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Abstract

The main water planning and management challenge facing Bahrain is in how to balance water availability
and water use on a long-term basis in the face of increasing demands under the least economic and
environmental costs and without endangering socio-economic development. To meet escalating municipal
water demands desalination is becoming inevitable, which is associated with substantial financial, economic,
and environmental costs. In this research, the environmental impact of seawater desalination on the
surrounding marine environment is assessed at a government-owned MSF desalination plant (Sitra Power and
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Water Station (SPWS)). The assessment used a number of environmental indicators, namely temperature and
salinity (TDS) at the desalination plant outfall area, and included a field survey to characterize the outfall area
of the desalination plant, simulation modeling of the outfall area using CORMIX hydrodynamic model after
its calibration by field data, and investigating mitigation scenarios. Characterization and simulation of elevated
temperature and salinity of brine discharge was made for the winter season, where the maximum thermal
impact occurs. The simulation indicated that the brine temperature is within Bahrain Mixing Zone Standards.
The brine plume elevated temperature drops to ambient temperature within 37 minutes after traveling a
distance of 350 meters downstream. The brine plume elevated salinity drops to the ambient seawater salinity
within 41 minutes and a distance of about 390 m downstream. The effectiveness of a technical mitigation
option of mixing of power cooling water with brine during the winter season was assessed and was found to
have the potential of reducing the impact of the temperature by 30% and salinity by 38% in comparison to the
current conditions. It is recommended that other quantifiable environmental indicators to characterize and
assess desalination impacts on the marine environment, such as brine chemicals, air pollution, and biological
communities, are used in assessing the environmental impacts of desalination; a regular monitoring program
of seawater quality in the Near Field Region (NFR) and the Regulatory Mixing Zone (RMZ) is designed and
implemented, and similar investigative and assessment studies are conducted on all the other desalination
plants in Bahrain.

Keywords: Desalination; CORMIX; Brine; Modeling; Mitigation scenario
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1. INTRODUCTION

Since the mid 1970s, and as a result of the
continuous increase in water demands in the
municipal sector on one hand, and groundwater
deterioration on the other, the Government of
Bahrain has resorted to desalination. Now, Bahrain
has a well-developed water utility sector with
several large desalination plants that provide the
water requirements of the entire drinking water
sector in the country. Desalination sector has grown
rapidly alongside Bahrain’s  socio-economic
development. Currently there are 5 desalination
plants located along the eastern coast of Bahrain. In
order to meet the rapid increase in municipal water
demands, the Government of Bahrain has started in

the early 2000 to rely on purchasing desalinated
water from the private sector. Currently, there are
three private sector desalination plants that are
supplying the water authorities with its municipal
water supply requirements. These are Al-Hidd, Al-
Dur, and Aluminium Bahrain (ALBA). The details
of these desalination plants are indicated in Table
(1). The Government still owns and operates two
desalination plants (Sitra and Ras Abu Jarjur). In
2012, the total desalination capacity in the country
has reached about 870,000 m3/day (315 Million
m3/yr). The total production of desalinated water in
2014 was about 713,570 m3/day (260 Mm3/yr).

Table 1. Daily production capacity of desalination plants in Bahrain.

No. Plant Commissioning Technology Used
Date
1 Sitra 1975 Multistage-Flash
(SPWS) (MSF)
2 Ras Abu 1984 Reverse Osmosis
Jarjur (RO)
(RAJ)
3 Ad Dur 1990 Reverse Osmosis
(ADUR) (RO)
4 Hidd 1999 Multistage-Flash
(MSF) and Multi-
Effect Distillation
(MED)
5 Alba 2002 Multi-Effect
Distillation (MED)
6 Al-DUR 2012 Reverse Osmosis

(RO)

Total Desalination capacity

Data Source: Electricity and Water Authority (EWA).

Capacity Feed Water Ownership/ Ratio of
1000 Management Brine
m3/d
113.6 Seawater Government 11X

produced

77.3 Brackish Government 14X

Groundwater produced

18.2 Seawater Government 25X

produced

409.1 Seawater Privatized 2X

(entire produced
production 25X
purchased) produced

31.8 Seawater Private (part of Not

the production available
purchased)

220.0 Seawater Private (entire 2.5X
production produced
purchased)

870

Note: Al Dur SWRO, owned by EWA, is no more existing as a production facility; currently it is mothballed
until a time that EWA may refurbish, upgrade it, or replace it by a new plant (plant #6).

