition, 

the available gravity data helped us to understand the subsurface structure that consists 

and regulates the water flow in the region. 

2.2 Study Area and Data  

2.2.1 Study Area 

The United Arab Emirates (UAE) is a federation of seven emirates primarily 

based on the Arabian Gulf's south-eastern coast, and Abu Dhabi's Emirate is the largest 

of the seven emirates (Figure 2.1). The field of study in Abu Dhabi emirate, which is 

situated between 22°30' and 24°55' north latitude and 51°35' to 56°25' east longitude. 

Over the last few decades, Abu Dhabi has experienced massive and continuous urban 

growth. The population reached 283,000 in 1985, while in 2016, according to the 

Statistics Centre Abu Dhabi (www.scad.gov.ae), the total population reached 

2,908,000.  
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Figure 2.1: Location of study area (Abu Dhabi in UAE) 

 

2.2.2 Data  

Moderate Resolution Imaging Spectroradiometer (MODIS) is a sensor that 

works on the satellites Terra and Aqua. It is a high frequency revisit satellite mission 

over the UAE. Aqua travels through the country 13:00 and 01:00 local time, while the 

pass times for the Terra are 22:00 and 10:00. The data were collected with free 

accessibility from https:/earthexplorer.usgs.gov via the USGS Earth Resource 

Observation Systems Data Center. The data is of excellent quality with no cloud cover, 

from August 17th to 24th, 2018. The MODIS MYD11A1 Aqua: Land-surface 

temperature / Emissivity Daily version6 Global product with a spatial resolution of 

one km is used here. Day LST values are recorded in a Sinusoidal projection adjusted 

to the UTM zone of 39. The Tropical Rainfall Measuring Mission (TRMM) 

precipitation data was also utilized to comprehend which days of August 2018 had rain 
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to identify thermal anomaly, TRMM data was downloaded from 

(https://giovanni.gsfc.nasa.gov/giovanni). In addition, the 90 m resolution Digital 

Elevation Model (DEM) was derived from the NASA Shuttle Radar Topography 

Mission (SRTM) from (http://www.diva-gis.org/gdata). Figure 2.2 illustrates the UAE 

elevation map, from 0 m to 1875 m. Likewise, the Abu Dhabi Emirate land cover was 

retrieved from the Environment Agency Abu Dhabi (EAD) after it was reclassified 

into four classes (Desert/Barren land, visitation, Built-up and urban, and mountains) 

as illustrated in Figure 2.3. All maps were sent inside the same projection and clipped 

to GIS software for processing. Geosoft Seek Data (v 9.5.2) (2019) was used to obtain 

gravity data of the study area. ESRI ArcGIS™ 10.4 software was used for the 

processing, interpretation and visualization of the data and statistical factors were 

implemented using MS Excel. 

 

Figure 2.2: Elevation map of UAE 

 

https://giovanni.gsfc.nasa.gov/giovanni
http://www.diva-gis.org/gdata
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Figure 2.3: Land cover map of Abu Dhabi  

 

2.3 Results and Discussions 

In desert areas, all the absorbed sunlight goes into increasing the temperature 

of the dry soil's top layers. If the soil is moist, most of the energy from the incident 

sunlight is used to evaporate the water, which in turn cools the surface of the soil. This 

cooling process is an essential way of cooling the desert surfaces, as water absorbs a 

vast amount of heat as it becomes vapor. The desiccated soil becomes wet in the arid 

environment following straightforward rainfalls, but the wetting generally does not 

last that long due to the rapid frequency of infiltration or evaporation. At 

surface/subsurface water accumulation sites, furthermore, surface wetting is likely to 

remain longer than it would be elsewhere, possibly due to the constant flow of water 

from a distant recharge region. Because of the evaporative cooling at these areas the 

temperature will be slightly lower than that of the dry soil in the area. This temperature 
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difference wherever surface wetting overcomes gives rise to visible tonal variations in 

the thermal images, particularly during the summer daytime (El-Baz, 2010), where 

evaporation is most effective. Bright indicators in thermal images would signify warm 

soil surfaces (dry sand) while dark indicators would signify cold soil surfaces (wet 

sand). Based on this assumption that sustained surface wetting may be taken as an 

indirect indicator of groundwater accumulation, in the current analysis, satellite 

thermal data were used to locate surfaces with apparent moisture in the catchment 

areas of the eastern part of Abu Dhabi, were previously classified as sand dunes 

aquiver of very high groundwater potentiality (Alsharhan et al., 2001).  

The systematic evaluation of MODIS LST's cloud-free daytime images 

correlated with those of the TRMM rainfall showed a large cooler anomaly in the study 

region. The anomaly, which is suggestive of moisture content on the subsurface, 

remained observed in the LST images for several days. It arises in the desert between 

Abu Dhabi and Alain city and progresses into the southern frontier of Dubai (Figure 

2.4). The compounds and structure of the beds in the subsurface seem to make it easier 

for the rainwater to move from east (recharge) to west (aquifer) over vast underground 

distances (Figure 2.8). 

LST maps were produced by mid-August 2018. These can be seen in Figure 

2.4, which illustrates the anomaly found after a rainy day on August 16th 2018. Figure 

2.5 represents the time span in which this thermal anomaly occurs. The LST data 

crossing the thermal anomaly at three positions A, B, and C (Figure 2.6) indicates 

lower temperatures than neighboring regions. It was also found that these areas have 

the same height as well as the same land cover (Figure 2.2 & 2.3). After a week, the 

cooler anomaly nearly vanished. On 17th August the variation in the observed 

temperature was around 10.5ºC and then on 24th August 2018, it decreased to 2.5ºC. 
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The UAE map of the Bouguer gravity anomaly can be seen in Figure 2.7. The 

Bouguer values range from -93.4 mGal to 29 mGal. East Abu Dhabi’s thermal 

anomaly lies in the low Bouguer area (Figure 2.7). This low area of Bouguer is clarified 

in terms of a graben structure. This structure may play a role in channeling 

groundwater that flows from the eastern part (Oman region) to the western part 

(Arabian Gulf) and influences changes in LST (Figure 2.8). Overall, the technique 

used facilitates the prediction of optimum groundwater resources in the eastern Abu 

Dhabi, which also may use in elsewhere in arid areas.  

 

 

Figure 2.4: Thermal anomaly appearing in east Abu Dhabi from 17th of August 2018 
to 24th of August 2018 
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Figure 2.5: TRMM August data. Green zone indicates the time of thermal anomaly 
(after the day of rain, on 16 August 2018) 

 

 

Figure 2.6: Land surface temperature (ºC) over the thermal anomaly 
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Figure 2.7: Bouguer gravity anomaly of UAE 

 

 

Figure 2.8: Modified groundwater flow mechanism. Adopted from Alsharhan et al., 
(2001) 
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2.4 Conclusions 

Land surface temperature data from MODIS of eastern Abu Dhabi (UAE) 

suggests a short period (one week) low temperature anomaly after precipitation. The 

low Bouguer anomaly values clarified this anomaly, which symbolizes a graben 

structure that helps the flow of water from east to west and then boosts the moisture of 

the region's top-soils. While neither strategy alone can precisely map groundwater 

flow, collectively they form an incredibly low cost and synergistic approach for 

identifying regions beneficial to groundwater exploration. Additional geophysical 

instruments can be used in future studies to discover additional information about the 

subsurface structures. Besides high resolution remote sensing data. 
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Chapter 3: Detection and Modeling of Soil Salinity Variations in Arid 

Lands Using Remote Sensing Data 

 

Abstract  

Soil salinization is a ubiquitous global problem. The literature supports the integration 

of remote sensing (RS) techniques and field measurements as an effective method for 

developing soil salinity prediction models. The objectives of this study were to (i) 

estimate the level of soil salinity in Abu Dhabi using spectral indices and field 

measurements and (ii) develop a model for detecting and mapping soil salinity 

variations in the study area using RS data. Landsat 8 data was integrated with the 

electrical conductivity (EC) measurements of soil samples taken from the study area. 

Statistical analysis of the integrated data showed that the normalized difference 

vegetation index and Bare Soil Index (BSI) showed moderate correlations among the 

examined indices. The relation between these two indices can contribute to the 

development of successful soil salinity prediction models. Results show that 31% of 

the soil in the study area is moderately saline and 46% of the soil is highly saline. The 

results support that geoinformatic techniques using RS data and technologies 

constitute an effective tool for detecting soil salinity by modeling and mapping the 

spatial distribution of saline soils. Furthermore, it was observed a low correlation 

between soil salinity and the nighttime land surface temperature. 

 

Keywords: Electrical Conductivity, Remote Sensing, Landsat 8, Salinity Model, 
Spectral Index, LST. 
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3.1 Introduction 

Soil salinization, which is a common form of soil degradation, is one of the 

world’s most widespread environmental problems (Farifteh et al., 2006; Fernandez-

Buces et al., 2006; Ibrahim, 2016; Mougenot et al., 1993; Wu et al., 2014b). This global 

problem results in land degradation, especially in irrigated areas in arid and semiarid 

environments as well as in some sub-humid regions (Dehni & Lounis, 2012; Ibrahim, 

2016). Soil salinization has become increasingly serious in recent decades, with 

salinization exceeding the average level of soil salinity in the past few years because 

of unsustainable agricultural practices that lead to the accumulation of soluble salts in 

soil (Ibrahim, 2016; Wu et al., 2014b; Omer, 2011). Soil salinization reduces the land 

value and productivity (Abuelgasim & Ammad, 2019; Elhag, 2016). By reducing the 

soil quality, soil salinization limits the suitability of the land for agriculture or 

reclamation and can increase soil dispersion and erosion. 

Soil salinization is a severe environmental hazard that influences almost half 

of the existing irrigation plans of worldwide soils facing the threat of secondary 

salinization (Al-Khaier, 2003; Ibrahim, 2016; Zewdu et al., 2017). General estimates 

indicate that approximately one billion hectares of land are affected by salinization 

worldwide, constituting 7% of the continental area of the Earth and 58% of irrigated 

land (Ghassemi et al., 1995; Ibrahim, 2016; Shrestha & Farshad, 2009). The main 

causes of soil salinization in dry regions include irrigation (i.e., over-pumping), poor 

water drainage, and climate change (Shrivastava & Kumar, 2015). Therefore, areas of 

agricultural or arable lands will dwindle because of salinization (Wu et al., 2014b). 

Additionally, many countries are confronted with varying degrees of soil salinization. 

The Food and Agriculture Organization (FOA) has estimated that 397 million hectares 
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of the world’s agricultural or non-agricultural lands have been affected by soil 

salinization (Al-Khaier, 2003; Dehni & Lounis, 2012; Elhag, 2016; Hu et al., 2019a; 

Ibrahim, 2016; Ibrahim & Koch, 2015). Thus, it is crucial to determine which lands 

are affected by soil salinization, evaluate soil salinity, and determine the root causes 

of salinization to help decision makers develop management plans for ensuring the 

sustainability of agricultural land. This must be prioritized globally because soil 

salinization has deleterious impacts on the soil quality and productivity and is 

ubiquitous in the arid and semiarid parts of the world (Farifteh et al., 2006; Ibrahim, 

2016; Mehrjardi et al., 2008; Sanaeinejad et al., 2009). 

Researchers have recently shown significant interest in evaluating and 

mapping soil salinity in many regions around the world, especially in arid and semiarid 

areas that are heavily affected by salinization. For soil salinity evaluation and mapping, 

data must be collected using traditional soil sampling and laboratory analysis methods. 

However, these methods are time-consuming and costly, which limits surveys to small 

areas (Farifteh et al., 2006; Ibrahim, 2016; Lhissou et al., 2014; Wu et al., 2014b). To 

overcome this limitation, several techniques have been developed for evaluating soil 

salinity. One such technique is based on Remote Sensing (RS), which has 

demonstrated considerable success in mapping and assessing soil salinity (Asfaw et 

al., 2018; Garcia et al., 2005; Wu et al., 2014b). Metternicht (1998), Metternicht and 

Zinck (2003), Eldeiry and Garcia (2010), and Furby et al. (2010) observed that 

meaningful results could be obtained by studying the spectral properties and radar 

backscatter of saline soils. Some researchers (e.g., Hardisky et al., 1983) have studied 

soil salinity based on moisture content using the normalized difference infrared index. 

Other researchers have assessed the relations between soil salinity and vegetation 

indices (Brunner et al., 2007; Garcia et al., 2005; Huete et al., 1997; Iqbal, 2011; 
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Steven et al., 1992; Wu et al., 2014b; Zhang et al., 2011a). Other studies have analyzed 

soil salinity using the thermal and short infrared wavelength bands (Goossens & Van 

Ranst, 1998; Ibrahim, 2016; Iqbal, 2011; Metternicht & Zinck, 2003; Wu et al., 2014b) 

to examine the relation between soil salinity and the Land Surface Temperature (LST). 

These studies used satellite imagery containing thermal bands such as a Moderate 

Resolution Imaging Spectroradiometer (MODIS), which provides useful information 

about the soil properties (Fallah Shamsi et al., 2013; Ibrahim & Abu-Mallouh, 2018; 

Majed et al., 2020). Recently, the multispectral data derived from sources, such as the 

System Pour I, Observation de la Terre (SPOT), IKONOS, Quick Bird, Indian Remote 

Sensing, and Landsat satellites, have been used to explore and map soil salinity. 

Several other indices, such as the salinity index (Khan et al., 2005) and the soil adjusted 

vegetation index (Huete, 1988), are also commonly employed to monitor soil salinity. 

However, Eldeiry and Garcia (2010) and Hu et al. (2014) recommended the combined 

use of the combination spectral response index and best band. 

RS tools and data must be integrated with the field measurements of salinity to 

achieve soil salinity evaluation and monitoring. RS is an efficient tool for spatial 

analysis of soil salinity in arid and semiarid areas; therefore, it was aimed to estimate 

the soil salinity in Abu Dhabi using specific spectral indices combined with field 

measurements. The soil salinity mapping model developed in this study is based on 

the electrical conductivity of soil and shows a promising correlation, which can be 

further improved by considering the soil salinity–LST relation. This model is helpful 

to develop effective soil salinity forecasting strategies for sustainable development and 

land management.   
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3.2 Materials and Methods 

3.2.1 Study Area  

The study area is located in the western part of the United Arab Emirates 

(UAE) near the coast of Abu Dhabi (see Figure 1). The study area covers parts of the 

central and south-western areas of Abu Dhabi and lies between 24.44° and 23.46°N 

latitude and 52.59° and 54.49°E longitude. 

 

 

Figure 3.1: Locations of the study area and the sampling sites 

 
The study area exhibits a hot arid climate with high temperatures through the 

night during summer. The mean minimum and maximum summer temperatures are 

21.7ºC and 33ºC, respectively (Abuelgasim & Ammad, 2019; Farahat, 2016). In the 

zones away from the Sabkha area, mean temperatures can reach 43ºC in the summer 
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and 17ºC in winter (Abuelgasim & Ammad, 2017; Lokier et al., 2013). The mean 

annual rainfall is slightly less than 120 mm, which corresponds to extremely arid 

climatic conditions. This rainfall is 37% of the precipitation near the Strait of Hormuz, 

40%–50% of that in the shallow depths of the UAE coastal areas, 60%–70% of that in 

lagoons and embayments, and 65% of that in the Arabian Gulf coastal lagoons 

(Abuelgasim & Ammad, 2017; Alsharhan & Kendall, 2003; Bathurst, 1972; Evans et 

al., 1969; Paul et al., 2016; Raafat, 2006). 

The study area is categorized as one of the largest Sabkha surfaces, both coastal 

and inland, in the world. This region is dominated by the hot arid climate zone, as 

evidenced by the salt flats and marshes, which are categorized as the geological 

features of Sabkha commonly observed under arid and semiarid climatic conditions 

(Abuelgasim & Ammad, 2019; Evans et al., 1969).  

Evaporation is considerably higher because of the extremely hot climatic 

conditions of the study area. This results in the deposition of large amounts of salts in 

the soil, increasing the percentage of insoluble salts beyond saturation. These factors 

and the associated soil salinization pose serious environmental threats to the soil 

environment in the Sabkha area. Soil degradation leads to decreased soil productivity, 

uneven dehydration of gypsum contributes to the development of cracks in the soil 

surface, and high concentrations of sulfate and carbonate salts lead to the corrosion of 

the steel pipes of water and oil distribution networks (Abuelgasim & Ammad, 2019; 

Youssef et al., 2012).  

3.2.2 Methodology  

The methods followed in this study can be broadly divided into three 

categories: (i) field measurements, (ii) image processing, and (iii) statistical analysis. 
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3.2.2.1 In situ and Laboratory Measurements  

Samples of different types of soil were collected randomly from 80 sites in a 

desert area with dominant sand dunes. The samples covered different types of land and 

included inland Sabkha and saline soil areas. The samples were divided into two 

groups, i.e., soil samples collected from the areas in dune zones near major roads and 

those collected from the inland Sabkha and saline soil areas. This categorization of the 

soil samples allowed the assessment of the soil salinity and degradation index. Some 

samples from both groups were used in salinity estimation and model development, 

and the remaining samples were employed for model validation. The field work was 

conducted in November 2016, and sampling was performed during dry weather 

conditions, indicating the occurrence of no rainfall in the study area during sample 

collection.  

The soil samples were analyzed in the laboratories of United Arab Emirates 

University. Following the standard soil analysis methods presented by Evans et al. 

(1969), the soil samples were air-dried at room temperature, fragmented by hand or 

using a geological hammer, and then ground. A 1:2 soil–water suspension was 

prepared by mixing the soil mass with a volume of deionized water equivalent to 

double the soil mass. An EC meter (ExStik EC 400) was used to measure the 

conductance of the soil suspension to indicate the amount of soluble salts in the soil. 

This EC meter measures conductivity in the ranges of 0–199.9 μS/cm, 200–1999 

μS/cm, and 2.00–19.99 mS/cm. Soil samples with EC values higher than the EC 

meter’s upper limit were further diluted to enable accurate EC measurements.  

Following Kissel and Sonon (2008), soil salinity was classified into three 

classes in terms of soil quality and suitability for plant growth, as shown in Table 1. 

