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Abstract 

The goal of this paper is to improve the detection performance and the false alarm 

regulation of the conventional order statistics Constant False Alarm Rate (OS-

CFAR) detectors in a non-homogeneous Gaussian environment. To this end, we 

design and study the New Sorting Weighting (NSW-) and the Modified Sorting 

Weighting (MSW-) CFAR detectors. We find closed forms of the detection (𝑃𝑑) 

and the false alarm (𝑃𝑓𝑎) probabilities for both detectors. Moreover, we identify the 

optimum pairs of weights that maximize the 𝑃𝑑 and ensure a constant 𝑃𝑓𝑎. Finally, 

we prove through Monte Carlo simulations that these detectors provide better 

detection performance and false alarm regulation than the order statistics 

conventional ones in various clutter situations with the NSW-CFAR detector being 

the best one. 

 

Keywords: New Sorting Weighting, Modified Sorting Weighting, Constant 

False Alarm Rate, Interferences, Clutter edge, Gaussian environment. 
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1. Introduction 

The automatic radar detection system has been created to detect the presence of 

targets in its surveillance space, without a human operator's intervention. This has 

been possible with the development of computers and signal-processing techniques. 

This system stores the sampled signal of the received echo in shift registers that 

correspond to the reference cells surrounding the Cell Under Test (CUT) being 

tested for a possible target. This sampling makes it possible to generate, for each 

cell, a decision characterizing the presence or absence of a target echo is 

accompanied by noise or clutter [1-3]. 

The target echo is accompanied by noise or clutter. Clutter is a term used to 

describe any object located arbitrarily in the space monitored by radar, Figure 1. It 

can generate unwanted echoes that can disrupt normal radar operations and make 

target detection very difficult. In many cases, the clutter power is much higher than 

that of the noise. The clutter can be homogeneous or non-homogeneous. The 

homogeneity describes a stationary clutter situation in the reference window. In this 

case, the CUT is in a clutter that has a uniform statistic. That is, the reference 

window samples are assumed to be from the same random variable and are therefore 

statistically Independent and Identically Distributed (IID). The non-homogeneity is 

due to the presence of a clutter edge and/or interferences in the reference window. 

In this case, the reference samples are no longer identically distributed. The clutter 

edge is a transition between two environments of different natures; which produces 

an abrupt change in the clutter power. It appears in the reference window as two 

adjacent regions; a lower-powered clutter region and a higher-powered clutter 

region. The interferences may appear in one or more reference cells as spikes. 

 

 
Figure 1 Adaptive threshold in non homogeneous environment 
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Since the unwanted echo power is unknown, detection is done by the 

comparison of the received signal to an adaptive threshold that varies depending on 

the estimated power level from the reference cells, located before (leading cells) 

and after (lagging cells) the CUT. Adaptive detection uses this estimator to maintain 

a constant false alarm probability (𝑃𝑓𝑎); these are Constant False Alarm Rate 

(CFAR) detectors [1-3]. 

All the CFAR detectors proposed in the literature each deal with a problem 

inherent to the particular conditions of use of the radar. Nevertheless, the main 

objective of each detector remains the improvement of the detection probability 

(𝑃𝑑). In this paper, we fell on some CFAR detectors operating in Gaussian clutter. 

We recall the class of mean-level CFAR detectors, the first that appears in the radar 

literature, that best suits homogeneous clutter. Subsequently, we focus on the class 

based on order statistics that best suits non-homogeneous clutter. 

In [4], Finn and Johnson have proposed the Cell-Averaging (CA-) CFAR 

detector that sums all the reference samples to estimate the local background level. 

It performs perfectly well in homogeneous clutter but in non-homogeneous clutter, 

the detection performance and the false alarm regulation are significantly affected. 

In the presence of a clutter edge, the CUT can be in the higher-powered clutter 

region. If all the reference samples are used, the local background level decreases, 

increasing the 𝑃𝑓𝑎. This is known as the capture effect. To minimize this effect, 

while maintaining an almost constant 𝑃𝑓𝑎, in [5], Hansen has proposed the Greatest-

Of (GO-) CFAR detector in which the sums of the samples in the leading and 

lagging windows are calculated, and the greatest one is used to estimate the local 

background level. However, it can be that the CUT is in the lower-powered clutter 

region. If all the reference samples are used, the local background level may 

increase, decreasing the 𝑃𝑑. This is known as the masking effect. 

In the presence of interferences and target-dense environments, it is possible 

to come across instances where targets are very close together. To improve the 

resolution of close targets and therefore improve the detection performance, Trunk 

[6] has developed the Smallest-Of (SO-) CFAR detector wherein the sums of the 

samples in the leading and lagging windows are calculated and the smallest one is 

used to estimate the local background level. This detector is less sensitive to 

detection loss than the CA-CFAR unless the number of reference cells is relatively 

large. However, its detection performance deteriorates considerably if the 

interferences are located simultaneously before and after the CUT. 

In [7, 8], Barkat et al. have designed the Weighted CA (WCA-) CFAR 

detector. In this detector, the sums of the leading and lagging samples are weighted 

and added so that it gives better detection performance than those of the modified 

CA-, GO-, and SO-CFAR detectors when a Swerling I (SW I) interference is in the 

leading window. Under this condition, they have resorted to closed forms of the 𝑃𝑑 
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and 𝑃𝑓𝑎. They have also found the optimum pair of weights that maximize the 𝑃𝑑 

while keeping the 𝑃𝑓𝑎 constant in a homogeneous case. 

To improve the robustness of mean-level detectors and guarantee CFAR 

detection in non-homogeneous environments, a class of detectors based on order 

statistics has been developed in the literature. In each detector, the reference 

samples are first classified in ascending order according to their powers. Then, the 

samples assumed to contain unwanted echoes are eliminated. The set of the 

remaining samples, assumed to be homogeneous, is then used to estimate the 

background level. 

In multiple target situations, Rohling [9] has proposed the Order Statistic 

(OS-) CFAR detector whose 𝑘𝑡ℎ greatest sample is used to estimate the local 

background level. In homogeneous clutter, the 𝑃𝑑 has shown a slight degradation. 

It is certain that in interfering clutter, it has exhibited better detection performance 

than that of the CA-CFAR detector. The fact remains that it is expensive in 

computing time and that the CA-CFAR detector transcends it in a homogeneous 

clutter. 

In [10], Elias-Fuste et al. have proposed the OSGO-CFAR and OSSO-CFAR 

detectors that require only half the processing time of the OS-CFAR detector. In 

both detectors, the samples in the leading and lagging windows are sorted in an 

ascending order separately. Then, the 𝑘𝑡ℎ greatest samples in each window are 

obtained and the greatest one is used by the OSGO-CFAR while the smallest one 

is used by the OSSO-CFAR to estimate the background level. They have shown 

that the OSGO-CFAR detector exhibits the advantages of the OS-CFAR detector 

with a negligible increase in the CFAR loss. 

In [11], Saeed et al. have proposed and implemented with FPGA the Sorting 

Weighting (SW-) CFAR detector to improve the detection performance of the               

OS-, OSGO-, and OSSO-CFAR detectors. In this detector, after sorting the samples 

of the leading and lagging windows separately in ascending order, the 𝑘𝑡ℎ greatest 

samples in each window are weighted and added to estimate the local background 

level. The pair of weights have been chosen so that a constant 𝑃𝑓𝑎 is guaranteed but 

closed forms of the 𝑃𝑑 and 𝑃𝑓𝑎 were not obtained. 

In [12], Mansouri et al. have inspired the Weighted MAXimum (WMAX-) 

CFAR detector from the OS-CFAR one. In this detector, the greatest reference 

sample is weighted and used to estimate the local background level. In homogenous 

clutter, the WMAX-CFAR detector has presented better detection performance than 

the OS-CFAR one under special conditions. They have also inspired the Greatest-

Of WMAX (GOWMAX-) CFAR detector from the GO-CFAR and WMAX-CFAR 

ones. In this detector, the greatest reference samples in the leading and lagging 

windows are weighted by different coefficients, and the greatest one is used to 

estimate the local background level. In non-homogenous clutter, Monte Carlo 

simulations and implementation on a DSP processor of the GOWMAX-CFAR 
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detector were carried out. The study has shown that whatever the conditions this 

detector performs better than the OS-CFAR one. 

In [13], Magaz et al. have proposed the Forward Automatic Order Selection 

Ordered Statistics Detector (FAOSOSD-) CFAR detector. This detector does not 

require any prior information about the number of interferences which is 

determined merely by minimizing the Information-Theoretic Criteria (ITC). The 

obtained number is exploited to determine the optimal sample order to estimate the 

local background level. This detector has shown a much better performance than 

the OS-CFAR one in severe interference situations. 

