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Abstract

Autonomous robots are hybrid systems whose role in our daily life is becom-

ing increasingly critical. They are tasked with various activities requiring reliability,

safety, and correctness of their software-controlled behavior. Formal methods have

been proved effective in addressing development issues associated with these software

qualities. However, even though autonomous robot navigation is a primordial function,

there is no research dealing with enhancing reliability of the navigation algorithms.

Thus, our focus is to investigate this type of algorithms, and specifically path planning,

a fundamental and critical functionality supporting autonomy. We formally address

the issue of enhancing reliability of the widely-used A* path planning algorithm. In

our stepwise refinement process, we capture successively more concrete specifications

by transforming a high-level specification into an equivalent executable program. To

elaborate an initial representation of the A* algorithm, we express it in an abstract

and intuitive, yet formal, description. We use traditional mathematical concepts, such

as sets, functions and predicate logic to capture this description. In the next step, we

use the Z specification language to effect the transformation from the mathematical

description into Z schemas. The resulting specification is completely formal. Subse-

quently, we use the formal theory of refinement in Z to generate the implementation

specification. This stage involves both data and operation refinement and is carried out

in several basic sub-steps. A Java-based simulation prototype that mirrors the imple-

mentation specification is developed in order to demonstrate the effectiveness of our

software development approach.

Keywords: Z, formal specification, path planning, A* algorithm, autonomous robots,

formal refinement, equivalent implementation, simulation, obstacle avoidance, naviga-

tion tasks.
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Chapter 1: Introduction

1.1 Motivations

“When software fails, it invariably fails catastrophically. This awful quality is a reflec-

tion of the lack of continuity between successive system states in executing software. If

the preceding state is correct, there is no inherent carry over of even partial correctness

into the next succeeding state ”[1]. Therein lies the perplexing complexity of software.

The term “Software Engineering” was coined in 1968 to establish a discipline

capable of addressing the then-perceived software crisis [2]. Decades later, because

of the rising complexities, the challenges for developing correct software systems are

growing even bigger as witnessed by the many shortcomings of some highly-visible

critical systems. Since then, there has been several examples of software failures that

caused catastrophes. For example, in 1996, the European Space Agency Ariane 5

rocket exploded 37 seconds after launch. The cause of the failure was an exception-

handling bug that forced a self destruct [3]. Another famous failure was the THERAC-

25 radiation machine, which led to the death of three patients. The severity of this kind

of system failure requires developers to design, implement, and deploy high confidence

systems, which are capable of performing critical tasks reliably with no failures or

losses.

Various complex software systems are being continuously deployed to address

the ever-increasing needs of the different users. These systems include critical and non-
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critical systems. Critical systems are subject to stringent properties, such as reliability,

high confidence, and safety. Such systems should always perform properly with no

failures. Otherwise,catastrophic consequences might ensue.

Several methods are available to help us develop reliable systems, such as:

testing, triple modular redundancy, and formal methods. Testing is not a sufficient

approach to guarantee that the system is 100% reliable, because the testing process

can never completely detect all the defects within software [4]. Triple-modular redun-

dancy, which consists of three systems performing concurrently the same process and

voting on the overall output, tries to limit failure through redundancy. If any of these

systems fails, the other systems would handle the fault [5], but in case the software

itself contains an error, the three systems will have the same error and will behave the

same way.

Formal methods are mathematical techniques that are used in specification,

development and verification of hardware and software systems. These techniques can

contribute in delivering safe and reliable systems [6]. A well-know researcher wrote

about the importance of formal methods for the future of the software system as: “It is

clear to all the best minds in the field that a more mathematical approach is needed for

software to progress much” [7].

Robotic systems are critical systems that are designed to perform several tasks

intelligently on behalf of humans. They are intended to carry out several tasks intel-

ligently to help us in our daily life; thus, reliability and safety of these systems are

fundamental. They are expected to always behave correctly and accurately without

causing any harm. Failure of these systems may endanger human life. Among the



3

many uses of robots are in conflicts, at home, at work, and even as pets. That is, their

ever-increasing interactions with humans demands reliability.

This issue is one of the motivating factors of our research. We would like to

address reliability by constructing software systems using formal methods. Since nav-

igation is a fundamental task of robots, we focus our study on the path planning issue.

The choice is based on the fact that there is no previous research that was addressing

the issue of enhancing reliability of the navigation algorithms. Thus, our focus is to

investigate this type of algorithms, and specifically path planning, a fundamental and

critical functionality in any autonomous system.

1.2 Literature review

Our research emphasizes the use of formal methods in software development, and

specifically, the notion of refinement from a specification to an implementation. Thus,

in the following sections, we will review the path planning algorithms specifically

the A* algorithm, then we discuss some formal methods approaches, their successful

applications, and formal refinement.

1.2.1 Path planning

Autonomous systems, such as robots, are designed with sophisticated capabilities.

Navigation in dangerous environments cluttered with obstacles is a fundamental ca-

pability. Path finding is an essential navigation function in any autonomous system. Its

objective is to aid robots find the shortest or the optimal path to move safely from one
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point to another [8]. The problem of finding the shortest path has received considerable

attention, and it has been solved by different algorithms. Most of these algorithms are

graph-based.

Some well-known path finding algorithms such as : A*, Dijkstra, and Bellman-

Ford algorithms. Among these, the A* algorithm is used in many applications which

are related to the path finding problem, such as games. This algorithm is designed to

find an optimal and safe path between two points.

Dijkstra algorithm, another fundamental well-known algorithm, is capable of

solving a single-source shortest path problem, in which we need to find the shortest

path from a source node S to all the other nodes in the graph. This algorithm works

for both directed and undirected graphs. However, it does not work for graphs with

negative weights. The Bellman-Ford algorithm targets the same problem and is capable

of handling negative weighted graphs [9].

1.2.2 A* algorithm

The A* algorithm is a well-known algorithm that emerged in 1968 as an extension of

Dijkstra’s algorithm. It succeeds in achieving faster time performance using heuristics.

This algorithm is used to find the efficient shortest path from one point to another while

avoiding obstacles [10].

However, this algorithm works by checking the neighbors of the current point,

and using some metrics to determine which one of these neighbors is the next node to

be evaluated. These metrics include the G value, the H value, and the F value; the G
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value is the distance from the START node to the current node, the H value is distance

from the current node to the GOAL, and the F value is the sum of the G value and the

H value. The algorithm keeps checking and evaluating the nodes until the algorithm

found the target.

The main scenario of the A* algorithm is described below: [11]:

1. Assign a START and a GOAL node.

2. Define the OPEN set, which is a priority queue that holds the nodes to be eval-

uated, the nodes are ordered by the F value of each node from the lowest to the

highest, while the node with the lowest F is called the “best node”. initially the

OPEN set contains the START node.

3. Define the CLOSED set, that holds the nodes that have been evaluated already,

initially it is empty.

4. Compare if the best node in the OPEN set is not the GOAL:

• Make this node as the current node

• Remove this node from the OPEN set

• Add this node to the CLOSED set

• Find the adjacent neighbors of the current node

(a) Calculate for each neighbor the cost value, which is equivalent to the

sum of the G value of the current node (the distance between the cur-

rent node and the START node) and the distance between the neighbor

and the current node as follows:
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Cost = G(current) + distance-between(current, neighbor)

(b) If the neighbor in the OPEN set and the Cost is less than g(neighbor):

remove this neighbor from the OPEN set, because the new path is

better

(c) If the neighbor in the CLOSED set: ignore it because this node has

been evaluated already

(d) If the neighbor is neither in the OPEN set nor in the CLOSED set:

Set G(neighbor) to the cost

Add the neighbor to the OPEN set

Set priority queue rank to the F(neighbor)

Set the current node as a parent of this neighbor

5. If the best node in the OPEN set is the GOAL

• Construct a path from the GOAL node to the START node by following the

parent of each node

1.2.3 Formal methods

Formal methods are rigorous mathematical techniques that are used in specifying, ver-

ifying, and developing hardware and software systems [12]. These methods can con-

tribute to developing reliable and robust systems [13]. These methods are used to

formally specify the software functionally and to verify its correctness, or to build

a software system from an abstract specification to its implementation [14]. There
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are a lot of formal methods that can be used to specify software systems such as: Z,

VDM, Larch, Temporal logic, CSP, transition axioms, and they can be classified into

two major types: model-oriented and property-oriented. The model-oriented method

describes the behavior of the system by constructing a model of the system using math-

ematical structures such as: sets, functions and functions, while the property-oriented

methods specifies the system’s behavior by specifying a set of the system properties

[15].

The cost effectiveness of the use of formal methods in industry from a CEO

point of view was demonstrated by Martyn Thomas [16]. Anthony Hall [17] discusses

seven myths about formal methods and suggests instead seven facts as follows : 1)

formal methods are beneficial approaches to find errors in early stages; 2) they let

you think deeply about the system that you plan to build; 3) they can be used for

almost any kind of applications (critical or non-critical); 4) formal methods are based

on mathematical techniques which are easier to understand than program syntax; 5)

they can lower the development cost; 6) they help clients to be more aware about the

product they buy; 7) they are being used in successful industrial projects.

In a technical report [18], Rushby discussed formal methods, certification of

critical systems,the advantages of formal specification and verification, and the effec-

tive contribution of these methods to the assurance of the safety of critical systems.

In the transputer project, the formal development process of the floating-point

unit was faster by three months compared to the informal development, while the delay

in production for each month was estimated to cost one million American Dollar [19].

SACEM system was responsible to control the speed of the RER line A trains
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in Paris [20], 63% of the code was safety-critical and has been conducted by formal

specification and verification [21, 22]. In 1990 Guiho and Hennebert [21] declared that

the system is safer than before as a consequence of the use of the formal specification

and verification.

One of the formal specification languages (TLA+) was used in Amazon Web

Services (AWS) to solve complex design problems in critical systems, the authors of

[23] mentioned that the use of the formal specification helps to find subtle bugs that

would never be found by other techniques, and it optimizes the performance without

loosing correctness.

Several articles mentioned many obstacles that prevented the acceptance of the

formal methods, such as: lack of well-trained people, weakness in both the available

tools and notations [20].

1.2.4 Z specification language

Z notation is a well known type of formal methods, which has a global acceptance as a

formal specification language. It is useful in specifying software systems. Z notation is

a descriptive technique. This type of notation from a specification language perspective

is a model oriented specification language which is based on logic and set theory [14].

There are two languages in Z notation : mathematical and schema language.

The former is used to describe objects and relationships, while the latter is used to

construct and compose descriptions [14]. Z notation is used to describe the behavior

of systems by defining the states, the operations, and the enquiries. This specifica-
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tion language uses a graphical format which is called a schema to present the formal

description. A schema consists of two major parts, which are the declarations and

predicates as shown below [24]:

SchemaName

Declarations

Predicates

Similar to the structure of the method in any programming language, the dec-

larations part introduces variable definitions and imported types (i.e., other schemas),

while the predicates part describes the behavior of the system in terms of predicates

about the states of the variables.

1.2.5 Formal refinement

Refinement in software development is a concept that dates back to the 1970’s [25].

Its emphasis was on the stepwise refinement of programs through successive stages

to ensure clarity and correctness. Formal refinement fits in that evolution. It is the

process of generating the executable code from the formal description of the system.

The major goal of this process is to improve the specification by resolving uncertainty

and ambiguity. Formal specification is highly abstracted description of the system, and

by using the refinement process we add more data and more details to reveal the correct

functionality of the system [26, 27].
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1.2.6 Formal specifications and verifications of autonomous robots

A case study using a home service robot (Samsung Home Robot SHR 1000) showed

the effectiveness of the formal verification. Through the verification process they de-

tected and solved a feature interaction problem (in which the robot does not stop when

commanded by the user). They used the Esterel framework to develop an executable

code and to verify the system safety. This case study illustrated that the reliability of

the system was enhanced by using formal verification and validation (V&V) [28].

The authors of [29] introduced an approach to analyze and model the path plan-

ning algorithms. They used mCRL2 language and the model µ- calculus to describe the

behavior of a multi-robot system, they followed this by a formal verification process

using mCRL2 toolset to verify some properties. They mentioned that some properties

of a simple path planning algorithm can be verified efficiently using their proposed

approach.

The robot system can be divided into 3 major subsystems: the planning system,

the perceptual system, and the acting system. In their research [30], they focused on

describing the behavior of the perceptual system of the autonomous mobile robots that

is composed of other subsystems, so in order to describe the overall behavior of the

perceptual system they described the behavior of these subsystems and the communi-

cation between them. They succeeded in specifying the perceptual system formally by

using hybrid process algebra, then they implemented the resulting model as a software

simulation to emulate the behavior of their proposed design.

Hybrid process algebra was used in [31] to formally specify the behavior of the
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path planning system of mobile robots. The moves of autonomous mobile robots were

divided into four major modes as follows: 1) move-to-goal mode: it is the process

that uses the control laws to let the robot moves to the goal, 2) obstacle-avoidance

mode: it is the process that assigns an intermediary-goal between the robot and the

goal in the case of obstacle existence, 3)move-to-intermediary-goal mode: it is the

process that lets the robot move to an intermediary-goal that has been specified by

the obstacle-avoidance process 4) path-smoothing mode: it is a process that will turn

the robot smoothly between the different modes. While each motion mode has been

described as a process, the communication between these four processes will describe

the overall behavior of the path planning system. In this paper, they developed the

formal specification of the path planner system, then they implemented their model as

a simulation software, and they provided some test cases that illustrate the behavior of

their specification.

Timing and concurrency are very important properties in real-time systems.

Thus, it is crucial to verify these properties by using formal methods. This research

[32] proves that Z specification can be used to specify small-scale embedded hard

real-time systems, by providing a case study that formally described the behavior of a

wall-climbing robot using Z notation.

In their research, Lynch, Segala, and Vaandrager [33] developed the Hybrid

Input/Output Automaton (HIOA) model, which is a fundamental mathematical frame-

work for specifying and analyzing hybrid systems. In another study [34], the authors

provided a case study that used the hybrid I/O automaton (HIOA) framework to spec-

ify the behavior of a simple Lego car under some constraints such as: the car will
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always move forward on a black tape and it will never get out of tape or move back-

ward. Another case study [35] used HIOA to specify and validate a part of automated

transportation system. The major goal of this case study was to prove the usefulness of

the HIOA model and several computer-science based techniques to particularly specify

and validate automated transportation systems and hybrid systems generally.

According to the previous discussion, the last four researches are the most

relevant to our research. We found that both of these researches [30] & [31] were lim-

ited to build the formal specification, while the simulation they did was constructed

in such way that is similar to their abstract model without following a formal refine-

ment process to get the equivalent implementation, and also the specified systems were

different,the first research [30] specified the mobile robots perceptual system and the

second research[30] specified a different motion planning algorithm which is not the

A* algorithm.

Another research [32] was limited to the formal specification using Z and there

was no concrete implementation, and even the specified problem(the behavior of a wall

climbing robot)is different compared to our problem.

The other researches [34] & [35], that used HIOA framework, were limited

to build the formal specification, although the second research [35] has some kind

of proofing but there is no concrete implementation that is equivalent to the abstract

specification.

However, the contribution of our research is original as it is the first research in

this area that formally specifies a modified version of the A* path planning algorithm,

and formally refines the abstract specification to get the equivalent concrete implemen-
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tation.

1.3 Potential contributions and limitations of the study

Our research aims to develop a reliable autonomous robot system that is capable to

move safely from one point (start point) to another (target point) (see Figure 1.1), in

which the robot has to reach the target safely by using the shortest path while avoiding

the obstacles in the surrounding environment. Our major claim is to enhance reliability

of the path planning issue in the autonomous robot system by following a formal pro-

cess that starts by the formal specification and ends by the formal refinement process

that results in an equivalent implementation that mirrors our specification.

Figure 1.1: An example of path planning grid

Our study is limited to the navigation tasks in terms of path planning, as we

think it is a fundamental functionality in any robot system.

We proves that out results are consistent and correct by using three different

formalisms: (1) specification; (2) refinement; and (3) simulation. For the formal spec-

ification, we use Z notation to develop the needed schemas to describe the behavior
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of our system, which is a widely used specification language to specify critical or

non-critical systems. For the refinement process, we develop refinement strategies that

support the transformation from the specification into an implementation. The basic

idea is to construct two types of semantic-preserving mappings. The first mapping re-

fines data and the second one refines operations. A complete refinement may require

several stages and thus can be viewed as composition of the intermediate mappings. By

following the formal refinement, we derive the final implementation that mirrors our

specification, then we develop a simulation that is consistent with the implementation

to demonstrate the effectiveness of our software development approach.

The general objectives of this research are the following:

(1) To enhance reliability of the A* path planning algorithm and to become more

convenient and safer for autonomous robots.

(2) To specify formally our new version of the A* path planning algorithm using Z

notation.

(3) To derive an equivalent implementation that mirrors our formal model through a

formal refinement process.

(4) To demonstrate the feasibility of our software development approach by building

a simulation.

1.4 Outline of the thesis

This thesis is structured as follows: In chapter 2, we present our semi formal descrip-

tion of the problem, which is a mathematical description that we used as a base to build
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the formal specification. In chapter 3, we discuss our formal model (our Z document),

which identifies the major schemas that describe the behavior of our system. In chap-

ter 4, we introduce the formal refinement process that we follow to derive formally

the equivalent implementation. In chapter 5, we show the implementation process and

some test cases that prove the feasibility of our approach. In chapter 6, we analyze

our findings by providing a general discussion and some suggestions for the possible

future work, then we conclude our thesis.
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Chapter 2: Semi-formal specification

In this chapter, we discuss the semi-formal description of our system, which is going

to be used as a base to build our formal model. The semi-formal description is con-

sidered as a mixture of English language statements with mathematical statements that

describe the overall behavior of our system. See Appendix A (Notations) that describes

each notation that appears in this chapter.