Previous research projects developed soil salinity scales (e.g., the soil quality 
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guideline) in terms of the sodium adsorption ratio and EC for unrestricted land use 

(Headley et al., 2007; Kissel & Sonon, 2008). The comparison of the soil EC values 

obtained in this study with the soil salinity scale found in the Soil Test Handbook for 

Georgia (Kissel & Sonon, 2008) indicates that most of the study samples are in the 

very high salinity level. 

 
Table 3.1: Soil salinity classes. Modified from Kissel and Sonon (2008) 

EC 

(dS/m) 

Soil Salinity 

Class 
Description 

< 1 Low 

- Plants may starve if the soil lacks organic matter 

- Satisfactory if the soil contains abundant organic 

matter 

1 - 2 Medium The satisfactory range for established plants 

> 2.00 High 

- Suitable for some types of plants and unsuitable 

for seedlings or cuttings 

- If EC increases to more than 2 dS/m, then the 

soil will be unsuitable for plant growth 

- Plants will be severely dwarfed, and the seedlings 

and rooted cuttings will frequently die. 

 

3.2.2.2 Data Acquisition 

The RS data for this research were downloaded from the United States 

Geological Survey Earth Explorer (https://earthexplorer.usgs.gov/). The data collected 

were the Landsat 8 Operational Land Imager (OLI) and day and night MODIS LST 

data (Aqua and Terra) MYD11A1 and MOD11A1, which were geometrically 

corrected and rectified to UTM zone 39. The images acquired on November 6, 2016 

(path 161 and rows 43 and 44) were utilized to correspond with the field work. MODIS 

data with horizontal (h) and vertical (v) title number h22v06 were downloaded. The 
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data were then prepared and analyzed using the ERDAS IMAGINE 2014 software. 

The PCI Geomatica software was employed to perform atmospheric correction, and 

ArcGIS 10.5 software was used for image indexing and analysis and creating the 

database. ArcMap tools were used to compose the images and for soil salinity 

mapping. MODIS/Terra and Aqua satellite imagery were used to examine the 

correlation between in situ salinity measurements and LST values obtained from 

satellite imagery in the study area. The results were analyzed statistically using 

Microsoft Excel. 

3.2.2.3 Image Analysis 

Four spectral indices were utilized in this study to achieve the study objectives. 

These indices are NDVI, the Bare Soil Index (BSI), the spectral salinity index 1 (SSI1), 

and SI.  

3.2.2.3.1 NDVI 

NDVI represents the normalized ratio of near-infrared and red reflectance and 

has been used in many scientific studies related to environmental issues such as soil 

and vegetation degradation (Rouse et al., 1974). NDVI is calculated as follows: 

NDVI =
λNIR− λRed

λ NIR +  λ Red
    (3.1) 

where NIR is the near-infrared reflectance (λ ≈ 0.8 μm) and Red is the red-

band reflectance (λ ≈ 0.64 μm). Variations in soil brightness can lead to noticeable 

variations in NDVI values (Carlson & Ripley, 1997). 
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3.2.2.3.2 BSI 

BSI is the second index considered in this study. It combines the surface 

reflections of blue, red, green, and near-infrared radiation and is employed to detect 

soil variations from the Landsat 8 OLI and Thematic Mapper images. BSI was used to 

assess the condition of barren soil, which is helpful in determining the state of land 

degradation because of salinity. BSI also helps to determine the relation between soil 

salinity and plant growth, mainly in the coastal and inland Sabkha that covers most of 

the study area (Ibrahim et al., 2019). BSI is calculated as follows (Rikimaru et al., 

2002): 

BSI = [
(λ Red + λ Green)− (λ Red + λ Blue)

(λ NIR+ λ Green)+ (λ Red+ λ Blue)
 × 100] + 100       (3.2) 

3.2.2.3.3 SSI1 

SSI1 was also employed in this study. It is one of the common indices used to 

estimate soil salinity in dry land and arid and semiarid areas, and it is sensitive to the 

soil salinity in arid and semiarid regions (Ibrahim et al., 2019). SSI1 is calculated as 

follows (Ibrahim et al., 2019): 

SSI1 =  √Blue  ×  SWIR2           (3.3) 

where SWIR-2 is the shortwave infrared-2 reflectance (λ ≈ 2.2 μm) and Blue is the 

blue-band reflectance (λ ≈ 0.48 μm).  

3.2.2.3.4 SI 

SI is the salinity index derived from broadband satellite images that indicates 

the relation between the actual soil salinity and the variation in vegetation. Thus, many 

studies have evaluated soil salinity by referring to vegetation reflectance (Allbed et al., 
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2014). This index is defined as the square root of the reflectance of blue radiation 

multiplied by the reflectance of the red radiation (Khan et al., 2001): 

SI =  √Blue ×  Red       (3.4) 

where Blue and Red denote the reflectance in the blue and red light regions of the 

spectrum (λ ≈ 0.48 μm and λ ≈ 0.64 μm), respectively. 

3.2.2.3.5 LST 

Temperature was converted from Kelvin (K) to Celsius (ºC) using the 

following equation. First, the unit was multiplied by an assigned scale factor of 0.02 

to obtain the value in Kelvin, after which the resulting value was subtracted by 273.15 

to convert K to ºC. 

LST (ºC) = a × DN – 273.15           (3.5) 

where ºC is the LST in Celsius and a is the scaling factor of the MODIS LST product 

(Wan et al., 2015). 

3.3 Results and Discussions 

Results of the laboratory analyses of soil samples indicated that although non-

saline soils characterize certain parts of the study area, soils in the majority of the 

Sabkha area are highly saline (Table 3.1). The highly saline parts of Sabkha area are 

categorized as salt flats. Additionally, although the maximum EC value in the study 

area is 170.1 dS/m, most of the non-saline soil locations are located far from the 

Sabkha and have a minimum EC value of 0.09 dS/m. Statistical analyses were 

conducted on the five main study variables: EC, SI, SSI1, NDVI, and BSI (Table 3.2). 
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Table 3.2: Descriptive statistics for the five study variables (EC, SI, SSI1, NDVI, and 
BSI) 

Parameter EC (dS/m) SI SSI1 NDVI BSI 

Min. 0.09 0.06 0.10 0.00 0.6 

Max. 170.10 0.18 0.26 0.10 0.12 

Mean 15.67 0.08 0.21 0.07 0.08 

Standard Deviation 32.66 0.03 0.03 0.02 0.03 

Standard Error 3.65 0.00 0.00 0.00 0.00 

 
NDVI and BSI show the strongest correlations with soil salinity, with 

coefficient of determination (R2) values of 0.43 and 0.25, respectively (Table 3.3). 

Regression analysis demonstrates that the model predicting EC from NDVI and BSI 

has a prediction power of 80%, as indicated by an R2 value of 0.80. Thus, only NDVI 

and BSI were used to generate the final salinity model for the study area. Results reveal 

that the probability (p) values were less than 0.05, indicating a statistically significant 

correlation between the RS data and field measurements. Thus, these data can be used 

to model the spatial distribution of soil salinity in the study area. 

3.3.1 The Relation between Vegetation Indices and Soil Salinity 

The soil analysis results show that the relation between NDVI and soil salinity 

is statistically significant (R2 = 0.43, p < 0.05). This statistical significance indicates 

that the relation between NDVI and soil salinity is caused by one of them affecting the 

other and that there is less than 5% probability of rejecting the relation between NDVI 

and soil salinity. Table 3.3 and Figure 3.2 shows the regression model quantifying this 

relation: 

Salinity = −1074.8 × NDVI + 92.83   (3.6) 
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Table 3.3: Results of the analysis of correlation among the study variables 

NDVI BSI SSI1 SI Soil Salinity Variable 

    1 Soil Salinity 

   1 0.21 SI 

  1 0.26 0.21 SSI1 

 1 0.41 0.23 0.25 BSI 

1 0.8 0.46 0.19 0.43 NDVI 

 

 

Figure 3.2: The relation between the measured soil salinity and NDVI 

 
It is worth underlining that the relation between soil salinity and NDVI differs 

from site to site in the study area.  

3.3.2 The Relation between the Vegetation Index and BSI  

Figure 3.3 shows the relation between land degradation (expressed in terms of 

BSI) and vegetation cover (in terms of the NDVI). Results indicate a statistically 

significant relation between BSI and NDVI (p < 0.05), and the regression model that 

predicts BSI from NDVI has a moderate prediction power (R2 = 0.79) This relation is 

obtained because NDVI and BSI use the red and NIR spectra in the equations. 

Additionally, BSI reflects the percentage of land degradation when considering a 

generally low rainfall; however, it does not indicate whether an area is extremely low 
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in vegetation, as estimated by NDVI. Low NDVI values are associated with extreme 

climatic conditions such as extremely low annual rainfall (120 mm/year) and high 

evaporation rates (2,000 mm/year). Furthermore, salinization has negative effects on 

plant roots, which passively affects plant growth. 

 

 

Figure 3.3: The relation between the NDVI and BSI 

 

3.3.3 The Relation between Soil Salinity and BSI 

The relation between the measured soil salinity and BSI to determine whether 

soil salinity leads to land degradation was investigated. Results (see Figure 3.4) 

revealed a statistically significant relation between soil salinity and BSI (R2 = 0.25, p 

< 0.05), indicating strong evidence against there being no relation between soil salinity 

and BSI (Table 3.3). The relation level was different from expectations because the 

salinity in Sabkha soil can be attributed to the salty groundwater near the surface in 

that area based on Al-Mhaidib (2003). Thus, shallow water that can be attributed to 

droughts or very low rainfall can affect the BSI results. The linear regression model 

describing the relation between these variables can be expressed as follows: 
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Salinity = −567.74 × BSI + 59.381   (3.7) 

Results support that any increase in soil salinity will adversely affect the 

growth of vegetation, thereby decreasing the NDVI and increasing the BSI. In 

consideration of these results, the ArcGIS software was used to generate a digital soil 

salinity map based on the aforementioned regression models using the raster 

calculator. Regression models were used to estimate and model soil salinity for the 

study area.  

 

 

Figure 3.4: The relation between the measured soil salinity and BSI 

 
To present an example of soil salinity mapping based on the soil salinity 

categories and show the geospatial distribution of soil salinity within the study area. 

The soil salinity levels were classified and mapped based on the soil salinity 

classification of Kissel and Sonon (2008). Figure 3.5 presents the predicted soil salinity 

map for the study area generated based on the NDVI–BSI regression model (Equation 

3.8), which can be expressed as follows: 

Soil Salinity = −284 × BSI – 537 × NDVI + 76    (3.8) 

 

y = -567.74x + 59.381

R² = 0.2534

0.00

50.00

100.00

0.00 0.05 0.10 0.15

M
ea

su
re

d
 S

a
li

n
it

y

BSI



46 
 

 

Figure 3.5: Predicted Digital Soil Salinity Map 

 

BSI is sensitive to soil salinity and is thus regarded as a good model for 

mapping the high soil salinity levels of the Sabkha area. However, this index does not 

accurately predict low soil salinity levels. This can be attributed to the fact that there 

are types of soils, such as low salinity soils, that show no spectral response in the NIR–

SWIR spectral range (Abuelgasim & Ammad, 2019). 

The model obtained based on these indices have proved to be capable of 

mapping and accurately estimating soil salinity at different levels within the study area 

and has a prediction power of 36% (R2 = 0.36). This model is based on NDVI and BSI, 

which are calculated using the surface reflectance of NIR radiation, making this a 

useful tool for monitoring soil salinity. 

The study findings show that most saline soils are located in the inland Sabkha, 

which may be attributed to the salty groundwater near the surface in that area. Al-

Mhaidib (2003) mentioned that the upward movement of water due to capillary action 

because of the increased continuous evaporation rate results in the increased salinity 

of Sabkha soils and salt deposition at the top surface of the Sabkha. Additionally, soil 
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salinity is generally higher in the northern part of the study area near the Arabian Gulf, 

which can be attributed to the deposition of carbonates by wind erosion of inland dunes 

due the northerly (Shamal) winds (Abuelgasim & Ammad, 2019). The non-saline soils 

are mostly located in the southern inland parts of the study area. 

3.3.4 The Relation between Soil Salinity and LST 

The MODIS LST data were analyzed against the in situ salinity data. However, 

some of the daily LST data were excluded from correlation analysis because the 

corresponding in situ salinity data were unavailable. Here, it was present the most 

meaningful and relevant results of the analyses. Results showed no statistically 

significant relation between LST/NDVI and LST/BSI, with correlations of R2 = 0.14 

and 0.05 for LST/BSI and LST/NDVI, respectively. p < 0.05 indicates that there is less 

than 5% probability to reject the relation between LST and various indices, where the 

effect of LST on vegetation and land degradation is different, as indicated by the 

correlation values. All the LST data were obtained on November 6, 2016 in 

correspondence with the in situ measurements. Four types of LST data were analyzed 

against the in situ salinity data, and the correlation of all the data varied from 0.22 to 

0.56. The nighttime LST data exhibited a significant correlation of greater than 0.4, as 

shown in Table 3.4. Results indicate that there is a statistically significant physical 

process-driven correlation. 

Table 3.4: LST with salinity in-situ correlation results 

 Aqua_Day Aqua_Night Terra_Day Terra_Night 
r 0.22 0.56 0.25 0.43 

R2 0.05 0.32 0.06 0.16 
 

The highest positive correlation for salinity can be observed with the nighttime 

Aqua LST data (0.56, Table 3.4), whereas the correlation with daytime LST is very 
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low. Figure 3.6 shows the LST correlation against in situ salinity from this highest 

correlation on November 6, 2016. Thus, the presented results demonstrate that the best 

correlation could be achieved using nighttime LST data. Considering the low spatial 

resolution of the MODIS data, the obtained results are statistically significant. Results 

show that salinity will increase more in areas with higher temperatures and that 

increased temperatures can lead to increased salinity. This assumption is supported by 

the statistical results, where a correlation of 56% and an R2 of 0.32 were achieved. For 

future studies, the number of in situ measurements must be increased and satellite data 

with higher spatial resolution must be used. 

 

Figure 3.6: The relation between the nighttime Aqua LST and salinity correlation 

 

3.3.5 Validation  

A low correlation (R2 = 0.36) was found between the measured EC values and 

the corresponding soil salinity estimates of the model when validating the developed 

model (see Figure 3.7). Nevertheless, the soil salinity model developed based on NDVI 

and BSI can be used for detection and prediction in case of salt-affected soils. 
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Figure 3.7: The relationship between the measured EC values and the soil salinity 
estimated from the model 

 

Generally, the reflectance in the visible and NIR bands is beneficial for 

identifying saline and non-saline surfaces. Many studies (Akbar et al., 2011; Allbed et 

al., 2014; Asfaw et al., 2018; Ibrahim, 2016; Wu et al., 2014b) have shown that spectral 

indices (e.g., NDVI, SI, SSI1, and BSI) can be used to assess soil salinity and identify 

the salt-affected areas using imagery data. Thus, the model developed in this study is 

a promising tool for tracking soil salinity in the study area. 

3.4 Conclusions 

A model was developed for estimating and monitoring soil salinity in Abu 

Dhabi (UAE) using RS-based spectral indices and field measurements of soil salinity. 

Results support the possibility of modeling and mapping soil salinity using RS and 

GIS techniques. The integration of RS data and field measurements is a powerful tool 

for detecting salt-affected soils. The developed model could detect 77% of the salt-

affected soils in the study area. Thus, this model can be confidently used to detect soil 

salinity in areas experiencing soil salinization. This model’s ease of use and acceptable 

results make it a promising tool for predicting soil salinity. Although the imagery data 
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used in this study are of low resolution (30 m × 30 m), the model provides useful 

results reflecting the variations in soil salinity distribution. Accordingly, this study 

proves the model’s ability to determine degrees of soil salinity in the region using RS 

data and GIS geospatial analysis for effective soil management and monitoring. In 

addition, this study showed a low correlation between soil salinity and nighttime LST, 

indicating that salinity will increase with the increasing temperature. However, the 

correlation between soil salinity and LST is an ongoing research topic. For future 

work, the researcher recommends a more detailed investigation on this topic by 

increasing the number of in situ measurements and using satellite data with higher 

spatial resolutions. 
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Chapter 4: Retrieval of Monthly Maximum and Minimum Air 

Temperature Using MODIS Aqua land Surface Temperature Data Over 

the United Arab Emirates (UAE) 

 

Abstract 

Spatially distributed air temperature (Ta) data are essential for environmental, 

climatological, and hydrological studies. Ta data are generally collected from 

meteorological stations that usually do not provide high spatial distribution patterns 

because of the sparse networks, particularly in arid regions. This problem can be 

overcome by using remotely sensed datasets at both regional and global scales. 

Currently, the Moderate Resolution Imaging Spectroradiometer Land Surface 

Temperature (MODIS LST) is the most acceptable dataset used to retrieve Ta. In this 

study, a combination of land-based temperature measurements and satellite datasets 

for estimating the Ta spatial distribution over the arid region of the United Arab 

Emirates (UAE) was used. Land-based Ta data from 11 weather stations distributed 

over the UAE covering a period from 2003 to 2019 were used together in this study 

with MODIS Aqua LST MYD11A2 Collection 6 product for both daytime (LSTd) and 

nighttime (LSTn) data. The results indicate a significant correlation between LST and 

Ta with regression coefficients R2 > 0.94/0.96 and Root Mean Square Error (RMSE) 

about 1.75/0.97ºC of LSTd/Tmax and LSTn/Tmin, respectively. Large variability was 

observed between the daytime and nighttime mean temperature distribution in the 

studied period indicating the importance of the MODIS LST as a reliable proxy for Ta, 

where it is sparse in most of the cases. The production of these countrywide air 

temperature grids provides vital tools for the planning and management of 

environmental, social, and economic developments in the era of global climate change.  
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Keywords: Air Temperature, Meteorological Station Data, Land Surface 
Temperature, MODIS, UAE, Linear Regression.  