In light of the state of the art, it is clear that none of the existing detectors is 

the best and is suitable for all clutter situations. In this paper, we want to overcome 

the shortcomings of the existing detectors and improve the CFAR detection 

performance in homogeneous and non-homogeneous Gaussian environments and 

also improve the false alarm regulation by the proposition of simple and 

inexpensive detectors. To do this, we design and study the New Sorting Weighting 

(NSW-) CFAR detector and the Modified Sorting Weighting (MSW-) CFAR 

detector. We derive closed forms of the detection (𝑃𝑑) and the false alarm (𝑃𝑓𝑎) 

probabilities for both detectors. We also obtain, for each detector, the optimum pairs 

of weights that maximize the 𝑃𝑑 and guarantee a constant 𝑃𝑓𝑎. To demonstrate the 

superiority of these detectors, we compare through Monte Carlo simulations its 

performance with those of the convenable conventional order statistics ones. 

The rest of this paper is organized as follows. In Section 2, we study the 

NSW-CFAR detector. we present the statistical model, we found closed forms of 

the detection and false alarm probabilities and the optimum pairs of weights. In 

Section 3, we study the MSW-CFAR detector. We lay out the statistical model, 

closed forms of the detection and false alarm probabilities, and the optimum pairs 

of weights. In Section 4, we evaluate and compare, using Monte Carlo simulations, 

the robustness of the studied detectors and the corresponding conventional order 

statistics ones in different clutter situations along with discussions. Finally,                       

a summary of the results along with our conclusions is given in Section 5. 

 

2. New Sorting Weighting CFAR detector 

Figure 2 shows the general structure of the New Sorting Weighting (NSW-) CFAR 

detector. The received signal is first passed through a Square-Law Detector (SLD) 

to restore the signal envelope. Then, the matched filter outputs 𝑞𝑖, 𝑖 = 1, 2, … , 𝑁, 

are stored serially into a tapped delay line of length 𝑁 + 1, corresponding to the 𝑁 

reference cells surrounding the CUT. The samples in the leading and lagging 

windows are then ranked in ascending order to obtain: 
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Figure 2 Block diagram of the NSW-CFAR detector 
 

{
 

 𝑞(1) ≤ ⋯ ≤ 𝑞(𝑘) ≤ ⋯ ≤ 𝑞
(
𝑁
2
)
    𝑘 = 1,… ,

𝑁

2
         

𝑞
(
𝑁
2
+1)

≤ ⋯ ≤ 𝑞(𝑘) ≤ ⋯ ≤ 𝑞(𝑁) 𝑘 =
𝑁

2
+ 1,… ,𝑁

    ;    𝑞(𝑘) ≥ 0 (1)  

The probability density function (pdf) and the cumulative distribution 

function (cdf) of the 𝑘𝑡ℎ order statistic, 𝑞(𝑘), are defined by [14]: 

𝑓𝑄(𝑘)(𝑞) = 𝑘 (
𝑁

2
𝑘

) (1 − 𝐹𝑄(𝑞))

𝑁
2
−𝑘

(𝐹𝑄(𝑞))
𝑘−1

𝑓𝑄(𝑞) (2)  

and 

𝐹𝑄(𝑘)(𝑞) =∑(
𝑁

2
𝑖

) (1 − 𝐹𝑄(𝑞))

𝑁
2
−𝑖

(𝐹𝑄(𝑞))
𝑖

𝑁/2

𝑖=𝑘

 (3)  

where 𝑓𝑄(𝑞) and 𝐹𝑄(𝑞) are the pdf and cdf, respectively, of each random variable, 

𝑞, in the reference window before the ranking. Since the clutter has a Gaussian 

quadrature component, each random variable, 𝑞, can follow the normalized 

Exponential distribution with pdf and cdf given by: 

𝑓𝑄(𝑞) = 𝑒
−𝑞   ;    𝑞 ≥ 0 (4)  

and 

𝐹𝑄(𝑞) = 1 − 𝑒−𝑞   ;    𝑞 ≥ 0 (5)  

Substituting equations (4) and (5) into equations (2) and (3), we obtain: 

⋯ ⋯ 

𝑞0 

 

BD 

𝑃𝑓𝑎  

𝑞𝑁/2 ⋯ 𝑞1 
Received 

Signal 
SLD 𝑞2 𝑞𝑁 ⋯ 𝑞𝑁/2+1 𝑞𝑁/2+2 

-     + 

Leading window Lagging window 

𝑞(1) ≤ 𝑞(2) ≤ ⋯ ≤ 𝑞(𝑁/2) 𝑞(𝑁/2+1) ≤ 𝑞(𝑁/2+2) ≤ ⋯ ≤ 𝑞(𝑁) 

(𝛼, β) 
𝛽 

𝑞(𝑘1) 𝑞(𝑘2) 

 
𝑋 𝑌 

𝑇ℎ𝑁𝑆𝑊  

𝛼 
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𝑓𝑄(𝑘)(𝑞) = 𝑘 (
𝑁

2
𝑘

) 𝑒−𝑞
(
𝑁
2
−𝑘+1)(1 − 𝑒−𝑞)𝑘−1 (6)  

and 

𝐹𝑄(𝑘)(𝑞) =∑(
𝑁

2
𝑖

) 𝑒−𝑞
(
𝑁
2
−𝑖)(1 − 𝑒−𝑞)𝑖

𝑁/2

𝑖=𝑘

 (7)  

The sample (𝑞0) in the CUT, located in the middle of the reference window 

and assumed to be independent of the 𝑁 reference samples, is finally compared to 

the detection threshold (𝑇ℎ𝑁𝑆𝑊) to make a Binary Decision (BD) about the 

presence, 𝐻1 Hypothesis, or the absence, 𝐻0 Hypothesis, of a target in the CUT 

based on the following statistical test: 

𝑞0

𝐻1
>
≤
𝐻0

𝑇ℎ𝑁𝑆𝑊 (8)  

The target in the CUT is of SW I type and has a Gaussian quadrature 

component. Then, the normalized conditional Exponential pdf of the random 

variable 𝑞0 is given by: 

𝑓𝑄0|𝐻𝑖(𝑞0|𝐻𝑖) = {

𝑒−𝑞0                 𝐻0
1

1 + 𝑆
𝑒−

𝑞0
1+𝑆 𝐻1

      ;     𝑞0 ≥ 0 (9)  

where 𝑆 means the Signal-to-Noise Ratio (SNR). The adaptive detection threshold 

(𝑇ℎ𝑁𝑆𝑊) is given by: 

𝑇ℎ𝑁𝑆𝑊 = 𝛼𝑞(𝑘1) + 𝛽𝑞(𝑘2) (10)  

where (𝛼, 𝛽) is the pair of weights that guarantee a constant 𝑃𝑓𝑎 in a homogeneous 

clutter, i.e., the CFAR property is guaranteed for any values of the distribution 

parameters. On the other hand, 𝑞(𝑘1) and 𝑞(𝑘2) are the 𝑘1
𝑡ℎ and 𝑘2

𝑡ℎ greatest samples 

in the leading and lagging windows, respectively. 

The pdf of the adaptive detection threshold, denoted by 𝑄, is done by (see 

Appendix A for details): 

𝑓𝑄(𝑞) =
𝑘1𝑘2
|𝛼||𝛽|

(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

)∫𝑒
−
𝑦
𝛽
(
𝑁
2
−𝑘2+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘2−1

𝑒
−
𝑞−𝑦
𝛼

(
𝑁
2
−𝑘1+1) (1 − 𝑒−

𝑞−𝑦
𝛼 )

𝑘1−1

𝑑𝑦

𝑞

0

 (11) 

This equation has a solution based on the hypergeometric function, but this 

form does not lead to a closed form of the detection probability (𝑃𝑑) defined by: 

𝑃𝑑 = ∫ [∫ 𝑓𝑄0|𝐻1(𝑞0|𝐻1) 𝑑𝑞0

∞

𝑞

] 𝑓𝑄(𝑞) 𝑑𝑞

∞

0

 (12)  

The false alarm probability (𝑃𝑓𝑎) can be obtained from the equation (12) by 

setting 𝑆 = 0. Thus, it is defined by: 
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𝑃𝑓𝑎 = ∫ [∫ 𝑓𝑄0|𝐻0(𝑞0|𝐻0) 𝑑𝑞0

∞

𝑞

] 𝑓𝑄(𝑞) 𝑑𝑞

∞

0

 (13) 

The closed form of the 𝑃𝑑 is given by (see Appendix B for details): 

𝑃𝑑 = (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

)
Γ(𝑘1 + 1) Γ(𝑘2 + 1) Γ (

𝑁
2
− 𝑘1 + 1 +

𝛼
1 + 𝑆

) Γ (
𝑁
2
− 𝑘2 + 1 +

𝛽
1 + 𝑆

)

Γ (
𝑁
2
+ 1 +

𝛼
1 + 𝑆

) Γ (
𝑁
2
+ 1 +

𝛽
1 + 𝑆

)
 (14) 

The closed form of the 𝑃𝑓𝑎 can be deduced directly from equation (14) by 

setting 𝑆 = 0. It is given by: 

𝑃𝑓𝑎 = (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

)
Γ(𝑘1 + 1) Γ(𝑘2 + 1) Γ (

𝑁
2
− 𝑘1 + 1 + 𝛼)Γ (

𝑁
2
− 𝑘2 + 1 + 𝛽)

