Analysis and Design of a Soft Switching Z-Source Boost DC-DC Converter

Mahdi Rezvanyvardom
m-rezvanyvardom@araku.ac.ir

Amin Mirzaei
Arak University, a-mirzaee@araku.ac.ir

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/ejer

Part of the Digital Circuits Commons, and the Electrical and Electronics Commons

Recommended Citation

ANALYSIS AND DESIGN OF A SOFT SWITCHING Z-SOURCE BOOST DC-DC CONVERTER

Mahdi Rezvanyvardom¹, Amin Mirzaei²

¹Assistant Professor, Department of Electrical Engineering, Faculty of Engineering, Arak University, Arak, Iran, email m-rezvanyvardom@araku.ac.ir
²Assistant Professor, Department of Electrical Engineering, Faculty of Engineering, Arak University, Arak, Iran, email a-mirzaee@araku.ac.ir

(Received 1st February and Accepted 11th May 2020)

Abstract

This paper proposes a high step-up fully soft switched Z-source Boost DC-DC converter, which uses two resonant paths to create soft switching conditions for switches and diodes and also increases the voltage gain. The proposed converter only has one switch, so it has a simple structure. Furthermore, its control circuit remains pulse width modulation. Since soft switching conditions are provided for all switching elements, the converter efficiency is very high. This converter also has all advantages of Z-source converters. The converter is analyzed and simulated in PSPICE software. The results confirm the aforementioned advantages and features of the proposed converter.

1. INTRODUCTION

In recent years, the use of switching power supplies has become widespread in the industries. Therefore, the presentation of new topologies for DC-DC switching converters has been considered to improve the performance of these resources [1-4]. Switching converters are divided into three general categories of voltage-source converters, current-source converters and impedance-source (Z-source) converters. Unfortunately, most of the renewable-energy sources such as; solar cells have low and variable output voltages. As a result, using high step-up DC-DC converters can increase their output voltage and stabilize it [5-8]. The Block diagram of a grid-connected standalone PV system is presented in Figure 1. Due to the low output voltage of solar panels, the step-up DC-DC converter is one of the most important parts in the PV system as shown in Figure 1. One of the main advantages of the Z-source converters in comparison with the voltage-source and current-source-converters is the higher voltage gain, which allows the designers to use fewer transformers in their topologies [9, 10]. Nowadays, reducing the volume and weight of switching power supplies is very important in designing. Therefore, high switching frequency is used to implement the power supplies. However, the use of high switching frequencies can increase the switching losses and also reduce the efficiency of the circuit. Thus, soft switching techniques are applied to solve these problems. On the other hand, the use of them is a good way to reduce radio-frequency interference (RFI) and electromagnetic interference (EMI) [11-18]. In today's modern converters; the Z-source structures are highly considered for their advantages, such as high-voltage gain, clamped switch voltage, and higher reliability versus load variations [19, 20]. Z-source converter that was first suggested by Peng in 2003 [21]. Recently, lots of topologies based on Z-source converter have been proposed by researchers to improve the voltage gain. Although, most of them have lots of elements, high complexity, high volume and low efficiency [22-
The proposed topologies in [23, 25] use transformer to create isolation between input and output. Conduction and switching losses are high due to use the transformer and hard switching condition. Low switching frequency and high number of passive elements in [27] leads to high volume and weight for the converter. Furthermore, its efficiency is low due to hard switching condition. The proposed converters in [24, 26] have complex structure and control. Besides they suffer from hard switching condition.

In this paper, a Boost Z-source DC-DC converter is proposed that uses soft switching techniques (ZCS and ZVS) for the main switch and diodes. The proposed converter is a Z-source converter that uses the impedance source network and two resonant paths to increase the voltage gain. The converter has simple structure due to use of one power switch. Moreover, pulse width modulation (PWM) control is applied to trigger the switch. The operation modes of the proposed converter, theoretical waveform and simulation results are explained. Finally, the conclusions are presented in the last section.

2. OPERATING PRINCIPLES OF THE PROPOSED CONVERTER

Figure 2 shows the structure of the proposed converter. It is used only one switch (S1) in the topology. Besides, L1 is the input filter inductor.

![The proposed Z-source Boost DC-DC converter](image)

In each switching cycle, the proposed converter has two modes of operation, which will be discussed below.

