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Abstract

Companies, factories, and academic institutes often rely on planning and controlling
scheduling of production lines or classrooms to ensure efficient utilization of
resources. Task scheduling is a complex nonlinear process, due to numerous
constraints, parameters and frequent, sudden changes in the requirements. The aim of
this project is to explore the utilization of artificial intelligent neural networks in the
preparation of classroom scheduling by utilizing their adaptive attributes and learning
ability to establish a procedure for classroom timetable preparation. A set of input
vectors comprising five constraints are introduced to a Self-Organizing Feature Map
(SOM) neural network for classroom sections classification and separation, using
some cluster centers equal to the available rooms. The SOM demonstrated strong
capability in clustering the sections into groups comprising courses with conflicts
based on the defined constraints, hence identifying classes to be sequentially scheduled
in one room. A second stage SOM is used to further split oversized clusters. Moreover,
to fit newly created classrooms into the SOM generated timetable, the output from
SOM is used to train a Feedforward Back Propagation (FFBP) neural network to
extract the implicit course-classroom mapping as formulated by the SOM. The trained
FFBP is used to accommodate the new courses without the need to re-cluster with
SOM. The trained FFBP managed to prepare a conflict-free schedule successfully. The
outputs of the integrated neural networks show that the proposed model can create an
initial guess of a valid classroom schedule. It is envisaged that the procedure can be
extended and implemented in fields other than academia such as factories, healthcare,

and transportations.

Keywords: Classroom scheduling, artificial intelligent neural networks, Self-
Organizing Feature Map neural network, Feedforward Back Propagation neural

network.
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Chapter 1: Introduction

1.1 Overview

Scheduling problems have been the subject of research for decades. According
to (Wren, 1995), scheduling is the constraint of resources to objects, being placed in
space-time in such a way as to minimize the total cost of a set of the resources used.
Scheduling activity is considered a fundamental and frequent action in many places
such as hospitals, transportation, and academic institutions. This thesis is concerned
with classroom scheduling using an Artificial Intelligence (Al) approach. The
adaptability of this Al approach will open the doors to use it, not only in academic
institutions, but also in hospitals, transportation, factories and other places or fields

where efficient utilization of resources is needed.

1.2 Problem Statement and Purpose

Class scheduling for academic institutes is a fundamental educational
management activity. With the number of students increasing, academic programs and
other requirements upsurge the complexity of designing a conflict-free timetable. A
class scheduling problem inherits the intricacy of both resources allocation and
personal preferences. The manual timetabling process for larger academic
organizations can be described as time-consuming, tedious and oftentimes
challenging. This appears to make scheduling timetables an ideal candidate for the
application of information technology. The aim of this project is to design an artificial
neural network that can help in solving a complex university class scheduling problem.

The proposed system uses a neural network-approach which has the competency to
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adapt to unforeseen scenarios and problems, thus creating a conflict-free schedule for

students while using optimal classroom space and associated teacher resources.

1.3 Intended Outcomes and Deliverables

The outcomes that would be achieved in this project are numerous. Designing
an integrated model of neural networks will lead to the generation of a conflict-free
classroom timetable, but most importantly this model introduces a new approach in
creating classroom scheduling. Due to the use of artificial intelligence, this approach
has the potential to generate conflict free schedules in complex scenarios and
institutions with greater ease than exists within previous models (Teoh & Wibowo,
2013) . An additional outcome of this project is the ability for it to be applied, not only
to academic institutions, but also in hospitals, transportation, factories and other places
or fields where efficient utilization of resources is needed.

An unanticipated outcome comes from the experience of implementing neural
networks to produce a functioning model; it is not like any other experience due to the
fact that it is professionally following a world a wide trend these days. Moreover,
gaining skills that contribute to realizing the machining learning for any type of
knowledge base data that is encountered in professional careers is invaluable.

In addition, this project meets the vision of United Arab Emirates in using
artificial intelligence in its industry and sectors. Also, this project opens the doors
widely for further questioning and research into ways the neural network can be used

in different applications once we think of it in un-traditional way.



1.4 Relevant Literature

Class scheduling for an academic institution has become time-consuming,
redundant, and tedious. For example, classes have been double booked with no
instructors, students have been looked over, the seemingly available time slots have
proven to be unavailable or not able to support the entire class period. All these make
the process of achieving an efficient class scheduling frustrating and very difficult.

Many process constraints are encountered while preparing a working timetable
those include scheduling classes, teachers, and rooms into a fixed number of conflict-
free time slots. Accordingly, no teacher, class or room is used more than once during
a specific time slot.

Traditionally, staff who scheduled classes utilized a trial-and-error approach
which was to manually create a conflict-free timetable while optimizing the use of
rooms and associated teaching resources. However, when put in practice, this approach
has proven inefficient or unsuccessful.

In addition, increasing the number of students, different programs of study, and
teachers will increase the complexity of the process of class schedule. These
challenges make using an information technology program a good candidate to solve
these ever-present scheduling problems.

Many research projects related to automated timetabling were reported in the
literature (Gotlieb, 1963), where researchers have developed different approaches to
solving the class schedule problem (Carrasco & Mizrach, 1986). At an early stage, the
operation research optimization techniques were used extensively in solving the

timetable problems (Aloul, 2007).
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Some other papers have classified the basic scheduling approaches into two
different approaches; the action-driven approach and the strategy-driven approach.
The action-driven approach consists of heuristic algorithms and analytic methods. It is
considered as commonly used approach for education institutions (Liebowitz, 1998).
The strategy-driven approach aims to construct a flexible and easily adaptable
timetabling system. This system takes into account the teaching staff preferences and
un-availabilities according to information as obtained directly from staff. This
approach includes the optimization techniques (Dimopoulou, 2004)

Recently, researchers have increasingly focused on the science of artificial
intelligence to solve issues associated with scheduling. Since using the simulated
annealing, tabu search, constraint satisfaction genetic algorithms and neural networks
(Schaerf, 1999), which are techniques in artificial intelligence, there has been a
significant improvement in the performance of solving timetable problems compared
to the traditional operation research techniques and optimization. These Al methods
attracted researchers due to their flexibility and adaptability for different scenarios
(Abramson, 1992).

Examples of those methods are “Genetic algorithms (GA) which mimic the
process of natural selection and can be used as a technique for solving complex
optimization problems that have very large search spaces. Although the GAs can solve
a complex timetable problem and are considered quite powerful in finding the global
minimum from an enormous search space, their convergence is very much dependent
on the initial solution (Azimi, 2005). This is due to the ambiguity in deciding the fitness
function of the GA. Many approaches which seek to find optimal solutions to

constraint-satisfaction problems by genetic algorithms have been suggested, but the
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majority of these methods are problem-dependent and consequently difficult to apply
to the complexity posed by real-world situations (Deris, 1999).

Further research was conducted using genetic algorithms to solve the timetable
problems which considered the flexibility preferences. Accordingly, a new method
was created by combining an Ant Colony Optimization (ACO) with the Genetic
Algorithm Operators method. Hence the Ant Colony Optimization (ACO) is a
population-based metaheuristic that seeks to solve difficult combinatorial optimization
problems (Birattari, 2011). This combination resulted in flexible timetables (Mahmud,
2014), however, the genetic algorithm could stop during some occasions which depend
on the search area space. For example; in extremes situation where only one solution
exists, the genetic algorithm will most likely fail since it does not work based on an
event or action language (Ansari, 2014).

Another artificial intelligence based approach is knowledge-based. This system
which is called “Assistant for Class Scheduling” uses the knowledge of an expert
human scheduler to generate a class schedule. The system has a control strategy where
it can prioritize the courses according to the preferred time of the corresponding
teacher and the size of the classroom. Accordingly, courses with higher priority will
be chosen first for scheduling. However, this approach has some limitations. For
instance, it can adapt only for courses that are distributed with an even number of hours
per week, courses with odd numbers of hours allocated per week have to be scheduled
manually (Hwang, 1989). Also, courses requiring a special classroom are not
considered in this method. In particular, this approach lacks the ability to adapt to
scenarios that are variant of the norm (Qu, 2006). Also, in Hong Kong, an institution
created an intelligent timetabling using a knowledge-based system built on a

microchip. The knowledge, strategies, and heuristics of a small, centralized group of
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schedulers were modeled and subsequently represented in a readily available expert
system shell which runs on a standard IBM-type microcomputer (Martinsons & Kong,
1993).

Furthermore, the cultural algorithms (Reynolds, 1994) are a class of
evolutionary algorithms that use domain knowledge extracted during the evolutionary
process to improve the performance of the search engine adopted. It is a new approach
that is showing to be effective to solve the timetabling problem. Another promising
approach is the Population-based algorithms which are better at exploring a search
space than local search algorithms. In other words, it has potential in optimizing the
solution of the timetabling problem (Abuhamdah, Ayob, & Kendall, 2013).

In addition, Simulated Annealing algorithm has a potential to create a
classroom timetable (Teoh & Wibowo, 2013). The simulated annealing name comes
from the principles of metallurgy, which boiled and cooled metals to achieve a stable
crystal lattice structure with minimal energy state. The algorithm begins by generating
an initial random solution. After that, an adjacent solution is generated and these two
solutions are evaluated by an objective function (Gonzalez, 2007). As stated by Basir
(2013) the use of simulated annealing will give an optimum solution to the problem.
This makes simulated annealing an attractive option for the problem of optimization,
(Basir, Ismail, & Norwawi, 2013).

Another model that can be used to solve problems associated with curriculum-
based course timetabling that was introduced is the Adaptive Tabu Search algorithm
(Zhipeng, 2010). Tabu search is a metaheuristic search method employing local
search methods used for mathematical optimization (Glover, 2018). The proposed
algorithm follows a general framework composed of three phases: initialization,

intensification and diversification. The initialization phase creates a feasible initial
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timetable using a fast heuristic. To reduce the number of soft constraint while still
satisfying the hard constraints, an adaptively combined intensification and
diversification is used. The proposed hybrid system showed that it has the potential to
solve a course timetabling problem. Because the basic ideas are quite general, it would
also be applicable to other similar problems (Zhipeng, 2010).

Another technique used to suggest a solution for class scheduling is the graph
partitioning algorithm combined with simulated annealing. A graph partitioning
algorithm is a mathematical algorithm that is defined by data represented in the form
of agraph G = (V,E), with V vertices and E edges. The graph partitioning algorithm
was used to represent the relation between the constraints and the time-slots which can
be represented by an edge-weighted graph. The simulated annealing was used as a
“noise term” to update spin configuration in the graph partitioning algorithm (Yu,
1990).

Furthermore, neural networks models like: Interactive Activation and
Competition, Potts Neural Network, and Modified Hopfield Neural Network were
previously introduced to solve scheduling issues. The first model uses a hybrid form
of neural network to create the Interactive Activation and Competition networks. The
structure of the model organizes classes sequentially from the network in the region
with the largest number of restrictions first. At the same time, the network configures
the parallel combination of resources most appropriate for the class in question, under
simultaneous interaction of complex restrictions. The restrictions then go through
adjustments in synaptic weights before the next class is selected for scaling. It results
with significantly slower network growth (linear) according to the size of the problem
and is flexible to organize restrictions more realistically. The second network is the

Potts Neural Network, which is a derivation of the Hopfield Neural Network discussed
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below. In the Potts network, a neuron multistate is used (in place of the usual two
neuron stages), as well as a factorization, which provides a substantial reduction in the
number of neurons (Carrasco & Pato, 2001). The third model is the Hopfield network
with modifications. The main advantage of this tool lies in its potential for fast
computational power when implemented in hardware, and also the parallel nature of
the ANNSs (Smith, Abramson, & Duke, 2003) .The results achieved using the modified
Hopfield Neural Network proved it comparable to the best technical heuristics. Thus,
the network was shown capable of producing solutions to complex problems of time
allocation. One advantage of this method is its speed (Taborda, 2004).

In a comparative study of simulated annealing, tabu search with local search
and genetic algorithms in solving the school timetabling problems for two Italian high
schools conducted by Colorni (1998), found that Tabu search produced the best results
followed by genetic algorithms and simulated annealing (Colorni, 1998).

Another computational study was done by Smith et al. (2003) using Hopfield
neural network to solve the school timetabling problem. It was used for nine high
schools. The performance of the Hopfield neural network on this data set is compared
to simulated annealing and tabu search. The neural network performed better than the
other methods, followed by simulated annealing (Smith, Abramson, & Duke, 2003).
The comparison above shows that neural networks are more useful to solve the
problems associated with complex timetabling (Pillay, 2010) .

It is clear that a fair amount of research has been conducted in the use of
artificial intelligence to solve the problem of scheduling; however, few other studies
were found to use neural networks to solve the issue of class scheduling. The (Smith,
Abramson, & Duke, 2003) using the Hopfield network. The research in this thesis

proposes an alternative network application solution to this issue through the use of
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SOM and FFBP. Additional investigation into new methods should continue to be

conducted, as they may contribute further to the scheduling field.

1.5 Report Structure

This report is well organized to explain all concepts clearly by moving from
the implementation of the neural networks, to the analysis, and finally to the results of
the designed model. Chapter 1 focuses on problem statements, purposes, intended
outcomes and deliverables and the background literature review. In Chapter 2 an
overview of neural network is highlighted and the mathematical and architectural
models of SOM NN and FFBP NN are discussed in detail. Creation of data sets, as
well as methodology to solve the scheduling problems are proposed and discussed in
Chapter 3. Chapter 4 illustrates the results and the discussion for each phase of this
research. Finally, this thesis concludes in Chapter 5 with summarization of the work

done; here it mentions the final results and future plans for further researches.
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Chapter 2: Introduction to ANN

The artificial neural network (ANN) is the proposed approach to be used in this
thesis to find a new, alternative solution to the challenge posed by classroom
scheduling by examining and utilizing the adaptation feature in ANN. In this chapter,
the basic concept of ANN is introduced with its architecture. Then, the mathematical

details of the selected ANN types that will be used in this thesis are explained.

2.1 Basic Concept of ANN

The artificial neural network theory was inspired by the structure of the human
brain. The human brain is a highly complex and non-linear system. It can process a
vast amount of information simultaneously. Hence, the human brain uses parallel
interconnection neurons in processing the data, allowing the neurons to interact in
parallel through multiple layers of neurons in the brain. A neuron sends output and
receives input. Each neuron can receive values from all neurons in the previous layer,
and it can send values to all neurons in the next layer. The continuity of sending and
receiving values between neurons is called learning and memorizing. As a result, the
brain will be able to make the proper decision.