2.1 Definitions

First of all, we need to introduce the set (pair) that includes all the pairs of natural

numbers (x,y). We can generate these pairs by the Cartesian product of 2 sets of type

natural numbers:

pair : N×N

The map can be presented as a power set of the set pair, because we need to

limit the size of the map by adding specific pairs to the map set (see Figure 2.1).

map : Ppair

We set the size of the map by giving a specific range to its elements; the range

of the X value should be between 0 and maxX(any constant), and the range of the Y

value should be between 0 and maxY (any constant) as follows:

maxX = const1
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Figure 2.1: The pair and the map set

maxY = const2

{∀xm : 0 . . .maxX ; ∀ym : 0 . . .maxY • (xm ,ym)}

We need to have a border to surround the map, and it is going to be defined as

a power set of the set Pair to hold the border coordinates.

border : PPair

The major need of having a border is to solve the problem of having undefined

neighbors during the path finding process. For example, if the current position is lo-

cated in the corner of the map, the system will not be able to identify the neighbors

correctly as shown (in Figure 2.2); the system can recognize only 3 neighbors, and

can’t recognize the other neighbors.

The set border is initialized by taking the union of four sets that hold the border

coordinates(see Figure 2.3).

border ′ = {{∀xp : 0 . . .maxX • (xp ,0)}∪

{∀xp : 0 . . .maxX • (xp ,maxY )}∪
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Figure 2.2: Example of undefined neighbors

{∀yp : 0 . . .maxY • (0,yp)}∪

{∀yp : 0 . . .maxY • (maxX ,yp)}

Figure 2.3: The range of the border coordinates

Then we start adding specific locations for the robot, the target and the obsta-

cles; the pair (xr ,yr ) represents the robot location, the pair (xt ,yt) represents the target

location, and the obstacles will be represented as a set of pairs called (obstacleList).
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Both the robot and the target locations should be initialized with an undefined

value (any value that does not belong to the map set), and the obstacleList is initially

empty.

undefined ==⊥

(x ′r ,y
′
r ) = (undefined ,undefined)

(x ′t ,y
′
t) = (undefined ,undefined)

obstacleList ′ =∅

The several responses of the system will be defined as a set called RESPONSE

as follows:

RESPONSE ::= FreeThePairFirst | NoPathFound | youCantFreeBorder |

ItsBorderPosition | APathIsFound

The different moves that can be done by the robot will be defines as a set called

ROBOTMOVE as follows:

ROBOTMOVE ::= up | down | right | left | upRight | upLeft | downRight | downLeft

The set openF is declared as a bijective function that relates each pair to its F

value, while the set openG is also declared as a bijective function to relate each pair to

its G value.

openF : Pair �→ N

openG : Pair �→ N

The openF set will be initialized by adding the robot coordinates to the domain and

its F value to the range, while the openG set will be initialized by adding the robot

coordinates to the domain and its g value to the range.
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openF ′ = {(xr 7→ yr ) 7→ f }

openG ′ = {(xr 7→ yr ) 7→ gc}

We need to define some pairs to be used during the search process such as: the

bestPair (xb ,yb), which is the pair in the domain of the openF that is associated with

the lowest F value; and the currentPair (xc,yc) is the pair that holds the coordinates of

the current position during the search process. Both of these pairs are initialized with

undefined values.

(x ′b ,y
′
b) = (undefined ,undefined)

(x ′c,y
′
c) = (undefined ,undefined)

During the search process to find the path, we need to declare three power sets

of type Pair (neighbors1,neighbors2 and neighbors3); the neighbors1 set is declared

to hold the adjacent eight neighbors of the current position; the neighbors2 set is de-

clared to hold only the safe neighbors after excluding the unsafe neighbors; and the

neighbors3 set is declared to hold the free and the safe neighbors after excluding any

neighbor that whether belongs to the border set or it is an obstacle, and also we need

to declare a pair to hold the coordinates of any neighbor cell.

neighbors1 : PPair

neighbors2 : PPair

neighbors3 : PPair

(xn ,yn) //neighbor pair

Initially these sets are empty while the neighbor pair is assigned to an undefined

value.
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neighbors1′ =∅

neighbors2′ =∅

neighbors3′ =∅

(x ′n ,y
′
n) = (undefined ,undefined)

The pair (xcp ,ycp) is defined to hold the current position of the robot and the

pair (xnp ,ynp) is defined to hold the next position of the robot. Both of these pairs are

initialized with undefined values.

(x ′cp ,y
′
cp) = (undefined ,undefined)

(x ′np ,y
′
np) = (undefined ,undefined)

The set ParentChild is defined as a bijective function that relates each parent

(of type Pair) to its child (of type Pair). Initially this set is empty.

parentChild : Pair �→ Pair

parentChild ′ =∅

The closedList is a set that holds the pairs that have been evaluated before.

Initially this set is empty.

closedList : PPair

closedList ′ =∅

The final path is defined as a sequence of pairs (the sequence is equivalent to a

function that relates the natural numbers set to the pair set: path : N 7→ Pair ), and the

pair (xpath ,ypath) is one of the path elements.

path : seqPair

(xpath ,ypath) //path pair
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The path set will be initialized by adding the target position, while the path pair

is initialized by the target coordinates.

path ′ = patha 〈(xt ,yt)〉

(x ′path ,y
′
path) = (xt ,yt)

2.2 Operations

2.2.1 Set the target position

To set the target position, the input value should belong to the map set ,and the system

should check if the target coordinates (xt ,yt) are already specified before or not be-

cause it is not allowed to have more than one target location. If the target location is

not specified before then reserve the entered pair as the target location.

(x?,y?) ∈map

(xt ,yt) = (undefined ,undefined)

(x ′t ,y
′
t) = (x?,y?)

In case, the target location was assigned before, and the system needs to change

the target position, then the new coordinates should belong to the map set, and the

system should replace the old coordinates by the new coordinates.

(x?,y?) ∈map

(xt ,yt) 6= (undefined ,undefined)

(x ′t ,y
′
t) = (x?,y?)

The operation of setting the target will be prohibited in 2 cases:
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1. If the input value belongs to obstacleList set, the user should free the pair first

then assign it as a target location.

rep : RESPONSE

(x?,y?) ∈ obstacleList

rep! = freePairFirst

2. If the input value belongs to the border set, the system responses by “it is a

border position” , and nothing will be changed as it is not allowed to assign a

target position on the border.

rep : RESPONSE

(x?,y?) ∈ border

rep! = ItsBorderPosition

2.2.2 Set the robot position

To set the robot position, the input value should belong to the map set, and the system

should check if the robot coordinates (xr ,yr ) are already specified before or not be-

cause it is not allowed to have more than one robot location. So if the robot location is

not specified before then reserve the entered pair as the robot location.

(x?,y?) ∈map

(xr ,yr ) = (undefined ,undefined)

(x ′r ,y
′
r ) = (x?,y?)

In case, the robot location was assigned before, and the system needs to change

the robot position, then the new coordinates should belong to the map set, and the
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system should replace the old coordinates by the new coordinates.

(x?,y?) ∈map

(xr ,yr ) 6= (undefined ,undefined)

(x ′r ,y
′
r ) = (x?,y?)

The operation of setting the robot will be prohibited in 2 cases:

1. If the input value belongs to obstacleList set, the user should free the pair first

then assign it as a robot location.

rep : RESPONSE

(x?,y?) ∈ obstacleList

rep! = freePairFirst

2. If the input value belongs to the border set, the system responses by “it is a

border position” , and nothing will be changed as it is not allowed to assign a

robot position on the border.

rep : RESPONSE

(x?,y?) ∈ border

rep! = ItsBorderPosition

2.2.3 Set obstacle Position

To add an obstacle position to the obstacleList, the input value should belong to the

map set and should not be included in the obstacleList set.

(x?,y?) ∈map
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(x?,y?) /∈ obstacleList

obstacleList ′ = obstacleList ∪{(x?,y?)}

This operation will be prohibited in one case:

1. If the input value belongs to the border set, the system responses by “it is a border

position”, and nothing will be changed as it is not allowed to set an obstacle

position on the border.

rep : RESPONSE

(x?,y?) ∈ border

rep! = ItsBorderPosition

2.2.4 Free robot Position

To free the robot position, the system should check whether the input value equals to

the robot position; if yes, then the robot position will be assigned to an undefined value.

(x?,y?) = (xr ,yr )

(x ′r ,y
′
r ) = (undefined ,undefined)

2.2.5 Free target Position

To free the target position, the system should check whether the input value equals

to the target position; if yes, then the target position will be assigned to an undefined

value.

(x?,y?) = (xr ,yr )



26

(x ′t ,y
′
t) = (undefined ,undefined)

2.2.6 Free obstacle Position

To free an obstacle position, the system should check if the input value belongs to the

obstacleList, then this position will be deleted from the obstacleList.

(x?,y?) ∈ obstacleList

obstacleList ′ = obstacleList\{(x?,y?)}

2.2.7 Free border pair

This operation will be prohibited, because it is not allowed to free any of the border

coordinates.

rep : RESPONSE

(x?,y?) ∈ border

rep! = youCantFreeBorder

2.2.8 Evaluate the best pair

This operation is responsible to retrieve the best pair (xb ,yb); the best pair is the domain

of the openF that is associated with the lowest range of the openF.

(x ′b ,y
′
b) = dom(openF Bmin(ran openF )



27

2.2.9 Search pairs no path

If the best pair is not equal to the target and the openF is empty so there is no path

found.

rep : RESPONSE

(xb ,yb) 6= (xt ,yt)

openF =∅

rep! = NoPathFound

2.2.10 Construct path

If the bestPair equals to the target, the system should construct a path by following the

parent of each pair.

rep : RESPONSE

(xb ,yb) = (xt ,yt)

rep! = APathIsFound

(xpath ,ypath) 6= (undefined ,undefined)

(xpath ,ypath) 6= (xr ,yr )

(x ′path ,y
′
path) = dom(parentChild B (xpath ,ypath))

path ′ = path ∪{(xpath ,ypath)}



28

2.2.11 Search pairs

While the openF set is not empty, if the best pair is not equal to the target

(xb ,yb) 6= (xt ,yt)

The system should empty the neighbors1, neighbors2 and neighbors3 sets first to make

sure that the system will not reevaluate the old neighbors again, and only the neighbors

of the current location will be evaluated.

neighbors1′ =∅

neighbors2′ =∅

neighbors3′ =∅

Then the system will start the searching process, by assigning the best pair to

the current pair, adding the best pair to the closedList, deleting the best pair from both

openF and openG, and adding the neighbors of the current pair to the neighbors1 set.

(xc,yc) = (xb ,yb)

closedList ′ = closedList ∪{(xb ,yb)}

openF ′ = {(xb ,yb)}−CopenF

openG ′ = {(xb ,yb)}−CopenG

neighbors1′ = {{(xc,yc +1)}∪{(xc,yc−1)}∪{(xc +1,yc)}∪{(xc−1,yc)}

∪{(xc−1,yc +1)}∪{(xc−1,yc−1)}∪{(xc +1,yc−1)}∪{(xc +1,yc +1)}}
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2.2.12 Refine diagonal neighbors

After adding the 8 possible neighbors to the neighbors1 set,These neighbors should be

evaluated to determine which neighbors we should keep and which we should discard.

This operation is responsible to discard some of the unwanted diagonal neighbors from

the neighbors1 set by adding these neighbors to a temporary placeholder(the neighbor2

set). These neighbors will be considered unwanted when they match any of the fol-

lowing 8 cases:

Case 1: If there is an obstacle behind the robot and at the right side of the

robot. The robot will not be able to move diagonally to the down right direction (see

Figure 3.2).

(xc,yc +1) ∈ neighbors1∧ ((xc,yc +1) ∈ obstacleList

(xc +1,yc) ∈ neighbors1∧ (xc +1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc +1)}

Figure 2.4: Case1: The down-right neighbor will be excluded
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Case 2: If there is an obstacle behind the robot and at the left side of the

robot. The robot will not be able to move diagonally to the down left direction (see

Figure 2.5).

(xc,yc +1) ∈ neighbors1∧ (xc,yc +1) ∈ obstacleList

(xc−1,yc) ∈ neighbors1∧ (xc−1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc−1,yc +1)}

Figure 2.5: Case2: The down-left neighbor will be excluded

Case 3: If there is an obstacle in front of the robot and at the right side of

the robot. The robot will not be able to move diagonally to the up right direction(see

Figure 2.6).

(xc,yc−1) ∈ neighbors1∧ (xc,yc−1) ∈ obstacleList

(xc +1,yc) ∈ neighbors1∧ (xc +1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc−1)}
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Figure 2.6: Case3: The up-right neighbor will be excluded

Case 4: If there is an obstacle in front of the robot and at the left side of the

robot. The robot will not be able to move diagonally to the up left direction (see

Figure 2.7) .

(xc,yc−1) ∈ neighbors1∧ (xc,yc−1) ∈ obstacleList

(xc−1,yc) ∈ neighbors1∧ (xc−1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc−1,yc−1)}
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Figure 2.7: Case4: The up-left neighbor will be excluded

Case 5: If there is an obstacle behind the robot. The robot will not be able to

move diagonally to the down right or to the down left direction (see Figure 2.8).

(xc,yc +1) ∈ neighbors1∧ (xc,yc +1) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc +1)}∪{(xc−1,yc +1)}

Figure 2.8: Case5: The down-left and the down-right neighbor will be excluded
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Case 6: If there is an obstacle in front of the robot. The robot will not be able

to move diagonally to the up right or to the up left direction (see Figure 2.9).

(xc,yc−1) ∈ neighbors1∧ (xc,yc−1) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc−1)}∪{(xc−1,yc−1)}

Figure 2.9: Case6: The up-left and the up-right neighbor will be excluded

Case 7: If there is an obstacle at the right side of the robot. The robot will not be

able to move diagonally to the up right or to the down right direction (see Figure 2.10).

(xc +1,yc) ∈ neighbors1∧ (xc +1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc +1)}∪{(xc +1,yc−1)}
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Figure 2.10: Case7: The up-right and the down-right neighbor will be excluded

Case 8: If there is an obstacle at the left side of the robot. The robot will not be

able to move diagonally to the up left or to the down left direction (see Figure 2.11).

(xc−1,yc) ∈ neighbors1∧ (xc−1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc−1,yc +1)}∪{(xc−1,yc−1)}

Figure 2.11: Case8: The up-left and the down-left neighbor will be excluded
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2.2.13 Delete diagonal neighbors

After adding the unwanted neighbors to the neighbors2 set, the system should delete

the elements of neighbors2 set from neighbors1.

neighbors1′ = neighbors1\neighbors2

2.2.14 Refine neighbors from obstacles and border

The system should check if there is any neighbor that belongs to the obstaclList set or

to the border set, and then add it temporary to neighbors3

((xn ,yn) ∈ neighbors1

(xn ,yn) ∈ obstacleList

neighbors3′ = neighbors3∪ (xn ,yn))

∨

((xn ,yn) ∈ neighbors1

(xn ,yn) ∈ border

neighbors3′ = neighbors3∪ (xn ,yn))

2.2.15 Delete neighbors from obstacles and border

The system should delete the elements of neighbors1 that belong to the set neighbors3

, to make sure that the pairs that belong to neighbors1 are all free and ready to be

evaluated.
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neighbors1′ = neighbors1\neighbors3

2.2.16 Calculate H Value

This operation is designed to calculate the H value of any neighbor, which is equivalent

to the Manhattan distance between the neighbor and the target.

h : N

h ′ =| yn −yt |+ | xn − xt |

2.2.17 Calculate G Current

This operation is designed to calculate the G value of the current pair, which is equiv-

alent to the Manhattan distance between the current pair and the robot pair.

gc : N

g ′c =| yc−yr |+ | xc− xr |

2.2.18 Calculate G neighbor

This operation is designed to calculate the G value of any neighbor pair, which is

equivalent to the Manhattan distance between the neighbor pair and the robot pair.

gn : N

g ′n =| yn −yr |+ | xn − xr |
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2.2.19 Calculate F value

This operation is designed to calculate the F value of any neighbor pair, while the f

value is the sum of the G value and the H value (F = G+H).

f : N

f ′ = gc +h

2.2.20 Calculate Cost Value

This operation is designed to calculate the Cost value of any neighbor pair, which is

equivalent to the sum of G value of the current pair and the distance between the current

pair and the neighbor.

cost : N

cost ′ = gc +(| yc−yn |+ | xc− xn |)

2.2.21 Evaluate neighbors

The system should evaluate each neighbor based on its existence in the openF as the

following cases:

Case 1: If the neighbor belongs already to the openF, and the cost was less than

the old G vlaue of the neighbor, then delete this neighbor from both the openF and the

openG sets because the new path is better.

oldGn : N
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(xn ,yn) ∈ openF

oldGn ′ = openG(xn ,yn)

cost < oldGn

openF ′ = {(xn ,yn)}−CopenF

openG ′ = {(xn ,yn)}−CopenG

Case 2: If the neighbor does belong to the openF or the closedList, then assign

the g value of the neighbor to the cost, add this neighbor to both of the openG and the

openF, and assign the current node as the parent of this neighbor.

newGn : N

(xn ,yn) /∈ openF

(xn ,yn) /∈ closedList

newGn ′ = cost

openF ′ = openF ∪{(xn 7→ yn) 7→ (newGn +h)}

openG ′ = openG ∪{(xn 7→ yn) 7→ newGn}

parentChild ′ = parentChild ∪{(xc,yc) 7→ (xn ,yn)}

2.2.22 Follow path

To let the robot follow the path, the system should take the head of the path sequence

and store it as a current position, then remove it from the sequence then make the new

head of the path sequence as the next position.

path 6= 〈〉

(x ′cp ,y
′
cp) = head path
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path ′ = tail path

(x ′np ,y
′
np) = head path

After that, the system should evaluate the next position to determine the up-

coming robot movement, while the basic moves of the robot are listed in ROBOT-

MOVE set as follows: up, down,right, left, upRight, upLeft, downRight, downLeft

(see Figure 2.12). The next move of the robot will be determined by comparing the

coordinates of the current position with the coordinates of the next position (see Fig-

ure 2.13).

