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Abstract

UAVs - Unmanned Aerial Vehicles — have gained significant attention recently, due
to the increasingly growing range of applications. However, developing collaborative
UAYV applications using traditional technologies in a tightly coupled design requires
a great deal of development effort, time, and budget especially for heterogeneous
UAVs. Moreover, monitoring and accessing UAV resources using traditional
communication media suffer from several restrictions and limitations. This research
aims to simplify the efforts, reduce the time, and lower the costs of developing
collaborative applications for distributed heterogeneous UAVs. In addition, the
research aims to provide ubiquitous UAV resources access. A platform is proposed
for developing distributed UAVs. This platform provides services to simplify
application development. In this approach, UAVs are integrated with the Cloud
Computing paradigm to provide ubiquitous access to their resources and services.
Due to the limited capabilities of UAVs, a lightweight architecture is adopted. UAV
resources and services are modeled in a Resource Oriented Architecture which is a
new flexible web service design pattern with loosely coupled interaction between
services. Hence, they are accessed as Representational State Transfer RESTful
services using HTTP. Moreover, the research proposes using a broker architecture to
increase efficiency by separating responsibilities. Therefore, it separates the
requester’s logic and functionalities from the provider’s. It also takes the
responsibility for allocating the issued request to the available and suitable UAV(s).
To test the proposed platform, I first developed the UAV resources as a payload
subsystem then provided them with Internet connectivity. Then, resource identifiers
and uniform interfaces were developed using the RESTful Application Programming
Interfaces (APIs). I also developed the broker service along with a database
containing the information of the registered UAVs and their resources. The platform
system components were tested using a requester interface in a browser by issuing a
request for a resource to the broker to find and request the service from a suitable
UAV. The test was done for retrieving data from UAVs as well as requesting actions
from them. The main contributions of this research are proposing the UAV-Cloud

platform for simplifying the development of ubiquitous UAV applications and its



vii
perspectives, as well as a lightweight loosely coupled design for UAV resources.

Another contribution is developing the broker architecture for separating

responsibilities in this platform.

Keywords: UAVs, Cloud Computing, distributed systems, broker, client-server

architecture, Resource Oriented Architecture -ROA, Representational State Transfer-
RESTful.
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Chapter 1: Introduction

This chapter gives a brief overview about this research. After that the
problem statement is presented and the main objectives of this research are
illustrated, followed by the scope that this research covers. Finally, the thesis outline

is stated.

1.1 Overview

Unmanned Aerial Vehicles (UAVs) are aircraft without human pilots on
board. UAVs are remotely controlled from the ground or autonomously by an on-
board computer. A recent study estimated that in 2017, the civilian UAV market in
the United States alone could reach $560 million out of a total of around $5 billion
[1]. With recent advances in airframe, control, and communication technologies
offered in UAVs, manned operations for many applications can be efficiently
replaced with UAVs. UAVs have the potential to perform various important and
repetitive tasks; they can do this in an automated efficient way. This is mainly a
consequence of their high accuracy, mobility, and repeatability levels [2].

UAVs can be very useful in agriculture for spraying pesticides or seeds; in
search and rescue operations in disaster areas; for capturing large areas for security
and surveillance; in environmental monitoring; for large infrastructure monitoring;
and in terrain mapping applications. Such tasks require repetitive, hazardous and/or
tedious tasks. Although manned aerial vehicles can be used, such utilization requires
long hours of repetitive, highly focused, and costly flights that place a heavy burden

and high risk on pilots.
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As they need to rely on some form of Radio Frequency (RF) communication,
UAYV applications need to establish direct links among themselves and with the
ground station(s). Such links may either be single links or multiple hops through
other communication nodes that may be other UAVs nearby or some intermediate
ground stations [3]. However, this peer-to-peer RF communication between ground
stations and UAVs is not suitable for many of the UAVs’ dynamic distributed and
heterogeneous operating environments.

Some UAV missions involve multiple UAVs working together to quickly
achieve a specific task [4]. However, controlling and utilizing multiple UAVs that
will effectively and concurrently operate and coordinate them for a certain problem
area requires a huge number of man hours in design, development and testing [5].
This is mainly due to the lack of technologies that can be utilized to effectively
coordinate the operations of multiple UAVs. Moreover, a collaborative mission
usually consists of multiple tasks that are executed sequentially or concurrently by
multiple UAVs to accomplish the mission. These tasks are allocated to UAVs and
monitored by either a ground station [6][7], or autonomously [8][9]. Developing such
missions is time consuming and costly due to the heterogeneity of UAVs’ resources
and systems.

The aim of this research is to provide ubiquitous UAV resources and services
access through the cloud. As well as separating responsibilities for more efficient
architecture, this eases the development of new client applications without the
repetitive efforts for heterogeneous UAVs development.

The approach adopted in this research study is to utilize the Resource-
Oriented Architecture (ROA) model by providing the UAV’s resources and

capabilities to other requesters through Application Programming Interface (APIs).
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The ROA is a client-server architecture implemented in Representational State
Transfer (REST) architecture. However, for distributed UAVs we utilize the broker
architecture pattern for more efficient and scalable applications. Here, UAVs register
their services and resources in the broker. Then, the requester sends the request of a
service to the broker which allocates the appropriate available UAV that can perform
the service. This model is implemented using the Cloud Computing (CC) paradigm.
By integrating UAVs to the cloud, UAVs are accessed ubiquitously as cloud
resources. CC has been expanded not only for computers and mobile devices but also
for embedded systems [10]. Similarly, UAVs have embedded systems that conform
to the concept of Internet of Things (IoT) [11] and Web of Things (WoT) [12], so
that they can be connected to the Internet to be accessed and monitored through the
Web. For example, a client application can monitor a mission’s progress as well as
the status and location of each UAV through a web browser. Moreover, it enables
access to the UAVs' resources such as the camera, sensors, and actuators using web
services’ protocols.

The contribution of this research includes: integrating UAVs not only to the
Internet but also to the cloud computing paradigm that provides resources and
services as a shared pool. In addition, the research proposes a UAV-Cloud platform
for distributed UAVs. This platform focuses on their resources and services of the
payload system. These resources are designed in a lightweight flexible ROA,
providing APIs for each resource in a loosely coupled architecture to support
reusability. Furthermore, a broker layer with a database is developed on the cloud for
separating responsibilities to separate the UAV side from the client side.

The research assumes that UAVs are autonomous; hence, the control

subsystem is responsible for the navigation process to the required location. In
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addition, the user mission is assumed to be decomposed into set of tasks, where each
task could be assigned to a UAV. Furthermore, the research assumes the availability
of reliable network connections between the UAVs and the cloud. This is a valid
assumption especially for environment such as smart cities.

The research is evaluated by developing a prototype using Arduino devices
as an UAV payload subsystem with a Wi-Fi shield for internet connectivity. Each
UAYV will be considered as a server that provides its resources and services to be
accessed through defined RESTful APIs. Then a broker will be implemented by
NodeJS platform using JavaScript programming language. The UAVs will register
their services, capabilities and identifications to the broker, so that the broker stores
the information in a database that contains the data of the registered UAVs.

For the purpose of simplicity, the requester will be a RESTful requester plug-
in on the browser. The request of a certain service will be sent to the broker, then the
broker allocates the services to the available suitable UAV that matches the request

considerations.

1.2 Statement of the Problem

At this point in time most UAVs rely on radio frequency communication.
Most typical UAV operations need to establish direct links among themselves and
with the ground station(s) through certain frequencies that both transmitter and
receiver are tuned to. However, peer-to-peer communication and radio frequency
transmission suffer from many restrictions such as a narrow range of communication
which depends on the transmission frequency. Although the covered communication
area increases proportionally with the transmission frequency, it leads to a high

consumption of the limited UAV’s energy source more rapidly for the transmission.
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Moreover, the transmitter and receiver should be tuned to the same frequency to be
able to communicate. Also, such common set-up systems suffer from the difficulty of
programming and developing new applications depending on the UAV's language
and commands. In addition, this approach does not support the heterogeneity of
UAVs, where each UAV could have a different operating system and different
command syntax and interfaces. It restricts the location of the ground station to the
mission's location and requires UAVs to be in direct line-of-sight (LOS) of the
ground station to maintain communication and control. In addition, the control and
monitoring of UAV missions have become more complicated and are limited to the
specific devices that UAVs are connected to.

Most collaborative UAV missions’ developments face difficulties when
dealing with heterogeneous UAVs, where they have different resources, commands
and operating systems. Therefore, the development of UAVs is specified for a certain
mission and re-developed for each different mission using the same UAVs. That is
due to the tightly coupled design of UAVs functionalities.

Due to the difficulty of task allocation for UAVs, tasks require specific
resources that are available in some UAVs with specific conditions such as energy
level and location. Moreover, real time monitoring for these UAVs throughout the

mission is a difficult process for a human.

1.3 Objectives

This research aims to provide UAV platform architecture for developing
ubiquitous UAV applications based on separating responsibilities, where UAVs are
responsible for providing their resources and services to the given requester, while

another layer- the broker- is responsible for monitoring and registering UAVs which



will be able to allocate the suitable UAV for requests. As a result, the requester of a
service does not need to know the UAV services’ providers and their resources. This
facilitates the development of new missions because of the loosely coupled services

and the responsibility separation.

Moreover, developing new applications becomes an easy process regardless
of the heterogeneity of the UAV system and commands. Accordingly, adding UAVs
becomes as easy as plug and play. This research proposes a broker architecture that
keeps records of the registered UAVs and their services and resources with up-to-
date information of the dynamic UAVs. This architecture is built in the cloud
computing paradigm. In addition, it utilizes the cloud resources and the ubiquitous

service, so that UAVs are accessed regardless the location of the user.

1.4 Scope

The scope of this research is the UAV payload subsystem that is, UAV
resources and services. The research focus is to integrate UAVs to cloud computing
paradigm and model their resources and services as Resources-Oriented Architecture
that is implemented using RESTful web services. Resources and services are loosely
coupled where there is no direct relation between them. They are utilized using
broker architecture to separate the requester from the provider. The broker reserves
the information of the registered UAVs in the database, and allocates the resource

request to the appropriate UAV.

Decomposition of the mission from user requests into multiple assignable
tasks 1s out of the scope of this research. Therefore, for testing purposes, tasks are

simulated as an external request from a simple browser application. In addition,
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controlling aspects and flight issues are beyond this research. The service assumes
that the flight subsystem gets the destination parameters without specifying

directions or path planning.

1.5 Thesis Outline

The rest of the thesis is organized as the following;

Chapter 2 is the literature review which examines briefly UAVs’ missions
and their importance. It then focuses on previous efforts toward multi-UAV
communication and architectures. This is followed by a discussion of the IoT smart

objects and their available platforms.

Chapter 3 proposes the Framework of UAV Cloud Computing starting by
defining the layers of the framework and then determining the user types of the
system. After that, the opportunities gained from this system are illustrated. Then a
discussion of the technical considerations is specified for both the UAVs side and the

platform. Finally, the components of the platform are detailed.

Chapter 4 focuses on designing the platform APIs using the ROA architecture
that is implemented as RESTful HTTP. The design begins by defining the UAV
resource types along with their APIs, then the database model for storing the UAV
information as well as the operation information. After that, the broker’s APIs design
which allowed the interaction of both UAVs and application developers is discussed.

Finally, a brief description of the user application is addressed.

Chapter 5 illustrates the implementation and testing of the architecture system
components. The implementation includes the UAV side as well as the broker side.

The UAYV side is implemented as Arduino boards with connected sensors and LEDs
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as resources and services accessed by their APIs. This is followed by the
implementation of the broker layer in NodeJS connected to PostgreSQL database, the

broker offers APIs to access UAVs through it.