 

4.1 Introduction 

Meteorological data such as air temperature (Ta) represent essential 

information for the economic development of the society for a variety of predictions 

ranging from precipitation trends, storms, heat waves, tourism, among other areas. Ta 

is important as it is commonly used in climate modelling, global change predictions, 

and modelling the exchange processes between the atmosphere, biosphere, and 

hydrosphere. Accurate determination of its spatial, temporal distribution and 

variability is vital for applications in the fields of hydrology, agriculture, 

environmental and ecological assessments, climate change, and related societal 

development (IPCC, 2017).  

Ta data are usually collected by measurements at meteorological stations over 

both land and water surfaces. The measurements provide the benefit of high temporal 

resolution and accuracy. However, these data being point measurements do not reflect 

Ta spatial distribution and missing variability may not be observed (Otgonbayar et al., 

2019). These limitations can bias Ta spatial distribution estimation, especially in the 

advanced spatial interpolations (Huang et al., 2015). 

Moreover, changes in topography (elevation), and geometry of station location 

also affects the interpolation accuracy, specifically in elevated areas (Huang et al., 

2015; Noi et al., 2016; Shah et al., 2012; Vancutsem et al., 2010; Zhu et al., 2013). A 

large part of these discrepancies from in-situ measurements of Ta has been overcome 

by using remotely sensed thermal infrared radiance that can be used to derive Land 

Surface Temperature (LST). The LST is described as a radiating temperature of the 
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land surface, which is observed by satellite sensors (Fadhil, 2011; Kloog et al., 2014). 

LST can only be derived from infrared (IR) channels for clear sky conditions as most 

of the clouds are opaque to IR energy, which is emitted from the surface. 

Although LST is not directly driven by solar radiance (Xu et al., 2012), it has a strong 

correlation with Ta, and it is considered one of the essential sources of data for Ta 

retrieval over a region or large area (Chen et al., 2016; Hereher, 2019; Hereher & El 

Kenawy, 2020; Jones et al., 2004; Phan et al., 2019).  

The combination of meteorological stations data with the remotely sensed 

dataset assists the making of mesoscale maps for the distribution of LST by upscaling 

point data from meteorological stations (Huang et al., 2015; Shah et al., 2012). Remote 

sensing data offer a good solution to overcome the limitations of the interpolation 

methods. The capability to get both high temporal and spatial resolutions makes LST 

data an essential benefit of satellite observations over conventional climatic datasets 

(Kloog et al., 2014; Serra et al., 2020). 

Many satellite sensors provide thermal data to retrieve LST, such as the 

Landsat TM/ETM+/TIRS, Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), Advanced Very High-Resolution Radiometer (AVHRR), and 

the Moderate Resolution Imaging Spectroradiometer (MODIS). Among these satellite 

data, Landsat and ASTER have a coarse temporal as well as spatial resolution of 16 

days and 90-100 m, respectively (Phan et al., 2019). Thus, for Ta estimation, MODIS 

LST is considered a suitable source of data, and it is widely used in different 

applications due to its free availability, high thermal resolution, and can be obtained 

easily (Hereher, 2017a; Hereher & El Kenawy, 2020; Meyer et al., 2019; Zhou et al., 

2017b).  
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To this moment, no research has been conducted to estimate Ta over the UAE. 

Therefore, the primary objectives of this study were to derive the components of two 

Ta (max and min) from LST using MODIS data over the UAE.  

4.2 Data and Methods 

4.2.1 The Study Area 

The study area is the United Arab Emirates located between latitudes 22°- 26° 

N and longitudes 51°- 56° E (Figure 4.1).  It has an approximate area of about 83,600 

km2. It is located on the Arabian Peninsula, one of the driest places on earth with an 

annual average precipitation of 100 mm that may reach up to 300 mm in the mountains 

and less than 50 mm in the desert (Murad & Aldahan, 2019). The desert occupies about 

80% of the UAE land area. Although the annual average air temperature is around 

28ºC, it is much warmer (up to 50ºC) in summer (Jun.–Aug.) and cools down to 10ºC 

in winter (Dec.– Feb.). The average number of sunny days is about 300, and dust 

storms occur within the range between 5 and 60 hours per year depending on location, 

with the highest events near to the desert areas and lowest along the mountains 

(Barbulescu & Nazzal, 2020). 

4.2.2 Data 

4.2.2.1 Topography Data 

The study area is almost flat and homogeneous in the western and coastal parts, 

with most topographic undulations related to the sand dunes field. In the northeastern 

part of the UAE, there are mountain ranges with a maximum altitude up to 1,830 m. 

The spatial distribution of the terrain topography is shown on Figure 4.1, as estimated 

from the Shuttle Radar Topography Mission (SRTM). 
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Figure 4.1: Topography, major geomorphic regions, and the spatial distribution of 
meteorological stations 

 

4.2.2.2 Air Temperature Data  

Monthly mean Tmax and Tmin (ºC) data for the period 2003 - 2019 were obtained 

from 11 automatic meteorological stations from different parts of the country collected 

by the National Center of Meteorology and Seismology (NCMS) (Figure 4.1). All the 

stations provided full records without gaps or missing values over the entire period. 

The distribution of the meteorological stations that were used here covers the 

mountainous area at an elevation of approximately 1,739 m (Jabal Jais station), one 

coastal area (Al Gheweifat station), and the remaining nine stations are dispersed in 

the desert and bare land. The available weather stations are mostly below an altitude 

of 450 m above sea level. 

4.2.2.3 MODIS LST Data  

The MODIS instrument is aboard the NASA Earth Observing System Aqua 

and Terra satellites. In December 1999, the Terra satellite was launched, while the 

Aqua was launched in May 2002. Worldwide coverage is given by their orbital 

parameters in 1-2 days, and provide LST four times daily, including daytime (LSTd) 

and nighttime (LSTn). At about 10:30 AM, Terra descends past the equator, and at 
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about 10:30 PM, it ascends past the equator. In comparison, Aqua passes the equator 

at about 1:30 AM and 1:30 PM in opposite directions. Every 24 hours, at the same 

time, both satellites pass above the same location on Earth 

(https://modis.gsfc.nasa.gov/data/). 

There are two thermal infrared bands used to derive the MODIS LST, i.e. 31 

(10.78–11.28 μm) and 32 (11.77–12.27 μm) using the split-window algorithm (Wan 

et al., 2002). The accuracy is 1K in most of the cases under the clear sky, as per the 

results of ground validation of these LST products. This level of accuracy can achieve 

requirements for the accuracy of most LST modelling applications (Wang et al., 2008). 

From mid-2002 (Aqua) and early 2000 (Terra), MODIS LST data has gained 

significant attention and is widely used for the estimation of Ta. It also has shown its 

suitability as a proxy for Ta in neighboring countries such as Egypt (El Kenawy et al., 

2019a, 2019b; Hereher & El Kenawy, 2020), Iran (Janatian et al., 2017) and Oman 

(Hereher, 2019). These previous results serve as a verification of the precision of 

MODIS products, which reach the requirements of Ta estimation. 

The LSTd and LSTn adopted here were extracted from the Aqua 8-day LST 

and Emissivity MODIS product Version-6. The LST product, such as MYD11A2, 

covers the time period 1st Jan. 2003 - 31st Dec. 2019. The Land Processes Distributed 

Active Archive Center of NASA (LP DAAC) provided all products in the two MODIS 

tiles of granules with horizontal (h) and vertical (v) title numbers h22v06 and h23v06 

(https://lpdaac.usgs.gov/). Brightness value (16-bit) is represented by each image, in 

Hierarchical Data Format (HDF), and at a Sinusoidal Projection, in relation to the LST 

in Kelvin. The images are 1 km spatial resolution and contain layers of LSTd and 

LSTn.  

about:blank
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Although daily data of MODIS Aqua for the product MYD11A1 is available 

from Jan. 2003, the composite product MYD11A2 was used here. The reason for 

selecting 8-day data is better data coverage (i.e., no gaps in data except persistent cloud 

coverage). In other words, due to correction of cloud contamination, the available data 

is more continuous, and therefore, the quantity of available data points for comparison 

for 8-day average is remarkably less than the available daily average dataset (Hengl et 

al., 2012; Shah et al., 2013; Singh et al., 2019). The accuracy of this product 

(MYD11A2), according to NASA's Goddard Space Flight Center, was reported better 

when compared to 1 Kelvin in clear sky conditions (https://modis-land.gsfc.nasa.gov/). 

Thus, for the entire UAE, a set of LST 8-day composite products (MYD11A2) was 

acquired.  

MODIS LST data Version-6 (or collection-6) was used because of significant 

changes, and improvement that were made for this version (Wan, 2014). In these 

improvements, the most critical changes of version-6 in comparison to the previous 

version is removing cloud contaminated LST pixels. The accuracy of the LST version-

6 product was reported to be two times better than version-5 (Duan et al., 2018). 

According to Vancutsem et al., (2010), when selecting the data for a specific area, it is 

essential to consider the time of overpass. Thus, MODIS Aqua data was selected for 

the UAE as this sensor overpasses at 1.30 PM and 1.30 AM, which is closest to Tmax 

and Tmin measurement time, so the LSTd and LSTn from the satellite measurements 

could be estimated and compared with the ground weather station recorded Tmax and 

Tmin.  
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4.2.3 Methods  

4.2.3.1 Pre-processing MODIS LST Data 

At weather stations, many steps were followed to retrieve the data of LST under 

clear sky conditions. A total of 1564 MODIS images (MYD11A2, h22v06, and 

h23v06, Version-6) were collected. The HDF images were projected to WGS1984 

UTM Zone 40N, for the study period, over the UAE, using the nearest neighbor 

resampling method. The corresponding layers (LSTd and LSTn) were extracted in TIF 

format. After that, a mosaic of two tiles was created, and the images were clipped using 

the boundary polygon, which defines the study area. Finally, LST data were 

aggregated to a monthly period by averaging the 8-day composite data to obtain 

monthly average LSTd and LSTn, to provide direct comparison to the maximum and 

minimum monthly average that were used to represent Ta data. 

Using batch processing of extract multi-value, MODIS LST data for the pixels 

were extracted from TIF format MODIS images in which the weather stations are 

located to points in the ArcGIS program. Using the following equation, all these LST 

data (DN values) were converted to Celsius temperature: 

LST (ºC) = a * DN – 273.15   (4.1) 

where ºC is Celsius LST, and a is scaling factor (0.02) of MODIS LST product, 

which converts the values of scientific data sets into the real values of LST (Kelvin 

degree) (Wan et al., 2015).  

Next, removing outlier data was performed: if clouds are present on a location 

(pixel), then MODIS LST products are unavailable for that location (Wan, 2008); 

however, some pixels which are slightly covered by clouds are not removed as the 

covering is minimal, and the cloud-removing mask algorithm cannot detect those (Noi 
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et al., 2017). Hence, all unrealistic values of LST data, which have values higher than 

100ºC or less than −50ºC or any value beyond the valid range, were marked as no data 

and ignored in the procedure to provide a seamless dataset. Consequently, only clear, 

reliable pixels, and good quality data were used according to the Quality Assessment 

(QA) layer. All images for each month were placed together to make a single file for 

each daytime and nighttime. The monthly average for LSTd and LSTn was determined 

using the Cell Statistics model for all the images between 2003 – 2019. Finally, the 

Extract Multi Value model was used to derive LSTd and LSTn from a single pixel 

where weather stations are located and those values were converted to Excel 

Spreadsheets before matching them with the corresponding Tmax and Tmin, derived 

from eleven stations. For the processing, analyzing, displaying, and quality control of 

the MODIS data, ESRI ArcGIS™ 10.4 software was used. 

4.2.3.2 Estimation of Air Temperature Using MODIS LST Data 

Numerous methods have been developed and applied for Ta estimation from 

MODIS LST data. Benali et al., (2012) and  Noi et al., (2016) point out there are three 

popular methods: statistical, temperature-vegetation index (TVX), and energy-balance 

modelling. Energy-balance approaches, the sum of incoming anthropogenic heat 

fluxes and net radiation, are considered similar to the sum of the surface’s sensible and 

latent heat fluxes. Energy-balance approaches, however, require many parameters, 

which are mostly not directly provided by remote sensing. This is the main 

disadvantage of energy-balance methods (Benali et al., 2012; Liu et al., 2019; 

Mostovoy et al., 2006). 

On the other hand, only satellite data is required in the TVX and the statistical 

method, which is easily accessible and is ordinarily available with thermal data 
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(Misslin et al., 2018). One drawback to the TVX method is that performance depends 

upon the negative correlation among the normalized difference vegetation index 

(NDVI) and LST, and there is a high variation in NDVI with different satellite sensors. 

However, this method is not satisfying in some cases because of the supposition that 

it frequently does not fit to the effect of the reality and seasonality, scarce of vegetation 

cover throughout the arid environment, soil moisture, or land cover type (Janatian et 

al., 2017; Stisen et al., 2007; Yang et al., 2017b). Therefore, the statistical method is a 

suitable and straightforward method, which does not present the same limitations. 

There is a simple statistical linear regression between Ta and LST (Hereher, 

2019; Hereher & El Kenawy, 2020; Mostovoy et al., 2006; Vogt et al., 1997) and also 

advanced approaches in which more than one independent variable are used (Benali et 

al., 2012; Noi et al., 2016; Vancutsem et al., 2010; Xu et al., 2012; Zhang et al., 2011b). 

The main advantages of the linear regression method is that the regression against 

station data minimizes systematic regional errors in data of the satellite, they normally 

provide accurate Ta estimation within the spatial and temporal frame they were 

obtained, and thy are easier to operate. Thus, simple linear regression is the most 

intuitive and widely used Ta estimation method (Janatian et al., 2017; Stisen et al., 

2007). However, the statistical methods normally perform well in the spatial and 

temporal domains, they still require large amounts of data to train the algorithms, 

especially for the advanced approaches, and have restricted generalization (Stisen et 

al., 2007). 

The criteria of combining data retrieved from satellite and meteorological 

stations for the same date comprise a one-to-one relationship, linking monthly LSTd 

and LSTn from satellite data with monthly data obtained from a station (Tmax and Tmin). 

Therefore, for each meteorological station, the LST values (LSTd and LSTn) of the 1 
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km2 pixel are extracted, which are superimposed on the station. This process is done 

for all the existing images data of the study period. The LSTd images values are linked 

with Tmax, and the LSTn images values are linked with Tmin. Then the relationship of 

linear regression is estimated, and for each month, the coefficient of correlation 

between the monthly LSTd in the satellite image was determined with the Tmax of each 

weather station of the corresponding month. In the same way, the correlation between 

monthly Tmin from the weather stations and monthly LSTn from the satellite data was 

determined.  

The regression equation was generated for the estimation of monthly air 

temperature maximum (Ted) and minimum (Ten) from data of LSTd and LSTn for the 

whole region. The annual daytime, nighttime, and diurnal variation temperature maps 

were also estimated. The following simple linear regression model was constructed to 

estimate the Ted and Ten from the LST data:  

Ted = a LSTd + b   (4.2) 

Ten = a LSTn + b   (4.3) 

where a and b are coefficients of regression, which are estimated using 

ordinary least-squares regression. Ted and Ten are the estimated monthly average 

maximum and minimum air temperature, respectively. The LSTd and LSTn derived 

from the data of Aqua MODIS can be used as independent variables (x), and Ta (Tmax 

and Tmin) is a dependent variable (y). In previous studies, to estimate air temperatures 

from LST, linear regression was successfully applied (Hereher, 2019; Hereher & El 

Kenawy, 2020; Huang et al., 2015; Kloog et al., 2014; Mostovoy et al., 2006). By 

applying the correlation between the day and night LST data readings versus all 

records from the 11 stations, the regression model for extracting maximum and 
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minimum air temperatures was determined. Two popular criteria were used to assess 

the performance of the regression model: the determination coefficient (R2) that was 

calculated from the Ta values and LST data from linear regression analysis, and the 

Root Mean Square Error (RMSE). Calculation of these statistical factors was 

performed using Excel Microsoft. 

4.3 Results and Discussions 

As shown in Figure 4.2, a strong linear correlation exists between LST of 

satellite images and Ta data of meteorological stations in the study area, for both 

daytime and nighttime LST. The determination coefficient (R2) for LSTd and Tmax is 

0.94, and 0.96 for the LSTn and Tmin association. The determination coefficient is 

calculated for the 2003-2019 dataset. For estimation of maximum (Ted) and minimum 

(Ten) air temperature from the data of MODIS LST, the previous Equations 4.2 and 

4.3 were used as the following: 

Ted = 0.9218 LSTd -7.8667   (4.4) 

Ten = 0.9372 LSTn + 0.215   (4.5) 

Figure 4.3 shows the scatterplot diagram of the association between the LSTd 

and Tmax and LSTn and Tmin for the individual studied stations. The coefficients of 

determination between LSTd and Tmax were very high. The coefficient value between 

LSTd and Tmax ranges from 0.943 - 0.957, while the LSTn and Tmin correlation were 

slightly higher at all stations, ranging from 0.963 - 0.985. 
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Figure 4.2: The regression correlation between LSTd and Tmax (red) and LSTn and 
Tmin (blue) for the period 2003-2019 of all stations 

 

 

Figure 4.3: Scatterplots diagram showing the association between LSTd and Tmax 
(red) and LSTn and Tmin (blue) for all stations used in this study. The R2 value is 
presented to show the sign of association and the magnitude, (Note the high value of 
R2) 
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From Figures 4.2 and 4.3, a strong linear correlation between LST and Ta was 

observed. Despite the strong LST and Ta correlation, their values differ partially. At 

all stations, the LST and Ta relationship is slightly better defined by the linear 

regression during the night than the day. The LSTd is generally higher than Tmax, 

whereas LSTn is slightly lower and quite close to the Tmin. In other words, during the 

study period, the difference (LSTd-Tmax) is higher than (LSTn-Tmin) in all stations. 

