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Abstract 

 

Development of label-free methods for cell classifications has been driven by the 

importance of early detection and identification of cancer disease. The future point-of-

care (POC) treatment methods require rapid and real-time cancer screening techniques. 

As the labelled methods of cell classification are time- consuming process and require 

large amount of sample preparation along with skilled persons, they do not appear to 

be suitable for POC treatment methods. This necessitates the importance of such 

development. The label-free methods incorporate the biophysical properties of cells 

instead of biomarkers. The optical properties of cells have been frequently utilized for 

cell classification. This is due to their capability to interact with light. This interaction 

depends strongly on intrinsic properties and composition of cells. 

Cells from different tissues as well as normal and cancerous of same tissue exhibit 

different optical profiles. Therefore, the objective of this work is to combine the optical 

techniques with numerical methods to enhance the accuracy in classifying different 

type of cells. The variation in light interactions with different type of cells is studied 

and the observations are further analyzed using numerical methods. Prony and 

autoregressive (AR) techniques are used to extract set of parameters such as poles and 

coefficients, to enable cell classifications. 

For demonstration, six types of cells: lung normal, lung cancer, liver normal, liver 

cancer, kidney normal, and cervical cancer cells are considered in this work. Their 

corresponding optical signals have been measured. The measured signals are then 

estimated and approximated using Prony and AR models. It is shown that the variation 

in the extracted poles and coefficients for different type of cells form a vital tool in cell 

classification enhancement. Statistical tool such as analysis of variance (ANOVA) 

helps in determining the significant AR coefficients.  

The results revealed that the poles obtained through the Prony method for different 

cells differ in their magnitude and location. A figure of merit (FOM) is developed and 

adapted here which correlates the magnitude and location of poles. It is found that the 

distribution of FOM in complex z-plane is closer to the center of the unit circle for 

normal cell lines than for cancer cell lines taken from the same tissue. Furthermore, 

the AR model of same order for different types of cells exhibit different coefficient 
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and pole values. To reduce redundancy and to arrive with a concise AR model (order 

optimization), ANOVA analysis has been used to determine the significance in the AR 

coefficients. After that, the dominant poles have been determined. With optimizing the 

order, the differences in the pole values of normal and cancer cell increases, enabling 

cell classification enhancement. This shows the role of statistical tools is a further 

enhancement for better accuracy of classification. The findings of this work form the 

foundation stage in the domain of cell classification for early detection of diseases like 

cancer.  

 

Keywords: Analysis of variance (ANOVA), Autoregressive (AR), Cancer, Cell 

Classification, Figure of Merit (FOM), Optical, Prony.  
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Title and Abstract (in Arabic) 

 

تعزيز تصنيف الخلايا السرطانية الطبيعية والمسمومة بدون تمييز باستخدام النماذج 

 البارامترية والتقنيات البصرية

 صالملخ

لقد كان الدافع وراء تطوير أساليب خالية من الملصقات لتصنيف الخلايا هو الاكتشاف 

أساليب  POC الرعاية المستقبليةالمبكر وتحديد مرض السرطان. تتطلب طرق علاج نقطة 

الفحص السريع في الوقت الحقيقي. نظرًا لأن الأساليب المحددة لتصنيف الخلايا تستغرق وقتاً 

، فإنها لا تبدو مناسبة العينة إلى جانب الأشخاص المهرة طويلاً وتتطلب قدراً كبيراً من تحضير

الخصائص الفيزيائية الحيوية للخلايا تعتمد الطرق الخالية من الملصقات على POC  لطرق علاج

بدلا من العلاقات الحيوية وكثيرا ما تستخدم لتصنيف الخلايا بسبب قدرتها على التفاعل مع الضوء 

 . حيث يعتمد هذا التفاعل على الخصائص الجوهرية لتكوين الخلايا

لذلك فإن تحمل الأنسجة المختلفة للخلايا الطبيعية والسرطانية ملامح بصرية مختلفة . 

الهدف من هذا العمل هو الجمع بين التقنيات البصرية والطرق العددية لتعزيز الدقة في تصنيف 

الأنواع المختلفة من الخلايا .حيث تم دراسة التباين في تفاعلات الضوء من أنواع مختلفة من 

 Prony  تقنيات الخلايا وتحليل الملاحظات بشكل أكبر باستخدام الطرق العددية . تم سيتم استخدام

 . لاستخراج مجموعة من المعاملات التي تمكننا من تصنيف الخلاياautoregressive و

ئه الطبيعية، خلايا هنالك ستة أنواع من الخلايا تم دراستها في هذا العمل وهي : خلايا الر

سرطان  ، خلايا الكلى الطبيعية وخلاياكبد الطبيعي، خلايا سرطان الكبدخلايا ال ،سرطان الرئه

يتبين أن  AR. وProny نموذج عنق الرحم . ثم يتم تقدير الإشارات المقاسة وتقريبها باستخدام 

التباين في الأعمدة المستخرجة ومعاملات الأنواع المختلفة من الخلايا يشكل أداة حيوية في تعزيز 

 AR عاملاتفي تحديد م ANOVA تصنيف الخلية. تساعد الأداة الإحصائية مثل تحليل التباين

 .الهامة

للخلايا  Prony أظهرت النتائج أن الأقطاب التي تم الحصول عليها من خلال طريقة

هنا والذي يرتبط  FOM المختلفة تختلف في حجمها وموقعها. تم تطوير وتعيين رقم الجدارة

أقرب إلى مركز دائرة الوحدة  z-plane في FOM بحجم الأقطاب وموقعها. لقد وجد أن توزيع
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 لخطوط الخلايا الطبيعية منه لخطوط الخلايا السرطانية المأخوذة من نفس الأنسجة إن نموذج

AR  من نفس الترتيب لأنواع مختلفة من الخلايا يحمل قيم معامل وقطب مختلفة. لتقليل التكرار

 لتحديد الأهمية في معاملات ANOVA ، تم استخدام تحليلموجز AR والوصول إلى نموذج

AR. 

ية مما ين الترتيب يؤدي إلى زيادة الاختلافات في القيم القطبية للخلية السرطانإن تحس

تشكل نتائج هذا العمل مرحلة الأساس في مجال تصنيف الخلايا  .ينتج تحسين تصنيف الخلايا

 .للكشف المبكر عن أمراض مثل السرطان

، السرطان، تصنيف  (AR)، الانحدار الذات (ANOVA)تحليل التباين :كلمات البحث الرئيسية

 .، البصري، الضمني (FOM)الخلية، رقم الجدارة
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Chapter 1: Introduction 

 

1.1 Overview  

Classification of normal and abnormal cells plays a major role in early detection of 

diseases like cancer. Early detection of such diseases helps patients to receive prompt 

treatment and lead better lives. In the past two decades, diversified research work has 

been carried out to develop efficient methods for detection and classification of cells. 

This includes research work in electrical, mechanical, optical, and biochemical fields. 

Most of the existing labeled techniques used for cell classification are time consuming, 

require skilled professionals, and require large amount of cell samples, antibodies, 

antigens, and biomarkers. In addition, repeated biopsies are required if the false 

positive rate is high. These snags in disease treatment processes necessitate the 

development of label-free methods for cell classification. Label-free cell classification 

methods that combine optical, electrical, or mechanical techniques and numerical 

methods are in currency. The essence of such methods is their efficacy in classifying 

cells in less time with a reduced amount of cell samples. This work combines optical 

measurement techniques and numerical methods. The parameters extracted via 

modeling are analyzed to classify the cells. Statistical tools are also utilized to enhance 

the classification. The preliminary results obtained are promising and lay a concrete 

foundation for advanced study in the area of cell classification. 

1.2 Motivation  

Diagnosing life-threatening diseases like cancer at an early stage when they are not 

too large and not been spread increases the chances of patients being treated 
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successfully. Early detection helps patients receive appropriate treatment and increases 

their survival rate. If diagnosed late, effective treatment becomes difficult, resulting in 

a low survival rate. Nearly 10 years increase in survival rate of women diagnosed with 

breast cancer is 90% when the disease is diagnosed at the local stage. In contrast, less 

than 20% of women survive for 5 years when the disease is diagnosed at the distant 

stage. Similarly, 93% of patients diagnosed with colon cancer at an early stage have a 

5-year increase in survival compared to diagnosis at a late stage [1]. These statistical 

results emphasize the importance of early detection of diseases such as cancer. This 

motivates researchers to devise methods of detecting the abnormalities in cells and 

classifying them at an early stage. Abnormalities in cells alter the intrinsic properties 

and composition of cells. These alterations can change the electrical, mechanical, 

optical, physical, or chemical properties of the cells. Early detection of infection is 

possible if techniques are available to mine these properties. Since the existing 

methods are invasive and time consuming and require bulky equipment, large amount 

of sample, and so on, there is a rising demand for a method that simultaneously 

overcomes these drawbacks and classifies cells efficiently. This forms the motivating 

factor of the present work. The proposed method is label-free based cell classification 

and utilizes the alteration in the optical properties of normal and abnormal cells. The 

measured signals are analyzed using numerical techniques. The parameters extracted 

from the signal response via modeling are further processed using statistical tools for 

detection and classification of cells. 

1.3 Statement of the Problem  

In recent years, there has been increased use of the optical properties of biological cells 

to study the activities of cells. Diagnosing diseases at an early stage and gaining 
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knowledge of the stage of progress of the disease are made possible by studying the 

activities of cells. Optical properties of biological cells vary with the variation in the 

intrinsic properties and composition of the cells. This change in the optical properties 

of different types of cells helps in studying the activities of the cells and hence in their 

identification and classification. Most of the existing optical techniques in cell 

classification involve image-processing systems. The drawbacks of such techniques 

are many including the need for high-contrast images and sophisticated algorithms to 

process the images. To address these issues, development of a label-free optical 

technique that classifies cell in an efficient way is required. In the proposed method, 

the change in the optical properties of normal and cancer cells is used as a biomarker 

to classify the cell type. Parametric methods such as Prony/AR modeling techniques 

are utilized to enhance the cell classification.  

1.4 Thesis objective  

The objective of the present work is to develop an efficient label-free method for 

classifying cells with improved accuracy. The approach is to measure the optical 

profile of the cells and model it with numerical techniques. Signal-modeling 

techniques such as Prony and Autoregressive (AR) methods are utilized. The 

parameters extracted from the techniques are used as tools for classifying the cells. 

Optical measurements are carried out to obtain the transmittance profiles of the cells. 

The transmittance measurements of the cells are sampled to obtain a discrete set of 

data. The Prony algorithm approximates the sampled data to a set of damping 

exponential signals. Parameters such as Prony coefficients and poles that are extracted 

from the fitted model are analyzed for each cell sample, based on which cell 

classification is done. In autoregressive modeling, the discrete data obtained from the 
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transmittance profile of each cell sample is modeled with AR technique. The pole 

information extracted from the AR coefficients of each cell is used as the key for cell 

classification. To improve the accuracy, a statistical tool called analysis of variance 

(ANOVA) is used on the AR coefficients to determine the significant coefficients. 

Poles extracted from the significant AR coefficients are analyzed to perform cell 

classification. The deviation in the pole location of a cell from the locations obtained 

previously for a normal cell shows the presence of abnormalities in the cell. This forms 

the basis for classification of normal and cancer cells.  

1.5 Thesis outline 

In this section, the structure of the thesis is presented.  The thesis details a label-free 

technique that combines the advancements in optical techniques and numerical 

methods for enhancing the classification of cells. 

In Chapter 2, conventional as well as the state of the art techniques used in cell 

classification is discussed. This includes a concise discussion on the role of labelled 

biomarkers in cell classification, in particular normal and cancerous cells, their 

drawbacks and the advancements of label-free biomarkers. The role of different signal 

modeling techniques in bioengineering and the utilization of various statistical tools in 

cell classification used in the past are discussed.  

Chapter 3 elaborates the fundamental concepts of Prony and autoregressive signal 

modeling methods and the algorithms of the methods. This is followed by a discussion 

on the theory of the statistical tool – analysis of variance.  

The validation of the approach proposed in the work starts with the measurements of 

optical profiles of the six types of cells used in the work. The method of cell culturing, 

the optical experimental setup used for measuring the optical profiles of the cells and 
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the procedure of the conduction of the experiment are explained in chapter 4.  

In Chapter 5, the classification of cells using Prony modeling technique and the 

findings of the work are presented. 

In Chapter 6, the use of autoregressive technique for modeling the optical profile of 

the cell samples and the efficacy of the use of analysis of variance -statistical tool- in 

finding the significant coefficients and hence order optimizations are shown.  

In Chapter 7, conclusion and future outlook of the research work is discussed. 
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Chapter 2: State of the Art  

 

 2.1 Biomarkers for classification of cells 

Biological cells are by nature highly heterogeneous. A cell primarily consists of two 

regions: an inner cytoplasmic region enveloped by an outer cellular membrane. Cells 

exhibit electrical, mechanical, chemical, and optical properties. These properties 

depend on the composition and type. Any abnormality in a cell caused by inflammation 

or infection can be examined via the changes in the cell’s inherent properties. 