Figure 2.12: The directions of the robot moves

After the robot movement the current robot position should be replaced by the

next position to prepare the robot for the next movement.
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Figure 2.13: The way of determining the next robot movement
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2.2.23 Move down

The robot will move down if the next position is equivalent to (xcp ,ycp +1).

rm : ROBOTMOVE

(xnp ,ynp) = (xcp ,ycp +1)

rm ′ = down

(x ′cp ,y
′
cp) = (xnp ,ynp)

2.2.24 Move up

The robot will move up if the next position is equivalent to (xcp ,ycp−1).

rm : ROBOTMOVE

(xnp ,ynp) = (xcp ,ycp−1)

rm ′ = up

(x ′cp ,y
′
cp) = (xnp ,ynp)

2.2.25 Move right

The robot will move right if the next position is equivalent to (xcp +1,ycp).

rm : ROBOTMOVE

(xnp ,ynp) = (xcp +1,ycp)

rm ′ = right

(x ′cp ,y
′
cp) = (xnp ,ynp)
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2.2.26 Move left

The robot will move left if the next position is equivalent to (xcp−1,ycp).

rm : ROBOTMOVE

(xnp ,ynp) = (xcp−1,ycp)

rm ′ = left

(x ′cp ,y
′
cp) = (xnp ,ynp)

2.2.27 Move up right

The robot will move diagonally to the up right direction if the next position is equiva-

lent to (xcp +1,ycp−1).

rm : ROBOTMOVE

(xnp ,ynp) = (xcp +1,ycp−1)

rm ′ = upRight

(x ′cp ,y
′
cp) = (xnp ,ynp)

2.2.28 Move up left

The robot will move diagonally to the up left direction if the next position is equivalent

to (xcp−1,ycp−1).

rm : ROBOTMOVE

(xnp ,ynp) = (xcp−1,ycp−1)
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rm ′ = upLeft

(x ′cp ,y
′
cp) = (xnp ,ynp)

2.2.29 Move down right

The robot will move diagonally to the down right direction if the next position is equiv-

alent to (xcp +1,ycp +1).

rm : ROBOTMOVE

(xnp ,ynp) = (xcp +1,ycp +1)

rm ′ = downRight

(x ′cp ,y
′
cp) = (xnp ,ynp)

2.2.30 Move down left

The robot will move diagonally to the down left direction if the next position is equiv-

alent to (xcp +1,ycp +1).

rm : ROBOTMOVE

(xnp ,ynp) = (xcp−1,ycp +1)

rm ′ = downLeft

(x ′cp ,y
′
cp) = (xnp ,ynp)
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2.3 Example of finding the shortest path

In this example the robot coordinates are (2,6) and the color of the robot cell is fuchsia

, the target coordinates are (4,6) and this cell is colored by green, the border cells are

colored by grey, the obstacles cells are colored by blue, the final path will be colored

by orange, and the free cells are all colored by white (see Figure 2.14). The map is

shown in Figure 2.15

Figure 2.14: The color palette of the different locations in the map

1. The system will initialize the openF set by adding the robot coordinates (xr ,yr )

to its domain and calculating the F value then add it to the range of the function

dom openF ran openF
(2,6) 2

2. The system will initialize the openG set by adding the robot coordinates (xr ,yr )

to its domain and the calculating the G value then add it to the range of the

function

dom openG ran openG
(2,6) 0

3. As long as the robot position is the only element in the openF set so it is going

to be considered as the bestPair.

4. The system should check if the bestPair is equal to the target position or not

(xr ,yr ) 6= (xt ,yt)
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Figure 2.15: Example of finding the shortest path
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(2,6) 6= (4,6)

5. If the bestPair is not equal to the target, make the robot position as the currentPair

(xc,yc) = (2,6)

6. Then remove the bestPair from both the openF and the openG, and Add it to the

closedList.

closedList
(2,6)

7. Before Finding the neighbors of the currentPair, the system should empty neigh-

bors1, neighbors2, neighbors3 sets:

neighbors1 =∅

neighbors2 =∅

neighbors3 =∅

8. The eight neighbors of the currentPair will be added to neighbors1 set

neighbors1 = {(3,6),(1,6),(2,7),(2,5),(3,7),(1,7),(3,5),(1,5)}

9. The system will refine the diagonal neighbors, by adding the unwanted neighbors

temporary to the set neighbors2, in case there is a neighbor matches any of the

eight cases that were discussed before.

(1,6)and(2,7) will be added to neighbors2 because they match case 2

(2,5)and(1,6) will be added to neighbors2 because they match case 4

(1,7)and(3,7) will be added to neighbors2 because they match case 5

(3,5)and(1,5) will be added to neighbors2 because they match case 6
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(2,5)and(2,7) will be added to neighbors2 because they match case 8

10. Then the system will delete the elements that belong to the neighbors2 set from

neighbors1 set, so the neighbors1 is going to be equivalent to:

neighbors1′ = neighbors1\neighbors2

neighbors1 = {(3,6)}

11. One more time, the system will refine the neighbors1 set , by adding any neigh-

bor that belong to the border set or to obstacleList set temporary to the neighbors

3 set and then delete them later on. but in this round, there is not any neighbor

that belongs to border or obstacleList sets.

12. The system should evaluate each neighbor based on its existence in the openF

set:

neighbors1 = {(3,6)}

The neighbor (3,6) neither belong to the openF nor belong to the closedList, so

we should calculate the cost of each neighbor, assign its G value to the cost, add

the neighbor to both of the openF and the openG, then make the currentPair as

the parent of this neighbor.

dom openG ran openG
(3,6) 1

dom openF ran openF
(3,6) 2

dom parentChild dom parentChild
(2,6) (3,6)

One more round, the bestPair is the pair in the domain of the openF that is

associated with the lowest range( the minimum F value):
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(3,6) is the bestPair

1. If the bestPair is not equal to the target, make the bestPair as the currentPair

(xc,yc) = (3,6)

2. Then remove the bestPair from both the openF and the openG, and Add it to the

closedList.

dom openG ran openG
- -

dom openF ran openF
- -

closedList
(3,6)
(2,6)

3. Before Finding the neighbors of the currentPair, the system should empty neigh-

bors1, neighbors2, neighbors3 sets:

neighbors1 =∅

neighbors2 =∅

neighbors3 =∅

4. The eight neighbors of the currentPair will be added to neighbors1 set

neighbors1 = {(4,6),(2,6),(3,7),(3,5),(4,7),(2,7),(4,5),(2,5)}

5. The system will refine the diagonal neighbors, by adding the unwanted neighbors

temporary to the set neighbors2, in case there is any neighbor matches any of the

eight cases that were discussed before.

(2,5)and(4,5) will be added to neighbors2 because it matches case 6
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(2,7)and(4,7) will be added to neighbors2 because they match case 5

6. Then the system will delete the elements that belong to the neighbors2 from

neighbors1 set, so the neighbors1 is going to be equivalent to:

neighbors1′ = neighbors1\neighbors2

neighbors1 = {(4,6),(2,6),(3,7),(3,5)}

7. One more time, the system will refine the neighbors1 set , by adding any neigh-

bor that belong to the border set or to obstacleList set temporary to the neighbors

3 set.

(3,7)and(3,5) will be added to neighbors3 because these pairs belong to the

obstacleList set.

8. The system will delete any element belong to the neighbors3 set from the neigh-

bors1 set, so the neighbors1 set is equivalent to:

neighbors1′ = neighbors1\neighbors3

neighbors1 = {(4,6),(2,6)}

9. Then the system should evaluate each neighbor based on its existence in the

openF set:

neighbors1 = {(4,6),(2,6)}

The pair (2,6) is already in the closedList so the system will ignore it.

The pair (4,6) neither belong to the openF nor belong to the closedList, so we

should calculate the cost of each neighbor, assign its G value to the cost, add the

neighbor to both of the openF and the openG, then make the currentPair as the
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parent of this neighbor.

dom openG ran openG
(4,6) 2

dom openF ran openF
(4,6) 2

dom parentChild dom parentChild
(3,6) (4,6)
(2,6) (3,6)

One more round, the bestPair is the pair in the domain of the openF that is

associated with the lowest range(the minimum F value):

(4,6) is the bestPair

1. If the bestPair is not equal to the target, make the bestPair as the currentPair. In

this round the bestPair equals the target.

(4,6) = (xt ,yt)

So the system found a path; the path will be constructed by following the parent

of each pair:

(4,6) is the bestPair

The parent of the target pair is (3,6), and the parent of the pair(3,6) is (2,6), so

the final path is: (4,6)−> (3,6)−> (2,6)

The required robot moves to reach the target are:

rm : ROBOTMOVE

(xcp ,ycp) = (2,6)

(xnp ,ynp) = (3,6)



51

dom parentChild dom parentChild
(3,6) (4,6)
(2,6) (3,6)

As long as: (xnp ,ynp) = (xcp +1,ycp)

Then rm ′ = right

After the robot movement the current position will be updated by the next position,

and the next position will be updated by a new the next value from the path sequence.

(xcp ,ycp) = (3,6)

(xnp ,ynp) = (4,6)

As long as: (xnp ,ynp) = (xcp +1,ycp)

Then rm ′ = right

So finally, the required robot moves to reach the target are:

right−> right
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Chapter 3: Formal specification

The previous chapter forms a basis for the elaboration of the formal model. Here, we

re-express our system formally using Z notation, by generating the equivalent schemas

that are used to describe the different states and operations of our system. This chapter

is organized as follows: The following section (3.1) describes the needed definitions

and types, while section (3.2) mentions the system status. Section (3.3) specifies some

of the major operations, while section (3.4) discusses how we formally prove some

properties like the robot safety.

3.1 Definitions

The type Pair is defined as the Cartesian product of (N×N), which identifies the set

of coordinates x and y. We introduce two constants maxX and maxY, which present

the maximum X value and the maximum Y value of any coordinate that belongs to

the map, and they are initialized by const1 (any constant) and const2 (any constant)

accordingly. We introduce an undefined constant as a global variable that holds an

undefined value (⊥). The several responses of the system are declared as a free type

named RESPONSE; also, the robot movements are declared as a free type named

ROBOTMOVE.

maxX = const1

-- The maximum X value of any coordinate that belongs to the map.
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maxY = const2

-- The maximum Y value of any coordinate that belongs to the map.

Pair = N×N

-- Identifying the type Pair

undefined ==⊥

-- Identifying the constant with the undefined value

RESPONSE ::= FreeThePairFirst | NoPathFound | youCantFreeBorder |

ItsBorderPosition | APathIsFound

-- The several responses of the system

ROBOTMOVE ::= up | down | right | left | upRight | upLeft | downRight |

downLeft

-- The several movements of the robot.

3.2 System status

In the following schema, a set of type Pair called map is declared. which presents the

set of the map coordinates. The state of the map is defined as:

Map

map : PPair
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The map set is initialized, by giving a range to the pairs that belong to the map.

For any pair (xm ,ym) that belongs to map, its X value should be between 0 ... maxX

and its Y value should be between 0 ... maxY. The initial state of the map is defined as:

MapInit

∆Map

map′ = {∀xm : 0 . . .maxX ; ∀ym : 0 . . .maxY • (xm ,ym)}

In the following schema, a set of type Pair called border is declared, which

holds the border coordinates (see Figure 3.1) .

Figure 3.1: The border coordinates

The state of the border is defined as:
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Border

border : PPair

The set border is initialized by uniting 4 sets that hold the border coordinates.

Its initial state is defined as:

BorderInit

∆Border

border ′ = {{∀xp : 0 . . .maxX • (xp ,0)}∪

{∀xp : 0 . . .maxX • (xp ,maxY )}∪

{∀yp : 0 . . .maxY • (0,yp)}∪

{∀yp : 0 . . .maxY • (maxX ,yp)}

The following schema declares two variables xt and yt of type natural numbers that

will hold the target coordinates.

Target

xt : N

yt : N

The target coordinates are initialized by an undefined value.
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TargetInit

∆Target

x ′t = undefined

y ′t = undefined

The following schema declares two variables xr and yr of type natural numbers

that will hold the robot coordinates.

Robot

xr : N

yr : N

The robot position is initialized by an undefined value.

RobotInit

∆Robot

x ′r = undefined

y ′r = undefined

A set of type Pair is defined in the following schema named “obstacleList” to

hold the obstacles coordinates
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Obstacle

obstacleList : PPair

Initially the obstacleList is an empty set.

ObstacleInit

∆Obstacle

obstacleList ′ = /0

Two variables are defined to hold the best pair.

BestPair

xb : N

yb : N

These variables will be initialized by an undefined value.

InitBestPair

∆BestPair

x ′b = undefined

y ′b = undefined
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The pair (xc,yc) is defined to hold the current position during the search pro-

cess.

CurrentPair

xc : N

yc : N

The current position is initialized by an undefined value.

InitCurrentPair

∆Current

x ′c = undefined

y ′c = undefined

The following schema defines three sets that hold the neighbors of the current position,

and defines two variables to hold the neighbor position.

Neighbor

neighbors1 : PPair

neighbors2 : PPair

neighbors3 : PPair

xn : N

yn : N
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Initially, the three sets: neighbors1, neighbors2, and neighbors3 are empty and

the two variables are undefined.

InitNeighbor

∆Neighbor

neighbors1′ =∅

neighbors2′ =∅

neighbors3′ =∅

x ′n = undefined

y ′n = undefined

The pair (xcp ,ycp) holds the current position of the robot.

currentPosition

xcp : N

ycp : N

Initially, this pair is set to an undefined value.
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InitCurrentPosition

∆currentPosition

x ′cp = undefined

y ′cp = undefined

The pair (xnp ,ynp) holds the next position of the robot.

nextPosition

xnp : N

ynp : N

This pair is initialized by an undefined value.

InitNextPosition

∆nextPosition

x ′np = undefined

y ′np = undefined

The following schema defines the set openF as a bijective function that relates

each pair to its F value.
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OpenF

openF : Pair �→ N

We initialize the OpenF set by adding the robot location to the domain, and

adding the F value of the robot position to the range of the openF function.

InitOpenF

∆OpenF

ΞRobot

∆CalculateFValue

openF ′ = {(xr 7→ yr ) 7→ f }

The following schema defines the set openG as a bijective function that relates

each pair to its G value.

OpenG

openG : Pair �→ N

Then we initialize the openG set by adding the robot location to the domain,

and adding the G value of the robot position to the range of the openG function.
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InitOpenG

∆OpenG

ΞRobot

∆CalculateGCurrent

openG ′ = {(xr 7→ yr ) 7→ gc}

The following schema defines the set ParentChild as a bijective function that

relates each parent (of type Pair) to its child (of type Pair).

ParentChild

parentChild : Pair �→ Pair

Initially the parentchild set is empty.

InitParentChild

∆ParentChild

parentChild ′ =∅

The closedList is a set of type Pair.
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Closed

closedList : PPair

Initially, the closedList is an empty set.

InitClosed

∆Closed

closedList ′ =∅

The final path is defined a sequence of points of type Pair, and the point

(xpath ,ypath) is one of the path points.

Path

path : seqPair

xpath : N

ypath : N

The path will be initialized by adding the target position.
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InitPath

∆Path

ΞTarget

path ′ = 〈(xt ,yt)〉

x ′path = xt

y ′path = yt

3.3 Operations

The following schema shows the normal flow of assigning a robot position, in which to

set the robot position, the system should check whether the input value (x?,y?) belongs

to the map set, and the robot pair (xr ,yr ) should not be defined before because it is not

allowed to add more than one location for the robot,and the system allows to replace

the old position of the target by a new one.
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SetRobotPositionOK

ΞMap

∆Robot

x? : N

y? : N

((x?,y?) ∈map

(xr ,yr ) = (undefined ,undefined)

(x ′r ,y
′
r ) = (x?,y?))

∨

((x?,y?) ∈map

(xr ,yr ) 6= (undefined ,undefined)

(x ′r ,y
′
r ) = (x?,y?))

While the following schema shows the exceptional flow in which the operation

of assign the robot position will be prohibited in 2 cases

1. If the input value belongs to obstacleList.

2. If the input value belongs to border.
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SetRobotPositionNotOK

ΞBorder

ΞObstacle

x? : N

y? : N

rep! : RESPONSE

((x?,y?) ∈ obstacleList

rep! = freePairFirst)

∨

((x?,y?) ∈ border

rep! = ItsBorderPosition)

Regarding the other operations that are related to setting the environment (

such as: assigning the target and the obstacles positions .. etc) see Appendix B (Z

document).

One of the major operations in our system is retrieving the best pair; the pair

that is associated with the lowest F value, the following schema is describing this

operation formally as follows:
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EvaluateBestPair

∆BestPair

ΞOpenF

(x ′b ,y
′
b) = dom(openF Bmin(ran openF ))

After retrieving the best pair, The system should evaluate it as follows:

1. If the best pair is not equal to the target and the openF is empty so there is no

path found( see SearchPairsNoPath schema ).

2. While the openF set is not empty, if the best pair is not equal to the target, the

system should keep searching, by assigning the current pair to the best pair,

adding the best pair to the closedList, deleting the best pair from both openF and

openG, and adding the neighbors of the current pair to the neighbors1 set (see

SearchPairs schema).

