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Abstract  

  In this thesis, we present numerical method for approximating the solutions 

of singularly perturbed two points boundary value problems in both cases: ordinary 

derivatives and fractional derivatives. We use the Caputo derivation for the fractional 

case. The method starts with solving the reduced problem then the boundary layer 

correction problem. A series method; namely, the Adomian decomposition method is 

used to solve the boundary layer correction problem, and then the series solution is 

approximated by the ,   - Pade’ approximation of order. Numerical and theoretical 

results are presented to show the efficiency of the method. Singularly perturbed 

problems arise frequently in many real-life applications and they are among the 

hardest numerical approximation problems. Fractional Calculus has been in the 

minds of mathematicians for 300 years and still contains many mesteries. In recent 

decades, fractional calculus has been the object of ever increasing interest, due to its 

applications in different areas of science and engineering.  

 

Keywords: Fractional Calculus, Caputo fractional derivative, Adomian 

decomposition Method, Pade’ approximation, and Reduced layer correction Method. 
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Title and Abstract (in Arabic) 

 

 المعتلةطريقة فعالة لحل المعادلات التفاضلية الكسرية المحيطية 

 صالملخ

قًُا بعزض طزٌقت عذدٌت نتقزٌب حهٕل انًعادلاث انتفاظهٍت   فً ْذِ الأطزٔحت،   

 .تى استخذاو يشتقت كٕبٕتٕ نهحانت انكسزٌت هت فً انحانتٍٍ انعادٌت ٔانكسزٌت.انًحٍطٍت انًعت

 تتكٌٕ انُظزٌت يٍ جشئٍٍ ٔ ًْا حم يعادنت يٍ انذرجت الأٔنى ثى جشء انتصحٍح عُذ حذ انفتزة

انًعطاة ثى َستخذو طزٌقت حم انًتتانٍاث ٔ انًسًى بُظزٌت أدٔيٍاٌ كٕيبٕسشٍ ٔ بعذْا َستخذو 

ٌبزس  .نعذدٌت ٔانُظزي نهتأكذ يٍ فعانٍت انطزٌقتتى عزض بعط انُتائج ا َظزٌت بادي نهتقزٌب.

حٍاتٍت ٔ ٌتٕاجذ فً يسائم انتقزٌب انعذدٌت  ْذا انُٕع يٍ انًسائم باستًزار فً تطبٍقاث

كاٌ عهى انتفاظم ٔ انتكايم انكسزي فً عقٕل عهًاء انزٌاظٍاث يٍ قبم ثلاثًائت عاو  نصعبت.ا

ٔ يا سال ٌحتٕي عهى غًٕض إلا أَّ ٌُال اْتًايا يتشاٌذا فً انقزٌ انحانً َظزا نتطبٍقاتّ  فً 

 يجالاث انعهٕو ٔ انُٓذست انًختهفت.

 

دٔيٍاٌ دٌكٕيبٕسٍشٍ، انتقزٌب َظزٌت أ  بٕتٕ انكسزٌت،نتفاظم ٔانتكايم انكسزي، يشتقت كا: الرئيسةالكلمات 

 .باستخذاو بادي، َٔظزٌت رٌذٌٕص لاٌز كٕرٌكشٍ
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Chapter 1: Introduction 

 

In this thesis, we present a numerical approach for solving a class of 

fractional singularly perturbed two points boundary value problems of the form 

      ( )   (   )  ( )   (   ) ( )            ,   -                 (1.1) 

subject to 

                                               ( )       ( )                                  (1.2) 

where     is a small positive parameter,        are given constants, 

 (   )  (   ) are sufficiently smooth functions such that  (   ( ))    for all 

     In Equation (1.1),    denotes the Caputo fractional derivative. 

The proposed numerical technique consists of two steps. In the first set, we 

get the reduced problem by setting    . In this case, problem (1.1) becomes a first 

order ordinary differential equation. We assume that the solution of the reduced 

problem satisfies the second boundary condition. This solution behaves like the 

solution of problem (1.1) - (1.2) on most of the interval (0,1] except for small 

interval around  

   . To overcome this problem, we apply the second step which is the boundary 

layer correction by stretching the coordinate   by measure of a scaling parameter   . 

Then, we rewrite problem (1.1) in terms of  . By setting      we get a second 

order fractional differential equation. We will redesign the boundary conditions to 

get the second solution. The general solution of problem (1.1) – (1.2) will be a 

combination of the solutions of the two steps. 
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We organize this thesis as follows. In chapter one, we present the main 

definitions and concepts which we will use herein. Caputo derivative, Adomain 

decomposition approach, and Pade’ approximation. In chapter two, we study 

problem (1.1)-(1.2) when      We discuss the cases when it is linear and 

nonlinear. Similar study is given in chapter three for       . Numerical and 

theoretical results will be presented in chapters two and three.  
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1.1 The Gamma Function  

In this section, we present the definition of the gamma function which will be 

used in fractional derivatives. 