Until the mid 1980s, the municipal sector relied
mainly on groundwater and was augmented by
desalinated water in small ratios. However, with the
major expansion in desalination plants, desalinated
water has become the main component of municipal
water supply with little augmentation by

Published by Scholarworks@UAEU,

groundwater. Figure (1) shows the continuous
increase of desalinated water share in the municipal
water supply. Desalinated water ratio has risen from
7% in 1980 to 90% in 2014, which significantly
improved the quality of the municipal water supply
in the Kingdom.
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Figure 1. Desalinated water and groundwater (municipal sector) and distilled water development in Bahrain
(1980-2014) (data source: EWA).

In view of the current trends in population and
urbanization growth rates and their associated
municipal water requirements desalination will
continue to be the main source of water to be relied
on by the municipal water authorities in Bahrain,
and an expansion in the desalination capacity and
production is inevitable to meet these demands. The
expansion in desalination will be associated with
financial, economic, environmental, and eventually
social costs and impacts, which need to be assessed,
quantified, and mitigated to the maximum possible
level.

From a management perspective, there are two
approaches that need to be taken to minimize
desalination impacts and costs; the first approach is
to improve the efficiency of the municipal water
system in both the supply and demand sides (i.e., use
and supply efficiencies, recycling, and reuse) in
order to reduce the overall water requirements and
thus reducing desalination production and its
associated financial, economic and environmental
costs. Many of the financial, economic, and
environmental costs associated with desalination
and municipal water supply systems have been
addressed in Bahrain and appropriate management
interventions for their minimization have been
proposed [1].

The second approach, which is complementary to
the first approach, is to implement scientific and
technological means to mitigate the impacts of
desalination  plants on their  surrounding
environment. This approach has received little
attention in Bahrain. This approach includes
reduction of the source concentrations and loads by
proper mitigation measures within the desalination
plant or proper intake and pre-treatment
technologies, and implementing enhanced mixing
technologies for the discharged brine.

https://scholarworks.uaeu.ac.ae/ejer/vol27/iss1/1

For a new desalination plants, basic knowledge of
the resulting concentration distributions allows for
an impact assessment and design optimization,
where the concentration distribution will depend on
the sitting of the outfall, the amount of mixing and
the transport capacities of the prevailing currents
[2]. Such impact assessment and optimized brine
disposal design is typically made using simulation
modeling where various disposal systems (e.g.,
onshore surface open channel, offshore submerged
single port or multiport) are evaluated to select the
optimal environmental disposal system which can
mitigate the adverse impacts of brine on the marine
ecosystem as much as possible in the worst seawater
conditions (e.g., [3][4]). On the other hand, for an
existing desalination plant, a typical environmental
impact assessment and mitigation procedures would
involve outfall site characterization and modeling
approach to improve the design of the discharge
such that effluent impacts are minimized. Such
approach would require the followings steps: the
impact of a given desalination plant on the
surrounding marine environment is characterized in
the vicinity of the brine discharge area; then, the
results of the characterization stage are used to
calibrate and develop a hydrodynamic simulation
model for the desalination plant and its surrounding
marine environment; once the simulation model is
calibrated to satisfactorily represent the existing
system of the desalination plant and its surrounding
marine area, it is used to investigate the
effectiveness of various proposed mitigation
options.

The objective of this research is to assessing the
environmental impacts of desalination plants
discharge on the marine environment in Bahrain
using a government-owned thermal (MSF)
desalination plant as a case study. This is achieved
through field characterization of the outfall area of
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the desalination plant, hydrodynamic simulation of
the outfall area using Cornell Mixing Zone Expert
System (CORMIX), and using the developed model

2. MATERIALS AND METHODS

The study’s methodology consisted of building a
representative simulation model for the outfall area
of the MSF desalination plant by calibration against
measured field data of salinity and temperature in
the surrounding seawater. The calibrated model
parameters were the flowrates and effluent
characteristics of the desalination plant, and the
simulation results were compared with measured
data (temperature and salinity) in the field at 25 cm
and 1 m below the sea surface. The Model
calibration was carried out for the winter season
conditions as the field measurements were made

2.1 SITRA POWER AND WATER STATION (SPWS)

The study was conducted on the outfall area of the
SPWS. SPWS has three phases (Table 2), two
seawater intakes and four outfall culverts. A flow
diagram of the intake and outfall is shown in Figure
(2; note only three outfall culverts are shown in the
figure). The outfall area is being constrained by two