3. If the best pair equals to the target, the system should construct a path by follow-

ing the parent of each pair (see ConstructPath schema).
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SearchPairsNoPath

ΞBestPair

ΞTarget

ΞOpenF

rep! : RESPONSE

(xb ,yb) 6= (xt ,yt)

openF =∅

rep! = NoPathFound
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SearchPairs

ΞBestPair

ΞTarget

∆CurrentPair

∆Neighbor

∆Closed

∆OpenF

∆OpenG

(xb ,yb) 6= (xt ,yt)

openF 6=∅

(xc,yc) = (xb ,yb)

closedList ′ = closedList ∪{(xb ,yb)}

openF ′ = {(xb ,yb)}−CopenF

openG ′ = {(xb ,yb)}−CopenG

neighbors1′ = {{(xc,yc +1)}∪{(xc,yc−1)}∪{(xc +1,yc)}∪{(xc−1,yc)}

∪{(xc−1,yc +1)}∪{(xc−1,yc−1)}∪{(xc +1,yc−1)}∪{(xc +1,yc +1)}}
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ConstructPath

∆Path

ΞRobot

ΞBestPair

ΞTarget

rep! : RESPONSE

(xb ,yb) = (xt ,yt)

rep! = APathIsFound

(xpath ,ypath) 6= (undefined ,undefined)

(xpath ,ypath) 6= (xr ,yr )

(x ′path ,y
′
path) = dom(parentChild B (xpath ,ypath))

path ′ = 〈(xpath ,ypath)〉apath

The system should discard some of the unwanted (unsafe) diagonal neighbors

in the neighbors1 set by adding these neighbors to a temporary placeholder(the neigh-

bor2 set). These neighbors will be considered unwanted if they match one the eight

cases that were described before in the previous chapter:

The following schema shows how we formally specifies the first case of dis-

carding an unwanted (unsafe) diagonal neighbor (see Figure 3.2). The rest of the eight

cases were fully described in Appendix B (Z document).
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Figure 3.2: Case1: The down-right neighbor will be excluded

RefineDiagonalNeighborsCase1

∆Neighbor

ΞCurrentPair

ΞObstacle

(xc,yc +1) ∈ neighbors1∧ ((xc,yc +1) ∈ obstacleList

(xc +1,yc) ∈ neighbors1∧ (xc +1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc +1)}

After adding the unwanted neighbors to the neighbors2 set, the system should

delete the elements of neighbors2 set from neighbors1.The following schema presents

the operation of deleting the (unsafe) unwanted neighbors.
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DeleteDiagonalNeighbors

∆Neighbor

neighbors1′ = neighbors1\neighbors2

After deleting the unsafe diagonal neighbors, the system should check if there

is any neighbor that belongs to the obstaclList set or to the border set, and then add it

temporary to the neighbors3 set.The following schema shows how we formally speci-

fies this operation.

RefineNeighborsFromObstaclesAndBorder

ΞObstacle

ΞBorder

∆Neighbor

((xn ,yn) ∈ neighbors1

(xn ,yn) ∈ obstacleList

neighbors3′ = neighbors3∪ (xn ,yn))

∨

((xn ,yn) ∈ neighbors1

(xn ,yn) ∈ border

neighbors3′ = neighbors3∪ (xn ,yn))

After adding the neighbors that may belong to the obstacleList or to the bor-
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der temporary to the neighbors3 set, The system should delete these neighbors from

neighbors1 set, to make sure that the neighbors that belong to neighbors1 are all safe

and free and ready to be evaluated.

DeleteNeighborsFromObstaclesAndBorder

∆Neighbor

neighbors1′ = neighbors1\neighbors3

After finding the safe path that the robot can follow, the system should take the

head of the path sequence and store it as a current position, then remove it from the

sequence then make the new head of the path sequence as the next position.

FollowPath

∆Path

∆currentPosition

∆nextPosition

path 6= 〈〉

(x ′cp ,y
′
cp) = head path

path ′ = tail path

(x ′np ,y
′
np) = head path

Now, the system should evaluate the next position to determine the upcoming
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robot movement. The following schema shows if the next position is equivalent to

(xcp ,ycp−1) then the robot should move “ up” . After the robot movement the current

robot position should be replaced by the next position to prepare the robot for the next

movement.

MoveUp

∆CurrentPosition

ΞNextPosition

rm : ROBOTMOVE

(xnp ,ynp) = (xcp ,ycp−1)

rm ′ = up

(x ′cp ,y
′
cp) = (xnp ,ynp)

The rest of the possible robot movements schemas (down, right, left .. etc)

and the rest of the system operations schemas are fully described in Appendix B (Z

document).

3.4 Proof of some properties

In this section, we try to prove some of the system properties. The robot safety is one

of the essential properties in our system. In this section we try to focus on this property

and how we formally assert the robot safety in our formal specification.

• Property 1: the robot safety from the obstacles
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Based on our previous formal model, the robot will never collide with any obsta-

cle in the environment. So for any robot position (xr ,yr ), until the robot reaches

the target, should never be equivalent to any obstacle position.

(xr ,yr ) /∈ obstacleList

• Proof:

1. If we assume that (xri ,yri) is the initial position of the robot. We stated

formally by (SetRobotPositionNotOk Schema) that the initial robot posi-

tion will never belong to the obstacleList set, and by this we proved that

the initial position of the robot will never be an obstacle position:

(xri ,yri) /∈ obstacleList

2. The next position of the robot, until the robot reaches the target, will never

be an obstacle position. We stated this formally by (DeleteNeighborsFro-

mObstaclesAndBorder schema), in which we discarded any neighbor that

belongs to the obstacleList set from the evaluation process, so the final

path, that the robot will follow, will never include any obstacle position so:

(xri+1,yri+1) /∈ obstacleList

• Property 2: the robot safety from the border

Based on our previous formal model, the robot will never collide with the border.

So for any robot position (xr ,yr ), until the robot reaches the target, should never

be equivalent to any of border points.

(xr ,yr ) /∈ border
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• Proof:

1. If we assume that (xri ,yri) is the initial position of the robot. We stated for-

mally by (SetRobotPositionNotOk Schema) that the initial robot position

will never belong to the border set, and by this we proved that the initial

position of the robot will never be a border point:

(xri ,yri) /∈ border

2. The next position of the robot, until the robot reaches the target, will never

be a border point. We stated this formally by (DeleteNeighborsFromObsta-

clesAndBorder schema), in which we discarded any neighbor that belongs

to the border set from the evaluation process, so the final path, that the robot

will follow, will never include any border point so:

(xri+1,yri+1) /∈ border
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Chapter 4: Formal refinement

Developing the abstract model (Z specification) is an important step towards correct-

ness, as it provides a formal expression of the overall behavior of the system. However,

to ensure the equivalence between this model and its implementation, a formal refine-

ment process is required in order to transform the abstract model into its equivalent

implementable code. Consequently, it will be possible to test and evaluate the behav-

ior of the formal model that we built.

The basic idea underlying refinement is the transformation of an abstract model

into a concrete one. Formal refinement in Z as defined in [26, 27] consists of data

refinement and operation refinement. In both cases, the refinement process consists of

reducing non-determinism and selecting data structures.

The formal model is described as a highly abstracted and uncertain model,

through the refinement process we try to reduce non-determinism in order to reveal the

actual behavior of the system. One of the data refinement approaches that we follow is

called forwards simulation in which we convert the abstract data types into a concrete

implementable data structures by identifying a relation to allow this transformation.

This chapter will be organized as follows: section 4.1 and 4.2 discusses the data

refinement and the forwards simulation accordingly, our discussion in these two sec-

tions follow the reference [26]. The data refinement of the formal specification presents

in section 4.3, and the operations refinement of the formal specification presents in sec-

tion 4.4, while the last section 4.5 provides a summery about the chapter.
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4.1 Data refinement

The idea of the data refinement is to analyze the data types that construct the software

system (in the abstract model), in order to transform the abstract data types into imple-

mentable data structures. A data type consists of a set of values (states) and a series of

indexed operations. If we assume that X is a data type, then any use of X in a global

state G should start by an initialization step and end by a finalization step and there

are series of indexed operations in between. Based on that we can present the X as:

(X ,xi ,xf , i : I • xoi) where:

• xi ∈G ↔ X (initialization)

• xf ∈ X ↔G (finalization)

• {i : I • xoi} (a series of indexed operations)

When we look at the structure of the computer program, we find that it consists

of a set of operations upon a data type, thus any program P that uses the data type X

can be presented as:

P(x ) = xi o
9 xoa o

9 xob o
9 xoc o

9 ... o
9 xf

For our purposes, one of the proper definitions of refining the abstract data

types can be described as: if the data type A and C have the same set of indexed

operations, A is refined by C if and only if:

• P(Ċ )⊆ P(Ȧ) where:

• P(Ċ ) = ċi o
9 ċoS1 o

9 ċoS2 o
9 ... o

9 ċoSn o
9 ċf
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• P(Ȧ) = ȧi o
9 ȧoS1 o

9 ȧoS2 o
9 ... o

9 ȧoSn o
9 ȧf

The dotted symbols signifies the totalization of the relation, that is, whenever

a relation is partial is extended to a total relation.

4.2 Forwards simulation

If the data types A and C have the same set of indexed operations, and r is a relation

that relates the set A to the set C ( A↔ C ) then r is a forwards simulation if it obeys

the following conditions:

• ċi ⊆ ȧi o
9 r̊

• r̊ o
9 ċf ⊆ ȧf

• r̊ o
9 ċoi ⊆ ȧoi o

9 r̊

The first condition means that the effect of the ci is equivalent to ai followed

by r; the second one means that the effect of r followed by cf is equivalent to af. The

last one shows that moving from r then to coi is matched by moving from aoi then to

r (see Figure 4.1 in reference [26] ).

Based on that, to transform any abstract data type, we should identify a rela-

tion (r) that maps each element from the (abstract) set to its equivalent element in the

(concrete) set.
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Figure 4.1: Forwards simulation

4.3 Data refinement of the formal specification

In this section we analyze each data type that was previously mentioned in the abstract

model, and then we try to transform it to a more concrete one.

The major data type in our system is the Pair set (Pair =N×N) which relates

each X value of type natural numbers to a Y value of type natural numbers.

The set of natural numbers N can be transformed into the set of integers (Int),

while (r) is the identical relation that maps each element from the set of natural num-

bers(abstract) to its equivalent number in the(concrete) set of integers.

The Pair data type can be implemented as a class called Pair that has two at-

tributes of type integers which hold the X value and the Y value as follows:

c l a s s P a i r {

i n t x ;

i n t y ;
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}

The map set was defined previously (in the Z document) as the power set of the

set Pair as follows:

AMap

map : PPair

And it was initialized by adding specific elements; their X values will be be-

tween 0..maxX and their Y values will be between 0..maxY.

AMapInit

∆AMap

map′ = {∀xm : 0 . . .maxX ; ∀ym : 0 . . .maxY • (xm ,ym)}

A more concrete specification can transform the map set into an injective se-

quence iseq (duplicate-free sequence) to make sure that there are no duplicate elements

belong to the map set. The following diagram (Figure 4.2) shows how the relation (r)

relates each element in the set (abstract)to the same element in the range of the iseq

(concrete) and it shows that both of the sets are equivalent but the iseq gives an index

for each element which makes the set an ordered set with no duplicate.
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Figure 4.2: Example of data refinement

CMap

map : iseqPair

The map iseq will be initialized by the same set of elements.

CMapInit

∆CMap

map′ =< ∀xm : 0 . . .maxX ; ∀ym : 0 . . .maxY • (xm ,ym)>

Regarding the previous refinement, the first specification is more abstract while

the second specification adds more restrictions that prevent the repetition of the ele-

ments in the map set and give a particular arrangement of the elements. Based on that

the map set can be implemented as an array of elements of type Pair as follows:
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P a i r [maxX ] [ maxY] map ;

The border set was defined previously as the power set of the set Pair as fol-

lows:

ABorder

border : PPair

And it was initialized by adding specific elements

ABorderInit

∆ABorder

border ′ = {{∀xp : 0 . . .maxX • (xp ,0)}∪

{∀xp : 0 . . .maxX • (xp ,maxY )}∪

{∀yp : 0 . . .maxY • (0,yp)}∪

{∀yp : 0 . . .maxY • (maxX ,yp)}

The border set can be transformed into an iseq to prevent duplicate elements
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CBorder

border : iseqPair

And the border will be initialized as follows:

CBorderInit

∆CBorder

border ′ =< {∀xp : 0 . . .maxX • (xp ,0)>a

< ∀xp : 0 . . .maxX • (xp ,maxY )>a

< ∀yp : 0 . . .maxY • (0,yp)>a

< ∀yp : 0 . . .maxY • (maxX ,yp)>

Based on the previous refinement, the border set can be implemented as an

ArrayList to store the border coordinates as follows:

A r r a y L i s t < P a i r > b o r d e r ;

The final path was defined in the abstract model as a sequence of points of type

Pair, and the point (xpath ,ypath) was declared as one of the path points.
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APath

path : seqPair

xpath : N

ypath : N

The path was initialized by adding the target position, while the path point was

initialized by adding the target coordinates.

AInitPath

∆APath

ΞTarget

path ′ = 〈(xt ,yt)〉

x ′path = xt

y ′path = yt

We can change the seq into iseq to make sure that the whole path elements are

all unique, because the final path points should not contain duplicates.
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CPath

path : iseqPair

xpath : N

ypath : N

And will be initialized as follows:

CInitPath

∆CPath

ΞTarget

path ′ = 〈(xt ,yt)〉

x ′path = xt

y ′path = yt

We implement the path sequence as a stack because the order of the path ele-

ments is fundamental while the path point can be implemented as two integers:

S t a c k < P a i r > p a t h ;

i n t x p a t h ;

i n t y p a t h ;

The other sets that were declared as freetype in Z such as : (RESPONSE,

and ROBOTMOVE) can be implemented as (ArrayLists) of type String, because the
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RESPONSE set contains the several system responses (textual statements), and the

ROBOTMOVE is a set that contains the several robot moves (textual statements) to

reach the target. note that the relation r is the identical relation that maps each element

in the (abstract) set to its equivalent element in the (concrete) data structure.

A r r a y L i s t < S t r i n g > RESPONSE ;

A r r a y L i s t < S t r i n g > ROBOTMOVE;

The following table shows the result of the data refinement process, in which

how each abstract data type was transformed to its equivalent implementable data

structure (see Table 4.1).
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Abstract data type Implementable data structure

Pair = N×N

class Pair {
int x;
int y;
}

maxX = const1
maxY = const2

int maxX
int maxY

undefined ==⊥ int undefined
RESPONSE ::= FreeThePairFirst |
NoPathFound | youCantFreeBorder |
ItsBorderPosition
| APathIsFound

ArrayList < String > RESPONSE

ROBOTMOVE ::= up | down | right | left
| upRight | upLeft | downRight | downLeft

ArrayList < String > ROBOTMOVE

map : PPair Pair[maxX][maxY] map
border : PPair ArrayList < Pair > border
xt : N
yt : N

int xt
int yt

xr : N
yr : N

int xr
int yr

obstacleList : PPair ArrayList < Pair > obstacleList
xc : N
yc : N

int xc
int yc

neighbors1 : PPair
neighbors2 : PPair
neighbors3 : PPair

ArrayList < Pair > neighbors1
ArrayList < Pair > neighbors2
ArrayList < Pair > neighbors3

xn : N
yn : N

int xn
int yn

xcp : N
ycp : N

int xcp
int ycp

xb : N
yb : N

int xb
int yb

xnp : N
ynp : N

int xnp
int ynp

openF : Pair �→ N Hashtable < Pair ,Integer > openF
openG : Pair �→ N Hashtable < Pair ,Integer > openG
parentChild : Pair �→ Pair Hashtable < Pair ,Pair > parentChild
closedList : PPair ArrayList < Pair > closedList
path : seqPair Stack < Pair > path
xpath : N
ypath : N

int xpath
int ypath

Table 4.1: The result of the data refinement process
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4.4 Operations refinement of the formal specification

After we succeeded in transforming the abstract data types into its equivalent imple-

mentation. In this section, we discuss how we add more details to the operational

schemas until we get the final equivalent implantation that mirrors the formal descrip-

tion.

We start the implementation process by defining the major type in our specifi-

cation which is the class Pair that has two attributes to hold the X and the Y value of

each pair:

c l a s s P a i r {

i n t x ;

i n t y ;

}

We define two supportive methods to retrieve the X and the Y value of any pair

as follows:

p u b l i c i n t getX ( ) { r e t u r n x ; }

p u b l i c i n t getY ( ) { r e t u r n y ; }

Then we define all the needed (data structures) ArrayLists, arrays, hashtables,

and variables that we discussed before in the previous section.

Afterwards, we transform each operational schema to its equivalent implemen-

tation; the first operational schema is to set the robot position, in which the system

should check whether the input value (x?,y?) belongs to the map set, and the robot pair
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(xr ,yr ) should not be defined before because it is not allowed to add more than one

location for the robot, and it is allowed to replace the robot position by a new one. The

following is the concrete version of the (SetRobotPositionOK) schema after applying

the data refinement process.

CSetRobotPositionOK

ΞCMap

∆CRobot

x? : N

y? : N

((x?,y?) ∈ ran map

(xr ,yr ) = (undefined ,undefined)

(x ′r ,y
′
r ) = (x?,y?))

∨

((x?,y?) ∈ ran map

(xr ,yr ) 6= (undefined ,undefined)

(x ′r ,y
′
r ) = (x?,y?))

While the following is the concrete version of the (SetRobotPositionNotOK)

schema after applying the data refinement process, that is showing the two cases in

which this operation will be prohibited:

1. If the input value belongs to obstacleList.
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2. If the input value belongs to border.