One of the important functions is the gamma function which is defined by 

 ( )  ∫          

  

 

  

The following are some basic properties of the gamma function: 

1) Γ( )  (   )            

2) Γ(   )    ( )     

To explain the definition of the Gamma function, we compute Γ(1/2) using the 

definition  

 (   )   ∫     
 
 
    

  

 

 

          ∫
   

√ 
   

  

 

 

Making the substitution     , we get  

 (   )   ∫     
 
 
    

  

 

 

  ∫
   

√ 
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then 

 ,  (   )-    ,   ∫     
  - ,  ∫     

  -   
  

 
 

  

 
 

       ∫ ∫   (     )    

  

 

  

 

 

Let                         Then  

,  (   )-    ∫ ∫      
    

  

 

   

 

 

      

  (∫   )(∫      
  )

  

 

   

 

 

              .
 

 
/ .

 

 
/   . 

Thus, Γ(1/2) = √   
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1.2 Introduction to Fractional Calculus 

Fractional calculus is three centuries old as the conventional calculus, but not 

very popular amongst science and/or engineering communities. The beauty of this 

subject translates the reality of nature better! Therefore to make this subject available 

as popular subject and engineering community, adds another dimension to 

understand or describe basic nature in better way. Perhaps fractional calculus is what 

nature understands and to talk with nature in this language is therefore efficient. For 

past three centuries this subject was with mathematicians and only in last few years, 

this is pulled to several (applied) fields of engineering and science and economics. 

However recent attempt is on to have definition of fractional derivative as local 

operator specifically to fractal science theory. Next decade will see several 

applications based on this three hundred years (old) new subject, which can be 

thought of as superset of fractional differintegral calculus, the conventional integer 

order calculus being a part of it. Differintegration is operator doing differentiation 

and sometimes integrations in a general sense. Also the applications and discussions 

are limited to fixed fractional order differintegrals and the variable order of 

differintegration is kept as future research subject. Perhaps the Fractional Calculus 

will be the calculus of 21
st
  century. 

Fractional order systems, or systems containing fractional derivatives and 

integrals, have been studied by many in engineering and science area. During the 

period 1922-1990, many reliable discussions devoted specifically to the subject. It 

should be noted that there are growing number of physical systems whose behavior 

can be compactly described using fractional calculus system theory. Of specific 

interest to electrical engineers are long electrical lines, electrochemical process, 
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dielectric polarization, colored noise, viscoelestic materials, Chaos and  

electromagnetism fractional poles. For more details, see [11]. 

There are several definitions for the fractional derivative. In this thesis, we focus 

only on one of them, namely, the Caputo fractional operator  Podlubny [10]. 

First, we define the Rieman- Liouville fractional integral operator.  

Definition 1.2.1. The Riemann-Liouville fractional integral operator   
  of order 

    on the usual Lebsgue space   ,   - is given by  

  
  ( )  

 

 ( )
∫

 ( )

(   )      
 

 
                                         (1.2.1) 

where  ( )   ∫          
 

 
 is the Euler Gamma function. 

    For any       ,   -                  the following properties hold: 

1)   
  exists for any     ,   -  

2)   
   

 
    

   
  

3)   
     

 (   )

 (     )
    . 

Definition 1.2.2. Suppose that                       . The fractional operator  

   ( )  {

 

 (    )
∫

 ( )( )

(   )     
               

 

 

  

    
 ( )                                                      

                                  (1.2.2) 

is called the Caputo fractional derivative or Caputo fractional differential operator of 

order   . 
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This operator is introduced by the Italian mathematician Caputo in 1967, see Caputo [5]. 

Now, let’s compute  
 

   by using definition (1.2.2). 

Example 1.2.1. Let   
 

 
  and  ( )   . Then, for       applying definition 

(1.2.2) gives  

           
 

 (
 
 )

∫
 

(    )   
   

 

 

   

Taking into account the properties of the Gamma function and using the substitution  

        the final result for the Caputo fractional derivative of the function 

 ( )    is obtained as  

      
 

√ 
 ∫

 

(   )
 
 

    

 

 

  

  
 

√ 
∫

  

√ 

 

√ 

   

 
 

√ 
 ∫

  

√ 

√ 

 

  

                                                          = 
 

√ 
(√    ). 

Thus, it holds 

                                                                       
 √ 

√ 
                                                        (1.2.3) 
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It is worth to mention that the operator          used in the following sections is 

the standard integer-order differentiation operator, i.e.,    
  

   
   

Lemma 1.2.1 Let                      and  ( ) be such that 

   ( ) exist. Then 

   ( )          ( )                                                 (1.2.4) 

Remark 1.2.1 ( Linearity): Let                            and the 

functions  ( ) and  ( ) be such that both    ( )        ( ) exist. The Caputo 

fractional derivative is a linear operator, i.e.,  

                          (  ( )   ( ))       ( )      ( )                                (1.2.5)                            

Remark 1.2.3 (Non-commutation ): Suppose  that                 

         and the functions  ( ) is such that    ( ) exists. Then in general   

     ( )        ( )         ( )                        (1.2.6) 

Other properties for the Caputo fractional derivative are given below: 

1)      ( )   ( )   ∑  ( )(  )
  

  

   
   , 

2)      ( )   ( )  

3)      , where   is constant,  

4)      {
                                           *       +
 (   )

 (     )
                                            

   .  