Γ (
𝑁
2
+ 1 + 𝛼)Γ (

𝑁
2
+ 1 + 𝛽)

 (15) 

The clutter power does not appear in the expression of the 𝑃𝑓𝑎 given by 

equation (15). This means that instantaneous changes in the environmental 

conditions do not influence the desired 𝑃𝑓𝑎 value. Thus, this detector has the CFAR 

property. Note that, in the case where 𝑘1 = 𝑘2 = 𝑘, the 𝑃𝑑 and 𝑃𝑓𝑎 become: 

𝑃𝑑 =
Γ2 (

𝑁
2
+ 1) Γ (

𝑁
2
− 𝑘 + 1 +

𝛼
1 + 𝑆

) Γ (
𝑁
2
− 𝑘 + 1 +

𝛽
1 + 𝑆

)

Γ2 (
𝑁
2
− 𝑘 + 1)Γ (

𝑁
2
+ 1 +

𝛼
1 + 𝑆

) Γ (
𝑁
2
+ 1 +

𝛽
1 + 𝑆

)
 (16) 

and 

𝑃𝑓𝑎 =
Γ2 (

𝑁
2
+ 1) Γ (

𝑁
2
− 𝑘 + 1 + 𝛼)Γ (

𝑁
2
− 𝑘 + 1 + 𝛽)

Γ2 (
𝑁
2
− 𝑘 + 1) Γ (

𝑁
2
+ 1 + 𝛼)Γ (

𝑁
2
+ 1 + 𝛽)

 (17) 

Now, we aim to obtain the optimum pair of weights (𝛼, 𝛽) to obtain the 

maximum 𝑃𝑑 while keeping the 𝑃𝑓𝑎 to be constant in homogeneous case. This can 

be done by the use of the objective function defined by [7]: 

𝐽(𝛼, 𝛽) = 𝑃𝑑(𝛼, 𝛽) + 𝜉[𝑃𝑓𝑎(𝛼, 𝛽) − 𝜈] (18) 

where 𝜈 is the desired 𝑃𝑓𝑎 value and 𝜉 is the Lagrange multiplier. Substituting 

equations (16) and (17) into (18), we find: 

𝐽(𝛼, 𝛽) =

[
 
 
 
 
 
 
 Γ

2 (
𝑁
2
+ 1) Γ (

𝑁
2
− 𝑘 + 1 +

𝛼
1 + 𝑆

)Γ (
𝑁
2
− 𝑘 + 1 +

𝛽
1 + 𝑆

)

Γ2 (
𝑁
2
− 𝑘 + 1) Γ (

𝑁
2
+ 1 +

𝛼
1 + 𝑆

)Γ (
𝑁
2
+ 1 +

𝛽
1 + 𝑆

)

+𝜉
Γ2 (

𝑁
2
+ 1) Γ (

𝑁
2
− 𝑘 + 1 + 𝛼)Γ (

𝑁
2
− 𝑘 + 1 + 𝛽)

Γ2 (
𝑁
2
− 𝑘 + 1) Γ (

𝑁
2
+ 1 + 𝛼)Γ (

𝑁
2
+ 1 + 𝛽)

− 𝜉𝜈

]
 
 
 
 
 
 
 

 (19) 

Now, we take the derivatives of the equation (19) concerning 𝛼 and 𝛽 and we 

set them equal to zero. We obtain, respectively: 

8

Emirates Journal for Engineering Research, Vol. 28 [2023], Iss. 3, Art. 2

https://scholarworks.uaeu.ac.ae/ejer/vol28/iss3/2



𝜕𝐽(𝛼, 𝛽)

𝜕𝛼
=

Γ2 (
𝑁
2
+ 1)

Γ2 (
𝑁
2
− 𝑘 + 1)

{
 
 
 
 
 

 
 
 
 
 Γ (

𝑁
2
− 𝑘 + 1 +

𝛼
1 + 𝑆

)Γ (
𝑁
2
− 𝑘 + 1 +

𝛽
1 + 𝑆

)

(1 + 𝑆)Γ (
𝑁
2
+ 1 +

𝛼
1 + 𝑆

)Γ (
𝑁
2
+ 1 +

𝛽
1 + 𝑆

)

× [ψ(0) (
𝑁

2
− 𝑘 + 1 +

𝛼

1 + 𝑆
) − ψ(0) (

𝑁

2
+ 1 +

𝛼

1 + 𝑆
)]

+𝜉
Γ (
𝑁
2
− 𝑘 + 1 + 𝛼)Γ (

𝑁
2
− 𝑘 + 1 + 𝛽)

Γ (
𝑁
2
+ 1 + 𝛼)Γ (

𝑁
2
+ 1 + 𝛽)

× [ψ(0) (
𝑁

2
− 𝑘 + 1 + 𝛼) − ψ(0) (

𝑁

2
+ 1 + 𝛼)] }

 
 
 
 
 

 
 
 
 
 

= 0 (20) 

and 

𝜕𝐽(𝛼, 𝛽)

𝜕𝛽
=

Γ2 (
𝑁
2
+ 1)

Γ2 (
𝑁
2
− 𝑘 + 1)

{
 
 
 
 
 

 
 
 
 
 Γ (

𝑁
2
− 𝑘 + 1 +

𝛼
1 + 𝑆

)Γ (
𝑁
2
− 𝑘 + 1 +

𝛽
1 + 𝑆

)

(1 + 𝑆)Γ (
𝑁
2
+ 1 +

𝛼
1 + 𝑆

)Γ (
𝑁
2
+ 1 +

𝛽
1 + 𝑆

)

× [ψ(0) (
𝑁

2
− 𝑘 + 1 +

𝛽

1 + 𝑆
) − ψ(0) (

𝑁

2
+ 1 +

𝛽

1 + 𝑆
)]

+𝜉
Γ (
𝑁
2
− 𝑘 + 1 + 𝛼)Γ (

𝑁
2
− 𝑘 + 1 + 𝛽)

Γ (
𝑁
2
+ 1 + 𝛼)Γ (

𝑁
2
+ 1 + 𝛽)

× [ψ(0) (
𝑁

2
− 𝑘 + 1 + 𝛽) − ψ(0) (

𝑁

2
+ 1 + 𝛽)]

}
 
 
 
 
 

 
 
 
 
 

= 0 (21) 

where ψ(0)(∙) is the Digamma function defined by: 

ψ(0)(𝑥) =
Γ′(𝑥)

Γ(𝑥)
= −𝛾 −

1

𝑥
−∑(

1

𝑥 + 𝑛
−
1

𝑛
)

∞

𝑛=1

 (22) 

with 𝛾 is the Euler-Mascheroni constant. Now, we must get 𝜉 from equation (20) 

and substitute it into equation (21). We find directedly that in homogeneous case, 

the optimum pair of weights is 𝛼 = 𝛽. Note that, in non-homogeneous case, if 𝛼 

tends to zero, there is two possibilities. If 𝑞(𝑘1) ≫ 𝑞(𝑘2), the NSW-CFAR is like the 

OSSO-CFAR. Else, it is like the OSGO-CFAR. On the other hand, if 𝛽 tends to 

zero, there is also two scenarios. If 𝑞(𝑘1) ≫ 𝑞(𝑘2), the NSW-CFAR is like the 

OSGO-CFAR. Else, it is like the OSSO-CFAR. 

 

3. Modified Sorting Weighting CFAR detector 

Figure 3 shows the general structure of the Modified Sorting Weighting (MSW-) 

CFAR detector. This detector is based on the following statistical test: 

𝑞0

𝐻1
>
≤
𝐻0

𝑇ℎ𝑀𝑆𝑊 (23) 

where 𝑇ℎ𝑀𝑆𝑊 is the adaptive detection threshold given by: 
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Figure 3 Block diagram of the MSW-CFAR detector 

 
𝑇ℎ𝑀𝑆𝑊 = 𝛼𝑞𝑂𝑆𝐺𝑂 + 𝛽𝑞𝑂𝑆𝑆𝑂 (24) 

and (𝛼, 𝛽) is the pair of weights that guarantee a constant 𝑃𝑓𝑎 in a homogeneous 

clutter. The random variables 𝑞𝑂𝑆𝐺𝑂 and 𝑞𝑂𝑆𝑆𝑂 are defined, respectively, by: 

𝑞𝑂𝑆𝐺𝑂 = max{𝑞(𝑘1), 𝑞(𝑘2)} (25) 

and 

𝑞𝑂𝑆𝑆𝑂 = min{𝑞(𝑘1), 𝑞(𝑘2)} (26) 

The pdf of the adaptive detection threshold, denoted by 𝑄, is done by (see 

Appendix C for details): 

𝑓𝑄(𝑞) =
1

|𝛼||𝛽|
{𝑘1

2 (

𝑁

2
𝑘1

)

2

 ∑ (
𝑁

2
𝑖

)∫ [
𝑒
−
𝑦
𝛽
(
𝑁
2
−𝑘1+1) (1 − 𝑒

−
𝑦
𝛽)