The ability of decision making in the brain is gained from memorizing and
learning from previous cases that are similar to the situation the brain is trying to make
a decision for. Scientists tried to mimic the brain’s neurons architecture to develop
more effective and efficient engineering systems. They created the Artificial Neuron
Networks which are commonly known as “neural networks.” An artificial neural
network is made up of layers of artificial neurons or processing elements. The
processing element has the natural tendency to store information, also known as

experimental knowledge, and make it useful when we need it.
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Neural networks resemble the brain via two aspects:
1. Gaining knowledge: knowledge is built up in the network from its environment
through the learning process.
2. The functioning of connectivity: interneuron connection strengths are the
synaptic weights which are used to store the learned or developed knowledge.
In brief, the learning process is the process where the synaptic weights are modified to

attain the desired design objective.

2.2 Benefits of Neural Network

The aptitude to derive meaningful results from massive or distorted data is a
remarkable feature in ANN. It gives reasonable outputs from inputs not encountered
during the training (learning), which is referred to as generalization. As a result, the
neural network can find good approximate solutions to complex large-scale problems.
Other advantages are:

Nonlinearity: Neural networks are made up of an interconnection of nonlinear
neurons which makes an ANN able to approximate any nonlinear continuous function
to the anticipated solution. This property is highly essential mainly if the underlying
physical mechanism responsible for generating the input signal is inherently nonlinear.
Input-Output Mapping: Supervised learning, or learning with a teacher, is a
prevailing paradigm in neural networks. It is a system where the input and the desired
output data are provided. When a set of paired data is trained to generate consistent
output for the response to new data, this is called a supervised learning algorithm.
Hence, it involves the modification of the synaptic weights of the trained network.

Adaptivity: Neural networks have a built-in capability to adapt their synaptic weights

to changes in the surrounding environment. In particular, a neural network trained in



12
a specific context can be retrained easily to handle changes in the conditions of the

operating environment.
2.3 Models of a Neuron

A neuron, or the processing unit, is the fundamental element to the operation
of a neural network. It consists of three main parts as shown in Figure 2.1:
Synapses or connection links: each connector or synapse is characterized by weight
or strength; the synapse i connects the signal input x; with the neuron j. The
relationship between the input signal x; and the neuron j is presented by multiplication
between the weight w;; and the input signal x; .
Summing junction: Adding all input signals weighted by the respected synaptic
strength.
Activation function: Limiting the amplitude to determine a neuron’s output in a
neural network. It maps the resulting values between 0 to 1 or -1 to 1 etc. (depending
upon the function). The most common activation functions are listed in the Table 1.
Bias: is similar to the constant b of a linear function y = ax + b. It allows one to move
the line up and down to better fit the prediction with the data. Two different kinds of
parameters can be adjusted during the training of an ANN: the weights and the value
in the activation functions. Due to the impracticality of adjusting both parameters, a
bias neuron is invented. The bias neuron lies in one layer, and is connected to all the
neurons in the next layer, but none in the previous layer and it always emits 1. Since
the bias neuron emits 1 the weights, connected to the bias neuron, are added directly

to the combined sum of the other weights Eq. 2.1 (Rojas, 1996).

v = X Wji Xy Eq.(2.1)



INPUT SIGNAL x(n)

WEIGHTS w(n)

Bias

Figure 2.1: The basic structure of the neuron

OUTPUT

Yj

Table 1: Different types of activation function

Function name Formula Values range
Exponential B(x) = e~ (0, )
Sigmoid 000 = : +i_ax (0,1)
Hyperbolic Tangent B(x) = : +2€_2x _q (-1,1)
o= (i1 o

Thus, the operation performed by neuron j can be mathematically expressed as

13
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yj = fwmTx(n)) Eq.(2.2)

Where fis the activation (transfer) function, y; is the output of neuron j, the superscript
T represents the transpose of w(n) which is the interconnection weight vector and

x(n) is the input signal vector for iteration n.
2.4 Self-Organizing Feature Map (SOM)

Self-organizing feature map neural-network is a type of artificial intelligence
that is trained using unsupervised-learning to produce lower dimensional clustered
regions. The self-organizing feature map was initially proposed by Rosenblatt in 1958
(Lek & Guégan, 1999). The idea of the self-organizing map is inspired from human
brain: “The brain is organized in many places in such a way that different sensory
inputs are represented by topologically ordered computational map” (Haykin, 2009).

The self-organizing map network is based on competitive learning systems.
The network output neurons compete among themselves to be activated or fired. Hence
only one neuron per group will be the winning neuron. The way of persuading a winner
output neuron among a group of outputs is to use lateral inhibitory connections. The
lateral inhibitory connection is when the neuron dominates the field and inhabits
neighboring neurons (Sayers, 1991).

The neurons of the self- organizing map are sited in a frame called lattice. The
lattice can be one, two or higher dimensional maps. The neurons become selectively
adjusted to various input patterns. Accordingly, the location of winning neurons
become ordered in an expressive coordinate system for different input features, which

are created over the lattice (Haykin, 2009).
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2.4.1 Self-Organizing Feature Map Structure

The structure of the self-organizing feature map can be presented and
understood with the use of an illustration such as in the Figure 2.2 shows a tiny
Kohonen network of 3x3 output nodes/layer connected to two input nodes/layer. Each
output node has a specific topological position which represented as unique X, y
coordinates in the 2-D lattice (output layer).

The mechanism behind Kohonen’s network is straightforward; when an input
pattern embodies to the network, the response of each neuron is measured, and the one
which produced the maximum response, as well as the adjacent neurons, are modified
in such a way to generate a better response to that input pattern. After many iterations,
the system should ideally reach a state where no more significant change in the neuron

location appears.

Input Layer

Interconnecting
weights

Computational Layer

Figure 2.2: Self-organizing feature map

2.4.2 Self-Organizing Feature Map Algorithm

The self-organizing feature map process can be divided into four main stages:

Initialization: where all the connection weights are initialized with random values.
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Competition: where each input pattern and it’s corresponding weights compute their
respective values of a discriminant function®. As a result, the neuron with the largest
discriminant function is the winner.

In the first step, let the input space dimension to be m then the input pattern
can be written as ¥ = [x; x, ....x,]7. And the connection weight between the input
layer and the computational layer is w; = [wj; Wjp ... Wj,]"5j = 1,2, ..., 1 ,where
[ is the total number of output neurons in the network. The next step is to find the best

match between X and w;. To find the best match we need to compute W]’T X forj=

1,2, .....,1 and select the largest value; hence, the maximum value of W,’T X is nothing
but the minimum value of the Euclidian distance between X" and w;. By using the
index i (X) , the formula below will give the value of the winning neuron. Finally,
acknowledge that the corresponding weights vector to i (X) is the closest weight
vector.
i (X) = argmin; ||x — w|| Eq.(2.3)

In brief, a continuous input space of activation pattern is mapped into a
discrete output space by process of competition.
Cooperation: where the winning neuron can spot the spatial location of a topological
neighborhood of excited neurons, or more specifically, winning neurons locate the
center of a topological neighborhood of an excited/ cooperated neuron.

In the beginning, assume that i is the winning neuron and h; ; is the topological

neighborhood centered around i and encompassing neuron j. Naturally, the topological

1 A function of several variates used to assign items into one of two or more groups. The function for a particular set of items

is obtained from measurements of the variates of items which belong to a known group
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neighborhood function should decrease with the d;; which is the lateral distance
between the winning neuron i and the excited/ neighbors’ neurons j.

Before implementing the topological neighborhood function it should satisfy three
properties:
e Symmetric aboutd;; =0
e Monotonically decaying function with distance d; ;
e Decayingto zero at d;; = .
The typical function which may fulfill the mentioned properties is the Gaussian

function, accordingly, h;; can be expressed as the following:

d;
hjzy = exp (— 2’?) Eq.(2.4)
Where o is the width of the Gaussian function, Figure 2.3, also it is called the
neighborhood radius (Guthikonda, 2005). Note that the Gaussian function does not

depend on the winner neuron’s location; hence, it is translation invariant.

hj,i

Figure 2.3: Gaussian curve-neighborhood function

Another unit property of the SOM is ¢ in the Gaussian function. This ¢ varies

with time where time is the network iterations(n). As the iteration {n:n =
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0,1,2, ...., 00} progresses, the ¢ is going to decrease with time. Thus, as ¢ decreases,
the neighborhood shrinks gradually. Figure 2.4 explains clearly the shape of the
neighborhood after it shrinks during the cooperation process when the iteration
progressively narrows down the neighborhood of the winner neuron. Mathematically

o can be presented as

o(n) = o,exp (— %) Eq.(2.5)

Where g, is the initial o and T, is the time constant.

Figure 2.4: SOM network during the process of cooperation (Juha, 1999)

As a result, the neighborhood function will be

.2
hyie) () = exp (— it ),n =012, .. Eq.(2.6)

202(n)

In case of 1-D lattice, the distance is: d;; = |j — i|. For 2-D the distance,

N 2 . .- . i .
d;;*> = ||z — 7||” , where r; is the position vector of the excited neuron j and ; is the
position vector of the winning neuron i. In fact, for higher dimensions the 2-D equation
mentioned above is valid, butr; and r; will not consist of just two elements. It will

consist of multiple elements depending upon the number of chosen dimensions for the

lattice.
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Adaptation: where the excited neurons associated with the input pattern keep
decreasing the differences in the values of the discriminant function for the connected
weights, such that the winning neuron’s response to any subsequent application for
similar input pattern will become enhanced.

The learning mechanism behind the adaption process in SOM is the Hebbian
learning. Hebbian learning is when the pre-synaptic and post-synaptic activities are
correlated; when correlation occurs the synaptic connection will be strengthened.
When correlation is absent, the synaptic connection is weakened. Hebbian learning is
used to update the weights in SOM, yet it needs to be modified due to some limitations
to suit the SOM. Therefore, the following term g(yj)W] is introduced to avoid the
limitation, which is the saturation in the synaptic weight which it accrued during the
continuity of feeding the same input pattern. So, g(yj)W}’ is called the forgetting term
in Hebbian hypothesis, where y;is a positive scaler function and for simplicity let
g(yj) = ny; which is a linear function.

The weight needs to be adjusted, not only for the winner neuron, but also for
the neighbor neurons which are the excited neurons. Accordingly, y;_h; ;) , the
topological neighborhood is maximum when the j neuron is the winner and as the
lateral distance from the winning neuron progressively increases then y; will

progressively decrease.

Heibbian Hypothesis for adaptation (weight update):

Aw, =1 y;X — g(yj)W; Eq.(2.7)
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Where 7 is the learning rate parameter, since g(yj) = nyj, thus, Eq. (2.7) can be
written as Aw; = n y; ¥ — ny;w;. In order to include the winner neurons and the excited
neurons, consider y;_h; ;cz) , then
AW, =1 hjiz) (X — W) Eq.(2.8)
Which proves that w; will be adjusted such that it should move closer to X. Thus,
during the learning phase w;will align itself with X, hence Aw; = 0
Using discrete-time formulation Aw; can be written as
W (n+ 1) = W(n) + n(m)hy () (& — W) Eq.(2.9)

n
n(n) =noexp (— T—),n =012, .. Eq.(2.10)
2

T, Another time constant
So, the ultimate tendency is to align w;” with x for all winner neurons, yet all
other neurons will also learn, but at a slower rate hence h; ;i (n) will be dropping
down for the un-excited neurons. Ultimately, Eq. (2.10) is responsible for the
topological ordering in SOM.
The two phases of the adaptive process (practical consideration) are:
1- Self-organizing (ordering): for topology arrangement. Learning rate should
start with large value n(n) = 0.1 then it decreases to 0.01,n, = 0.1 ,7, =
1000: ,n=1000 iteration. Thus, topological neighborhood h; ;(z starts with a
large number of neurons then it decreases gradually; thus, neighborhood will
keep shrinking till it is restricted to a very small neighborhood (Singupta,
2003).
2- Convergence phase: all neurons obtained in the topological stage will keep
converging (tuning) till it reduces the error as much as possible. To complete

the convergence, the number of iterations must be at least 500 times the number
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of neurons. For example, if we have 4X4 topological the number of iteration is

500*16=8000 iterations (Singupta, 2003).
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Figure 2.5: Flowchart of self-organizing map neural network algorithm
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2.5 Multi-Layer Perceptron Neural Network (MLP)

Multi-layer perceptron is considered one of the first neural network’s type.
Many neural networks depend on the structure of MLP. MLP is formed by cascading
neurons (perceptrons) in several layers. The input vector is fed into each perceptron in
the first layer, the output of the first layer’s perceptrons has formed the input to the
second layer’s perceptrons, and so on, see Figure 2.1. Nodes of MLP are fully
connected between layers. The arrangement and the type of neurons depend on the
network type. The main parts of MLP network are:

1. Input neurons are carrying some action or information about the external
environment. Input neurons do not perform any computation, but only pass the
input vector to subsequent neurons.

2. Output neurons receive signals from the preceding neurons and transform it
using formulas 2.1 and 2.2. Those values represent the output of the whole
neural network.

3. Hidden neurons are the basis of the neural network. Those neurons receive
the signal from the input neurons or preceding hidden neurons, process it by
formulas 2.1 and 2.2 and then pass result signals to the subsequent (hidden or

output) neurons.

2.6 Back-Propagation Neural Network (BP)

Back-propagation neural network is one of the most widely used neural
networks. The back-propagation neural network is a multilayer feedforward network
trained according to error back-propagation algorithm. The idea of the back-

propagation network is to adjust the synaptic weight values and threshold values to
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achieve the minimum error sum of the square in the learning phase of the network.

More details are shown in the sub-sections below (Borglin, 2011).

2.6.1 Back-Propagation Neural Network (BP) Structure

Back-propagation neural network is consist of two parts: First part is the
Forward propagation of operating (function) signal: the input signal is propagated from
the input layer, via the hidden layer, to the output layer. During the forward
propagation of operating signal, the weight value and offset value of the network are
maintained constant, and the status of each layer of the neuron will only exert an effect
on that of next layer of the neuron. In case that the expected output cannot be achieved
in the output layer; then it can be switched into the backpropagation of error signal.

The second part is Backpropagation of error signal: the difference between the
real output and expected output of the network is defined as the error signal; in the
backpropagation of error signal, the error signal is propagated from the output end to
the input layer in a layer-by-layer manner. During the backpropagation of error signal,
the weight value of a network is regulated by the error feedback. The continuous
modification of weight value and the offset value is applied to make the real output of

network closer to the desired one (Li, Cheng, Shi, & Huang, 2012).