Examining the properties of the suspected cells will help to diagnose the existence of 

abnormality at the early stages, especially for diseases with no specific symptoms at 

the incipient stage. 

Extensive research has been carried out in studying the cell property indicators. These 

indicators present in blood, serum, urine, and stool or in any bodily fluid are called 

biomarkers [2]. Biomarkers are helpful in classifying cells as normal or abnormal as 

well as identifying the abnormality of an infected cell. Biomarkers are categorized as 

biochemical, biomechanical, bioelectrical, and bio-optical markers. Proteins [3], 

enzymes [4, 5, 6], deoxyribonucleic acid (DNA) [7, 8, 9, 10], and ribonucleic acid 

(RNA) [11, 12] are some of the biochemical markers conventionally used for cell 

classification.  

A rapid paradigm shift in the field of biosensors has led researchers to focus on label-

free biomarkers. In contrast to labeled biomarkers, label-free markers circumvent the 

need for secondary antibodies. Although labeled biomarkers reduce the rate of false-

positive results, the process is time-consuming and therefore inappropriate for rapid 

and real-time screening [13]. 



7 
 
 

 
 

The biomechanical, bioelectrical, and bio-optical properties of the cells are the label-

free biomarkers that can be used for cell classification. The elongation of cell structure 

[14], cell deformation [15], cell stiffness [16, 17], and elasticity [18, 19] are the 

parameters considered as biomechanical markers. Membrane capacitance and 

cytoplasm conductivity [20, 21], dielectric properties [22], and cell impedance [23, 24, 

25, 26, 27, 28] are considered bioelectrical markers. Similarly, optical properties of 

the cells provide important information about the state of cells [29]. Properties of light 

such as absorption [30], refractive index [31, 32], reflectance and transmittance [33], 

and scattering effects [34, 35] of light are considered optical biomarkers. Figure 2.1 

shows the different types of label-based and label-free methods used in classification 

of cells.   

 

Figure 2.1. Types of biomarkers for classification of cells. 
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 2.2 Labeled biomarkers – conventional biochemical markers 

Traditionally, detection and classification of cells were carried out with the aid of 

biomarkers present in serum or tissues, which involves biopsy. This includes a range 

of macromolecules such as proteins, messenger RNA (mRNA), DNA, and so on [36]. 

Most of the biochemical based classification techniques require secondary molecules 

such as secondary antibodies. In addition, they involve a time-consuming 

amplification process as seen in polymerase chain reactions (PCRs). The PCR 

technique amplifies a specific amount of DNA through which cell classification is 

performed [37]. In the following sections, a brief discussion of various biochemical 

markers utilized for classification of cells is engaged in. Figure 2.2 shows the various 

biomarkers conventionally used to classify cells. 

 

Figure 2.2. Various types of chemical biomarkers conventionally used for cell 

classification.  
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2.2.1 Protein biomarkers 

Protein biomarkers are present to a larger extent in blood and to certain extent in urine 

[38]. The protein expression of blood or tissues is considered a potential biomarker for 

cell classification [38]. Classification of cells is done based on diagnosing the presence 

of an abnormal protein expression. The main drawback of using protein biomarkers 

for cell classification is that proteins do not replicate and hence they cannot be 

amplified for diagnostic study [36]. In addition, proteins are too sensitive to 

surrounding conditions such as temperature and pH, and this poses a difficulty in 

detecting abnormal protein patterns in lower concentrations [36]. Lopez has discussed 

the efficiency of HER-2 oncoprotein functioning as a breast cancer biomarker [39]. 

The HER-2 protein released in blood is tested to detect the presence of breast cancer. 

This process is illustrated in Figure 2.3 [1]. 

 

 

Figure 2.3. Illustration of HER-2 membrane-bound protein released into blood acting 

as a breast cancer biomarker (Adapted from [39]). 

2.2.2 Enzyme biomarkers 

A biochemical technique known as enzyme-linked immunosorbent assay (ELISA) is 
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another traditional technique used for cell classification [6]. The concept of ELISA is 

shown in the block diagram in Figure 2.4. In this technique, cells are classified by 

detecting the presence of a specific antibody or antigen in a blood or serum sample. 

Enzyme-linked immunosorbent assay is a fluorescent or colorimetric immunoassay 

technique; a visible color change occurs due to the reaction of an enzyme-linked 

antibody to a substrate. The color change indicates the presence of a particular 

antibody or antigen in the sample, indicating an infection. Rai et al. have reported 

problems and limitations in using ELISA such as impure antigens and protein A 

contamination [40]. If the concentration of infected biomarkers is low in the sample, 

then achieving distinct color change is challenging [36]. 

 

 

Figure 2.4. Illustration of ELISA technique providing a color change to indicate 

cancer (HRP is horseradish peroxidase). 

2.2.3 Deoxyribonucleic acid biomarkers  

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are molecules that exist in 

cells [41]. DNA is a double-stranded structure while RNA is single stranded. Figure 

2.5 illustrates the structure of DNA and RNA present in a cell. 
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Figure 2.5. Structure of DNA and RNA biomarkers. 

An infected or inflamed cell contains DNAs that have altered genes from those of 

normal cells [10]. An infected cell releases modified DNAs into circulation and 

detecting the presence of gene-modified DNAs serves as a means of identification of 

the presence of abnormality [42]. Thakur et al. has reported the role of DNA as a 

biomarker for cancer cell detection [8]. The results indicate that exosomes of cancer 

cells contain double-stranded DNA, which therefore acts as a potential biomarker for 

cell classification.  

2.2.4 Ribonucleic acid biomarkers 

Like DNA, RNA is a macromolecule in cells that undergoes change when the cells are 

abnormal. Several studies conducted in the past prove that RNA, particularly mRNA, 

is a capable biomarker for classifying cells [43]. Analysis of mRNAs connected with 

tumors and cancer are in currency for detecting cancer cells. Cagir et al. have examined 

the expression of mRNA in colorectal cells and have shown that it is an excellent 
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biomarker for diagnosing colorectal cancer [12]. Luparello et al. have differentiated 

two differently cloned breast cells (BC-3A and BC-61) from a parental cell (8701-BC) 

by analyzing the hsp-β gene in mRNA [11]. The results support that the hsp-β is an 

excellent biomarker for classifying the cells. 

2.2.5 Drawbacks of labeled biomarkers  

Most of the labeled techniques discussed above are invasive techniques. This causes 

damage to the cells or alters the intrinsic characteristics of the cells. In addition, these 

techniques necessitate large amounts of samples, antigens, and antibodies; require 

skilled and trained professionals to make sound decisions; and are time-consuming 

[13]. Hence, there is an urgent need for the development of label-free biomarkers that 

help in rapid and point-of-care (POC) detection and classification of cells [44].  

2.3 Label-free biomarkers for cell classification 

A new era of cell detection and classification methods was initiated with the 

development of label-free biomarkers. Label-free methods are based on 

biomechanical, bioelectrical, and bio-optical properties of cells. The salient features of 

label-free methods of classification are their non-invasiveness and their ability to retain 

the intactness of the cells during the whole process [45]. This ensures that the 

composition and inherent properties of cells remain undisturbed. Unlike labeled 

methods, label-free methods do not require secondary molecules to perform 

classification. In addition, de-embedding techniques help to remove the contributions 

of the medium and setup used, providing sample-specific measurements [46]. The 

following sections discuss some of the label-free methods used in cell type 

classification. 
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2.3.1 Biomechanical markers  

Mechanical properties exhibited by cells such as stiffness, elongation, deformability, 

and elasticity aid in analyzing the composition and state of cells. These properties 

known as biomechanical markers are reportedly used in label-free methods of cell 

classification [14, 15, 16, 17, 18].  Swaminathan et al. have discussed the variation in 

the stiffness of normal and cancerous cells [16]. The outcomes of their work prove that 

the measurement of stiffness is an efficient mechanical phenotype for quickly 

performing cell classification. Kim et al. have reported the use of a micropipette 

aspiration technique to analyze the elongation of cells [17]. The elongation of cells is 

related to Young’s modulus. The results indicate that the characterization of cells 

based on their elongation is a promising method for cell classification. Wang et al. 

have used the values of the Young’s modulus parameter recorded for different cell 

lines as a mechanical cell type indicator, enabling classification of hundreds of cells 

[21]. Gossett et al. have examined the deformability property of cells to study 

inflammation and infections in cells [15]. The results prove that deformability varies 

with the composition of cells and thus serves as an excellent biomarker for cell 

classification. Lekka in her in-depth study on characterizing normal and cancer cells 

based on biomechanical properties using atomic force microscopy (AFM), 

demonstrated that the deformability of cells is mainly attributed to the changes in the 

cells due to loss in actin filaments when they become cancerous [19]. The 

deformability is one order of magnitude larger in cancer cells than in normal cells. 

Figure 2.6 illustrates the change in the value of the Young’s modulus computed for 

normal and cancer cells from five different tissues: thyroid, breast, prostate, bladder, 

and kidney. It is evident that except for kidney tissues the cancer tissues exhibit higher 
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Young’s modulus values than their normal counterparts. 

Another mechanical biomarker under study for the classification of normal and 

cancerous cells is the response of cells to substrate stiffness [47, 48] Polyacrylamide 

(PAA) gels combined with laminin have been used as substrates. The change in the 

response of the bladder cells to the substrate stiffness has been demonstrated. The 

HT1376 cancer bladder cells and HCV29 normal bladder cells demonstrated a 

substantial change in their response to the substrate stiffness as shown in Figure 2.7 

 

 

Figure 2.6. Variation in the Young’s modulus value obtained for cells from different 

tissues (Adapted from [19]). 
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Figure 2.7. Response of normal bladder cells (HCV29) and cancerous bladder cells 

(HT1376) to the substrate stiffness. The substrate is a polyacrylamide gel with 

laminin. 

 (Adapted from source [19]). 

2.3.2 Bioelectrical markers  

The electric and dielectric properties of cells are linked to the composition and state of 

the cells. Electrical conductivity and resistivity [21], impedance [23, 24, 25, 26, 27, 

28], and capacitance [49] are some of the quantifiable electrical properties exhibited 

by cells that serve as electrical biomarkers for cell classification. Extensive work 

carried out using electrical properties of cells as biomarkers has been reported in the 

literature.  

Huang et al. have reported their success in using the conductivity of cytoplasm of cells 

and membrane capacitance as viable electrical biomarkers for the classification of cells 
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[50]. The electrical property study was done for four sub-classes of prostate tumor 

cells in a microfluidic system: untreated, stained, fixed, and fixed and stained, with 

anti-EpCAM as the stainer. The presence of unique types of proteins in the cell’s 

membrane is exposed by the variation in the values of membrane capacitance obtained 

for the subtypes of prostate cells. Figure 2.8(a) shows the difference in the scatter plot 

of capacitance of specific membrane versus conductivity of cytoplasm for not stained 

and fixed (NS&F) cells and stained and fixed (S&F) cells. The plot reveals a 

substantial difference in the specific membrane capacitance quantified as 2.16 ± 0.72 

μF/cm2 versus 1.66 ± 0.46 μF/cm2 of stained and not stained cells, respectively, with 

no difference in the cytoplasm conductivity: 0.59 ± 0.10 versus 0.59 ± 0.10 S/m. This 

shows that antigen staining does not affect the cytoplasm. Similar observations on 

capacitance of specific membrane and conductivity of cytoplasm have been recorded 

for not stained and not fixed (NS&NF) cells versus stained and not fixed (S&NF) and 

in NS&NF versus NS&F cells as shown in Figure 2.8(b) and (c). The observed changes 

are summarized in Table 2.1. 
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Figure 2.8. Difference in the scatter plot of capacitance of specific membrane versus 

conductivity of cytoplasm (a) Scatter plot showing the contribution of anti-EpCAM 

on the specific membrane capacitance of cells with no change in the cytoplasm 

region. The staining is correlated to the presence of specific membrane protein. (b) 

Significant difference in both specific membrane capacitance and cytoplasm 

conductivity illustrating the contribution of the staining agent. (c) Significant change 

only in the conductivity of cytoplasm due to the fixing process while the membrane 

conductivity remains almost of the same value for both fixed and not fixed cells. 

(Source [50]). 
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Table 2.1. Electrical properties of four sub-classes of prostate cancer cells. 

(Adapted from [50]). 
 