𝑘1−1

× 𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖
] 𝑑𝑦

𝑞

0

𝑁/2

𝑖=𝑘2

 

+𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)∫ [
𝑒
−
𝑦
𝛽
(
𝑁
2
−𝑘1+1) (1 − 𝑒

−
𝑦
𝛽)

𝑘1−1

× 𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘2+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘2−1+𝑖
] 𝑑𝑦

𝑞

0

𝑁/2

𝑖=𝑘1

 

+𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)∫ [
𝑒
−
𝑦
𝛽
(
𝑁
2
−𝑘2+1) (1 − 𝑒

−
𝑦
𝛽)

𝑘2−1

× 𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖
] 𝑑𝑦

𝑞

0

𝑁/2

𝑖=𝑘2

 

+𝑘2
2 (

𝑁

2
𝑘2

)

2

∑ (
𝑁

2
𝑖

)∫ [
𝑒
−
𝑦
𝛽
(
𝑁
2
−𝑘2+1) (1 − 𝑒

−
𝑦
𝛽)

𝑘2−1

× 𝑒−
𝑞−𝑦
𝛼
(𝑁−𝑘2+1−𝑖) (1 − 𝑒−

𝑞−𝑦
𝛼 )

𝑘2−1+𝑖
] 𝑑𝑦

𝑞

0

𝑁/2

𝑖=𝑘1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

⋯ ⋯ 

𝑞0 

 

BD 

𝑃𝑓𝑎  

𝑞𝑁/2 ⋯ 𝑞1 
Received 

Signal 
SLD 𝑞2 𝑞𝑁 ⋯ 𝑞𝑁/2+1 𝑞𝑁/2+2 

−    + 

Leading window Lagging window 

𝑞(1) ≤ 𝑞(2) ≤ ⋯ ≤ 𝑞(𝑁/2) 𝑞(𝑁/2+1) ≤ 𝑞(𝑁/2+2) ≤ ⋯ ≤ 𝑞(𝑁) 

(𝛼, 𝛽) 
𝛽 

𝑞(𝑘1)   𝑞(𝑘2) 

𝑋 𝑌 

𝑇ℎ𝑀𝑆𝑊 

𝑀𝑎𝑥൫𝑞(𝑘1), 𝑞(𝑘2)൯ 𝑀𝑖𝑛൫𝑞(𝑘1), 𝑞(𝑘2)൯ 

𝛼 
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−𝑘1
2 (

𝑁

2
𝑘1

)

2

∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)∫

[
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘1+1−𝑗) (1 − 𝑒

−
𝑦
𝛽)

𝑘1−1+𝑗

× 𝑒−
𝑞−𝑦
𝛼
(𝑁−𝑘1+1−𝑖) (1 − 𝑒−

𝑞−𝑦
𝛼 )

𝑘1−1+𝑖

]
 
 
 
𝑑𝑦

𝑞

0

𝑁/2

𝑗=𝑘2

𝑁/2

𝑖=𝑘2

 

−𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)∫

[
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘1+1−𝑗) (1 − 𝑒

−
𝑦
𝛽)

𝑘1−1+𝑗

× 𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘2+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘2−1+𝑖

]
 
 
 
𝑑𝑦

𝑞

0

𝑁/2

𝑗=𝑘2

𝑁/2

𝑖=𝑘1

 

−𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)

𝑁/2

𝑗=𝑘1

∫

[
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘2+1−𝑗) (1 − 𝑒

−
𝑦
𝛽)

𝑘2−1+𝑗

× 𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖

]
 
 
 
𝑑𝑦

𝑞

0

𝑁/2

𝑖=𝑘2

 

−𝑘2
2 (

𝑁

2
𝑘2

)

2

∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)

𝑁/2

𝑗=𝑘1

∫

[
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘2+1−𝑗) (1 − 𝑒

−
𝑦
𝛽)

𝑘2−1+𝑗

× 𝑒−
𝑞−𝑦
𝛼
(𝑁−𝑘2+1−𝑖) (1 − 𝑒−

𝑞−𝑦
𝛼 )

𝑘2−1+𝑖

]
 
 
 
𝑑𝑦

𝑞

0

𝑁/2

𝑖=𝑘1

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(27) 

Recall that in the SW-CFAR detector [11], closed forms of the 𝑃𝑑 and 𝑃𝑓𝑎 are 

not obtained and also 𝑘1 = 𝑘2 = 𝑘 which is not the case in the MSW-CFAR 

detector where the closed form of the 𝑃𝑑 is given by (see Appendix D for details): 

𝑃𝑑 = (

𝑁

2
𝑘1

)

2
𝑘1
2 Γ(𝑘1) Γ (

𝑁
2
− 𝑘1 + 1 +

𝛽
1 + 𝑆

)

Γ (
𝑁
2
+ 1 +

𝛽
1 + 𝑆

)
∑ (

𝑁

2
𝑖

)
Γ(𝑘1 + 𝑖) Γ (𝑁 − 𝑘1 + 1 − 𝑖 +

𝛼
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛼

1 + 𝑆
)

𝑁/2

𝑖=𝑘2

 

+(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

)
𝑘1𝑘2 Γ(𝑘1) Γ (

𝑁
2
− 𝑘1 + 1 +

𝛽
1 + 𝑆

)

Γ (
𝑁
2
+ 1 +

𝛽
1 + 𝑆

)
∑ (

𝑁

2
𝑖

)
Γ(𝑘2 + 𝑖) Γ (𝑁 − 𝑘2 + 1 − 𝑖 +

𝛼
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛼

1 + 𝑆
)

𝑁/2

𝑖=𝑘1

 

+(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

)
𝑘1𝑘2 Γ(𝑘2) Γ (

𝑁
2
− 𝑘2 + 1 +

𝛽
1 + 𝑆

)

Γ (
𝑁
2
+ 1 +

𝛽
1 + 𝑆

)
∑ (

𝑁

2
𝑖
)
Γ(𝑘1 + 𝑖) Γ (𝑁− 𝑘1 + 1− 𝑖 +

𝛼
1 + 𝑆

)

Γ (𝑁+ 1+
𝛼

1 + 𝑆
)

𝑁/2

𝑖=𝑘2

 

+(

𝑁

2
𝑘2

)

2
𝑘2
2 Γ(𝑘2) Γ (

𝑁
2
− 𝑘2 + 1 +

𝛽
1 + 𝑆

)

Γ (
𝑁
2
+ 1 +

𝛽
1 + 𝑆

)
∑ (

𝑁

2
𝑖

)
Γ(𝑘2 + 𝑖) Γ (𝑁 − 𝑘2 + 1 − 𝑖 +

𝛼
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛼

1 + 𝑆
)

𝑁/2

𝑖=𝑘1

 

−(

𝑁

2
𝑘1

)

2

∑ (
𝑁

2
𝑖

)
𝑘1
2 Γ(𝑘1 + 𝑖) Γ (𝑁 − 𝑘1 + 1 − 𝑖 +

𝛼
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛼

1 + 𝑆
)

𝑁/2

𝑖=𝑘2

 

× ∑ (

𝑁

2
𝑗
)
Γ(𝑘1 + 𝑗) Γ (𝑁 − 𝑘1 + 1 − 𝑗 +

𝛽
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛽

1 + 𝑆
)

𝑁/2

𝑗=𝑘2

 

−(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)
𝑘1𝑘2 Γ(𝑘2 + 𝑖) Γ (𝑁 − 𝑘2 + 1 − 𝑖 +

𝛼
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛼

1 + 𝑆
)

𝑁/2

𝑖=𝑘1

 

× ∑ (

𝑁

2
𝑗
)
Γ(𝑘1 + 𝑗) Γ (𝑁 − 𝑘1 + 1 − 𝑗 +

𝛽
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛽

1 + 𝑆
)

𝑁/2

𝑗=𝑘2
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−(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)
𝑘1𝑘2 Γ(𝑘1 + 𝑖) Γ (𝑁 − 𝑘1 + 1 − 𝑖 +

𝛼
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛼

1 + 𝑆
)

𝑁/2

𝑖=𝑘2

 

× ∑ (

𝑁

2
𝑗
)
Γ(𝑘2 + 𝑗) Γ (𝑁 − 𝑘2 + 1 − 𝑗 +

𝛽
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛽

1 + 𝑆
)

𝑁/2

𝑗=𝑘1

 

−(

𝑁

2
𝑘2

)

2

∑ (
𝑁

2
𝑖

)
𝑘2
2 Γ(𝑘2 + 𝑖) Γ (𝑁 − 𝑘2 + 1 − 𝑖 +

𝛼
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛼

1 + 𝑆
)

𝑁/2

𝑖=𝑘1

 

× ∑ (

𝑁

2
𝑗
)
Γ(𝑘2 + 𝑗) Γ (𝑁 − 𝑘2 + 1 − 𝑗 +

𝛽
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛽

1 + 𝑆
)

𝑁/2

𝑗=𝑘1

 

 

 

 

 

 

 

 

 

 

 

(28) 