Figure 2.6: Illustration of signal flow for (operating signal and error
signal) in multi-layer perceptron
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2.6.2 Back-Propagation Neural Network (BP) Algorithm

Algorithm Formulas

Back-propagation is a training method used for a multi-layer neural network.
It is also called the generalized delta rule. It is a gradient descent method which
minimizes the total squared error of the output computed by the net (Rojas, 1996).
Thus, it measures the performance using the sum of error squares function also it called

the instantaneous error energy.

1
E(n) = EZ e? (n) Eq.(2.11)

j€Ec
Where E (n) is the error energy at iteration n, c is the set of all neurons in the output
layers and e;(n) is the error signal at each output neuron j at iteration n for all neurons
in the output layer. If d; (n) denotes the desired response or target output for neuron j
at iteration n, and y;(n) is the actual output, then
ej(n) = d; (n) —y;(n) Eq.(2.12)
Hence, the average square energy is

Eavg (n) =

2|

Z E(n) Eq.(2.13)

Where N is the total number of iterations of training patterns.

The instantaneous error energy E(n), and therefore the average error energy
Eqvg(n), is a function of all the free parameters (i.e. synaptic weights and bias levels)
of the network. For given training set, E,,q(n) represents the cost function as a
measure of learning performance. The objective of the learning process is to adjust the
free parameters of the network to minimize Eg,,(n). To do this minimization, an
approximation similar in rational to the derivation of the LMS algorithm is used.

Specifically, we consider a simple method of training in which the weights are updated
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on a pattern-by-pattern basis unit one epoch, that is, one complete presentation of the
entire training set has been dealt with. The adjustments to the weights are made in
accordance with the respective error computed each pattern presented to the network.
(Haykin, 2009). In addition, the following equations are introduced to derive the BP
neural network algorithm’s formulas.

Induced local field of a neuron j is the output of the summation unit.

m
y = Y wimy() Eq.(2.14)
i=0
Where m is the number of neurons in the previous layer.

yi(n) = @; (vj(n)) Eq.(2.15)
Where @(n) is the activation function.

The back-propagation algorithm applies a correction Awy;(n) to the synaptic weight

AE(n)

wj;(n) which is proportional to the partial derivative 5 Form the equations

le' n

above 2% can be calculated using the chain rule of calculus.
(’)w,-i(n)
J0E 0E de;(n) dy;(n) dvi(n
() _9E(m) j ( )_ Yi( )_ (1) Eq.(2.16)
owji(n) dej(n) dy;(n) dv;(n) dwj;(n)
Differentiate both sides of Eq. (2.11) with respect to e;(n), then
OEM) _ o) Eq.(2.17
aej(n)_ejn q.(2.17)
Differentiate both sides of Eq. (2.12) with respect to y;(n), then
dej(n)
— = — Eq.(2.18
Next, differentiating both sides with respect to v;(n), then
dy;(n) .
== () (v,(m) Eq.(2.19)

ov;(n)
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Finally, differentiating Eq. (2. 14) with respect to wj;(n)

dv;(n)
dw;;(n)

= y;(n) Eq.(2.20)

The use of all equations between Eq. (2.17) and Eq. (2.20) in Eq. (2.16) yields

OE (n) )
awﬁ?n) = —¢;(n)0 (vj(n)) y;j(n) Eq.(2.21)

The correction Aw;;(n) applied to wj;(n) is defining as the delta rule.

0E(n)
ale’ (Tl)

Aw;;(n) = —n Eq.(2.22)

Where 1) is the learning-rate parameter of the back-propagation. The minus sign shown
in the equation above is an indication for gradient descent, hence, the gradient descent
IS an optimization technique for minimizing multidimensional smooth convex
objective functions (Vishwanathan, 2008) in weight space. Combining Eq. (2.21) and

Eqg. (2.22) will result.

Aw;i(n) =17 e]-(n)é) (v]-(n)) yj(n) Eq.(2.23)

Hence, the local gradient term §;(n) is defined by the product of the corresponding
error signal de;(n) for the output neuron j and derivative ¢ (vj(n)) of the associated

activation function.

JE(n) B 0E(n) de;j(n) dy;(n) B
dv;(n) B dej(n) dy;j(n) dv;(n) B

5,(n) = — e (v ()
Eq.(2.24)

Then equation Eq. (2.23) can be re-written as

iji(n) =7 6j(n) yj(n) Eq.(2.25)
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From equations Eq. (2.24) and Eqg. (2.25) it was noted that a critical factor
involved in the calculation of the weight adjustment Aw;;(n) is the error signal e;(n)
at the output neuron j. In this context, two distinct cases are identified. Case 1, when
neuron j is an output node. Case 2, neuron j is hidden node. Note that although hidden
neurons are not directly accessible, they share responsibility for error made at the
output of the network.

Case 1 Neuron j is an output node.

Merely the neuron j is located in the output layer of the network. It is supplied
with the desired response of its own, error signal e;(n) can be computed easily from
Eq. (2.12) associated with this neuron. Accordingly, the local gradient &;(n) can be
found using Eq. (2.24).

Case 2 Neuron j is a hidden node.

When neuron j is located in hidden layer, no specific desired response for that
neuron. Consequently, the error information term for neuron j is determined
recursively in term of the error information term of all neurons to which that hidden

neuron j is directly connected as follows
50 = 8; (4,00) ) Semwi(m) Eq. (2.26)
k

The equation above introduced a new index k to avoid any confusion between
neuron j which is used as hidden neuron in Case 2, hence neuron k is an output node.
&;(n) for hidden layer is derived as follows.

0E(n) dy;(n)

Eq. (2.24) is re-written as §;(n) = — 3y () 300
] ]

dE(n) .
8;(n) = —% 0, (vj(n)) Eq.(2.27)
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Where neuron j is hidden as before mentioned. Hence Eq. (2.11) is re-written with k

index

1
E(n) = EZ eZ (n) Eq.(2.28)

kec

Differentiating Eq. (2.28) with respect to the function signal dy;(n).

JE(n der(n
W((n)) - Z‘ e Oyl;én; Eq.(2.29)
Then using the chain rule to solve the Eq. (2.29)
JdE(n der(n) dv(n
ay,-(<n)) DXk ayfén)) Fa-(2:39)
Recall Eg. (2,12) and change the index from j to k
ex(n) = di (n) — y,(n) Eq.(2.31)
= di(n) - é)k (Uk(n)) Eq.(2.32)
Hence
gzzgg = —@y (vi(m) Eq.(2.33)
Also, recall Eq. (2.14) —induced local field-and change the index to k
m
vem) = w0y, () Eq.(2.34)
j=0

Where m is the total number of inputs (excluding the bias) applied to neuron k.

Next, differentiating Eq. (2.34) with respect to y;(n) yields.

dvg(n)
ay;(m) M () Eq.(2.35)

Thus, substituting Eg. (2.33) and Eq. (2.35) in Eq. (2.30)
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JE(n) )
ay;(n) Zk: e (n) Bk (vie(n)) wie; () Eq.(2.36)
JE(n)
ay;(n) ~ Z O () wi;(n) Eq.(2.37)

Hence Eq. (2.37) used the definition of the local gradient &, (n)with the index
k From all the above we get the back-propagation formula Eq. (2.26) for the local
gradient §;(n) for neuron j in hidden layer.
Activation Function

The knowledge of the activation function and its derivative is required to
compute § for each neuron of the multi-layer perceptron. For this derivative to exist,
the function @(.) Need to be continuous. In other words, the function @(.) Need to be

differentiable. In this study, the logistic function is used as activation function.

1
1+ exp (—avj (n))

a >0and — o0 <v;(n) <o

@j (Uj (n)) =

Eq.(2.38)
Where v;(n) is the induced local field of neuron j. As a result, of the non-linearity in
the Eq. (2.38) the amplitude of the output lies inside the range 0 <y; < 1.
Differentiate Eq. (2.38) with respect to v;(n).

a exp (—avj(n))
[1+ exp (—avj(n))]2

8, (vj(n)) = Eq.(2.39)

Re-write Eq. (2.39) using y;(n) = @; (vj(n)) to eliminate some terms. So
9, (vj (n)) is expressed as

1+ aexp (—avj(n)) -1

[1+ exp (—avj (n))]2

9, (vj(")) = Eq.(2.40)
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_ 1+ aexp (—avj(n)) 1
B [1+exp (_m’j(n))]z [1 + exp (—avj(n))]z

@] (vj (n)) = ayj(n)[l - yj(n)] Eq.(2.41)
For neuron j located in the output layer, y;(n) = o;(n). Hence, local gradient for

neuron j can be expressed as
5(n) = e;(n) 8; (v;(m)) Eq.(2.42)
=a[d;(n) — 0j(n)] 0j(n) [1 — 0;(n)], Neuron j is an output node
Where o is the function signal at the output neuron j, and d; is the desired response

for it. On the other hand, for an arbitrary hidden neuron j. we may express the local

gradient as

§(n) = 8; (v () Tie S Wiy () Eq.(2.43)
= ayj(n) [1 —y;(n)] X O (m)wy;(n), Neuron j is hidden

For a sigmoid activation function, the synaptic weights are changed the most
for those neurons in the network where the function signals are in their midrange. Thus,
it is the feature of back-propagation learning that contributes to its stability as a
learning algorithm.
Rate of Learning  and Momentum Constant .

A new parameter is introduced to BP-algorithm which is momentum term a.
The purpose behind the addition of the momentum constant term a is to control the
feedback loop acting around Aw;;(n). As explained earlier, Eq. (2.23) provides an
approximation to the trajectory in weight space computed by the steepest descent. The
smaller ) is the learning rate, the smoother the trajectory and slower the convergence

of the network to the optimum solution. On the other hand, increasing the learning rate
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n will lead to instability in the learning process hence the network will become
oscillatory about the optimum weight due to the large steps in modifying the weights.
As a result, the scientists modified the delta rule by adding the new term oo momentum

constant. Thus, the generalized delta rule is

2.6.3 Summary of the Back-Propagation Algorithm

The feedforward and back-propagation stages are shown in the following
overview of the back-propagation algorithm.

Step 0.  Set the learning parameters n to 0.1 and the momentum constant a to
small values from 0.1t0 0.5

Determine the number of hidden layers as well as the number of

neurons per layer.
Determine the maximum number of iteration
Set the minimum system error Eg, (n)

Step 1. Initialize the weights and biases for all layers to small random values

between+1 or [0, +1] depends on the activation function.
Step 2. While stopping condition is false, do steps 3- 10, described below.

Step 3.  For each training pair (x(n),d(n)) do steps 4- 10, where x(n) is the
input signal vector at iteration and d(n) desired response vector at

iteration n.



Feedforward:

Step 4.

Step 5.

Step 6.

Step 7.
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Determine the response vector for all the neurons in the first layer

y) = ) wix(n) Eq. (2.45)
i=0
yiPm) = 9; (vj(n)) Eq.(2.46)

Where wj; (n) is the interconnection weight vector for first hidden layer
neurons @; is the activation function as given by Eq. (2.38) which is

used by the first layer.

Determine the response of the neurons in each of the following hidden

layers, as well as output layer, using

O = Z(wﬁ“)(n)yi“-”m)) Eq.(2.47)
i=0

Where y;4=D(n) is the output function signal of neuroni in the
previous layer [ — 1 at iteration n and Wji(l) is the synaptic weight of

neuron j in layer [ that is fed from neuron i in layer [ — 1.

y; O = 0, () Eq.(2.48)

Where @; is the activation function in layer [.

Determine the mean squared error associated with pattern n using

1
Em=5) (-3}  Fq.(2.49)

Determine the average (normalized) system error using
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Where N is the total number of training patterns

N

2|~

Eqpg(n) = E(n) Eq.(2.50)

n=

Back-propagation of error:

Step 8. Compute the error information terms and calculate the weight correction

term for all neurons included in the output layer and layer.

ej(L) (n) (Dj (vj(L) (n)) for neuron j in output layer L
5; D) = (Dj (vj(l“) (n)) 2 5k(l+1)(n)wkj(l+1) (n) for neuron j in hidden layer [
| 3

\
Eq.(2.51)

Where the prime in @ ; denotes differentiation with respect to the
argument.

Update weights:

Step 9. Adjust the synaptic weight of the network [ accordigng to the

generalized delta rule:

wi O+ 1) = w; @) + alw; O (0 = D] + 06, Wy, ()

Eq. (2.52)

Step 10. Testing for stopping condition:

If the chosen maximum number of iteration n is reached or if the
normalized system error calculated in step 7 is smaller than the pre-set

value in step 0, then STOP; otherwise continue.
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Flowcharts for the feedforward back-propagation neural network in learning

and operation mode are given in Figures 2.4 and 2.5 respectively.
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Figure 2.7: Flowchart for a neural network in learning mode (Yousef, 2001)
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Figure 2.8: Flowchart for a neural network in operation mode (Yousef, 2001)
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Chapter 3: Methodology

This chapter explains the methodology of modeling neural networks to solve the
classroom scheduling problem. Data generation is initiated given five constraints.
Furthermore, two neural networks are proposed to solve the classroom scheduling,
which are: (1) the self-organizing feature map (SOM) neural network and (2) the
feedforward back-propagation (FFBP) neural network. Detailed problems formulation

and networks modeling are explained in this chapter.

3.1 Overview of ANNs

Making machines that can mimic the abilities of the human brain has been a
dream for centuries. The idea came true with the computer revolution and demanding
on data processing machines. Therefore, engineers created what is called ‘Machine
Learning,” which is the science of designing intelligent machines. The tools used to
make Machine Learning are called neural networks (Rojas, 1996). A Neural Network
can be thought of as a black-box which can correlate process inputs to its outputs based
on a mapping relationship that is captured by the Neural Network during its training
phase. According to Philip, training is a process where the machine parameters are
modified in such a way that it will correlate with the needed output values. If the user
defines the desired output values, the training is called supervised training. Otherwise,
if the network picks the output values automatically from the data itself, the process is
called unsupervised training (Philip, 2001).

One of the key benefits of neural networks is that they have the ability to
process a large number of data with the same accuracy regardless of some factors like
time and place. Furthermore, neural networks can find patterns from events which may

appear as random; for instance, weather prediction. A neural network can predict the
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unseen scenarios relationships by mapping in some data that humans cannot capture.
Consequently, using the Artificial Intelligence-based approach to solve the complexity
of classroom scheduling is well worth investigating. Especially, because classroom

scheduling holds so many parameters and variables.