Finally, Chapter 6 summarizes the research and makes suggestions for future

area of further researches.



Chapter 2: Literature Review

This chapter begins by examining UAVs and highlighting the motivation for
their usage and importance. Then, a summary is presented about UAV
communication types and their limitations. This is followed by an examination of
multi-UAV monitoring architecture, which focuses on previous efforts toward UAVs
middleware and cloud computing. After that, a similar field of smart objects and loT

are discussed as my research is built upon this concept.

2.1 Motivation to UAVs and their Usages

UAVs are systems that include many subsystems such as flight and control,
communication as well as payloads. They vary in size from High Altitude Long
Endurance to Nano Air vehicles, with different speed capabilities and types of
missions. Although UAVs have been known in military missions, they have recently
been introduced into civilian missions and have had a great impact on the

environment [13].

Most civilian missions use small UAVs that have limited capabilities and
payloads. A UAV may have one or more payloads such as sensors and actuators.
Sensors collect data from the environment, while actuators perform actions on the

environment.

There are many applications for UAVs such as the example presented by
Varela et al. [14], where UAVs are used for environmental monitoring such as
collecting data on air quality in different layers of the atmosphere as some

information cannot be collected by ground systems due to gasses or smoke from
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fires. The main missions of these UAVs were to measure pollution and locate its
sources. The swarm intelligence based strategy can be used as it uses a completely
distributed approach. Another example, Fausto et al. in [15] proposed architecture for
using UAVs and Wireless Sensor Network (WSN) in agriculture applications. Fausto
et al. developed a collaborative UAVs system to spray pesticides and fertilizers in
agricultural areas that can hardly be reached by humans efficiently without missing
some areas in the spraying process, duplicating spraying areas or spraying outside

boundaries.

Furthermore, Chmaj and Selvaraj [4] addressed a survey about collaborative
and distributed UAV applications. They presented several applications, such as;
object detection and tracking, where UAVs search and allocate a specific object then
track it using a swarm of UAVs that communicate with each other. Surveillance is
one of the most famous applications in UAVs, where multiple UAVs are distributed
to monitor a large area. Another important application is data collection through
WSN. This includes ground sensors as well as UAV sensors. Collected data can then
be sent to the ground station to be monitored and analyzed. Environmental
monitoring used to detect forest fires, storm and pollution has gained high interest in

UAYV applications.

Mohammed et al. [16] referred to UAV applications for smart cities. They
addressed safety applications such as traffic and crowd management as well as urban
security especially for big public events. They also discussed the business
applications of UAVs such as in Amazon Prime Air for delivering products and their
use for restaurant services. Also they proposed the development of UAVs in Dubai

for small lightweight items delivery as well as documents and medicine [17].
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These various application opportunities of UAVs have encouraged
researchers and developers to focus on improving efficient frameworks to develop
UAYV applications easily, especially for multiple distributed UAVs that cooperate
with each other. Therefore, they have developed different architectures and

communication protocols for collaborative UAVs.

2.2 UAV Specifications

UAVs vary in size and specifications of their software and hardware
according to their category. Categories depend on the communication range, UAV

mass as well as their usages [18]. UAVs are categorized as shown in Table 2-1.

Table 2-1 UAVs categories according to mass, flight altitude, range of
communication and endurance [19].

Category Mass Range Flight | Enduranc

name [kg] [Km] Altitude e
[m] [hours]
Micro <5 <10 250 1
Mini <25/30/ <10 150/250/ <2
150 300

Close 25-150 10-30 3000 2-4
Range

Medium 50 -250 30-70 3000 3-6
Range

High Alt. > 250 >70 >3000 >6
Long

Endurance

However, most civil applications use only micro and mini UAVs. These
categories have a limited endurance up to 2 hours due to their limited power supply.
Furthermore, they fly in low altitudes with a short communication range not
exceeding 10 kilometers. In such categories, the UAV is capable of carrying limited

weight which restricts the hardware resources into certain boundaries.
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Chao et. al. [20] compared the physical specifications of small UAVs, shown

in Table 2-2. The comparison shows the limited processing and memory of UAVs. In
addition, most of these resources are consumed for controlling, navigation and

communication processes.

Table 2-2 A comparison of physical specifications of autopilots [20].

Size Weight (g) Power Price DC In CPU | Memory
(cm) w/o radio Consumption (k USD) V) (K)
Kestrel 2.2 5.08%3.5%1.2 16.7 500mA(3.3 or 5V) 5 6-16.5 | 29MHz 512
MP 20288 10%4*1.5 28 140mA@6.5V 55 4226 | 3MIPS -
Piccolo LT(w.modem) 13*¥5.9%1.9 45 4W - 4.8-24 | 40MHz 448
Unav 3500 10.16%5.08*2.03 42.45 100mA@6V 3/5(FW/HL) 5-7 40MIPS 256

Moreover, Chao indicated that open source UAV designed in Linux is useful
for researchers to add and modify the source code and add their hardware. The
industry provides open source hardware in which the developer has the freedom to

design and program systems. Arduino and Raspberry Pi are the mostly used open

source hardware. A comparison of these devices is shown in Table 2-3.

Table 2-3 A comparison of open hardware devices.

Platform

Veriant

Software

Operoting System |-

Jev. Envripmments / Toolkits

Frogramming Langiage
Architecture

Hardware
Processor
Speed

fand

RO

0 fwarious proocals)
ADC

usa|-

Auficy

Viden |-

Mize.

Cast

Devices
Arduing Prageller Beagls Board Raspberry Pi
IUrl-:; JPluphIiLk Iiln".'. i [Muc|-:'| B
tncdroid, Lino, Windows CE, [Linux, RISC O%
RISC OS5
#rduine IDE, Eclipse Prapeller/Spin Eclipse, Android ADK, OpenEmbadded, OEML,
Scratchbox Scratchbox, Eclipse
‘Wiring-hased [~C++| Spin / Propeller Assembly Python, T, etc Pythan, T, possibly BASIC
aBit 2Bt Eri 32Bit
ATMEGAIIE PEX324-M44 THRAZTI0 (ARM] BCR2H35 LARM]
16Mhz H0kHz 1200z (Internal) or 4-|720Mhz FO0Mbz
Elihz external
2Klbyte I2kyte 25608 SEME
32Kbyte 32Kbyte 25608 Flash S0
14 £ 22 (on expansion header} |8
i - internally used internally used
1«20 2w
Stieren InfOut Slereo Out, Inow’ USE mic
WiGA, MTSC or PAL DW-0, 5-Vidao HOMI, NT5C or PAL
Plany shields available for E pracessars for parallel SOYMNC, 5233, ITAG, USE (50, 107100 Ethernet, ITAG
added capability tasking 0T, LED
[20.95 [sa9.00 519005 [535.00
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2.3 Radio Frequency (RF) Communication in UAVs

One of the main technical requirements of UAVs is the availability of
communication facilities among them. A lot of research has been done on traditional
radio communication. In [3] a Flying Ad Hoc Network (FANET) model was
designed for UAVs. This model differs from traditional networks, Mobile Ad-hoc
Networks (MANETs) and Vehicular Ad-hoc Networks (VANET) in terms of

connectivity and routing capabilities.

The main challenge facing FANET is routing as the network topology
changes dynamically and rapidly. UAV communications can be either UAV-to-UAV
communication where UAVs communicate with each other or UAV-to-Infrastructure
communication where UAVs communicate with fixed infrastructure locations such
as ground stations. A MANET uses mobile nodes in random network topology that
changes rapidly; therefore, it can be used in UAV FANET to make routing easier and
to improve the performance of wireless communication systems. To increase FANET
communication performance, transmission power needs to be decreased by
communicating with the closer UAVs. As a result, MANET routing mechanisms are

preferred in FANET but they are not directly applicable.

However, this short range peer-to-peer communication is not suitable for
many of the UAV dynamic, distributed and heterogeneous environments. It restricts
the location of the ground station to the mission’s location and requires UAVs to be
in direct line of sight of the ground station to maintain communication and control. In
addition, the control and monitoring of UAV applications become more complicated

and limited to the specific devices that UAVs are connected to.
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2.4 Collaborative UAV Architectures

Using multiple UAVs collaborating together decreases the time needed to
achieve specific tasks. However, developing such applications for UAVs with
heterogeneous devices; different energy levels, varying storage, communication,
sensing and processing capabilities is a complex task [21]. Collaborative UAV's can
be homogenous or heterogeneous in their communication, acting, sensing, storage,
and processing capabilities as well as their energy levels. Although applications that
rely on homogenous UAVs are easier to develop, heterogeneous UAVs can offer
great opportunities for providing cost-effective solutions for complex applications

that require different capabilities for the various tasks involved.

According to Mohamed’s et al. work [22][23], there are six aspects of
multiple UAVs collaboration; (1) collaborative sensing using distributed sensors; (2)
collaborative acting to cover large areas faster; (3) collaborative communication to
allow UAVs to interact with each other; (4) collaborative data processing which
allows UAVs to process large data among the UAVs that have on-board high
performance computers; (5) collaborative storage that organizes data storage among
multiple UAVs depending on their capabilities; and (6) collaborative control of

distributed components to achieve one goal.

2.4.1 Distributed Self-Allocation Architecture for Collaborative UAVs

In distributed collaborative UAV missions, a UAV interacts with all other
UAVs to find the required service provider, and then interacts with it to request and
get the service. In this scenario, all UAVs communicate to allocate tasks as specified

in [6], [22], [24] and [25]. Following this approach, the mission is divided into tasks
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and distributed to all UAVs then each UAV chooses a suitable task for itself. Next,
they negotiate to ensure that all tasks are allocated to UAVs and no task assignment

duplications. After that UAVs exchange messages to execute tasks in the right order.

When a UAYV requires data or a service from another UAV it sends requests
to all other UAVs, then the suitable UAV that provides that service replies to the
requester UAV; next they exchange messages to complete the service. Another
method is to broadcast information, where each UAV broadcasts its services and
status to other UAVs such that the requester knows others’ services and only sends

the request to the provider UAV rather than broadcasting its request.

The self-allocation algorithm for a set of tasks was implemented in [6] for
four UAVs and showed a conflict in allocating a task when having two UAVs had
almost identical resources and capabilities. This showed the inefficiency of the

algorithm for long collaborative service lengths and large numbers of UAVs.

The distributed self-allocation approach has many challenges especially for a
situation where there is a large number of UAVs. This is because it consumes more
energy in communications and negotiation for finding and requesting a service as
well as updating all UAVs with new parameters, since each UAV needs to interact
with all of the other UAVs. Also in such a scenario a lot of memory is used in UAVs
to save the data of the services and information about other UAVs such as their
energy level and locations. Furthermore, in case of re-planning a mission, UAVs
interact with each other for rescheduling. This all leads to high communication traffic

in collaboration, especially in the case of a mission with a huge number of UAVs.
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2.4.2 Previous Efforts Toward Collaborative UAVs Middleware

Collaborative UAVs can be homogeneous or heterogeneous in their operating
systems, commands, communication, acting, sensing, storage, and processing
capabilities as well as their energy levels. While applications that rely on
homogeneous UAVs are easier to develop, heterogenecous UAVs can offer great
opportunities for providing cost-effective solutions for complex applications that
require different capabilities for the various tasks involved. However, developing
such applications for UAVs with heterogeneous devices, different energy levels, and
varying storage, communication, sensing and processing capabilities is a complex
task without middleware [21]. Middleware is the software layer composed of a set of
services and functions to connect different components of a distributed system. It

separates the operating system from the application side.