The 𝑃𝑓𝑎 is deduced directly from equation (28) by setting 𝑆 = 0 by: 

𝑃𝑓𝑎 = (

𝑁

2
𝑘1

)

2
𝑘1
2 Γ(𝑘1) Γ (

𝑁
2
− 𝑘1 + 1 + 𝛽)

Γ (
𝑁
2
+ 1 + 𝛽)

∑ (
𝑁

2
𝑖

)
Γ(𝑘1 + 𝑖) Γ(𝑁 − 𝑘1 + 1 − 𝑖 + 𝛼)

Γ(𝑁 + 1 + 𝛼)

𝑁/2

𝑖=𝑘2

 

+(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

)
𝑘1𝑘2 Γ(𝑘1) Γ (

𝑁
2
− 𝑘1 + 1 + 𝛽)

Γ (
𝑁
2
+ 1 + 𝛽)

∑ (
𝑁

2
𝑖

)
Γ(𝑘2 + 𝑖) Γ(𝑁 − 𝑘2 + 1 − 𝑖 + 𝛼)

Γ(𝑁 + 1 + 𝛼)

𝑁/2

𝑖=𝑘1

 

+(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

)
𝑘1𝑘2 Γ(𝑘2) Γ (

𝑁
2
− 𝑘2 + 1 + 𝛽)

Γ (
𝑁
2
+ 1 + 𝛽)

∑ (
𝑁

2
𝑖

)
Γ(𝑘1 + 𝑖) Γ(𝑁 − 𝑘1 + 1 − 𝑖 + 𝛼)

Γ(𝑁 + 1 + 𝛼)

𝑁/2

𝑖=𝑘2

 

+(

𝑁

2
𝑘2

)

2
𝑘2
2  Γ(𝑘2) Γ (

𝑁
2
− 𝑘2 + 1 + 𝛽)

Γ (
𝑁
2
+ 1 + 𝛽)

∑ (
𝑁

2
𝑖

)
Γ(𝑘2 + 𝑖) Γ(𝑁 − 𝑘2 + 1 − 𝑖 + 𝛼)

Γ(𝑁 + 1 + 𝛼)

𝑁/2

𝑖=𝑘1

 

−(

𝑁

2
𝑘1

)

2

∑ (
𝑁

2
𝑖

)
𝑘1
2 Γ(𝑘1 + 𝑖) Γ(𝑁 − 𝑘1 + 1 − 𝑖 + 𝛼)

Γ(𝑁 + 1 + 𝛼)

𝑁/2

𝑖=𝑘2

∑ (

𝑁

2
𝑗
)
Γ(𝑘1 + 𝑗) Γ(𝑁 − 𝑘1 + 1 − 𝑗 + 𝛽)

Γ(𝑁 + 1 + 𝛽)

𝑁/2

𝑗=𝑘2

 

−(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)
𝑘1𝑘2 Γ(𝑘2 + 𝑖) Γ(𝑁 − 𝑘2 + 1 − 𝑖 + 𝛼)

Γ(𝑁 + 1 + 𝛼)

𝑁/2

𝑖=𝑘1

 

× ∑ (

𝑁

2
𝑗
)
Γ(𝑘1 + 𝑗) Γ(𝑁 − 𝑘1 + 1 − 𝑗 + 𝛽)

Γ(𝑁 + 1 + 𝛽)

𝑁/2

𝑗=𝑘2

 

−(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)
𝑘1𝑘2 Γ(𝑘1 + 𝑖) Γ(𝑁 − 𝑘1 + 1 − 𝑖 + 𝛼)

Γ(𝑁 + 1 + 𝛼)

𝑁/2

𝑖=𝑘2

 

× ∑ (

𝑁

2
𝑗
)
Γ(𝑘2 + 𝑗) Γ(𝑁 − 𝑘2 + 1 − 𝑗 + 𝛽)

Γ(𝑁 + 1 + 𝛽)

𝑁/2

𝑗=𝑘1

 

−(

𝑁

2
𝑘2

)

2

∑ (
𝑁

2
𝑖

)
𝑘2
2 Γ(𝑘2 + 𝑖) Γ(𝑁 − 𝑘2 + 1 − 𝑖 + 𝛼)

Γ(𝑁 + 1 + 𝛼)

𝑁/2

𝑖=𝑘1

∑ (

𝑁

2
𝑗
)
Γ(𝑘2 + 𝑗) Γ(𝑁 − 𝑘2 + 1 − 𝑗 + 𝛽)

Γ(𝑁 + 1 + 𝛽)

𝑁/2

𝑗=𝑘1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(29) 

In this detector as well, the clutter power does not appear in the expression of 

the 𝑃𝑓𝑎 given by equation (29). This means that the MSW- detector has the CFAR 

property. On the other hand, if we consider that 𝑘1 = 𝑘2 = 𝑘, the closed forms of 

the 𝑃𝑑 and 𝑃𝑓𝑎 become: 
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𝑃𝑑 = 4𝑘2 (
𝑁

2
𝑘

)

2

∑(
𝑁

2
𝑖

)
Γ(𝑘 + 𝑖) Γ (𝑁 − 𝑘 + 1 − 𝑖 +

𝛼
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛼

1 + 𝑆
)

𝑁/2

𝑖=𝑘

 

× [
Γ(𝑘) Γ (

𝑁
2
− 𝑘 + 1 +

𝛽
1 + 𝑆

)

Γ (
𝑁
2
+ 1 +

𝛽
1 + 𝑆

)
−∑(

𝑁

2
𝑗
)
Γ(𝑘 + 𝑗) Γ (𝑁 − 𝑘 + 1 − 𝑗 +

𝛽
1 + 𝑆

)

Γ (𝑁 + 1 +
𝛽

1 + 𝑆
)

𝑁/2

𝑗=𝑘

] 

 

 

 

(30) 

and 

𝑃𝑓𝑎 = 4𝑘2 (
𝑁

2
𝑘

)

2

∑(
𝑁

2
𝑖

)
Γ(𝑘 + 𝑖) Γ(𝑁 − 𝑘 + 1 − 𝑖 + 𝛼)

Γ(𝑁 + 1 + 𝛼)

𝑁/2

𝑖=𝑘

 

× [
Γ(𝑘) Γ (

𝑁
2
− 𝑘 + 1 + 𝛽)

 Γ (
𝑁
2
+ 1 + 𝛽)

−∑(

𝑁

2
𝑗
)
Γ(𝑘 + 𝑗) Γ(𝑁 − 𝑘 + 1 − 𝑗 + 𝛽)

Γ(𝑁 + 1 + 𝛽)

𝑁/2

𝑗=𝑘

] 

 

 

(31) 

The optimum pair of weights (𝛼, 𝛽) that maximise the 𝑃𝑑 while keeping the 

𝑃𝑓𝑎 to be constant in homogeneous case is exactly like the NSW-CFAR detector, 

i.e., 𝛼 = 𝛽. In non-homogeneous case, if 𝛽 tends to zero, the MSW-CFAR tends to 

the OSGO-CFAR. Also, if 𝛼 tends to zero, the MSW-CFAR tends to the OSSO-

CFAR. 

 

4. Simulation results and discussions 

In this section, we evaluate and compare the performance of the CFAR detectors 

studied in Sections 2 and 3 in Gaussian clutter through a series of Monte Carlo 

simulations. We focus on single-pulse detection, which corresponds to the SW I 

fluctuating model. We assume that the clutter may be homogeneous or non-

homogeneous, i.e., the presence of interferences or a clutter edge in the reference 

window. Before we proceed, let us first mention the simulation hypotheses that are 

used throughout the experiments. We assume that the size of the reference window 

is 𝑁 = 32. We want a desired false alarm probability 𝑃𝑓𝑎 = 10
−4. This means that 

the number of Monte Carlo Runs must be 𝑀𝐶𝑅 = 100/𝑃𝑓𝑎. To normalize the 

Gaussian clutter power, we assume that the position parameter (𝜇 = 0) and the scale 

parameter (𝜎 = 1/√2). We are interested in 𝑆 ∈ [0, 40] 𝑑𝐵. We test the cases of 

the presence of two interferences after (positions 20 and 25) the CUT. We assume 

that the interferences have the same nature as the target, i.e., the Interference-to-

Noise Ratio (INR) noted by 𝐼 is equal to 𝑆. We also test the case of the presence of 

a clutter edge before the CUT with 10 reference cells in the higher-powered (clutter) 

region. In this case, the CUT is in the lower-powered (noise) region. To do this, we 

assume that the Clutter-to-Noise ratio (CNR) noted by 𝐶 is equal to 20 𝑑𝐵. 

 

Table 1 summarizes the values of the weights of the NSW-, MSW-, OSGO-, 

and OSSO-CFAR detectors  with  𝑘 = 3𝑁/8  and  the  OS-CFAR  detector  with 
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Table 1: Values of the weights of the NSW-, MSW-, OSGO-, and OSSO-CFAR 

detectors with 𝑘 = 3𝑁/8 and OS-CFAR detector with 𝑘 = 3𝑁/4 for 𝑁 = 32 and 

𝑃𝑓𝑎 = 10
−4. 