CSetRobotPositionNotOK

ΞCBorder

ΞCObstacle

x? : N

y? : N

rep! : RESPONSE

((x?,y?) ∈ ran obstacleList

rep! = freePairFirst)

∨

((x?,y?) ∈ ran border

rep! = ItsBorderPosition)

We noticed that there is no need for extra details to be added to both of the previous

schemas and they can both transformed directly to an equivalent implementation. Let

us assume that the pair (x,y) presents the new robot position ;the equivalent implemen-

tation is going to be as follows :

i n t x ;

i n t y ;

f o r ( i n t j =0 ; j <maxY ; j ++) {

f o r ( i n t i =0 ; i <maxX ; i ++) {

P a i r mapPai r = map [ i ] [ j ] ;
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/ / I f t h e new v a l u e b e l o n g s t o t h e map

i f ( x = = mapPai r . getX ( ) && y = = mapPai r . getY ( ) ) {

f o r ( i n t i =0 ; i < o b s t a c l e L i s t . s i z e ( ) ; i ++) {

P a i r o b s t a c l e P a i r = o b s t a c l e L i s t . g e t ( i ) ;

xo = o b s t a c l e P a i r . getX ( ) ;

yo = o b s t a c l e P a i r . getY ( ) ;

/ / I f t h e new v a l u e b e l o n g s t o t h e o b s t a c l e L i s t

i f ( x = = xo && y = = yo ) {

System . o u t . p r i n t l n ( " F ree The P a i r F i r s t " ) ;

}}

f o r ( i n t i =0 ; i < b o r d e r . s i z e ( ) ; i ++) {

P a i r b o r d e r P a i r = b o r d e r . g e t ( i ) ;

xbo = b o r d e r P a i r . getX ( ) ;

ybo = b o r d e r P a i r . getY ( ) ;

/ / I f t h e new v a l u e b e l o n g s t o t h e b o r d e r

i f ( x = = xbo && y = = ybo ) {

System . o u t . p r i n t l n ( " I t ’ s Borde r P o s i t i o n " ) ;

}}

i f ( ( x != xo | | y != yo ) && ( x != xbo | | y != ybo ) ) {

i f ( x != u n d e f i n e d | | y != u n d e f i n e d ) {

/ / S e t new r o b o t p o s i t i o n

x r =x ;

y r =y ;
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}

e l s e {

/ / Rep lace t h e o l d r o b o t p o s i t i o n by a new one

xr =x ;

y r =y ;

}}}}}

To free the robot position, the system should check whether the input value

equals to the robot position; if yes, then the robot position will be assigned to an

undefined value, and this operation is described in the following schema:

CFreeRobotPosition

∆CRobot

x? : N

y? : N

(x?,y?) = (xr ,yr )

(x ′r ,y
′
r ) = (undefined ,undefined)

The equivalent implementation is going to be as follows :

i n t x ;

i n t y ;

i f ( x = = xr && y = = yr ) {

x r = u n d e f i n e d ;
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yr = u n d e f i n e d ;

}

The following schema is showing the concrete version of one of the cases (Case

1) of discarding an unwanted diagonal neighbor

CRefineDiagonalNeighborsCase1

∆CNeighbor

ΞCurrentPair

ΞCObstacle

(xc,yc +1) ∈ ran neighbors1∧ (xc,yc +1) ∈ ran obstacleList

(xc +1,yc) ∈ ran neighbors1∧ (xc +1,yc) ∈ ran obstacleList

neighbors2′ = neighbors2a{(xc +1,yc +1)}

The previous schema needs more details to transform it to its equivalent im-

plementation, we need to declare a counter to count the neighbors that belong to the

obstacleList, if the counters counts two neighbors, then one of the diagonal neigh-

bors will be added temporary to neighbors2 to be discarded later on. The equivalent

implementation of the previous schema is going to be as follows:

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 1 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;
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i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn = = xc && yn = = yc +1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 1 ++;

}

i f ( xn = = xc +1 && yn = = yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 1 ++;

}

i f ( c o u n t e r 1 = =2) {

P a i r n = n e i g h b o r s 1 . g e t ( 4 ) ;

n e i g h b o r s 2 . add ( n ) ;

}}

The following two schemas are showing the operation of calculating the G

value of any neighbor pair, and calculating the G value of the current pair.

CCalculateGCurrent

ΞCRobot

ΞCCurrent

gc : N

g ′c =| yc−yr |+ | xc− xr |



96

CalculateGNeighbor

ΞRobot

ΞCNeighbor

gn : N

g ′n =| yn −yr |+ | xn − xr |

We noticed that both of the previous schemas are doing the exact role, so we

chose to merge them in one method in the code; the equivalent implementation of the

previous two schemas is going to be as follows:

p u b l i c i n t c a l c u l a t e G V a l u e ( i n t x , i n t y ) {

r e t u r n ( Math . abs ( x − xr ) + Math . abs ( y − yr ) ) ; }

The rest of the operations refinement process and the final implementation of

the modified version of the A* are listed in Appendix C (Equivalent implementation).

4.5 Summary

We started with a Z specification of the A* algorithm. In a stepwise fashion, we re-

fined each Z schema into a concrete schema. The modularity of the specification and

the refinement theory in Z allowed to decompose our refine steps and focus on one

schema at a time. Subsequently, we transformed the concrete schemas into executable

code, thus completing the refinement process. In the following chapter, we provide a

complete description of the implementation process.
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Chapter 5: Simulation

After getting the implementable code through the formal refinement process, we sim-

ulate the resulting code to evaluate and test the correctness of our approach. The sim-

ulation was built using the Java programming language. The GUI of the simulation

was created by David Fontenot [36]. We did some modifications on the GUI then we

implemented the modified version of the A* path planning algorithm.

This chapter will be organized as follows: section 5.1 shows some of execution

scenarios, while the last section 5.2 provides a summery about the chapter.

The structure of the code is organized as follows:

1. AStar.java: this is the entry point of the program that is going to launch the GUI

and add the listeners.

2. AStarAlgo.java: this class contains our own path planning algorithm.

3. Pair.java: this class defines the type (Pair) and its associated methods and at-

tributes.

4. PairGraphPanel.java: this class is responsible to create the GUI that will appear

to the user. When the user clicks (right-click) on a cell, the pop-up menu is made

visible and the user can choose to set whether the robot or the target position.

5. PairPlacedListener.java: this class is responsible to listen to the mouse events

on the PairGraphPanel, and then make the desired changes, it also controls the

pop-up menu.
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6. PathButtonState.java: this class controls the state of the button(which the user

uses to run the path planning algorithm and to reset the GUI) . This is where the

path planning algorithm is called from.

7. StartEndListener.java: this class controls the entry of the target and the robot

location.

5.1 Execution Scenarios

In this section we develop some execution scenarios that show the consistency of our

approach. These scenarios mimic the Z schemas and are viewed as testing the schemas.

They are classified into three major categories:

• Setting the environment: These test cases are showing the correctness of setting

the environment, such as: specifying the robot location, target location, free cells

.. etc.

• Path planning operations: This category shows some test cases that are show-

ing the correctness of our path planning algorithm.

• The robot movements: These test cases are showing how the robot will safely

reach the target by making series of moves.

5.1.1 Setting the environment

• Set the robot position:

To set the robot position, the user should right-click on the desired cell, which
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is going to display the pop-up menu that has two choices: assigning the robot

position or the target position.The user should choose to set the robot position.

(see Figure 5.1).

Figure 5.1: Setting the robot position

• Set the target position:

To set the target position, the user should right-click on the desired cell, the pop-

up menu will be displayed, then the user should choose to set the target position.

(see Figure 5.2).
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Figure 5.2: Setting the target position

• Set obstacle position:

To set an obstacle position, the user should left-click on the desired cell to assign

it as an obstacle (see Figure 5.3).
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Figure 5.3: Setting the obstacle position

• Free a desired position:

To free the robot, or the target or an obstacle position the user can left-click on

the desired cell to make it free, while the system will not allowed to free any of

the border cells.

5.1.2 Path planning operations

• Searching with a path is found:

First of all, the user should assign the robot and the target position then press on

the button to start searching to find the shortest path. The figure below (Figure

5.4) shows an example of finding the shortest path between the robot position
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and the target position.

Figure 5.4: An example of finding the shortest path

• Searching with no path is found:

In this test case, we surround the robot with obstacles from all directions, then

we start the searching process that resulted without finding any possible path

between the robot and the target (see Figure 5.5)
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Figure 5.5: An example of not finding any possible path

• Refine diagonal neighbors (Case 1):

In this test case, we filled all the cells that surround the robot position by ob-

stacles except the (down-right) cell. The system responses by “No path found”

because the robot can’t move to the target through this cell, which proves that

case 1 of discarding the diagonal neighbor (down-right) is working correctly (see
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Figure 5.6).

Figure 5.6: An example of case 1: discarding the down-right neighbor

• Refine diagonal neighbors (Case 2):

In this test case, we fill all the cells that surround the robot position by obstacles

except the (down-left) cell. The system responses by “No path found” because

the robot cannot move to the target through this cell, which proves that case 2

of discarding the diagonal neighbor (down-left) is working correctly (see Figure

5.7).
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Figure 5.7: An example of case 2: discarding the down-left neighbor

• Refine diagonal neighbors (Case 3):

In this test case, we fill all the cells that surround the robot position by obstacles

except the (up-right) cell. The system responses by “No path found” because

the robot can’t move to the target through this cell, which proves that case 3 of

discarding the diagonal neighbor (up-right) is working correctly (see Figure 5.8).
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Figure 5.8: An example of case 3: discarding the up-right neighbor

• Refine diagonal neighbors (Case 4):

In this test case, we fill all the cells that surround the robot position by obstacles

except the (up-left) cell. The system responses by “No path found” because the

robot cannot move to the target through this cell, which proves that case 4 of

discarding the diagonal neighbor (up-left) is working correctly (see Figure 5.9).
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Figure 5.9: An example of case 4: discarding the up-left neighbor

• Refine diagonal neighbors (Case 5):

In this test case, we fill all the cells that surround the robot position by obstacles

except the (down-left) and the (down-right) cells. The system responses by “No

path found” because the robot cannot move to the target through any of these

cells, which proves that case 5 of discarding the diagonal neighbors (down-left

and down-right) is working correctly (see Figure 5.10).
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Figure 5.10: An example of case 5: discarding the down-left and down-right neighbors

• Refine diagonal neighbors (Case 6):

In this test case, we fill all the cells that surround the robot position by obstacles

except the (up-left) and the (up-right) cells. The system responses by “No path

found” because the robot can not move to the target through any of these cells,

which proves that case 6 of discarding the diagonal neighbors (up-left and up-

right) is working correctly (see Figure 5.11).
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Figure 5.11: An example of case 6: discarding the up-left and up-right neighbors

• Refine diagonal neighbors (Case 7):

In this test case, we fill all the cells that surround the robot position by obstacles

except the (down-right) and the (up-right) cells. The system responses by “No

path found” because the robot cannot move to the target through any of these

cells, which proves that case 7 of discarding the diagonal neighbors (down-right

and up-right) is working correctly (see Figure 5.12).
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Figure 5.12: An example of case 7: discarding down-right and up-right neighbors

• Refine diagonal neighbors (Case 8):

In this test case, we fill all the cells that surround the robot position by obstacles

except the (down-left) and the (up-left) cells. The system responses by “No path

found” because the robot cannot move to the target through any of these cells,

which proves that case 8 of discarding the diagonal neighbors (down-left and

up-left) is working correctly (see Figure 5.13).
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Figure 5.13: An example of case 8: discarding down-left and up-left neighbors

5.1.3 The robot movements

In this category, we illustrate some test cases that show the required robot moves to

safely reach the target. The following figure (Figure 5.14) shows the basic moves of

the robot, which are : up, down, right, left, up-right, up-left, down-left, and down-up.

We assign an abbreviation for each move to make it easier to display it in the simulator

(see Figure 5.13).
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Figure 5.14: The basic moves of the Robot

up down right left up-right up-left down-right down-left
U D R L UR UL DR DL

Table 5.1: The abbreviation of each robot move that will appear in the simulator

In the following test case (see Figure 5.15), we assign the robot the target and

the obstacle location, then we trigger the path planning algorithm; the required robot

moves are displayed on the GUI as : RobotMove: R > D > D > L > , which means

the robot should move from its position to the right, then two times, then to the left to

reach the target.
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Figure 5.15: Test case 1: The robot moves to reach the target

Another test case is illustrated in the below figure(see Figure 5.16) that shows

the required robot moves on the GUI as : RobotMove: DR > DR > DR > R > R >

, which means the robot should move from its position three times to the down-right,

then two times to the right to reach the target.
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Figure 5.16: Test case 2: The robot moves to reach the target

5.2 Summary

We developed an implementation that is consistent with the refined concrete specifi-

cation. We use various scenarios to demonstrate that this implementation is consistent

with Z specification. In fact, the scenarios simulated directly the behavior of each of

our Z schemas.
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Chapter 6: Discussion and Conclusion

Our overview of the state of the art in formal software development shows that research

and case studies confirm the importance of using formal methods and the their effec-

tiveness to derive reliable and robust software systems. These successful experiences

formed the basis for our motivation to identify a critical problem, to specify it, and to

refine it formally to get a reliable system.

In this thesis, we chose to use one of the formal methods to specify a funda-

mental task of robotic systems, because these system are described as critical systems,

and they are designed to carry out several tasks intelligently on behalf of human; thus,

reliability and safety of these systems are fundamental. They are expected to always

behave correctly and accurately without causing any danger. Failure of these systems

may endanger human life.

There are several formal methods that we can use to specify software systems,

such as: Z notation, process algebra, Alloy, VDM, etc. We chose Z notation, because

of two major reasons: first, we found that Z notation is very descriptive language and

its major component (which is the schema) is very close to the structure of the current

object-oriented programming languages; the second reason is, the availability of the

theory underlying the formal refinement process that allows us to transform each Z

specification component into its corresponding concrete program.

Our focus in this research was on specifying formally the navigation tasks of

the autonomous robots in terms of path planning; consequently, we set to describe
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formally the process of finding the shortest path that the robot can follow to safely

reach the target. The modified A* algorithm was fully specified and refined.

Figure 6.1: The stages of our research

We started our research by comparing between the several path planning algo-

rithms such as: A* , D*, Dijkstra, etc. During the initial analysis of all of the path

planning algorithms, we found that all of these algorithms are finding the shortest path

for a (point) that does not have dimensions, while in our case we want to find the

shortest path for a robot that has dimensions. We chose to focus on the A* algorithm

because of its efficiency and versatility.

During the first stage of our research (see Figure 6.1), we analyzed the pseu-

docode of the A* algorithm, and we did a little modification to guarantee the robot

safety, The major modification that we did in the A* algorithm is to exclude some im-

possible and unsafe cases, because of its high probability that a collision occurs while

the robot is trying to reach the target. We called these cases (refinement of the diagonal

neighbors) which means during the search process, there are some diagonal neighbors

are going to be discarded because the robot can’t move safely through them.
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After we agreed upon the needed updates that ensure the robot safety, we

started to describe the behavior of our system semi-formally, using basic mathemat-

ical structures and normal English language statements. We used The semi-formal

description of our system as a base to build the formal model.

After describing the behavior of our system semi-fromally, we transformed that

description into a formal description using one of the formal specification languages.

We used Z notation to build the formal model (abstract) that describes the overall be-

havior of our system formally. This abstract model is also described as a mathematical

model that captures the functionality of the system based on logic and discrete struc-

tures.

Our next step was the formal refinement process. The abstract model (math-

ematical model) was successively transformed into its corresponding implementable

code. The refinement process involves removing uncertainty and elaborating the con-

crete design of our system.

After getting the code from the formal refinement process we implemented a

simulation to show the consistency of the specification and the implementation. We

did several execution scenarios to test the feasibility of our approach, and they showed

correct results that proves feasibility of our approach.

To summarize, in this research we succeeded in generating a reliable and a

safe path planning algorithm by applying a formal process. Our results demonstrate

the benefits of the Z notation in the specification of critical systems. We showed also

that formal methods are robust techniques that can contribute to enhance safety and

reliability. The use formal refinement process shows that the transformation of an
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abstract model into its corresponding implementable code is a sound software engi-

neering strategy that can contribute to the development of provable systems.

Z in its generality does not lend itself to automatic refinement. As a future

extension of our work, we pose the question: what kind of constraints to impose on

Z to be able to generate automatically the implementation of our system from the

specification? Thus, we suggest to build a system that can aid the software engineers to

transform the mathematical model (Z specification) into its equivalent implementation.

This work can be initiated by defining a subset of Z and by identifying a set of general

rules that can translate the abstract model into its equivalent code. After setting the

general rules, the system can offer appropriate implementation suggestions for each

mathematical construct. For example, for the power set in Z, the system can offer list

of suggestions such as: transforming the power set into Array List or Array or stack,

etc.

The use of formal methods in this research supports the many claims that for-

mality in software development is highly effective [17, 20]. Formal methods provide

robust techniques that software engineers can use to derive reliable software systems,

especially when dealing with critical systems. Applying these methods from the spec-

ification stage to implementation will, not only enhance quality and productivity, but

reduce errors, failures, and cost-overruns by ensuring that implementations are correct

by construction.

Despite the many benefits of the formal methods, there are many reasons that

may prevent software engineers to adopt them. One of these reasons is the complexity

of applying these methods, for example: building the formal specification itself is a
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hard job that needs a lot of time of analysis and multiple tries until getting the final

version of the formal model.