Distributed UAVs applications development, deployment, operations, and
management are generally very complex tasks. One proposed approach to overcome

these difficulties is to follow the Service-Oriented Architecture (SOA) [23] [26].

Earlier, de Freitas et al. [27] studied the UAVs sensing network specifically
for surveillance applications through middleware. In surveillance applications, UAVs
cooperate with ground nodes to cover the surveillance area. de Freitas et al. focused
on providing an intelligent communication between: (a) UAVs and the ground
station, (b) UAVs and ground nodes and (c) among each other, taking into account
the limited resources and capabilities of UAVs. First, de Freitas et al. proposed
breaking down the mission into a set of sub-missions that can be allocated to
individual nodes. These sub-missions run over middleware. de Freitas et al. detailed

the three layers of the middleware: At the bottom, the Infrastructure layer, in which
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all hardware and resources are managed by the operating system. Then, the Common
Services Layer, that are common in different applications, regardless of the mission
such as networking management. Finally, the top layer, the Domain-Services Layer,
to support application services according the domain, nevertheless, it can be reused
among different applications. A minimal set of middleware services called a kernel
was installed in UAVs and nodes to perform the basic services that support UAVs.
Simulation results were provided to measure the efficiency of the proposed
middleware. The simulation showed the distribution of nodes and the selected ones
for mission. While their simulation demonstrated the number of engaged nodes, it
did not show the discovery method and how to integrate them. In summary, there

was no clear selection process or allocation approach.

The SOA model proposed in Mohamed’s et al. [22] is based on the concept
that every UAV has a global view of all other UAVs; however, it was reported that
this concept has a poor scalability. As a result, Mohamed et al. discussed having a
broker service in each UAV to maintain other UAVs’ information regarding their
services, capabilities, location, power level and other details. Then UAVs exchange
their information through advertising and requests. Requests are invocations from the
consumer to the provider to get a specific service. Mohamed et al. categorized
invocation services into synchronous service and asynchronous service. The former
maintains an active connection between the requester and provider until the provider
returns a result. While in the latter, the connection may be terminated after the
request is sent, then another connection is established when the provider responds
back, which is more efficient in instances where the connectivity is unreliable.

Finally, the Service-Oriented Middleware (SOM) services are integrated to develop
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collaborative services so that applications can be reused without the need to

implement them from scratch for every application [8].

2.4.3 Previous Efforts Toward Collaborative UAVs Cloud

Cloud computing is a new paradigm for hosting and delivering services over
the Internet. Some research has been carried out to utilize the Cloud for some UAV
applications. Chin et al. proposed connecting a UAV to cloud services such as
Google Earth [28]. This was done using an Android-based smartphone that provides
its data to a MySQL database. The user accesses the UAV information in the
database using a web browser. UAVs are controlled using a specific flight plan
defined through a waypoint in the database. Then the mission is followed using
Google Earth software. However, the authors demonstrated the system for a single
UAYV, they did not cover its use for multiple UAVs and their communication among
each other. In addition, monitoring and controlling the UAVs through a database is

generally an inappropriate architecture as it suffers from inconsistent data.

Simanta et al. [29] developed four prototypes using the SOA and
smartphones. The concept started by implementing a service that transmits Motion
JPEG images from a wireless camera to a smartphone via TCP/IP. Due to the TCP
delay, reimplementation was done using User Datagram Protocol (UDP). The first
prototype was a UAV that tracked a vehicle and sent images as Simple Object
Access Protocol (SOAP)-over UDP to a smartphone. In the second prototype
smartphones were connected to the vehicle that sent messages to a fixed station as
well as a UAV that transmitted video feed back to the station. The third prototype

sent messages to both local and remote service consumers. The foruth prototype
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focused on the video performance that was affected by the message overload due to

its high size by using a binary format instead of SOAP.

Video Exploitation Tools is another example of a SOA application for UAVs
as implemented by Se et al. [30]. It allows the user to choose the Region of Interest
(Rol) to view the UAV path as well as the video footprint on a map. The framework
stores files that can be referenced using the exploitation services via SOAP
documents. Here as well, the communication generates high traffic and therefore it

may not always be possible to achieve real-time interactions.

2.5 Cloud Computing for Smart Objects

On the other hand, smart objects such as sensors, actuators, and embedded
devices are connected to the Internet through the IoT [31]. The main focus of IoT is
establishing network connectivity between smart objects and the Internet, while the
WoT builds the application layer on top of the network [32]. Accordingly, the Web

tools and protocols can be used for developing and interacting with these objects.

Some efforts have been vested in IoT and WoT aiming to connect devices
and embedded systems to the Internet and build applications for the client to use
them. For example, Guinard et al. [33] proposed the REST architecture by defining
an object as a server that provides its resources in a ROA. Guinard et al. used the
web tools as a solution for the WoT. Guinard et al. proposed two methods for
accessing objects [34]. First, they connected devices to a smart gateway for
measuring power consumption. The smart gateway is a web server that provides its
resources for the clients to monitor and control electrical devices. In this approach,

objects that have no direct Internet connectivity are connected to the smart gateway
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through other protocols such as Bluetooth and ZigBee. This architecture allows
Internet access to those devices through the smart gateway as well as calculating the
overall consumption of all devices connected to it. The second method is a direct
access to wireless sensor networks, where each node is considered as a web server

that has a uniform interface that the client applications access.

According to the literature, IoT lacks standardizations and there is no
commonly accepted layer architecture [35]. Therefore, there is a wide variety of
platforms on the market. For example, Xively platform is one of the earliest [oT
platforms [36]. It allows users to register their devices and monitor them using API
keys. Another example is DeviceHive [37] that provides a common set of RESTful
web services APIs for access from clients and devices. Also, 52North's Sensor Web
provides access to sensor data encoded in SensorML [38]. The platform offers sensor
registration, inserting observation and marking queries. Furthermore, ThingWorx is
an application development platform with tools for model driven development of [oT
applications [39]. It provides data models for storing devices’ data and semantic

query/ search.

My research is built upon these approaches and proposes a platform with a
broker architecture for the UAV resources in a ROA implemented in a RESTful web

service on cloud computing.
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Chapter 3: UAV-Cloud Framework

This chapter presents a UAV framework on the cloud computing paradigm to
enable the development of distributed UAV operations. Cloud computing has been
expanded to include not only powerful computers and servers but also objects and
embedded systems. Integrating smart objects to the Internet is IoT, while providing
its resources and services is WoT. UAVs with limited capabilities and resources such
as battery capacity, data processing and storage, may use the cloud resources for
application development for distributed UAVs. As a result, UAVs do not need to be
equipped with powerful capabilities and can be heterogeneous in their operating
systems and resources, so that using this technology with standard communication
protocols reduces the total time and cost of application development. UAVs can use
the cloud’s powerful services and resources while the cloud applications can use
UAVs as a real world resource and service provider. Missions and task-allocation to
UAVs depend highly on their locations and capabilities. Thus, Cloud Computing
could provide a platform to manage mission planning and brokering services, while
UAVs offer specialized services that are related to the physical world for certain
tasks such as sensing and acting. This separation of responsibilities for each entity
reduces the efforts needed to develop new applications on top of this platform. In

addition, it allows the addition of more UAVs as plug-and-play to the system.

3.1 UAV-Cloud Framework Layers

Cloud Computing, one of the major IT revolutions, is defined as a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources that can be rapidly provisioned and released with
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minimal management effort or service provider interaction. This model can be used
in UAVs to increase proficiencies and efficiency by collaborative UAVs. Cloud
Computing consists of three service models: Infrastructure as a Service (IaaS) that
includes hardware, virtual machines, storage, networks, and firewalls, then Platform
as a Service (PaaS) to provide a set of APIs for functions for programmatic platform
management and solution development, and finally, Software as a Service (SaaS)
which is an online software application. UAVs can be mapped to Cloud Computing
models to combine UAV resources with cloud features. The framework of the UAV-

Cloud is shown in Figure 3-1.

3.1.1 UAV IlaaS

First, the laaS model includes UAVs and other components. UAVs’
components include their payloads, sensors, actuators, internal memory, processor
and other resources. Other components are any external entities that could provide
resources or services such as ground node sensors or objects connected to the cloud,
or the cloud computing resources such as storage servers and high performance

servers and processors. These are managed through APIs to the PaaS.

3.1.2 UAV PaaS

Second, the PaaS is modeled as middleware to isolate the infrastructure layer
from the application layer. It offers resources as services to the application layer.
PaaS allows integrating cloud services with UAV services to implement powerful
UAYV applications. The platform includes UAV resources and services as well as
cloud services such as collaborative services for mission planning and organizing

resources. The development of collaborative UAVs implies the development of three
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main decision-making abilities: mission planning, task-allocation, and coordinated
task achievement [40][41]. In the proposed architecture, the Mission Planner is the
service responsible for dividing the user mission from its application into a set of
tasks, and then the Task Requester service coordinates these tasks by requesting a
service from the broker according to the tasks’ order. The broker is responsible for
registering UAVs and it reserves their data in a Database Management System
(DBMS). After that it allocates the requested task to the suitable available UAV.
UAV resources and services offer specific data from sensors, or perform an action
using certain actuators, for example, getting a temperature sensor or a gas sensor

from UAVs or performing pesticide spraying and image or video capturing.

3.1.3 UAYV SaaS

Third, SaaS is a lightweight software application available online and built on
top of the PaaS through standard APIs. The developers implement applications for
users to request certain UAV missions, for example, software that requests UAVs for
spraying crops for a specific agriculture area. The user accesses the application to
specify the location and size of the land then requests crop spraying by UAVs. It also
offers monitoring interfaces for the user to follow up the progress and completion of
the mission. Then, the collaborative services in PaaS manage the mission planning,
scheduling and task allocation to suitable UAVs according to their statuses and
resources such as cameras for monitoring, GPS for location, and fertilizer/pesticide
tanks for crop spraying. These services are available by PaaS and are accessed
through APIs. Another example is surveying forests to find the source of a fire. This
mission is established and monitored through another software application that could

use the same set of UAVs. Therefore, Collaboration Services are responsible for
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allocating the suitable available UAVs with gas sensors and cameras to the surveying
mission and managing the spread of UAVs over the forest to ensure they are
covering the whole area efficiently. Then UAVs use customized services to sense
temperatures, capture photos, update status and invoke other services requiring real-
time information. These applications can be built easily on top of the PaaS for the

same UAVs due to the separating of responsibilities of entities.

[ Mission Planer ]

{

Task Requester

PaaS =

laas = UAV2

RlHRZ]'[Rn

UAV1
Resourcel ]'[ R2

Figure 3-1 UAV-Cloud Framework

3.2 UAV-Cloud User Types

There are four types of UAV-Cloud framework users; End Users, Application
Developers, UAV Providers and Administrators. These users access the Cloud
Computing through APIs and identifications depending on the privileges given to

each user.
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3.2.1 End Users

These are the SaaS application users who establish the UAV mission. The
end user accesses online application software through the browser to request the
mission giving specific service parameters. The results and feedback are displayed in
a user-friendly interface to the user with certain interaction capabilities. This

application software is built by the application developer.

3.2.2 Application Developers

They develop the SaaS for the end users on top of the PaaS. The developers
register to the platform to be authorized to access its services and APIs to develop
new applications. The developers use the platform resources and services to integrate
them through their APIs using the pre-defined formats and interaction protocols in
order to build the application. Therefore, the developer defines the mission
requirements and the UAV services required to perform that service. Also, the
developer defines the parameters that the end user should specify to request the

mission.