3.2 Classroom Scheduling Problem

Classroom scheduling is a process whereby classrooms are allocated to a set of
courses within the school hours so that it will meet specific constraints. The constraints
in classrooms can be divided into two types: hard constraints, e.g. instructor cannot
teach more than one course at the same time, and soft constraints, e.g. the instructor is
able to submit a time preference (morning or evening) for class timing (Mahmud,
2014). In other words, designing a valid schedule should at least fulfill the hard
constraints, adding soft constraints will add more flexibility in schedule but it won’t
cause a major issue if it was not exist in the schedule. Although a classroom
timetable/schedule that meets both the hard and soft constraints can serve the
objectives effectively, however meeting only the hard constraints can result in
preparing a feasible classroom schedule (Edmund, 2006).

Also, partially meeting the hard constraints can produce a feasible initial guess
for a sufficiently working schedule. In this research, a neural network- based approach
will be adopted to prepare an initial guess for a preliminary classroom schedule that
can meet specific hard constraints. To establish a feasible schedule a user needs to
define/formulate a set of constraints that may depend on the circumstances of the
workplace. For the purpose of conducting this research, the following constraints will

be considered:
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1) Teacher Conflict: Teacher can have more than one course to teach.
However, a teacher cannot teach more than one course at the same time.

2) Course Conflict: A set of courses from the same level that must all be taken
in the same year. For example, third level students in mechanical engineering
in UAEU need to take Mechanics of Material (MECH305) and Geometric
Modeling (MECH315) in the same semester to avoid any delay in their study
plan). Hence for some groups of courses, no two courses from the same group
can be scheduled at the same time. For details see Appendix.

3) Time Restriction: Some courses need a specific time; for example, a
laboratory course needs to be scheduled for three consecutive hours to
prevent the interruption of laboratory work. Due to this, such courses are
often conducted at late times during the day.

4) Classroom Requirements: Classrooms cannot be assigned to more than one
course within a specific time interval. Also, the classroom capacity and

equipment needed for the class should be considered.

The goal of this project is to develop a methodology for solving a complex
scheduling problem considering as many scheduling parameters/ constraints as
possible. An Artificial-Intelligence based approach will be adopted to enable
intelligent class scheduling. Thus, the black-box below shows the functional structure
of the final product. At this point, executes of the product are not yet specified; this
will allow a flexible selection of different networks to run the inputs. Also, when a
new technology becomes available, the input can be substituted efficiently while

keeping the same function of the product to achieve the desired output.
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Input Output

Classroom scheduling > Neural Networks Desired feasible schedule
parameters/constraints. free of conflict

Figure 3.1: Black box for the final product

Typically, a neural network can be constructed using systematic steps, which
are defining the input and the output, training ANN models and validating and testing

ANN models.

Step 1: Defining the input and the output. In this research designing / creating
data is required, thus a set of input, x,,, will be defined and prepared to enter the ANN.
The input data point vector will include all the constraints mentioned above. The
creation of input vectors will be discussed in the following section.

Step 2: Training ANN model. Defining the data samples will play a crucial rule
in choosing a proper neural network to train the data points. More details will be shown
in the sections below.

Step 3: Validation and testing ANN model. This step is to verify the accuracy
of the trained ANN by comparing the output against a set of the new data sample,
noting that this step is needed for a supervised network. In contrast, the unsupervised
network cannot be validated since the user does not know what to expect. Below is

Figure 3.2 which is a flowchart simplifying the creation of ANN.



41

Start

Define the problem
|

Specify the constraints /
create a rIeanianul

ANN Forming f¢——
Reforming the

inout data sets
Train ANN [¢———

Change the
v Training Algorithm

Cost function/ If
hreshold value me

ANN Model is ready
for Classroom

v
End

Figure 3.2: Flowchart for ANN Creation

3.3 Creation of Data Point Samples

The datasets of a classroom schedule have been created by coding the input
parameters. For example, the alphabetic letters [A: Z] in the course code are mapped
into numbers [1:26], hence, the course code is transferred into numbers. Table 2 shows
the mapping between the constraints and the input parameters, and between the input

parameters and the numbers.
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Table 2: Mapping constraints and input parameters

Constraint Input parameter Code

Teacher Conflict = Prof. ID Numbers from 1 to 20

Time Restriction = Class time (AM/ PM) Number 1 for AM
Number 0 for PM

Course conflict Course level Number 3 for Third year

Number 4 for Fourth year
Number 5 for Fifth year
Number 6 for sixth year

Course name For example, MECH348 represents Fluid
Mechanics lab. The first digit represents the
course level and the second and third digits
the course name.

Classroom Course type (Theory / Theory is 1
requirements Laboratory) Laboratory is 0

Moreover, the created datasets will form the shape of an input vector; see the
input matrix Eq. (3.3) below. Note that the raw data used in this report is from a study
plan of Mechanical and Electrical Department of Engineering College at UAE
University. See Appendix for more details. Creating data points is essential in the
selection of the proper neural network “training stage”. Some assumptions were made
to ease the training procedure, guarantee accurate output values and alleviate testing
and debugging the datasets if anything goes wrong during the training stage. Hence,
78 data points were made. The table below illustrates the raw input points used to

create the needed data. Thus, it forms the classroom schedule’s requirement.

Table 3 demonstrates the number of involved professors which are 20 and that
each professor will teach four subjects/courses. Also, it shows the course level, course
type, and timing. In addition, the course name in letters is displayed to relate the

courses to the professor easily. Note that the rest of the data is shown in Appendix.



Table 3: Original data with constraints

Four lectures each Prof.

|

Four lectures each Prof.

Four lectures each Prof.

|

Four lectures each Prof.

Original data
Prof ID 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Course 3 4 4 3 3 4 5 5 3 4 6 4 3 4 5 5
Level
Course ( 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1
Theory/
Lab)
course 48 29 30 11 6 33 40 42 10 50 15 17 11 29 31 30
name
Time 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1
(AM/PM)
Course Fluid Thermo. Thermal Applied | Manuf. Intro | Sel.topics Intro Dynamic System Adv. Kinematic | Applied | Thermo. Intro. to SEL
Name Mech System Eng. lab Thermo | process to in to Dynamic | Dynamic Thermo System Robotics Topics
(letters) lab CAM | Manufact. | Comp lab and in Mech.
Control

1514
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3.3.1 Data Normalization

Formulating data points and converting it into the input vector is the primary
step to start the training. However, normalizing the input vector must take place before
introducing the input vector to the network. The normalization removes geometrical
biases towards some of the dimensions of the data vectors which will be inputted into
the SOM neural network. This is done to insure that every bit of data gets treated in a
"fair" manner. Also, this needs to be done to the data before it is entered into the
backpropagation neural network. The reason for this normalization in the BP neural
networks is that activation functions (e.g. sigmoid, hyperbolic tangent and Gaussian),
produce a result that lies in ranges of [0,1] or [-1,1]. Thus, it is a must to normalize the
input values, to insure it will be within the domain of [0,1] or [-1,1]. In addition,
another way of posing this is to realize that all learning algorithms depend on
numerical properties, so one should try to avoid small numbers, large numbers, and
large differences (Nicholas, 2012).

As with all functions, if the input values are not in the domain, the result is not
guaranteed to be appropriate (Nicholas, 2012). There are some ways to normalize data,
for example, Z-score, the coefficient of variation or feature scaling. The most
straightforward method for our data is feature scaling. If all input variable belong to
some interval y e [M_min, M_max], then the normalization formula (Mendelssohn,
1993) is:

X — Mmin

X = Eq. (3. 1)
e Mmax - Mmin

Pre-processing the data and training it in the neural network will result in an

output vector. Consequently, the output vector needs post-processing or de-
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normalizing in order to interpret and present the output data in the understandable

matter. The following formula is used for de-normalizing:

X = xnew(Mmax - Mmin) + Mpin Eq. (3 2)

Table 4 specifies sample of data points after normalization- the rest of
normalized data is presented in Appendix. Now, the data is ready for training, each
row in the matrix below shows the five input parameters. Each column represents one
set of an input vector. In this report, we are using 78 input vectors with each vector

comprising professor ID, course level, course type, course name and class timing.



Table 4: Data after normalization

Four lectures each Prof. Four lectures each Prof. Four lectures each Prof. Four lectures each Prof.
Prof ID 0 0 0 0 0.0526 | 0.052 | 0.052 | 0.052 | 0.105 | 0.105 | 0.105 | 0.10 | 0.1579 | 0.157 | 0.157 | 0.157
Course Level 0 0.333 | 0.3333 0 0 0.333 | 0.666 | 0.666 0 0.333 1 0.33 0 0.333 | 0.666 | 0.666
Course ( 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

Theo./ Lab)

Course Name | 0.510 | 0.308 | 0.3191 | 0.117 | 0.0638 | 0.351 | 0.425 | 0.446 | 0.106 | 0.531 | 0.159 | 0.18 | 0.117 0.308 | 0.329 | 0.319

Time 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1
(AM/PM)

17




47

Input Matrix =
0 0 0 0. 00526 00526 00526 00526 01053 01053 01053 01053 |
0 03333 0333 O 0 0333 06667 06667 O 0333 10 0333
0 1 0 10 10 10 10 10 10 0 10 10 N
05106 03085 03191 01170 00638 03511 04255 04468 01064 05319 01596 01809
0 10 0 10 10 0 10 0 10 0 0 10
| 0 08700 090 0 0 0 0 0 0.2 10 0 o |
Eq. (3.3)

3.4 ANN Formation

The most challenging and critical phase of this thesis is the building of the
neural network models. Mainly, there are two significant challenges of this project.
The first is how to interpret the multidimensional nonlinear data in the first draft of
the schedule. Thus, the data needs to be directed to form groups that have a common
mien. Each formed group is considered a classroom and each classroom will hold five
unique, unpredictable features (or constraints). The second challenge faced is how to
handle the unseen scenarios. For example, when dynamic changes happen at the
beginning of any academic semester, such as opening a new section, closing an

existing section and overlapping between some classes within the first draft.

3.5 Implementing SOM Neural Network

The solution starts with defining and understanding the behavior of input data
to the neural network. Thus, analyzing the data, to be distributed in distinct regions or
zones, may reveal a reasonable solution for the first challenge. Therefore, introducing
Self-Organizing Feature Map neural network to define those regions is an appropriate
solution for the following reasons:

e The presented data in this report has a clear non-linear relationship due
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to the different types of constraints.

e SOM can reduce the size of the problem from a five-dimensional
(multidimensional) map to a two-dimensional map, while maintaining
all the information about the features (or constraints) valued. Hence,
each input vector consists of five different constraints.

e SOM neural network uses unsupervised learning, so the training
samples contain only input patterns. As a result, the system does not

need to be well defined, which is the case with our data.

SOM NN comprises two layers. The first layer is the input which consists of
the data points (sections) and neurons and the second is an output layer in the form of
a two-dimensional map that locates classrooms according to their degree of similarity
after clustering. The dimension of the output layer depends on the amount of data
being analyzed. The higher the volume of data, the larger the output layer.

As for the architecture of SOM neural networks, input data is propagated
within the system through forward connections, where connections originate in the
input layer and implant in the subsequent layer (output layer). Furthermore, the lateral
connections which appear between neurons of the same layer, can be seen in the output
layer, as introduced by Kohonen. Thus, it represents the cooperation stage in SOM
training.

After the learning process is completed, the output layer results in clusters
(groups). Each cluster has a centroid, which is the neuron around which the data points
are grouped; see the Figure 3.3. It is worth mentioning that the position of the centroid
neuron of the cluster is represented as a located in the X-Y plane of the network map,

which is also the weight vector of the centroid neuron itself. Hence, the number of
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neurons designate the number of suggested classrooms, which in our research is 18
classrooms.

Furthermore, each ball in Figure 3.3 represents one section, each of which is
comprised of professor ID, course level, course type, course name and class timing.
The colors of the data points cloud in the input layer are a representation of the courses
based on its constraints or features. As a result, the data points with the same color
signify the sections with similarities in their features. These data points, which have
the same color, are clustered to form the classrooms in the output layer by SOM NN.
A related point to consider is that the neurons in the input layer had no defined color;
they are shown in gray color in Figure 3.3. However, after clustering in the output
layer, the neurons (center of clusters) are converted to match the color of their group;
which is simply the function “clustering” of SOM NN.

A further splitting is done for large clusters if the classroom is assigned to
more than four courses.

Note that the information in Figures 3.3 and 3.4 below is simply a graphical
representation which serves as a model for the neural network our research endeavors
to create. In real mathematical modeling of SOM, the neurons migrate between the

similar features. In contrast, the data points remain fixed.
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Figure 3.3: Graphical representation of first stage of sections (courses) separation

by SOM Neural Network
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First stage of separation
by SOM NN

Second stage of
separation by SOM NN

Figure 3.4: Graphical representation of SOM separations

3.6 Implementing FFBP Neural Network

To preserve the produced classroom timetable done by SOM neural network
and to allow for new sections or updates to the classroom schedule to be made with
minimal changes, the feedforward back-propagation neural network is introduced.
The clustered output data done in SOM network is now the input data for FFBP neural
network.

As previously explained in Chapter 2, feedforward neural network consists of
at least three layers: an input layer, hidden layer, and output layer. The network of all

three layers is fully connected. Neurons in the input layer are linked to neurons in the
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hidden layer, and in-return the hidden layer’s neurons are fully connected to the output
layer’s neurons; this is why it is called the feedforward part of FFBP network.
Concerning back-propagation of an error signal, which is a training method for
neurons to adapt their weights to attain new knowledge, all neurons are fully
connected through all layers and propagate from the output layer to the input layers.
This insures the input data passes through all layers, including the hidden layers. In
general there is no particular technique to determine the number of the hidden layer.
Thus, from experiments researchers advise to use two rules to launch the FFBP model:
(i) number of hidden layers equals one; and (ii) the number of neurons in that layer is
the mean of the neurons in the input and output layers.

As the Figure 3.5 illustrates, learning mode is when the FFBP neural network
takes the input data (courses) and propagates it in a forwarding fashion. The patterns
resulting from the hidden layers arriving at the output layer are then compared with
the desired (associated) output pattern (classrooms numbers) to calculate an error
signal. Then the error signal for each target output pattern is propagated from the
output layer to the input layer, to update the weights in each layer of the network.
After the training phase, the network can be tested on a new set of samples to see how
well it classifies new patterns (new course).