Table 2. Phases of Sitra Power and Water Station (SPWS)
No. of Units

Phase | Commissioning | Technology Used

Year
| 1975 MSF
1 1984 MSF
1l 1984/1985 MSF
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in assessing the effectiveness of potential mitigation
scenarios.

during this season, and where the differences in the
temperature during the winter season (20°C) are
more pronounced than the summer (7°C). Then, the
calibrated model is used to analyze the spatial
distribution of the temperature and salinity plumes
of the brine discharged from the desalination plant,
and investigate technical options to mitigate the
brine environmental impact and ensure regulatory
compliance. The followings are brief description of
the desalination power plant and the simulation
model used.

jetties (Figure 3). These Jetties were constructed to
minimize the spread of brine plume, and thus
minimize the area of ecological impact, and in the
case of the north jetty to limit the intrusion of the
brine into the seawater intake areas [5].

Desalinated Water (1000 m®/day)
2 22.73
22.73
3 68.2 (operated at 90°C TBT)

92.7 (operated at 110°C TBT)

Sitra Power and Water Station
CW intake system
Phase |, lll

Culverts diameter:
- Culverts 1 and 2, 1.6m
- Culverts 3-T, 2m

SRl

Seawater Inkat
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Figure 2. Seawater intake and outfall of SPWS

.Google
C

Figure 3. Locations of sampling points

2.2 THE CORNELL MIXING ZONE EXPERT
SYSTEM (CORMIX)

The SPWS and its outfall area is modeled using the
Cornell Mixing Zone Expert System (CORMIX)
software [6], which is typically used for the analysis,
prediction, and design of the outfall mixing zones
resulting from the discharge of aqueous pollutants
into diverse water bodies. It contains mathematical
models of point source discharge mixing within an
intelligent computer-aided-design interface. The
main input data required for the CORMIX systems

3. RESULTS AND DISCUSSION

3.1 MODEL CALIBRATION

The CORMIX model was calibrated against field
data. A total of 18 sampling points were used to
characterize the seawater temperature and salinity at
the outfall area of SPWS, which are used in the
calibration of the model. The locations of the
sampling points are shown in Figure (3). The
locations of the sampling points were determined
using a GPS instrument (Garmin). Temperature (in
degree centigrade) and salinity (in total dissolved
Solids (TDS)) were measured at these spot sampling
points in the field using Marine Water Quality
Monitor (YSI) instrument. The design of the
sampling points was made in the form of a grid to
ensure full coverage of the spatial distribution of the
outfall plume between the two barriers. Sampling
points X1 to X16 represent the outfall area, while
both points X17 (desalination plant feed-water side)
and X18 (outfall side) represent the ambient
conditions of the area.

https://scholarworks.uaeu.ac.ae/ejer/vol27/iss1/1

are the discharge configurations and discharge site
information, the ambient conditions and pollutant
characteristics. The most important factors that can
influence the mixing or dilution of the plume are the
ambient depth, ambient velocity and effluent
discharge velocity [6]. It should be noted that the
four outfall culverts were modeled as one outfall
culvert using the total discharge from the four.

Although the sampling of the outfall area was made
for low and high tide conditions, only the latter was
used in the calibration of the model. This is due to
that the outfall areas and its surroundings are
relatively shallow and does not exceed 1.5 meters,
with some areas appear at the surface during low
tides. Sampling and measurements were taken at 25
cm and 1 m below the surface of the water column
during both high and low tide (1.65 m and 0.96 m,
respectively). The sampling for low and high tide
was made on the same day (21/02/2013, 08:30 am
and 14:42 pm). Model calibration using the
measured data was carried out for the winter season
conditions as the field sampling was made during
this season. Figures (4) and (5) show comparisons
between the simulated model results and the
measured field data at 25 cm and 1 m below the
surface of the water column during high tide for the
temperature and salinity, respectively.
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Figure 5. Simulated and measured TDS at 25cm and 1m during high tide

3.2 STATISTICAL ANALYSIS

The qualitative judgment of when the model
performance is good is a subjective matter [7].
Therefore statistical criteria are used for the
quantitative judgment [8]. Statistical based criteria
provide a more objective method for evaluating the
performance of the models [9]. In this study the
following statistical criteria were used to evaluate
the performance of the CORMIX model (refer to
Annex A for the details of the statistical criteria):

Published by Scholarworks@UAEU,

Relative Root Mean Square Error (RRMSE)
e Goodness of Fit (R?)