These differences between Ta and LST increased in the summer season (Jun. to Aug.), 

in which the daytime is hotter and longer, as shown in Figure 4.4A. This trend has also 

been observed in many other studies, e.g. (Hereher, 2019; Hereher & El Kenawy, 

2020; Huang et al., 2015; Zhu et al., 2013). Figure 4.4 shows that Ta and LST have 

seasonal cycles that are similar and correlated due to the energy exchange between Ta 

and LST that depends on seasonal variation of incoming solar irradiance. This feature 

relates to the stable stratification of the air parcel due to the radiative cooling at the 

surface and weakening of turbulence generated by surface friction during the nighttime 

(Lin et al., 2016). The Earth's surface almost acts as a homogeneous and isothermal 

surface. Results (Figure 4.4) show more complex interactions between Ta and LST 

during the daytime due to the more turbulent surface and weather conditions that are 

affected by direct solar illumination and therefore produce a slightly lower model fit 

(Kloog et al., 2014; Vancutsem et al., 2010). The increase in temperature and 

concentration of thermal energy at the surface during daytime as the ground absorbs 

solar radiation causes a partial decoupling of the day LST and Ta (Lin et al., 2016). 

This feature makes the LST of the daytime hotter as compared to Ta (Figure 4.4A). 

Also, due to the sunlight and shade effects in pixels during the daytime, a more 

significant angular anisotropy effect is expected for LST of daytime as compared to 
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the LST of nighttime, which similarly explains the slightly lower model fit (Benali et 

al., 2012; Zheng et al., 2013). 

Furthermore, atmospheric water vapor is also a significant component that 

traps hot land surface long-wave radiations (Zhang et al., 2011b). In the study area of 

this study, the concentration of water vapor in summer is more like other trace 

greenhouse gases. Water vapor also has a warming effect on both air and land surface, 

however, in terms of radiative forcing, the warming effect magnitude of the 

greenhouse gases is different for the land surface and air (Zhang et al., 2011b). This 

additionally explains why the best performance is at nighttime with a minimum RMSE 

value of 1.49ºC, whereas, at daytime, the difference between LSTd and Tmax is 

significant with RMSE of about 10.37ºC. Nevertheless, after applying the linear 

regression method, a significant reduction in statistical error was observed, with 

1.75ºC at daytime and 0.97ºC at nighttime in all the stations. Figure 4.4B and 4.5 

support the utilization of the linear regression method, showing that the estimated air 

temperature (Ted and Ten) nearly matches the measured air temperature (Tmax and 

Tmin). 
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Figure 4.4: The annual cycle of nighttime and daytime temperatures. Calculated from 
weather stations (blue) and Aqua LST data (red), (A) before applying the linear 
regression method; and (B) after applying the linear regression method 

 

Figure 4.5: A scatter plot for stations’ measured Ta (Tmax and Tmin) and estimated air 
temperate (Ted and Ten) 

 

The high statistical confidence of the liner regression between data from 

satellite images and observed Ta is discussed here. Therefore, by substituting the LSTd 

and LSTn values, they can be used to derive unknown Tmax and Tmin of any area, 

respectively. Accordingly, and applying Equations 4.4 and 4.5, the UAE’s derived 

daytime and nighttime air temperatures monthly average (Ted and Ten, respectively) 

are shown in Figures 4.6 and 4.7. The average annual daytime and nighttime max and 

min air temperatures and the Diurnal Temperature Range (DTR) are shown in Figure 

4.8. 

The UAE's estimated average monthly maximum air temperatures (Ted) during 

the entire study period (2003-2019) indicate spatial variation in daytime air 
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temperature where the interior is hotter than the coastal and mountain areas (Figure 

4.6). Furthermore, there are four major zones of Ted variations that maintain positions 

that is partly related to seasonal changes. A winter season is marked by the December 

to February with temperature zoning gradually decreasing from the inland towards the 

coasts. During March to May (spring season), the hotter inner land Ted zone expands 

and dominates the distribution pattern. This trend of expansion continues in the 

summer months (June-August and even September), leaving only the months of 

October and November months to initiate cooling and then a return to the winter season 

pattern in December (Figure 4.6). The Ted variability of the different zones in the 

different seasons range from > 45ºC for the hottest zone to as low as 10ºC in the coldest 

zone (Figure 4.6). The distribution pattern of these seasonal zones is rather different 

for the Ten, where a rather homogenous zone for inner land occurs during the winter 

season and partly extends into March (Figure 4.7). This pattern is decoupled into two 

major zones in April to June with a variable zonation pattern and returns to one major 

inner land zone from July to November. The extent of change in Ten varies from > 

30ºC to < 8ºC. In areas with high altitude (more than 1000 m) such as Jabal Jis, the 

average air temperature is generally below 10ºC and occasionally may reach 0ºC or 

less.  

The general distribution of air temperatures in the UAE during the winter 

season nighttime (Ten) is 10-15ºC in most areas, while it is at 25-30ºC in the summer 

season (Figure 4.7). In all seasons other than the summer months, the air temperatures 

are moderate during nighttime (< 25ºC). There is a relatively low-temperature zone in 

the interior desert with temperatures of 25-30ºC in summer and 10-15ºC in winter. The 

air temperature during daytime and nighttime has the same spatial patterns across the 

UAE. Namely, during the daytime, the air temperature increases moving further away 
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from the north and northwest and along the coastline to the south and southeast where 

the bar desert receives more solar radiation, which heats the ambient air. Air 

temperature in towns is higher than the surrounding region; this process is known as 

the Urban Heat Island (UHI), and at daytime, the inverse occurs, so it is called the 

Urban Cool Island (UCI), which may be essential for future research in the region.  

To explore the difference between Ted and Ten patterns, the Diurnal 

Temperature Range (DTR) was used, which is an essential element for reflecting 

thermal environment analysis (Figure 4.8). The results reveal the persistence of four 

major Ted zones with temperature trends increasing from the coastal and mountain 

areas towards the inner land with a temperature span between 19 and 40ºC. Despite 

the fine temperature zonation given in Figure 4.8, the zonation can be generally 

grouped into two zones of 34-40ºC inner land zone and 19-34ºC coastal and mountain 

zone.  The Ten mean annual zonation is characterized by a major inner land zone with 

temperature below 22ºC and a costal and mountain zone with a temperature between 

23 and 27ºC. The hotter Ted in mountain and coastal zones in comparison to Ten is 

due to the proximity to the sea and the higher elevations that leads to a temperate air 

temperature environment.  

DTR is an essential element of the climate system and was used for urban 

thermal environment analysis, for example, extensive heat waves, heat-related health 

issues, landscaping and recreation, and engineering of heat transfer efficiency in 

buildings and roads (Chen et al., 2020; Duan et al., 2014; Wang et al., 2019a; Yang et 

al., 2020). The pattern of DTR closely resembles the pattern of Ted, where the 

mountains and coastal zones indicate cooler temperatures than the inner land zones. 

The span of the DTR is between about 19ºC to < 1ºC, with most of the areas with 

temperature below 11ºC occurring in the mountain and coastal zones. It is important 
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to mention that most of the large cities, e.g. Dubai, Abu Dhabi, and Sharjah, in the 

UAE, are also located along the coastal zone. The relatively small DTR along the 

coastal zones is likely the temperate thermal environment that is modulated by 

proximity to the sea as vegetation cover is rather scarce in the UAE. The relatively 

large DTR in the inner land (mainly covered by sand dunes) is that the ambient air 

warms slower, and the land surface warms faster in the day, and similarly, the surface 

cools faster in the night. Therefore, the desert reveals higher diurnal variation air 

temperature than the mountains and coastal regions (Figure 4.8). 

The mean annual Ted and Ten in the studied period (2003-2019) reveals rather 

small variations with the Ted around 35ºC and Ten around 20ºC (Figure 4.9). There 

is, however, a slight increase in the trends from 2003 to 2019, with about 0.31ºC and 

0.78ºC per decade, for the Ted and Ten, respectively. This temperature increase may 

not be uniform all over the UAE, as also evidenced by the spatial distribution patterns. 

The projection of these data for future predictions of climate change, and assuming 

constant decadal values, indicates that there will be a more rapid increase in the 

nighttime temperature compared to the daytime. On average, there will be about a 1 - 

2ºC increase in the mean annual air temperature by the end of 2030, which is 

comparable to the estimate made by Murad and Aldahan (2019) for the period 1972-

2020. 
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Figure 4.6: Spatial distribution of average monthly maximum air temperature (Ted) 
for UAE over the period 2003-2019 
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Figure 4.7: Spatial distribution of average monthly minimum air temperature (Ten) 
for the UAE over the period 2003-2019 
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Figure 4.8: The annual mean maximum (Ted), minimum (Ten), and Diurnal 
Temperature Range (DTR) of air temperature of the UAE for the period 2003-2019 
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Figure 4.9: The mean annual (Ted, red line) and (Ten, blue line). For time series of 
the 11 weather stations used here in the period 2003–2019 

 

4.4 Conclusions 

This paper, for the first time, presented the estimation of monthly average 

maximum and minimum air temperature (Ted and Ten) over the UAE using Aqua 

MODIS LST data (LSTd and LSTn) and measured air temperature (Tmax and Tmin) 

observations from 11 weather stations from 2003-2019 by employing the linear 

regression method. The significant findings of this study show a strong correlation 

between these two datasets (R2 > 0.94) and a high accuracy achieved in the linear 

regression with minimal errors (RMSE < 2ºC), which implies that the linear regression 

method provided a reasonable monthly air temperature maximum and minimum. 

Based on this result, MODIS Aqua LST products have been shown to be a reliable 
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source for Ted and Ten. The detailed 1 km2 air temperature products (monthly air 

temperature maximum, minimum) as given by the linear regression can itself act as a 

meteorological station with confident and provide accurate records where each pixel 

represents the associated temperature. 

Therefore, a remotely sensed dataset could be an alternative and surrogate to 

the ground meteorological stations, which then provide data with high resolution and 

extensive geographical coverage. For example, some areas in the UAE do not have 

any meteorological stations, however, this present investigation efficiently determined 

these locations’ air temperature in a rigorous fashion. Specifically, in the Al Khazna 

area, which is about 45 km east of Al Wathbah (AW) ground meteorological station, 

the estimated maximum and minimum temperature for May was 41.7ºC and 23.5ºC, 

while the AW station records were 41.8ºC and 22.7ºC for the maximum and minimum 

air temperature in May, respectively. 

This study is instrumental in the UAE or other neighbouring countries because 

the results have numerous applications in the fields of hydrological, agriculture, 

environmental, ecological, climate change, economic, and societal growth. As an 

example, for the construction of new urban communities and the latest reclamation 

projects in UAE's desert area, the selection of low diurnal temperature variation should 

be considered because it directly affects the quality of life and economic factors 

pertaining to living in these regions. Furthermore, time-series data can provide the 

potential for evaluation of anthropogenic activities' effect on climate change (such as 

urbanization, changes in land-use), at both the local and regional climate scale. 

The limitation of the MODIS LST products in Ta estimation is that it works 

appropriately in clear-sky conditions as it retrieved data by using thermal infrared data. 
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Moreover, the data of LST from MODIS starts from March 2000, restricting the 

prediction of Ta before that.  

In future studies, specifically conducted on large areas with more varied and 

more complex land surface characteristics, other auxiliary variables should be 

considered that can reflect land surface characteristics and resulting temperature 

variations. UHI and UCI should be analyzed in further research. Due to rapidly 

advancing sensor technology, soon, the existing spatial resolution of 1 km will be more 

improved. 
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Chapter 5: Analysis of Surface Urban Heat Island (SUHI) Using 

Nighttime MODIS LST Data as A Signal for Regional Micro-Climate 

Change-A Case Study in Dubai City, The United Arab Emirates (UAE) 

 

Abstract 

For the first time, Landsat images and Moderate Resolution Imaging 

Spectroradiometer (MODIS) Aqua Land Surface Temperature (LST) data have been 

employed in the current research to measure temporal-trend and spatial-patterns of 

Surface Urban Heat Island Intensity (SUHII) all over Dubai, UAE during 2003 to 

2019. This research has been conducted for annual, summer and winter seasons. 

Around 17 years of chronological satellite database indicate the existence of a night-

time SUHI. This research can advise climate change adaption endeavors, particularly 

urban-planning policies. Considerable Surface Urban Heat Island Intensity has been 

detected in the research area from the analysis of 17 years LST data. The winter season 

detected comparatively increased SUHII compared to the summer season. The 

metropolitan region of Dubai tournaments maximum SUHII due to especially 

developed areas. The time series analysis found an increasing trend in SUHII from 

2003 to 2019, indicating intensified SUHI impacts in Dubai. Overall average SUHII 

of Dubai study area during annual, winter and summer seasons is 2.66ºC, 2.83ºC, and 

2.23ºC, respectively. The magnitude in SUHII increases for annual, winter and 

summer by roughly 1ºC/decade. Urbanization in Dubai has transformed natural 

terrains of barren and desert land to man-made engineered textures and infrastructures. 

So, the SUHII and its extension start rising gradually with the development of city in 

both seasons. The elevated amount of SUHII is mostly concentrated in dense and high 

buildings. That extension shifted further away from the coastlines. The outcome 

uncovered the maximum SUHII attained over 7.3ºC in winter. While in summer, it did 
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not exceed 5.5ºC. Besides, the peak mean SUHII within the urban boundary fluctuated 

between (0 to 0.5ºC) in 2003 to (3.5 to 4ºC) in 2019. The highest SUHII (> 5ºC) has 

been recorded in a few locations that were regarded as Hot-Spot Sites (HSS). Amongst 

HSS, Dubai International Airport (DXB) is the hottest HSS in the summer season for 

the rise in number of travels. This phenomenon has been verified by difference of 

SUHII in DXB before and during the suspension. This research also illustrates some 

of the strategies for SUHI reduction. 

 

Keywords: Surface Urban Heat Island Intensity (SUHII), Dubai, MODIS LST, 
Urbanization, Land Cover, Arid City. 
 

5.1 Introduction  

Rapid urbanization in cities around the globe results in substantial land use and 

land cover changes on the Earth’s surface. It has been perceived as one of the most 

significant anthropogenic impacts on the climate (Zhou et al., 2011). Followed by 

Gutro, (2006), a UN (United Nations) assessment anticipated that 60-70% of world 

population will reside in cities by 2025, and many of the fastest growing regions for 

city growth are situated in arid locations. One of the foremost obvious and widely 

documented climatological impacts associated with urbanization is the urban heat 

island (UHI) effect that urban and suburban areas have higher temperatures than 

nearby rural or nonurban areas (Hu & Brunsell, 2013; Miles & Esau, 2017). As an 

indicator of urban climate modification, UHI has been studied broadly since Luke 

Howard initially recorded it in 1818 (Lin et al., 2017). The UHI phenomenon has been 

specified and recorded for numerous the major cities around the globe.  
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The UHI is linked to urban land changes, when impervious surfaces replace 

the nonurban area, resulting in a rise in heat storage and a drop in latent heat flux in 

urban areas (Mathew et al., 2018; Qiao et al., 2019; Zhou et al., 2016a). Urban 

temperature raise is mainly due to the absorption and trapping of solar irradiation in 

built-up areas connected to the thermal capacity of construction materials (e.g., 

concrete and asphalt), which rapidly alter surface albedo (solar energy absorption), 

evapotranspiration and emissivity (Zhou et al., 2017a). Consequently, a variation in 

air and Land Surface Temperature (LST) between urban area and nonurban areas 

(Azevedo et al., 2016) measured as UHI intensity (UHII).  

The literature has been broadly recorded the adverse impact of UHI. Such as, 

it rises the temperature of cities; give rise to global warming (EPA, 2016); increases 

energy-demand of cities (Radhi & Sharples, 2013). This incident also indirectly render 

to climate changes around the world (Alghamdi & Moore, 2015); environmental 

deterioration (Lin et al., 2017); air-pollution (Zhu et al., 2020a); human healthcare and 

comfort (Schwarz et al., 2011); eco-system functionality (Keeratikasikorn & 

Bonafoni, 2018a); and promote heat related mortality-rate (Cui & De Foy, 2012; 

Lowe, 2016). Any single reason of these is enough to prompt interest in UHI studies. 

It is necessary to comprehend UHI attributes and the urban climatology responsible 

for it. This kind of circumstances predicts the increased effects of the UHI in the rising 

warm climate presumed to be sustained over the next few decades. UHI is mostly 

correlated with air temperature data obtained in-situ weather stations. Still, the 

representativeness is dubious because of comparatively inadequate data resources, and 

the irregular distribution of stations does not allow of an understanding over the study 

area (Bonafoni et al., 2017). While the surface UHI (SUHI) is conducted utilizing 

satellite derived LST data. The LST is the directional radiometric temperature of the 
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assembled surfaces viewed by the satellite. It is obtained by measuring thermal 

infrared radiation after correcting for emissivity and atmospheric effects. That 

overcomes the issues of in-situ measurements commonly with more comprehensive 

sources, extensive coverage, through different temporal intervals and constant 

periodicity (Alghamdi & Moore, 2015), assuring a more practical analysis of the 

interurban SUHI spatial variability. Accordingly, urban climatologists are referring 

more often about the remote sensing LST as accessible and convenient to represent 

SUHIs (Miles & Esau, 2017; Tran et al., 2006). Furthermore, advancement in satellite 

technology and data availability have facilitated a great number of SUHI research in 

several urban areas across the globe, providing temporal and spatial analysis of the 

urban heating structures (Hu & Brunsell, 2013; Keeratikasikorn & Bonafoni, 2018b). 

SUHI mapping can fulfil the increasing demand for incorporating landscape 

ecosystems and urban development plans, providing scientific assistance for urban 

development policies. Following this context, remote sensing imagery is generally 

utilized to map impervious surfaces along with SUHI, the previous broadly known as 

a significant urban development indicator impacting the thermal pattern. 

Many of the satellite sensors provide thermal infrared data at several spatial 

resolutions, in a range of 100m to over 1000m to acquire LST. The most popular of 

satellite sensors are the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), Advanced Very High Resolution Radiometer (AVHRR), 

Landsat, and exceptionally the Moderate-Resolution Imaging Spectroradiometer 

(MODIS). Those sensors retain a similar configuration. The sensors are passive. Thus, 

they receive and measure reflected shortwave radiation (non-thermal bands) and 

emitted long wave radiation (Thermal bands) by the atmosphere and surface of Earth 

(Mohamed et al., 2017). This is important for SUHI studies because the conception of 
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controllers of SUHI is generally established in analyzing the relationship between two 

main factors comprising the LST/SUHI intensity of a region and the associated 

underlying land cover/use configuration and composition. Therefore, remote sensing 

imagery is a unique data for researchers to derive these factors through processing one 

data set (satellite imagery) for an entire city (Keeratikasikorn & Bonafoni, 2018a). 