Operation mode, which is the trained FFBP neural network, classifies new
data. Thus, the network will be able to identify whether a particular data point (i.e.,

new course) belongs to classroom 1, 2, or 3, etc.
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Feedforward function signal

Input Layer Hidden Layers Output Layer

Input data [ Xi ] ; [ Sections]
Output [ Y;] ; [classrooms numbers ]

Back-propagation error signal

Figure 3.5: Learning mode in FFBP NN

Trained network Output vector of the

Input vector of a new )
assigned classroom
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Classroom assigned
ey fOr the new section

New section [ prof.1D,
Course name, course
type, course level, time]

Figure 3.6: Graphical representation of the operational mode in FFBP NN

In summary, Figure 3.6 illustrates a set of input vectors comprising five
constraints are introduced to a Self-Organizing Feature Map (SOM) neural network
for classroom section classification and separation, using some cluster centers equal

to the available rooms. The SOM demonstrated robust capability in clustering the
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sections into groups, comprising courses with conflicts based on the defined
constraints, hence it identified classes to be sequentially scheduled in one room. A
second stage SOM is used to further split the big clusters. Moreover, to fit newly
created classrooms into the SOM generated timetable, the output from SOM is used
to train a Feedforward Back Propagation (FFBP) neural network which then shows
where the new section can be allocated without disrupting the already existing
schedule created by the SOM. The trained FFBP is used to accommodate the new
sections without the need to re-cluster with SOM. In combination, the SOM and the
trained FFBP managed to prepare a conflict-free schedule successfully. Figure 3.7
represents the suggested artificial intelligence approach for classroom scheduling

graphically.
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Figure 3.7: Chart representation of Al approach for classroom scheduling
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Chapter 4: Tests Results and Discussion

The neural networks algorithms implemented in this research are written in
Matlab. In this chapter, mathematical models and tests are described, and the results

of implementing SOM NN and FFBP NN are presented and discussed.

4.1 Mathematical Modeling of SOM for Classroom Scheduling

The SOM NN takes the set of input vectors (sections) and maps it with the

neurons of a two-dimensional hexagonal grid. Each neuron in the 2D grid is assigned
a weight vector wjp, = (wj;, Wjy, ..., wjp) Which has similar dimensionality as the

input vector, where j = (1, 2, ..., [) and [ is the total number of neurons in the network
and D is dimension of the input vector. Hence, the input pattern of our model has five
dimensions (constraints), D = 5. According to (Fisher, 2006), the weights represent
the centers of clusters in the 2-D map. Additionally, the number of neurons, j, is
determined as the following: “Number of neurons < number of classrooms”.
Thus, the number of classrooms must be sufficient to satisfy the given number of
sections; moreover, the minimum number of neurons should be at least equal to the
number of rooms to accommodate the given courses. According to the generated data,
the number of data points (input vectors) is 72. Thus, each professor will teach four
courses. However, for the sake of making the network more realistic, some scenarios
is added which is: two professors are assigned to teach only three sections. Hence 6
additional input data are added so that the total number of input vectors is 78.

Accordingly, the number of neurons j can be determine as the following:

Number of opened sections for the current semester

Number of neuron = -
Number of sections that can occupy one classroom

= T = 18 classrooms
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As the above formula reveals (i.e., the number of classrooms needed to house
all courses and sections), the total number of neurons [ = 18. As the number of

constraints = 5, the weight matrix number will be 18 X 5 = 90.

r W11 Wi Wiz Wig Wis g
W1 Wi Wi3 Wiy Wis
W31 W3z W33z W3y Wsg
Waq1 Wi Wiz Wiy Wyg
W51 Wsy Wg3 W5y Wsgg
Wg1 Wgz Wgz Wgy Wes

L Wig1 Wigz2 Wigsz Wigse Wigs

Where w;, is the weight matrix, j represents the classrooms [j = 1, 2,3, ...18], and D

represents the constraints [D = 1,2, ...,5].

Figure 4.1, clearly exemplifies the interconnection between the input vector (input

layer) and the computational layer (output layer).

Classroom1: | Wi1 Wiz Wiz Wig Wis
Classroom 2 : Wy1 Wiz Wz3 Wiy Wps
Classroom 3 : W31 W3z W3z W3y Wss
Classroom 4 : Wi1 Wy Wiz Wiy Wys
Classroom 5 : Ws1 W5z Ws3z W5y Wss
Classroom 6 : We1 W2 Wgz Wes Wes
Classroom 18 :Y Wig1 Wigz Wigz Wigs Wigsd

1-D array of SOM neurons Classroom | Classroom|Classroom | Classroo |Classroom), Classroom ... | Classroom

Wy 18
%

Connection from input to SOM neurons Prof.ID || Crtype | (Cr.name] (Cr.level ) Time

Figure 4.1: SOM NN-mathematical model
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Competition Phase: By using the Euclidian distance Eq. (2.46), the winning input
vector can be found by calculating the distances between the input vectors and the

weight of the neurons (classrooms) such that d (classroom j) is minimum.

d(classroom1)?
= [(prof.ID — wy;)? + (Cr.type — wy1)? + (Cr.name — wy,)?

+ (Cr.level — wy;)? + (Time — ws;)?]

d(classroom?2)?
= [(prof.ID — w;;)? + (Cr.type — wy,)? + (Cr.name — wy,)?

+ (Cr.level — wyy)? + (Time — ws,)?]

d(classroom3)?
= [(prof.ID — wy3)? + (Cr.type — wy3)? + (Cr.name — ws3)?

+ (Cr.level — wy3)? + (Time — wg3)?]

d(classroom 18)? = [(prof.ID — wy 15)? + (Cr.type — wy 15)?
+(Cr.name — ws 1g)* + (Cr.level — w, 15)% + (Time — ws 15)?]

Cooperation Phase: After the competition phase, the cooperation phase is determined
by calculating the neighborhood function (distance between the excited neurons and

the winner neuron). The neighborhood function should satisfy two requirements: it

must be symmetric, and decreases monotonically with the increase of the distance.

d. 2
hj i@ (@M) = exp (— 5 ajél(n)> ,n=0,1,2,.. is the iterations

. . — N2 . s
Hence, d;,;* is the 2-D distance, d;;* = |7 — 7||”, where, 7; is the position vector of

the excited neuron j and r; is the position vector of the winning neuron i.
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Adaptation phase: Next the weights must be updated for the winning neurons and
excited neurons, and reduce the learning rate, n. Let the learning rate start from
N(t=0y = 0.6 and decrease till n¢;—¢), = 0.01 until the changes become less than the

predefined threshold. This is then the cost function:

w(n+1) =w ) + ki@ (T-w)  Eq.(4.2)

Which is simply

w,(new) = w;(old) +nh; iz (55 — W](old)) Eq.(4.3)

4.2 SOM Neural Network Parameters for Tests in MATLAB

The behavior of SOM was explained earlier in Chapter 2. However,
understanding and selecting the proper parameters will ensure a better performance
and faster convergence of the neural network. Unfortunately, there is no definite and
explicit method to select optimal parameters for the used SOM NN model.
Accordingly, general trends from previous research, as well as trial and error methods

were followed to find the best parameters values.

MATLAB Software: Matlab is an open source tool with high-performance language
for technical computing. It has built-in functions for different types of neural networks,
hence, it uses Graphical User Interface (GUI) and/or Lines commands (Mathworks,
1994-2018). However, using the command lines allows the luxury to fine tune the
network parameters easily. Therefore, in this research the command lines in Matlab
are used to run the SOM tests using the generated data above. Hence, the line

commands are shown in Appendix.
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Topology in SOM: Picking a suitable topology will result in a 2-D map with well-
clustered data. To this end, different tests were done using 11 input vectors from the
generalized data sets on three different topologies (grid topology, hexagonal topology,
and random topology; see Fig. 4.2). Sometimes the shape of the chosen topology can
be justified, sometimes it cannot. For example, in our case, the use of hexagonal
topology was a more natural fit based on the already consisting shape of our data
points. Furthermore, hexagonal topology has the highest number of adjacent neurons
per neuron (Lopez, 2014), which gives more flexibility in tuning the clusters as
compared to the grid topology. Hence, the preferred use of hexagonal topology was
confirmed after several tests, as compared with the random and the grid topologies.

SOM Weight Positions. SOM Weight Positions

Figure 4.2:Three different types of topologies, HexTop, GridTop and RandTop

No. of Epochs: The number of iteration must be at least 500 times the number of
neurons. In our case 500 X 18=9000 iterations, hence, the iteration should start from
9000. Recall that an epoch in learning means using all the training samples once. So,
after trial and error method, the approximate number of needed epochs to converge
was 100,000 epochs. Hence, the suggested parameters are taken from two resources

either from different researchers or found by try and error experimentally.
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Learning Rate n: The learning rate n started with 0.6 and decreased till it reached a
steady state in term of the changes in the neurons convergence. No significant changes

were noticed in the clustering map when n reached 0.1.

Initial neighborhood radius o: The radius should start out as the radius of the
network, and approach zero, at which time the radius is simply the winner node. Any
nodes found within the radius of the winner are adjusted to make them more like the
input vector. The value of o decreases with the number of iterations (for full discussion
see Chapter 2). Hence, o started with 6 and gave the best results at 4. Thus, the result
is that the neighboring neurons tend to have similar weight vectors and to be responsive

to similar input vectors. This result was found experimentally via Matlab.

4.3 SOM Results and Discussion

The purpose of using SOM in this thesis is to cluster the data points. Thus, the
SOM distributed the data points (sections) over the neurons (clusters), to guarantee a
conflict-free schedule for each cluster. Hence, each cloud point (or cluster of data) has
shared features which reveal the points of potential conflict and highlight sections that
need to be scheduled in the same classroom. It is worth mentioning that the suggested

solution is considered an initial estimate for the classroom schedule.

4.3.1 Matlab Analysis Plots

After tens of runs and tests, Figures 4.3 and 4.4 show the data points before
and after clustering distributed over 6X3 hexagonal topology in SOM. The weight
position plot below shows the data points (sections) as green dots in terms of two first
features: professors IDs and course type. The neurons’ weight vectors are plotted in

dark-blue dots according to their first two weights only. The red lines indicate which
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neurons are neighbors. Note how the neurons spread out with neighboring neurons
representing the adjacent arrows of the sections’ features in space. The 2-dimensional
map appears folded in some places in the plot because it is spread over five dimensions
of the sections features. Nonetheless, the neurons distribution in the map is expected
to be well organized; since the input data, or first two features, are well distributed
from the beginning. However, the main target from clustering the data is to extract

features from each cluster (classroom) separately.

SOM Weight Positions-Before Clustering, 6X3 Hexagonal Topology
2 r v v :

1.5

-0.5 0 0.5 1 1.5 2
Weight 1

Figure 4.3: SOM before training
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so:vl Weight Positions-After Clustering, 6X3 Hexagonal Topology

0 0.2 0.4 0.6 0.8 1
Weight 1

Figure 4.4: SOM after training
Additionally, the SOM Topology, the Distribution of clusters (classrooms), the

SOM neighbor weight distance plot, and the weight input planes shown below are

Matlab visualization tools which help in interpreting the data points after clustering.

SOM Topology

Figure 4.5: (6X3) 2D-hexagonal topology
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SOM Topology

T T T T T T T
25F .
2F 4

Cluster 13 Cluster 14 Cluster 15 Cluster 16 Cluster 17 Cluster 18
15F
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Cluster 7 Cluster8 Cluster9 Cluster 10 Cluster 11 Cluster

05+ i
OF Cluster 1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 4
05F -

1 1 L 1 1 l I

1 0 1 2 3 4 5 6

Figure 4.6: Clusters (Classrooms) distribution in (6X3) SOM topology

Firstly, the two figures (Figure 4.5 and Figure 4.6) above are self-explanatory.
In contrast, in Figure 4.7 the SOM neighbor weight distances requires more
interpretation. So, to interpret Figure 4.7 the following colors and description should
be defined: 1. Neurons are represented by blue hexagons; 2. Red lines connect
neighboring neurons; 3. Dark-colored regions represent larger distances between
neurons; and 4. Light-colored regions represent smaller distances between neurons. It
is clear according to the plot below, that the clusters, which are indicated as lighter
colors, are distributed more consistently in most of the map. Yet, one or two clusters
are presented with relatively large distances between the neighbors’ weights, as
indicated by the darker colors. Note that the neighbor weight distances plot is

consistent with the position weight plot in Figure 4.4.
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SOM Neighbor Weight Distances

Figure 4.7: SOM neighbor weight distance for sections clustering

Moreover, the SOM weight plane plots in Fig. 4.8 are used to visualize the
strength of weights that connect each input to each of the neurons (Robertson, 2014).
For our experiment, five inputs were used; therefore, five subplots were generated for
each input. The five input features included: the professors ID #, course level, course
type, course name and course timing. This figure was generated after 100,000

iterations.

Lighter colors in the plots represent larger weights, whereas darker colors
represent smaller weights. Similar connection patterns of the inputs indicate a high
correlation. Inputs 3 and 5 appeared to be similar in some locations and were
interpreted as highly correlated. Input from variables 1, 2, and 4 appeared to contribute
the smallest amount of cluster separation in the data sets, as they appear to be the least
similar and are less correlated. Although the SOM weight plane plot suggests a
possible relationship might exist between the inputs, this concept does not pertain to
our thesis, since it was pre-defined that the relationship between the inputs is

independent.
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Weights from Input 1 Weights from Input 2 Weights from Input 3
Professor ID # Course Level Course Type
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Weights from Input 4 Weights from Input 5
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Figure 4.8: Weight input plane plot

In this thesis the analysis was done on each cluster independently, in order to

extract the dominant features; this point will be elucidated at the next stage of analysis.

An additional useful visual plot provided by the MATLAB SOM function is
the SOM sample hits plot seen in Figure 4.9. The sample hits plot counts the number
of data points associated with each neuron. In an ideal situation, a relatively even
distribution across the neurons is desired. However, the distribution was clustered

Hits

-1 0 1 2 3 4 5 6

Figure 4.9: SOM sample hits- input points (sections) after clustering
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unevenly throughout the map, which indicates that similar data were separated over

different regions.

4.3.2 Classroom Scheduling Constraints Analysis

SOM First Stage

At this stage a deeper analysis is required to disclose the output of each cluster.
Starting with cluster 1, which will be considered as classroom 1, the hits figure above
indicates that cluster 1 consists of three sections and, according to the weight input
plane plot below, input 3 and input 5 exert the most control on the data cloud points of
classroom 1, with input 1 (Professor ID) also exerting a lesser degree of control. Hence,
input 3, which is the course type, and input 5, which is the course timing, have the

main effect on cluster 1 (Classroom 1), making them the dominant features.