For more details, see [8]. 

 



9 
 

1.3 Adomian decomposition Method 

  The Adomian decomposition method (ADM) is a well–known systematic 

method for practical solution of linear or nonlinear and deterministic or stochastic 

operator equations, including ordinary differential equations (ODEs), partial 

differential equations (PDEs), integral equations, etc. The ADM  is a powerful 

technique, which provides efficient algorithms for analytic approximate solutions 

and numeric simulations for real-world applications in the applied sciences and 

engineering. It permits us to solve both nonlinear initial value problems (IVPs) and 

boundary value problems (BVPs) without unphysical restrictive assumptions such as 

required by linearization, perturbation, and so forth. The method accurately computes 

the series solution in a rapidly convergent series with components that are elegantly 

computed. The accuracy of the analytic approximation solutions obtained can be 

verified by direct substitution. 

The main advantage of the method is that it can be applied directly for all types 

of differential and integral equations, linear or nonlinear, homogeneous or 

inhomogeneous, with constant coefficients or with variable coefficients. Another 

important advantage is that the method is capable of greatly reducing the size of 

computation work while still maintaining high accuracy of the numerical solution.  

Consider the following  second order initial value problem of the form  

                                         ( )   ( )   ( )    ( )                                  (1.3.1) 

 ( )         ( )      

where   is the linear operator and   is the nonlinear operator. 
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The nonlinear term,  ( ), can be expressed by an infinite series of the Adomian 

polynomials 

                                                 ( )  ∑   
 
   ,                                                (1.3.2) 

where 

  (          )  
 

  
 
  

   
 (  ,∑     

 
   -)     ,        

Next, write  ( ) as  

                                                ( )= ∑   ( )
 
   .                                                (1.3.3) 

From equations (1.3.1)-(1.3.3) one can see that  

                                       ( ) =    ( ( ))      ( ( )).                                   (1.3.4) 

Thus, 

                         ∑      ∑    (  )      ( ( )) 
   

 
   .                                   (1.3.5) 

The iterates are determined by the following recursive way 

      ( ( ))   ( )  

                                            (    )                                                 (1.3.6) 

To explain the idea of ADM, we discuss the following example. 

Example 1.3.1.  Consider the following initial value problem 

  

  
     ( )   ,  ( )     

The exact solution is  ( )   
     

     
. Following the procedure described above, one 

can see that  

 ( )       ( )        and  ( )     

Then,    (  )   ∫    
 

 
. Thus, 
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and so on. By using formula (1.3.6) we  get 

     

   
 

 
   

   
 

  
   

   
   

   
   

   
  

    
   

and so on. Thus,  

 ( )     
 

 
   

 

  
   

  

   
   

  

    
     

Graphs of the exact and the approximate solutions are given in Figure (1.3.1).  

 

 

 

 

 

 

 

 

 

Figure 1.3.1a: The graph of the approximate solution 
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Figure 1.3.1b: The graph of the exact solution 

 

 

 

 

 

 

 

 

Figure 1.3.1c: The graph of the approximate solution and the exact solution 

 

For more details, see Adomian [1], Syam [15], and Wazwaz [16,17]. 
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1.4  Rational Function Approximation 

The class of algebraic polynomials has some distinct advantages for use in 

approximation: 

 There are sufficient number of polynomials to approximate any continuous 

function on a closed interval to within an arbitrary tolerance. 

 Polynomials are easily evaluated at arbitrary values. 

 The derivatives and integrals of polynomials exist and are easily determined. 

The disadvantage of using polynomials for approximation is their tendency to 

oscillate. This often causes error bounds in polynomial approximation to 

significantly exceed the average approximation error, since error bounds are 

determined by the maximum approximation error. We now consider a method that 

spread the approximation error more evenly over the approximation interval, this 

technique involve rational functions. 

A rational function   of degree     has the form  

  ( )   
 ( )

 ( )
  

             
 

              
   

where   ( ) and  ( ) are polynomials whose degrees sum to  .  Suppose    is used 

to approximate a function    on a closed interval   containing zero. For    to be 

defined at zero requires that     . In fact, we can assume that     , for if this is 

not the case we simply replace  ( ) by  ( )     . Consequently, there are       

parameters                            available for the approximation of   by r. 

The Padé approximation technique, which is the extension of Taylor polynomial 

approximation to rational functions, choose the       parameters so that 
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 ( )( )    ( )( ) , for each                     

when       and      , the Padé approximation is just the     Maclaurin 

polynomial. Consider the difference  

 ( )   ( )   ( )   
 ( )

 ( )
 

 ( ) ( )   ( )

 ( )
 

 ( )∑    
  ∑    

  
   

 
   

 ( )
 

and suppose   has the Maclaurin series expansion  ( )   ∑    
  

   . Then  

 ( )    ( )   
∑    

 ∑    
  ∑    

  
   

 
   

 
   

 ( )
   

The object is to choose the constants              and                so that 

  ( )( )   ( )( )   , for each                . Coefficients are determined by 

setting  

 ( )    ( ) .      

 where      

   
 ( )( )

  
  

Thus, 

           
       

   
            

 

              
 

and equating coefficients 

          and                             
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Example 1.4.1. Find the ,   - Pade’ approximation of        ( ). 