Clutter situation NSW- MSW- OS- OSSO- OSGO- 

Homogeneous clutter (4.4990, 4.4990) (4.4990, 4.4990) 

8.7510 12.4500 7.9880 

Two interferences after the 

CUT 
(7.3700, 2.0000) (3.2000, 6.3350) 

Clutter edge before the CUT 

(CUT in noise) 
(0, 11.5000) (0, 12.4500) 

 

𝑘 = 3𝑁/4 that guarantee a desired 𝑃𝑓𝑎 = 10−4 and maximize the 𝑃𝑑 for 𝑁 = 32 

in different clutter situations. 

 

 
Figure 4 𝑃𝑑 versus 𝑆 for the OS-, OSGO-, OSSO-, NSW- and MSW-CFAR 

detectors in a homogeneous clutter. 

 

4.1. Homogeneous clutter 

Figure 4 compares the detection probabilities of various detectors in homogeneous 

clutter. We observe that the NSW-CFAR and MSW-CFAR detectors have similar 

detection probabilities to the OS-CFAR detector. This is because the weights of 

these detectors are equal and the use of one or two cells does not make a significant 

difference when the number of reference cells is high. The OSGO-CFAR detector 

has a negligeable loss compared to the previous detectors, while the OSSO-CFAR 

detector has more loss. 

 

4.2. Presence of interferences 

In Figure 5, we can see a comparison of the detection probabilities of the detectors 

being studied in the presence of two interferences after (cells 20 and 25) the CUT. 

We observe that the  NSW-, MSW-,   and  OS-CFAR  detectors   perform  almost 
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Figure 5 𝑃𝑑 versus 𝑆 for the OS-, OSGO-, OSSO-, NSW-, and MSW-CFAR 

detectors in the presence of two interferences after (cells 20 and 25) the CUT. 

 

 
Figure 6 𝑃𝑑 versus 𝑆 for the OS-, OSGO-, OSSO-, NSW-, and MSW-CFAR 

detectors in the presence of a clutter edge before the CUT (CUT in noise). 

 

equally. It's worth noting that the interfering cells do not contribute to the clutter 

level calculation, and thus, the masking effect is absent. As for the OSGO-CFAR 

detector, it has a slightly lower performance. Finally, the OSSO-CFAR detector 

shows more loss in detection compared to the previous detectors. 

 

4.3. Presence of a clutter edge 

In Figure 6, we can see a comparison of the detection probabilities of the previous 

detectors in the presence of a clutter edge before the CUT with the CUT in the 

lower-powered region. The NSW-CFAR detector shows the best detection 

performance, followed by the MSW- and OSSO-CFAR detectors with a negligible 

loss. However, the OSGO-CFAR detector has a very poor detection probability and 
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Figure 7 𝑃𝑓𝑎 versus the number of the higher-powered clutter cells of the OS-, 

OSGO-, OSSO-, NSW-, and MSW-CFAR detectors in the presence of a clutter 

edge before the CUT (CUT in clear). 

 

the OS-CFAR is the worst. This is because, in this situation, the masking effect is 

very high in the OSGO- and OS-CFAR detectors due to the higher-powered 

samples entering the calculation of the clutter level. The new detectors have been 

designed to overcome this shortcoming and their weights have proven to be useful 

in such situations. 

In the presence of a clutter edge, it is important to analyze the false alarm 

regulation in addition to the detection performance. So, when a clutter edge is 

present before the CUT (CUT in noise), Figure 7 illustrates the regulation of the 

𝑃𝑓𝑎 of the previous detectors as they cross a clutter edge with 𝐶 = 20 𝑑𝐵. The 

NSW-CFAR detector is the only one that can regulate the 𝑃𝑓𝑎 correctly when the 

CUT is in the lower-powered region. It gives almost constant and very closed values 

to the desired 𝑃𝑓𝑎. It is followed by the MSW- and OSSO-CFAR detectors that 

exhibit good regulation, while the OS-CFAR detector has a significant loss and the 

OSGO-CFAR detector performs the worst. 

 

5. Summary and Conclusion 

Throughout this research, we have developed and evaluated two new mono-pulse 

CFAR detectors, the New Sorting Weighting (NSW-) CFAR and the Modified 

Sorting Weighting (MSW-) CFAR detectors. Our objective is to enhance the 

detection performance and the false alarm regulation in both homogeneous and 

non-homogeneous Gaussian environments. We have obtained closed forms of the 

detection (𝑃𝑑) and false alarm (𝑃𝑓𝑎) probabilities of these detectors. We have also 

found the optimum pairs of weights that guarantee a constant 𝑃𝑓𝑎 and maximize the 

𝑃𝑑. Monte Carlo simulation results have shown that these detectors have improved 
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the detection performance and the regulation of the 𝑃𝑓𝑎 of the conventional ones, 

in any clutter situation. We have concluded that the NSW-CFAR detector has 

outperformed all the previous CFAR detectors and have retained it as our 

recommended option. 

 

Appendix A 

Let have two new independent random variables 𝑋 = 𝛼 𝑞(𝑘1) and 𝑌 = 𝛽 𝑞(𝑘2). 

Having 𝑞(𝑘1) = 𝑋/𝛼 and 𝑞(𝑘2) = 𝑌/𝛽, the pdfs of 𝑋 and 𝑌 are given by [7]: 

𝑓𝑋(𝑥) =
1

|𝛼|
𝑓𝑄(𝑘1) (

𝑥

𝛼
) ;    𝛼 > 0 (A.1)  

and 

𝑓𝑌(𝑦) =
1

|𝛽|
𝑓𝑄(𝑘2) (

𝑦

𝛽
) ;    𝛽 > 0 (A.2)   

Substituting equation (6) into equation (A.1) with 𝑘1 instead of 𝑘 and into 

equation (A.2) with 𝑘2 instead of 𝑘. We have the pdfs of 𝑋 and 𝑌 to be: 

𝑓𝑋(𝑥) =
𝑘1
|𝛼|

(

𝑁

2
𝑘1

) 𝑒−
𝑥
𝛼
(
𝑁
2
−𝑘1+1) (1 − 𝑒−

𝑥
𝛼)

𝑘1−1

 (A.3) 

and 

𝑓𝑌(𝑦) =
𝑘2
|𝛽|

(

𝑁

2
𝑘2

) 𝑒
−
𝑦
𝛽
(
𝑁
2
−𝑘2+1) (1 − 𝑒

−
𝑦
𝛽)

𝑘2−1

 (A.4) 

The adaptive detection threshold, denoted by 𝑄, is the sum of 𝑋 and 𝑌. Using 

the fact that 𝑋 ≥ 0 and 𝑌 ≥ 0, the pdf of 𝑄 is defined by [7]: 

𝑓𝑄(𝑞) = 𝑓𝑋(𝑥) ∗ 𝑓𝑌(𝑦) = ∫𝑓𝑌(𝑦) 𝑓𝑋(𝑞 − 𝑦) 𝑑𝑦

𝑞

0

 (A.5)   

where ∗ denotes the convolution. Now, substituting equations (A.3) and (A.4) into 

equation (A.5), we find the equation (11). 

 

Appendix B 

Substituting equations (9) and (11) into equation (12), the 𝑃𝑑 becomes: 

𝑃𝑑 =
𝑘1𝑘2
|𝛼||𝛽|

(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

)∫ ∫[
𝑒−

𝑞
1+𝑆 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑘2+1) (1 − 𝑒

−
𝑦
𝛽)

𝑘2−1

× 𝑒−
𝑞−𝑦
𝛼
(
𝑁
2
−𝑘1+1) (1 − 𝑒−

𝑞−𝑦
𝛼 )

𝑘1−1
] 𝑑𝑦

𝑞

0

𝑑𝑞

∞

0

 (A.6) 

Using the following identity [7]: 

∫ 𝑓3(𝑞)

∞

0

∫𝑓1(𝑦) 𝑓2(𝑞 − 𝑦)𝑑𝑦

𝑞

0

𝑑𝑞 = ∫ 𝑓1(𝑦)

∞

0

∫ 𝑓3(𝑞) 𝑓2(𝑞 − 𝑦)𝑑𝑞

∞

𝑦

𝑑𝑦 (A.7)   

The equation (A.6) becomes: 
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𝑃𝑑 =
𝑘1𝑘2
|𝛼||𝛽|

(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

)∫

[
 
 
 
 
 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑘2+1) (1 − 𝑒

−
𝑦
𝛽)

𝑘2−1

×

∫ 𝑒−
𝑞
1+𝑆𝑒−

𝑞−𝑦
𝛼

(
𝑁
2
−𝑘1+1) (1 − 𝑒−

𝑞−𝑦
𝛼 )

𝑘1−1

𝑑𝑞

∞

𝑦 ]
 
 
 
 
 

𝑑𝑦

∞

0

 (A.8) 

Now, applying the change of variable 𝑞 = 𝑣 + 𝑦, the equation (A.8) can then 

be simplified to: 