Weights from Input 1 Weights from Input 2 Weights from Input 3
Professor ID # Course Level Course Type

L o am

Weights from Input 4 Weights from Input 5
Course Name Course Timing

Figure 4.10: Weight input plane plot of cluster # 1
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Furthermore, Table 5 and Table 6 illustrate the data before and after
normalization for cluster 1 (Classroom 1), making it very easy to extract the dominant
features. It is obvious that course level, course type and timing all have similarities
across the three sections. Note that the existence of those three courses in the same
group course level gaurantees a conflict-free schedule for third year students. Also, it
appears that professor 11 is teaching two courses in classroom 1, which guarantees

that there will not be a clash in timeslots for classroom 1 for these two sections.

Table 5: Cluster 1 (Classroom1) sections normalized

.Neuron # Prof ID Course Level Course Course Time (AM/PM)
(Cluster #) (Theory/ Lab) Name

1 0.473684211 0 1 0.224719101 1

1 0.526315789 0 1 0.292134831 1

1 0.526315789 0 1 0.337078652 1

Table 6: Cluster 1 (Classroom 1) sections de-normalized

Neuron # Prof ID  Course Course Course Time Course Name (Letter)
(Cluster Level ( Theory/ Lab) Name (AM/PM)
#)
1 10 3 1 25 1 Engineering
Electromagnetics
1 11 3 1 31 1 Computer Programming
1 11 3 1 35 1 Digital Logic Design

A similar case is evident in cluster 2, as evidenced in Tables 7 and 8. These
tables show that fourth year students will be able to take three courses in the same
classroom at different times. Similar cases are repetitve in most of the clusters, so this
observation can be considred as a point of strength in SOM, revealing that this is a

good initial estimation for classroom scheduling.
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Neuron # Prof ID Course Level Course Course Time
(Cluster #) (Theory/ Lab) Name (AM/PM)
2 0.263157895 0.333333333 0.078651685 1
2 0 0.333333333 0.235955056 1
2 0.052631579 0.333333333 0.314606742 1
Table 8: Cluster 2 (Classroom 2) sections normalized
Neuron # Prof ID Course Course Time Course Name
(Cluster #) Level (Theory/ Lab) (AM/PM) (Letter)
2 1 4 1 Thermo-fluid
System
2 2 1 Intro to CAM
2 4 1 Machine
Design Il

Also, it was noticed that the co-requisite sections were grouped in the same

cluster, which is cluster 4 (classroom 4), thus it guarantees that students are able to

register for two courses-- the co-requisite --with minimum conflict. For example, the

table below shows the case of co-requisite courses MECH 409 (Dynamics System and

Control) and MECH 417 (Kinematics), which are co-requisite courses for MECH 450

(System Dynamics Lab). Note, cluster 4 went through the second stage of SOM

because it was overloaded with 6 sections; find the results of this in Table 9 below.

Tables 10-13 show classroom #4 before and after separation and de-normalization.

Table 9: Cluster 4 (Classroom # 4) Overloaded with 6 sections before separation

Neuron # Prof ID Course Level Course Course Name Time
(Cluster #) (Theory/ Lab) (AM/PM)
4 0.10526316 0.3333333 1 0.04494382 0
4 0.10526316 0.3333333 1 0.134831461 0
4 0.2631579 0.3333333 1 0.02247191 0
4 0.31578947 0.3333333 1 0.134831461 0
4 0.36842105 0.3333333 1 0.235955056 0
4 0.21052632 0.3333333 1 0.314606742 0
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Table 10: Cluster 4 (Classroom #4) part A after separation

Neuron # Prof ID Course Level Course Course Name Time
(Cluster #) (Theory/ Lab) (AM/PM)
4 0.10526316 0.3333333 1 0.04494382 0
4 0.10526316 0.3333333 1 0.134831461 0
4 0.2631579 0.3333333 1 0.02247191 0

Table 11: Cluster 4 (Classroom #4) part A de-normalized

Neuron # Prof ID Course Course Course Time Course
(Cluster #) Level (Theory/ Lab) Name (AM/PM) Name
(Letter)
4 3 4 1 9 0 Dynamics
system &
control
4 3 4 1 17 0 Kinematics
4 6 4 1 7 0 Machine
Design |

Table 12: Cluster 4 (Classroom #4) part B after separation

Neuron # Prof ID Course Level Course Course Name Time
(Cluster #) (Theory/ Lab) (AM/PM)
4 0.315789474 0.333333333 1 0.134831461 0
4 0.368421053 0.333333333 1 0.235955056 0
4 0.210526316 0.333333333 1 0.314606742 0

Table 13: Cluster 4 (Classroom #4) part B de-normalized

Neuron # Prof ID Course Course Course Time Course
(Cluster #) Level (Theory/ Lab) Name (AM/PM) Name
(Letter)
4 5 4 1 33 0 Intro to CAM
4 8 4 1 26 0 Thermo-fluid
System
4 7 4 1 17 0 Kinematics

Another case that should be highlighted is found in clusters 6 and 12. Cluster
6 (classroom 6) and Cluster 12 (classroom 12) are distinct, as their course types are
lab, not lecture. Tables 14, 15, 16 and 17 demonstrate the sections before and after
normalization. The SOM could classify the labs and separate them from the lectures

completely. Hence, laboratory rooms can be thought of as specialized equipment
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rooms with three consecutive hours sections; to prevent the interruption of laboratory

work. Due to this, such sections are often conducted at late times during the day. Thus,

this case helps alleviate the challenge often posed by the scheduling of laboratories

with other academic classrooms. In addition, the two clusters 6 and 12 representing

the labs in Mechanical Engineering and Electrical Engineering respectively, were

distinguished by the SOM, allowing successful scheduling of the Mechanical labs and

the Electrical labs.

Table 14: Cluster 6 (Classroom #6) normalized

Neuron # Prof ID Course Level Course Course Name Time
(Cluster #) (Theory/ Lab) (AM/PM)
6 0 0.333333333 0 0.280898876 0
6 0.157894737 0 0 0.483146067 0
6 0.157894737 0 0 0.483146067 0
6 0.263157895 0.333333333 0 0.393258427 0
6 0.315789474 0.333333333 0 0.101123596 0
Table 15: Cluster 6 (Classroom #6) de-normalized
Neuron # Prof ID Course Course Course Time Course Name (Letter)
(Cluster #) Level (Theory/ Lab) Name  (AM/PM)
6 1 4 0 30 0 Thermal Engineering
lab
6 4 3 0 48 0 Fluid Mechanics lab
6 4 3 0 48 0 Fluid Mechanics lab
6 6 4 0 40 0 Design and
Manufacturing Lab
6 7 4 0 50 0 System Dynamics lab
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Table 16: Cluster 12 (Classroom #12) normalized

Neuron # Prof ID Course Level Course Course Name Time (AM/PM)
(Cluster #) (Theory/ Lab)

12 0.473684211 0 0 0.056179775 0

12 0.578947368 0 0 0.449438202 0

12 0.578947368 0.333333333 0 0.314606742 0

12 0.631578947 0 0 0.786516854 0

12 0.684210526 0.333333333 0 0.629213483 0

Table 17: Cluster 12 (Classroom #12) de-normalized

Neuron # Prof ID Course Course Course Time Course Name
(Cluster #) Level (Theory/ Lab) Name (AM/PM) (Letter)
12 10 3 0 10 0 Electric Circuits | lab
12 12 3 0 45 0 Digital Logic Design
Lab
12 12 4 0 33 0 Instrument and control
lab
12 13 3 0 75 0 Electronic Circuits Lab
12 14 4 0 61 0 Microprocessors Lab

Moreover, an additional section--a lecture type course, but located in a lab--
was added to measure the SOM clustering aptitude. In this case, the SOM succeeds in
separating this point in one cluster only, cluster 18 (classroom 18). This is confirmation

that SOM can differentiate easily between lectures and labs sections. See Tables 18

and 19.
Table 18: Cluster 18 (Classroom #18) normalized
Neuron # Prof ID Course Level Course Course Name  Time (AM/PM)

(Cluster #) (Theory/ Lab)

18 0.421052632 0.666666667 0 0.898876404 0

Table 19: Cluster 18 (Classroom #18) de-normalized

Neuron # Prof ID Course Course Course Time Course Name
(Cluster #) Level (Theory/ Lab) Name (AM/PM) (Letter)

18 9 5 0 85 0 graduation

project |
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To increase the flexibility of classroom scheduling and allow students to have

more options to create their own schedules, multiple open sections of the same courses
and different professors are created as a common scenario in university scheduling.
This will give students more options to register in a course, thus it helps the student
who has a conflicting morning session to register for an evening session or register for
a specific course on a different day. Tables 20 and 21 show identical courses clustered
in same classroom with two different professors, which guarantees that there will be
no conflict between the two sections because logically two sections cannot be given at
the same time in the same place. As a result, students will get the opportunity to select
between the two timeslots. This case can be found also in clusters 14, 15, 16 and 17.

See Appendix for more details.

Table 20: Cluster 10 (classroom #10) normalized

Neuron # Prof ID Course Level Course ( Course Name  Time (AM/PM)
(Cluster #) Theory/ Lab)

10 0.6315789 0 1 0.752808989 0

10 0.6315789 0.3333333 1 0.516853933 0

10 0.6842105 0.3333333 1 0.516853933 0

Table 21: Cluster 10 (Classroom #10) de-normalized

Neuron # Prof ID Course Course ( Course Time Course Name
(Cluster #) Level Theory/ Name (AM/PM) (Letter)
Lab)
10 13 3 1 72 0 Electro-
Mechanical
Devices
10 13 4 1 51 0 Microprocessors

10 14 4 1 51 0 Microprocessors




74

SOM Second Stage

Designing conflict-free scheduling is a challenging task, due to many variables
and scenarios. The sections distribution over the class map (SOM) provides a partial
solution. Although the section distribution is satisfying, some classrooms are
overloaded with 6 sections and sometimes 7 sections in one day. This can be solved
by a second stage of SOM clustering (refer to Chapter 3). For example, Tables 22, 23
and 24 show classroom 8 overloaded with 7 sections and the dominant features vary

between course type, course level, course timing and professors’ IDs.

Table 22: Cluster 8 (Classroom #8) before second stage SOM (separation)

Neuron # Prof ID Course Level Course Course Name  Time (AM/PM)
(Cluster #) (Theory/ Lab)

8 0 0.666666667 1 0.101123596 1

8 0 0.666666667 1 0.078651685 1

8 0.0526316 0.6666667 1 0.4044944 1

8 0.0526316 0.6666667 1 0.4157303 1

8 0.3157895 0.6666667 1 0.505618 1

8 0.4210526 0.6666667 1 0.1685393 1

8 0.4210526 0.6666667 1 0.1797753 1

Table 23: Cluster 8 (Classroom #8) after second stage SOM normalized

Neuron # Prof ID Course Level Course Course Time (AM/PM)
(Cluster #) (Theory/ Lab) Name
8 0 0.666666667 1 0.101123596 1
8 0 0.666666667 1 0.078651685 1
8 0.0526316 0.6666667 1 0.4044944 1
8 0.0526316 0.6666667 1 0.4157303 1
Neuron # Prof ID Course Level Course Course Time (AM/PM)
(Cluster #) (Theory/ Lab) Name
8 0.3157895 0.6666667 1 0.505618
8 0.4210526 0.6666667 1 0.1685393

8 0.4210526 0.6666667 1 0.1797753
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Table 24: Cluster 8 (Classroom #8) after second stage SOM de-normalized

Neuron # Prof ID Course Course Course Time Course Name
(Cluster #) Level (Theory/ Lab) Name (AM/PM) (Letter)
8 1 5 1 14 1 Heat Engine
8 1 5 1 12 1 Intermediate heat
Transfer
8 2 5 1 41 1 Non-Conventional
Manufact.
8 2 5 1 42 1 Intro to Composites
Design
Neuron # Prof ID Course Course Course Time Course Name
(Cluster #) Level (Theory/ Lab) Name (AM/PM) (Letter)
8 7 5 1 31 1 Introduction to
Robotics
8 9 5 1 20 1 Selected Topic in
Bio.
8 9 5 1 21 1 Biomechanics

To provide further explanation, the overloaded classrooms cannot fit the given
timeframe for each classroom in one day. Therefore, the suggested solution is to re-
cluster the same section (going through second stage in SOM), which will then be split
across two days. For example, the first new cluster will be on Sunday, and the second
new cluster will be on Monday, and so forth. [Find all the overloaded clusters after
second stage of SOM in Appendix] After splitting the overloaded cluster into two days,
the professors IDs then become the dominant feature organizing the new clusters. This
separation by professors IDs is useful as it avoids having the same professor teaching
two sections in the same classroom at the same time. Consequently, the SOM was able
to show a significant effect of Professor IDs feature through the second stage of

separation.

So far, the SOM network was able to overcome the restrictions of course
conflicts and classroom requirements. Additionally, it was noted that sections with

same course level were clustered all together in the same groups, and the classrooms
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were separated to form rooms for lab sections and classrooms for regular lectures. This

may form an initial estimation for classroom schedule.

In order to introduce the first draft of the schedule, a new constraint is added
which are the detailed timeslots shown in Table 25. This will result in the Tables 26-
32 below, which are considered an initial draft of randomly selected professors’
timetables. Professor ID #1 was found in classroom2, classroom 6 and classroom 8
and professor ID # 4 was found in rooms 3 and 6. Table 22 and Table 24 display the

first draft of the timetables and shows that there is no conflict in the common

classroom 2.
Table 25: Detailed time slots per classroom
Classroom # Timing
Slot #1 8-10 AM
Slot # 2 10-12 AM
Slot #3 12-2 PM
Slot# 4 2-4 PM
Table 26: Professor ID #1 timetable
Neuron # Prof ID Course Course Course Time Course Name
(Cluster #) Level (Theory/ Lab) Name (AM/PM) (Letter)
2 1 4 1 26 1 Thermo-fluid
System
6 1 4 0 30 0 Thermal
Engineering
lab
8 1 5 1 14 1 Heat Engine
8 1 5 1 12 1 Intermediate

heat Transfer
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Table 27: First draft of Professor ID #1 timetable

.8-10 .10-12 12-2 2-4
Thermo-fluid Thermal
System Engineering lab
(classroom # 2) (Classroom # 6)
Heat Engine Intermediate heat
(Classroom #8) Transfer
(Classroom #8)
Thermo-fluid
System
(classroom # 2)
Heat Engine Intermediate heat
(Classroom #8) Transfer

(Classroom #8)

Table 28: Professor ID #2 timetable

Neuron # Prof ID Course Course Course Time Course Name
(Cluster #) Level (Theory/ Lab) Name (AM/PM) (Letter)
2 2 4 1 33 1 Intro to CAM
8 2 5 1 41 1 Non-
Conventional
Mnaufact
8 2 5 1 42 1 Intro to
Composites
Design
9 2 5 1 40 0 Selected topics
in Manufact.