3.2.3 UAYV Providers

These are the owners of the UAV who register them to the platform so that
they can be accessed and used by the application developer for certain missions. The
provided UAVs define their APIs according to standard interfaces, also they use the
platform API to push their data and access the platform. The registered UAVs

become part of the UAV cloud [aaS along with APIs to the platform.
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3.2.4 Administrators

The administrators are the platform owners. They keep track of other users
and resources. They operate and maintain the cloud services and UAVs. They use

tools and APIs to manage and monitor the platform.

3.3 Opportunities of UAV-Cloud

There are many opportunities that Cloud Computing opens to collaborative
UAVs. The ubiquitous property of cloud computing allows users to monitor the
UAVs and use the platform from anywhere at any time. In addition, as the cloud has
a huge infrastructure of processing power, most of UAV data computations could be
made on the cloud rather than in UAVs which reduces the UAV consumption of
power and processing. Moreover, Cloud Computing provides large and scalable
storage services that can be used rather than the limited UAV storage. As a result,
storing data in the cloud increases reliability by ensuring data back-up thus offering
access to previous log data even when the UAV is out of service. Cloud Computing
provides ubiquitous services such as Google Earth 3D maps and computations that
can be integrated with the UAV services to develop efficient applications.

The cloud uses web service APIs and standardized communication protocols
to request services and exchange data. Therefore, heterogeneous UAVs can use these
standards regardless of their operating systems and commands. The standardized
protocols make the application development easier for building heterogeneous UAVs
in different programming languages that are used in web applications. Not only that,
but also the standardized protocols affords the ability to integrate other nodes and
components that use the same standards as the UAV application such as ground

nodes and WNS. Furthermore, adding more UAVs or resources is easier by
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registering these UAVs to the platform as plug-and-play, so that UAVs are attached
to the mission in the run time of the operation. Additionally, the web service
architectures support reusability so that the UAV resources are used for different
applications according to their availability.

In addition, the users do not have to own the UAVs but only use them as
services. This decreases the cost for users and open huge business opportunities for
utilizing UAVs as services where they are provided. Another advantage is that UAVs

resources are pooled so they can be used by multiple users.

3.4 Considerations of UAV-Cloud

Although collaborative UAVs Cloud offers several opportunities for UAV
operations and development, there are a number of considerations that must be taken
into account for the UAV-Cloud framework. These considerations include UAV and

platform development issues:

3.4.1 UAYV Considerations

UAVs have limited capabilities in memory, processor and energy; therefore,
they require a lightweight software and web services that do not heavily consume
their resources. UAVs should be developed following the platform web service APIs
to ensure the communication ability between UAVs and the platform. Moreover,
UAVs’ locations play an important role in task operations such as capturing specific
areas. UAVs require an efficient method to allocate their positions with minimum
power consumption, for example, the trade-off between GPS and Wi-Fi.

The availability of some services depends on some contexts such as the

UAVs’ locations, energy levels, or specific sensor readings. Therefore, if a UAV is
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currently near the mission location, it is preferable to choose it rather than a similar
UAV which is far from the specified location. Moreover, UAV flight control
algorithms should be provided for real time execution and path planning
management as well as collision-avoidance. Internet connection reliability is another
important consideration. UAVs require continuous connectivity to the cloud so that
they can access the cloud and their resources to be invoked through their APIs. The
assumption of a reliable connection is valid for operations in city areas such as smart
cities. Otherwise, the operation location should be provided with connection
infrastructure for the UAV operation. Besides, the services provided by the UAVs
are real world services, thus they sense and affect the physical environment. UAV
services that make changes in the environment such as spraying should be managed
carefully, i.e. these services should not be duplicated over the same area. In case of a
repeated request, there should be approval or acknowledgment before performing the

service.

3.4.2 Platform Development Considerations

On the other hand, there are several considerations in developing the UAV-
Cloud platform. The platform should provide the ability to register UAVs and
reserve information of their resources and services as well as the uniform interface to
invoke them. This registration service facilitates the addition of UAVs to the
platform. Furthermore, the platform is required to be scalable to large numbers of
UAVs and should manage their distribution in real time simultaneously. Also, as the
platform is responsible for integrating heterogeneous UAVs as well as cloud
services, it should include services for (a) mission planning that divides the user’s

mission into sub-tasks to be executed sequentially, (b) decision-making of
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performing services depending on the collected data of the environment, and (c)
allocating tasks to the suitable and available UAV according to certain parameters.
Additionally, the platform is responsible for tracking and monitoring UAV resources
and their execution throughout the mission to ensure the efficiency of the operation.
Moreover, UAVs collect a huge amount of data from the environment. These data
should be stored in data stores and analyzed to support and enhance decision-making.
Another consideration is security and privacy of data and resources. Data security is
one of the important considerations in UAVs as the data could be critical and/or
confidential, particularly if it is a military or political mission. The data should be
secured such that only users with authorization can access it. Encryption and
decryption processes can be used in data exchange. Other security mechanisms are
required for data and resources protection. Also, user access such as establishing or
canceling a mission could be authenticated by certain users under specific conditions,
so that only authorized clients can control UAVs. In addition, for platform security
issues, it authentication mechanism should be provided so that only registered and
verified developers can access the platform services.

Another consideration is multi-tenancy, where users access the same set of
UAVs. However, in a UAV environment, these UAVs are physical entities that
perform real world operations. Therefore, the same resource cannot be used by
multiple users at the same time. Nevertheless, they can be reused after a UAV has
accomplished its operation. As a result, the platform separates the data and resources

by having an operation database for each user to manage the assigned resources.
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3.5 UAV-Cloud Platform Components

The focus of this research is the UAV-Cloud platform layer by integrating
UAVs to the cloud and providing an efficient platform to build applications on top of
it. In traditional development, applications are developed for specific hardware or
systems and this usually means implementing all the component systems needed.
This approach is inefficient and time and effort consuming. However, these
components can be developed as services and integrated in the applications when
needed. Services includes Collaborative Services that are required for any type of
collaborative UAVs and UAV Services that are offered and used based on the UAV
capabilities. Building applications on top of these services reduces the time and cost

of developing collaborative UAV applications.

3.5.1 Collaborative Services

Collaboration services manage the distribution of UAVs to accomplish a
mission. Using these services developers only focus on the main functionality of the
mission rather than reinventing the wheel. Collaborative services include:

Mission Planner Service which is responsible for analyzing the mission then
defining the resources needed to perform the mission according to the current and
expected conditions. It decomposes the mission into tasks defining the functionality
and parameters for the specified mission.

Task Requester Service which is responsible for requesting these tasks from
the broker service. The task requester does not have knowledge about UAVs and
their capabilities; however, it requests a certain resource giving its parameters

according to the plan and schedule.



31

Broker Service, where all UAVs register their services and resources to be

saved in a database. It has the knowledge about the available UAVs; therefore, it is
responsible for allocating tasks to the suitable UAV. Hence, when a request is given,
the broker service obtains the description of the request and searches for UAVs with
those resources or services. Then it requests those UAVs to find the most suitable
and available one with the requested parameters based on the resources available,
locations, energy levels and other considerations, for example, to capture a specific

location.

3.5.2 UAV Resources and Services

These are accessed according to the available resources in UAVs and the
tasks that are required for the mission. UAVs may have one or more of them.

Sensing Services; Most types of payload can be considered sensors, such as
temperature sensors, humidity sensors, radar, optical sensors and others. Sensing
services collect data from these sensors and send them to the broker service. The
request for this service could either be obtaining the value of that sensor, or setting a
threshold to be triggered when the sensor meets that condition.

Actuation Services; some UAVs may have to take actions according to
certain triggers. UAVs may have output devices such as lights or valves for liquid or
gas for spraying missions. A set of actuation services can be provided in each UAV.

Camera Capturing and Video Recording Services; these are considered as
separate services as more processes such as filtering and editing are used. Image and
video capturing require higher internal memory in the UAVs than other sensors.
They also may depend on the required resolution and environmental lighting

conditions. Some enhancements can be added to those services such as object
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recognition and tracking. However, sending real time images and videos to the user
may require specific transportation protocols such as Real-time Transport Protocol
(RTP) and Real-Time Streaming Protocol (RTSP).

Energy Monitoring Service that is, when a service is needed to request the
UAV’s energy. Many decisions are taken according to the energy level. The UAV
may return to a specific location when it reaches a certain level. In addition, before
allocating a task to a UAV, it must ensure that it has enough energy to complete the
task. If a UAV reaches low energy levels during a mission, it can be replaced with a
similar UAV or with a set of UAVs. The energy level of each UAV is tracked by the
broker service.

Location Monitoring Service which is needed due to the mobility of UAVs.
Their locations play an important role in allocating tasks. If a UAV is currently near
the mission location, it should be chosen rather than similar UAVs which is located
farther from the mission location. The location monitoring service is responsible for
locating the UAVs in efficient method minimum power consumption. For example, a
GPS consumes high power but gives accurate positions, while using Wi-Fi may give
less accurate positions and consumes less power. These methods are managed by the
location monitoring service and the UAV locations are saved in the broker service.

Status Service; UAV status could be monitored using the status service that
returns the information about the resources. This is called housekeeping data. It
includes the condition of the UAV resources.

When the UAV receives the request through the communication subsystem
(i.e. Wi-Fi or 3G/4G), the request is then passed to the payload on-board computer to
be interpreted to the requested UAV API. In case the service is requested for a

certain location, the control subsystem gets the specified location and navigates to it.
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When the location is reached, the control subsystem informs the payload on-board
computer. After that, the payload on-board sends the command to the requested
resource which accordingly performs the service and returns the result to the payload
on-board. Finally, it marshals the return message so that the communication

subsystem sends it. This process is shown in Figure 3-2.

[:Communication} [ :payload } [ :control ] [ resources ]
subsystem On-board subsystem —

Interpret request

Navigate

o Fly to path
. Inform navigatign :

Send| service command

Perform

: service
L Retuin service result

Send service result

Figure 3-2 Service request sequence diagram for UAV subsystems.

The platform architecture consists of both the collaborative services as well
as the UAV services that are accessed through web service APIs. There are different
types of web services in different architectures; therefore, the platform should follow

the requirements and considerations in the design of an efficient platform.
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Chapter 4: UAV-Cloud Platform Architecture

This chapter narrows the research to the UAV side and the broker
architecture of the UAV-Cloud framework. The purpose of this chapter is to illustrate
UAYV resources by presenting their interactions and models as well as the separation
layer of the broker and its interactions. The chapter begins by comparing the SOAP
and RESTful web services. This is followed by defining the UAV resource types.
Then, the ROA model and its RESTful HTTP implementation are demonstrated for
UAVs. After that, the broker architecture is proposed giving the process and

interfaces with other components.

4.1 Web Service Architectures

There are different architecture styles for distributed computing. Thelin [42]
defined them as Service-Oriented, Resource-oriented and Object-Oriented
architecture styles. A comparison between distributed architecture is discussed for
SOA, ROA and Object Oriented Architecture. The author concluded that the
applicability of architecture depends on the application scenario and the system. In

addition, he noted that using the single style is better than the combining styles.

There are two main web service architecture styles. First, in the standardized
WS* web service architecture, the client requests and the service response objects are
encapsulated using SOAP and transmitted over the network using XML. Second, the
Representational State Transfer (RESTful) architecture is a web service architecture
that identifies resources through a uniform interface using Uniform Resource
Identifiers (URIs) and Hypertext Transfer Protocol (HTTP). Resources are

represented in media types, such as JavaScript Object Notation (JSON).
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Another comparative study was carried out for mobile hosts [43]. In this
scenario, the author illustrated the preferences of REST architecture for mobile hosts
because the RESTful services are loosely coupled, flexible and lightweight compared
to the SOAP architecture that consumes more bandwidth and is considered more
complicated. In addition, Markey and Clynch evaluated the size of a single payload;
they found that the JSON Restful call was only 25% the size of the SOAP request
[44]. Similarly, Guinard et al. [45] compared the two approaches (the standard WS*
web services and the RESTful web services) for the WoT. They concluded that
although SOAP is suitable for digital services that emphasize business architecture,
the architecture is a complicated approach and it requires high computing power,
bandwidth and storage. As a result, it is not suitable for physical-world embedded
systems that have limited resources. On the other hand, the RESTful architecture is a
reusable and loosely coupled set of web services. Moreover, they reported that it is
easier to learn and use for developers [46]. Furthermore, the authors recommended
the use of the RESTful web service for the WoT rather than the standard WS* web
server unless the application has advanced security and quality of service

requirements. The comparison is summarized in Table 4-1.