Cell sub-type 

Electrical property 

Membrane capacitance 

Cspecific membrane (μF/cm2) 

 

Cytoplasm conductivity 

σcytoplasm (S/m) 

NS and F 

(ncell
 = 208) 

2.16 ± 0.72 
0.59 ± 0.10  

S and F 

(ncell
 = 252) 

1.66 ± 0.46 0.59 ± 0.10 

NS&NF 

(ncell
 = 415) 

2.21± 0.49  0.77 ± 0.15 

S&NF 

(ncell
 = 417) 

1.97 ± 0.39 0.90 ± 0.13 

 

Aberg et al. have reported a non-invasive technique for classifying benign and 

malignant skin cells based on the electrical impedance measurements of cells [27]. The 

electrical impedance of five different types of cells was measured using an electrode 

system. The results indicate that electrical impedance of cells is a powerful tool for 

classifying normal and cancer skin cells. Dua et al. have proposed a similar idea of 

obtaining the electrical impedance of cells and using it as biomarker for classifying 

normal and cancer cells [28]. The obtained results were further analyzed using 

numerical techniques. The results show that 100% of the skin lesions were precisely 

classified for normal cells and 85% correctly classified in the cancerous cells. Zhao et 

al. have discussed how electrical phenotyping can be helpful in classifying tumor 

samples [51]. Membrane capacitance and cytoplasm conductivity of the two types of 

tumor samples (A549 and H1299) from three mice were measured in a microfluidic 

setup. These two intrinsic electrical parameters are independent of the size of the cells 

[52]. The results indicate that the cytoplasm conductivity and membrane capacitance 
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measured for cells of different cell lines (A549 and H1299) display substantial 

differences substantiating these two parameters as prominent electrical biomarkers that 

aid in cell classification. Al Ahmad et al. classified cells taken from lung, liver, and 

breast tissues based on the capacitance value measured. The results indicate that the 

dielectric property of normal cells is altered when it becomes cancerous; lowering the 

capacitance values of malignant cells and these findings for different cells help in their 

classification. Gao et al. in their work on distinguishing normal and cancer lung tissues, 

have suggested using electrical impedance tomography (EIT) to measure the 

impedance spectra of the tissues [26]. Two features, namely the cole-cole circle radius 

and complex modulus, were extracted from the measured impedances based on which 

cell classification is performed. The results indicate that an average of 85.4% of the 

samples are classified correctly. Zhou et al. have reported using electrical impedance 

values of embryonic stem cells of mice to describe the state of a cell [53]. The 

impedance measurements were taken for both fixed and live cells. During the fixation 

process the properties of membrane and cytoplasm of cells changed. This alteration in 

the state of the cells is exemplified in the observed results as shown in Table 2.2, 

authenticating the prowess of electrical biomarkers in classifying cells.  
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Table 2.2. Extracted parameters showing the difference in the values of specific 

membrane capacitance and cytoplasm conductivity for fixed and live cells (Adapted 

from [53]). 

 

2.3.3 Bio-optical markers 

In recent years the study of light interaction with cells has gained popularity since 

optical properties such as scattering of light, refractive index, and light absorption and 

extinction are quantifiable for cells. Since these parameters are closely connected with 

the inherent properties of the cell, they act as bio-optical markers for cell classification. 

Pentilla et al. have discussed in detail the change in the optical properties of normal 

and injured cells [29]. In their work, Ehrlich ascites tumor cells (EATCs) were 

subjected to various conditions of staining and fixation and properties such as 

scattering, absorption, and extinction of light were analyzed. The results obtained 

prove that optical properties of cells are remarkable biomarkers for cell type 

classification. Scattering of light is a medium-dependent optical property. Some media 

are lightly scattering and some are highly scattering. Mourant et al. have studied the 

scattering properties of cells for cancer diagnosis [34]. The study was conducted on 

M1 and MR1 cells. M1 cells are immortalized non-tumorigenic cells taken from 

normal rat embryos and MR1 is a derivation of M1 that is tumorigenic. The results 

tabulated in Table 2.3 reveal that the change in scattering measurements in both cells 

 Membrane-specific capacitance 

(F/m2) 

Cytoplasm conductivity 

(S/m) 

Fixed cells 0.026 ± 0.004 0.48 ± 0.05 

Live cells 0.035 ± 0.006 0.53 ± 0.03 
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is attributed to the change in the dimension of scatters in the cells, which is directly 

linked to the morphological and constituent changes in cancerous and noncancerous 

cells. M44/M11 represents the normalized backscattering of polarized light, with M44 

representing cells response for polarized light whereas M11 is measurements with no 

polarizer. Similarly, the amount of absorption of light and hence the transmission is 

dependent on the properties of the medium on which the light is impinging. Salomatina 

et al. in their work have shown that the absorption and scattering parameters 

demonstrate differences in the values measured for normal and cancer skin cells in the 

1,050 to 1,400 nm spectral range [54]. 

Table 2.3. Alterations in the scattering properties of normal and cancer cells. 

 
M1: non-tumorigenic cells; MR1: tumorigenic cells (Adapted from [34]). 

 

Al Ahmad and his group has demonstrated the efficiency of using optical biomarkers 

in cell classification [55]. Optical parameters of several types of cells such as BEAS-

2B, HeLa, HEK-293T, HCC-87, MCF 10A, THLE2, HepG2, and MDA MB231 were 

measured. The results indicate that transmittance of normal cells is lower than that of 

cancerous cells in the spectral range 640 to1010 nm. The deviation in the optical 

profiles of the different cells played the role of a biomarker for classifying the cells.  

 In exponential phase of  

cell growth  

In plateau phase of  

cell growth 

M1 MR1 M1 

 

MR1 

M44/M11 -1.053 ± 

0.014 

-0.088 ± 

0.01 

-0.065 ± 

0.01 

-0.098 ± 

0.013 

Apparent scatter 

dimension 

236 ± 10 

nm 

261 ± 8 nm 245 ± 8 nm 268 ± 10 

nm 
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Figure 2.9. Difference in the IR absorbencies of normal and cancerous gastric 

epithelial cells (a) Relative IR absorbance of normal gastric epithelial cells (mean 

absorbance of eight observations), AGS, SNU-1, and NCI-87 (mean absorbance of 

14, 7, and 5 observations, respectively). (b) t-test results of normal cells versus each 

type of cell showing the significant difference in the absorbance in the wavenumber 

around 1240, 1120, and 1080 cm-1 

 (Source: [30]). 



23 
 
 

 
 

Fujioka et al. carried out a similar work where the absorption property of cells acted 

as biomarkers [30]. The IR absorption property of three gastric cancer cell lines – AGS, 

SNU-1, and NCI-N87 – along with normal gastric cells (mucosal epithelial) were 

studied. It was found that the cells exhibit different absorptions in the spectral range 

of 1650 to 925 cm-1. The results showing the difference in the IR absorbencies of the 

four types of cells and the statistical differences in the values obtained using t-tests are 

shown in Figure 2.9(a) and (b). 

2.3.4 Remarks on label-free-based cell classification 

At the juncture of POC testing and treatment gaining popularity, time consumption is 

a major concern with labeled biomarkers. Label-free biomarkers provide an effective 

solution for the issue. The advancements in engineering and technologies provide 

methods to mine the mechanical, electrical, and optical properties of the cells and 

tissues that act as label-free biomarkers. The review of the earlier works in the field of 

label-free biomarkers demonstrates the different platforms available for improvements 

in this area. Nevertheless, when the measured electrical, optical or mechanical profile 

of different cells vary in miniscule for different cells, classifying cells based on the 

measurements alone becomes a difficult task. Developments in signal modeling 

techniques and numerical computations open new arenas for improving the accuracy 

of the results obtained via label-free markers. The following section focuses on signal 

processing techniques and statistical tools utilized in biomedical signal processing for 

optimizing cell classification.  
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 2.4 Numerical techniques for classification of cells 

With tremendous breakthroughs in diagnosis and treatment on the medical front, the 

crux lies in analyzing the data/output collected from the sophisticated instrumentation. 

The principal advantage of such analysis techniques lies in their flexibility of 

application to responses obtained from mechanical, electrical, or optical experimental 

set up. Certain features are extracted from the output response and are further assessed 

by numerical methods. Application of machine learning algorithms [56, 57, 58, 59] 

such as artificial neural networks (ANNs) [60], support vector machines (SVMs) [61, 

62], and genetic algorithms (GAs) [63, 64] in the classification of cells can be found 

in the literature. To enhance the process of classification, the signal output from the 

experimental set up is processed by various signal-processing techniques before 

feature extraction. The processing techniques are broadly classified as non-parametric 

signal analyzing methods such as discrete Fourier transform (DFT) [65], wavelet 

transform [66], and parametric modeling such as fast Padé transform [67], 

autoregressive moving average (ARMA) modeling [68, 69], autoregressive integrated 

moving average (ARIMA) [70], and Prony modeling. The following section discusses 

the various signal-processing techniques found in literature with a focus on the Prony 

signal modeling technique in Section 2.5 

2.4.1 Biomedical signal processing  

Biomedical signals provide information about the attributes and characteristics of the 

biological entities that includes cells and tissues. This section reviews the various 

signal processing techniques used in the analysis of biomedical signals.  
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2.4.2 Non-parametric models  

The non-parametric models such as DFT and wavelet transforms that were used in 

processing biomedical signals or images and that are reported in the literature do not 

assume a model. Moradi et al. have demonstrated in their work the application of DFT 

on ultrasound RF time series signal combined with a neural network for classification 

of normal and cancerous prostate tissues [65]. The results indicate a mean accuracy of 

91% in classification with 92% sensitivity and 90% specificity. In early diagnosis of 

cancer, appearance of micro-calcifications is a symptom of breast cancer. Detection 

and segmentation of micro-calcification in images for classifying breast cancer is 

reported in Strickland [66]. Wavelet transforms is the signal processing technique 

applied in the mammography for detecting micro-calcifications. The results show that 

every single micro-calcification is clearly highlighted in the output image, making 

segmentation much easier.  

2.4.3 Parametric models 

Conventionally, fast Fourier transform (FFT) was the signal processing technique used 

to analyze medical images. Since FFT is a linear transform, the noise in the measured 

data in time domain gets translated to the frequency domain, which worsens the signal-

to-noise ratio. Furthermore, FFT only provides the shape of the spectra. Extraction of 

essential parameters requires further processing. Due to these pitfalls, the conventional 

FFT is replaced with parametric modeling techniques for processing biomedical 

signals. Fast Padé transformation (FPT) is a parametric signal processing technique 

that is used to process biomedical signals. Belkic has explained in detail the drawbacks 

of using FFT and how FPT is an excellent solution for overcoming the issues with FFT 
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[67]. The in vitro magnetic resonance spectroscopy (MRS) obtained from breast cancer 

patients is processed with both FFT and FPT. The results demonstrate the efficiency 

of FPT over FFT in extracting information from the MRS signals to classify normal 

and cancerous breast tissues.  

When computer-aided diagnosis gained popularity, a new class of parametric discrete- 

signal-modeling technique called ARMA and its variant ARIMA emerged as useful 

techniques in biomedical signal processing, particularly in the classification of tissues 

and cells. The “integrated” part of the ARIMA model comes from the fact that a 

differencing operation carried out one or more times if the data shows non-stationarity. 

Zielinski et al. have applied ARMA modeling on ultrasound images of breasts to 

classify normal breast and cancer breast cells [69]. With two-dimensional (2D)-

ARMA modeling, the Zielinski et al. achieved a classification accuracy of 93.87% in 

classifying malignant and benign breast tumors. The results are tabulated in Table 2.4. 

Table 2.4. Accuracy, sensitivity, and specificity in classifying healthy, benign, and 

cancerous breast tissue using a k-mean algorithm on ARMA parameters (Adapted 

from [69]). 

Modeling method Accuracy (%) Sensitivity (%) 
 

Specificity (%) 

2D-ARMA 93.87 92.03 94.14 

1D-ARMA 78.51 59.54 
 

79.76 
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Kumar et al. have done work similar to that of Zielinski et al., but modeled the data 

obtained for breast images with the ARIMA model [70]. Kumar et al. have achieved 

classification of healthy, benign, and malignant breast tissues. 

Abdulsadda et al. have used a 2D-ARMA model in combination with a multilayer 

perception (MLP) ANN tool to classify three kind of breast tissues: normal, benign, 

and malignant [68]. The ARMA (1, 1, 1, 1) order had been used to represent the 

ultrasound images of the breast. The extracted ARMA features were processed with 

three algorithms: momentum BPA, delta-bar-delta, and Lvenberg-Macquard. The 

results shown in Table 2.5 highlight the ability of ARMA modeling to classify normal, 

benign, and tumor breast images.  

Table 2.5. Classification of 2D-ARMA features vectors (573 vectors) of normal, 

benign, and cancer breast images (Adapted from [68]). 

Modeling method 
Steady-state 

MSE 

Accuracy 

(%) 

Sensitivity 

(%) 

 

Specificity 

(%) 

Momentum BPA 0.18 83 96 94 

Delta-bar-delta 0.09 89 94 96 

Lvenberg-

Macquard 
0.065 95 98 97 

MSE: mean square error 

2.5 Relevant work using the Prony technique 

In 1795, Gaspard de Prony, a French mathematician, introduced the Prony technique 

to describe the expansion of gases [71]. Like Fourier analysis, Prony is a signal 

modeling technique, but unlike Fourier, Prony is also a parametric technique [72]. In 



28 
 
 

 
 

Fourier analysis, any signal is modeled as a sum of sine and cosine signals, meaning 

that Fourier series fit the measured signal to a set of undamped complex exponentials, 

whereas the Prony method models a signal to a sum of damped complex exponential 

signals [73]. Consequently, parameters such as amplitude, frequency, phase, and the 

damping factor of the damped exponentials are obtained via Prony modeling [74]. 