Table 29: First draft of Professor ID #2 timetable

~ Day/Time 8-10 10-12 12-2 2-4
Sunday Non- Intro to CAM Selected topics in
Conventional (classroom#?2) Manufact.
Mnaufact (Classroom # 9)

(classroom # 8)
Intro to Composites

Design
(Classroom #8)
Non- Intro to CAM Selected topics in
Conventional (classroom#2) Manufact.
Mnaufact (Classroom # 9)

(classroom # 8)
Intro to Composites
Design
(Classroom #8)
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Table 30: Professor ID #6 timetable

Neuron # Prof ID Course Course Course Time Course Name
(Cluster #) Level (Theory/ Lab) Name (AM/PM) (Letter)

0.058824 0.631579 0 1 0.752809 1 Intro to CAM
0.176471 0.631579 0.333333 1 0.516854 1 Machine
Design |
0.176471 0.684211 0.333333 1 0.516854 0 Machine
Design |

9 6 5 1 45 1 Maintenance

Engineering

Table 31: First draft of Professor ID #6timetable

Professor ID # 6

Day/Time .8-10 .10-12 12-2 2-4
Sunday Machine Design | Maintenance
(classroom # 4) Engineering
(Classroom # 9)
Monday Machine Design Design and
I Manufacturing Lab
(classroom#2) (Classroom #6)
Tuesday Machine Design | Maintenance
(classroom # 4) Engineering

(Classroom # 9)

Wednesday Machine Design
|
(classroom#2)

Table 32: Cluster 2 (Classroom #2) sections normalized

Neuron # Prof ID Course Course Course Time Course Name
(Cluster #) Level (Theory/ Lab) Name (AM/PM) (Letter)
2 1 4 4 26 1 Thermo-Fluid
System
2 2 4 1 33 1 Intro to CAM
2 6 4 1 12 1 Machine
Design Il

As the tables above reveal, it is possible to generate via SOM first draft
schedules for each classroom, though finalization of individual professor timetables
are still best adjusted manually proceeding the first SOM draft. Periodically, the SOM
first draft places the same professor within the same classroom for all of his or her

sections, however at other times, this must be adjusted for manually. Not all professors
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are able to have all of their courses in the same classroom though due to variation in
SOM prioritization. The SOM may at times prioritize other variables over professors
ID, such as course type, course level, and timing. This shows that the SOM is able to

accommodate an additional variable, which in this case are the time slots.

At this stage, a conflict-free schedule has been constructed by the SOM.
However, to fit newly created classrooms into the SOM generated timetable, the output
from SOM is used to train a Feedforward Back Propagation (FFBP) neural network to

extract the implicit course-classroom mapping as formulated by the SOM.

4.4 Mathematical Modeling of FFBP NN for classroom scheduling

The output of the SOM NN which is the classroom number for each section is
considered as the input for FFBP NN. Each input vector has 5 elements (constraints)
assigned to a specific room as previously discussed. The structure below shows the
back-propagation neural network model for our data. The weight vectors are randomly
initiated at the beginning. Note that two hidden layers were used; the first hidden layer
carries 20 neurons and the second hidden layer carries 30 neurons. The structure below
shows the details FFBP NN map as well as and the weight matrix size for the first

hidden layer is (5 X 30) and the second size is (30X20)
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Figure 4.11: Backpropagation neural network with two hidden layers

4.5 Back-Propagation Parameters for Tests in MATLAB

BPFF NN codes were developed by using two hidden layers. Regardless of the
number of hidden layers, the same structure and assumptions can be used to construct

any code. The description of the main coding points is as follows:

Initiating Weights: The weights for each hidden layer were generated by assigning a
random number between -0.5 and 0.5. The size of the weight’s matrix is flexible based
on the total number of the used input data and the number of neurons in the hidden

layers. A bias layer of value 1 is included automatically to the weight matrix.

Initiating learning rate: The learning rate is responsible for the rate at which each
single weight is modified after one learning cycle. The learning rate is usually between
0 and 1, and the closer it is to O, the smaller the steps needed to modify each weight.
The best learning rate for the used network was determined through trial and error

which is 0.1, this results was found experimentally.
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Modifying the input parameters: As previously mentioned, the output of SOM is
the input to FFBPNN. Hence, the classroom numbers need to be normalized before
entering the FFBPNN to avoid big differences between numbers as explained

previously in Chapter 2.

Log-sigmoid transfer function: As the input vectors (sections) have non-linear
relationship between its inputs, a non-linear log-sigmoid transfer function was used in
this code. In this function the resulting values from multiplication of the inputs and
weights fall between 0 and 1. The result of this function is processed as an input to the

next layer, or as a final result in the case of the final layer.

No. of Epochs: For the set of 64 data points (70% of the total number of the data sets)
with a batch size of 5, each iteration processes 5 input vectors for a total of 16 such
iterations to create an entire set. Each set is called one epoch, which helps to direct the
convergence. However, there is also a premature termination criterion depending on
the mean squared error, which was set as 0.01. Based on this, the number of epochs in

this test is 746626 after the convergence.

4.6 FFBP NN Results and Discussion

4.6.1 Learning Phase:

In this phase the neural network is carried out using the 64 data sets. As described
earlier, the training parameters that were set continue running until it reaches below
0.1. Various network configurations were tested during the training phase with two
different values of learning rates, 0.05 and 0.1. The back propagation learning activity

is time consuming, due to the fact that after each learning cycle the network sends back
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the weight changes to every single weight in the system for the two hidden layers.
Additionally, because the used learning rate is relatively small, the modifications to
the weights will be small and thus it will take more learning cycles and more time to
change all the weights to reach to the optimal solution. The average time required for
the two hidden layers to be trained is 1:30 hours. Figure 4.12 illustrates the training

results for two hidden layer networks.
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Figure 4.12: Predicted vs. target training sets

4.6.2 Testing and Validating Phase

The testing and validation phase must be done by using an independent test set.
Hence, the independent test set is a set similar to the input set, but not a part of the
training set. In our case 20% of the data set was used for testing and validating the
network (15 untrained data points). The testing was done by using the acquired weights
from the trained network in calculating the classrooms numbers for the 15 remaining

untrained data sets. In the calculations of the classrooms numbers, the inputs were
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multiplied by the weights resulting from the training sets, and the results were then
activated through the log-sigmoid function and proceeded to the next layer. The final
results were compared to the tested sets. The accuracy of the predicted results was
measured through the coefficient of determination R?, where the maximum R? reached

was 0.9814 for different sets of neurons each layer. See Figure 4.13.

Predicted vs. Target Testing sets

R2=0.9814
S 08 o =
o)
E -
> -
< 06
€
o -
e (@
o 04 e
s
S -
2 02 >
S ®
2 o o
s 0
0 0.2 0.4 0.6 0.8 1

-0.2
Target Testing set (classroom number)

Figure 4.13: Predicted vs. target testing sets

4.6.3 Results and Discussion

Different types of network architectures were tested to find the optimal
convergence. It was shown that the two layer configuration system with 30 neurons in
the first layer and 20 neurons in the second layer with a learning rate of 0.1 gives the
best convergence with R?of 0.94. The results showed that the optimal case required a
total of 663 weights with a 0.1 learning rate to have a higher convergence. Decreasing
the learning rate to 0.05 caused a negative impact on the accuracy, which is referred
to as over-fitting. The increase of the network size also causes a reduction in the

accuracy of the prediction due to the increase of the total weights that need to be
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modified. As a result, a number of modeling parameters were selected depending on
the forecast horizon and degree of accuracy. Figure 4.14 shows high accuracy in the

prediction results for training and test sets by FFBP network 5-30-20.
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Figure 4.14: Prediction results for training and test set by FFBP network 5-30-20

The tests reveal that for accommodating a new section, FFBP NN is capable of
fitting the new section into an existing classroom. The scenario of opening a new
section after all the professors’ timetables have been set or after one or two weeks have
elapsed from the beginning of the semester is very common situation, occurring often
in many institute for innumerable reasons. Therefore, re-clustering the whole set of
data to fit the newly created classroom is not a practical solution because each SOM
run can propose a new set of clusters, which will completely change the schedule for
each classroom. As a result, the FFBP network will help to solve the problem by
allocating the new section to fit in a suitable classroom without causing any conflict in

the schedule.
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4.7 Discussion in Summary

Based on the results of this thesis research, it can be concluded that the SOM
is able to cluster the given sections and provide a good initial estimation for classroom
scheduling. At first examination, the clusters show that the dominant features are
course type and course timing. This is a benefit of the SOM, as grouping course levels
in the same classroom provides the opportunity for students of the same year level to
register in the needed sections without facing any conflicts (i.e., in the case of co-

requisite courses).

However, each cluster presents an individual case, as seen in the example of
the labs. Due to this common feature, the network was able to clearly distinguish these
sections and group them into one region. To measure the accuracy of the network, an
anomaly was added. The anomaly was a lecture class MECH 585 (Graduation Project-
I) that, on this occasion, needed to be taught in a laboratory. The result was that the
network separated the section into a different cluster, placing it into a completely
unique section. Furthermore, a second stage of SOM was used to separate the

overloaded clusters, resulting in two new clusters which are split into two days.

To further test the efficacy of this system, a new constraint--detailed timeslots-
-was added to create a first draft of a timetable for random professors. This was done
to prove that it is possible to generate first draft classroom schedules via the SOM.
Although the timetables were finalized manually, the first draft SOM results still were
able to create clustered sections for each professor that revealed a conflict free

timetable.
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Lastly, a new scenario was put forward, which was fitting a newly opened
section into an existing classroom without the need of re-cluster all the sections, which
would result in a completely new classroom schedule. After trial, it was found that the
FFBP NN was able to allocate the new section in the proper classroom that carries
same features as the new section without changing the rest of the pre-existing room

allocations.
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Chapter 5: Conclusion and Future Work

This thesis has examined a new approach to solve university classroom
scheduling problems using an artificial intelligence technique. Classroom scheduling
is a very complex task due to many parameters and frequent changes in requirements.
The proposed methodology is divided into two main phases. The first phase uses a
Self-Organizing Feature Map (SOM) to cluster the generated input patterns, which
consists of five different constraints. This set of data points were generated from
United Arab Emirates University (UAEU) study plans for Mechanical and Electrical
Engineering courses. The second phase uses a back-propagation algorithm to modify
the SOM-generated timetable in order to accommodate newly created sections without

requiring a complete change of the existing schedule.

In the first phase of this research, 78 data points (sections) were used as input
vectors to SOM network. The output results with clustered sections assigned to each
neuron (classroom) carry similar features, which are considered as a mark for conflict.
In the case of the SOM producing an overloaded classroom, additional clustering was
done to remove the overloaded sections and separate them to two days or two different
classrooms. The second phase of scheduling occurs when the first draft schedule needs
to be modified. For example, if a new section is opened after the initial schedule is
created. In these cases, the Back-propagation neural network is used to fit the new

section into the created timetable.

The Matlab software was used to write and run the networks. All code was
written using the command lines in Matlab. Although Matlab has a Neural Network
tool box (nntool), it was not easy to manipulate and test with the parameters of the

network. That is why the command lines were used.
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After several runs and fine-tunings of the networks, the results reveal that the
proposed model can create an initial guess of a valid classroom schedule. The SOM
NN was able to cluster the sections according to their similarities, which revealed the
areas of conflict. For example, the SOM NN split the lab sections and the lecture
sections, demonstrating that it was able to identify that the lab sections needed to be
treated carefully when it comes to scheduling. A similar case found in this
investigation is that the SOM also separated the course levels into groups, which
highlights the SOM’s recognition of similarities within these sections. The benefit of
this distinction is that this grouping of sections by level prevents students from
experiencing delays in their study plans. Further, it was noticed that the SOM grouped
the professors who teach the same sections together, which also emphasized the fact
that SOM was able to show the regions where scheduling may have conflicts. Also, in
many cases the SOM was able to prioritize the features in such a way that the strongest
(dominant) feature took the lead and had the most significant effect on a specific group
of sections, i.e. in the case of scheduling lab sections. Additionally, when a classroom
became overloaded, a further splitting was done to overcome this issue. After this, the
resultant from the splitting separates the scheduled sections into two different days in

the week, thus alleviating the overload in the particular classroom.

To further test the efficacy of this system, a new constraint--detailed timeslots-
-was added to create a first draft of a timetable for random professors. This was done
manually to prove that it is possible to generate conflict-free first draft classroom

schedules.

Another neuron network was used to modify the produced classroom

scheduling without the need to change the whole content of the already existing
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schedule. This neural network is FFBP NN. As the FFBP does not stop learning, but

instead continues to adapt to changing inputs, this allows the network to adjust to unexpected

environmental changes, such as fitting a newly opened section into a pre-existing schedule.

The findings above show that when a proposed conflict occurred in professor ID, time
restrictions, course conflict and classroom requirements, the system was capable of finding a
solution. The proposed model enables the easy generation of conflict-free classroom

timetables and it is predicted that the procedure can be extended and implemented in
fields other than academia such as factories, healthcare, and transportation. The
successes of using the artificial intelligence approach for classroom scheduling proves

that the concepts in this research are valid.