𝑃𝑑 =
𝑘1𝑘2
|𝛼||𝛽|

(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) [∫ 𝑒
−𝑦[

1
𝛽
(
𝑁
2
−𝑘2+1)+

1
1+𝑆

]
(1 − 𝑒

−
𝑦
𝛽)

𝑘2−1

𝑑𝑦

∞

0

] 

× [∫ 𝑒−𝑣[
1
𝛼
(
𝑁
2
−𝑘1+1)+

1
1+𝑆

] (1 − 𝑒−
𝑣
𝛼)

𝑘1−1

 𝑑𝑣

∞

0

] 

 

 

 

(A.9) 

 

Now, applying again the change of variable 𝑦 = − ln(𝑤) in the first integral 

and 𝑣 = − ln(𝑤) in the second one, the equation (A.9) can then be rewritten as: 

𝑃𝑑 =
𝑘1𝑘2
|𝛼||𝛽|

(

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) [∫𝑤
[
1
𝛽
(
𝑁
2
−𝑘2+1)+

1
1+𝑆

−1]
(1 − 𝑤

1
𝛽)

𝑘2−1

𝑑𝑤

1

0

] 

× [∫𝑤[
1
𝛼
(
𝑁
2
−𝑘1+1)+

1
1+𝑆

−1] (1 − 𝑤
1
𝛼)

𝑘1−1

 𝑑𝑤

1

0

] 

 

 

 

(A.10) 

 

To evaluate the two integrals of equation (A.10), we use: 

∫𝑤𝑎−1(1 − 𝑤𝑏)𝑐𝑑𝑤

1

0

=
Γ(𝑐 + 1) Γ (

𝑎
𝑏
)

𝑏 Γ (
𝑎
𝑏
+ 𝑐 + 1)

 (A.11) 

Finally, we find the closed form of the 𝑃𝑑 mentioned previously by the 

equation (14). 

 

Appendix C 

The pdf 𝑓𝑄𝑂𝑆𝐺𝑂(𝑞) and 𝑓𝑄𝑂𝑆𝑆𝑂(𝑞) are defined by [5, 6]: 

𝑓𝑄𝑂𝑆𝐺𝑂(𝑞) = 𝑓𝑄(𝑘1)
(𝑞)𝐹𝑄(𝑘2)

(𝑞) + 𝑓𝑄(𝑘2)
(𝑞)𝐹𝑄(𝑘1)

(𝑞) (A.12) 

and 

𝑓𝑄𝑂𝑆𝑆𝑂(𝑞) = 𝑓𝑄(𝑘1)
(𝑞) (1 − 𝐹𝑄(𝑘2)

(𝑞)) + 𝑓𝑄(𝑘2)
(𝑞) (1 − 𝐹𝑄(𝑘1)

(𝑞)) (A.13) 

where 𝑓𝑄(𝑘1)
(𝑞) and 𝑓𝑄(𝑘2)

(𝑞) are obtained from the equation (6). Also, 𝐹𝑄(𝑘1)
(𝑞) 

and 𝐹𝑄(𝑘2)
(𝑞) are obtained from the equation (7). 

Rescaling 𝑞𝑂𝑆𝐺𝑂 and 𝑞𝑂𝑆𝑆𝑂 by 𝛼 > 0 and 𝛽 > 0, respectively, we obtain two 

new independent random variables 𝑋 = 𝛼 𝑞𝑂𝑆𝐺𝑂 and 𝑌 = 𝛽 𝑞𝑂𝑆𝑆𝑂. Having 

𝑞𝑂𝑆𝐺𝑂 = 𝑋/𝛼 and 𝑞𝑂𝑆𝑆𝑂 = 𝑌/𝛽, the pdfs of 𝑋 and 𝑌 are given, based on the  

equations (A.1) and (A.2) with 𝑄𝑂𝑆𝐺𝑂 and 𝑄𝑂𝑆𝑆𝑂 instead of 𝑄(𝑘1) and 𝑄(𝑘2), 

respectively, by: 
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𝑓𝑋(𝑥) =
1

|𝛼|

[
 
 
 
 
 
 
𝑘1 (

𝑁

2
𝑘1

) ∑ (
𝑁

2
𝑖

) 𝑒−
𝑥
𝛼
(𝑁−𝑘1+1−𝑖) (1 − 𝑒−

𝑥
𝛼)

𝑘1−1+𝑖
𝑁/2

𝑖=𝑘2

+𝑘2 (

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

) 𝑒−
𝑥
𝛼
(𝑁−𝑘2+1−𝑖) (1 − 𝑒−

𝑥
𝛼)

𝑘2−1+𝑖
𝑁/2

𝑖=𝑘1 ]
 
 
 
 
 
 

 (A.14) 

and 

𝑓𝑌(𝑦) =
1

|𝛽|

[
 
 
 
 
 
 
𝑘1 (

𝑁

2
𝑘1

) 𝑒
−
𝑦
𝛽
(
𝑁
2
−𝑘1+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘1−1

(1 − ∑ (

𝑁

2
𝑗
) 𝑒

−
𝑦
𝛽
(𝑁/2−𝑗)

(1 − 𝑒
−
𝑦
𝛽)

𝑗
𝑁/2

𝑗=𝑘2

)

+𝑘2 (

𝑁

2
𝑘2

) 𝑒
−
𝑦
𝛽
(
𝑁
2
−𝑘2+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘2−1

(1 − ∑ (

𝑁

2
𝑗
) 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑗)

(1 − 𝑒
−
𝑦
𝛽)

𝑗
𝑁/2

𝑗=𝑘1

)

]
 
 
 
 
 
 

 (A.15) 

The adaptive detection threshold, denoted by 𝑄, is the sum of 𝑋 and 𝑌. Using 

the fact that 𝑋 ≥ 0 and 𝑌 ≥ 0, substituting equations (A.14) and (A.15) into 

equation (A.5), the pdf of 𝑄 is given by the equation (27). 

 

Appendix D 

Substituting equations (9) and (27) into equation (12), the 𝑃𝑑 becomes: 

𝑃𝑑 =
1

|𝛼||𝛽|

{
 

 
𝑘1
2 (

𝑁

2
𝑘1

)

2

 ∑ (
𝑁

2
𝑖

)∫ 𝑒−
𝑞
1+𝑆∫

[
 
 
 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑘1+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘1−1

×

𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖

]
 
 
 

𝑑𝑦

𝑞

0

𝑑𝑞

∞

0

𝑁/2

𝑖=𝑘2

 

+𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)∫ 𝑒−
𝑞
1+𝑆  ∫

[
 
 
 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑘1+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘1−1

×

𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘2+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘2−1+𝑖

]
 
 
 

𝑑𝑦

𝑞

0

𝑑𝑞

∞

0

𝑁/2

𝑖=𝑘1

 

+𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)∫ 𝑒−
𝑞
1+𝑆  ∫

[
 
 
 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑘2+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘2−1

×

𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖

]
 
 
 

𝑑𝑦

𝑞

0

𝑑𝑞

∞

0

𝑁/2

𝑖=𝑘2

 

+𝑘2
2 (

𝑁

2
𝑘2

)

2

∑ (
𝑁

2
𝑖

)∫ 𝑒−
𝑞
1+𝑆  ∫

[
 
 
 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑘2+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘2−1

×

𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘2+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘2−1+𝑖

]
 
 
 

𝑑𝑦

𝑞

0

𝑑𝑞

∞

0

𝑁/2

𝑖=𝑘1

 

−𝑘1
2 (

𝑁

2
𝑘1

)

2

∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)∫ 𝑒−

𝑞
1+𝑆  ∫

[
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘1+1−𝑗)

(1 − 𝑒
−
𝑦
𝛽)

𝑘1−1+𝑗

×

𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖

]
 
 
 

𝑑𝑦

𝑞

0

𝑑𝑞

∞

0

𝑁/2

𝑗=𝑘2

𝑁/2

𝑖=𝑘2

 

−𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)∫ 𝑒−

𝑞
1+𝑆  ∫

[
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘1+1−𝑗)

(1 − 𝑒
−
𝑦
𝛽)

𝑘1−1+𝑗

×

𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘2+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘2−1+𝑖

]
 
 
 𝑞

0

𝑑𝑦 𝑑𝑞

∞

0

𝑁/2

𝑗=𝑘2

𝑁/2

𝑖=𝑘1

 

−𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)∫ 𝑒−

𝑞
1+𝑆  ∫

[
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘2+1−𝑗)

(1 − 𝑒
−
𝑦
𝛽)

𝑘2−1+𝑗

×

𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖

]
 
 
 

𝑑𝑦

𝑞

0

𝑑𝑞

∞

0

𝑁/2

𝑗=𝑘1

𝑁/2

𝑖=𝑘2
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−𝑘2
2 (

𝑁

2
𝑘2

)

2

∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)∫ 𝑒−

𝑞
1+𝑆  ∫

[
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘2+1−𝑗)

(1 − 𝑒
−
𝑦
𝛽)

𝑘2−1+𝑗

×

𝑒−
𝑞−𝑦
𝛼

(𝑁−𝑘2+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘2−1+𝑖

]
 