The statistical performance analyzers calculated
between the measured and the simulated values for
the temperature and TDS at 25 cm and 1 m during
high tide are shown in Table (3). By comparing the
results shown in Table (2) with the characteristic of
the different statistical criteria shown in Table (A-
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1), the statistical performance indicates a good analysis indicated that the model can be used as a
agreement between measured and simulated good simulation tool to predict the hydrodynamics

temperature and TDS. The results of the statistical

of the brine discharge into the sea.

Table 3. Statistical performance analyzers calculated between measured and simulated values for temperature

and TDS at 25 cm and 1 m during high tide.
Year

Simulated and measured Temperature at 25 cm
Simulated and measured Temperature at 1m
Simulated and measured TDS at 25¢cm

Simulated and measured TDS at 1m

RRMSE R?
0.119 0.718
0.137 0.451
0.074 0.145
0.048 0.650

3.3 ANALYSIS OF BRINE DISCHARGE FROM SPWS IN WINTER SEASON

3.3.1 ANALYSIS OF ELEVATED THERMAL DISCHARGE

An average sea water temperature of 22°C is used to
represent this period, while ambient salinity is taken
at 43,000 mg/L. The ambient density is calculated at
1029.98 kg/m?, while the brine discharge density is
calculated at 1031.07 kg/m?. The discharge flow rate
for this simulation was 10 m¥sec, with desalination
plant production of 1.05 m®/sec.

Table 4: NFR characteristics
Temperature at the edge of NFR
Dilution at the edge of NFR
NFR location
NFR dimension
Cumulative travel time

The simulated results were compared with the
mixing zone water quality standards of the Kingdom
of Bahrain, which states that there should be no
thermal alteration within 100 m from the shoreline,
which would cause temperature to deviate from
ambient temperature by more than 3°C [10][11].
The results indicated that the brine thermal
discharge is within the standards limit. The results
also showed that the plume elevated temperature
drops down to the ambient temperature in

https://scholarworks.uaeu.ac.ae/ejer/vol27/iss1/1

The Near Field Region (NFR) is within 0.56 m from
the discharge point and no changes will occur in this
region (dilution = 1). The plume cumulative travel
time up to the end of NFR is 54.8 sec. As the effluent
density is greater than the surrounding ambient
water density at the discharge level, the effluent is
negatively buoyant and will tend to sink towards the
bottom. The simulated results at the NFR boundary
are summarized in Table (4).

20°C above ambient

1

X:056m,Y:7755m,Z: 271 m

Half width: 1.79 m, Thickness: 2.71 m
54.81 sec

approximately 37 minutes while covering a distance
of 350 meters downstream as shown in Figure (6).
After that the plume will proceed down the slope
without transition to far field as shown in Figure (7).
The plume conditions at the boundary of Regulatory
Mixing Zone (RMZ) are presented in Table (5). At
the end of RMZ (100 m from the discharge outlet),
the temperature is almost 0.5°C above the ambient.
The plume cumulative travel time to the end of this
zone is 1050 sec.
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Figure 6. Simulation of Temperature downstream

Table 5: RMZ characteristics

Temperature at the edge of RMZ 0.513006°C above ambient

Dilution at the edge of RMZ 39

RMZlocation X:100m, Y: -631.95m, Z: -22.07 m
RMZdimension Half width: 1.86 m, Thickness: 2.73 m
Cumulative travel time 1049.23 sec

Figure 7. A 3-Dimensional view of the simulated temperature plume, in °C.

3.3.2 ANALYSIS OF ELEVATED TOTAL
DISSOLVED SOLID (TDS)

The simulated TDS at the outfall area are illustrated
in Figure (8). The results showed that at the
beginning of the brine discharge, the mixing and
dilution of TDS is relatively fast, up to a distance of
16 meters, downstream. After this distance, the
plume travels slowly in the downstream direction
and experiences a gradual dilution/mixing in that
region. The results also showed that the plume
elevated TDS drops down to the ambient TDS in

Published by Scholarworks@UAEU,

approximately 41 minutes while covering a distance
of 390 meters downstream. For the concentrated
brine discharge it takes about 17 minutes to dilute its
concentration from 13,000 mg/L above the ambient
TDS to 240 mg/L above the ambient level at the end
of RMZ (100 meters from the discharge point). The
predicted results at the RMZ boundary are
summarized in Table (6). The distribution of the
TDS values along the downstream distance is shown
in Figure (9).
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Figure 8. Total Dissolved Solid drop vs. downstream distance