First, we start by the Maclaurin series of arctan: 

 ( )      
 

 
   

 

 
   

 

 
   

 

 
   

and 

   
 

 
   

 

 
   

 

 
   

 

 
    

          
     

     
     

 

                         . 

    through            through      

      

 
   

 

 
     

     
 

 

 
 

 

 
   

 

 
     

      
 

 

 
   

 

 
   

 

 
     

    
 

 
    

 

 
 

 

 
   

 

 
     

    
 

 
        

           
 

 
   

 

 
   

 

 
     

 

   
 

 
 

 

 
  +     

Table 1.4.1: Relation between the coefficients of the Pade’ approximation 

Thus, ,   - Padé approximation of         ( ) is 

 

Graphs of Pade’ approximation and Maclaurin series of arctan are given in figure 

(1.4.1).  

𝑥 
7

9
𝑥  

6 

9  
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𝑥  
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 . 
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Figure 1.4.1a: The graph of arctan(x) and Pade’ approximation 

 

 

 

 

 

 

 

 

 

Figure 1.4.1b: The graph of arctan(x) and Maclurian series 

 

 

 

We notice that the Pade’ approximation gives better approximation than the 

Maclaurin series.  
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Chapter 2: Boundary Layers of Ordinary Boundary Value Problems 

 

Singularly perturbed boundary value problems often arise in applied sciences 

and engineering, reaction diffusion equations are one good example, Shao [12]. A 

well-known fact is that the solution of such problems displays sharp boundary or 

interior layers when the singular perturbation parameter   is very small. Hence the 

primary objective in singular perturbation analysis of such problems is to develop 

asymptotic approximations to the true solution that are uniformly valid with respect 

to the perturbation parameter, Chandra and Kumar [6]. Numerically, the presence of 

the perturbation parameters leads to difficulties when classical numerical techniques 

are used to solve such problems and convergence will not be uniform, see [7]. This is 

due to the presence of boundary layers in these problems, see for example O’Mally 

[9]. 

This suggests having numerical methods where the error in the approximate 

solution tends to zero  independently of the parameter   ; that is, uniform 

convergence is desired, see Attili [4]. 

  In this chapter, we present a numerical method for solving a class of 

nonlinear singularly perturbed two-point boundary value problems with Known 

boundary layer at one end of the form  

 
   

   
  (   )

  

  
  (   )   ( )          (   ) 

 subject to 

 ( )       ( )      
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Using singular perturbation analysis the method consists of solving two problems; 

namely, a reduced problem and a boundary layer correction problem. We use Pade
’
 

approximation to obtain the solution of the latter problem and to satisfy the condition 

at infinity. Numerical results will be given to illustrate the method.  

We will divide this chapter into two sections. In section one, we study the linear case 

when   and   are functions of   only while in section two we discuss the nonlinear 

case. 

2.1 The Linear Problem 

Let us consider the linear two-point boundary value singular perturbation problem of 

the form  

                     ( )    
   

     ( )
  

  
  ( )   ( )         (   )                   (2.1.1) 

subject to 

   ( )       ( )                                                      (2.1.2) 

where                and    are given numbers,  ( )      ( )  are sufficiently 

smooth functions with  ( )       ( )       ( )           ( )   
|  ( )|

 
 

and   ( )        for every    ,   -. These conditions imply the existence of a 

unique solution to (2.1.1)-(2.1.2) exhibiting a boundary layer at one end. 

If we set       we obtain the reduced problem 

                  ( )  
   ( )    ( )    ( )                 (   )                       (2.1.3) 
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To solve (2.1.3) and since it is first order, we need to impose one of the boundary 

conditions. Thus, we take  ( )      and drop the one at    . The resulting 

problem is easily solvable since it is linear.  

Over most of the interval, this solution behaves like the solution of (2.1.1)-(2.1.2) but 

at the other end around    , there is a region in which the solution varies greatly 

from the solution of (2.1.1)-(2.1.2). To satisfy the other condition, we will use the 

substitution      , the stretching transformation which means  

        
  

  
  

  

  

  

  
  

 

 
 
  

  
  and  

   

   
 

 

   
 
   

   
. 