Mode 1 (t0<t1): During this mode, switch S1 is turned off, while output diode D0 is forward biased to transfer the power from the input to the output. Furthermore, a resonance between capacitors C4 and C5 and inductors L2, Ls1 and Ls2 occurs. Therefore, flows to switch S1. The theoretical waveforms for the proposed converter is depicted in Figure 3. This converter has all advantages of Z-source converter, which include:

- Higher voltage gain for the same duty cycle.
- Lower inrush current.
- Higher reliability (separation of load and source from each other in case of short circuit at the load side).
- Lower Harmonic injection.
- Second-order output filter [31].
the inductor currents are decreased, and the capacitor voltages are increased. If the initial voltages of the capacitors C_1 and C_5 are equal to $-V_{C4}(0)$, then the following equation is obtained.

$$V_{C4}(t) = V_{C5}(t) = -V_{C4}(0) \cos \omega_{r1}(t-t_0)$$

Since the circuit has symmetric structure, then $C_1 = C_2$, $L_{q1} = L_{q2} = L_{q3} = L_{q4}$, $L_{s1} = L_{s2} = L_{s5}$, $C_4 = C_5$, $L_{k1} = L_{k2} = L_{k3}$. As a result, the following equation is obtained.

$$C_{eq1} = \frac{C_2}{2}, \quad L_{eq1} = 2L_{q2} + L_2$$

$$\omega_{r1} = \frac{1}{\sqrt{C_{eq1}L_{eq1}}} \quad Z_{r1} = \frac{L_{eq1}}{\sqrt{C_{eq1}}}$$

$$i_{L2}(t) = i_{LS}(t) = -\frac{V_{C4}(0)}{Z_{r1}} \sin \omega_{r1}(t-t_0)$$

The voltage across capacitors C_1 and C_2 are always constant, and these capacitors can be assumed like a DC voltage source. Moreover, the current flows through input filter inductor L_1 is constant and is equivalent to a DC current source. During this mode, diodes D_1 and D_2 are reverse biased and the current that flows through resonant inductors L_{k1} and L_{k2} is zero.

$$L_{eq} = n^2L_S$$

$$I_{C1} = I_{C2} \rightarrow I_{in} = 2I_{C1} + I_2 = 2I_{C1} + \frac{I_1}{n}$$

Capacitor C_3 is very small. Thus at the beginning of this mode, it is charged in a short time and the voltage across it will be equal to V_{in}. Therefore, no current flows through the capacitor during this mode. This mode ends when the voltage across capacitors C_4 and C_5 reaches to its maximum value ($V_{C4}(0)$) and the current that flows through inductors L_{2}, L_{51} and L_{52} reaches zero. At the end of this mode, output diode D_5 is turned off under ZCS condition. The duration of this mode is determined as follows. The equivalent circuit for mode 1 is depicted in Figure 4.

$$t_1 - t_0 = \frac{1}{2\omega_{r1}}$$

Mode 2 ($t_1 < t < t_2$): This mode starts when switch S_1 is turned on at t_1. It is turned on under ZCS condition because the currents flow through inductors L_{2}, L_{51}, and L_{52} are zero. When switch S_1 is turned on, two resonant paths are created. The first resonance starts between capacitor C_4 and inductors L_{51} and L_{k1} through diode D_1 and switch S_1. Therefore, diode D_1 is turned on under ZVS condition. This is done because the diode is connected in series with inductor L_{k1}, which has zero current at t_1. Similarly, the second resonance starts between capacitor C_5 and inductors L_{52} and L_{k2} through diode D_2 and switch S_1. Consequently, diode D_2 is turned on under ZCS condition. This phenomena occurs because the diode is connected in series with Furthermore, the currents of inductors L_{k1} and L_{k2} are increased sinusoidally.

![Figure 4. The equivalent circuit for mode 1](image)

$$L_{eq2} = L_{k1} + L_{51}$$

$$\omega_{r2} = \frac{1}{\sqrt{C_{eq2}L_{eq2}}} \quad Z_{r2} = \frac{L_{eq2}}{\sqrt{C_{eq2}}}$$

$$V_{C4}(t) = V_{C5}(t) = V_{C4}(0) \cos \omega_{r2}(t-t_1)$$

$$i_{LS}(t) = i_{Lk}(t) = \frac{V_{C4}(0)}{Z_{r2}} \sin \omega_{r2}(t-t_1)$$

$$I_{Lk} = I_{Lk1} = I_{Lk2} \rightarrow I_{S1} = I_{L2} + 2I_{Lk}$$

During this mode, output capacitor C_{0} supplies the load, while output diode D_5 is reverse biased. This mode ends when the voltage across capacitors C_4 and C_5 reaches $-V_{C4}(0)$, while the resonance currents that flow through inductors L_{51}, L_{52}, L_{k1} and L_{k2} are zero.