Landsat thermal bands have relatively high spatial-resolution (60 m to 120 m) 

and long-time series. Moreover, the inclusive Landsat thermal database was available 

freely since 2009. But the thermal research utilizing Landsat database are limited to 

daytime studies only. The restricted temporal range (16 days) and the unusual 

cloudless climates are other difficulties (Zhang et al., 2014a). Similarly, ASTER 

procures high resolution (90 m) during the daytime and in night, however, it has low 

temporal resolution. Moreover, although the common ASTER LST outputs have been 

accessible since 2001, the full database of ASTER data became accessible for free in 

2016 (Zhou et al., 2019). 

AVHRR LST has been uncommon for SUHI studies, because of the coarse 

spatial resolution and its operation is not as promising as MODIS LST (Noi et al., 

2017). For this reason, the MODIS Terra and Aqua satellite sensors have been 

extensively utilized for LST measures and comprise a very significant and acceptable 

data source for SUHI research in recent years (Zhang et al., 2014a; Zhou et al., 2019). 

That mainly because its high temporal-resolution, global coverage within 1 km spatial 

resolution, unrestricted accessibility and can be obtained effortlessly (Tran et al., 

2006). Additionally, it collected thermal data by the split window techniques, instead 

of the mono channel of the Landsat. MODIS allows the research of inter-annual, 

diurnal, and intra-annual variability of SUHI at different spatial scales. The standard 

MODIS LST data were made accessible in 2000. 
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Even though the incident of SUHIs is generally associated to urban sprawling 

and expanding industrial and human activities, the geographical location, urban 

materials, climate condition, seasons and duration of day and night may create 

different impacts. Besides, SUHIs exist at any time of the day. The following provides 

an overview on the importance of daytime and nighttime SUHI. Many researchers 

have observed that SUHI is greater in the daytime than nighttime (Schwarz et al., 2011; 

Wu et al., 2019; Zhou et al., 2018). In the contrary, other researchers have insisted that 

the SUHI appears at nighttime, when buildings and roads radiate the heat of sun 

absorbed during the day (Gupta et al., 2020; Mathew et al., 2017). Besides, 

temperature in the night is regulated by surface heat fluxes. The urban built-up store 

extra heat compared to the nonurban areas and consequently SUHI exhibits at night, 

particularly in arid regions where (Raj et al., 2020). 

In the past literatures, SUHI has been explored in different cities around the 

world and especially emphasized in urban areas of Mediterranean, tropical, and cold 

climatic regions whereas arid regions with intensely high temperatures have been 

focused less (Rasul et al., 2016), particularly Middle East countries or surrounding 

cities that have same kind of arid desert climates. A few research on the SUHI 

phenomenon have published. Some research that focused on daytime, their findings 

revealed an inverse impact of the common SUHI phenomenon, where the urban areas 

recorded comparatively cooler than the suburbs. This phenomenon is called Surface 

Urban Cool Island (SUCI) for instance: in Abu Dhabi and Dubai, (Frey et al., 2005); 

Abu Dhabi, UAE (Lazzarini et al., 2013); Al Ahsa Oasis, Saudi Arabia (Alali, 2015). 

Other researchers have recorded that night SUHI, for example: Tehran, Iran (Haashemi 

et al., 2016), Riyadh, Saudi Arabia (Sherafati et al., 2018), Alahmad et al., (2020) in 

Kuwait. 
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Dubai has witnessed rapid urbanization during the past 20 years. It will 

probably go on in next decades also, driving increase of the SUHI intensity. In spite of 

a rapid urbanization in Dubai, the SUHI has remained non-discussed in prior studies. 

To bridge this gap, the objective of this research is to set to analyze the temporal and 

spatial changes of night SUHI over the Dubai city in range of 17 years (2003-2019) by 

using night MODIS Aqua LST data. Moreover, Landsat remote sensed images have 

been created to map and classify land cover to extract urban regions and the reference 

nonurban areas information.  

5.2 Data and Methods 

5.2.1 Study Area 

Dubai is one of the seven emirates (states) establishing the United Arab 

Emirates (UAE). It is situated on the South-eastern shore of Arabian-Gulf. Dubai city 

is located between 24° 350N to 25° 180N latitude, and 54° 530E to 55° 440E longitude 

coordinates and surrounds a region of approximately 3,757 km2 with coastline of 

around 72km. It is the second largest city and the most densely populated and 

developed city of UAE. It shares border lines with Abu Dhabi in the south and west 

side, Sharjah in the north-east (Figure 5.1). 

Dubai is located in an arid climate followed by the Köppen climate 

classification (Peel et al., 2007). So, it has a mostly hot and dry climate, higher 

temperatures in summer (June to August) and in winter season (December to February) 

is moderately cooler. Precipitation is unusual and happens only in winter season, also 

have mean humidity over 90% in the summer season as claimed in National Centre of 

Meteorology (NCM). There is rarely to no vegetation cover, mostly restricted to 

landscaping in urban areas or to farming sectors. 
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In the last part of the 20th century, Dubai changed economical formation from 

predominantly petroleum based to an emphasis on tourism and financial activities. The 

reputation of Dubai as a city of commerce has attracted the people from other countries 

to come into this city. This migration occurs every year resulting considerably higher 

density of population. Accordingly, it has undergone substantial development over the 

last 20 years, both in terms of urbanization and population, and the trend is predicted 

to continue. In 2003, the population of Dubai was around 1,014,379. It had expanded 

to 3,355,900 (7.85% citizenship) by 2019 as recorded by Dubai Statistics Centre 

(www.dsc.gov.ae). Such growth has headed towards spatial expansion of urban areas, 

which can potentially carry to changes in SUHI of Dubai city. 

 

 

Figure 5.1: The study area, Dubai city, UAE 
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5.2.2 Land Cover Classification 

Land covers data for 2003 and 2019 were obtained from the Enhanced 

Thematic Mapper Plus (ETM+) on board the Landsat-7 satellite and the Operational 

Land Imager (OLI) on board the Landsat-8 satellite from the United States Geological 

Survey (USGS) Earth Explorer (https://earthexplorer.usgs.gov/). The spatial 

resolution of this database was 30m, including one scene (Path: 160; Row: 43), cloud 

free vision for the whole study area on 28th May 2003 and 16th May 2019. The land 

covers were classified using supervised classification into four types: the vegetations 

refer to the trees, grassland, and cropland. Urban and built-up land comprising all the 

impervious surfaces of the city enclosing over 50% of the pixel considered. Bare land 

includes desert and barren lands. Water body contains lakes, ponds and reservoirs 

(Figure 5.3a). The accuracies of the classified products were evaluated by utilizing the 

high resolution images incorporated in Google Earth Pro®. The overall accuracy of the 

data was 92.7% with a Kappa coefficient of 0.89. 

Land cover maps have been aggregated to 1 km for keeping consonance with 

the size of MODIS LST data. To be upscaled the 30×30 m land cover data pixels to 

the 1 × 1 km LST data, majority criterion was applied, combined with a nearest 

neighborhood transformation: the land cover type appointed to the majority of the land 

cover pixels in each LST pixel was used (Figure 5.1b). The topography of the area is 

primarily flat, and the elevation gained slowly from northwest to southeast and 

achieved around 290 m (Figure 5.1c) followed by the 30m resolution Digital Elevation 

Model (DEM), which was acquired from the Shuttle Radar Topography Mission 

(SRTM). The data was obtained from the USGS Earth Explorer 

(https://earthexplorer.usgs.gov/).  

https://earthexplorer.usgs.gov/
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5.2.3 MODIS Data 

Moderate Resolution Imaging Spectroradiometer (MODIS) has been 

completely accepted in a wide number of SUHI research, because of its global 

coverage, retrieval quality, high temporal resolution, high radiometric resolution and 

dynamic ranges, and accurate calibration in visible, near infrared and thermal infrared 

bands (Rasul et al., 2017b; Tran et al., 2006; Wan et al., 2004), which gives free daily 

LST data at a resolution of 1 km. MODIS comprise both the Aqua and Terra polar 

orbiting satellites, which pass the equator 2 times/day for each (Clinton & Gong, 2013; 

Wang et al., 2008). Across Dubai city, the crossing times are around 13:30 and 01:30 

(Dubai Local time) for Aqua, 10:30 and 22:30 (Dubai local time) for Terra. The 

MODIS 1km LST data are attained by utilizing the generalized split window 

algorithms with screenings for cloud-effects usage of bands 31 and 32 in the 10.78mm 

to 12.27mm spectral span (Wan, 2014; Wan et al., 2002). The MODIS LST products 

were repeatedly validated across a set of sites and time periods using numerous ground 

truth and verification attempts (Duan et al., 2018; Wan, 2014). 

According to Cui & De Foy, (2012), the daytime SUHII in arid climates was 

small and was not extensively implicated by the impervious surface region. Further, 

SUHI appears to be a special characteristic of arid cities (Alahmad et al., 2020; Clinton 

& Gong, 2013; Lazzarini et al., 2013). Moreover, the least surface temperature is 

recorded at midnight. It made Aqua night data an ideal option which is close to the 

SUHII intensity maxima. This study used the MYD11A2 version-6 (V6) performance 

from MODIS Aqua includes an eight-day composite of LST data at nighttime from 1st 

January 2003 to 31st December, 2019. Eight-day LST composite products can 

underestimate the quantity of gaps generated by clouds or some unwanted situations 

in the long time series that are advantageous to perform spatial comparison for SUHI 
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studies (Hu & Brunsell, 2013; Schwarz et al., 2011). Modern time LST products (V6) 

have covered earlier version accurateness problems, and measure errors in arid areas 

for bare land and validation analyses presently propose their application in these areas 

(Lu et al., 2018a). The night LST data for the study period under no cloud circumstance 

were extracted for Dubai city that is covered by two MODIS tiles, all data in the two 

MODIS tiles of granules with horizontal (h) and vertical (v) title numbers h22v06 and 

h23v06 were received from the Land Processes Distributed Active Archive Centre 

(LPDAAC) of NASA (https://lpdaac.usgs.gov/). The administrative boundary data for 

the UAE and Dubai city was gained from the Global Administrative Region Boundary 

Data Set (http://www.gadm.org/). 

5.2.3.1 MODIS Data Pre-processing 

Data was collected form Jan 2003 to Dec 2019 (1564 images) and was 

reprojected utilizing the Arcmap software to convert images to Geo-TIFF formats at 

UTM 40ºN with the WGS84 datum. Subsequently, a mosaic of two tiles and clipped 

the images using the boundary polygon which defined the study area was created. For 

better interpretation, temperature was converted from the Kelvin (K) unit to Celsius 

(ºC). Firstly, the unit was multiplied by an assigned scale factor of 0.02 to get Kelvin 

units. After that, it was subtracted by 273.15 to convert K to ºC (Wan, 2013). Every 

abnormal LST data with measurements greater than 100ºC or under −50ºC or any other 

measurements than the acceptable limit were noted as no data and ignored in the 

operation to deliver an acceptable dataset. Only valid pixels and good quality data were 

utilized following quality assessment (QA) layer. Additionally, any missing values 

were adjusted utilizing the average value of each series. Ultimately, LST data was 

aggregated to monthly period by averaging the eight-day composite data (almost 3-4 
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available monthly) to get monthly mean LST. According to the product quality control 

flag, the data that was utilized had an average LST error of ≤ 1ºC. 

All images for each month were stacked jointly in a single file. The annual and 

seasonal mean for LST (ignoring no data value) was defined utilizing the Cell Statistics 

method for all the images between 2003-2019. The ESRI ArcGIS™ v10.4 software 

system and Microsoft Excel (spreadsheet) were utilized for the processing, analysis, 

exhibition, and quality control of the MODIS data. 

Then, time series from 2003 to 2019 were constructed that comprised seasonal 

and annual nighttime LST. The seasonal and annual average values for urban LST 

(LSTu) and nonurban LST (LSTn) of the study area for pixels were calculated utilizing 

the outcomes of the urban and nonurban area identification. SUHI intensity of study 

area was then measured as the difference between LSTu and LSTn. A flow chart 

diagram of this task is illustrated in Figure 5.2. 

5.2.4 SUHI Intensity Calculation  

It is referred that SUHIs contain an intense danger to human wellbeing and 

comfort. Thus, the spatial extent of human activities needs to be specified when 

outlining the nonurban and urban areas to measure the SUHI. A significant parameter 

for researching SUHI is SUHI intensity (SUHII), which was estimated by the LST 

contrasts between urban and nonurban area (reference). Hence, it is important to select 

credible reference. However, the methods to specify the reference area differed 

extensively in various studies. Some of studies used areas like suburban (Yang et al., 

2017a), rural (Schwarz et al., 2011; Yao et al., 2018b), forest (Zhou et al., 2018) and 

in a few cases one pixel in surrounding area has been utilized (Zhang et al., 2014a) . 

In this study, surrounding area (bare land/desert) was defined as nonurban areas that 
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may perform as the reference area for the analysis, after checking it has not been 

changed during the study period by utilizing chronological images from Google Earth 

Pro. For calculating the night SUHIIs, urban and reference nonurban areas were more 

delineated by steps below: 

(1) Extracted urban area and reference nonurban location which fit the resolution 

of MODIS LST, the areas with impervious surfaces encompassing over 50% 

of the land were considered as urban areas (Figures 5.3a & b). To measure the 

mean of the LST of the urban and nonurban area more precisely, water body 

and vegetation land pixels were excluded, because significantly lower 

temperatures compared with urban and nonurban areas (Clinton & Gong, 

2013). 

(2) The reference area should remain unaffected by the urban area. It must locate 

far from urban areas at least 1km, since the SUHI's footprint was highly 

considerable than urban areas size (Yao et al., 2018a; Zhou et al., 2015). 

(3) Pixels with DEM greater than 50m (Figure 5.3c) were removed depending 

upon the 30m SRTM DEM dataset to avoid the cooling impact on the SUHI 

quantification (Huang et al., 2019; Imhoff et al., 2010; Zhou et al., 2011). The 

remaining land-units were defined as the finally selected urban and reference 

nonurban areas as shown in Figure 5.3d. 

Finally, the night SUHII under clear sky conditions at the Aqua satellite 

overpasses between 2003–2019 were measured by every pixel, by deducting the 

average LST of reference nonurban from the LST of all pixels by following Equation: 

SUHII = LSTu – LSTn   (5.1) 
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Where LSTu is LST of urban pixels, and LSTn is average LST of reference 

nonurban. (Dec-Feb) and (Jun-Aug) are determined to depict cold winter and hot 

summer respectively. On the other hand, the data for the fall and spring seasons 

(transitional seasons) are not evaluated. Thus, the SUHII for each pixel for winter, 

summer and annual was calculated and utilized to present the SUHI of Dubai city. 

Linear regression analyses were conducted in Microsoft excel to evaluate the temporal 

trends of SUHI intensity. Comprehensively, the selected methodology is explained 

using the flow chart diagram in Figure 5.2. 

 

 

Figure 5.2: Flow chart exhibiting the process of SUHII calculation 
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Figure 5.3: The illustration of urban and reference nonurban areas for calculating 
SUHIIs. (a) Landsat land cover 30 m × 30 m; (b) resampled land cover  1km × 1 km; 
(c) elevations; (d) final urban area (red), reference (green) boundaries, and Landsat 
true color image of study area (16th May 2019). 

 

5.3 Results and Discussions 

5.3.1 Temporal Changes in SUHII 

The seasons were specified followed by LST; the seasonal LST is at its 

maximum in Dubai during summer season and records minimum LST during winter 

season as shown in Figure 5.4, Summer and winter seasons endured either the 

maximum or the minimum SUHII impacts, and the SUHIs in summer have highly 

affected human lives (Yao et al., 2018b). Accordingly, these two seasons were 

primarily focused on for the analysis with spring and autumn excluded. 
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Figure 5.4: LST-data of seasons in Dubai from 2003 to 2019 

 
Figure 5.5a and b show the monthly and seasonal mean SUHII during the study 

period from 2003 to 2019, the mean SUHII for seventeen years was 2.66ºC.  The 

summer season undergoes comparatively lower SUHII if contrasted to winter. The 

mean SUHII during daytime in summer was 2.23ºC, and in winter SUHI intensity was 

2.83ºC. The SUHII varied with its levels reaching a higher value of 2.94ºC in 

December. And the minimum SUHII was observed in July with a measurement of 

1.91ºC. (Figure 5.5b). This outcome aligned with the previous literature from local and 

worldwide studies (Barat et al., 2018; Goswami et al., 2016; Lazzarini et al., 2013; 

Mathew et al., 2017; Miles & Esau, 2017), they found that SUHII in summer was less 

than winter season. In contrast, many studies indicated the night SUHII show high 

values in summer (Li et al., 2018a, 2018b, 2017; Yao et al., 2017, 2020; Zhou et al., 

2018).  
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Figure 5.5: Variations of SUHII. (a) annual and seasonal SUHII; (b) monthly SUHII. 
Over the urban areas in Dubai city during study period 2003-2019 

 
As indicated before, in Dubai city the SUHI is maximum in winter compared 

with summer. That may associate to the following reasons: the specific heat capacity 

for conventional urban surfaces materials for instance concrete, asphalt, aluminum, 

and bricks is more than sand (Lazzarini et al., 2013; Reisi et al., 2019). This means 

that sands in desert land exhibit a huger reduction in LST than the urban surfaces over 

nighttime. However, during summer season daytimes are longer and shorter nights, 

with peak temperatures that makes the sand of desert land warmer promptly, so the 

desert does not get sufficient time to cool at night. Therefore, the urban and desert 

temperatures get closer. On the other hand, in winter season, the nighttime duration is 

extended, and the daytime duration is less than summer, so the opposite happens. It is 

worthwhile to mention that, in winter season, sometimes the night temperature of 

desert area goes down nearly 0ºC that creates large deference to the LST of urban and 

reference desert area (Figure 5.5). 