These parameters obtained from signals measured for different type of cells greatly 

assist in cell classification. 

In the Prony technique, a uniformly sampled discrete time signal is sampled by fitting 

the signal to a sum of damped exponential signals. In addition to signal analysis, the 

Prony technique is used for system identification.  For analysis purposes the measured 

signal can be in the time or frequency domain. This is because Prony analysis can be 

done for any signal that has transients. For these benefits, the Prony method has found 

wide application in diversified fields including power systems [75, 76], radar [77], 

sonar [78], and biomedical engineering [79, 80, 81, 82, 83, 84, 85]. 

2.5.1 Application of the Prony technique in power systems  

The application of Prony in modeling power systems has been reported in literature 

[75, 76]. The Prony method had been utilized for modal analysis of the response data 

obtained from a power system in the United States of America. Dynamic modeling of 

the system had been done based on the signal components extracted using Prony in 

combination with Fourier and frequency domain techniques. The results of this work 

demonstrate the success of the application of the Prony technique in modal analysis. 

In another power system application, the Prony technique had been utilized for online 

low-frequency oscillation identifications in a power system [76]. A model of a real 
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grid was generated using a simulator and the order of the model was determined using 

the Prony algorithm. The results obtained for simulated responses show that Prony is 

a better technique than FFT, which is the conventional technique used in power 

systems. 

2.5.2 Application of the Prony method in target discrimination  

The viability of the Prony technique has found its application in characterizing radar 

targets [77]. The technique is used to analyze a synthesized signal that represents the 

backscattered signals from a radar target. The poles obtained through the Prony 

method represent the natural resonant frequencies of the targets. The results show the 

efficacy of the Prony technique in identifying and distinguishing targets. The time-

consuming computations in numerical search techniques have been overcome via the 

Prony method. It has been proven that the Prony method is more efficient than the 

numerical search methods. In sound navigation and ranging, to distinguish underwater 

objects of interest from other interfering objects, the signals from these objects are 

modeled using the Prony technique [78]. The targets were detected and discriminated 

by analyzing the signals observed, both by FFT and Prony techniques. The results 

ascertain that Prony analysis has better detection capabilities than the FFT technique. 

The Prony technique retains the transients of interest, while these transients are lost in 

the FFT method of analysis. 

2.5.3 Application of Prony in biomedical signal processing 

An extensive application of the Prony technique in found in biomedical signal 

processing such as characterizing tumors [79], detecting and identifying cancers [80], 



30 
 
 

 
 

studying DNA sequences [85] , and so on. Huo et al. have reported using the Prony 

technique in tumor detection [79]. The tumor was treated as a hidden target and was 

subjected to electromagnetic pulse. Similar to detecting military targets, the tumors 

were detected by analyzing the backscattered signals from the tumors using Prony 

technique. The resonant frequencies (poles) of the backscattered signals extracted 

using the Prony technique characterize the morphological and electrical properties of 

the targets. These properties vary for normal and tumor breast tissues, and these 

variations were exemplified in the resonant frequencies as shown in Figure 2.10. The 

tumors are simulated as an ellipse with different dimensions, conductivity (σ), and 

dielectric constants (εr). As can be seen in Figure 2.10, the poles are different for 

different cases, proving that the change in the electrical properties of the tissues 

resulted in changes in pole values, namely the complex frequency of the scattered 

signal from the tissue. 
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Figure 2.10. Poles extracted via the Prony technique to characterize breast tumors (a) 

with conductivity σ = 4 S/m and differing εr and (b) with dielectric constant εr = 50 

and varying σ (Source [79]). 

 

 Li et al. have conducted a similar study on breast tumor detection where the tumor 

was simulated using the finite difference time domain (FDTD) method [80]. The time 

domain response of the simulated model of the tumor was analyzed with the Prony 

modeling method. The breast tumor was simulated using the FDTD method for 

varying dimensions and electrical properties. The extracted parameters such as 
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amplitude Am, damping factor αm, and frequency fm of the m-poles are different for 

tumors of different morphological and electrical properties. Table 2.6 shows the values 

of the extracted parameters. As can be seen, the extracted parameters are viable tools 

in classifying tissues as normal and cancerous. The results prove that Prony analysis 

is a promising method for characterizing tumors. 

Table 2.6. Extracted parameter values for tumors with different conductivity values 

(Diameter = 20 mm) (Adapted from [80]). 

 

Tumor #  Conductivity 

σ (S/m)  

Pole # αm (109 Np/s) fm (GHz) Am (relative  

magnitude) 

1 0.6 1 -2.6699 8.2807 0.0163 

2 -2.5744 6.5848 0.0559 

3 -1.6542 3.2364 0.0087 

2 1.05 1 -2.8243 8.2554 0.0163 

2 -2.7039 6.5656 0.0545 

3 -1.7881 3.2209 0.0086 

3 1.5 1 -2.8670 8.2045 0.0137 

2 -2.9507 6.5231 0.0469 

3 -1.8629 3.1777 0.0068 

 

An added advantage of using the Prony technique for signal processing lies in its 

efficiency in modeling a signal even in the presence of noise [81]. Wang et al. 

conducted experiment on three different groups of tumors simulated with varying 

conductivity values, dielectric constants, and radii. The results obtained indicate that 

even for signal-to-noise ratio (SNR) levels above 25 dB, the real and imaginary part 

of errors remain at a low level. 
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Bannis et al. have discussed the role of Prony analysis in the detection and 

identification of breast tumors [82]. The scattered electromagnetic signal from a breast 

tumor model was analyzed using the Prony method. The poles that were extracted via 

the Prony method were used to detect and identify breast tumor. The complex z-plane 

plot of the poles shows that the poles of the normal and malignant breast tumors differ 

in their locations as shown in Figure 2.11(a) and (b). 

 

Figure 2.11. Z-plane showing the difference in the location of poles extracted using 

the Prony method on a (a) normal breast and (b) malignant breast (Source [82]). 

 

In a study of the role of the chest wall in breast cancer detection, Bannis et al. modeled 

the chest wall (see Model I and Model II) and breast tumor with different dielectric 
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properties [83]. The results indicate that even in the presence of the chest wall the poles 

obtained through the Prony method for normal breast tissue are different from those of 

malignant breasts with tumors of radii 5 mm. The two different chest models are shown 

in Figure 2.12 (a) and (b) and z-plane plot of poles obtained for the models are shown 

in Figures 2.13 (a) and (b) and 2.14 (a) and (b).  

 

Figure 2.12. Models of breast with and without chest wall  

(a) Chest Model I (b) Chest Model II (Source [83]). 

 

In the medical field, discriminating coding and non-coding sections of DNA sequence 

is a promising method for disease detection. Prony technique was utilized for 

distinguishing the sequences. The work reported by Roy et al. discusses the application 

of the Prony technique in estimating the power spectral density of a DNA sequence 

and the viability of the technique for differentiating the coded and non-coded region 

of a DNA sequence [85]. The DNA sequences extracted from Celegan Cosmid 

F56F11.4A, D13156.1, and T12B5.A were utilized and their power spectrum 
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estimation had been conducted via the Prony technique. The results indicate that the 

Prony technique in distinguishing coded and non-coded sequences of DNA is superior 

to the conventional period gram methods.  

 

 

Figure 2.13. Z-plane of poles of (a) malignant breast and (b) normal breast for Chest 

Model I. (Source [83]). 

 

 

Figure 2.14. Z-plane of poles of (a) malignant breast and (b) normal breast for Chest 

Model II. (Source [83]). 
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2.6 Statistical tools in the classification of cells 

In order to enhance the accuracy in classification of cells, the electrical, mechanical, 

or the optical profiles observed for the cells are analyzed with statistical tools. This is 

typically useful when the observed profiles overlap or differ in miniscule scale, 

especially at the early stages of infection or inflammation. Statistical analysis is helpful 

in observing a trend in data; the trend makes it possible to look for the gradual changes 

in the observations made for different subjects. For instance, the parameters obtained 

through processing the output response of different kinds of cells are analyzed with 

the aid of statistical tools such as GAs and machine learning algorithms such as SVMs, 

ANNs, and so on. Utilization of such statistical tools enhances the precision and 

reliability of the classification of cells. 

The spectra obtained from Raman spectroscopy is a very promising tool for 

characterizing normal and cancerous tissues and cells from different parts of the body 

such as lungs, livers, breasts, prostates, and so on [86]. If the spectra of different tissues 

or cells obtained through this technique show subtle variation, statistical tools such as 

the GA can provide support in extracting prominent features for classifying with 

improved accuracy. Li et al. have combined the Raman spectra with the GA (with 

linear discriminant analysis) to identify significant Raman bands for classifying 

nasopharyngeal normal and cancer tissues [87]. The results demonstrate that the 

classification done with this combined technique leads to improved outcomes with 

sensitivity of 69.2% and specificity of 100% compared to the results obtained by 

applying principal component analysis (PCA) to the same dataset. In the PCA method, 

63.3% sensitivity and 94.6% specificity were obtained. Li et al. used the same 
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combination of techniques to classify normal and cancerous bladder serum and 

obtained a sensitivity of 90.9% and a specificity of 100% in classification [64]. 

Duraipandian et al. have demonstrated the application of a variation of the GA called 

genetic algorithm partial least squares discriminant analysis (GA-PLS-DA) combined 

with Raman spectra of different tissues obtained using Raman spectroscopy for 

classifying cervical normal and pre cancer tissues [63]. The algorithm was successful 

in identifying seven significant Raman bands and yielded an accuracy of 82.9% with 

72.5% sensitivity and 89.2% specificity. In a similar work on classifying cervical 

normal and cancerous tissues, the dataset obtained from optical spectroscopy was 

processed by an empirical mode decomposition (EMD) signal processing technique 

by which the measured signal is decomposed into intrinsic mode functions (IMFs) 

[61]. A machine-learning algorithm called the SVM was deployed as a classifier with 

different kernels such as linear, quadratic, polynomial, and RBF. The areas of the IMFs 

act as feature vectors for the classifier, providing a best classification accuracy of 

95.65% with 87.5% specificity and 100% sensitivity with linear kernel. Table 2.7 

shows the performance of the four different types of classifiers in classifying normal 

and cancerous cervical tissues.  
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Table 2.7. Performance of the four different types of classifiers in classifying normal 

and cancerous cervical tissues (Adapted from [61]).  

Classifier Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

SVM (linear kernel) 95.65 100 87.5 93.75 

 

SVM (quadratic kernel) 86.95 93 75 87.5 

 

SVM (polynomial kernel) 82.60 80 87.5 92.3 

 

SVM (RBF kernel) 91.30 100 75 88.23 

 

Ramasamy et al. have developed a multiclass classifier based on the SVM algorithm 

to classify 16,063 gene expressions from 218 tumor samples [62]. The results 

demonstrate an excellent classification accuracy of 78% while the accuracy obtained 

with random classification is much lower of 9%. Adetiba et al. have demonstrated the 

potency of an ANN ensemble in predicting lung cancer [60]. Using the Voss DNA 

encoding method, a genomic sequence was generated from normal and mutated 

genomes of nucleotides. Feature extraction was done via histogram of oriented 

gradient (HOG) and local binary pattern (LBP), which were used to train the 

classifiers. The results reveal a best fit of the data in this study providing an accuracy 

of 95.9%, validating the efficiency of the statistical tool in detection and prediction. 

2.7 Summary  

In summary Prony technique has proven to be powerful in the signal modeling and 

approximation. Prony parametric modeling technique provides parameters such as 
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amplitude, frequency, phase, and damping factor of the complex exponential signals 

in the model. The parameters extracted from Prony fitting are used to characterize the 

signal source as well as for system identification. These features make Prony an 

exemplary technique for signal modeling, finding its application in various fields.  
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Chapter 3: Fundamental Theory  

3.1 Introduction  

Cell identification and classification is closely linked with source characterization and 

system identification based on signal processing techniques.  In general, an appropriate 

model is fitted to measured dataset and certain parameters are extracted. The extracted 

parameters play a key role in analyzing the signals and in identification of the source. 

This chapter discusses the basic theory of two techniques used in signal modeling, 

namely Prony analysis and AR modeling, and the algorithm of those techniques. Signal 

modeling is broadly classified into two categories: non-parametric and parametric 

modeling. Fourier methods such as DFT come under non-parametric modeling, in 

which no particular model is assumed that generated the data. In contrast, parametric 

modeling such as Prony and AR modeling is based on the use of models such as a 

linear time-invariant (LTI) model for the data. The fitted model is used to extract 

parameters such as amplitude, frequency, phase, damping factor of the exponential 

signals in the fitted model and corresponding coefficients in AR models. The extracted 

set of parameters and coefficients are then used in classification process.  