As a result I propose the use of the RESTful web services for implementing
ROA for the UAV cloud. Due to the limited capabilities and resources of UAVs such
as energy level and processing power, a simple lightweight web service architecture
such as the RESTful is more suitable than a heavyweight complex web service like
the WS*. Moreover, the broker layer provides its service APIs as RESTful web

services to interact with the requester as well as the UAVs.



Table 4-1 A comparison of SOAP and RESTful web services.

SOAP

RESTful

For enterprise and business process

More suitable for simple services

Suitable for static infrastructure

Suitable for dynamic changeable

infrastructure

Operation-centric

Data-centric

Tightly coupled interaction between

client and server

Loosely coupled interaction between

client and server

Heavyweight web service

Lightweight web service

Complicated coding and changes in
server affects the change on the client

side

Easy to learn and modify

Binary attachment parsing

Supports all data types directly

Not suitable for wireless infrastructure

Friendly for wireless infrastructure

XML messages

Support various message types

Large size messages that consume more

bandwidth

Less message size and bandwidth

consumption

Transport layer

Application layer

Old technology, supports standards

(WSDL)

New technology, and lacks standards
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4.2 Resource Oriented Architecture for UAV-Cloud

In SOA, a service is a functionality performed by a provider. However, in
UAVs, the provided interaction is not just services but also data such as sensed data
or housekeeping data. These entities are called resources. Therefore, SOA is not

sufficient for UAV resources, while ROA is more appropriate to represent them.

4.2.1 REST Architecture

RESTful is the implementation of ROA. The central concept of RESTful web
service [47] is that a resource is any component worth being uniquely identified and

linked to the cloud. RESTful is described as:

Resource Identification, that is, the URI to identify the resources of each

UAV.

Uniform Interface in which resources are available for interaction with well-
identified interaction semantic, or HTTP, that has a set of operations to optimize the

interactions with the resources.

Self-Describing Message: along with the HTTP interactions, the client and
server exchange a set of messages in an agreed upon format. In machine-oriented
services, there are two media types supported by HTTP; XML and JSON. The JSON
format has gained widespread support for embedded systems due to its readability by
both humans and machines; it is also lightweight and can be directly parsed to

JavaScript in contrast to XML.
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Stateless Interactions, that is, the server does not hold previous interaction
information that affects any following requests. Therefore, each request contains all
the information needed to correctly satisfy it. The request information is contained in

the HTTP using a self-describing message by a JSON object.

4.2.2 RESTful HTTP Components

A resource is accessed through an HTTP interface. The following are the
three particular parts of this interface: operations, content-negotiation and status

codes.

Operations: The RESTful HTTP has four operation methods; GET, POST,
PUT and DELETE are summarized in Table 4-2. In UAVs, the GET operation is
used to retrieve the current value of a resource. For example, the GET method with
the resource URI can be used to retrieve the current energy level of a UAV or the
status of the camera on board. Moreover, in UAVs, the POST operation is used to
initialize a service providing its required parameters if any are needed, for instance,
requesting a POST method for a camera resource to take a picture of a certain
location. In this case, the camera resource has a URI operation (i.e. POST) and the
body request is the specified location to capture the picture. Then, the PUT method is
used to modify the parameters of a requested service. For example, a request with
PUT method is used for a sensor to change its threshold from one value to another,
and the new value is determined in the body request. There is also the DELETE
operation, which is used to cancel a UAV task or release it from the mission.
Consequently, the GET method retrieves data without affecting the UAVs or
resources. Therefore, it is safe to request, while the rest of the methods may change

or affect some values or state of the UAVs. As a result, they should be used
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carefully, taking into account that UAVs perform actions on the real world that could

be irreversible.

Table 4-2 RESTful operations and their usages for UAVs

Operation Usage
Retrieving the current state of the UAV
GET
or its resources
POST Initialize a service for the mission
Modifying assigned UAV resources and
PUT
services
Canceling or releasing a UAV from the
DELETE
mission

Content Negotiation: the negotiation between a client and a server is built
into the HTTP request. It represents the exchanged messages in an agreed upon
manner to represent the needed resource information. The HTTP header supports
both JSON (application/json;q=1) and XML (application/xml;q=0.5). These media
types are specified in the Content-Type of the HTTP response. It is acknowledged
that JSON has widespread support in HTTP. Therefore, the HTTP header in a UAV

is set to Content-Type: application/json.

Status Codes: the status of the response has standardized status codes in
HTTP. These codes are well-known on the client side to represent the status of the

client request. For example, a return code of 200 to the client represents the success
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of the request while the 400 code is interpreted as a bad request, meaning that the

client’s request does not follow the server request rules.

4.2.3 RESTful Models

There are different model scenarios for real time accessing resources of
embedded systems, the Pull and Push models [48] [49]. These models are compared

for web applications in Table 4-3.

HTTP Pull Model:

In this model, the client pulls the data from the UAV by sending HTTP
requests to it frequently using Asynchronous JavaScript and XML (AJAX) to refresh
the content without refreshing the client page. This model has proven to be a good
way of transferring some of the server workload to the client. The client requests the
resource HTTP from the UAV so that it returns the value in the response JSON
message. This is suitable for requesting the current value such as housekeeping data

or the status of a service or requesting a service.

UAYV Push Model:

On the other hand, in the push model, the UAV pushes its data in real time
immediately to the client in an HTTP PUT request. In this scenario, the client first
requests a resource with an event or threshold value. Then, the UAV pushes the data

to the client when that event occurs.

This model is suitable for returning the result or notifying the requester at the

end of a task that takes time such as sensing a certain location or spraying an area.
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Table 4-3 A comparison between Pull Model and Push Model for requests and data
exchange.

Pull (AJAX)

Push (Comet)

Sends requests frequently to the

server

Sends the data when event occurs

Client workload

Server workload

suitable for requesting the current

value

suitable for notifying event

occurrence

Monitoring slow changes

Monitoring sudden changes in server

side

Fast changes require low time

intervals

Requires client subscription to the

event

4.3 Designing the UAV Layer

One of the concerns of integrating UAVs to the cloud is the connectivity.

Most UAVs support Wi-Fi connection, therefore it can be used to connect to the

Internet. In addition, recently, 3G/4G technology supports not only mobile devices

but also embedded systems using external shields connected to the embedded

system. By this connection, the UAV gets a unique IP address, so that it has a distinct

identification over the Internet. The assumption of the connection availability is valid

in many fields of application such as in smart cities. However, considering satellite

connectivity opens broader application fields.
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The IoT studies the connectivity of smart objects and provides them with
addresses as well as applying the IPv4 or IPv6 for them. Integrating UAVs with the
Cloud means that the UAV and its resources become available on the Internet to be
accessed in a ubiquitous manner to a client user. The client could either be a human
using web browsers and applications, a UAV accessing another one's resources,
another system that collaborates with UAVs or any embedded devices that use the
same protocol. Therefore, the most important step is to identify the resources and

services that should be made available to the clients.

4.3.1 UAV Resource and Service Types

UAV:s define their resources and services that vary from one to another due to
the heterogeneity of UAVs. However, each UAV should have uniform interfaces to

enable the client to achieve the following:

Monitor the UAV Housekeeping Data. This involves monitoring the UAV's
current status (i.e. whether it is idle or on a mission), the current status of the UAV's
storage, the UAV's flight conditions, the direction and orientation of the UAV, the
UAV's speed, the energy level and the current position coordinates (altitude, the
latitude and longitude values). Mostly, this is identified by the GET method with the

resource URI.

Access UAV Services which is requesting a service to collect some data from
real world, such as sensor readings (e.g. temperature, pressure, or humidity sensors),
radar data, camera images or videos, thermal camera images. Services offering this
type of information may require some parameters such as specifying the location or

QoS. Other services may also generate some form of action by the UAV or the
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devices on board. For example, a client request may require the UAV to spray
gasses, pesticide or foam. These services are interfaced either as POST to initiate the
service, PUT to change parameter values or DELETE to release the service along

with the resource URI.

Monitor the UAV Resources, which is keeping track of the different
resource payloads onboard such as finding out if a certain resource is available,
currently in use or damaged. Another example is determining the remaining amount

of liquid for spraying during the mission.

4.3.2 UAV Resource APIs

The UAV is the server back-end that provides its services and resources as
web servers through RESTful APIs i.e. HTTP. These resources can be developed in
different languages that support RESTful web services programing such as NodelJS,
Ruby and Rails, Python or PHP. The variety of programming languages that
implement the RESTful protocol facilitates the development of heterogeneous

systems for easy collaboration.

For the UAV back-end development, first, it is necessary to identify the APIs
for the UAV resource types. A resource is identified through its URI that is
expressive and presents its meaning for human interpretation. Then, the exchanged
message information is represented as a JSON object that could be easily parsed into
JavaScript and be readable for humans. This can then be presented in the browser for

the user in an HTML file.
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UAY Housekeeping APIs:

The UAV housekeeping data has several resources, and these are modeled as
HTTP pull APIs using GET method with the resource URI. For example, to retrieve
the current energy level of the UAYV, it provides the following HTTP request

interfaced by the GET method:

http://.../energy level

Then, the request reads the UAV energy level and returns it as a response in a

JSON message:

HTTP/1.1 200 OK

Content-Type: application/json

“id” : 1, “Name” : “uavl”, “energy level” : 85}

This response indicates that the HTTP is version 1.1, the 200 is the success
status code. Then, the Content-Type: application/json is to define the
content negotiation type as JSON message. Next, the JSON object is the response
message of this request that contains the value of the energy level as well as basic
UAV information such as its name and ID. Other UAV housekeeping data are

similarly designed.

UAY Service APIs:
The UAV provides its services according to the available resource payloads
on it through POST, PUT and DELETE HTTP operation requests for each service.

For example, for a temperature sensor resource, the UAV provides the following

POST HTTP URL:
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http://.../service/temperature

along with the JSON body of the request for the location parameters:

{“location”: [{“latitude”: 12.8145, “longitude”:

45.64827, “altitude”: 87.91}]}

In this scenario the UAV checks if it is available to accept this request or it is
performing another service. In the case where the UAV is available and ready to

provide this service, it returns a confirmation response HTTP/1.1 200 OK.

Then it moves to the specified location to perform the service, i.e. measure
the temperature for example. Then, it sends the collected data to the client HTTP API
using the UAV push model. This HTTP contains the collected data in the body

request as the following:

HTTP/1.1 200 OK

Content-Type: application/json

{“id:2 “name”: “UAV2”, “service”: “temperature”,
14

“status”: “available”, “value”: 28.5}

When the service is requested, the client may change the parameter value

using the PUT method for the resource URI:

http://.../service/temperature

with the JSON body request of the new values defined as:

{“location”: [{“latitude”: 12.7025, “longitude”:

45.4263, “altitude”: 87.911}]}
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Accordingly, the UAV modifies the service location to the new values.