However, it is up to software engineers to decided whether to accept the dif-

ficulty of these methods to get a robust software system or to follow other techniques

of software development that may lead to derive a low quality software. But we think

that handling complexity at early stages is better than handling software failure later.
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Appendix A:Notations

Symbol Name
P Power set
N Set of natural numbers
∀ For all
⊥ Undefined
∪ Union
• Such that

m . . .n Set of values m to n inclusive
∅ Empty set
�→ Bijective function
∧ And
∨ Or
7→ Maps to
seq Sequence
iseq Injective sequence (no duplicates)
〈〉 Empty sequence
a Concatenation operator
∈ Belongs to
/∈ Does not belong to
B Range restriction
−C Domain subtraction

Symbol Name
< Less than
= Equals to
= Not equals to
× Cartesian product
∆ Delta (change of state)
Ξ No change of state
a? Input to an operation
a! Output from an operation
a State of a component before an operation
a ′ State of a component after an operation
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Appendix B:Z document

• Definitions maxX = const1

maxY = const2

Pair = N×N

undefined ==⊥

RESPONSE ::= FreeThePairFirst | NoPathFound | youCantFreeBorder |

ItsBorderPosition | APathIsFound

ROBOTMOVE ::= up | down | right | left | upRight | upLeft | downRight |

downLeft

• System status

Map

map : PPair

MapInit

∆Map

map′ = {∀xm : 0 . . .maxX ; ∀ym : 0 . . .maxY • (xm ,ym)}
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Border

border : PPair

BorderInit

∆Border

border ′ = {{∀xp : 0 . . .maxX • (xp ,0)}∪

{∀xp : 0 . . .maxX • (xp ,maxY )}∪

{∀yp : 0 . . .maxY • (0,yp)}∪

{∀yp : 0 . . .maxY • (maxX ,yp)}

Target

xt : N

yt : N

TargetInit

∆Target

x ′t = undefined

y ′t = undefined
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Robot

xr : N

yr : N

RobotInit

∆Robot

x ′r = undefined

y ′r = undefined

Obstacle

obstacleList : PPair

ObstacleInit

∆Obstacle

obstacleList ′ = /0
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BestPair

xb : N

yb : N

InitBestPair

∆BestPair

x ′b = undefined

y ′b = undefined

CurrentPair

xc : N

yc : N

InitCurrentPair

∆Current

x ′c = undefined

y ′c = undefined
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Neighbor

neighbors1 : PPair

neighbors2 : PPair

neighbors3 : PPair

xn : N

yn : N

InitNeighbor

∆Neighbor

neighbors1′ =∅

neighbors2′ =∅

neighbors3′ =∅

x ′n = undefined

y ′n = undefined

currentPosition

xcp : N

ycp : N
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InitCurrentPosition

∆currentPosition

x ′cp = undefined

y ′cp = undefined

nextPosition

xnp : N

ynp : N

InitNextPosition

∆nextPosition

x ′np = undefined

y ′np = undefined

OpenF

openF : Pair �→ N
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InitOpenF

∆OpenF

ΞRobot

∆CalculateFValue

openF ′ = {(xr 7→ yr ) 7→ f }

OpenG

openG : Pair �→ N

InitOpenG

∆OpenG

ΞRobot

∆CalculateGCurrent

openG ′ = {(xr 7→ yr ) 7→ gc}

ParentChild

parentChild : Pair �→ Pair



133

InitParentChild

∆ParentChild

parentChild ′ =∅

Closed

closedList : PPair

InitClosed

∆Closed

closedList ′ =∅

Path

path : seqPair

xpath : N

ypath : N
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InitPath

∆Path

ΞTarget

path ′ = 〈(xt ,yt)〉

x ′path = xt

y ′path = yt

• Operations

SetTargetPositionOK

ΞMap

∆Target

x? : N

y? : N

((x?,y?) ∈map

(xt ,yt) = (undefined ,undefined)

(x ′t ,y
′
t) = (x?,y?))

∨

((x?,y?) ∈map

(xt ,yt) 6= (undefined ,undefined)

(x ′t ,y
′
t) = (x?,y?))
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SetTargetPositionNotOK

ΞBorder

ΞObstacle

x? : N

y? : N

rep! : RESPONSE

((x?,y?) ∈ obstacleList

rep! = freePairFirst)

∨

((x?,y?) ∈ border

rep! = ItsBorderPosition)
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SetRobotPositionOK

ΞMap

∆Robot

x? : N

y? : N

((x?,y?) ∈map

(xr ,yr ) = (undefined ,undefined)

(x ′r ,y
′
r ) = (x?,y?))

∨

((x?,y?) ∈map

(xr ,yr ) 6= (undefined ,undefined)

(x ′r ,y
′
r ) = (x?,y?))



137

SetRobotPositionNotOK

ΞBorder

ΞObstacle

x? : N

y? : N

rep! : RESPONSE

((x?,y?) ∈ obstacleList

rep! = freePairFirst)

∨

((x?,y?) ∈ border

rep! = ItsBorderPosition)

SetObstaclePositionOK

ΞMap

∆Obstacle

x? : Z

y? : Z

(x?,y?) ∈map

(x?,y?) /∈ obstacleList

obstacleList ′ = obstacleList ∪{(x?,y?)}
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SetObstaclePositionNotOK

ΞBorder

x? : N

y? : N

rep! : RESPONSE

((x?,y?) ∈ border

rep! = ItsBorderPosition)

FreeRobotPosition

∆Robot

x? : N

y? : N

(x?,y?) = (xr ,yr )

(x ′r ,y
′
r ) = (undefined ,undefined)
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FreeObstaclePosition

∆Obstacle

x? : N

y? : N

(x?,y?) ∈ obstacleList

obstacleList ′ = obstacleList\{(x?,y?)}

FreeTargetPosition

∆Target

x? : N

y? : N

(x?,y?) = (xt ,yt)

(x ′t ,y
′
t) = (undefined ,undefined)
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FreeBorderPairNotOK

ΞBorder

x? : N

y? : N

rep! : RESPONSE

(x?,y?) ∈ border

rep! = youCantFreeBorder

EvaluateBestPair

∆BestPair

ΞOpenF

(x ′b ,y
′
b) = dom(openF Bmin(ran openF ))
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SearchPairsNoPath

ΞBestPair

ΞTarget

ΞOpenF

rep! : RESPONSE

(xb ,yb) 6= (xt ,yt)

openF =∅

rep! = NoPathFound

EmptyNeighbors

∆Neighbor

neighbors1′ =∅neighbors2′ =∅neighbors3′ =∅
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SearchPairs

ΞBestPair

ΞTarget

∆CurrentPair

∆Neighbor

∆Closed

∆OpenF

∆OpenG

(xb ,yb) 6= (xt ,yt)

openF 6=∅

(xc,yc) = (xb ,yb)

closedList ′ = closedList ∪{(xb ,yb)}

openF ′ = {(xb ,yb)}−CopenF

openG ′ = {(xb ,yb)}−CopenG

neighbors1′ = {{(xc,yc +1)}∪{(xc,yc−1)}∪{(xc +1,yc)}∪{(xc−1,yc)}

∪{(xc−1,yc +1)}∪{(xc−1,yc−1)}∪{(xc +1,yc−1)}∪{(xc +1,yc +1)}}
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ConstructPath

∆Path

ΞRobot

ΞBestPair

ΞTarget

rep! : RESPONSE

(xb ,yb) = (xt ,yt)

rep! = APathIsFound

(xpath ,ypath) 6= (undefined ,undefined)

(xpath ,ypath) 6= (xr ,yr )

(x ′path ,y
′
path) = dom(parentChild B (xpath ,ypath))

path ′ = 〈(xpath ,ypath)〉apath
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RefineDiagonalNeighborsCase1

∆Neighbor

ΞCurrentPair

ΞObstacle

(xc,yc +1) ∈ neighbors1∧ ((xc,yc +1) ∈ obstacleList

(xc +1,yc) ∈ neighbors1∧ (xc +1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc +1)}

RefineDiagonalNeighborsCase2

∆Neighbor

ΞCurrentPair

ΞObstacle

(xc,yc +1) ∈ neighbors1∧ (xc,yc +1) ∈ obstacleList

(xc−1,yc) ∈ neighbors1∧ (xc−1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc−1,yc +1)}
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RefineDiagonalNeighborsCase3

∆Neighbor

ΞCurrentPair

ΞObstacle

(xc,yc−1) ∈ neighbors1∧ (xc,yc−1) ∈ obstacleList

(xc +1,yc) ∈ neighbors1∧ (xc +1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc−1)}

RefineDiagonalNeighborsCase4

∆Neighbor

ΞCurrentPair

ΞObstacle

(xc,yc−1) ∈ neighbors1∧ (xc,yc−1) ∈ obstacleList

(xc−1,yc) ∈ neighbors1∧ (xc−1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc−1,yc−1)}
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RefineDiagonalNeighborsCase5

∆Neighbor

ΞCurrentPair

ΞObstacle

(xc,yc +1) ∈ neighbors1∧ (xc,yc +1) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc +1)}∪{(xc−1,yc +1)}

RefineDiagonalNeighborsCase6

∆Neighbor

ΞCurrentPair

ΞObstacle

(xc,yc−1) ∈ neighbors1∧ (xc,yc−1) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc−1)}∪{(xc−1,yc−1)}
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RefineDiagonalNeighborsCase7

∆Neighbor

ΞCurrentPair

ΞObstacle

(xc +1,yc) ∈ neighbors1∧ (xc +1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc +1,yc +1)}∪{(xc +1,yc−1)}

RefineDiagonalNeighborsCase8

∆Neighbor

ΞCurrentPair

ΞObstacle

(xc−1,yc) ∈ neighbors1∧ (xc−1,yc) ∈ obstacleList

neighbors2′ = neighbors2∪{(xc−1,yc +1)}∪{(xc−1,yc−1)}

DeleteDiagonalNeighbors

∆Neighbor

neighbors1′ = neighbors1\neighbors2



148

RefineNeighborsFromObstaclesAndBorder

ΞObstacle

ΞBorder

∆Neighbor

((xn ,yn) ∈ neighbors1

(xn ,yn) ∈ obstacleList

neighbors3′ = neighbors3∪ (xn ,yn))

∨

((xn ,yn) ∈ neighbors1

(xn ,yn) ∈ border

neighbors3′ = neighbors3∪ (xn ,yn))

DeleteNeighborsFromObstaclesAndBorder

∆Neighbor

neighbors1′ = neighbors1\neighbors3
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CalculateHValue

ΞTarget

ΞNeighbor

h : N

h ′ =| yn −yt |+ | xn − xt |

CalculateGCurrent

ΞRobot

ΞCurrent

gc : N

g ′c =| yc−yr |+ | xc− xr |

CalculateGNeighbor

ΞRobot

ΞNeighbor

gn : N

g ′n =| yn −yr |+ | xn − xr |
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CalculateFValue

ΞRobot

ΞCurrent

∆CalculateGCurrent

∆CalculateHValue

f : N

f ′ = gc +h

CalculateCostValue

∆CalculateGCurrent

ΞCurrent

ΞNeighbor

cost : N

cost ′ = gc +(| yc−yn |+ | xc− xn |)
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EvaluateNeighborsCase1

∆CalculateGNeighbor

∆CalculateCostValue

ΞNeighbor

∆OpenF

∆OpenG

oldGn : N

(xn ,yn) ∈ openF

oldGn ′ = openG(xn ,yn)

cost < oldGn

openF ′ = {(xn ,yn)}−CopenF

openG ′ = {(xn ,yn)}−CopenG
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EvaluateNeighborsCase2

∆CalculateCostValue

∆CalculateHValue

ΞNeighbor

ΞCurrentPair

ΞClosed

∆OpenG

∆OpenF

∆ParentChild

newGn : N

(xn ,yn) /∈ openF

(xn ,yn) /∈ closedList

newGn ′ = cost

openF ′ = openF ∪{(xn 7→ yn) 7→ (newGn +h)}

openG ′ = openG ∪{(xn 7→ yn) 7→ newGn}

parentChild ′ = parentChild ∪{(xc,yc) 7→ (xn ,yn)}
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FollowPath

∆Path

∆currentPosition

∆nextPosition

path 6= 〈〉

(x ′cp ,y
′
cp) = head path

path ′ = tail path

(x ′np ,y
′
np) = head path

MoveDown

∆CurrentPosition

ΞNextPosition

rm : ROBOTMOVE

(xnp ,ynp) = (xcp ,ycp +1)

rm ′ = down

(x ′cp ,y
′
cp) = (xnp ,ynp)
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MoveUp

∆CurrentPosition

ΞNextPosition

rm : ROBOTMOVE

(xnp ,ynp) = (xcp ,ycp−1)

rm ′ = up

(x ′cp ,y
′
cp) = (xnp ,ynp)

MoveRight

∆CurrentPosition

ΞNextPosition

rm : ROBOTMOVE

(xnp ,ynp) = (xcp +1,ycp)

rm ′ = right

(x ′cp ,y
′
cp) = (xnp ,ynp)
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MoveLeft

∆CurrentPosition

ΞNextPosition

rm : ROBOTMOVE

(xnp ,ynp) = (xcp−1,ycp)

rm ′ = left

(x ′cp ,y
′
cp) = (xnp ,ynp)

MoveUpRight

∆CurrentPosition

ΞNextPosition

rm : ROBOTMOVE

(xnp ,ynp) = (xcp +1,ycp−1)

rm ′ = upRight

(x ′cp ,y
′
cp) = (xnp ,ynp)
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MoveUpLeft

∆CurrentPosition

ΞNextPosition

rm : ROBOTMOVE

(xnp ,ynp) = (xcp−1,ycp−1)

rm ′ = upLeft

(x ′cp ,y
′
cp) = (xnp ,ynp)

MoveDownRight

∆CurrentPosition

ΞNextPosition

rm : ROBOTMOVE

(xnp ,ynp) = (xcp +1,ycp +1)

rm ′ = downRight

(x ′cp ,y
′
cp) = (xnp ,ynp)
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MoveDownLeft

∆CurrentPosition

ΞNextPosition

rm : ROBOTMOVE

(xnp ,ynp) = (xcp−1,ycp +1)

rm ′ = downLeft

(x ′cp ,y
′
cp) = (xnp ,ynp)
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Appendix C:Equivalent implementation

• The type Pair

c l a s s P a i r {

i n t x ;

i n t y ;

}

• Supportive methods

p u b l i c i n t getX ( ) { r e t u r n x ; }

p u b l i c i n t getY ( ) { r e t u r n y ; }

• SetRobotPositionOK & SetRobotPositionNotOK

i n t x ;

i n t y ;

f o r ( i n t j =0 ; j <maxY ; j ++) {

f o r ( i n t i = 0 ; i <maxX ; i ++) {

P a i r mapPai r = map [ i ] [ j ] ;

i f ( x = = mapPai r . getX ( ) && y = = mapPai r . getY ( ) ) {

f o r ( i n t i =0 ; i < o b s t a c l e L i s t . s i z e ( ) ; i ++) {

P a i r o b s t a c l e P a i r = o b s t a c l e L i s t . g e t ( i ) ;

xo = o b s t a c l e P a i r . getX ( ) ;

yo = o b s t a c l e P a i r . getY ( ) ;
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i f ( x = = xo && y = = yo ) {

System . o u t . p r i n t l n ( " F ree The P a i r F i r s t " ) ; }}

f o r ( i n t i =0 ; i < b o r d e r . s i z e ( ) ; i ++) {

P a i r b o r d e r P a i r = b o r d e r . g e t ( i ) ;

xbo = b o r d e r P a i r . getX ( ) ;

ybo = b o r d e r P a i r . getY ( ) ;

i f ( x = = xbo && y = = ybo ) {

System . o u t . p r i n t l n ( " I t ’ s Borde r P o s i t i o n " ) ; } }

i f ( ( x != xo | | y != yo ) && ( x != xbo | | y != ybo ) ) {

i f ( x != u n d e f i n e d | | y != u n d e f i n e d ) {

/ / S e t new r o b o t p o s i t i o n

x r =x ;

y r =y ; }

e l s e {

/ / Rep lace t h e o l d r o b o t p o s i t i o n by a new one

xr =x ;

y r =y ; }}}}}

• SetTargetPositionOK & SetTargetPositionNotOK

i n t x ;

i n t y ;

f o r ( i n t j =0 ; j <maxY ; j ++) {

f o r ( i n t i = 0 ; i <maxX ; i ++) {

P a i r mapPai r = map [ i ] [ j ] ;
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i f ( x = = mapPai r . getX ( ) && y = = mapPai r . getY ( ) ) {

f o r ( i n t i =0 ; i < o b s t a c l e L i s t . s i z e ( ) ; i ++) {

P a i r o b s t a c l e P a i r = o b s t a c l e L i s t . g e t ( i ) ;

xo = o b s t a c l e P a i r . getX ( ) ;

yo = o b s t a c l e P a i r . getY ( ) ;

i f ( x = = xo && y = = yo ) {

System . o u t . p r i n t l n ( " F ree The P a i r F i r s t " ) ;

}}}}}

f o r ( i n t i =0 ; i < b o r d e r . s i z e ( ) ; i ++) {

P a i r b o r d e r P a i r = b o r d e r . g e t ( i ) ;

xbo = b o r d e r P a i r . getX ( ) ;

ybo = b o r d e r P a i r . getY ( ) ;

i f ( x = = xbo && y = = ybo ) {

System . o u t . p r i n t l n ( " I t ’ s Borde r P o s i t i o n " +

xbo + " , " +ybo ) ;

b r e a k ; } }

i f ( x != xo && y != yo | | x != xbo && y != ybo ) {

i f ( x != u n d e f i n e d | | y != u n d e f i n e d ) {

/ / S e t new r o b o t p o s i t i o n

x r =x ;

y r =y ;

}
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e l s e {

/ / Rep lace t h e o l d r o b o t p o s i t i o n by a new one

xr =x ;

y r =y ;

}}

• SetObstaclePositionOK & SetObstaclePositionNotOK

i n t x ;

i n t y ;

f o r ( i n t j =0 ; j <maxY ; j ++) {

f o r ( i n t i = 0 ; i <maxX ; i ++) {

P a i r mapPai r = map [ i ] [ j ] ;

i f ( x = = mapPai r . getX ( ) && y = = mapPai r . getY ( ) ) {

i f ( ! o b s t a c l e L i s t . c o n t a i n s ( map [ x ] [ y ] ) ) {

o b s t a c l e L i s t . add ( map [ x ] [ y ] ) ;

}

i f ( b o r d e r . c o n t a i n s ( map [ x ] [ y ] ) ) {

System . o u t . p r i n t l n ( " I t ’ s Borde r P o s i t i o n " ) ;