Recommendations for further study: A comparative study is recommended to
justify the superiority of this approach to other heuristic-based or mathematical-based
models available in the literature. Additional features and analysis are recommended
to investigate the differences in the SOM and to perform better clustering. Also, more
tests and applications of this model need to be implemented to further prove its
efficacy. . This model (artificial intelligence approach) has particular application for
UAE, as it has potential to benefit the growing number of industries within the UAE,

such as the healthcare field and transportation industry, along with many others.
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Appendix

Table 33: Raw data with constraints (1)

Four lectures each room Four lectures each room Four lectures each room Four lectures each room
Original data
Prof ID 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4
Course 3 4 4 3 3 4 5 5 3 4 6 4 3 4 5 5
Level
Course 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1
(Theory/
Lab)
course 48 29 30 11 6 33 40 42 10 50 15 17 11 29 31 30
name
Time 0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1
(AM/PM)
Co-course 0 8.7 9 0 0 0 0 0 2 10 0 0 0 0 0 0
Course Fluid Thermo-  Thermal Applied Manuf. Intro. Selected Introto  Dynamic System Adv. Kinematic ~ Applied Thermo. Introd. to SEL Topics
Name Mechanic fluid Eng.lab ~ Thermo.  process to topics in Com. Dynamic ~ Dynamic Thermo System Robotics in
(letters) lab System CAM  Manufact.  Design lab and Mechatronic
Control
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Table 34: Raw data with constraints (2)

Four lectures each room

Four lectures each room

Four lectures each room

Four lectures each room

Original data
5 5 5 5 6 6 6 6 7 7 7 7 8 8 8
4 5 3 3 4 3 4 4 4 3 4 3 4 3
1 1 1 390 1 1 1 1 1 0 1 1 1 1 0 0
33 42 6 90 7 6 12 40 17 50 10 7 29 11 30 48
0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 10 0 0 8.7 0 9 0
Intro Intro to Manuf.  Engineering Machine  Manuf.  Machine Design and Kinematics System Dynamics  Machine Thermo. Applied Thermal Fluid
to Composites  process Materials Design |  process  Design  Manufacturing Dynamics Design | System Thermo  Engineering  Mechanics
CAM Design 1l Lab lab lab lab
Table 35: Raw data with constraints (3)
Four lectures each room Four lectures each room Four lectures each room Four lectures each room
Original data
9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12
5 3 3 3 3 3 3 3 3
1 1 1 1 0 1 1 1 1 0 1 1
20 23 42 6 23 5 10 20 25 30 35 20 45 36 35 70
0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Selected  Biomaterials Intro to Manuf.  Biomaterials  Electric  Electric  Electric Engineering Computer Digital  Electric  Digital  Signals  Digital  Electronic
Topic in Composites  process Circuits ~ Circuits ~ Circuits  Electromagnetics ~ Programming  Logic ~ Circuits  Logic & Logic Circuits
Bio. Design | I lab 1 Design 1 Design  Systems  Design
Lab
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Table 36: Raw data with constraints (4)

Four lectures each room Four lectures each room Four lectures each room Four lectures each room
Original data

13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16

3 3 4 4 4 4 4 4 5 5 5 6 5 5 6 6

1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1

72 75 51 61 51 61 62 72 62 82 85 0 82 85 18 25

1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Electro- Electro.  Microproces  Microproces  Microproces Microproces Comp. Power Embed Ang. Grad. Numerica  Ang. Grad. Microwave  Power
Mechanica  Circuits Lab Lab Arch. & System System Integ. Project | Methods  Integ. Project | Eng. System
| Devices Lab Organizat Design Cir. in Eng. Cir. Quality

Table 37: Raw data with constraints (5)

Four lectures each room Four lectures each room Four lectures each room Four lectures each room
Original data
17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20
6 6 6 5 6 5 5 6 6 5 6 6 4 4 5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
37 41 18 25 85 0 82 85 18 25 85 18 94 62 72 62
1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sensors Contemp. Microwave  Power Grad. Numerica  Analog Grad. Microwave  Power Grad. Microwave  Research/Design Comp. Power Embed
Design and Digital Eng. Sys. Project | | Methods Integ. Project | Eng. System Project | Eng. paper Arch. & System System
App. Systems Qu. in Eng. Circuit Quality Organizat Dg.
Dg.
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Table 38: Input data after clustering by SOM - normalized

Neuron | Professor | Course | Course | Course
Number | ID level Type name Timing
1| 0.473684 0 1| 0.224719 1
1| 0.526316 0 1| 0.292135 1
1| 0.526316 0 1| 0.337079 1
2 0 | 0.333333 1| 0.235955 1
2 | 0.052632 | 0.333333 1 | 0.314607 1
2 | 0.263158 | 0.333333 1| 0.078652 1
3| 0.105263 0 1| 0.05618 1
3| 0.157895 0 1| 0.067416 1
3| 0.157895 0 1| 0.393258 1
3| 0.210526 0 1| 0.011236 1
3| 0.210526 0 1 0 1
4| 0.105263 | 0.333333 1 | 0.044944 0
4| 0.105263 | 0.333333 1| 0.134831 0
4| 0.210526 | 0.333333 1 | 0.314607 0
4| 0.263158 | 0.333333 1| 0.022472 0
4| 0.315789 | 0.333333 1| 0.134831 0
4| 0.368421 | 0.333333 1| 0.235955 0
5| 0.315789 0 1 | 0.044944 0
5| 0.368421 0 1| 0.067416 0
5| 0.473684 0 1| 0.168539 0
5| 0.473684 0 1| 0.168539 0
5| 0.526316 0 1| 0.157303 0
5| 0.526316 0 1| 0.348315 0
6 0 | 0.333333 0 | 0.280899 0
6| 0.157895 0 0 | 0.483146 0
6| 0.157895 0 0 | 0.483146 0
6 | 0.263158 | 0.333333 0 | 0.393258 0
6 | 0.315789 | 0.333333 0| 0.101124 0
7 | 0.368421 0 1| 0.88764 1
7 | 0.578947 0 1| 0.730337 1
8 0 | 0.666667 1|0.101124 1
8 0 | 0.666667 1| 0.078652 1
8 | 0.052632 | 0.666667 1 | 0.404494 1
8 | 0.052632 | 0.666667 1| 0.41573 1
8 | 0.315789 | 0.666667 1| 0.505618 1
8 | 0.421053 | 0.666667 1| 0.168539 1
8 | 0.421053 | 0.666667 1|0.179775 1
9 | 0.052632 | 0.666667 1| 0.393258 0
9 | 0.105263 | 0.666667 1| 0.011236 0
9| 0.210526 | 0.666667 1| 0.41573 0
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Table 38: Input data after clustering by SOM — normalized (Continued)

Neuron | Professor | Course | Course | Course
Number ID level Type name | Timing
9| 0.263158 | 0.666667 1| 0.449438 0
9 | 0.421053 | 0.666667 1| 0.202247 0
10 | 0.631579 0 1| 0.752809 0
10 | 0.631579 | 0.333333 1| 0.516854 0
10 | 0.684211 | 0.333333 1| 0.516854 0
12 | 0.473684 0 0| 0.05618 0
12 | 0.578947 0 0 | 0.449438 0
12 | 0.578947 | 0.333333 0 | 0.314607 0
12 | 0.631579 0 0| 0.786517 0
12 | 0.684211 | 0.333333 0| 0.629213 0
13 | 0.842105 1 1| 0.359551 1
13 | 0.842105 1 1 | 0.404494 1
13 | 0.894737 1 1| 0.224719 1
13 | 0.894737 | 0.666667 1|0.292135 1
13 | 0.947368 | 0.666667 1| 0.191011 1
13 | 0.947368 | 0.666667 1| 0.078652 1
14 | 0.578947 | 0.333333 1 | 0.640449 1
14 | 0.684211 | 0.333333 1 | 0.640449 1
14 | 0.684211 | 0.333333 1| 0.752809 1
14 1| 0.333333 1 | 0.640449 1
15 | 0.736842 | 0.666667 1| 0.865169 1
15 | 0.736842 | 0.666667 1| 0.898876 1
15 | 0.789474 | 0.666667 1| 0.865169 1
15 | 0.789474 | 0.666667 1| 0.898876 1
15 1 | 0.666667 1 | 0.640449 1
16 | 0.736842 | 0.666667 1 | 0.640449 0
16 | 0.736842 1 1 | 0.876404 0
16 | 0.894737 1 1 1 0
16 | 0.894737 | 0.666667 1| 0.898876 0
16 1 | 0.666667 1| 0.898876 0
16 1| 0.666667 1| 0.52809 0
17 | 0.789474 1 1 | 0.146067 0
17 | 0.789474 1 1| 0.224719 0
17 | 0.842105 1 1 | 0.146067 0
17 | 0.842105 1 1| 0.224719 0
17 | 0.947368 | 0.666667 1|0.179775 0
17 | 0.947368 | 0.666667 1| 0.179775 0
18 | 0.421053 | 0.666667 0 | 0.898876 0
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Table 39: Input data after clustering by SOM - de-normalized

Timing

Course
name

25
31

35
26

33

12
10
11
40

17
33

17
26

11
20
20

19
36

30
48

48

40

14
84

70
14
12
41

42

50
20
21

40

42

Course
Type

Course
level

Professor

ID

10
11
11

10
10

11
11

12

Neuron

Number




Table 39: Input data after clustering by SOM - de-normalized (Continued)

Neuron | Professor | Course | Course | Course
Number ID level Type name | Timing
9 6 5 1 45 0
9 9 5 1 23 0
10 13 3 1 72 0
10 13 4 1 51 0
10 14 4 1 51 0
12 10 3 0 10 0
12 12 3 0 45 0
12 12 4 0 33 0
12 13 3 0 75 0
12 14 4 0 61 0
13 17 6 1 37 1
13 17 6 1 41 1
13 18 6 1 25 1
13 18 5 1 31 1
13 19 5 1 22 1
13 19 5 1 12 1
14 12 4 1 62 1
14 14 4 1 62 1
14 14 4 1 72 1
14 20 4 1 62 1
15 15 5 1 82 1
15 15 5 1 85 1
15 16 5 1 82 1
15 16 5 1 85 1
15 20 5 1 62 1
16 15 5 1 62 0
16 15 6 1 83 0
16 18 6 1 94 0
16 18 5 1 85 0
16 20 5 1 85 0
16 20 5 1 52 0
17 16 6 1 18 0
17 16 6 1 25 0
17 17 6 1 18 0
17 17 6 1 25 0
17 19 5 1 21 0
17 19 5 1 21 0
18 9 5 0 85 0
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Matlab codes:

Self-organizing feature map neural network code in Matlab:

clear; % delete all memory
clc; clear windows screen
clf; % clear figure screen

o\

net = selforgmap([2,1],100,4, "topologyFcn', '"hextop', 'distanceFcn',
'linkdist');

% Input data "P"

P = xlsread('Bookl.xlsx'");

% Configure inputs & outputs
net = configure (net,P);
$net = setwb (net,k);

Q

% Figure network before training
plotsompos (net, P) ;

% Set the SOM Traning parameters stage
net.trainParam.epochs =10000;

%31lp = learnsomb ('pdefaults');
%lp.order 1lr = 0.1;

$net.trainParam.LP = [];
$w = rand(6,2);
%[dw,1s] = learnsom(w,p,[],[]l,a,[],[1,[1,[]1,d,1p,1s)

Q

% Traning stage
net= train (net,P);
% Figure network after training
plotsompos (net,P);

% Results in matrix
outputs = net (P);

%plotsompos (net,outputs);

$for each input in inputs, op som will have a numbering between 1 to
n based on which cluster it belongs to.
op_som=vec2ind(sim (net, (P)))"';

Q

% convert a sparse matrix to full
outputs = full (outputs);

output this to a file (excel)
xlswrite ('testO.csv',outputs);
xlswrite('testl.csv',op som);



Sview (net)
centers = net.IW;

$nntraintool close
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color coding Code = som colorcode (outputs) ;

Feedforward Back-propagation neural network code in Matlab:

clear;

clc;

data= xlsread('Bookl.xlsx');
Input= ((data([1:64], [1:5]

out= (data([1l:64]7, [6]));

In=[Input ones(size (Input,1l)

input data

NN=30;

hidden layer
NN2=20;

hidden layer
[m,n]=size (In);
Nout=size (out, 2);
A=-0.5; B=0.5;
Wl= A+ (B-A) *rand(n,NN-1);
definition
[e,r]=size (W1);

W2= A+ (B-A) *rand(r+1,NN2-1);

definition

W3= A+ (B-A) *rad (NN2,Nout) ;
definition

eta=0.1; alfa=0.1;
Wln=zeros (size (W1l)) ;
E=10;

epoch=0;
EWl=zeros(m,r);
EW2=zeros (m,NN2) ;
DWlf=zeros (size (W1l)
DW2f=zeros (size (W2)
DW3f=zeros (size (W3)

Hl= In*Wl;
Hlf= 1./ (l+exp( - H1));

Hl1f= [H1f ones(size (H1f,1)

while E>0.01
H2= H1f*W2;
H2f= 1./ (l+exp( - H2));

H2f= [H2f ones(size (H2f,1)

Ol= H2f*W3;
Of= 1/ (l+exp( - 01));
error= out - Olf;

D=error.*01f .* (1-01f);

DW3=eta* (D') *H2f;
Iw3=W3"';

°

for i=l:size (D, 1)

1)1

o\

o\

%Cleaning previous DATA

$Training data Input

$Defining the input range
$Defining the output range

%Adding Bias column to the
$neurons for the first

$neurons for the second

%$initial weights range
$First weights layer

%$second weights layer
$thired weights layer

%$Learning rate definition

$first layer calculation

1) 17

%definig loop condition
%$second layer calculation

1)1

%$third layer calculation

$error calculation
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EW2 (i,:)=D(i,1)*Iw3;

o

APPlying Wight changes to the

i=i+1; % second Hidden Layer
end %
s=EW2 (:, (l:size (EW2,2)-1));
o=H2f.* (1-H2f) ; %$last layer wights changes

0o=0(:,(l:size(o0,2)-1));
s=s.%0;%
DW2=eta*Hlf*s;

o\

W2=W2+DW2 ; %new weights
W3=W3+DW3"';
DW1f=W1;
DW2f=W2;
DW3f=W3;
E=round(0.5* (sum( ( (error.*error)))),3);
epoch = epoch + 1;
if rem(epoch,50)== % Every 50 epochs, show how training
is doing
disp([' Epoch ' num2str (epoch) ' SSE !
num2str(E) 1) ;
end
end

check= xlsread('Bookltest.xlsx'); %Testing Results inputs and
calculations

x= (check([1:15], [1:51)):

Xx=[x ones(size (x,1),1)]1;

x1=x*W1;

x1f=1./(1l+exp( - x1));

x1f= [x1f ones(size(x1f,1),1)];
x2=x1f*W2;

x2f=1./(1l+exp( - x2));

x2f= [x2f ones(size(x2f,1),1)];
yl= x2f*W3;

ylf=( 1./ (14+exp( - y1)))

cout=01f;

beep, pause(0.5), beep,pause(0.5), beep,pause(0.5),
beep,pause (0.5), beep

Centers (weight of the neurons after cluster) in matrix size (18X5)

[ 0.508771929666667 0 1 0.284644194666667 1
0.122807017666667 0.166666666500000 1 0.191011235833333 1
0.151315789625000 0.500000000000 1 0.2380617978125 0.375
0.157894737000000 0.333333333000000 1 0.224719101500000 0

0.463157894800000 0 1 0.177528090000000 0
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