Table 6: RMZ characteristics

TDS at the edge of RMZ 240 mg/L above ambient

Dilution at the edge of RMZ 54

RMZ location X:100 m

RMZ dimension Half width: 52.25 m, Thickness: 21.97 m
Cumulative travel time 1037.93 sec

Figure 9. A 3-Dimensional view of the simulated salinity (TDS) plume, in mg/L

3.4 TECHNICAL MITIGATION OPTIONS

Brine discharge systems need to be designed to
minimize environmental impacts while being in
compliance with regulatory demands. A major
principle before working on the brine discharge
designs is to reduce the source concentrations and
loads by proper mitigation measures within the
desalination plant (e.g., reducing additive usage and
dosing, improving plant efficiency, etc.), or proper

https://scholarworks.uaeu.ac.ae/ejer/vol27/iss1/1

intake and pre-treatment technologies. The design of
brine discharge area involves the application of
enhanced mixing technologies like multiport
diffusers, sited in less sensitive regions; i.e.,
offshore, deep waters [12]. Brine discharge system
of SPWS is a single port onshore submerged
structure. The existing brine discharge structure has
achieved the Mixing Zone Water Quality Standards

10
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set by the Government of Bahrain, but still
mitigation scenarios aimed at improving the initial
mixing before interacting with boundaries and
reducing the distance of total mixing (i.e., equal to
ambient) need to be explored and investigated. This

341 MIXING COOLING WATER WITH
BRINE DISCHARGE

One of the technical mitigation solutions that can be
implemented is to mix the cooling water from the
power side, which have temperatures almost equal
the ambient, with the discharged brine. This
mitigation will be beneficial and could have a
significant effect, especially in winter season when
the difference between the discharged brine
temperatures and the ambient seawater temperature
is high and reaches 20°C.

can be met by offshore submerged multiport
diffusers and offshore submerged single port
diffusers. However, these two mitigation scenarios
are not applicable to existing old desalination plant,
and can be applied for new desalination plant.

The cooling water from the power plant is rejected
to the outfall with the same ambient TDS but with
higher temperature than the ambient by 5 °C. The
CORMIX discharge calculator is used to compute
the final effluent characteristics including the
effluent from power plant during the winter season
[13]. The final outfall temperature after mixing the
two waters is 34.68 °C, its TDS at 48,390 mg/L, and
a total flow of 15.5 m3/sec. Table (7) shows the
input data and the results of the simulation.

Table 7: Flow rates input data and simulated effluent characteristics for SPWS (MSF) plant

Ambient Characteristics (=intake water)

Ambient temperature
Ambient salinity
Ambient density
Ambient kin. viscosity

20.0°C
40.0 ppt
1028.30 kg/m?
1.06E-06 m?/s

Fresh Water (desalinated)

Flow rate 1.10 m?/s
Recovery rate 30%
Distillation intake flow rate 3.67m%/s
Brine Characteristics (effluent from desalination process)

Brine flow rate 10.0 m¥/s
Temperature 40.0 °C
Salinity 53.0 ppt
Density 1031.07 kg/m?®
Blended effluent (external)

Flow rate 5.50 m%/s
Temperature 25.0°C
Salinity 40.0 ppt
Density 1026.79 kg/m?®

Desalination plant characteristics (without cogenerating power plant)

Feed water flow rate

Rejected effluent flow rate
Recovery rate (desalination plant)
Effluent temperature

Temperature difference to ambient

3.67mds
10.0 m¥/s
30%
40.0 °C
20.0 °C

Final Effluent Characteristics (including effluent from cogenerating power plant)

Flow rate

Effluent temperature

Temperature difference to ambient
Effluent salinity

Effluent density

Buoyant acceleration

15.50 m¥/s
34.68 °C
14.68 °C
48.39 ppt
1029.71 kg/m?®
-0.01344 m/s?

Under this mitigation option, the NFR will drop
from 0.56 m to 0.39 m and the cumulative travel
time to the end of NFR decreases from 54 sec to 35
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sec. The temperature at the edge of NFR is equal to
the effluent temperature (14.68°C), where the
temperature before mitigation was 20 °C above the

1
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ambient temperature. The results predicted at the
NFR boundary are summarized in Table (8).