 3.2 Prony – basic theory  

The concept of Prony modeling is fascinating and important in its countless 

applications in diversified fields. Prony modeling, a parametric time-series modeling 

technique, is an extension of the non-parametric Fourier methods [75]. The Fourier 

method models a discrete set of data in time domain as a sum of sines and cosines; in 

other words, it fits the data to a set of undamped exponentials [88]. In practice, fitting 

a set of data to a sum of complex exponentials is indeed fitting it to exponentially 
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decaying signals [89]. Consequently, Prony modeling fits a set of uniformly sampled 

data to a sum of damped exponentials; parameters such as amplitude, frequency, phase, 

and damping factor of the decaying complex exponentials are extracted from the Prony 

fitting.  

The essence of this technique is that it converts a non-linear approximation into linear 

by solving a linear equation set and finding solutions to the set of equations [74]. As 

such, Prony is a robust technique for extracting exponential parameters associated with 

the measured data and determining their complex poles, which are called Prony roots. 

In the classic Prony method, a uniformly spaced data sequence of N samples with N = 

2p are approximated to a sum of p complex exponential decaying functions. The p 

complex exponentials have p different amplitudes, frequencies, phases, and damping 

factors. These extracted parameters and the poles play a key role in characterizing the 

source that generated the data and in system identification. Thus, Prony is a signal 

modeling as well as system identification technique [72]. The next section details the 

algorithm of the Prony modeling technique.  

 3.3 Prony –Algorithm 

The Prony algorithm begins with fitting the observed discrete set of data to a sum of 

decaying complex exponential signals. Let y[n] be the measured response that can be 

fitted with a sum of decaying exponential signals as given in Equation 3.3.1 [90, 91]: 

y[n]= ∑ Ai e
jθi. e(αi+j2πfi)Ts(n-1)p

i = 1 ,   n= 1, 2, 3….N        (3.3.1) 

where N is the total number of data samples, Ts is the sampling period, and p is the 
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total number of decaying complex exponential signals in the response signal (same as 

the order of the model). The ith complex exponential component has amplitude Ai 

(same unit as the response signal), frequency fi in Hz, phase θi in radians, and damping 

factor αi in s-1 

Equation 3.3.1 can be written in time-dependent and time-independent terms as in 

Equation 3.3.2: 

y[n]= ∑ hi zi
n-1p

i=1                             (3.3.2) 

where the time-independent term hi is the complex amplitudes. The time-dependent 

term zi is the complex exponentials and the poles of the system. This representation 

provides a tractable way to solve linear, constant co-efficient difference equations. 

These parameters can be written as given in Equations 3.3.3 and 3.3.4:  

hi = Ai e
jθi              (3.3.3) 

and 

zi = e (αi+j2πfi)Ts             (3.3.4) 

The algorithm of Prony modeling is a three-step procedure as stated below: 

Step 1: Solve an autoregressive (linear prediction) model for the observed data. 

Step 2: Solve for the roots of the characteristic or Prony polynomial; determine 

frequency and damping factor. 

Step 3: Solve the set of linear equations for the estimation of amplitude and phase.  



43 
 
 

 
 

Systematic explanation of the Prony algorithm 

 Step 1: Solve an AR model (linear prediction) for the observed data. 

The observed data y[n] is written as a linear prediction AR model as given in Equation 

3.3.5 as  

y[n]= a1 y[n-1]+a2 y[n-2]+a3 y[n-3]….          ….ap y[n-p], n= 1,2,….N       (3.3.5) 

Writing the autoregressive model in matrix (square Toeplitz) form as below:  

[
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.
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y[N] ]
 
 
 
 
 

=
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.
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ap]
 
 
 
 
 

         (3.3.6) 

or  

 y = Y. a                                            (3.3.7) 

where y, the forward linear prediction matrix, Y, the observation vector, and a, the 

linear prediction coefficients vector, given as:  

y = 

[
 
 
 
 
 

y[p]

y[p+1]

.

.

.

y[N] ]
 
 
 
 
 

, Y = 
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 , and a = 

[
 
 
 
 
 
a1

a2

.

.

.

ap]
 
 
 
 
 

. 

Solving the linear system of equations gives the linear prediction coefficients vector a, 

which can be computed from Equation 7 as a = Y \ y in MATLAB using a backslash 

operator.  
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 Step 2: Solve for the roots of the characteristic or Prony polynomial; 

determine frequency and damping factor. 

A characteristic polynomial, also called a Prony polynomial, is formed from the vector 

of linear coefficients obtained in Step 1. The polynomial is written as follows: 

T(z) = ∏ (z - zi)
p

i = 1  = ∑ a[i]zp - ip

i = 0 ;      a [0] = 1              (3.3.8) 

Since the linear prediction coefficient vector a is known from Step 1, the characteristic 

polynomial can be readily solved for zi, which gives the poles of the system.  

In MATLAB, it is implemented using the MATLAB instruction [92] 

t = transpose ([1; a]); 

m = roots (t). 

The linear prediction vector is a column vector a; the input vector to the roots syntax 

must be a row vector. Hence, the transpose of a is computed and given as input to 

compute the roots of the polynomial formed from a.  

The damping factors αi and frequencies fi are determined as follows: 

αi= 
ln|zi|

Ts
                                     (3.3.9) 

and  
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fi= 
tan-1 [

Im(zi)

Re(zi)
]

2πTs
            (3.3.10) 

 Step 3: Solve the set of linear equations for the estimation of amplitude and 

phase.  

The roots of the system of linear equations defined in Equation 3.3.2 are determined 

based on which exponential amplitude and phase are determined. Equation 3.3.2 can 

be written in matrix form as follows: 

[
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=
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       (3.3.11) 

or  

y = z.h,                         (3.3.12) 

where  

y = 
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 and h = 
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hp]
 
 
 
 
 

.  

Solving the linear system of equations provides the values of complex amplitude 

vector h. Since the values of complex amplitudes hi and poles zi are known, the 

exponential amplitude and phase can be determined as follows: 
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Ai= |hi|                                      (3.3.13) 

θi= tan-1 [
Im(hi)

Re(hi)
]               (3.3.14) 

Thus, the parameters – amplitude, frequency, phase, and damping factor of the 

exponentials in the Prony fitting are extracted. These poles zi along with their complex 

amplitude hi and the parameters extracted aid in analyzing the signals and 

characterizing the system that generated the signals. Characterization of the system 

based on the poles is a domain-independent operation. The properties of the system 

that generated the signals can be studied based on the pole values and its distribution 

in the z-plane. The Prony algorithm for signal modeling and system characterization 

is shown in the flowchart in Figure 3.1. 

The Prony technique is a generalization of the Fourier methods, but the Prony 

technique provides a better frequency resolution than the Fourier counterpart. This is 

because the Prony technique is based on AR modeling [74]. The downside of Prony 

modeling is that the technique becomes unstable when the number of exponentials is 

high. An effective solution for this is pre-filtering the signal before Prony fitting [74]. 
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Figure 3.1. Flowchart showing the Prony algorithm. 
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 3.4 Autoregressive modeling – introduction  

The previous section discussed the fundamentals of Prony modeling and its algorithm. 

This section discusses a stochastic time series model that is commonly used in signal 

modeling, namely the AR modeling technique and its application in bioengineering 

[93]. This is one of the most well-known and frequently used univariate modeling 

methods. This model falls under the parametric modeling category and parameters 

such as AR coefficients and the poles extracted from the model are used as tools for 

characterizing the source. The basic theory and the algorithm of AR modeling are 

discussed in the following sections.  

3.4.1 AR modeling – basic theory 

The basic idea behind AR modeling is using linear regression to estimate the present 

value of the observed data as a linear combination of past observations and a random 

shock [94, 95]. Certain assumptions such as stationarity, linearity of the data series, 

and Gaussian distribution of the shocks are made for the implementation of the model. 

Here stationarity means that the roots of the characteristic equation of the AR model 

must lie outside the unit circle [96]. A data series is linear if the present value of the 

series is a linear combination of past observations. The random shock or the random 

noise is assumed as white noise following Gaussian distribution with zero mean and 

constant variance [97]. Nevertheless, most of the real-time data series are non-linear; 

linear models draw attention because they are simple to understand and easy to 

implement. The AR process is defined by a set of linear difference equations with 

constant coefficients called AR coefficients. The extracted poles from the AR 

coefficients represent the intrinsic characteristics of the cells under study; enabling 
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their classifications.  

The crux of the AR modeling technique is the efficacy of the technique for modeling 

a discrete set of data. Though the model is popularly used for estimation and prediction 

of time series, it can be readily used for analyzing any set of discrete data. Like in 

Prony modeling, the poles extracted via AR modeling technique characterize the 

source, but unlike the Prony technique, the poles obtained via the AR method can be 

further processed for system identification. The next section outlines the algorithm of 

the AR modeling technique. 

3.4.2 AR modeling – algorithm 

In AR modeling, because the present output is modeled as a linear combination of 

previous outputs, it is also called all-pole modeling since the model only has poles by 

definition [98]. The order of the model is based on the number of past outputs that are 

linearly combined to represent the present output. 

The algorithm of AR modeling is based on the following steps: 

Step 1: Construct the AR model from the measured data. 

Step 2 Compute the AR coefficients. 

Step 3: Extract poles from the AR coefficients. 

 Step 1: Construct the AR model from the measured data. 

 Let y[n] be a discrete data response. The AR model of the data of order p, AR (p) can 

be written as follows: 
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y[n] = a1y[n - 1] + a2y[n - 2] +…+ apy[n - p]+ e[n];  n = 1, 2, … N                   (3.4.1) 

where N represents the total number of data samples and ak is the AR coefficients. The 

random shock or random noise is assumed to be white Gaussian noise: WN( 0, σ2). 

The all-pole model can be represented in z domain as follows: 

A(z) = (1 + a1z-1+ a2z-2 +…+ apz-p)
-1

                            (3.4.2) 

The model thus has p unknown coefficients, unknown σ2, a total of p + 1 unknown 

parameters that characterize the model.  

 Step 2: Computation of AR coefficients  

Some efficient methods available for computing the AR coefficients are as follows 

[99, 100]: 

 Least square (LS) method,  

 Maximum likelihood method, and  

 Yule-Walker equation solved by the Levinson recursion algorithm. 

The LS method of determination of AR coefficients is discussed below. 

 Least square method:  

As the name indicates, the ordinary LS technique is used for estimation of the AR 

coefficients. This is possible since the random shock e[n] are uncorrelated with the 

past values of y (y [n - j], j = 1, 2...p). 
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The output y[n] can be written in a p-dimensional vector form as follows: 

Y[n] = (y[n] y[n - 1] … y[n – p + 1])’                                                (3.4.3) 

and the random error e[n] is written in vector form as follows: 

u[n] = ( e[n]   0 … .0)’ .                                   (3.4.4) 

The prime denotes the transpose of the matrix.  

A matrix A is defined as follows: 

A =  [

a1… ap - 1 ap

Ip - 1 0(p-1) x 1

]                                    (3.4.5) 

The AR model given in Equation 3.2.1 can now be written as follows:  

𝐘[𝐧] = 𝐀 Yn - 1 + un                                                                                       (3.4.6)  

Un are the errors, the square of which has to be minimized to obtain the LS 

estimators.  

The LS estimators for determining the AR coefficients that are in the first row of the 

A matrix are as follows: 

â= (∑ Yn-1
N
n=2 .Yn-1

' )
-1

. ∑ Yn-1
N
n=2 . Yn                                   (3.4.7) 

Here, Xt is a scalar quantity. The first element alone is considered because the 
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objective is to determine the AR coefficients that are present in the first row of the 

matrix A. After obtaining the AR coefficients, the variance σ2 is determined as 

follows: 

σ2̂= 
1

N – p - 1
 . ∑ (yn- a1̂ yn - 1-…-ap̂ yn - p)

2N
n = p + 1          (3.4.8) 

giving p + 1 unknowns determined by the LS method. 

 Step 3: Extract poles from the AR coefficients. 

After computing the p - AR coefficients, the all-pole model given in Equation 3.4.2 is 

solved to determine the poles.  

In MATLAB, the syntax arx performs the LS algorithm to construct the AR 

polynomial, solving which gives the AR coefficients [101]. The poles of the model are 

determined from the AR coefficients [99] and metrics such as percentage of prediction 

accuracy, mean square error (MSE) , and forward prediction error (FPE) [102] are 

obtained to measure the performance of the fitted model. 

 3.5 Analysis of Variance – ANOVA 

3.5.1 Introduction  

With the advent of computer-aided design (CAD), the use of statistical tools in 

analyzing the output responses obtained from an experimental setup for different 

subjects/conditions is in currency. These tools help in quantifying the significant 

differences between the measured responses by which means the most significant 

parameters are obtained [103]. In statistical terms, the conditions are called treatments. 

The statistical tools such as t-test, chi square estimator, ANOVA, and so on estimate 
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the population mean/variance or differences in the population mean/variance; the 

choice of an appropriate tool depends on the sample size. For instance, if population 

means are to be compared for a set of two, a simple t-test is used. If the sample size 

expands (> 2), sophisticated tools such as ANOVA are used to study the variance 

within and between different populations [104].  