This transforms (2.1.1) into  

 

 

   

   
  ( )

 

 

  

  
  ( )   ( ) 

or  

   

   
  (  )

  

  
     (  )   (  )                            (2.1.4) 

Taking     leads to  

   

   
  ( )

  

  
   

or  

  
     ( )  

     , 

which is called the boundary layer correction problem. It compensates for the fact 

that the solution to (2.1.3) does not satisfy the boundary condition at     and this 
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solution satisfies     
   

  ( )     leading to the boundary condition to be imposed at 

   ; that is,   ( )      ( )  The boundary layer correction problem becomes 

                                                             
     ( )  

                                     (2.1.5) 

subject to 

                   ( )       ( )     
   

  ( )                        (2.1.6)             

Notice that this problem is independent of   and at the same time it is not easy to 

apply the limit condition. For that reason we will employ the shooting method to 

solve (2.1.5)-(2.1.6). In this case, assume   
 ( )    and hence (2.1.5)-(2.1.6) will be 

transformed to an initial value problem of the form 

    
     ( )  

                                           (2.1.7) 

subject to 

         ( )       ( )   
 ( )                                  (2.1.8) 

The value of   will be adjusted iteratively until the limit condition is satisfied up to 

some tolerance. As a result the solution to the original problem (2.1.1)-(2.1.2) will be 

a combination of the reduced and the boundary layer correction problems; that is, 

                                           ( )    ( )    .
 

 
/                                               (2.1.9) 

Based on the above discussion, we will have the following result: 

Theorem 2.1. The solution to the system (2.1.1)-(2.1.2) is given as  

 ( )    ( )    .
 

 
/   ( ). 
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Using the transformation     , where    and     are respectively the solutions to  

 ( )  
   ( )    ( )     ( )              (   ) 

and 

  
     ( )  

     

            

  ( )       ( )   
 ( )      ( )(    ( ))  

The proof follows from the discussion proceeded the theorem. For the condition 

  
 ( )    ( )(    ( )) and since the problem is linear, then using reduction of 

order, the solution to (2.1.5)-(2.1.6) is given by 

  ( )   
  

 ( )
   ( )      ( )   

 

 ( )
   

Taking the limit         ( )    leads to 

    ( )   
 

 ( )
           (2.1.6) 

or 

     ( )(    ( ))  

Numerically, the ,   - Pade’ polynomial has the form 

 ̅ 
    

  ( )

  ( )
 

          
 

          
 

with  
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       ( )    (     ( ))
 ( )

 
         

 ( ) 

  
(    ( ))  

 
 ( )

 
       

 ( )

 
 and     

 ( ) 

  
. Differentiating   ̅ 

     
 with respect to t, we obtain  

  ̅ 
  
  
  ( )   

,         
 -(       )   ,          

 -(       )

,          - 
 

 Evaluating at    , leads to  

 ̅ 
  
   ( )

    
       

 
 (    ( ))

 ( )

 
   (    ( ))

 ( )

 
   

which agrees with   
 (0) =  . 

Taking the limit of   ̅      
       as   approaches infinity implies  

   
   

 ̅ 
  
    

  
  

  
    

2.2 The Nonlinear Problem  

Consider the class of nonlinear singular perturbation problems of the form  

                        
   

     (   )
  

  
   (   )   ( )       (   )                     (2.2.1) 

subject to  

   ( )       ( )                                                   (2.2.2) 

where            and   are given numbers,   (   ) and   (   ) are sufficiently 

smooth functions with  (   ( ))          for every     ,    -   

Once again if we set      we obtain the reduced problem 

  (     )  
   (    )    ( )  
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As before, we impose the condition at     since the boundary layer is in the 

neighborhood of     leading to the reduced problem of the form  

                   (     )  
   (    )        ( )         (   )                         (2.2.3) 

The solution to this problem satisfies (2.2.1)-(2.2.2) on most of the interval (0,1) and 

a way from    . If this problem is separable then it can be integrated easily and if 

not, any numerical method for initial value problem will be used to approximate the 

solution such that Taylor or Runge-Kutta methods. 

Close to the boundary layer and to satisfy the other condition, we use as 

before the substitution      , the stretching transformation which transforms 

(2.2.1) into 

   

   
  (    )

  

  
    (     )    (  ) 

or  

  
    (      )  

    (      )     (  )  

Taking     leads to 

  
    (    ( )    )  

         (2.2.4) 

subject to 

  ( )       ( )     
   

  ( )                                  (2.2.5)                                           

Using the shooting method, this problem can be replaced by the initial value problem 

of the form  

  
      (    ( )      )  

                        (2.2.6) 

subject to  

  ( )       ( )   
 ( )                                             (2.2.7) 
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The value of   will be adjusted iteratively until the limit condition is satisfied up to 

some tolerance. As a result the solution to the original problem (2.2.1)-(2.2.2) will be 

a combination of the reduced and the boundary layer correction problems; that is,  

 ( )    ( )    .
 

 
/. 

To obtain   by applying the limit condition         ( )    and to solve (2.2.6)-

(2.2.7), we approximate   ( ) by a series solution of the form   ( )   ∑    
  

    

then substitute in (2.2.6)-(2.2.7). The resulting coefficients    depend on  . We then 

use Padé approximation to approximate   (t) of the form   ( )   
  ( )

  ( )
 and then 

apply the limit condition on the resulting Padé approximation to obtain    

2.3 Numerical Results  

For numerical testing, we will consider the following example. 

Example 2.3.1: Consider the second-order equation 

       ( )              ;      ( )     ( )                      (2.3.1) 

where the exact solution is  ( )   (       )  
(    )(   

  
 )

       . 