Table 8: NFR characteristics

Temperature at the edge of NFR
Dilution at the edge of NFR 1
NFR location

NFR dimension
Cumulative travel time

14.68 °C above ambient

X:0.39m, Y:76.74m, Z: 2.68 m
Half width: 1.79 m, Thickness: 2.68 m
34.99 sec

The temperature at the edge of the RMZ (i.e., 100 m
from the plant reject point) drops from 0.5 °C above
the ambient to 0.3 °C. The results show that in
approximately 22.5 minutes the plume elevated
temperature drops down to equal the ambient
temperature while covering a distance of 190 m

downstream, whereas before this mitigation option
the elevated temperature drops down to the ambient
temperature after covering 350 m in 37 minutes. The
comparison in temperature drop before and after this
mitigation option is illustrated in Figure (10).

25

20

15

10

Temperature (°C’) above ambient

— After mitigation

before mitigation

0 100

200 300 400

Downstream Distance (m)

Figure 10. Comparison in temperature drop before and after mitigation

The characteristics of the final effluent resulting
from mixing cooling water from the power side with
the discharged brine lead to a drop in the TDS from
53,000 mg/L to 48,000 mg/L. The concentrated

Table 9: RMZ characteristics

brine discharge takes about 17 minutes to dilute the
concentration from 8,000 mg/L above the ambient
TDS to 172 mg/L above the ambient level at the end
of RMZ as shown in Table (9).

TDS at the edge of RMZ 172 mg/L above ambient

Dilution at the edge of RMZ 46.3

RMZ location X:100 m

RMZ dimension Half width: 11.51 m, Thickness: 6.47 m
Cumulative travel time 1032.13 sec

Before mitigation the TDS at the edge of RMZ was
240 mg/L above the ambient TDS. The results also
showed that in approximately 22 minutes the plume

https://scholarworks.uaeu.ac.ae/ejer/vol27/iss1/1

elevated TDS drops to the ambient TDS, while
covering a distance of 200 m downstream, in
comparison to the current conditions where the
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plume's elevated TDS drop to the ambient TDS
within 41 minutes and covering a distance of 400 m
along the downstream.

4. CONCLUSION AND RECOMMENDATIONS

The assessment of the environmental impact of
seawater desalination at the outfall area of a
government-owned MSF desalination plant (SPWS)
indicated that the temperature of the brine discharge
from the plant is within Bahrain Mixing Zone
standards during the winter season. However, the
difference in temperatures between the discharged
brine and the ambient is relatively high reaching
20°C. The simulated temperatures at the outfall area
showed that the plume elevated temperature drops
down to almost the ambient temperatures in
approximately 37 minutes after traveling a distance
of 350 meters downstream. The plume elevated
salinity drops to the ambient seawater salinity after
approximately 41 minutes after traveling a distance
of about 390 meters downstream.

A technical mitigation option represented by mixing
of power cooling water with brine is investigated for
the winter season using the developed simulation
model and have shown a high potential for
mitigation. The results showed that this mitigation
option has the potential of reducing the impacts of
temperature by 30% and that of the salinity by 38%.
Under this mitigation option, the plume elevated
temperature drops down to almost equal to the
ambient temperature in a distance of 190 m
downstream in approximately 22.5 minutes, while
the plume elevated salinity drops to the ambient
salinity in a distance of 200 meters in 22 minutes.
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ANNEX A
STATISTICAL CRITERIA FOR THE EVALUATION OF MODELS PERFORMANCE

1. RELATIVE ROOT MEAN SQUARE ERROR 2. GOODNESS OF FIT (R2)
(RRMSE) n . . 2
>.(0,-0)(P, -P)

1 n , R2: = i=1 = = =
0

i=1 i=1 2
) i O]

ol where P is the mean of the predicted values over
whe(e is the mean of the observed values over the time period (1 to n). R? is ranging from 0.0 to 1.0
the time period (1 to n). The RRMSE has a indicating a better agreement for values close to 1.0

minimum value of 0.0, with a better agreement and it is known as the goodness of fit [14][15]. The
close to 0.0. characteristics of the different statistical criteria are
given in Table 10

RRMSE =

Table 10. The characteristic of the different statistical criteria
Relative Root Mean Square Error (RRMSE)

RRMSE=0 model is perfect

RRMSE=min model is optimal

Goodness of Fit (R?)

R%=1 model is perfect

R2=max model is optimal

R2=0 model has no prediction capability
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