3.5.2 Basic concepts of ANOVA 

Analysis of variance is an efficient statistical tool that helps to incorporate the effect 

of a subpopulation on the variability of total population. It can be used to measure and 

compare more than two means and determine the effects of factors. The underlying 

idea behind ANOVA is to subdivide the total variation in a dataset into two or more 

components; each component has its own source of variation. Analysis of variance 

quantifies the contributions of each source to the total variation. In other words, 

ANOVA allows us to determine the contributions of different factors to the variability 

in the total dataset. In general, a quantitative response variable is connected to one or 

more explanatory variable. In such a scenario where it is necessary to quantify the 

response variable, ANOVA is the most fitting statistical technique.  

3.5.3 Assumptions, notations, and abbreviations in ANOVA  

 Certain assumptions are made in the ANOVA technique in order to get accurate 

results from the calculations [105]. 

Assumption 1: Samples chosen are simple random samples. 

Assumption 2: Each population is normally distributed.  

Assumption 3: The variance is the same for all the populations. 
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 The following notations are used in the upcoming sections: 

m – number of populations (groups) 

ni – size of sample from population i 

Zij – jth
 response sampled from ith population 

zi̅= 
1

ni
 ∑ zij

ni
j=1  – sample mean of responses from ith

 group 

si= 
1

ni-1
 ∑ (zij

ni
j=1 - zi̅)

2 – sample standard deviation from the ith
 group 

n= ∑ ni
m
i=1  and z̅= 

1

n
∑ zijij  – total sample and mean of all responses, respectively 

(irrespective of groups) 

 Abbreviations [106]:  

SST – Sum of squares total, 

 SSG – Sum of squares between groups, and 

SSE - Sum of squares within groups 

3.5.4 Subdivision of variability into components 

Considering the populations as a single sample and not as “m” samples from each 

population, the total amount of variability is given as follows: 

SST = ∑ ∑ (zij- z̅)
2ni

j = 1
m
i = 1         

  (3.5.1) 

Eq. 3.5.1 is split into two parts: SST = SSG + SSE 

where SSG =  ∑ ni
m
i = 1  (zi̅- z̅ )

2 is the variability between group means around 𝑧̅ 
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and SSE= ∑ ∑ (zij- zi̅)
2ni

j - 1
m
i = 1  is the variability within group means.  

3.5.5 Significance of F-static  

The F-static is the ratio between the measures of the variability between treatments 

and the variability within treatments [107]. If the F-static is large, between-treatments 

variability is more than within treatments. This indicates that the means of the 

populations from which the samples are taken are different, causing the null hypothesis 

to be rejected (the means of populations is the same for all groups). The opposite of 

the null hypothesis is the alternate hypothesis. If the F value is small, variability within 

treatments is more than that of between treatments and the null hypothesis holds. A 

sample of ANOVA table ([115, 116]) is shown in Table 3.1.  

Table 3.1. Sample ANOVA table 

Source of 

Variation 

SS df MS 
F-static 

Between samples 
SSG m-1 MSG= 

SSG

m - 1
  

MSG

MSE
 

Within samples SSE n-m MSE= 
SSE

n - k
  

 

Total SST n-1 
 

df: degree of freedom; SS: sum of squares; MS: mean square. 

 3.6 Conclusion  

In conclusion, Prony is a viable technique for analyzing experimental data in discrete-

time domain. The poles extracted from the time domain data are employed for the 
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generation of transfer function and for system identification. On the other hand, if the 

measured response, irrespective of the domain, has transients then the poles and other 

parameters extracted can be utilized for characterizing the source, but for system 

identification. A technique analogous to the Prony decomposition which is used for 

frequency domain data is reported by Kumaresan [108] validates this. Similar to Prony, 

AR modeling is a parametric signal modeling method; parameters such as AR 

coefficients and the poles extracted from the coefficients play a significant role in 

signal modeling and system identification. The salient feature of the AR technique is 

its flexibility for use with any set of discrete data. Analysis of variance is an efficient 

statistical tool that gives the significant coefficient, thereby reducing redundancy and 

simplifying the generated model. Thus, numerical methods applied to biological 

signals are promising techniques for cell sorting. 
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Chapter 4: Experimental Setup 

 

 4.1 Introduction 

Classification of cells based on label-free-based optical biomarkers combined with 

numerical techniques is the objective of this work. To demonstrate the effectiveness 

of the optical techniques combined with numerical methods such as Prony and AR 

modeling in classification of cells, normal and cancerous cells from two different cell 

lines were utilized. The cells used in the work were obtained according to the norms 

of the American Tissue Culture Collection (ATCC), Manassas, VA, USA and were 

cultured in specific media. The details of different types of cells used in the proposed 

method to demonstrate cell classification and their specific culture media are discussed 

in the following sections. 

 4.2 Cells used in the present work 

The cell lines used in this study were taken from human lung and liver tissues. The 

cells from each cell line were in turn normal and cancerous. Thus, cells from the four 

different cell lines used in the experiment were normal lung cells (BEAS 2B), cancer 

lung cells (CC-827), normal liver cells (THLE2), and cancer liver cells (HEPG2). To 

show the effectiveness of the proposed method for other cell types, two more cell lines 

were included: normal kidney cells (293T) and cancer cervical cells (HeLa). Thus, a 

total count of six cell types is used for classification by the proposed method. 

4.3 Cell preparation 

All the cells used in the experimental work were procured from ATCC. They are 
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cultured and trypsinized in accordance with the recommendations framed by ATCC. 

Trypsinization is the process of cell detachment using a proteolytic enzyme called 

trypsin [109]. The addition of trypsin digests the proteins to detach the cells from the 

vessel in which the cells are cultured and are passed through a new container. At the 

end of trypsinization, the cells are in their suspension. 

4.4 Cell suspension for culturing the cells 

The suspensions used for cell culturing can be homogenous or non-homogenous. In 

homogenous suspension, the suspension contains cells of a single type, whereas a non-

homogenous suspension has cells from different cell lines. The suspensions used in 

this work were homogenous as they contained cells of single cell lines. The 

homogeneity of the suspension was crosschecked with a confocal fluorescence 

microscope. The number of cells in a suspension is also counted using the microscope. 

With this hemocytometer, the cell population was adjusted to be 107 cells per mL for 

each type of cell with a mean error of 5%.  

The in vitro nourishment requirement of cells for their survival and proliferation differs 

for different types of cells. Indeed, the nutrition needs for normal and cancer cells from 

the same cell line are different [110, 111]. The following section elaborates the culture 

medium for the six type of cells used in this study. A humidified air ambience with 5% 

carbon dioxide (CO2) at 37°C was maintained for all the cells.  

(a) BEAS 2B – normal lung cells 

As per the ATCC guidelines, the culture plates on which the cells were cultured were 
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pre-coated with a pre-coating mixture. The mixture used for BEAS 2B cells contains 

fibronectin (0.01 mg/mL), bovine collagen (0.03 mg/mL) and bovine serum albumin 

(0.01 mg/mL) diluted in bronchial epithelial basal medium (BEBM). The reagents 

used in the work were procured from Sigma-Aldrich. The BEGM bullet kit (Lonza ™ 

Clonetics ™) that includes the essential additives (gentamycin/amphotericin was 

discarded) for primary culture was used for BEAS 2B cells. Supplements such as 

penicillin (100 units/mL) and streptomycin (100 mg/mL) were added to the medium. 

For trypsinization, an EDTA solution (0.53 mM) with 0.5% polyvinylpyrrolidone 

(PVP) was used.  

(b) CC-827 – lung cancer cells 

The ATCC-recommended medium suitable for culturing CC-827 lung cancer cells is 

the Roswell Park Memorial Institute (RPMI) 1640 medium. The RPMI-1640 is a 

product of Hyclone™, US. The medium is suitable for culturing a variety of 

mammalian leukemic cells. The medium had a 10% heat-inactivated fetal bovine 

serum (FBS) supplement as base. The trypsinization of the cells was done with 0.25% 

trypsin (a 0.53 mM EDTA solution). 

(c) THLE2 – normal liver cells 

A mixture consisting of 2.9 mg/mL of collagen I, 1 mg/mL of fibronectin, and 1 

mg/mL of bovine serum albumin in BEBM was used as a pre-coating mixture coated 

on the culturing plates. The reagents were procured from Sigma-Aldrich. Discarding 

the gentamycin/amphotericin and epinephrine, the Lonza ™ Clonetics ™ BEGM bullet 

kit with a base of epidermal growth factor (EGF) (5 ng/mL), phosphoethanolamine (70 



60 
 
 

 
 

ng/mL), and other additives in the kit were used as growth medium for the THLE2 

cells. The supplements for the media were heat-inactivated FBS (Hyclone™, US – 

10%) and penicillin-streptomycin (Gibco – 1%). Trypsinization was carried out with 

0.5% trypsin (0.53 mM EDTA solution).  

(d) HEPG2 – liver cancer cells 

The HEPG2 cancer cells from liver tissue were grown in Dulbecco’s modified Eagle’s 

medium (DMEM – Hyclone ™) in culture plates. Ten percent of FBS (Hyclone™, US) 

and 1% of penicillin-streptomycin (Gibco) were supplements for the medium. As per 

ATCC guidelines, trypsinization for these cells was done using 0.5% trypsin (0.53 mM 

EDTA solution).  

(e) 293T – normal kidney cells 

These normal cells from kidney tissue were cultured in DMEM (Hyclone™) base. The 

medium was supplemented with 10% FBS and antibiotics like penicillin-streptomycin 

and gentamicin.  

(f) HeLa – cervical cancer cells 

According to the ATCC standard, the HeLa cells were cultured in DMEM (Hyclone™) 

with 7% fetal calf serum (FCS) and the antibiotics PenStrep and gentamicin as 

supplements. 
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 4.5 Experimental setup  

4.5.1 Optical setup 

Optical properties such as absorption and transmittance of light by the cells act as 

label-free optical biomarkers for classification of cells [55]. These optical profiles of 

the six types of cells discussed above were measured using an optical experimental set 

up as shown in Figure 4.1. 

 

Figure 4.1. Optical setup for measuring the optical profile of cells (a) Xenon light 

source (b) convex lens holder (c) sample holder (d) Optical sensor (C11708MA - Mini 

spectrometer with sensor board - C113451-02) (e) Evaluation board (C113451-01) for 

interfacing (f) laptop equipped with HMS evaluation software for data acquisition 

(source [54]). 

 

The major components of the setup are as follows: 

(a) Xenon light source 

(b) Optical sensor 
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(c) Interfacing board  

(d) Data acquisition system (personal computer) 

The details and description of the components of the setup are outlined below. 

(a) Xenon light source 

Spectrometers can sense light from two types of sources, namely optical fiber and 

monochromatic source. An example of a monochromatic light source is a xenon lamp. 

Monochromatic sources were preferred over optical fiber sources due to their 

simplicity and the suitability of the specifications for the experimental requirements. 

The xenon light source (450–1,000 W research arc lamp) from Newport used in the 

experiment has the specifications listed in Table 4.1 [112]. The advantages of 

monochromatic light sources are that they have long lifespans and are capable of 

producing a wide range of light from ultraviolet (UV) to near-infrared (NIR) with 

ripples kept at a minimum. 

Table 4.1. Specifications of the xenon light source 

 

 

 

 

Parameter Range 

Current (18.0–20.0) A 

Output voltage 4.2 V 

Power (450–501) W 
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(b) Optical sensor – mini-spectrometer  

The C11708MA mini-spectrometers (optical sensors) [113] with a sensor board 

C113451-02 used in this work is from Hamamatsu, Japan. The optical sensor forms 

the heart of the experimental setup. It is very important to have a compatibility between 

the wavelength of the light source and that of the sensor. The spectrum of wavelength 

utilized for the present work is in the range of 640–1,010 nm. The sensor senses the 

light impinging on it and produces an electrical output signal in accordance with the 

intensity of the light. The sensor acts as an analog-to-digital (A/D) convertor, and the 

signal output from the sensor is an A/D count. The specifications of the C11708MA 

mini-spectrometers used in this study are listed in Table 4.2. 

Table 4.2. Specifications of the mini-spectrometer (optical sensor) 

 

 

 

 

(c) Interfacing evaluation board  

The data from the mini-spectrometer was transferred to a personal computer (PC) via 

an evaluation board. The evaluation board used in the work was the C113451-01, 

which interfaces to the PC through a C113451-02 sensor board (Hamamatsu, Japan). 

Feature Specification 

Thumb size 27.6 x 16.8 x 13 mm 

Weight 9 g 

Spectral response range  640–1,010 nm 

Spectral resolution 20 m 
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(d) Data acquisition system (PC) 

The data acquired from the mini spectrometer was processed in a PC with an analyzer 

software called HMS evaluation software installed. The software converted the A/D 

count from the sensor to a corresponding light level.  