Finally, the UAV provides HTTP API for releasing the service using the
DELETE method for the URI resource. For example, releasing the spraying service

using the DELETE method for the URI:
http://.../service/pesticide spary
This request releases the spray service from the mission operation.

UAYV Resourse Status APIs:

Similar to the housekeeping data, the resource monitoring requests the current

status of the resource using the GET method, such as the URI:
http://.../pesticide spray/tank level
Then it reads the tank level and returns it as a response in a JSON message:
HTTP/1.1 200 OK
Content-Type: application/json

“id” : 1, “Name” : “UAV1”, “service” : “pesticide

spray”, “tank level” : 40}

This response indicates that the pesticide spray tank level of UAV1 has 40%

remaining.

The summary of the UAV resource APIs is shown in Table 4-4.
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Table 4-4 UAV resources types and their RESTful interfaces

Resource Type

Description

RESTful HTTP interface

UAYV housekeeping

data

Collecting the status and
internal values of the UAV

resource

Mainly GET method along

with the resource URI.

POST/ PUT/ DELETE
methods could be used for
threshold and event

feedback

UAYV services

Requesting a service from a

UAV

POST method is used to
initiate the service, while
PUT modifies the

parameters.

DELETE method releases

the service

UAYV resource data

Monitoring and follow the

service status

Mainly GET method to the
resource parameters to
check the status or value of

the resource.

POST/ PUT/ DELETE with
the resource parameter URI
could be used for event or

feedback notification
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The HTTP is a client-server architecture, as shown in Figure 4-1. Therefore,
the client application could be built using the UAV APIs. However, in this scenario
the client application uses the UAV addresses directly by specifying the task for each
UAV. This architecture suffers from limitations such as scalability of adding UAVs
to the mission. Moreover, the application is developed for certain UAV resources
where changing the UAV leads to modifying the resource address. As a result, |
propose using broker architecture connected to a database to isolate the UAV side
from the application side, so that the broker is responsible for registering then

discovering and allocating the requested resources to the suitable UAVs.

HTTP request

Client

Application UAV server

JSON respond

Cloud computing

Figure 4-1 Client-Server Architecture.

4.4 UAV Database

UAVs reserve their information internally in their storage. However, due to
their limited storage resources, I proposed storing their information and services in a

cloud database along with a log track of UAVs identified by timestamps.

This database takes advantage of the cloud scalable resources to store the

information. The database is useful for fetching UAVs’ services and resources as
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well as recording the log data and mission information. Furthermore, it simplifies
monitoring the status and changes about UAVs through the mission time-line so that

it can be retrieved later on.

The database consists of many tables that include records. A sample of an
Entity-Relationship (ER) diagram is shown in Figure 4-2. It may basically have a
UAV info table to store the primary information of the registered UAVs. Most
important is the UAV IP address in which it is requested. This information is inserted
when the UAV registers itself to the broker. Next, a Resources table is needed to
store the resources that UAVs provide. It contains the resource API information
which is the URI of the resource, its method and the provider of that resource. These
are the basic pieces of information required from a UAV when it registers to the
broker. After that, the allocated UAVs for a mission are reserved in the Operation
table or even in a separate database. The separation of user databases enables the

multi-tenancy by having a distinct database for each tenant.

:| Operation ¥
idoperation INT
AN—‘ idUAV INT HH—
idResource INT :| Resources v
—] UAV_info v B ! idResource INT
FiduAv INT 7 ; name VARCHAR(45)
f
name VARCHAR(45) ~ PH— provider INT
UAV_key VARCHAR(45) method VARCHAR(45)
ip_address VARCHAR(45) |, I uri VARCHAR(45)
status VARCHAR(45) value VARCHAR(45)
[S

>

Figure 4-2 UAV Database Sample.
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4.5 Designing the Broker Layer

One of the considerations in integrating UAVs to cloud computing is the
distribution of UAVs and being scalable to offer their services and resources through
APIs to multiple clients. Although ROA is client-service architecture, the RESTful
implementation supports the loosely coupled, usability and flexibility services.
Moreover, when the developer builds the application or the end-user establishes a
mission, they are concerned with the UAV resource and service not a particular
UAV. Therefore, the RESTful properties facilitate the cooperation between the
required resources and services using a broker architecture to take the responsibility

for allocating the suitable UAV for the request, as shown in Figure 4-3.

A broker is a middle-agent that receives advertisements from service
providers regarding their capabilities and provision of services. After that, a requester
asks the broker for a service specifying the service needed and its parameters. Then
the broker compares the requested service against all available advertisements and
determines the best match provider. Next, the broker contacts the provider and
requests the service. If the provider accepts the request for the service, it performs
the service and returns the result to the broker. Finally, the broker returns the result to

the requester [50].
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Figure 4-3 Broker layer to separate the application layer from the UAV layer.

For UAVs, the broker is a layer in the UAV-Cloud that is connected to a
database, UAVs and requester as shown in the framework Figure 3-1. The broker is
responsible for storing and retrieving UAVs’ information to/from the database. The
broker layer is one of the collaborative services. It manages the process of task-
allocations, encapsulating UAV APIs for client requests and receiving UAV data and
feedback. Therefore, the UAV back-end and the application front-end do not have
direct interactions to request a service or to retrieve a resource information. This

process is done through broker web service, as shown in Figure 4-4.

Database

Broker web
service

6';\}

el

<R

&
Client
Application

Cloud computing

Figure 4-4 Client-Server Architecture with broker layer.
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4.5.1 UAYV Broker Process

The broker is responsible for the following:

The broker registers UAVs i.e. information and services. Then, it adds
this information to the database.

The broker receives a resource or service request along with
parameters if applicable.

The broker identifies the suitable UAV from the UAV database to
perform the requested task. This process depends on several factors.
First, the broker discovers UAVs that are not assigned to other
mission and have the resources to accomplish the request according to
the request specification, for example, the camera resolution of spray
gas quality. Second, in case of multiple available UAVs with the
specified specifications, the broker narrows down the choice to the
nearest UAV to the location with the highest energy level. In this
case, the broker requests their locations and energy levels, and then
calculates the distance between their locations and the target
locations. Thus the most suitable UAV performs that service.
Moreover, the broker may take into account the load balancing, to
ensure that similar UAVs are assigned equally so that no one UAV is
used more frequently.

The broker requests the identified UAV using its APIs along with the
suitable parameters.

Then the broker may change the status of that UAV in the database

according to the request type.
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e The broker returns the request result to the requester.

e The broker receives the UAV push data and returns it to the client.

4.5.2 UAYV Broker APIs

The broker provides APIs to the developer to build applications according to
the available resources. Moreover, the broker provides APIs for UAVs to register

themselves as well as updating their resources and send feedback.

Broker APIs for UAVs

The broker provides APIs to interact with UAVs. These APIs allow them to

request several services.

First of all, in order to register a UAV, the broker provides API for UAVs to
register themselves. This is a POST HTTP with JSON body that includes the UAV
information as well as its service information. For example, the following HTTP

with a POST method is used to register a UAV:

http://mybroker.com/register

with the JSON body:
{"name" : "UAV1”, “address” : “176.205.68.244",
"energy level" : 85, "status" : "available",

"orientation": ©61.5 , "location": [{"latitude": 36.872,
"longitude" : 140.0704, "altitude" : 260}], "services"

[

AN

{“name” : “power”, “method” : “GET” , uri

”

“/powern},
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{“*name” : "temperature", “method” : “GET”, “uri”

“/temperature” },

{“name” : "temperature" , “method” : “POST” , “uri”

“/temperature”}

1}

Then, the broker inserts this information into the database and returns an ID

to the UAV to confirm registration:

The broker returns the following response to that UAV:

HTTP/1.1 200 OK

Content-Type: application/json

{"id": 5}

This indicates that the UAV is registered and added to the database with an id

After all UAVs have been registered and recorded in the database, the broker
is able to allocate a specific task to the suitable available UAV. Moreover, the client

application monitors and tracks the process through the broker service.

Another API for UAVs is used to provide an interface to push their values
when an event occurs or threshold is triggered. The broker provides the following

URI with the PUT method and accepts JSON object:

http://mybroker.com/:service
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where the : service is a variable of the service name that updates its value.

For example, a triggered UAV to sense temperature in a certain location, the UAV
returns the sensed data when it reaches that location using the PUT method for the

URI:

http://mybroker.com/temperature

{“id:2, “name”: “UAV2”, “value”: 28}

Where the UAV name is UAV2, id is 2 and the temperature value is 28.

Broker APIs for Application Developers

The broker provides APIs for developers to build applications on top of them,
so that the broker receives a request of a resource or a service from the user
application. Next, the broker searches the database for UAVs which had registered
that service. Then, the broker requests these UAVs to check their availability, energy
and location. When the broker obtains the information of these UAVs, it calculates
the distance between the current location and the specified requested location. After
that, the broker requests the nearest UAV with an applicable energy level to perform
the service. Consequently, the requested UAV performs the service and returns the
results to the broker using the broker API for UAV push data, which accordingly
returns that information to the requester. These information and log data are stored

on the database by the broker.

Therefore, the broker APIs are the gate between the application and the
UAVs. Developers build the applications following the rules of these APIs to ensure
the compatibility with UAV resources. The broker provides several APIs for

developers to initiate services and access resources as the following:



56
For initiating a UAV service, the broker provides the following POST method

with the following URI:

http://mybroker.com/service/:service

along with the JSON message that holds the required parameters according to
the service requirements, for example, requesting the temperature sensor for certain

location using the POST method:

http://mybroker.com/service/temperature

with the JSON body of the request defined as:

{“location”: [{“latitude”: 12.8145, “longitude”:

45.64827, “altitude”: 87.91}]}

In this scenario, the broker searches the UAV database for UAVs that
provides the temperature service, then checks the availability of them and allocates
the task to the nearest one using the suitable UAV API. In the case of a successful
task allocation, the broker returns a confirmation response to the application along
with the name of that UAV; otherwise the broker informs the requester the

unavailability of that service.

When a UAYV is allocated to a mission, the UAV and its resources are added
to the mission database for monitoring purposes which are accessed by its name and

for determining the UAVs that are allocated to that mission.

Next, the broker offers API access to the allocated UAV resources, using

GET, PUT and DELETE methods, for example getting the current location of the
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UAV1 that is allocated for the temperature services, using the GET method for the

following URI:

http://mybroker.com/:name/:parameter

in this case the : name is the UAV name that is UAV1 which is given when

it is allocated, while the :parameter is the location. As a result, the request is a

GET method with the following URI:

http://mybroker.com/UAV1/location

the broker searches the address, method and URI of UAV1 that is assigned
for the temperature sensing task. Then it requests its assigned location using the
UAYV housekeeping data API. The response value is then returned to the application

as a JSON message.

Similarly, the broker provides APIs for requesting UAVs by provided

services rather than name using the GET method with the URI:

http://mybroker.com/:resource/:parameter

In this case, the broker searches the allocated UAVs that provides the

: resource resource, then requests them to retrieves the : parameter.

An example is requesting the remaining tank capacity of the spraying service

UAV. This is achieved by the GET method for the URI:

http://mybroker.com/pesticide spray/tank level

In this scenario, the broker requests all the UAVs that provide the pesticide

spray service and gets their tank level values then returns them to the client. This API
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is suitable for managing a group of UAVs that provides similar resources. The broker

APIs are summarized in Table 4-5.

Table 4-5 Broker API interfaces for UAVs and application developers.