By setting      we get the reduced form 

  
 ( )         ( )     

which has the solution 

   ( )           

The boundary layer correction problem is 
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        ( )      
 
( )                                           (     ) 

Then, 

           

which implies that 

       
       

Using the initial condition, the solution will be 

   ( )               

with    
 

 
   and         ( )   , implies that       

Hence the solution of (2.3.1) is 

 ( )      ( )     .
 

 
/ 

                            
 

                                        (2.3.3) 

For            Table (2.3.1) represents the absolute error. Graphs of the 

approximate and the exact solutions are given in Figure (2.3.1).  
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    (  ) Approximate    Absolute Error 

  (  )      

0 0 0 0 

0.1 -0.8882 -0.89 0.0018 

0.2 -0.7584 -0.76 0.0016 

0.3 -0.6086 -0.61 0.0014 

0.4 -0.4388 -0.44 0.0012 

0.5 -0.249 -0.25 0.001 

0.6 -0.0392 -0.04 0.0008 

0.7 0.1906 0.19 0.0006 

0.8 0.4404 0.44 0.0004 

0.9 0.7102 0.71 0.0002 

1 1 1 0 

 

Table 2.3.1: The absolute error between the exact and approximate solutions. 
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Figure 2.3.1a: The graph of the exact solution at         

 

 

 

 

 

 

 

Figure 2.3.1b: The graph of the approximate solution at         

 

 

 

 

 

 

 

Figure 2.3.1c: The graph of the exact and the approximate solutions at         

 

 

 



28 
 

Chapter 3: Boundary Layers of Fractional Boundary Value Problems 

 

In this chapter, we discuss a numerical solution of a class of non-linear 

fractional singularly perturbed two points boundary-value problem. The method of 

solution consists of solving reduced problem and boundary layer correction problem. 

A series method is used to solve the boundary layer correction problem, and then the 

series solution is approximated by the Pade’ approximation of order ,   -. Some 

theoretical results are established and proved. Three numerical examples are 

discussed to illustrate the efficiency of the present scheme, see [14,13,2,3]. 

3.1 Reduced and boundary layer correction method 

In this section, we consider a class of fractional singularly perturbed two 

points boundary-value problems with Dirichlet boundary conditions of the form 

     ( )   (   )  ( )   (   ) ( )            ,   -               (3.1.1) 

subject to  

 ( )       ( )                               (3.1.2) 

where   > 0 is a small positive parameter,       are given constants,  (   )  (   ) 

are sufficiently smooth functions such that  (   ( ))    for all    , and 

      ,   -   {   ,   -    |∫  ( )    
 

 
}   Here,    denotes the Caputo 

fractional derivative.                        

The numerical solution of the present problem is based on dividing the main problem 

(3.1.1) and (3.1.2) into two equivalent problems; namely, a reduced problem and a 

boundary layer correction problem. The reduced problem is first order initial value 
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problem (IVP) which can be solved analytically. However, the boundary layer 

correction problem is a nonlinear regular IVP of order   which is solved using a 

series method; namely Adomain decomposition method (ADM) followed by the 

Pade’ approximation method. 

This approach consists of two steps. In the first step, we obtain the following reduced 

problem of (3.1.1) by setting     

 (    )  
 ( )     (    )  ( )                                (3.1.3) 

The solution of the first order differential Eq. (3.1.3) can not satisfy both boundary 

conditions in (3.1.2). For this reason, we will force the solution of problem (3.1.3) to 

satisfy the following condition   

   ( )                                                (3.1.4) 

In practice, the solution of (3.1.3) and (3.1.4) behaves like the solution of (3.1.1) and 

(3.1.2) on  most of the interval (0,1] except for small interval around     in which 

the solutions    and y do not match. This problem is handled in the second step by 

introducing the boundary layer correction by stretching the coordinate   by means of 

a scaling parameter, say,  . We thus define  

                                              √ 
 

 , where                                           (3.1.5) 

Obviously, the first and second derivatives of   with respect to   should be given by 

  

  
 

 

√ 
 

  

  
 and 

   

    
 

√  
 

   

      

However, the effect of the transformation (3.1.5) on Caputo fractional derivative    

is presented in the following lemma. 
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Lemma 3.1.1. Let     and    √ 
 

   Then    ( )   
  

    ( )  for     (   -  

Proof. Let   √ 
 

   then 

   ( )   
 

 (   )
∫(   )      ( )   

 

 (   )
∫ (√ 

 
   )

   
   ( )   

√ 
 

 

 

 

 

 

 

 
 
   
 

 (   )
∫ (  

 

√ 
 )

   

   ( )    

√ 
 

 

 

                            (     ) 

Let   
 

√ 
 , then                               

    √ 
 

   and  
   

   
 

 

√  
 

   

      

Thus, Eq. (3.1.6) transforms to 

   ( )  
 
   
 

 (   )
∫(   )   

 

√  
 

   

   √ 
 

     
  
    ( ) 

 

 

 

as desired. 