4.5.2 Design of the experiment  

This section elaborates on the measurement of the optical biomarkers such as 

absorption and transmittance properties of the six cells used in the present work. Each 

cell sample in its suspension in a cuvette was placed in the sample holder and the 

holder was positioned beneath a lens holder. The convex lens focused the light from 

the xenon lamp to pass through the sample. The mini-spectrometer fixed below the 

sample received the light transmitted through the sample, translated the light beam to 

an electrical signal, and output an A/D count. The evaluation board with the sensor 

board acted as an interface for the mini-spectrometer and the PC. The A/D count output 

was transferred to the PC with the evaluation software. The software processed the 

count and converted the count to a light level.  
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Chapter 5: Classifications based on Prony models  

 

Label-free methods neither cause cell damage nor contribute to any change in cell 

composition and intrinsic characteristics. Indeed, there is much interest in the scientific 

community to learn more from existing methods and to develop new label-free based 

methods for detection and classification of cells. Cell classification using optical 

measurements has been frequently utilized. When cells interact with light, due to 

differences in the composition of different types of cells, changes in the optical 

absorption and transmission response result. This work combined the advancement in 

optical measurements and Prony techniques to enhance the classification of cells based 

on their measured optical profiles. In this work, six types of cells, HeLa, 293T, lung- 

cancer and normal, and liver- cancer and normal, were suspended in their 

corresponding medium and their transmission characteristics were assessed. After 

media de-embedding, the transmission profiles were fitted with a sum of exponentially 

decaying signals using the Prony algorithm. After that, the optical response of each 

cell was modeled with a set of extracted parameters: amplitude, frequency, phase, and 

damping factor. The four parameters extracted via the Prony method are related to the 

coefficients and locations of the poles for each fitted model. A figure of merit (FOM) 

has been introduced, whose distribution in the complex z-plane plays a major role in 

the classification of cell type. The changes in the values of FOM are due to the changes 

in cell composition and intrinsic characteristics of different cells. 

 5.1 Results and Discussion 

Six types of cells were utilized in this study. These cells were utilized to carry out the 

proposed current approach in terms of detection capabilities. Normal and cancer cells 
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of lung and liver were used to demonstrate cell identification using the current 

approach. Using a hemocytometer, the cell concentration in each suspension was 

adjusted to 107 cells per mL with 5% mean error. After that, each type of cell 

suspension was loaded in the experimental setup and the optical transmittance of the 

cells was measured over the wavelength of 640-1050 nm with a wavelength 

reproducibility between -0.5 to 0.5 nm and maximum of 20 nm FWHM spectra, under 

constant light conditions. The de-embedding of the medium and holder contributions 

are then performed by subtracting the suspension responses directly from the filled 

control medial response. 

Figure 5.1 shows the signal intensities varying with wavelength. As the measured 

signal exhibits transient behavior, a wavelength modified Prony algorithm can be 

applied. Figures 5.1(a) and (b) depict the measured optical responses superimposed 

with the Prony estimated signal for the HeLa and 293T cell lines, respectively. The 

least number of exponentials that gives the best fitted model is considered the optimum 

order of the model. The optimum order (p) was found to be 40, which is the minimum 

required order that provides the excellent fitting. A higher order (higher p values) will 

result in redundancy and require further processing resources. The responses were 

collected using the experimental setup reported in [55]. It is recommended to apply the 

same order to both the 293T and HeLa cell suspensions for fair comparison. 

Parameters such as amplitude, frequency, phase and damping factor of the 

exponentials are extracted from the fitted response of each type of cell. Further 

information about the parameter estimation for exponential sums approximated by the 

Prony method has been detailed by Yan et al. in [114]. Furthermore, a description of 

the extractions of the corresponding transient parameters, such as the order of the 
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signal model, the data window length, sampling interval and parameters such as the 

attenuation factor has been explicitly described in [91].  

 

 

Figure 5.1. Measured optical transmittance response of (a) HeLa cells, (b) 293T 

fitted with Prony estimations.  

The measured transmittance is sampled at a uniform sampling interval of Ts = 2.3 

nm. This results in a number of samples of N = 256. 
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Figure 5.2. Extracted parameters versus number of exponentials in the fitted model 

for 293T cell line: (a) amplitude (b) damping factor (c) frequency and (d) phase. 

 

 Figures 5.2(a), (b), (c) and (d) show the plots of amplitude, damping factor, frequency 

and phase, respectively, obtained for 293T with a fitting order of 40. The measured 

data were smoothed using the Savitzky–Golay method [115]. This has been used here 

to increase the data precision without distorting the signal tendency. The extracted 

parameters are further processed to extract the corresponding coefficients and pole 

locations. The coefficients and locations of poles were computed using (3.3.3) and 

(3.3.4). The extracted coefficients and location of poles for the HeLa and 293T cell 

suspension are illustrated in Figure 5.2(a) and (b), respectively.  
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Rodríguez et al. have conducted a review of Prony’s method regarding the signal 

approximation using MATLAB code and have implemented the classical methods to 

test both performance and Prony approximation [74].  The complete theoretical bases 

of Prony’s method and their piece-by-piece implementation in MATLAB have been 

presented. Rodríguez’s algorithms and codes are adopted in this work. As illustrated 

in Figure 5.3(a) and (b), the extracted poles are located within the unit circle of the z-

plane. The y-axis represents the imaginary part and the x-axis represents the real part. 

The coefficients of HeLa are focused around the origin point when compared to 293T 

in the z-plane. The distribution of the coefficients and poles locations is not helpful to 

be used for cell identification. Therefore, a figure of merit (FOM) is introduced for 

better identification accuracy. The FOM is defined as follows: 

FOM (p)= C(p) / L(p)                                                                                                      (5.1.1) 

where L(p) and C(p) represent the location and coefficients of the poles, respectively. 

The computed FOM is then normalized for each type of cell with its corresponding 

maximum value. Although the Prony algorithm was developed for modeling signals 

in the time domain, it can be applied for responses obtained in frequency domains as 

well [108]. In his paper, Kumaresan has extracted the poles directly from the frequency 

response using a technique that is analogous to Prony [108].  
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Figure 5.3. Z-plane plot (unit circle) showing coefficients (in blue) and locations of 

poles (in red) for (a) HeLa and (b) 293T cell suspensions. 

 

 

Figure 5.4. Extracted figure of merit (FOM) for 293T (in blue) and HeLa (in red). 
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Figure 5.4 shows the extracted FOM for HeLa and 293T cells. The FOM distribution 

for the HeLa is very close to the center of the unit circle. Significant differences in cell 

composition for normal and cancer cells have been reported. Their interaction with 

light will cause a change in the optical absorption and transmission response. Due to 

differences in the composition of the different type of cells, the light interaction with 

the cells causes an alteration in their absorption and transmission responses. The 

modifications of the optical responses from normal to cancer were explained mainly 

by morphological changes, modification of its physiological and biochemical 

properties that affect the refractive index and allow them to be differentiated from each 

other. The pole locations and coefficients will be affected accordingly. Empirically, 

the cancer cells exhibit higher transmittance intensity when compared to normal ones 

from the same tissue type.  

The FOM is inversely proportional to L(p); therefore, for corresponding high locations 

of poles, lower FOM values are obtained. On the other hand; the complex poles are 

defined as σ ± jω, where σ is the damping coefficient and ω is the resonant pulsation. 

The damping and resonant pulsation are higher in cancer cells compared to normal 

cells. Therefore, the FOM becomes smaller for cancer cells than for normal cells.   

Based on these results, it is evident that the coefficients and poles locations vary with 

composition and cell morphology. Undeniably, the main difference between normal 

and cancer cells of the same tissue is in terms of composition and morphology. Hence, 

the proposed FOM is a distinctive parameter that can be used to explore the detection 

and identification of normal and cancer cells.  This is possible when the technique is 

used only for fitting the response in the frequency domain to the sum of the damped 
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exponential and for parameter extraction. The objective here is to make inferences 

from the obtained parameters and for further processing. These frequency domain 

measurements cannot be utilized for the generation of a representative equivalent 

circuit. Hence, this work claims the validity of using the Prony technique to model a 

frequency domain signal, as the extracted parameters are used for making inferences 

for cell identification. It is worth mentioning that the focus of this work is to classify 

normal and cancerous cells for the same tissue. Therefore, the FOM for lung and liver 

normal and cancerous suspensions were extracted per the introduced procedure and 

are depicted in Figure 5.5. Figures 5.5(a) and (b) show the FOM of cell lines for lung 

normal and cancer cells, respectively. Figures 5.5(c) and (d) show the FOM of cell 

lines for liver normal and cancer cells, respectively.  

The distribution of the FOM of cancer cells is closer to the origin of z-plane when 

compared with that of the normal cells. Each plotted measurement represents the 

average of 15 measurements. The multiple measurements were conducted on different 

aliquots taken from the same sample suspension in the same region spot. The error 

bars in the subfigures of Figure 5.5 represent the average values along with maximum 

and minimum values. The bar corresponding to the x-axis represents the average in the 

FOM real part, while the endpoints represent its maximum and minimum values. The 

bar corresponding to the y-axis represents the average in the FOM imaginary part, 

while the endpoints represent its maximum and minimum values.  
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Figure 5.5. Extracted figure of merit (FOM) for normal and cancer cell lines from 

same tissue: (a) lung normal, (b) lung cancer (c) liver normal and (d) liver cancer. 

 

 

Figure 5.6. Figure of merit distributions: (a) lung normal and cancer cells, and (b) 

liver normal and cancer cells. The blue dots represent the normal cell lines and the 

red dots count for the cancer cell lines. 

 

 For further investigations, the distribution of the FOM for normal and cancer cells has 

been superimposed on each other, as depicted in Figure 5.6. Figure 5.6(a) 
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superimposes the lung normal and cancer corresponding FOMs. Figure 5.6(b) 

superimposes the FOMs for the liver normal and cancer cell lines. The majority of the 

real part of the FOMs corresponding to cancer cells have positive real part (located in 

the right hand side) of the z-plane; the majority of the real part of the FOMs 

corresponding to normal cells have negative real part (located in the left hand side) of 

the plot.  

The figure of merit (FOM) which is introduced for the first time relates the location of 

the poles (L(p)) and the coefficient of poles C(p)). Scientifically: significant 

differences in cell composition for normal and cancer cells have been reported [55]. 

Their interaction with light will cause a change in the optical absorption and 

transmission response. Due to differences in the composition of the different type of 

cells, the light interaction with the cells causes an alteration in their absorption and 

transmission responses. The modifications of the optical response from normal to 

cancer state were explained mainly by morphological changes, modification of its 

physiological and biochemical properties that affect the refractive index and allowing 

them to be differentiated from each other. The poles location and coefficients will be 

affected accordingly. Therefore, it is suggested that within the range -0.5 to +0.5 in the 

z-plane, if 85% of the FOM values have negative real part (located in the left hand 

side) then the cell lines under study is considered to be normal; else it is cancer cells. 

There is a clear discrimination strategy: by performing optical measurements on the 

different in vitro normal and cancer cell line models, the developed data processing 

procedure based on the Prony method to achieve a label-free discrimination between 

cancer and healthy cells from the same tissue type works very well.  
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5.2 Conclusion 

In summary, this work addressed the classification and discrimination between normal 

and cancer cells from the same tissues. A label-free method combining the Prony 

estimation theory and optical transmittance measurements was introduced and proven 

to be a powerful technique. The proposed approach has been examined using six types 

of different cell lines. The measured optical responses of the six types of cells have 

been reconstructed using the Prony algorithm with same fitting order of 40. Based on 

the observations, a normalized figure of merit has been introduced for identification. 

Based on this merit, the distribution of the FOMs around the center of the unit circle 

of the cancer cell lines was closer than the normal cell lines from same tissues (in the 

case of lung and liver cells). These preliminary findings can be considered the 

foundation stage for cell identification using optical measurements combined with the 

Prony estimation theory. 



76 
 
 

 
 

Chapter 6: Classification based on Autoregression models  

 

Label free based methods received huge interest in the field of bio cell 

characterizations because they do not cause any cell damage nor contribute any change 

in its compositions. This work takes a close outlook of cancerous cells discrimination 

from normal cells utilizing parametric modeling approach. Autoregressive (AR) 

modeling techniques is used to fit a measured optical transmittance of both cancer and 

normal cells profiles. Analysis of variance (ANOVA) statistical approach is 

incorporated in this work to determine the significant AR coefficients. The transmitted 

light intensity passes through the cells get affected by their intercellular compositions 

and membrane properties. In this study; four types of cells lung- cancerous and normal, 

liver- cancerous and normal cells were suspended in their corresponding medium and 

their transmission characteristics were collected and processed. The AR coefficients 

of each type of cell were analyzed with the statistical technique ANOVA, which 

provided the significant coefficients. The poles extracted from the significant 

coefficients provided an improved demarcation for normal and cancerous cells. These 

outcomes can be further utilized for cell classification using statistical tools. 