Other reasons could be related to the existence of urban aerosols or haze in the 

atmosphere (dust and water vapor). It is also contributing factor to nighttime SUHI, 

which is common in arid areas in the summer season (Barbulescu & Nazzal, 2020; 

Lazzarini et al., 2013). As it impacts on the transmission and emission of incoming 

radiation and enhances the interception of outgoing radiation (Qiao et al., 2019). A 
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more intense analysis of the mesoscale climate of the area will enable to improve 

classification and understanding of these specific conditions. 

Moreover, mainly most residents and citizens travel abroad in summer months. 

Such as, followed by General Civil Aviation Authority (GCAA: 

https://www.gcaa.gov.ae/). In 2019, approximately 280,000 passenger/day fly from 

Dubai International Airport (DXB) during the summer season especially in July when 

the educational vacations begin. Therefore, the human activities will drop that will 

direct the SUHII to be less than winter season across Dubai. As observed in Figure 

5.5b that July has the lowest SUHII value. Furthermore, the correlation scattering 

diagram between population and SUHII for the winter and summer of 2019 is 

demonstrated in Figure 5.6. As it can be seen that the correlation in winter is higher 

(R2=0.81) in comparison to summer, which has no correlation (R2=0.21). Therefore, 

the contraction of population due to the summer holidays resulting in SUHI alleviation 

in summer. This finding clarifies the reason behind the SUHII in winter higher than 

summer season. It also shows how population/human activity play significance role in 

SUHII. Hence, the SUHII in DXB particularly attains the maximum value in summer 

season and that can be found in Section 3.4 below. 
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Figure 5.6: Scatter plot of the population and SUHII for winter and summer in 2019 

 

5.3.2 Temporal Trends of SUHII From 2003 to 2019 

In this section, temporal trend changes in SUHII across Dubai are analyzed for 

the 17 year period. Figure 5.7 shows the temporal trends of mean SUHII in considered 

seasons and annually from 2003 to 2019. The annual and both selected seasons SUHII 

increased significantly for the whole study period. The changing trends of SUHII are 

totally constant among annual, winter and summer. The magnitude of increase in 

SUHII for annual, winter and summer is (~1ºC/decade). The summer trend SUHII is 

slightly gaining at a quick rate than winter season and it was 0.1105ºC/ year, followed 

by annual SUHII 0.0995ºC/year, and winter SUHII 0.0971ºC/ year. Moreover, the 

SUHII enhanced in the winter season, where the lowest value of 1.97ºC in 2003 to the 
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highest value of 3.56ºC in 2018. While the SUHII derived for the summer, it exhibits 

relatively lower value of 1.21ºC in 2003 and to a higher value of 3.26ºC in 2017. It is 

also evident to an overall annual rise of 1.66ºC in 2003 to an utmost 3.45ºC in 2017, 

2018 & 2019. 

 

 

Figure 5.7: The temporal trends of mean SUHII from 2003 to 2019. Summer, winter 
season and annually. T= trend (ºC/year) 

 

5.3.3 Spatial Distribution of SUHII 

The spatial distribution of SUHII for each year in selected seasons from 2003 

to 2019 across Dubai is displayed in Figures 5.8 and 5.9. The results clearly ascertain 

the expanding of SUHII and the spatial extent over 17 years. Typically, the SUHII 

values grow stronger in winter and weaker in summer throughout 17 years. The 

recorded highest SUHII in winter attained over 7.3ºC. However, the SUHII resulted in 

the summer, the highest recorded intensity did not transcend over 5.5ºC over the entire 
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study period. Overall, in both seasons, a significant SUHII incline was documented 

extending from south-eastwards from the coastline (city center) to nonurban areas 

where temperatures can be in range of (5.5-7.5ºC) less heat than the city centre in both 

seasons. 

According to the land cover that was obtained from Landsat data, the built-up 

area of Dubai has undergone an overall increase from 455 km2 in 2003 to 1012 km2 in 

2019. These areas mainly came from natural barren/desert lands are being rebuilt to 

urban infrastructures. As well as the urban expansion has been increasing from 

northwest costal area toward southeast nonurban areas where sandy desert land is 

located. This replacing natural lands with impervious surfaces that shifts natural 

characteristics to lessened albedo, and additional anthropogenic heat and higher heat 

storage. These changed direct to the increase of SUHII. Besides, during the nighttime, 

the energy flux from the surface to the atmosphere is the sum of heat stored during the 

in the daytime and released at nighttime, and of anthropogenic heat created in the night 

inside the city (Peng et al., 2012; Wang et al., 2019a). The surface heat storage is 

associated to albedo and heat capacity and conductivity of the urban areas in daytime. 

It is emitted upward to the atmosphere in the nighttime, renders to maintain high 

temperature over urban areas. Besides, a negative correlation between night SUHII 

and albedo (Peng et al., 2012; Shastri et al., 2017) as well as a positive correlation 

between night SUHII and the heat capacity (Lazzarini et al., 2013). Thereafter, as a 

comprehensive overview of Figures 5.8 and 5.9, SUHII and its extension begins 

expanding gradually along with the expansion of urbanized areas. Further, high value 

of SUHII is primarily concentrated in dense and high buildings and it reduces 

continuously shifting away from coastline to lesser urbanized and less densely 

populated and nonurban areas. In southeast part of Dubai, lower thermal capacity/heat 
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storage of desert that are not impacted by the urban area or human activities resulting 

in the lowest night SUHII values were detected in comparison to urbanized areas 

(Figures 5.8 & 5.9). As noticed, the association among SUHII and urbanization is quite 

consistent among different years regardless of the seasons. SUHI is generally affected 

by the scale and intensity of human activities rather than seasons. Therefore, the spatial 

distribution pattern of SUHII was similar in both winter and summer as shown in 

Figures 5.8 and 5.9. Even though the considerable differences of SUHII values were 

found in different seasons. So, the spatial magnitude of urban infrastructure or urban 

land covers is a basic component contributing to the spatial patterns of the SUHII. This 

is concordant with other studies. These indicated that the main effect was 

anthropogenic heat emancipation and landscape pattern distinctions in urban and 

nonurban areas, and night SUHII has positive relationship with urbanized areas 

(Alahmad et al., 2020; Clinton & Gong, 2013; Cui et al., 2016; Li et al., 2017; 

Mohammad et al., 2019; Tan & Li, 2015). 

The population of the city of Dubai has witnessed a rise of almost 2.34 million 

in 17 years. It increased drastically from 1.1 million in 2003 to 3.35 million in 2019 

with a growth rate about 235% from 2003 to 2019. And it is projected to expand up to 

5 million by 2030, which would be approximately 5 times of 2003 as estimated by 

Dubai Statistics Centre (https://www.dsc.gov.ae). Since lake status of urban vegetation 

layer with increasing population, hereafter increasing built-up areas and associated 

anthropogenic heat emissions resulting in SUHII with raised values and extension. 

This outcome is consistent with a large amount of studies, which is found by expanding 

urban area, the SUHII tends to rise (Benas et al., 2017; Clinton & Gong, 2013; 

Firozjaei et al., 2018; Imhoff et al., 2010; Miles & Esau, 2017; Mohan et al., 2012; 

Tran et al., 2006; Wang et al., 2016, 2019a; Zhou et al., 2016a). 
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Generally, the peak of average SUHII inside urban boundaries changed from 

(0-0.5ºC) in 2003 to (3.5-4ºC) in 2019 indicating the permanence of an urban heating. 

Also, most of values over 1ºC of SUHII became more in 2019 and it would increase 

in value in future (Figure 5.10). Therefore, it is essential to execute heat island 

mitigation strategies in the city of present time. For further intensifying heat island 

effect in Dubai can be prevented. 

 

 

Figure 5.8: Spatial distribution of annual SUHII (ºC) in winter from 2003 to 2019 

 

 

Figure 5.9: Spatial distribution of annual SUHII (ºC) in summer from 2003 to 2019 
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Figure 5.10: Dispersion of the number of pixels (1km²) into urban boundary with 
different SUHII in 2003 and 2019 

 
Additionally, SUHIIs are particularly driven by explicit annual thermal 

conditions without regarding urban growth. These results confirm how the 

spatiotemporal urban heat patterns rely extensively on the background climate, such 

as air temperature, solar radiation, precipitation, and wind velocity (Zhou et al., 2018). 

To exemplify, the maximum mean SUHII was noticed in winter of 2018 (Figure 5.7). 

The reason behind these is that this year had the least number of rainy days from the 

record of the National Centre of Meteorology (www.ncm.ae). 

5.3.4 Hot Spotted Sites 

Figure 5.11 represents some sites of 1 km spatial resolution that are specified 

as greatest values of average SUHII (>5ºC) during the entire 17 year (Figure 5.13), 

these sites are named as Hot-Spotted Sites (HSS). These can assist the designated 

departments in municipality authority to point out focus areas for taking steps for 

cooling procedures. HSS includes densely populated areas, such as the Deira (DER) 

and Um Suqaim (UMS); Dubai International Airport (DXB); Burj Khalifa (BKH) 
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which is the world’s tallest tower; Shaikh Zayed Road (SZR) is  described as high 

density of tall buildings and high concentrations of cars; finally, Jabal Ali Industrial 

(JAI).   

Among these HSS, SZR and JAI are the hottest locations during 17years in 

Dubai city with over 6ºC of mean SUHII. The SZR is home to most numbers of Dubai's 

skyscrapers (Figure 5.11d), and It is verified that high-rise buildings are causing heat 

that cannot escape into the atmosphere. Besides, these high rise buildings create a 

complex geometrical structure that traps energy inside and shifts the airflow, this 

increasing the proportion of energy availability to heat the urban surface (Tam et al., 

2015). Additionally, this road is the main passage of city and counted as one of the 

most UAE's busiest highways. Due to many automobiles are also known as a 

component that increases the SUHII as inferred in a previous research (Firozjaei et al., 

2018). Thus, SZR generates one of the highest mean SUHII. Most of the factories in 

UAE are situated in JAI. Those factories were built using high temperature capacity 

materials as shown in (Figure 5.11e). Further, those factories release a huge quantity 

of the anthropogenic heat. As a result, its mean SUHII exceed 6ºC as well.  

DXB is the major international airport operating in Dubai and is also the third 

most active airport in the world by passenger number according to Airports Council 

International (https://aci.aero/). That illuminates with the dark airport surfaces (Figure 

5.11a) that makes DXB obtained high mean SUHII of 5.13ºC.  

The BKH area (Figure 5.11c) also shows high SUHII of nearly 5.14ºC. This 

could be clarified by the height and the buildings materials of high thermal capacities.  

Even though, there is no high altitude buildings or factories in DER and UMS 

(Figures 5.11b & f), but these areas were specified by large urban size (dense low rise 

buildings) as illustrated in Figure 5.11b. Additionally, they are known as the densely 
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populated areas in Dubai city (https://www.dsc.gov.ae). So, the mean SUHII varies 

between 5.27ºC to 5.40ºC respectively for UMS and DER. 

 

 

Figure 5.11: Spatial distributions of highest sites (pixel) of mean SUHII (ºC) from 
2003 to 2019. Letters (a-f) indicate Hot-Spotted Sites (HSS) of the study area, 
namely (a) DXB; (b) DER; (c) BKH; (d) SZR; (e) JAI; (f) UMS. (Images source: 
Google Earth™ mapping services) 

 
Figure 5.12 exhibits the mean SUHII trends for five HSS (excluding UMS) in 

duration of (2003-2019). It is noticed that the trend is nearly constant for all HSS 

(exception BKH). BKH's construction was started in 2004 and finished in 2009 

(www.burjkhalifa.ae). It is apparent that, mean SUHII increased drastically from 2004 

onward and remarkable difference of SUHII time series trend is witnessed between 

BKH and others with highest trend of 0.202ºC. That exhibits how land cover change 

led to an increase in SUHII. On the other hand, DER which is the one of the oldest 

district and any new construction is very limited according to Dubai municipality 

(www.dm.gov.ae). It appears with the lowest trend of 0.007ºC. Moreover, all other 
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sites show comparatively less difference in trend. It ranges between 0.025ºC-0.049ºC 

as exhibited in Figure 5.12. 

 

 

Figure 5.12: Annual mean SUHII trends for each HSS 

 
More analysis was done on how the differences in energy used in 

transportations and heat generation in DXB influence in SUHI. As demonstrated in 

Figure 5.13, DXB has the maximum SUHII in summer and minimum difference 

between winter and summer is nearly 0ºC. The reason behind this is continuously 

travelling and airplane movements throughout the year resulting in heat production 

and that rises especially in summer as indicated previously in (Section 3.1). Thus, the 

SUHII in summer has similar value as winter and highest summer SUHII in the HSS 

as documented in Figure 5.13.  Due to the epidemic condition of COVID-19, all 

business activities have been prohibited in UAE. The government discontinued most 

passenger’s flights and all transition flights. Hence, the summer month (June 2020) 

and the same time of the 2019 have been selected to assess the variations of SUHII 
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before and during COVID-19 in DXB. As interpreted based on statistical presentation 

on Figure 5.14, aircrafts travelling are appreciably participating to the increase of 

SUHII in summer of 2019, because of anthropogenic heat generations. Whereas in 

June 2020, because of prohibition and absence of those activities that render to 

alleviation of the SUHII. Obviously, this investigation demonstrates and confirms the 

positive correlation between SUHII and emitted heat energy, and the way it made DXB 

one of HSS in Dubai city. Since the DXB located in an urban area, that would lead to 

a raise of health-related issues of residents. 

 

 

Figure 5.13: Variations of mean SUHII for each HSS in winter and summer. The 
difference between winter and summer SUHII, and annual mean SUHII during 
period (2003-2019) 
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Figure 5.14: Graphical representation exhibiting fluctuations of DXB SUHII in 
summer 2019 and in summer 2020 

 

In general, HSS emerged within the city boundaries with huge density of 

population, dense and high buildings, industrialized and strong anthropogenic heat 

release (Hu et al., 2019c). Urban infrastructures with building dense, tall skyscrapers 

and surface materials influencing the nighttime surface energy interaction, therefore, 

affect the nighttime SUHI (Tran et al., 2006; Voogt & Oke, 2003).  Densely situated 

and tall buildings absorb heat, decrease airflow, and produce hot air from Air 

Conditioner (AC) usage (Deilami et al., 2018). Further, manmade dark impervious 

surfaces absorb shortwave radiations and reserve heat energy in daytime and then emit 

longwave radiations slowly at night, contributing to the nighttime SUHI (Wang et al., 

2016). Urban areas are packed with vehicles and other heat generating activities 

released from burning fuel (Hart & Sailor, 2009). In short, anthropogenic activities and 

heat emission (e.g., AC operations, fuel usage in transportation, industrial heat 
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production) in the urban area is critical contributor to urban temperature rising and 

have more effects in space that in time (Mohammad et al., 2019; Peng et al., 2018). 

5.3.5 Mitigation of SUHI 

Nowadays, the construction of highways, manufacturing frameworks, and 

buildings in Dubai city cannot be avoided. This situation will obviously lead to the 

increment of SUHI values. Thus, it requires urgent consideration from government, 

policymakers, urban-planners, private organizations, and community. The mitigation 

and adaptation strategies of urban temperature environment management need to be 

concentrated on lessening the SUHI effect on Dubai city, especially the vital areas. 

Therefore, the HSS should be specified as the major zones. Otherwise, the SUHI will 

incline to nonstop exacerbation. There are numerous mitigation strategies proposed 

internationally to tackle urban heat issues.   

As discussed hereby, this research found a negative correlation between SUHII 

and albedo at night. So, using lower albedo surface materials (asphalt and concretes) 

with high albedo and high emissivity surfaces and less conductivity for new 

infrastructure may maintain the surface cool when exposed to solar radiation. 

It is widely recognized that the increase of vegetation and green covers in the 

urban texture is one of the fundamental methods to reduce SUHI (Haashemi et al., 

2016; Keeratikasikorn & Bonafoni, 2018a). Hence, for SUHI reduction, green 

infrastructure and, roof-top gardens, parks, roadside trees plantation, reserved green 

area, introducing reflective rooftops and walls (e.g., white/bright color), checking 

building materials and other urban renewal methods had been ascertained to be useful, 

along with controlling the sources of anthropogenic thermal emission (Azhdari & 

Taghvaee, 2018; Bonafoni et al., 2017; Cui & De Foy, 2012; Elmes et al., 2017; Sun 
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& Chen, 2017; Yu et al., 2017). Alongside, people can make roof curtains, green-walls 

and gardens. This can improve the moisture in the city and can additionally decrease 

the rate of thermal emission and SUHI phenomenon. Observed evidence exhibited that 

large scale applications of green roofs decreased ambient heat by 0.3 to 3ºC 

(Santamouris, 2014). Vegetation can intercept solar-energy, provide shade to surfaces 

and has a higher albedo than pavement, plants absorb and accumulate less heat, while 

the evapotranspiration process helps to reduce the temperature of the atmosphere 

(Alahmad et al., 2020; Millward & Sabir, 2011). Furthermore, rising water bodies via 

artificial streams are promising to reduce temperatures at the nighttime SUHI (Rasul 

et al., 2017a). Earlier studies also suggested that urban planning can impact on urban 

heating and proper land use strategies can reduce the effects of SUHI (Kardinal Jusuf 

et al., 2007; Tan & Li, 2015). Besides, disperse or stretched urbanizations are fit for 

SUHI mitigation as found in some work (Zhou et al., 2017a). Eventually, any 

contraction in the effect of SUHI on local temperatures in Dubai city is inclined to 

have a positive effect on the live ability and wellbeing of its residents and make living 

more satisfying and comfortable. 

5.4 Conclusions 

The understanding of the variation of the surface thermal environment is 

crucial for SUHI adaptation and mitigation. For this research, the urban and nonurban 

reference areas of Dubai city in UAE were identified depending on land cover data. 