}}}}

• FreeRobotPosition

i n t x ;

i n t y ;

i f ( x = = xr && y = = yr ) {
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xr = u n d e f i n e d ;

y r = u n d e f i n e d ;

}

• FreeObstaclePosition

i n t x ;

i n t y ;

i f ( o b s t a c l e L i s t . c o n t a i n s ( map [ x ] [ y ] ) ) {

o b s t a c l e L i s t . remove ( map [ x ] [ y ] ) ;

}

• FreeTargetPosition

i n t x ;

i n t y ;

i f ( x = = x t && y = = y t ) {

x t = u n d e f i n e d ;

y t = u n d e f i n e d ;

}

• FreeBorderPairNotOK

i n t x ;

i n t y ;

i f ( b o r d e r . c o n t a i n s ( map [ x ] [ y ] ) ) {

System . o u t . p r i n t l n ( " you Cant F ree Border " ) ;

}



163

• EvaluateBestPair

p r i v a t e P a i r E v a l u a t e B e s t P a i r ( ) {

r e t u r n C o l l e c t i o n s . min ( openF . e n t r y S e t ( ) ,

new Comparator <Map . Ent ry < P a i r , I n t e g e r > >() {

p u b l i c i n t compare ( Ent ry < P a i r , I n t e g e r > o1 ,

Ent ry < P a i r , I n t e g e r > o2 ) {

r e t u r n o1 . g e t V a l u e ( ) . i n t V a l u e ( ) − o2 . g e t V a l u e ( ) . i n t V a l u e ( ) ;

} } )

. getKey ( ) ;

}

• SearchPairsNoPath

P a i r b e s t P a i r = map [ xb ] [ yb ] ;

P a i r t a r g e t = map [ x t ] [ y t ] ;

i f ( openF . s i z e ( ) == 0 && b e s t P a i r != t a r g e t ) {

System . o u t . p r i n t l n ( " No Pa th Found " ) ;

}

• EmptyNeighbors

n e i g h b o r s 1 . c l e a r ( ) ;

n e i g h b o r s 2 . c l e a r ( ) ;

n e i g h b o r s 3 . c l e a r ( ) ;

• SearchPairs

w h i l e ( openF . s i z e ( ) != 0 ) {
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i f ( b e s t P a i r != t a r g e t ) {

P a i r c u r r e n t P a i r = b e s t P a i r ;

c l o s e d L i s t . add ( b e s t P a i r ) ;

openF . remove ( b e s t P a i r ) ;

openG . remove ( b e s t P a i r ) ;

xc = c u r r e n t P a i r . getX ( ) ;

yc = c u r r e n t P a i r . getY ( ) ;

n e i g h b o r s 1 . c l e a r ( ) ;

n e i g h b o r s 2 . c l e a r ( ) ;

n e i g h b o r s 3 . c l e a r ( ) ;

/ / add n e i g h b o r s o f t h e c u r r e n t P a i r

P a i r n1 = map [ xc + 1 ] [ yc ] ;

P a i r n2 = map [ xc−1][ yc ] ;

P a i r n3 = map [ xc ] [ yc + 1 ] ;

P a i r n4 = map [ xc ] [ yc−1];

P a i r n5 = map [ xc + 1 ] [ yc + 1 ] ;

P a i r n6 = map [ xc−1][ yc + 1 ] ;

P a i r n7 = map [ xc + 1 ] [ yc−1];

P a i r n8 = map [ xc−1][ yc−1];

n e i g h b o r s 1 . add ( n1 ) ;

n e i g h b o r s 1 . add ( n2 ) ;

n e i g h b o r s 1 . add ( n3 ) ;

n e i g h b o r s 1 . add ( n4 ) ;
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n e i g h b o r s 1 . add ( n5 ) ;

n e i g h b o r s 1 . add ( n6 ) ;

n e i g h b o r s 1 . add ( n7 ) ;

n e i g h b o r s 1 . add ( n8 ) ;

}}

• ConstructPath

p u b l i c vo id c o n s t r u c t P a t h ( ) {

i f ( b e s t P a i r == t a r g e t ) {

System . o u t . p r i n t l n ( R5 ) ;

P a i r p a t h P a i r = map [ x t ] [ y t ] ;

i n t x p a t h = p a t h P a i r . getX ( ) ;

i n t y p a t h = p a t h P a i r . getY ( ) ;

p a t h . push ( p a t h P a i r ) ;

w h i l e ( p a t h P a i r != map [ x r ] [ y r ] && p a t h P a i r != n u l l ) {

p a t h P a i r = p a r e n t C h i l d . g e t ( p a t h P a i r ) ;

p a t h . push ( p a t h P a i r ) ;

}}}

• RefineDiagonalNeighborsCase1

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 1 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;
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i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn = = xc && yn = = yc +1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 1 ++;

}

i f ( xn = = xc +1 && yn = = yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 1 ++;

}

i f ( c o u n t e r 1 = =2) {

P a i r n = n e i g h b o r s 1 . g e t ( 4 ) ;

n e i g h b o r s 2 . add ( n ) ;

}}

• RefineDiagonalNeighborsCase2

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 2 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn = = xc && yn = = yc +1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 2 ++;

}

i f ( xn = = xc−1 && yn = = yc &&
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o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 2 ++;

}

i f ( c o u n t e r 2 = =2) {

P a i r n= n e i g h b o r s 1 . g e t ( 5 ) ;

n e i g h b o r s 2 . add ( n ) ;

}}

• RefineDiagonalNeighborsCase3

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 3 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn = = xc && yn = = yc−1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 3 ++;

}

i f ( xn = = xc +1 && yn = = yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 3 ++;

}

i f ( c o u n t e r 3 = =2){

P a i r n= n e i g h b o r s 1 . g e t ( 6 ) ;

n e i g h b o r s 2 . add ( n ) ;
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}}

• RefineDiagonalNeighborsCase4

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 4 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn = = xc && yn = = yc−1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 4 ++;

}

i f ( xn = = xc−1 && yn = = yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 4 ++;

}

i f ( c o u n t e r 4 = =2) {

P a i r n= n e i g h b o r s 1 . g e t ( 7 ) ;

n e i g h b o r s 2 . add ( n ) ;

}}

• RefineDiagonalNeighborsCase5

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 5 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;
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i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn = = xc && yn = = yc +1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

P a i r n1= n e i g h b o r s 1 . g e t ( 4 ) ;

P a i r n2= n e i g h b o r s 1 . g e t ( 5 ) ;

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n1 ) ) {

n e i g h b o r s 2 . add ( n1 ) ;

}

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n2 ) ) {

n e i g h b o r s 2 . add ( n2 ) ;

}}}

• RefineDiagonalNeighborsCase6

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 6 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn = = xc && yn = = yc−1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

P a i r n1= n e i g h b o r s 1 . g e t ( 6 ) ;

P a i r n2= n e i g h b o r s 1 . g e t ( 7 ) ;

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n1 ) ) {

n e i g h b o r s 2 . add ( n1 ) ;

}
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i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n2 ) ) {

n e i g h b o r s 2 . add ( n2 ) ;

}}}

• RefineDiagonalNeighborsCase7

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 7 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn = = xc +1 && yn = = yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

P a i r n1= n e i g h b o r s 1 . g e t ( 4 ) ;

P a i r n2= n e i g h b o r s 1 . g e t ( 6 ) ;

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n1 ) ) {

n e i g h b o r s 2 . add ( n1 ) ;

}

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n2 ) ) {

n e i g h b o r s 2 . add ( n2 ) ;

}}}

• RefineDiagonalNeighborsCase8

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 8 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {
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i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn = = xc−1 && yn = = yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

P a i r n1= n e i g h b o r s 1 . g e t ( 5 ) ;

P a i r n2= n e i g h b o r s 1 . g e t ( 7 ) ;

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n1 ) ) {

n e i g h b o r s 2 . add ( n1 ) ;

}

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n2 ) ) {

n e i g h b o r s 2 . add ( n2 ) ;

}}}

• DeleteDiagonalNeighbors

p u b l i c vo id d e l e t e D i a g o n a l N e i g h b o r s ( ) {

n e i g h b o r s 1 . removeAl l ( n e i g h b o r s 2 ) ;

}

• RefineNeighborsFromObstaclesAndBorder

p u b l i c vo id r e f i n e N e i g h b o r s F r o m O b s t a c l e s A n d B o r d e r ( P a i r

ne ighbo r , i n t xn , i n t yn ) {

i f ( o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

n e i g h b o r s 3 . add ( n e i g h b o r ) ;

}
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i f ( b o r d e r . c o n t a i n s ( n e i g h b o r ) ) {

n e i g h b o r s 3 . add ( n e i g h b o r ) ;

}}

• deleteNeighborsFromObstaclesAndBorder

p u b l i c vo id d e l e t e N e i g h b o r s F r o m O b s t a c l e s A n d B o r d e r ( ) {

n e i g h b o r s 1 . removeAl l ( n e i g h b o r s 3 ) ;

}

• CalculateHValue

p u b l i c i n t c a l c u l a t e H V a l u e ( i n t x , i n t y ) {

r e t u r n ( Math . abs ( x − x t ) + Math . abs ( y − y t ) ) ;

}

• CalculateGCurrent & CalculateGNeighbor

p u b l i c i n t c a l c u l a t e G V a l u e ( i n t x , i n t y ) {

r e t u r n ( Math . abs ( x − xr ) + Math . abs ( y − yr ) ) ;

}

• CalculateFValue

p u b l i c i n t c a l c u l a t e F V a l u e ( i n t x , i n t y ) {

r e t u r n c a l c u l a t e H V a l u e ( x , y ) + c a l c u l a t e G V a l u e ( x , y ) ;

}

• CalculateCostValue

p u b l i c i n t c a l c u l a t e C o s t V a l u e ( i n t xn , i n t yn , i n t xc ,
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i n t yc ) {

r e t u r n c a l c u l a t e G V a l u e ( xc , yc ) +( Math . abs ( yc − yn ) +

Math . abs ( xc − xn ) ) ;

}

• EvaluateNeighborsCase1 & EvaluateNeighborsCase2

p u b l i c vo id e v a l u a t e N e i g h b o r s ( P a i r

c u r r e n t P a i r , P a i r

ne ighbo r , i n t xn , i n t yn ) {

i n t xc = c u r r e n t P a i r . getX ( ) ;

i n t yc = c u r r e n t P a i r . getY ( ) ;

i n t c o s t = c a l c u l a t e C o s t V a l u e ( xn , yn , xc , yc ) ;

i f ( openF . c o n t a i n s K e y ( n e i g h b o r ) ) {

/ / r e t u r n o l d G n e i g h b o r

i n t oldGn = openG . g e t ( n e i g h b o r ) ;

i f ( c o s t <oldGn ) {

openF . remove ( n e i g h b o r ) ;

openG . remove ( n e i g h b o r ) ;

}}

i f ( ! c l o s e d L i s t . c o n t a i n s ( n e i g h b o r ) &&

! openF . c o n t a i n s K e y ( n e i g h b o r ) ) {

i n t newGn= c o s t ;

i n t newF ;

newF =newGn+ c a l c u l a t e H V a l u e ( xn , yn ) ;
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openF . p u t ( ne ighbo r , newF ) ;

openG . p u t ( ne ighbo r , newGn ) ;

p a r e n t C h i l d . p u t ( ne ighbo r , c u r r e n t P a i r ) ;

}}

• FollowPath & MoveDown & MoveUp & MoveRight & MoveLeft & Move-

UpRight & MoveUpLeft & MoveDownRight & MoveDownLeft

p u b l i c vo id f o l l o w P a t h ( ) {

S t r i n g S1="D> " ;

S t r i n g S2="U> " ;

S t r i n g S3="R> " ;

S t r i n g S4="L > " ;

S t r i n g S5="UR> " ;

S t r i n g S6="UL> " ;

S t r i n g S7="DR> " ;

S t r i n g S8="DL> " ;

ROBOTMOVE. add ( S1 ) ;

ROBOTMOVE. add ( S2 ) ;

ROBOTMOVE. add ( S3 ) ;

ROBOTMOVE. add ( S4 ) ;

ROBOTMOVE. add ( S6 ) ;

ROBOTMOVE. add ( S7 ) ;

ROBOTMOVE. add ( S8 ) ;
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S t r i n g c= " " ;

P a i r c u r r e n t P o s i t i o n = p a t h . pop ( ) ;

xcp = c u r r e n t P o s i t i o n . getX ( ) ;

ycp = c u r r e n t P o s i t i o n . getY ( ) ;

System . o u t . p r i n t l n ( " c u r r e n t P o s i t i o n : " + xcp +" , "+ ycp ) ;

w h i l e ( p a t h . s i z e ( ) != 0 ) {

P a i r n e x t P o s i t i o n = p a t h . pop ( ) ;

xnp = n e x t P o s i t i o n . getX ( ) ;

ynp = n e x t P o s i t i o n . getY ( ) ;

System . o u t . p r i n t l n ( " n e x t P o s i t i o n : " + xnp +" ,"+ ynp ) ;

i f ( c u r r e n t P o s i t i o n . getX ( ) = = n e x t P o s i t i o n . getX ( ) &&

c u r r e n t P o s i t i o n . getY ( ) + 1 = = n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " down " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S1 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ( ) = = n e x t P o s i t i o n . getX ( ) &&

c u r r e n t P o s i t i o n . getY ()−1 = = n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " up " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S2 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ( ) + 1 = = n e x t P o s i t i o n . getX ( )
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&& c u r r e n t P o s i t i o n . getY ( ) = = n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " r i g h t " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S3 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ()−1 = = n e x t P o s i t i o n . getX ( )

&& c u r r e n t P o s i t i o n . getY ( ) = = n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " l e f t " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S4 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ( ) + 1 = = n e x t P o s i t i o n . getX ( )

&& c u r r e n t P o s i t i o n . getY ()−1 = = n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " upRigh t " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S5 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ()−1 = = n e x t P o s i t i o n . getX ( )

&& c u r r e n t P o s i t i o n . getY ()−1 = = n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " u p L e f t " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S6 ) ;

}
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i f ( c u r r e n t P o s i t i o n . getX ( ) + 1 = = n e x t P o s i t i o n . getX ( )

&& c u r r e n t P o s i t i o n . getY ( ) + 1 = = n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " downRight " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S7 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ()−1 = = n e x t P o s i t i o n . getX ( )

&& c u r r e n t P o s i t i o n . getY ( ) + 1 = = n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " downLeft " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S8 ) ;

}}

System . o u t . p r i n t l n ( " RobotMove : " + c ) ;

}

• The full implementation of our version of the A* algorithm

i m p o r t j a v a . u t i l . A r r a y L i s t ;

i m p o r t j a v a . u t i l . C o l l e c t i o n s ;

i m p o r t j a v a . u t i l . Compara tor ;

i m p o r t j a v a . u t i l . H a s h t a b l e ;

i m p o r t j a v a . u t i l . Map ;

i m p o r t j a v a . u t i l . Map . E n t r y ;

i m p o r t j a v a . u t i l . S t a c k ;
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i m p o r t j a v a x . swing . J L a b e l ;

/ *

* C o p y r i g h t 2015 , Eman Rabiah . A l l r i g h t s r e s e r v e d .

* /

p u b l i c c l a s s AStarAlgo {

p r i v a t e A r r a y L i s t < P a i r > c l o s e d L i s t ;

p r i v a t e A r r a y L i s t < P a i r > n e i g h b o r s 1 ;

p r i v a t e A r r a y L i s t < P a i r > n e i g h b o r s 2 ;

p r i v a t e A r r a y L i s t < P a i r > n e i g h b o r s 3 ;

S t a c k < P a i r > p a t h = new S t a c k < P a i r > ( ) ;

p r i v a t e A r r a y L i s t < P a i r > o b s t a c l e L i s t ;

p r i v a t e A r r a y L i s t < S t r i n g > ROBOTMOVE;

p r i v a t e A r r a y L i s t < S t r i n g > RESPONSE ;

p r i v a t e P a i r [ ] [ ] map ;

i n t c o u n t e r 1 ;

i n t c o u n t e r 2 ;

i n t c o u n t e r 3 ;

i n t c o u n t e r 4 ;

p u b l i c P a i r r o b o t ;

p u b l i c P a i r t a r g e t ;

p u b l i c P a i r p a t h P a i r ;

p r i v a t e i n t x r ;

p r i v a t e i n t y r ;
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p r i v a t e i n t x t ;

p r i v a t e i n t y t ;

p r i v a t e i n t xb ;

p r i v a t e i n t yb ;

p r i v a t e i n t xc ;

p r i v a t e i n t yc ;

p r i v a t e i n t xcp ;

p r i v a t e i n t ycp ;

p r i v a t e i n t xnp ;

p r i v a t e i n t ynp ;

p u b l i c i n t maxX = 1 0 ;

p u b l i c i n t maxY = 1 0 ;

p r i v a t e i n t u n d e f i n e d = −1;

S t r i n g R1 =" Free The P a i r F i r s t " ;

S t r i n g R2 ="No Pa th Found " ;

S t r i n g R3 =" you Cant F ree Border " ;

S t r i n g R4 =" I t ’ s Border P o s i t i o n " ;

S t r i n g R5 ="A Pa th I s Found " ;

p u b l i c P a i r b e s t P a i r ;

H a s h t a b l e < P a i r , P a i r > p a r e n t C h i l d = new

H a s h t a b l e < P a i r , P a i r > ( ) ;

H a s h t a b l e < P a i r , I n t e g e r > openG = new

H a s h t a b l e < P a i r , I n t e g e r > ( ) ;