6.1 Results and Discussion  

 

The cell count in the suspension of each type of cell was conducted using a 

hemocytometer with a 5% mean error. The suspension was then loaded in the 

experimental setup and the optical profile of the cells in the suspension was recorded. 

The measured transmission profile of the benign and malignant cells of the lung and 

liver tissues are shown in Figure 6.1(a), (b), (c), and (d), respectively. 
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Figure 6.1. Measured optical transmittance response of (a) cancer liver (b) normal 

liver (c) cancerous lung and (d) normal lung cells. The measured transmittance was 

sampled at a uniform sampling interval of Ws = 2.3 nm. 

 

Table 6.1 summarizes the metrics such as prediction accuracy, MSE, and FPE of the 

fitted AR model of each type of cell for an order 6. The complexity of the model 
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increases with the order of the model. 

Table 6.1. Performance measure of a fitted AR model for the transmittance response 

of different types of cells for order 6 

 

 

 

 

The AR model coefficients of order 6 obtained for the four types of cells are shown in 

Table 6.2. As shown, the coefficients are of different values for different types of cells. 

This reflects the alteration in the composition and intrinsic properties of the different 

cell types. Moreover, the normal and cancer cells from the same tissue have different 

coefficient values, implying the variation in their composition, morphology, and 

intrinsic properties. 

Table 6.2. Set of extracted AR coefficients for different types of cells 

Type of cell Prediction 

accuracy 

MSE FPE 

Normal lung 91.61% 5.72e-08 6.00e-08 

Cancerous lung 90.75% 1.13e-07 1.18e-07 

Normal liver  93.48% 6.53e-08 6.84e-08 

Cancerous liver 99.76% 6.59e-08 6.91e-08 

AR 

coefficients 

Normal lung Cancerous 

lung 

Normal 

liver 

Cancerous 

liver 

a1 - 0.16 + 0.06 - 0.13 - 0.68 

a2 - 0.90 - 0.94 - 0.96 - 0.95 

a3 + 0.03 - 0.23 - 0.08 + 0.43 

a4 + 0.42 + 0.36 + 0.46 + 0.36 

a5 + 0.05 + 0.12 + 0.13 - 0.09 

a6 + 0.01 + 0.02 + 0.06 - 0.01 
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Table 6.3 shows the poles extracted for the normal and cancer cells of the lung and 

liver tissue used in this work. The poles can be real valued or complex conjugate pairs. 

For instance, the poles P1 and P2 of liver cancer cells are real and distinct, while their 

remaining poles (P3–P6) occur as complex conjugate pairs. All the extracted poles of 

lung (normal and cancer) cells occur as complex conjugate pairs.  

The distribution of the poles of the normal and cancer cells of the lung and liver in the 

z-plane is shown in Figure 6.2(a) and (b), respectively. The poles of the normal cells 

are illustrated with blue dots whereas the red dots represent the poles of the cancer 

cells. As shown in Figure 6.2, the poles of the different cells have different 

distributions in the z-plane. In addition, the distribution of the poles of the normal and 

cancer cells of the same tissue are also different. Any deviation from the pole values 

of the normal cells shows the presence of abnormalities. 

 

Table 6.3. Set of poles extracted for different types of cells 

Type of cell P1, P2 P3, P4 P5, P6 P1, P2 

Normal lung - 0.687 ± 0.305i - 0.05 ± 0.16i 0.820 ± 0.32i - 0.687 ± 0.305i 

 

Cancerous lung - 0.688 ± 0.309i - 0.15 ± 0.21i 0.800 ± 0.24i - 0.688 ± 0.309i 

 

Normal liver  - 0.71 ± 0.33i - 0.10 ± 0.32i 0.88 ± 0.32i - 0.71 ± 0.33i 

 

Cancerous liver -0.1 + 0i, 0.35 + 

0i 

- 0.65 ± 0.23i 0.87 ± 0.11i -0.1 + 0i, 0.35 + 

0i 
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Figure 6.2. Z-plane showing the distribution of the poles of the (a) normal (blue) and 

cancer (red) lung cells and the (b) normal (blue) and cancer (red) liver cells. 

 

The modifications of the optical response from normal to cancer state were explained 

mainly by morphological changes, modification of its physiological and biochemical 

properties that affect the refractive index and allowing them to be differentiated from 

each other. The poles location and coefficients will be affected accordingly.  

It is worth to mention that the measurements were conducted on cells suspended in 

their corresponding media. The applied optical measurements conditions did not cause 
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any harsh to the cells. The applied light did not intracellular temperature of the cells. 

The O2 is dissolved in the media which will help the cells to survive. The pH has been 

maintained; has not been affected by light. The pH has been measured before and after. 

The temperature of the suspension has been measured before and after, almost the 

same. The measurements have been conducted at room temperature. The cells are 

suspended in media that is rich with nutrient, to keep them alive. Cells have been 

subjected to light for less than 5 minutes. This is not significant time to make them die; 

mainly the cells during measurements were suspended inside the media. Cell viability 

test, the most common test using the try-band loop staining has been used to check the 

suspension before and after the optical measurements; before the light the percentage 

of living cell was above 90%, after the optical measurements; the percentage of living 

cell was above 85%.  

To reduce redundancy and arrive at a concise AR model, statistical tools such as the 

N-way ANOVA technique were applied. The ANOVA revealed the significance of the 

AR coefficients. The ANOVA technique was applied to the AR coefficients rather 

than the poles since the poles were extracted from the coefficients. The coefficient that 

gives the highest value of the mean square is the significant AR coefficient. Three 

coefficients – a1, a3, and a5 – out of the six coefficients shown in Table 6-2 were found 

to be significant. Hence the order of the AR model is reduced by one degree. This will 

reduce the complexity of the system.  The new set of reduced poles distribution in the 

Z-plane are plotted in Figure 6.3.  

The complex poles are defined as σ ± jω, where σ is the damping coefficient (real part 

of the pole) and ω is the resonant pulsation (imaginary part of the pole). The poles 



82 
 
 

 
 

damping and resonant can be used to identify the quality factor of the pole [116], as 

follow:  

Q=ω/2σ                                                                           (6.1.1) 

The pole quality (Q) can then be used to discriminate between cancer and normal cells. 

The pole quality can be considered as a figure of merit (FOM) which is introduced for 

the first time in the work. It correlates the real part with the imaginary part to develop 

a discrimination procedure. The location of the poles strongly affected by the 

differences in cell composition for normal and cancer cells. The modifications of the 

optical response from normal to cancer state were explained mainly by morphological 

changes, modification of its physiological and biochemical properties that affect the 

refractive index and allowing them to be differentiated from each other; as previously 

indicated. The poles quality factors will be affected accordingly. Empirically, the 

cancer cells exhibit higher transmittance intensity when compared to normal ones from 

the same tissue type.  
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Figure 6.3. Z-plane showing the distribution of the reduced poles of the (a) normal 

(blue) and cancer (red) lung cells and the (b) normal (blue) and cancer (red) liver cells. 

 

The corresponding computed poles quality factors for the four type of cells under study 

are shown in Figure 6.4. Figure 6.4(a) and (b) represents the distributions of Q-factor 

for lung (normal (blue), cancer (red)) and liver cells lung (normal (blue), cancer (red)), 

respectively. Figure 6.4 revealed that the magnitude of the pole quality factor for 

cancer cells the cancer cells is higher than normal.  
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Therefore, the proposed approach offers a very straight forward and clear 

discrimination strategy: by performing optical measurements on the different in vitro 

cell normal and cancer cell line models, the developed data processing procedure based 

on the AR method to achieve a label-free discrimination between cancer and healthy 

cells from the same tissue type works very well. Furthermore; the proposed approach 

can be coupled or integrated with existing techniques and methods to enhance the 

discrimination between cancer and normal cells from same tissues. The current method 

utilized statistical methods that are less expensive than machine learning based 

methods. 

 

 

 

Figure 6.4. Z-plane showing the distribution of the Q-factor of the (a) normal (blue) 

and cancer (red) lung cells and the (b) normal (blue) and cancer (red) liver cells. 
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6.2 Conclusion  

This work utilized optical techniques combined with an AR modeling method and 

statistical techniques for the classification of normal and cancer cells. The approach 

used in the present work was applied to normal and cancer cells from lung and liver 

tissues. The AR coefficients of each type of cell were analyzed with the statistical 

technique ANOVA, which provided the significant coefficients. The poles extracted 

from the significant coefficients provided an improved demarcation for normal and 

cancer cells. These preliminary outcomes can be further utilized for cell classification 

using statistical tools. 
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Chapter 7: Conclusion and Future Outlook 

 

7.1 Conclusion 

In this thesis, the downsides of labelled techniques of classification of cells such as 

invasiveness, need of skilled operators, requirement of large amount of antibodies and 

antigens are addressed by utilizing a label-free method of cell classification. The rapid 

and real time label-free based cell classification method presented in the work 

combines the advancements in optical techniques and numerical methods.  

The analysis of the measured optical profiles of different type of cells carried out using 

Prony modeling shows that the interaction of light with cells largely depend on the 

intrinsic properties and compositions of the cells.  Therefore, any alteration in the 

composition or intrinsic properties due to abnormality or disease infection is revealed 

in the difference in the different parameters such as amplitude, phase, frequency and 

damping factor extracted from the Prony modeling. In addition to these parameters, 

the location of poles and the coefficient values obtained for cells of different tissues as 

well as normal and cancerous cells of same tissue exhibited different values. The main 

contribution of this work is introduction of a figure of merit (FOM) that is determined 

from the location of poles and the coefficient values. The distribution of the FOM in 

the complex z-plane showed prominent difference for normal and cancer cells of same 

tissue and of different tissues as well.  

In addition to the Prony modeling, the measured optical profiles of the cells are 

analyzed using another numerical technique – Autoregressive (AR) modeling. The 

difference in the AR coefficient values as well as in the AR pole values extracted from 
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the coefficients substantiate the change in the properties of normal cells due to some 

abnormality and thus serving as an efficient tool for cell classification.  

The focus of the thesis is development of label-free methods for early detection of 

diseases like cancer.  During in the inception stage of diseases like cancer, the change 

in the intrinsic properties and the composition of the cells is meagre. Hence, the 

measured optical profile and the extracted parameters are in close proximity that 

results in difficulty in the classification of cells. The contribution of this work to 

overcome this is by utilizing statistical tool called Analysis of variance (ANOVA) to 

determine the significance of the AR coefficients. The AR poles extracted based on 

the reduced set of significant AR coefficients showed higher difference in their values 

for normal and cancerous cells.  

These analyses were performed on normal and cancerous cells of same tissues (lung 

and liver) and from different tissues (kidney and cervix). Preliminary results show that 

the approach adopted in this work serves as an efficient tool for classification of normal 

and cancerous cells.  

 7.2 Future outlook 

The findings of the work open wide arena for future developments in the domain of 

cell classification and early detection of diseases like cancer. The analysis conducted 

on six types of cells form the foundation stage in cell classification. As a future work, 

the analysis can be conducted on large number of cells – normal cells of different 

tissues as well as their cancerous counterpart. A look-up table can be built with the 

coefficient values and pole values of large variety of normal and cancer cells which 

can be used as a quick reference in the first stage of classification of cells.  
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The essence of Prony technique is its applicability to analyze transient signals 

irrespective of the domain of measurement. As a future work, Prony analysis can be 

conducted on transient signals measured in time domain for different types of cells and 

then the poles obtained through the modeling technique can be further utilized for 

development of transfer function followed by the synthesis of electrical equivalent 

circuits. The coefficients obtained through the modeling techniques can be further 

analyzed using other statistical tools such principal component analysis (PCA) which 

aids in the prediction of the state of cells.  

The ultimate future of the work will be in the development of portable medical devices 

for point-of-care treatment of diseases like cancer. In addition to cancer detection, the 

analysis technique discussed in the work can be applied to neuron cells to define the 

state of brain and help in taking precaution measures for stroke – prone patients.  
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Appendix 

 

Aliasing and Calibration 

The system has been equipped for anti-aliasing to restrict the bandwidth of the applied 

optical signal over the measured band of interest. Most of the used optical detectors 

possesses a finite width slot or pixels arranged in an array. Each pixel records the 

received intensity integrated over its own area. The pixels are usually separated by an 

array pitch. It is well known that coarse sampling increases the random noise errors in 

the wavelength. The full width at half maximum (FWHM) as a resolution measure is 

a very important parameter and indicates the minimum acceptable for signal/noise 

ratio in the optical detectors. In optical detector, 2 pixels per FWHM represents 

Nyquist sampling rate, which is the minimum requirement for valid measurements. 

For the optical sensor used in the work, the wavelength reproducibility measured under 

constant light input conditions ranges from -0.5 to +0.5 nm. The wavelength 

temperature dependence ranges from -0.05 to +0.05 nm per one Celsius degree. The 

reported measurements have been conducted at room temperature and under constant 

light source. 

The optical mini spectrometer system is equipped with a built-in calibration system. 

The calibration is carried out automatically using the corresponding software. The 

system performs a reference measurement which is used as baseline for the dark or 

monitor modes measurements. 
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