 
 𝑞

0

𝑑𝑦 𝑑𝑞

∞

0

𝑁/2

𝑗=𝑘1

𝑁/2

𝑖=𝑘1 }
 

 
 

 

(A.16) 

Using the identity (A.7), the equation (A.16) becomes: 

𝑃𝑑 =
1

|𝛼||𝛽|

{
 
 

 
 

𝑘1
2 (

𝑁

2
𝑘1

)

2

 ∑ (
𝑁

2
𝑖

)∫

[
 
 
 
 
 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑘1+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘1−1

×

∫ 𝑒−
𝑞
1+𝑆 𝑒−

𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖

𝑑𝑞

∞

𝑦 ]
 
 
 
 
 

𝑑𝑦

∞

0

𝑁/2

𝑖=𝑘2

 

+𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)∫

[
 
 
 
 
 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑘1+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘1−1

×

∫ 𝑒−
𝑞
1+𝑆 𝑒−

𝑞−𝑦
𝛼

(𝑁−𝑘2+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘2−1+𝑖

𝑑𝑞

∞

𝑦 ]
 
 
 
 
 

𝑑𝑦

∞

0

𝑁/2

𝑖=𝑘1

 

+𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)∫

[
 
 
 
 
 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑘2+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘2−1

×

∫ 𝑒−
𝑞
1+𝑆 𝑒−

𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖

𝑑𝑞

∞

𝑦 ]
 
 
 
 
 

𝑑𝑦

∞

0

𝑁/2

𝑖=𝑘2

 

+𝑘2
2 (

𝑁

2
𝑘2

)

2

∑ (
𝑁

2
𝑖

)∫

[
 
 
 
 
 𝑒

−
𝑦
𝛽
(
𝑁
2
−𝑘2+1)

(1 − 𝑒
−
𝑦
𝛽)

𝑘2−1

×

∫ 𝑒−
𝑞
1+𝑆 𝑒−

𝑞−𝑦
𝛼

(𝑁−𝑘2+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘2−1+𝑖

𝑑𝑞

∞

𝑦 ]
 
 
 
 
 

𝑑𝑦

∞

0

𝑁/2

𝑖=𝑘1

 

−𝑘1
2 (

𝑁

2
𝑘1

)

2

∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)∫

[
 
 
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘1+1−𝑗)

(1 − 𝑒
−
𝑦
𝛽)

𝑘1−1+𝑗

×

∫ 𝑒−
𝑞
1+𝑆 𝑒−

𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖

𝑑𝑞

∞

𝑦 ]
 
 
 
 
 

𝑑𝑦

∞

0

𝑁/2

𝑗=𝑘2

𝑁/2

𝑖=𝑘2

 

−𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)∫

[
 
 
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘1+1−𝑗)

(1 − 𝑒
−
𝑦
𝛽)

𝑘1−1+𝑗

×

∫ 𝑒−
𝑞
1+𝑆 𝑒−

𝑞−𝑦
𝛼

(𝑁−𝑘2+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘2−1+𝑖

𝑑𝑞

∞

𝑦 ]
 
 
 
 
 

𝑑𝑦

∞

0

𝑁/2

𝑗=𝑘2

𝑁/2

𝑖=𝑘1

 

−𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)∫

[
 
 
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘2+1−𝑗)

(1 − 𝑒
−
𝑦
𝛽)

𝑘2−1+𝑗

×

∫ 𝑒−
𝑞
1+𝑆 𝑒−

𝑞−𝑦
𝛼

(𝑁−𝑘1+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘1−1+𝑖

𝑑𝑞

∞

𝑦 ]
 
 
 
 
 

𝑑𝑦

∞

0

𝑁/2

𝑗=𝑘1

𝑁/2

𝑖=𝑘2

 

−𝑘2
2 (

𝑁

2
𝑘2

)

2

∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)∫

[
 
 
 
 
 𝑒

−
𝑦
𝛽
(𝑁−𝑘2+1−𝑗)

(1 − 𝑒
−
𝑦
𝛽)

𝑘2−1+𝑗

×

∫ 𝑒−
𝑞
1+𝑆 𝑒−

𝑞−𝑦
𝛼

(𝑁−𝑘2+1−𝑖) (1 − 𝑒−
𝑞−𝑦
𝛼 )

𝑘2−1+𝑖

𝑑𝑞

∞

𝑦 ]
 
 
 
 
 

𝑑𝑦

∞

0

𝑁/2

𝑗=𝑘1

𝑁/2

𝑖=𝑘1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A.17) 

Now, applying the change of variable 𝑞 = 𝑣 + 𝑦, the equation (A.17) can 

then be simplified to: 
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𝑃𝑑 =
1

|𝛼||𝛽|

{
 
 

 
 

𝑘1
2 (

𝑁

2
𝑘1

)

2

 ∑ (
𝑁

2
𝑖

)

[
 
 
 
 
 

∫ 𝑒
−𝑦[

1
𝛽
(
𝑁
2
−𝑘1+1)+

1
1+𝑆

]
(1 − 𝑒

−
𝑦
𝛽)

𝑘1−1

𝑑𝑦

∞

0

×∫ 𝑒
−𝑣[

1
𝛼
(𝑁−𝑘1+1−𝑖)+

1
1+𝑆

] (1 − 𝑒−
𝑣
𝛼)

𝑘1−1+𝑖

𝑑𝑣

∞

0 ]
 
 
 
 
 

𝑁/2

𝑖=𝑘2

 

+𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)

[
 
 
 
 
 
∫ 𝑒

−𝑦[
1
𝛽
(
𝑁
2
−𝑘1+1)+

1
1+𝑆

]
(1 − 𝑒

−
𝑦
𝛽)

𝑘1−1

𝑑𝑦

∞

0

∫ 𝑒
−𝑣[

1
𝛼
(𝑁−𝑘2+1−𝑖)+

1
1+𝑆

] (1 − 𝑒−
𝑣
𝛼)

𝑘2−1+𝑖

𝑑𝑣

∞

0 ]
 
 
 
 
 

𝑁/2

𝑖=𝑘1

 

+𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

)

[
 
 
 
 
 
∫ 𝑒

−𝑦[
1
𝛽
(
𝑁
2
−𝑘2+1)+

1
1+𝑆

]
(1 − 𝑒

−
𝑦
𝛽)

𝑘2−1

𝑑𝑦

∞

0

∫ 𝑒
−𝑣[

1
𝛼
(𝑁−𝑘1+1−𝑖)+

1
1+𝑆

] (1 − 𝑒−
𝑣
𝛼)

𝑘1−1+𝑖

𝑑𝑣

∞

0 ]
 
 
 
 
 

𝑁/2

𝑖=𝑘2

 

+𝑘2
2 (

𝑁

2
𝑘2

)

2

∑ (
𝑁

2
𝑖

)

[
 
 
 
 
 
∫ 𝑒

−𝑦[
1
𝛽
(
𝑁
2
−𝑘2+1)+

1
1+𝑆

]
(1 − 𝑒

−
𝑦
𝛽)

𝑘2−1

𝑑𝑦

∞

0

∫ 𝑒
−𝑣[

1
𝛼
(𝑁−𝑘2+1−𝑖)+

1
1+𝑆

] (1 − 𝑒−
𝑣
𝛼)

𝑘2−1+𝑖

𝑑𝑣

∞

0 ]
 
 
 
 
 

𝑁/2

𝑖=𝑘1

 

−𝑘1
2 (

𝑁

2
𝑘1

)

2

∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)

[
 
 
 
 
 
∫ 𝑒

−𝑦[
1
𝛽
(𝑁−𝑘1+1−𝑗)+

1
1+𝑆

]
(1 − 𝑒

−
𝑦
𝛽)

𝑘1−1+𝑗

𝑑𝑦

∞

0

∫ 𝑒
−𝑣[

1
𝛼
(𝑁−𝑘1+1−𝑖)+

1
1+𝑆

] (1 − 𝑒−
𝑣
𝛼)

𝑘1−1+𝑖

𝑑𝑣

∞

0 ]
 
 
 
 
 

𝑁/2

𝑗=𝑘2

𝑁/2

𝑖=𝑘2

 

−𝑘1𝑘2 (

𝑁

2
𝑘1

)(

𝑁

2
𝑘2

) ∑ (
𝑁

2
𝑖

) ∑ (

𝑁

2
𝑗
)

[
 
 
 
 
 
∫ 𝑒

−𝑦[
1
𝛽
(𝑁−𝑘1+1−𝑗)+

1
1+𝑆

]
(1 − 𝑒

−
𝑦
𝛽)

𝑘1−1+𝑗

𝑑𝑦

∞

0
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(A.18) 

Now, applying again the change of variables 𝑦 = − ln(𝑤) and 𝑣 = − ln(𝑤), 
the equation (A.18) can then be rewritten as: 
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(A.19)  

Now, using the equation (A.11) to evaluate the integrals of the equation 

(A.19), we find the closed form of the 𝑃𝑑 mentioned previously by the equation 

(28). 
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