Consequently, Eq. (3.1.1) transforms to 

               
     

  (√ 
 

   )
  

  
  

   

  (√ 
 

   )                       (3.1.7) 

Since       , we have 

     

 
   and  

   

 
 

 

   
    

Consequently, Eq. (3.1.7) will be written as 
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                                ( √ 
   

   )
  

  
  

 

     ( √ 
   

   )           (3.1.8) 

Since the solution of the reduced problem (3.1.3) and (3.1.4) does not satisfy the 

boundary condition at    , the solution of the boundary layer correction problem 

should approaches zero as w approaches infinity. Thus, the boundary layer correction 

problem, when    , should has the form 

       (    ( )    )  
                               (3.1.9) 

with 

                             ( )        ( )     
   

  ( )                                           (3.1.10) 

It should be noted that first condition in (3.1.10) is also required to ensure that the 

solution of (3.1.1) and (3.1.2) satisfies the condition at    . Note that, we 

implement the linear shooting method to transform problem (3.1.9) and (3.1.10) to 

the following fractional initial value problem 

                                   (    ( )    ) 
 
 
                           (3.1.11) 

                                    ( )        ( )   
 ( )   ,                       (3.1.12) 

where   will be determined later using the condition at infinity. Since finding the 

exact solution for problem (3.1.11) and (3.1.12) is a difficult task, we implement the 

well-known Adomian decomposition method (ADM), for details about this method 

see [9-13]. To derive the algorithm which serves to solve Eqs. (3.1.11) and (3.1.12), 

we rewrite Eq. (3.1.11) in the form 

                                                  ( )   ,                                  (3.1.13) 
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where      and    (        ) is a linear operator contains all other terms. As 

a result of lemma (3.1.1), we may apply   
  on Eq. (3.1.13) to have 

                      ( )    ( )     
 ( )    

  (       
 )              (3.1.14) 

Assuming the solution   ( ) is represented by an infinite series of the form 

                                                ( )   ∑  ̅ ( )  
                              (3.1.15) 

and the term N by an infinite series of polynomials 

                                                  ∑     
 
              (3.1.16) 

where    are the Adomian polynomials given by 

                                        
 

  

  

   [ (∑    ̅ )
 
   ]

   
 ,       (3.1.17) 

then Eq. (3.1.14) has the form 

                       ∑  ̅ ( )     ( )    
 ( )  ∑   

   ( ) 
   

 
                      (3.1.18) 

Thus, Eq. (3.1.18) introduces the following recursive relations 

 ̅ ( )     ( )    
 ( )   

                                   ̅   ( )       
   ( )                                (3.1.19) 

The series solution of   ( ) follows directly and the accuracy of the solution 

definitely depends on the number of the calculated terms. In the following 

calculations, the number of terms in the Adomian series (3.1.15) did not exceed 10 

terms.  
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     We finally apply the ,   - Pade’ approximation to approximate   ( ) and then 

apply the limit condition to obtain the value of  ; the approximation solution of 

(3.1.1) and (3.1.2) is 

 ( )     ( )     .
 

   (   )
/  

See [12]. 

3.2  Numerical Results 

In this section, we consider two examples to demonstrate the performance and 

efficiency of the method.  

Example 3.2.1. Consider the linear fractional problem 

                                       
 

  ( )    ( )                                      (3.2.1) 

Subject to 

                                                ( )           ( )                        (3.2.2) 

we set      to obtain the following reduced problem  

        
 ( )                   ( )                                        (     ) 

Obviously,    should have the following explicit from 

  ( )         

However, the boundary layer correction problem is  

  
 
   ( )    

 ( )                                                    (     ) 
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subject to 

  ( )      
 ( )                                                (     ) 

Applying (ADM), we obtain 

  ( )          
  

√ 
  

 

  
 

 
   

  

√ 
   

 

  
 

 
   

   

   √ 
 

7

  
 

  
   

   

   √ 
 

9

  

 

   
   

   

     √ 
 

  

  
 

   
   

    

      √ 
 

  

  
 

    
   

     

       √ 
 

  

  
 

     
   

     

        √ 
 

 7

                                                        (3.2.6) 

Approximating (3.2.6) using the Pade’ approximation of order ,   -, we have  

  ( )    ̅ ( )   
 (   )

 (   )
   

and then, solving the equation 

   
   

 (   )

 (   )
    

we obtain                The graphs of the       and   at         are 

displayed in Figure (3.2.1). 
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Figure 3.2.1a: The graph of the solution   at         

 

 

 

 

 

 

Figure 3.2.1b: The graph of the solution   at         

 

 

 

 

 

Figure 3.2.1c: The graph of the solution   at         
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Example 3.2.2. Consider the nonlinear singular fractional problem 

                               
 

  ( )   ( )  ( )     ( ) ( )                            (3.2.2.1) 

subject to 

                                                ( )           ( )                     (3.2.2.2) 

Following the above discussion, we set     to obtain the following reduced 

problem 

                             ( )  
 ( )     ( )  ( )         ( )           (3.2.2.3) 

It can be easily verified that the solution of (3.2.2.3) is   ( )        (         )  