180

H a s h t a b l e < P a i r , I n t e g e r > openF = new

H a s h t a b l e < P a i r , I n t e g e r > ( ) ;

p u b l i c AStarAlgo ( P a i r [ ] [ ] map , i n t xr , i n t yr ,

i n t x t , i n t y t , A r r a y L i s t < P a i r > o b s t a c l e L i s t ) {

t h i s . map = map ;

t h i s . x r = x r ;

t h i s . y r = y r ;

t h i s . x t = x t ;

t h i s . y t = y t ;

xb= u n d e f i n e d ;

xb= u n d e f i n e d ;

xc= u n d e f i n e d ;

xc= u n d e f i n e d ;

xcp = u n d e f i n e d ;

ycp = u n d e f i n e d ;

xnp = u n d e f i n e d ;

ynp = u n d e f i n e d ;

t h i s . o b s t a c l e L i s t = o b s t a c l e L i s t ;

r o b o t = map [ x r ] [ y r ] ;

t a r g e t = map [ x t ] [ y t ] ;

c l o s e d L i s t = new A r r a y L i s t < P a i r > ( ) ;

n e i g h b o r s 1 = new A r r a y L i s t < P a i r > ( ) ;

n e i g h b o r s 2 = new A r r a y L i s t < P a i r > ( ) ;
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n e i g h b o r s 3 = new A r r a y L i s t < P a i r > ( ) ;

RESPONSE = new A r r a y L i s t < S t r i n g > ( ) ;

ROBOTMOVE = new A r r a y L i s t < S t r i n g > ( ) ;

RESPONSE . add ( R1 ) ;

RESPONSE . add ( R2 ) ;

RESPONSE . add ( R3 ) ;

RESPONSE . add ( R4 ) ;

RESPONSE . add ( R5 ) ;

}

p u b l i c vo id S e a r c h P a i r s ( ) {

openF . p u t ( r o b o t , c a l c u l a t e F V a l u e ( xr , y r ) ) ;

openG . p u t ( r o b o t , c a l c u l a t e G V a l u e ( xr , y r ) ) ;

w h i l e ( openF . s i z e ( ) != 0 ) {

b e s t P a i r = E v a l u a t e B e s t P a i r ( ) ;

xb = b e s t P a i r . getX ( ) ;

yb = b e s t P a i r . getY ( ) ;

i f ( b e s t P a i r == t a r g e t ) {

c o n s t r u c t P a t h ( ) ;

b r e a k ;

}

i f ( b e s t P a i r != t a r g e t ) {

P a i r c u r r e n t P a i r = b e s t P a i r ;

c l o s e d L i s t . add ( b e s t P a i r ) ;
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openF . remove ( b e s t P a i r ) ;

openG . remove ( b e s t P a i r ) ;

xc = c u r r e n t P a i r . getX ( ) ;

yc = c u r r e n t P a i r . getY ( ) ;

n e i g h b o r s 1 . c l e a r ( ) ;

n e i g h b o r s 2 . c l e a r ( ) ;

n e i g h b o r s 3 . c l e a r ( ) ;

c o u n t e r 1 =0;

c o u n t e r 2 =0;

c o u n t e r 3 =0;

c o u n t e r 4 =0;

/ / add n e i g h b o r s o f t h e c u r r e n t P a i r

P a i r n1 = map [ xc + 1 ] [ yc ] ;

P a i r n2 = map [ xc−1][ yc ] ;

P a i r n3 = map [ xc ] [ yc + 1 ] ;

P a i r n4 = map [ xc ] [ yc−1];

P a i r n5 = map [ xc + 1 ] [ yc + 1 ] ;

P a i r n6 = map [ xc−1][ yc + 1 ] ;

P a i r n7 = map [ xc + 1 ] [ yc−1];

P a i r n8 = map [ xc−1][ yc−1];

n e i g h b o r s 1 . add ( n1 ) ;

n e i g h b o r s 1 . add ( n2 ) ;

n e i g h b o r s 1 . add ( n3 ) ;



183

n e i g h b o r s 1 . add ( n4 ) ;

n e i g h b o r s 1 . add ( n5 ) ;

n e i g h b o r s 1 . add ( n6 ) ;

n e i g h b o r s 1 . add ( n7 ) ;

n e i g h b o r s 1 . add ( n8 ) ;

f o r ( i n t i =0 ; i < n e i g h b o r s 1 . s i z e ( ) ; i ++) {

P a i r n e i g h b o r = n e i g h b o r s 1 . g e t ( i ) ;

r e f i n e D i a g o n a l N e i g h b o r s C a s e 1 ( ne ighbo r , xc , yc ) ;

r e f i n e D i a g o n a l N e i g h b o r s C a s e 2 ( ne ighbo r , xc , yc ) ;

r e f i n e D i a g o n a l N e i g h b o r s C a s e 3 ( ne ighbo r , xc , yc ) ;

r e f i n e D i a g o n a l N e i g h b o r s C a s e 4 ( ne ighbo r , xc , yc ) ;

r e f i n e D i a g o n a l N e i g h b o r s C a s e 5 ( ne ighbo r , xc , yc ) ;

r e f i n e D i a g o n a l N e i g h b o r s C a s e 6 ( ne ighbo r , xc , yc ) ;

r e f i n e D i a g o n a l N e i g h b o r s C a s e 7 ( ne ighbo r , xc , yc ) ;

r e f i n e D i a g o n a l N e i g h b o r s C a s e 8 ( ne ighbo r , xc , yc ) ;

}

d e l e t e D i a g o n a l N e i g h b o r s ( ) ;

f o r ( i n t i =0 ; i < n e i g h b o r s 1 . s i z e ( ) ; i ++) {

P a i r n e i g h b o r = n e i g h b o r s 1 . g e t ( i ) ;

i n t xn = u n d e f i n e d ;

i n t yn = u n d e f i n e d ;

xn = n e i g h b o r . getX ( ) ;

yn = n e i g h b o r . getY ( ) ;
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r e f i n e N e i g h b o r s F r o m O b s t a c l e s A n d B o r d e r ( ne ighbo r , xn , yn ) ;

}

d e l e t e N e i g h b o r s F r o m O b s t a c l e s A n d B o r d e r ( ) ;

f o r ( i n t i =0 ; i < n e i g h b o r s 1 . s i z e ( ) ; i ++) {

P a i r n e i g h b o r = n e i g h b o r s 1 . g e t ( i ) ;

i n t xn = u n d e f i n e d ;

i n t yn = u n d e f i n e d ;

xn = n e i g h b o r . getX ( ) ;

yn = n e i g h b o r . getY ( ) ;

e v a l u a t e N e i g h b o r s ( c u r r e n t P a i r , ne ighbo r , xn , yn ) ;

}}}

i f ( openF . s i z e ( ) == 0 && b e s t P a i r != t a r g e t ) {

System . o u t . p r i n t l n ( R2 ) ;

}}

p r i v a t e P a i r E v a l u a t e B e s t P a i r ( ) {

r e t u r n C o l l e c t i o n s . min ( openF . e n t r y S e t ( ) , new

Comparator <Map . Ent ry < P a i r , I n t e g e r > >() {

@Override

p u b l i c i n t compare ( Ent ry < P a i r , I n t e g e r > o1 ,

Ent ry < P a i r , I n t e g e r > o2 ) {

r e t u r n o1 . g e t V a l u e ( ) . i n t V a l u e ( ) − o2 . g e t V a l u e ( ) . i n t V a l u e ( ) ;

} } )

. getKey ( ) ;
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}

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 1 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn == xc && yn == yc +1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 1 ++;

}

i f ( xn == xc +1 && yn == yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 1 ++;

}

i f ( c o u n t e r 1 ==2) {

P a i r n= n e i g h b o r s 1 . g e t ( 4 ) ;

n e i g h b o r s 2 . add ( n ) ; }}

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 2 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn == xc && yn == yc +1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 2 ++;
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}

i f ( xn == xc−1 && yn == yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 2 ++;

}

i f ( c o u n t e r 2 ==2) {

P a i r n= n e i g h b o r s 1 . g e t ( 5 ) ;

n e i g h b o r s 2 . add ( n ) ;

}}

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 3 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn == xc && yn == yc−1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 3 ++;

}

i f ( xn == xc +1 && yn == yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 3 ++;

}

i f ( c o u n t e r 3 ==2) {

P a i r n= n e i g h b o r s 1 . g e t ( 6 ) ;
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n e i g h b o r s 2 . add ( n ) ;

}}

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 4 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn == xc && yn == yc−1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 4 ++;

}

i f ( xn == xc−1 && yn == yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

c o u n t e r 4 ++;

}

i f ( c o u n t e r 4 ==2) {

P a i r n= n e i g h b o r s 1 . g e t ( 7 ) ;

n e i g h b o r s 2 . add ( n ) ;

}}

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 5 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn == xc && yn == yc +1 &&
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o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

P a i r n1= n e i g h b o r s 1 . g e t ( 4 ) ;

P a i r n2= n e i g h b o r s 1 . g e t ( 5 ) ;

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n1 ) ) {

n e i g h b o r s 2 . add ( n1 ) ;

}

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n2 ) ) {

n e i g h b o r s 2 . add ( n2 ) ;

}}}

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 6 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn == xc && yn == yc−1 &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

P a i r n1= n e i g h b o r s 1 . g e t ( 6 ) ;

P a i r n2= n e i g h b o r s 1 . g e t ( 7 ) ;

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n1 ) ) {

n e i g h b o r s 2 . add ( n1 ) ;

}

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n2 ) ) {

n e i g h b o r s 2 . add ( n2 ) ;

}}}
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p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 7 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn == xc +1 && yn == yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

P a i r n1= n e i g h b o r s 1 . g e t ( 4 ) ;

P a i r n2= n e i g h b o r s 1 . g e t ( 6 ) ;

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n1 ) ) {

n e i g h b o r s 2 . add ( n1 ) ;

}

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n2 ) ) {

n e i g h b o r s 2 . add ( n2 ) ;

}}}

p u b l i c vo id r e f i n e D i a g o n a l N e i g h b o r s C a s e 8 ( P a i r

ne ighbo r , i n t xc , i n t yc ) {

i n t xn = n e i g h b o r . getX ( ) ;

i n t yn = n e i g h b o r . getY ( ) ;

i f ( xn == xc−1 && yn == yc &&

o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

P a i r n1= n e i g h b o r s 1 . g e t ( 5 ) ;

P a i r n2= n e i g h b o r s 1 . g e t ( 7 ) ;

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n1 ) ) {



190

n e i g h b o r s 2 . add ( n1 ) ;

}

i f ( ! n e i g h b o r s 2 . c o n t a i n s ( n2 ) ) {

n e i g h b o r s 2 . add ( n2 ) ;

}}}

p u b l i c vo id d e l e t e D i a g o n a l N e i g h b o r s ( ) {

n e i g h b o r s 1 . removeAl l ( n e i g h b o r s 2 ) ;

}

p u b l i c vo id r e f i n e N e i g h b o r s F r o m O b s t a c l e s A n d B o r d e r ( P a i r

ne ighbo r , i n t xn , i n t yn ) {

i f ( o b s t a c l e L i s t . c o n t a i n s ( n e i g h b o r ) ) {

n e i g h b o r s 3 . add ( n e i g h b o r ) ;

}

i f ( b o r d e r . c o n t a i n s ( n e i g h b o r ) ) {

n e i g h b o r s 3 . add ( n e i g h b o r ) ;

}}

p u b l i c vo id d e l e t e N e i g h b o r s F r o m O b s t a c l e s A n d B o r d e r ( ) {

n e i g h b o r s 1 . removeAl l ( n e i g h b o r s 3 ) ;

}

p u b l i c vo id e v a l u a t e N e i g h b o r s ( P a i r c u r r e n t P a i r , P a i r

ne ighbo r , i n t xn , i n t yn ) {

i n t xc = c u r r e n t P a i r . getX ( ) ;

i n t yc = c u r r e n t P a i r . getY ( ) ;
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i n t c o s t = c a l c u l a t e C o s t V a l u e ( xn , yn , xc , yc ) ;

i f ( openF . c o n t a i n s K e y ( n e i g h b o r ) ) {

/ / r e t u r n o l d G n e i g h b o r

i n t oldGn = openG . g e t ( n e i g h b o r ) ;

System . o u t . p r i n t l n ( " 1 2 3 " + oldGn ) ;

i f ( c o s t <oldGn ) {

System . o u t . p r i n t l n ( " The new p a t h i s b e t t e r " ) ;

openF . remove ( n e i g h b o r ) ;

openG . remove ( n e i g h b o r ) ;

}}

i f ( ! c l o s e d L i s t . c o n t a i n s ( n e i g h b o r ) &&

! openF . c o n t a i n s K e y ( n e i g h b o r ) ) {

/ / i n t g= c a l c u l a t e G V a l u e ( xn , yn ) ;

i n t newGn= c o s t ;

i n t newF ;

newF =newGn+ c a l c u l a t e H V a l u e ( xn , yn ) ;

openF . p u t ( ne ighbo r , newF ) ;

openG . p u t ( ne ighbo r , newGn ) ;

/ / a hash t a b l e t o s t o r e p a r e n t s

p a r e n t C h i l d . p u t ( ne ighbo r , c u r r e n t P a i r ) ;

}}

p u b l i c vo id c o n s t r u c t P a t h ( ) {

i f ( b e s t P a i r == t a r g e t ) {
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P a i r p a t h P a i r = map [ x t ] [ y t ] ;

i n t x p a t h = p a t h P a i r . getX ( ) ;

i n t y p a t h = p a t h P a i r . getY ( ) ;

System . o u t . p r i n t l n ( " The Pa th i s : " + x p a t h +" , "+ y p a t h ) ;

p a t h . push ( p a t h P a i r ) ;

w h i l e ( p a t h P a i r != map [ x r ] [ y r ] && p a t h P a i r != n u l l ) {

p a t h P a i r = p a r e n t C h i l d . g e t ( p a t h P a i r ) ;

p a t h . push ( p a t h P a i r ) ;

}

f o l l o w P a t h ( ) ;

}}

p u b l i c vo id f o l l o w P a t h ( ) {

S t r i n g S1="D> " ;

S t r i n g S2="U> " ;

S t r i n g S3="R> " ;

S t r i n g S4="L > " ;

S t r i n g S5="UR> " ;

S t r i n g S6="UL> " ;

S t r i n g S7="DR> " ;

S t r i n g S8="DL> " ;

ROBOTMOVE. add ( S1 ) ;

ROBOTMOVE. add ( S2 ) ;

ROBOTMOVE. add ( S3 ) ;
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ROBOTMOVE. add ( S4 ) ;

ROBOTMOVE. add ( S6 ) ;

ROBOTMOVE. add ( S7 ) ;

ROBOTMOVE. add ( S8 ) ;

S t r i n g c= " " ;

P a i r c u r r e n t P o s i t i o n = p a t h . pop ( ) ;

xcp = c u r r e n t P o s i t i o n . getX ( ) ;

ycp = c u r r e n t P o s i t i o n . getY ( ) ;

System . o u t . p r i n t l n ( " c u r r e n t P o s i t i o n : " + xcp +" , "+ ycp ) ;

w h i l e ( p a t h . s i z e ( ) != 0 ) {

P a i r n e x t P o s i t i o n = p a t h . pop ( ) ;

xnp = n e x t P o s i t i o n . getX ( ) ;

ynp = n e x t P o s i t i o n . getY ( ) ;

System . o u t . p r i n t l n ( " n e x t P o s i t i o n : " + xnp +" ,"+ ynp ) ;

i f ( c u r r e n t P o s i t i o n . getX ( ) == n e x t P o s i t i o n . getX ( ) &&

c u r r e n t P o s i t i o n . getY ( ) + 1 == n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " down " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S1 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ( ) == n e x t P o s i t i o n . getX ( ) &&

c u r r e n t P o s i t i o n . getY ()−1 == n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " up " ) ;
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c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S2 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ( ) + 1 == n e x t P o s i t i o n . getX ( ) &&

c u r r e n t P o s i t i o n . getY ( ) == n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " r i g h t " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S3 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ()−1 == n e x t P o s i t i o n . getX ( ) &&

c u r r e n t P o s i t i o n . getY ( ) == n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " l e f t " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S4 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ( ) + 1 == n e x t P o s i t i o n . getX ( ) &&

c u r r e n t P o s i t i o n . getY ()−1 == n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " upRigh t " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S5 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ()−1 == n e x t P o s i t i o n . getX ( ) &&

c u r r e n t P o s i t i o n . getY ()−1 == n e x t P o s i t i o n . getY ( ) ) {
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System . o u t . p r i n t l n ( " u p L e f t " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S6 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ( ) + 1 == n e x t P o s i t i o n . getX ( ) &&

c u r r e n t P o s i t i o n . getY ( ) + 1 == n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " downRight " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S7 ) ;

}

i f ( c u r r e n t P o s i t i o n . getX ()−1 == n e x t P o s i t i o n . getX ( ) &&

c u r r e n t P o s i t i o n . getY ( ) + 1 == n e x t P o s i t i o n . getY ( ) ) {

System . o u t . p r i n t l n ( " downLeft " ) ;

c u r r e n t P o s i t i o n = n e x t P o s i t i o n ;

c = c . c o n c a t ( S8 ) ;

}}

System . o u t . p r i n t l n ( " RobotMove : " + c ) ;

}

p u b l i c i n t c a l c u l a t e G V a l u e ( i n t x , i n t y ) {

r e t u r n ( Math . abs ( x − xr ) +

Math . abs ( y − yr ) ) ;

}

p u b l i c i n t c a l c u l a t e H V a l u e ( i n t x , i n t y ) {
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r e t u r n ( Math . abs ( x − x t ) +

Math . abs ( y − y t ) ) ;

}

p u b l i c i n t c a l c u l a t e F V a l u e ( i n t x , i n t y ) {

r e t u r n c a l c u l a t e H V a l u e ( x , y ) +

c a l c u l a t e G V a l u e ( x , y ) ;

}

p u b l i c i n t c a l c u l a t e C o s t V a l u e ( i n t xn , i n t yn ,

i n t xc , i n t yc ) {

r e t u r n c a l c u l a t e G V a l u e ( xc , yc )

+( Math . abs ( yc − yn ) + Math . abs ( xc − xn ) ) ;

}}
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