POST method for the
Register the UAV to the | registration URI along with
broker the UAV information in
Broker APIs for UAVs JSON message
PUT method for the service
Push value according to
URI along with the new value
an event or feedback
in JSON message
POST method along with
service request URI
Initiating a service
containing the required
parameters in JSON message
Broker APIs for

Application Developers

Monitoring UAVs and

their resources

GET/PUT/DELETE methods
along with the UAV name or
the provided resource URI
and the JSON message if

applicable




59

4.6 Front-End Application

The front-end application is online software on the client side. The client uses
it to establish UAV missions. The application is built on top of the UAV-Cloud
platform similar to web application development. It is then deployed to the Cloud
and interacts with the Collaborative Service Layer. The application displays a
friendly-user interface in a web browser. This interface provides the user with the
ability to establish a mission, monitor and access the UAV resources easily (see
Figure 4-5 for requesting a camera service). Due to the loosely coupled RESTful
architecture, the application layer is built easily on top of platform services using the
developer APIs. Therefore, different applications can be built for the same set of

UAVs managed by the broker layer.

7] UAV1 camera service |\

“ C  fy http://myUAVs.com/service/camera » O~ F-

Choose location to capture

Selected Location:| 45.1;67.7578; 200 m

Camera service request i - -

Figure 4-5 Requesting camera service for specific location.
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Chapter 5: Implementation Experiment

This chapter illustrates the implementation and testing of the proposed UAV-
Cloud architecture. The implementation includes building the UAV resources and
providing their APIs. After that, the broker was developed to separate the requester
side from the UAV resource side. The broker was connected to the database that
store the UAV and resources information. The implementation covers the shaded

components of the UAV-Cloud architecture, as shown in Figure 5-1.

Mission
Planer

Task Requester

APIs
PaaS —

APIs APIs
laaS UAV1 UAV2
R (R (e

Figure 5-1 The implemented system components of the UAV-Cloud architecture are
shaded in gray.

5.1 Implementation
5.1.1 UAYV Resources Implementation

First for hardware part, the UAV was built using the Arduino board' which is

an open source hardware for embedded systems. For this research, the Arduino was

! http://www.arduino.cc/
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implemented as the UAV payload subsystem that is the on-board device for
resources and services, and then sensors were connected to the Arduino such as
DHTI11? sensor for temperature and humidity and ultrasonic for distance
measurements. In addition, a buzz and some LEDs were attached to represent
actuators as shown in Figure 5-2. Moreover, for the Internet connectivity, an Adafruit
CC3000 Wi-Fi board® was used to connect the Arduino to the Internet and get an IP

address.

The Arduino was developed using the Arduino software® in the C language
with the Adafruit CC3000 library’ to read the request. Each resource was

implemented with a RESTful APIL.

Figure 5-2 Four Arduino boards connected with Adafruito CC3000 boards as well as
sensors and actuators representing UAV payload systems and their resources.

2 https://github.com/adafruit/DHT-sensor-library
* https://www.adafruit.com/products/1469
4 http://arduino.cc/en/main/software

> https://github.com/adafruit/Adafruit_CC3000_Library
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The UAV resources were implemented for four UAVs. Each one has

different resources, IP address and RESTful APIs. However, UAVs that have the

similar resource, define their API interface in the same way. For simplicity, only the

GET method was used for the implementation. The implemented UAV resources and

services are summarized in Table 5-1:

Table 5-1 Implemented UAV resources and their interfaces.

Gets the temperature

/temp
from the DHT sensor
Gets the humidity from
UAV1 /humidity
the DHT sensor
light/1 LED turns ON
/light/0 LED turns OFF
LED blinks on and off
/lighting/1 continuously with time
interval of 200 ms
/lighting/0 LED stops blinking
UAV2
Buzzer beeps
continuously with time
/spray/1 interval of 200 ms while

decreasing the tank

capacity.
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/spray/0 Buzzer stops beeping
Returns the remaining
/spray/tank
tank capacity
Refill the tank capacity
/spray/tank/full
to the maximum
Gets the temperature
/temp
from the DHT sensor
Gets the humidity from
/humidity
the DHT sensor
UAV3
LED blinks on and off
/lighting/1 continuously with time
interval of 200 ms
/lighting/0 LED stops blinking
Return the distance in
/distance centimeters from
ultrasonic sensor
UAV4 LED blinks on and off
/lighting/1 continuously with time

interval of 200 ms

/lighting/0

LED stops blinking
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After that, database tables were implemented in PostgreSQL database®

through PgAdmin platform’. The database was designed as in Figure 4-2 which

includes three tables; UAV _info table for all registered UAV information such as 1D,

name, address and status (see Figure 5-3), second the Resources table for UAV

services and resources (see Figure 5-4) and third the Operation table for allocated

UAVs for a mission containing the requests log (see Figure 5-5). The database is

accessed by the broker to retrieve, write and modify data through its configurations.

File Edit View Tools Help

id name
[PK] integer |text
1 1 edogawa
2 2 kudo
3 3 mori
4 4 hibara
*

4 rows.

‘H 2a 2| &)W T 2| Noimt

status
text

available
available
available

availabkle

W

power

integer
100

&0

&0

99

152
182
152
152

= Edit Data - PostgreSQL 9.3 (localhost:5432) - postgres - uavs

|address
text

.168
.168
.168
.168

)

.43.102
.43.95
.43.92
-1.10

Figure 5-3 UAV table in PostgreSQL database using PgAdmin platform.

® http://www.postgresql.org/

7 http://www.pgadmin.org/
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Figure 5-4 Registered UAV resource table in PostgreSQL database using PgAdmin

File Edit View

Tools  Help

platform.

H 20 R R W TP [[eme ]

provider

status
text

id
[PK] serial | text

message

not done

29

Led Cn

not done

30

Spraying

Figure 5-5 Operation table of assigned UAVs in table in PostgreSQL database using

PgAdmin platform.
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5.1.3 Broker Implementation

Next, the broker service was built using the NodeJS platform® in JavaScript
language. First, the broker was connected to the database using its configuration
parameters such as host, database name, port, user name and password to retrieve
and write values from certain tables. After that, RESTful APIs were built for the
broker to allow users to request the required services or resources. The broker
implementation focused on the developer APIs mentioned in Section 4.5.2. The
implemented APIs for service requests are either allocating a new service by adding
a UAV to the emission, modifying a service request, or retrieving a value of a
parameter. The APIs were defined by the uniform interface operations summarized

in Table 4-2.

The request of allocating a new service is the POST operation for the

following API:
http://localhost:3000/service/:service

In this request, the : service is a parameter for any service name that the
user defines, for example turning on the spraying service by requesting the POST

method for the following API:
http://localhost:3000/service/spray on

to allocate the suitable available UAV that has the spray resource and add this

UAV to the operation.

® https://nodejs.org/
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Moreover, to modify or retrieve a value of a resource, the broker provides the

following PUT method API:
http://localhost:3000/:name/:service

In this situation, the :name and the : service are the parameters of the
UAYV name and the service to be accessed or modified. For example, requesting the

following API by the PUT method:
http://localhost:3000/UAV2/spray off
This request is to turn off the spray service of UAV2.

5.2 Testing

The implemented system was tested using the Postman Chrome extension’
for each device and resource then for broker APIs. The test focuses on the pull data

model of HTTP requests.

First, the test begins with testing the UAV resource APIs, by directly
requesting the UAV RESTful HTTP by its address, URI and operation for each
resource. The UAV got the request, defined the service, performed it according to its
resources and then returned the response of the requested service. The services

mentioned in Table 5-1 were tested successfully with quick response.

Secondly the broker APIs were tested as the following; for requesting a

service, the system was tested by sending requests of services for the POST API:

http://localhost:3000/service/:service

? https://www.getpostman.com/docs/requests
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such as allocating a spraying service through the POST API:
http://localhost:3000/UAV2/spray off

In this scenario the broker searches the database for the service spray in the
services’ table combined with the UAVs’ table to find the available one that provides
the spraying service. Then, the broker defines the UAV API components that are, the
method, address, resource URI and the name of the allocated UAV to request it so
that it performs the required service. After that, the broker changes the status of that
UAV into allocated in the UAVs’ table, to ensure that this UAV is not assigned again

but could be modified and accessed through GET, PUT and DELET methods.

After the broker requests the allocated UAV, this UAV replies with a
confirmation for performing the service. Next, the broker returns the response to the
client as a JSON message to the requester containing the name of the UAV, the name

of the requested service, and the UAV feedback message, as shown in Figure 5-6.

localhost: 3000/service/spray_on POST v

form-data x-www-form-urencoded raw

Text v
m Preview Add to collection

Body iy zo0 ok S 155 ms

Pretty Raw = Preview ) £}l JSON XML

Figure 5-6 POST operation request and response for spraying service through the
broker
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Similarly, when requesting another service to be performed by second UAV,
such as ‘led on’ the POST method is used along with the resource name, as shown in

Figure 5-7.

localhost:3000/service/led_on POST v

form-data x-wwaw-form-urlencoded raw

Text v

Preview Add to collection

Body TG 200 ok [0 166 ms
Pretty Raw = Preview ) =) JSON XML
[ r
1
"name”: "edogawa",
"resource”: "led on",
"message": {
"Light™: "ON"

Figure 5-7 POST operation request and response for ‘led on’ service through the
broker.

Next, the allocated services are accessed through PUT APIs that specify the
name of the UAV to be modified and the service name. This was tested for several
services of different UAVs such as turning the spray off as well as turning the

‘led_off” as shown in Figure 5-8 and Figure 5-9 respectively.
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Normal 4® Mo environment =
localhost: 3000/mori/spray _off PUT v

form-data x-www-form-urlencoded raw

Key Text v
m Preview Add to collection

B 200 ok I 530 ms

Body

Pretty Raw = Preview w =) JSON XML

Figure 5-8 PUT operation request and response for turning spray service off through
the broker.

localhost:3000/edogawalled_off PUT v

form-data x-www-form-urlencoded raw

Key Value Text v
Preview Add to collection

Body 155 ms

Pretty Raw Preview L) =) JSON XML

Figure 5-9 PUT operation request and response for turning ‘led service off’ through
the broker.

In the same way, the sensor readings were retrieved by specifying the name

of the UAV and its resource, as shown in Figure 5-10.
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localhost:3000/mori/spray_tank PUT v

form-data x-www-form-urlencoded raw

Text v

m Preview Add to collection

Body VS 200 ok [QI00E 150 ms
Pretty Raw = Preview ) =) JSON XML
[ r
1 . s m
"name”: "mori”,
"resource™: "spray_tank"”,
"message":
"Tank": 52

¥

Figure 5-10 Reading the remaining tank capacity of the spraying service UAV

For these scenarios, the broker searches the allocated UAVs that provides the
service from the Operation table and the Resource table. Then, it requests the UAV
API using its address, operation and URI. With this, it will return the response to the

client.

The architecture showed the seperation of the client side from the UAV side
by the broker layer that allocates the suitable UAV to the operation from the set of
UAVs. In case of no service provider or no available UAV for that service, the
broker returns a not available message response to the client. Moreover, in case of

requesting an allocated UAV, it returns a rejection response that it is not available.

5.3 Evaluation

For measuring the overload of the broker layer, the response times for the

resources were compared in both direct access and through the broker.

First, the UAV resources in Table 5-1 were requested directly using their

URIs and the UAV address. The response times were recorded ten times for each
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resource and the average was calculated as shown in Table 5-2 and Figure 5-11. The
response time of requesting a UAV resource directly varies between 180 and 470

milliseconds with an average of 266 milliseconds.

The variety of response time depends on the resource process, for example
the ‘led on’ resource is a simple digital output of LOW and HIGH, while the
temperature sensor resource reads the analog voltage of the sensor pin, then converts
it into voltage using a scale of 5 and then calculates the temperature value
accordingly. This process requires more time compared to the digital output;
therefore, the response time of the temperature request is higher than the response

time of the LED.