However, using the stretching transformation    √ 
 

  with        we have the 

following boundary layer correction problem 

                          
 

   ( )  (  ( )    ( ))  
 ( )           (3.2.2.4) 

subject to 

                  ( )       ( )        (     )    
 ( )         (3.2.2.5) 

Applying (ADM) to solve (3.2.2.4) and (3.2.2.5), we obtain 

  ( )         (     )      
  

√ 
  

 
  

 

 
   

  (   )

√ 
   

 
  

 

  
 (    )  

 
  (     (     ))

    
 
 

 
 
  

 (       ( (       )   ))

    
  

 
  (    (      )     ( (        )   ))
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 (     (     )   ( (          )   ))

      
   

 

        
 
 

 (  .              ( (         )     )       ( ( (     

    )      )    )/) 
  

  
 

           
( .                (   (      

     )       )       ( ( (              )       )      )/)  .     

(3.2.2.6) 

Approximating (3.2.2.6) using the Pade’ approximation of order ,   -, we have 

  ( )   ̅ ( )   
 (   )

 (   )
  

where 
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 (   )                

  {              (          )(            )

  ((          )            )((           )             )

 ( (           )  (          )} 
 
  

  {              (           )

 (           )(         )((          )           )

 ((          )             ) ( (          )            )} 

  {              (           )(           )(          )

 ((          )            )((          )             )

 ( (           )            )} 
 
 

  {               (           )

 ((          )            )((           )             )

 ( (            )            )( (          )            )}  

  {        

      (           )(          )((          ) 

           )((           )            )((           ) 

            )( (           )            )} 
 
 

  {              

 (           )(             )((          )            )

 ((           )            )((            )             )

 ( (          )            )}   

and  
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 (   )                

  {               (          )(           )

 ((          )            )((           ) 

            )  ( (           )            )} 
 
 

  {             (           )

 (           )((          ) 

           )((           )             )( (           )

           )} 

  {       

       (           )(           )( 

         )((         )            )

 ((           )             )( (           )

           )} 
 
  

  {               (           )(           )(          )

 ((          )            )((           ) 

            )  ( (            )            )}  

  {              (           )

 ((          )            )((           )            )

 ((           )             )( (          )

           )} 
 
 

  {        

       (           )(            )((          ) 

           )((           )            )((           ) 

            )( (          )            )}    
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Solving the equation  

   
   

 (   )

 (   )
    

we obtain                . The graph of the approximate solutions        and 

y at         are displayed in Figure (3.2.2) - (1). This figure is an evident proof to 

our claim that the solutions    and y match on most interval (0,1] except for small 

interval around    . The graph of the approximate solution   for several values of 

  are displayed in Figure (3.3.2) - (2). Obviously, the singularity of the solution at 

    is accurately captured by the present technique. 

Figure 3.2.2 – 1: Graphs of       and y at         
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Figure 3.2.2-2a: The graph of the solution   at         

 

 

 

 

 

 

Figure 3.2.2-2b: The graph of the solution   at         

 

 

 

 

 

Figure 3.2.2-2c: The graph of the solution   at         
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Example 3.2.3: Consider the nonlinear fractional problem       

                    
 

 ( )     ( )   √ ( )  ( )                                              (       ) 

subject to  

 ( )          ( )                                                                (       ) 

we set      to obtain the following reduced problem  

             
 ( )   √    ( )                ( )                                                  (       ) 

It can be easily verified that the solution of (3.2.3.3) is   ( )   
 

(    )  
  however 

using the stretching transformation   √  
 

  with        we have the following 

boundary layer correction problem 

                    
 
   ( )     

                                                   (       ) 

subject to 

      ( )       ( )    
 

 
   

 ( )                            (       ) 

Applying (ADM), we obtain  

  ( )           
  

 √ 
 

 
  

 

 
   

  

  √ 
 

 
  

 

 
   

   

   √ 
 

 
   

 

  
  

 
   

   √ 
 

 
  

 

   
   

 

   
  

   

     √ 
 

  
  

    

      √ 
 

  
 

 
 

    
  

    

       √ 
 

  
  

 

     
   

    

        √ 
 

  
  

Following the same steps as in the previous example, we obtain                  
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Figure 3.2.3-a The graph of the solution    at         

 

 

 

  

 

Figure 3.2.3-b The graph of the solution    at         

 

 

  

 

 

Figure 3.2.3-c The graph of the solution of   at         
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Conclusion 

In recent years, the fractional differential equations have received more and more 

attention in many physical applications, phenomena in electromagnetics, acoustics, 

viscoelasticity, electrochemistry, etc. In this thesis, we have introduced an algorithm 

for approximating solutions of a class of non- linear singularly perturbed two points 

boundary-value problems of fractional order            The method of solution 

is based on reduced layer correction method which divides the singular problem into 

first order IVP and fractional IVP of order  . The fractional IVP is solved using the 

Adomain decomposition method and Pade’ approximation method. Three examples 

are discussed to illustrate the efficiency of the present scheme. The Mathematica 

software system has been used for all numerical computations in this thesis. 
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