$$t_2 - t_1 = \frac{1}{2\omega_{r2}}$$

Since switch S_1 is turned on, the voltage across capacitor C_5, which is connected in parallel with the switch is zero during this mode. As a result, at the end of this mode, switch S_1 can be turned off under ZVS condition. The equivalent circuit for mode 2 is depicted in Figure 5.

3. **SIMULATION RESULTS**

A 120W of the proposed Z-source Boost DC-DC converter is designed and simulated. The input...
voltage of the converter is 48 volts, and its output voltage is 384 volts.

The switching frequency is 100 kHz for the switch. The type of diodes and switch are selected based on the voltage and current stresses [32]. Circuit parameters with details including type of materials and their values based on the design considerations are presented in Table 1.

Figure 6(a) shows the voltage and current waveforms of switch S1 and their zoom versions are depicted in Figure 6(b). According to the converter operation, switch S1 is turned on under ZCS condition. This is done because the current flows through inductors L2, Ls1, and Ls2 is zero. Based on the converter operation in mode 2, switch S1 is turned off under ZVS condition. This phenomena occurs because the voltage across capacitor C3 that is connected in parallel with the switch is zero. Figure 7(a) shows input filter inductor current L1 waveform, which has a low ripple and indicates the converter operation in the CCM mode. Furthermore, Figure 7(b) shows the voltages across capacitors C1 and C2, which have constant values. Figure 8(a) shows inductor current L2 waveform. The voltage across resonant capacitors (Vc3 = Vc4) is shown in Figure 8(b), which is sinusoidal due to the resonance operation of the converter and varies between Vc4 (0) and -Vc4 (0). The values of the input and output voltages are shown in Figure 9(a). Moreover, resonant inductors currents I_Lk1 = I_Lk2 waveforms are shown in Figure 9(b), which are sinusoidal due to the converter operation. The voltage across capacitor C3 is similar to the voltage across switch S1. Figure 10(a) shows the voltage and current waveforms for diodes D1 and D2, which are similar to each other. Besides, their zoom versions are depicted in Figure 10(b).

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>TYPE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Switch (S1)</td>
<td>IRF120</td>
<td>-</td>
</tr>
<tr>
<td>Diodes (D1, D2, Do)</td>
<td>UF4004</td>
<td>-</td>
</tr>
<tr>
<td>Inductor (L2)</td>
<td>-</td>
<td>100 µH</td>
</tr>
<tr>
<td>Resonant Inductors (L4k1, L4k2)</td>
<td>-</td>
<td>30 µH</td>
</tr>
<tr>
<td>Coupled Inductors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ls1, Ls2)</td>
<td>-</td>
<td>0.4 µH</td>
</tr>
<tr>
<td>(Lq1, Lq2)</td>
<td>-</td>
<td>10 µH</td>
</tr>
<tr>
<td>Turn Ratio</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Input Filter Inductor (L1)</td>
<td>-</td>
<td>200 µH</td>
</tr>
<tr>
<td>Capacitors (C1, C2)</td>
<td>-</td>
<td>100 µF</td>
</tr>
<tr>
<td>Resonant Capacitors (C4, C5)</td>
<td>-</td>
<td>90 nF</td>
</tr>
<tr>
<td>Capacitor (C3)</td>
<td>-</td>
<td>2 nF</td>
</tr>
<tr>
<td>Output Capacitor (Co)</td>
<td>-</td>
<td>100 µF</td>
</tr>
</tbody>
</table>
Based on the converter operation in mode 2, these diodes are turned on simultaneously under ZCS condition. This is due to series connections of resonant inductors L_{L1} with diode D_1 and L_{L2} with diode D_2, which has zero current when switch $S1$ is turned on. Moreover, the diodes are also turned off under ZCS condition. Figure 11(a) shows the voltage and current waveforms of output diode D_o. Furthermore, their zoom versions are depicted in Figure 11(b).