Likewise, the spatial and temporal change of SUHII which is acquired from MODIS 

LST was analyzed from the annual, summer and winter during 2003 to 2019. The 

findings indicated that, SUHII was occurred in nighttime in Dubai city, with the 

stronger SUHI in winter season compared with summer season, but their extension 
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was analogous during study period. Additionally, utilizing temporal trend analysis, 

there was an increasing trend in SUHII in selected seasons and annually from 2003-

2019, that reaches around 1ºC/decade. By analyzing spatial patterns of SUHII 

alteration, the outcomes showed increase in the value and expanse of SUHII with the 

growth of the urbanization across the Dubai city, and the more intensively situated in 

coastline with dense and tall buildings, airports, industrial areas, and densely populated 

area and more human activities, in comparison to nonurban areas in barren land and 

desert. The HSS in Dubai have undergone a severe SUHII more than 5ºC. However, 

increasing population and change in land use and land cover, and related 

anthropogenesis thermal activities needs strategic mitigation steps in the city to stop 

further strengthening of the heat island effect. 

This detailed research can generate additional information for the government 

and the public to understand climate change in specific micro-climate in the Dubai 

city. It is very necessary, because it will be used as a preliminary or reference 

information for future development planning. 

5.5 Limitations and Future Studies  

Some limitations in this study should be mentioned here. Firstly, this study was 

not proficient to validate the excellence of the data of the LST data, because no 

accessibility to the fresh/raw data that were acquired in the satellite passes. However, 

no obvious flaws was encountered within the processed LST values. Secondly, the 

spatial resolution of 1km might not interpret with finer features of hot-spots inside the 

urban city. Additionally, satellites might not be proficient enough to accurately capture 

temperatures from surfaces that are hidden by trees or high constructions. Subsequent 

constraint based on the cloud cover impact including missing pixels, and the pixels 
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covered by thin clouds. Finally, it is noteworthy that this analysis of SUHI in Dubai 

city is only over 17 years of satellite data. This is also clarified that there was limitation 

in chronological data archive of MODIS. However, findings obtained in this research 

may be relatable to a corresponding duration in a 30 year data set. Methods used in the 

current research might also be applied in SUHI analysis of other cities. Therefore, 

studies for additional time periods and for other cities in UAE are planned. 

Additionally, the impacts of climate conditions, for example, cloud cover, wind, and 

precipitation on the SUHI need to be taken into account in future studies, moreover, 

land use with more attributes need to be seriously considered. 
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Chapter 6: Impact of COVID-19 Lockdown Upon the Air Quality and 

Surface Urban Heat Island over the United Arab Emirates 

 

Abstract 

The 2019 pandemic of Severe Acute Respiratory Syndrome-Corona Virus Diseases 

(COVID-19) has posed a substantial threat to public health and major global economic 

losses. The Northern Emirates of the United Arab Emirates (NEUAE) had imposed 

intense preventive lockdown measures. On the first of April 2020, a lockdown was 

implemented. It was assumed, due to lower emissions, that the air quality and Surface 

Urban Heat Island (SUHI) had been strengthened significantly. In this research, three 

parameters for Nitrogen Dioxide (NO2), Aerosol Optical Depth (AOD), and SUHI 

variables were examined through the NEUAE. As revealed by satellite data for two 

cycles in 2019 (March 1st to June 30th) and 2020 (March 1st to June 30th), the percentage 

of the change in these parameters were evaluated. The research's core results showed 

that during lockdown periods, the average of NO2, AOD, and SUHI levels declined by 

23.7%, 3.7% and 19.2%, respectively, compared to the same period in 2019. 

Validation for results demonstrates a high agreement between the predicted and 

measured values. The agreement was as high as R2=0.70, R2=0.60, and R2=0.68 for 

NO2, AOD, and night LST, respectively, indicating significant positive linear 

correlations. The current study concludes that due to declining automobile and 

industrial emissions in NEUAE, the lockdown initiatives substantially lowered NO2, 

AOD, and SUHI. In addition, the aerosols did not alter significantly since they are 

often linked to the natural occurrence of dust storms throughout this span of the year. 

The pandemic is likely to influence several policy decisions to introduce strategies to 
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control air pollution and SUHI. Lockdown experiences may theoretically play a key 

role in the future as a possible solution for air pollution and SUHI abatement. 

Keywords: COVID-19; NO2, AOD, SUHI, Lockdown, Northern Emirates. 
 

6.1 Introduction 

Emerging of Coronavirus disease 2019 (COVID-19) is a transmittable disorder 

characterized by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 

(Islam et al., 2020). By massive human-to-human transmission, COVID-19 has deeply 

hit the world and prompted the human mortality rate and massive economic casualties 

around the world (Bukhari & Jameel, 2020). The number of cases of Covid-19 globally 

hit approximately 34 million by the first of October 2020, while the number of deaths 

reached 1 million (WHO, 2020c). In late 2019, the first case of COVID-19 was 

identified in China and since then has spread very quickly throughout the world (Li et 

al., 2020b). On 11 March 2020, the World Health Organization (WHO) announced the 

novel coronavirus disease as a pandemic (WHO, 2020b). The WHO COVID-19 

dashboard (https:/covid19.who.int/) can be used to find the specifics of global COVID-

19 cases. The first COVID-19 infection was reported in the United Arab Emirates 

(UAE) on 29 January 2020, and the first death was recorded on 21 March 2020. Since 

then, as per the Ministry of Health and Prevention (https:/www.mohap.gov.ae/), there 

has been an alarming surge in active and death cases due to COVID-19. 

In people with cardiovascular and respiratory disorders, who is also closely 

related to air pollution, the mortality risk of COVID-19 is substantially higher (Archer 

et al., 2020; Isaifan, 2020; Zhu et al., 2020b). Emissions leading to respiratory health 

conditions from primary pollutants containing particulate matter (aerosols) and gases 



111 
 
such as Nitrogen Dioxide (NO2) and also have adverse environmental effects like soil 

and water acidification (Griffin et al., 2019; Mulenga & Siziya, 2019; Xu et al., 2020). 

Besides, the WHO (2020a) reports that approximately 4.2 million inhabitants die 

worldwide per year from factors primarily related to air pollution. It is presently 

accompanied by increased death tools in COVID-19 infected patients (Conticini et al., 

2020; Wu et al., 2020). 

Urban Heat Island (UHI) is among the most noticeable and frequently reported 

urbanization climatological consequences, by which urban and suburban regions are 

hotter than surrounding areas (rural/nonurban) (Hu & Brunsell, 2013; Miles & Esau, 

2017). The negative influence of UHI has been extensively described in the literature. 

For example, rises energy demand (Alghamdi & Moore, 2015), which implicitly leads 

to global climate change (Alghamdi & Moore, 2015); environmental degradation (Lin 

et al., 2017); air pollution (Zhu et al., 2020a); human comfort and health (Schwarz et 

al., 2011); ecosystem function (Keeratikasikorn & Bonafoni, 2018a); is a significant 

factor of rise in the rate of COVID-19 cases (Li et al., 2020a; Mukherjee & Debnath, 

2020) and leads to heat-related deaths (Cui & De Foy, 2012; Lowe, 2016). UHI is 

measured based on air temperature, while satellite-derived Land Surface Temperature 

(LST) data has been used to conduct the surface UHI (SUHI). LST is described as the 

surface temperature of the Earth's skin, playing an important role in the interchange of 

heat and energy among land surfaces and the atmosphere to assess changes in the 

environment (Moradi et al., 2018). 

Distinct mitigation initiatives such as social distancing, cluster and whole 

lockdowns, comprehensive travel bans, mass quarantines, and so on have been 

introduced globally to prevent the COVID-19 pandemic risk. Such risk mitigation 

initiatives have had a significant effect on socio-political ties and economic 
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development at local and global levels (Ranjan et al., 2020a). Nevertheless, due to the 

reduction of anthropogenic-based pollutants, such precautionary strategies to prevent 

COVID-19 transmission have significantly enhanced air quality. The most critical 

challenge in the 21st century is the degradation of air quality worldwide due to the 

different sorts of anthropogenic interventions (Mehdipour & Memarianfard, 2017; 

Motesaddi et al., 2017). At such a moment, lockdown incidents enforced by the 

COVID-19 pandemic pressured the anti-environmental activities to cease. Resultantly, 

throughout the pandemic situation, the level of air quality in the various continents of 

the Earth is significantly enhanced. In this sense, Tobías (2020) recorded a 45%, 51%, 

31% and 19% decline in the level of PM10, NO2, SO2, and CO, respectively, over 

Barcelona in Spain within the lockdown span of a month. Owing to industrial 

lockdown, Isaifan (2020) recorded a substantial decrease in NO2 and carbon emissions 

(30% and 25%, respectively) in China. During the lockdown, Karuppasamy et al. 

(2020) documented a 55% contraction in NO2 in India. A recent analysis in the Middle 

East has also shown a decrease in the number of air pollutants in Morocco of 75%, 

49%, and 96% for PM10, SO2, and NO2, individually (Otmani et al., 2020). Moreover, 

in Iran, Nemati et al. (2020) recorded noticeable advancement in the time of pandemic 

in air pollution. Likewise, during the COVID-19 pandemic, many other recent studies 

have shown a significant decline in the level of air pollutants such as NO2, SO2, PM10, 

PM2.5, CO, and so on, globally (Archer et al., 2020; Collivignarelli et al., 2020; Dantas 

et al., 2020; Islam et al., 2020; Kaplan & Avdan, 2020; Kerimray et al., 2020; Nakada 

& Urban, 2020; Ranjan et al., 2020a; Wang & Su, 2020). 

The aforementioned studies concentrate primarily on evaluating the level of air 

pollutants during the pandemic scenario of COVID-19. Although a considerable 

correlation between air pollutants and LST has been identified in some research 
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(Alseroury, 2015; Feizizadeh & Blaschke, 2013; Hashim & Sultan, 2010; Kahya et al., 

2016; Weng & Yang, 2006), the SUHI variability during the pandemic scenario has 

not yet been investigated. Like other nations, from the 1st April to the end of June 2020, 

COVID-19 forced to shut down industries, public transit, airlines, vehicles, and other 

anthropogenic operations in all Emirates in the UAE and had imposed a curfew daily 

between 8 pm and 6 am (www.mediaoffice.abudhabi). Therefore, since it is associated 

with the level of emissions, it is expected that the full or partial lockdown will lead to 

improved air quality and reduce the SUHI. However, no studies on the impacts of 

COVID-19 on air quality and SUHI throughout the UAE have been conducted. 

Consequently, the current study has been undertaken to investigate the potential 

impacts of COVID-19 lockdown operations on NO2, Aerosol Optical Depth (AOD), 

and SUHI in the Northern Emirates of the UAE (NEUAE). The study also aims to 

validate satellite data over the study area using ground station records. Concentrating 

on NEUAE, this work is supposed to be a clear complement to evaluating the impact 

of lockdowns on air quality and SUHI by the science community and environmental 

protection policymakers, as well as its usefulness as a basic substitute action plan to 

improve air quality and SUHI. 

6.2 Data and Methods 

6.2.1 Study Area  

The United Arab Emirates (UAE) consists of seven federation Emirates 

(states): Abu Dhabi (ADH), and six northern Emirates, including Ras Al Khaymah 

(RAK), Dubai (DUB), Umm Al Qaywayn (UMQ), Sharjah (SHJ), Fujayrah (FUJ), and 

Ajman (AJM) (Figure 6.1a). The Northern Emirates of the UAE (NEUAE) were 

chosen as a study area located at approximately between latitudes 26° 365 to 26° 335 
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N and longitudes 54° 530 to 56° 240 E. Topography of the study area is mostly flat, 

with a mountain chain reaching an altitude of ~1800 m in the Northeastern and Eastern 

parts (Figure 6.1b). The NEUAE is typically an arid region with a humid environment, 

located in the Arabian Peninsula's Eastern corner. It borders the Arabian Gulf to the 

north, the Gulf of Oman to the east (Figure 6.1). The annual average of air temperature 

is about 28ºC. It is much hotter (approximately 45ºC) in the summer season (June to 

August) and colder (December to February) to 10ºC in the winter season. In the hot 

months, dust storms generally occur (Barbulescu & Nazzal, 2020). Moreover, during 

the winter season, over 80% of the yearly rainfall occurs (FAO, 2008). 

Around 71% bulk of the UAE population is based in the NEUAE. Around 50% 

of the population resides in DUB, followed by SHJ by 31%, and only 1% resides in 

UMQ, as per the Federal Competitiveness and Statistics Authority (www.fcsa.gov.ae). 

Besides that, as documented by the United Nations (2019), more than 86.5% of the 

people live in urban areas situated on the coastline (Figure 6.1c). Furthermore, over 

the past two centuries, fast and pervasive economic and political change has caused 

the increased population explosion, accelerated urbanization, higher energy 

consumption, and emission of vehicular and industrial. That adds to anthropogenic 

activities being increased. 
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Figure 6.1: Location map of the study area. (a) study area and major factories, (b) 
elevations and spatial distribution of meteorological and air quality stations, (c) 
urban areas, and reference 

 

6.2.2 Data 

Between March to June 2019 and 2020, two different air pollutants NO2 and 

AOD, and night LST data were collected for the NEUAE. The average monthly NO2 

and AOD data have been acquired from Google Earth Engine (GEE). NO2 is produced 

by the Sentinel-5p TROPOMI (Tropospheric Monitoring Instrument) mission of 

Copernicus ESA. While AOD and night LST were obtained by MODIS MAIAC 

(MCD19A2) and MODIS Aqua (MYD11A2), respectively. Due to the finite temporal 

scope of Sentinel-5p data, it is worth noting that the baseline was 2019. A summary of 

the datasets used in this study is shown in Table 6.1. 
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Table 6.1: Summary of the datasets used in this study 

Data 

source 

Parameter 

Spatial 

resolution 

Temporal 

resolution 

Data access link 

Sentinel5p 

TROPOMI 

NO2 
3.5 x 5 km 

daily https://scihub.copernicus.eu/ 

MODIS 

MAIAC 

AOD 
1 x1 km 

daily https://lpdaac.usgs.gov/ 

MODIS/ 

AQUA 

Night LST 
1x1 km 

8-day https://lpdaac.usgs.gov/ 

SRTM DEM 30 x 30m - https://earthexplorer.usgs.gov/ 

NCM NO2 &PM2.5 - Monthly  - 

DM Tamin - Monthly  - 

 

6.2.2.1 TROPOMI/Sentinel-5p Data (NO2) 

TROPOMI was launched on 13th October 2017 as a passive hyperspectral 

nadir-viewing imager aboard the Sentinel-5 Precursor satellite, which is also 

recognized as Sentinel-5P (Veefkind et al., 2012). Sentinel-5P is a near-polar orbiting 

sun-synchronous satellite positioned at an altitude of 817 km in an ascending node 

with an equator crossing time at 13:30 (local time) offering daily worldwide coverage. 

Furthermore, since July 2018, TROPOMI delivered calibrated data from its nadir-

viewing spectrometer that measures reflected sunlight in the ultraviolet, visible, near‐

infrared, and shortwave infrared with seven bands, where the fourth band spectral 

range is 405-500 nm, which could be used for NO2 monitoring (Venter et al., 2020). 

Recent works have shown that measurements of TROPOMI are quite well associated 

with actual ground measures of NO2 (Griffin et al., 2019; Lorente et al., 2019). 

TROPOMI products included in this research are L3 offline version products. Band 

about:blank
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four's spectral and spatial resolutions are 0.55 nm and 5.5 x 3.5 km, respectively, and 

the signal to noise ratio is also massively enhanced (Cheng et al., 2019). 

6.2.2.2 MODIS Data (AOD and LST) 

In a near-polar solar-synchronous circular orbit, Moderate Resolution Imaging 

Spectroradiometer (MODIS) was launched onboard NASA's Aqua and Terra satellites. 

Note that local crossing times are approximately 01:30 and 13:30 for Aqua satellite, 

while 10:30 and 22:30 for the Terra satellite. MODIS has a 2330 km (cross-track) 

swath and provides near-global coverage on a daily basis. MODIS is an imaging 

radiometer with 36 wavebands, covering the wavelength spectrum from the visible to 

the thermal infrared. AOD data was possessed from the cloud-masked MCD19A2-v6 

product, that is a MODIS Terra, and MODIS Aqua combined AOD retrieved with the 

Multi-Angle Implementation Atmospheric Correction (MAIAC) algorithm (Lyapustin 

et al., 2018). To map ground-level PM2.5 concentrations, this dataset has been used 

effectively (Wei et al., 2019). Also, in the current analysis, AOD at 550 nm (green 

band) was utilized because of its superior accuracy (Lyapustin & Wang, 2018). 

Concerning night LST data, for 2019 and 2020, MODIS Aqua's MYD11A2-v6 

performance entails an 8-day composite of LST data at night from 1 March to 30 June 

2019 and 2020. In the long time series, the 8-day LST composite products will 

undervalue the quantity of gaps created by clouds or other unwanted circumstances, 

that are beneficial for SUHI studies to conduct a spatial comparison (Hu & Brunsell, 

2013; Schwarz et al., 2011). Modern Time LST products (v6) have resolved past 

version accuracy issues, also measure errors and validation assessments in bare land 

and arid regions currently suggest their use in these areas (Lu et al., 2018b). For the 

present work, MAIAC AOD and night LST data on a 1 km nadir resolution were 
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retrieved from the NASA Land Processes Distributed Active Archive Center 

(https:/lpdaac.usgs.gov/analysis/). 

6.2.2.3 SRTM Data (DEM) 

The area's topography is predominantly plain, and the elevation slowly 

increased from north-west to south-east and east, reaching approximately 1830 m 

(Figure 6.1b), accompanied by the Digital Elevation Model (DEM) 30 m resolution, 

obtained from the Shuttle Radar Topography Mission (SRTM). The SRTM DEM data 

was downloaded from the USGS Earth Explorer (https:/earthexplorer.usgs.gov/) to 

pick a suitable reference location for SUHI calculation. 