Table 5-2 Response times for UAV resources with direct accesses.

A B ® D E F G H 1 J K L M
1 response time in ms 2 3 4 5 6 7 8 9 10 Avarage
2 direct link
3 Jtemp 460 475 571 40 438 460 466 465 450 43 468
4 /humidity 432 426 343 151 419 432 433 429 440 437 414.5
Edogawa —
5 Mlight/1 236 174 169 170 160 185 246 184 170 187 190.1
6 Might/0 531 158 157 141 162 159 188 161 166 205 206.9
7 [lighting/1 166 170 187, 200 467 208 167 167 166 160 2058
3 Nighting/0 288 285 301 227 316 312 173 280 337 218 21747
9 Mo /spray/1 223 169 166 168 160 331 230 342 231 154 1174
10 /spray/() 159 238 153 664 150 364 235 196 227 291 1719
11 /spray/tank 161 363 156 142 278 153 163 185 152 161 191.5
12 {spray/tank full 167 155 180 216 200 136 176 17 159 193 1775
13 /temp 445 163 489 493 499 477 492 153 426 458 409.5
14 Kudo /umidiity 449 437 494 442 246 452 423 214 455 214 3816
[lighting/1 198 289 164 158 17 157, 155 159 158 181 176.4
16 Jlighting/0 1] 417 298 149 351 33 260 328 396 253 305.7
17 (distance 161 145 201 201 173 165 174 228 196 252 189.6
18 Hibara Nighting/1 158 231 175 193 174 136 153 179 17 284 1844
19 Nighting/0 m 378 371 397 159 289 191 155 215 188 162.5
20 2664117647
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Figure 5-11 Response times of UAV resources with direct accesses.

After that, the UAV resources were requested through the broker layer by
specifying the name of the service to the broker, so that it ensures the availability of
the requested resource and requests the UAV according to its uniform interface and
returns the results to the requester. The measurement was done ten times for each
service of each UAV. The response time of requesting services through the broker
varies between 200 and 500 milliseconds with an average response time of 310

milliseconds as shown in Table 5-3 and Figure 5-12.

Table 5-3 Response times of UAV resources through the broker.

A B c D E F G H 1 i K L M
El response time in ms 2 3 4 5 [ 7 8 9 10 Avarage

2 through broker

24 /temp 488 473 527] 483 455 465 185 448 918| 467 487.9
25 Edogawa Mrumidity 476 461 481 442 461 498 482 478 456 440 467.5
26 [light/1 225 261 205 180 187 228 216 196 207 151 209.6
27 [light/0 302 195] 203 504 182 170 457 198 192 336 274.2
28 [lighting/1 183 514 189] 245 204 182 163 188 17| 217 226.7
29 [lighting/0 210 1096 180] 277 355/ 345/ 345/ 299 37 359 383.8
30 Mori /spray/1 202 200 245] 162 238| 189 233 489 261 206] 2425
31 /spray/0 4n 504 641 202 215 294| 274| 294 194] 202 329.1
32 /spray/tank 209 164 216 151 196 326 192 202 185 221 216.2
33 /spray/tank/full 194 178| 224 209| 202 177 197 187 179| 169 191.6
34 /temp 483 480 458 481 533 612 501 495 464 520 502.4
35 Kudo /humidity 547 501 451 460 481 489 520 564 513 453 497.9
36 [lighting/1 169 169 179] 173 163 167 435/ 169 171 223 201.8
37 /lighting/0 278 197] 550] 516 252 218| 196 496 183 187 307.3
38 /distance 27 470) 173 219 186 197 166 159 165 m 217.9
39 Hibara Mlighting/1 187 174 173 195 164 17 179 244 439 201 212.7
40 Mighting/0 598 475 208 16| 248| 229 251 196 304 242 296.4
a1 309.7352941
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Figure 5-12 Response times of UAV resources through the broker.

Accordingly, the overhead of the broker layer is calculated for the resources
as shown in Figure 5-13. The average increase of the response time is only 13%. This

is due to the difference between the UAV and the computer processing capabilities.

Consequently, the cloud services transfer part of the processing from internal
UAVs to the cloud and add more advantages with minimal overhead. This shows the

high performance of the broker layer compared to the limited resources of UAVs.
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Figure 5-13 Response times of UAV resources with direct accesses and through the

broker.
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Chapter 6: Conclusion and Future Work

6.1 Conclusion

In conclusion in this research, I proposed a UAV-Cloud platform for
distributed UAVs. This platform offers several advantages for developing UAV
applications easily, separating responsibilities of UAV services and integrating them.
To facilitate this approach I proposed a ROA and described a broker layer to separate

the application side from the UAV side.

The proposed UAV-Cloud platform overcomes the limitations of the
traditional peer-to-peer RF communication that have showed numerous restrictions
for operation and development. In addition, developing a heterogeneous UAV
application using the traditional approaches is time and effort consuming because it
requires the knowledge of each UAV programing language. The operation of UAVs
is also limited to specific missions. Furthermore, in the RF communication scenario,
the user location has to be within the mission area. Moreover, it restricts UAVSs to be
in a nearby area and to be in a line of communication with the ground station. This is
unsuitable for the dynamic UAVs environments where UAVs have to be spread
across large areas and may not have a direct line of communication with the ground
station or between them. Besides, the development of heterogeneous UAV's becomes

a difficult process for different UAV programing languages.

As a result, I proposed integrating UAVs to the cloud for ubiquitous UAV
resource access. In this model, UAVs are considered as web servers that are part of
the cloud so that they gain the benefit of the cloud computing ubiquity as well as

facilitating the use of web tools and protocols for developing collaborative UAV
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applications. Following the cloud web development opens the ability to develop not
only desktop applications but also mobile applications for UAVs. In addition, these

applications are accessed regardless of the user operating system.

UAVs provides not only service but they are also resources. The RESTful is
the implementation of the ROA; it is a lightweight, reusable and loosely coupled web
service. It is more suitable for UAV limited resources compared to the standardized
heavyweight and complex WS* web services. Therefore, the UAVs were designed
using RESTful web services to offer their resources and services using HTTP
uniform interfaces. UAVs provide these HTTP APIs their resources and services

which can be accessed and requested through the broker layer.

Due to the loosely coupled services and to gain the benefit of separating
responsibilities, a broker architecture was proposed which is a web service on the
cloud. The broker is connected to a database that holds the information about the
registered UAVs and their resources, so that the user application is built upon it to

request and monitor the process of the mission.

The research focused on the framework architecture and the functionality
provided by the platform. On the other hand, there is a set of non-functional
requirements provided by the framework which include reusability of the framework
services due to the ROA design. Furthermore, the platform APIs support the usability
for easy development as building blocks for implementing applications. Not only
that, but also transferring the common services from the UAV side to the cloud side
increases the efficiency of these services. In addition, due to the standardized
communication and protocols, the platform supports interoperability where

heterogeneous systems are able to exchange data and messages in an agreed-upon
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format. This also allows compatibility with other systems that use this protocol.
Besides, the system measured the performance of the services by direct access as
well as through the broker and showed that the response time is slightly higher. This

indicates that the platform layer does not lead to overheads for the system.

However, some other non-functional requirements were not addressed such
as availability, recovery, failure management, safety and testability. Another
important aspect is security and privacy. The exchanged data, platform access, UAV
resources and database require security mechanisms for accessing them and the
exchanged messages. The platform APIs enable having access tokens for access
authentications. Also, encryption and decryption are preferable for exchanged data

and messages.

The proposed architecture was implemented as a UAV payload subsystem.
The implementation included a communication subsystem to connect to the network
and get a unique IP. Then the payload for each device contained a resource that
retrieved data and one to perform action. Each resource had its API to allow access
for RESTful requests. This showed the separation of responsibilities and facilitated
building applications and integrating services easily. This was followed by
developing the broker layer which was connected to the database that contained the
information of the registered UAVs, their services and the operation information.
The broker APIs were used to assign a new UAV to the mission by defining the
service. In addition, they were used for modifying selected services and retrieving
values from the assigned UAVs. These were tested using a simple browser
application to demonstrate the interfaces of UAVs and the broker for several UAVs

and their resources. The overhead of the broker was measured and found that the
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response time through the broker was only 13% higher than the direct access. This is

an acceptable overhead for the added broker features.

On the other hand, the implementation has some limitations. It did not
measure the scalability of the broker and how many UAVs it can deal with. This also
includes the maximum number of requests that can be handled simultaneously. In
addition, the impact of the concurrent requests on the response time and how the
broker handles them were not investigated. The implemented prototype used fixed
devices; therefore, the mobility factor and location considerations were not
implemented. Only the pull model was implemented. The push model of registration
was assumed available. Although the API supports heterogeneous devices, the
implementation of UAV 1is based on similar Arduino devices with different

resources.

From a business perspective, the requested architecture opens new
opportunities to the UAV industry by using cloud pricing model of pay-per-use and
resource sharing. The user operation does not have to go through the whole process
of owning the UAVs, developing them as well as operating and using them. The
cloud development models are (i) private cloud, (ii) public cloud, and (iii) hybrid

cloud.

The private UAV cloud provides services and infrastructure only for its
organization; this could either be managed by the organization itself or through a
third party. In this situation, the UAVs are owned by the organization and the

applications are developed according to its needs and operations.
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On the other hand, the public UAV cloud provides services to an open
network, this opens the field for business UAV applications for the public, where the
user does not own or manage the UAVs but only gains the benefit of their usage.
This is cost effective for public users who cannot afford the infrastructure and

management process of UAVs.

Moreover, the hybrid UAV cloud is a combination of the public and private
cloud, where the UAVs are owned and managed by a third party for a specific
organization. This reduces the organization responsibilities of managing and

maintaining the UAVs to focus on their usage and operation.

A comparison of the addressed features is compared to the literature review
as shown in Table 6-1. Although some literature addressed part of these feature, no
general platform was proposed for UAV resources using the reusability and cloud
computing paradigm. Moreover, most of these researchers consider applications for a
specific field. Therefore, the design is tightly coupled and not considered for other

applications.

Table 6-1 A comparison among the UAV-Cloud and other related solution in the
addressed features.

Simanta Freitas Nadeau | Mohamed | UAV-
[29] [27] [30] [23] Cloud
SOA 4 v v v
Loosely coupled v
Power considerations v v
Location considerations 4 4 v
Reusability v
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Platform v
Business prospective v
Application independent v v
Lightweight architecture v
Separating
v v
responsibilities

Integrating with other

v v
system
Cloud resources v
Ease application
v
development
Multi UAVs v v v v v

6.2 Future Work and Open Issues

The proposed architecture does not cover the whole UAV-Cloud
considerations mentioned in 3.4. The payload subsystem has a high dependency on
the controlling aspects of flight path. Therefore, the control subsystem could have
interfaces to link the UAV services with it. For example, the broker allocation for the

nearest UAV depends on the flight path to the destination point.

In addition, another layer is required to decompose the user mission into a set
of tasks to be requested by the broker. This decomposition highly depends on the

operation of the mission. Therefore, it was assumed to be part of the application.
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UAVs are not stand alone systems. They usually interact and exchange data

with other systems. The proposed architecture can be expanded to open the ability
for application to integrate not only with UAVs but also ground nodes and other
systems that use the same RESTful protocol. Therefore, the application combines

multiple resources to increase its efficiency and capabilities.

In addition, UAVs provide a huge volume variety of collected data, this
opens the Big Data field to analyze this data for future decision- making in different

operations.

Although the RESTful architecture is acknowledged to be suitable for the
limited UAVs, it still lacks standards. For example, it lacks a standardized
description format for representing UAV information and service details. Also, the

push model is an open issue in this field that requires more enhancements.
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