Due to resonance between inductors L_2, L_{S1}, and L_{S2} and capacitors C_4 and C_5, the current that flows through them reaches zero at t_1. As a result, diode D_o is turned off under ZCS condition. Furthermore, diode D_o is turned on when switch S_1 turns off. The diode is turned on under ZCS condition because the current that flows through inductors L_2, L_{S1}, and L_{S2} that are connected in series with diode D_o reaches to zero again. Consequently, the power is transferred from the input to the output. The comparison of proposed ZS DC-DC converter with other similar topologies are also presented in Table 2. Due to the operation of the auxiliary cell to create soft switching conditions for all semiconductor devices, the efficiency curve for the proposed Z-source Boost DC-DC converter versus conventional Z-source converter is depicted in Figure 12. As shown in this figure, the efficiency of the proposed converter at nominal power (120 watts) is 96%, which indicates the good performance and a significant reduction of losses in the proposed converter.
Figure 9. (a) Values of the input and output voltages and (b) Resonant inductors currents $I_{L1} = I_{L2}$ waveforms

Figure 10. (a) Voltage and current waveforms for diodes D_1 and D_2, (b) zoom version

Figure 11. (a) Voltage and current waveforms of output diode D_o, (b) zoom version
Table 2. The comparison between proposed ZS DC-DC converter and other similar topologies

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage gain</td>
<td>16</td>
<td>10</td>
<td>15</td>
<td>15.2</td>
<td>7.8</td>
<td>8</td>
</tr>
<tr>
<td>Isolation between input and output</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Input current</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Discontinuous</td>
<td>Continuous</td>
<td>Continuous</td>
<td>Continuous</td>
</tr>
<tr>
<td>Components</td>
<td>4 Diodes</td>
<td>4 Diodes</td>
<td>2 Diodes</td>
<td>5 Diodes</td>
<td>6 Diodes</td>
<td>2 Diodes</td>
</tr>
<tr>
<td></td>
<td>1 Switch</td>
<td>1 Switch</td>
<td>1 Switch</td>
<td>1 Switch</td>
<td>2 Switches</td>
<td>8 Switches</td>
</tr>
<tr>
<td></td>
<td>3 Inductors</td>
<td>4 Inductors</td>
<td>2 Inductors</td>
<td>3 Inductors</td>
<td>2 Inductors</td>
<td>8 Inductors</td>
</tr>
<tr>
<td></td>
<td>5 Capacitors</td>
<td>6 Capacitors</td>
<td>3 Capacitors</td>
<td>7 Capacitors</td>
<td>5 Capacitors</td>
<td>5 Capacitors</td>
</tr>
<tr>
<td>Output power</td>
<td>300 W</td>
<td>100 W</td>
<td>500 W</td>
<td>150 W</td>
<td>3 KW</td>
<td>120 W</td>
</tr>
<tr>
<td>Switching voltage stress</td>
<td>$\frac{V_{D}}{n(1+D)}$</td>
<td>$\frac{V_{in}}{1-4D}$</td>
<td>$\frac{V_{in}}{1-2D}$</td>
<td>$\frac{V_{in}}{1-2D}$</td>
<td>$\frac{1+D}{V_{in}}$</td>
<td>$\frac{V_{in}}{1-32D}$</td>
</tr>
<tr>
<td>Soft switching condition</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>50 KHz</td>
<td>30 KHz</td>
<td>10 KHz</td>
<td>40 KHz</td>
<td>5 KHz</td>
<td>100 KHz</td>
</tr>
</tbody>
</table>

4. CONCLUSION

This paper proposes a high step-up fully soft switched Z-source Boost DC-DC converter, which uses two resonant paths to create soft switching conditions for semiconductor devices and also increases the voltage gain in the circuit. The proposed converter only has one switch, so it has a simple structure. Furthermore, its control circuit remains pulse width modulation (PWM). Therefore, the proposed converter has much less complexity compared to similar structures. Besides, the proposed converter uses the impedance network structure in the main power path from the input to the output.

Figure 12. Efficiency curve of the proposed converter versus conventional Z-source converter

As a result, the current rate of the circuit element is very low. Since the soft switching conditions are provided for semiconductor devices, the converter efficiency is very high. A 120W of the converter operating at 100 kHz is simulated by PSPICE software. Furthermore, to verify the proposed converter performance, voltage conversion of 48 V/384 V is provided. The voltage gain of the proposed converter is eight without using transformer in its structure. The measured efficiency of the proposed Z-source Boost converter is 96% at full load which is around 6% higher than conventional Z-source converter.

REFERENCES