6.2.2.4 Meteorological Data 

The air quality and meteorological records utilized in this study were collected 

from the Municipality of Dubai (DM) and the National Center of Meteorology (NCM) 

for validation. From the aforementioned sources, three parameters were obtained: 

NO2, PM2.5, and minimum air temperature (Tamin) for each of the years 2019 and 2020, 

from March to June. It is worthwhile to mention that Tamin has been chosen due to 

matching with MODIS night LST overpass time, which is closer to Tamin (Alqasemi et 

al., 2020). Likewise, PM2.5 has been selected as AOD is considered as a proxy for 

PM2.5 (Fan et al., 2020; Venter et al., 2020). 

6.2.3 Methods 

6.2.3.1 Data Pre-processing 

Usually, the products MCD19A2 and MYD11A2 were available in sinusoidal 

grid projection that was re-projected to the geographic coordinate system of WGS 
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1984. In addition, a mosaic of two tiles was created with MYD11A2 data. The scale 

factor has been multiplied by both MCD19A2 and MYD11A2. Then, 273.15 was 

subtracted to produce a night LST in Celsius from Kelvin. In the process of producing 

a seamless dataset, every unrealistic LST data with values above than 100ºC and/or 

below than -50ºC or any value outside the acceptable range was labelled as no data 

and ignored, only reliable pixels and high-quality data were used as per the layer of 

Quality Assessment (QA). Besides, using the mean value of each series, any missing 

values were amended. Afterward, night LST data was aggregated to a monthly period 

by averaging the 8-day composite data to obtain monthly average night LST. As for 

TROPOMI-Sentinel-5P NO2 was resampled to (1x1 km) to ensure conformity with a 

spatial resolution of MODIS data (i.e., AOD and night LST). Then, the boundary 

polygon that defined the study area was used to clip all datasets.  

Finally, as a preventive strategy for COVID-19, the three months of April, 

May, and June (AMJ) were averaged as one period applied for all datasets throughout 

the NEUAE. Furthermore, March month was collected and processed for pre-

lockdown in 2020 for NO2, AOD, and night LST. Similarly, for the identical time 

spans as the lockdown and pre-lockdown periods, the mean of datasets was obtained 

for 2019 for comparative analysis, as well as utilized for evaluating the correlation 

with measured data from ground stations. 

6.2.3.2 SUHI Calculation 

The night SUHI is a distinctive feature of arid regions, as per number of 

researchers (Alahmad et al., 2020; Clinton & Gong, 2013; Lazzarini et al., 2013). 

Additionally, the lowest surface temperature is reported at midnight, making Aqua 

night data an optimal choice near the SUHI maxima. SUHI is typically measured from 
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the LST contrasts between urban and surrounding areas (will be cited here as 

reference). Consequently, choosing a reliable reference is important. In different tests, 

however, the approaches for determining the reference differed extensively in various 

studies. The reference should not be influenced by urban, high altitude, vegetation or 

water (Hu et al., 2019b). Therefore, in this study, the reference was defined as bare 

land using chronological imaged from Google Earth Pro (GEP) and lower than 50 m 

relying on the 30 m DEM dataset to prevent the cooling effect on the SUHI 

quantification. Finally, by subtracting the average night LST of the reference from the 

night LST of all pixels, the SUHI was calculated by every pixel utilizing the following 

equation (Equation 6.1) 

SUHI = LSTPX – LSTRF    (6.1) 

where LSTPX is the night LST of all pixels, and LSTRF is the mean night LST 

of the reference. 

6.2.3.3 Change Rate (Concentration) 

It is critical to understand the alteration in the NO2, AOD, and SUHI 

concentrations throughout the lockdown period. After retrieving the data on pollutants 

and SUHI, the Spatio-temporal pattern of average levels of NO2, AOD, and SUHI is 

categorized into four groups; (i) pre-lockdown (March 2020); (ii) during the lockdown 

period (AMJ, 2020); (iii) the same Pre-lockdown dates (March 2019); (iv) the same 

2019 lockdown dates. Furthermore, the change rates were calculated utilizing Equation 

6.2 to reflect the percentage of change in the study area's NO2, AOD, and SUHI levels 

during the lockdown period related to the past year (i.e., 2019) for the same time span, 

and also compared to pre-lockdown in March 2020. The change rate of variation 

between March and AMJ throughout 2019 and 2020 is also put into account. 
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Change rate (%) = ((X2020 - X2019) / X2019) * 100   (6.2) 

Where, X is NO2, AOD, or SUHI for the selected periods in 2019 and 2020. In 

addition, the agreement will be analyzed by calculating the regression coefficients (R2) 

among stations and satellite data based on the availability of the metrological and air 

quality station data. The flowchart for the methodological workflow is presented 

concisely in Figure 6.2. The sequence of data collection, pre-processing, clipping, 

resampling, data extractions, and SUHI measurement, change rate, and validation are 

described in Figure 6.2. For the processing, analysis, and exhibition, the ESRI 

ArcGIS™ version 10.4 software framework and Microsoft Office Excel were used. 

 

 

Figure 6.2: Workflow flowchart adopted in the present study 

 



122 
 
6.3 Results and Discussions 

6.3.1 Nitrogen Dioxide (NO2) 

A dramatic drop in NO2 concentration was recorded during the lockdown 

period (i.e., AMJ, 2020) in NEUAE due to the COVID-19. Figure 6.3 depicts the 

substantial spatiotemporal changes in NO2 levels throughout lockdown and pre-

lockdown in NEUAE. The analysis showed that because of restricted transportation 

and factories' closure, the six Emirates experienced a decline in NO2 levels. This result 

is compatible with other earlier studies undertaken in various regions of the globe 

(Baldasano, 2020; Dantas et al., 2020; Islam et al., 2020; Kaplan & Avdan, 2020; 

Sharma et al., 2020). Figure 6.4 indicates that RAK noted the highest decline in NO2 

levels among the six Emirates (18.5%), followed by UMQ (~18%), AJM (13%), and 

FUJ (11.6%) compared with the average NO2 levels throughout lockdown with the 

average levels instantly pre-lockdown, for other Emirates relative to DUB (7.5%) and 

SHJ (5.4%). In addition, this study indicates that, as shown in Figure 6.4, the average 

decline in NO2 concentration throughout NEUAE was substantial 12.2%. This decline 

should be noted that NO2 emission is closely connected to fuel combusting within the 

factories area (Figures 6.1a & 6.3). Therefore, the limitations on these areas operations 

are supposed to result in a substantial drop in NO2 level throughout the lockdown 

period. Additionally, within March 2019, NO2 level was lower than March 2020, as 

shown in Figure 6.3a and c, that may be due to the precipitation during March 2019.  

A substantial decrease in NO2 is reported in the study area by comparing the 

NO2 amount of lockdown period 2020 with an identical period in 2019. The maximum 

decline was for UMQ (27.8%) followed by RAK (26.8%), SHJ (~26%), FUJ (24.3%), 

AJM (19.8%) and DUB (18.7%). With the whole study area, the average reduction 
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was 23.7%, as presented in Figure 6.4. These results are in accordance with the results 

of the previously published research. Islam et al. (2020) recorded identical outcomes 

for Bangladesh during the lockdown period as opposed to the same period in 2019. 

Agarwal et al. (2020) recorded an average reduction in NO2 during the lockdown in 

China by 49% and in Mumbai (India) by more than 76%. In the Middle East 

(Morocco), NO2 levels were decreased during the lockdown phase compared with the 

identical period in 2019 (Sekmoudi et al., 2020).  

In brief, this decline in NO2 concentrations at various periods shows that 

lockdown initiatives related to the COVID-19 pandemic significantly impacted 

changing NO2 concentrations in NEUAE. 
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Figure 6.3: Spatiotemporal distribution of average NO2 over NEUAE. (a) March 
2019, (b) average AMJ 2019, (c) pre-Lockdown (March 2020), (d) during Lockdown 
(AMJ 2020), (e) percentage of change between March 2019 and 2020, and (f) 
percentage of change between average AMJ 2019 and 2020 
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Figure 6.4: Average NO2 concentration at NEUAE before and during lockdown 

 

6.3.2 Aerosol Optical Depth (AOD) 

The same as NO2, a significant decline in AOD concentration was recorded, as 

shown in Figure 6.5. Likewise, for the same period, the average AOD values during 

the lockdown period were lower than the mean AOD values in 2019. The analysis 

indicates that all six Emirates encountered a decline in AOD concentration because of 

restricted aerosol sources. Primarily from burning biomass, emissions from factories, 

vehicles, heavy transport, and machinery (Ranjan et al., 2020b), and dust (Khuzestani 

et al., 2017). Therefore, a reduction in AOD due to the restrictions of industrial and 

automobile movement is reasonable. For the specified time frames, the spatiotemporal 

variations in AOD concentrations in NEUAE are depicted in Figure 6.5. AJM with 

5.7% and UMQ with 5.3% were the largest declines, accompanied by SHJ with 3.4%, 

FUJ, and RAK, both with 3.1%. In Dubai, the lowest drop was 1.7%. The rate of 

change was 3.7% throughout the overall study area (NEUAE), as shown in Figure 6.6. 

Similarly, a common declining trend of AOD has been recorded in China (Fan et al., 

2020; Filonchyk et al., 2020), India (Gautam, 2020; Pathakoti et al., 2020; Ranjan et 

al., 2020b), and South Asia (Zhang et al., 2020).  
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During the average AMJ, the level of AOD increased significantly compared 

to March (Figure 6.5). Owing to this, rainfall throughout these months (AMJ) is scarce, 

but the gusty winds ensure that dust storms become frequent (Barbulescu & Nazzal, 

2020; Karagulian et al., 2019). Furthermore, according to Al Otaibi et al. (2019), AOD 

typically rises over the gulf nations in hot summer months. Consequently, in general, 

rises in the AOD level in AMJ comparing to March were observed. However, the 

change rate between March and the average AMJ in 2020 decreased relative to the past 

year for all six Emirates, as shown in Figure 6.6. In 2019, the change rate ranged from 

16.3% to 34%, whereas it dropped in 2020 from -0.7% to around 7%. Notably, AOD 

emission is linked with the major industries, particularly in Dubai (Figures 6.1a, 6.5 & 

6.6). Further, Dubai has a minimum reduction in AOD. The most populous and 

established region of the UAE is the Emirate of Dubai, and also the most famous 

industrialized regions are in Dubai. It is believed, therefore, that certain considerations 

may be behind for the least reduction. 
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Figure 6.5: Spatiotemporal distribution of average AOD over NEUAE. (a) March 
2019, (b) average AMJ 2019, (c) pre-lockdown (March 2020), (d) during lockdown 
(AMJ 2020), (e) percentage of change between March 2019 and 2020, and (f) 
percentage of change between average AMJ 2019 and 2020 

 

 

Figure 6.6: Average concentrations of AOD at NEUAE before and during lockdown 
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6.3.3 Surface Urban Heat Island (SUHI) 

SUHI specifically portrays urbanized areas and mountains, as shown in Figure 

6.7(a-d). A drop in SUHI levels has also been recorded, like NO2 and AOD (Figure 

6.7f), due to the partial or full nationwide lockdown. The result reveals that during the 

specific time frame, nighttime SUHI levels over this duration were comparatively less 

than the 2019 levels (Figures 6.7 & 6.8). The decline has generally been identified in 

all Emirates, varying from 12.3% to 28.6%, in which the average drop is 19.2% across 

the whole study area.  

Furthermore, the maximum SUHI concentrations are found in FUJ (28.6%) 

and RAK (23%) as displayed in Figure 6.8, which may be due to the elevations and 

type of rocks. Figure 6.7 (a-d) also reveals that SUHI increases during AMJ relative to 

March, owing to heat emission in hot months (e.g., air conditioning system). 

Nevertheless, the change rate in 2020 between March and lockdown months (AMJ) is 

less than in 2019. It dropped from 18.3% in 2019 to 6.6% in 2020, as exhibited in 

Figure 6.8. Overall, the results indicate a reduction in SUHI values owing to the 

shutdown of anthropogenic activities and sources of heat emissions, like industrial 

processes, power plants, flight, and transport. 
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Figure 6.7: Spatiotemporal distribution of SUHI over NEUAE. (a) March 2019, (b) 
average AMJ 2019, (c) pre-Lockdown (March 2020), (d) during Lockdown (AMJ 
2020), (e) percentage of change between March 2019 and 2020, and (f) percentage of 
change between average AMJ 2019 and 2020 

 

 

Figure 6.8: Average concentrations of SUHI at NEUAE before and during lockdown 
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6.3.4 Validation 

In this section, the validations of derived data from satellites with the measured 

data from actual ground stations are investigated. The comparisons consisting of 

derived NO2, AOD, and night LST plotted against the measured data NO2, PM2.5, and 

minimum air temperature (Tamin), respectively, as presented in Figure 6.9. Based on 

the availability of ground stations data, the validation of the NO2 and PM2.5 data have 

been made using thirteen and five air quality monitoring stations measurements, 

respectively, from Mach to June 2019. Whereas Tamin data covers the whole period 

(March-June) in 2019 and 2020 at four metrological stations (Figure 6.1b). It is 

noteworthy to mention that, due to the fact that the Aqua satellite crossing the equator 

at night close to the Tamin, it was decided to validate night Aqua LST data with Tamin. 

In addition, as mentioned before, the AOD is considered as a proxy for (PM2.5); thus, 

AOD is plotted versus PM2.5. 

These comparisons show that the TROPOMI Sentinel-5P NO2 is highly 

correlated with the air quality monitoring stations data with R2 = 0.70, as shown in 

Figure 6.9a. Likewise, Figure 6.9b shows the scatter plot of measured PM2.5 versus 

MODIS MAIAC AOD. The statistical analyses showed a moderate coefficient of 

determination (R2= 0.60). Further, the high agreement was also found between the 

MODIS Aqua night LST and the Tamin from stations measurements (R2 = 0.68), as 

displayed in Figure 6.9c. Overall, the high agreement is found between satellite data 

and actual measured data; hence, the satellite observations are a tremendous resource 

for studying air pollution and SUHI over large geographic regions. 
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Figure 6.9: The scatter plots of validation for the derived data from satellites and 
measured data from ground-measuring stations. (a) measured NO2 and derived NO2, 
(b) measured PM2.5 and AOD, and (c) minimum air temperature (Tamin) and night 
LST 
 

 

6.4 Conclusions 

The COVID-19 pandemic has become a significant threat to public health, 

together with a massive economic loss around the world. The lockdown sparked by 

the COVID-19 pandemic, however, showed that if a chance is given by society, nature 

will cure itself. The impact of anthropogenic activities lockdown due to the COVID-

19 pandemic on air quality and SUHI in NWUAE was studied by examining NO2, 

AOD, and SUHI levels and evaluating variations in spatial distribution. To 

demonstrate how restrictive anthropogenic activities throughout the COVID-19 
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lockdown minimized the air pollutants and SUHI in NEUAE, satellite data of different 

parameters were used in 2019-2020. As predicted, the current investigation discovered 

that NO2, AOD, and SUHI concentrations across the NEUAE have been decreased due 

to the pandemic lockdown. The largest average drop was in NO2 (23.7%) followed by 

SUHI (19.2%) and AOD (3.7%) throughout the lockdown period compared with the 

same period in the year 2019. 

Furthermore, the largest average reduction among March and average 

lockdown months in years 2019 and 2020, was NO2 followed by AOD. The study also 

identified that the selected air pollutants and SUHI data are highly correlated with the 

actual measured data. Therefore, satellite data is a tremendous and reliable resource 

for researching air quality and SUHI, especially for developing countries like the UAE. 

In conclusion, this study has established a benchmark paradigm that will potentially 

assist the authorities concerned with the potential management of air quality and SUHI 

in the UAE by decision-makers, particularly on industrial and vehicle pollution 

restrictions. The drawbacks of this work are that some data from ground stations was 

incomplete. Besides, the baseline was a single year (i.e., 2019) due to the limited 

temporal scale of TROPOMI/ Sentinel-5P data, and therefore the outcomes may 

change slightly when providing extra data. Further study is recommended considering 

the correlation of air pollutants and SUHI with COVID-19 cases in the UAE.   
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Summary 

 

The thermal infrared measurements calculated by the satellite were used to 

estimate Land Surface Temperature (LST). LST's extensive requirements for diverse 

applications of the Earth's resources formed LST's remote sensing a vital component 

of research. In this dissertation, some essential applications of MODIS LST over the 

United Arab Emirates were discussed and summarized in the following section. 

❖ The first application of LST illustrates the utilization of satellite-based 

measurements for thermal anomaly detection from the TRMM, MODIS, and 

Bouguer gravity, demonstrating the ability of satellite LST to observe these 

anomalies in order to discover ideal groundwater resources. 

❖ In the second application, using spectral indices and field measurements, soil 

salinity was estimated. Statistical analysis of the combined data demonstrates 

that the NDVI and BSI had the highest correlation of all indices. Night MODIS 

LST also gives a good correlation with soil salinity over western of the Abu 

Dhabi. 

❖ The third application presented in this dissertation used MODIS Aqua products 

to obtain maximum and minimum air temperature (i.e., Tmax and Tmin) over the 

UAE. The linear regression approach was used for Tmax and Tmin estimation. 

Tmax and Tmin were successfully retrieved through regression analysis between 

daytime and night-time MODIS LST, respectively, and meteorological station 

measurements over all stations. The MODIS LST data proved to be a reliable 

proxy for air temperature and mostly for studies requiring temperature 

reconstruction in areas with a lack of observational stations. 
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❖ In the fourth application, MODIS LST was used to study the SUHI phenomena 

for Dubai city in the UAE. Temporal variability of satellite-derived LST over 

the urban and surrounding nonurban area were analyzed for 2003-2019. The 

night SUHI starts rising gradually with the development of the city and 

population growth.  

❖ In the fifth application, the MODIS LST has been used to extract night SUHI 

to investigate the impact COVID-19 lockdown event on SUHI and selected air 

pollutants such as NO2 and AOD over northern emirates of the UAE. 

Agreement between satellite data and ground stations also was evaluated. All 

parameters were reduced during the lockdown over the study area.  
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