
United Arab Emirates University United Arab Emirates University

Scholarworks@UAEU Scholarworks@UAEU

Mechanical Engineering Theses Mechanical Engineering

4-2018

ARTIFICIAL INTELLIGENCE APPROACH FOR CLASSROOM ARTIFICIAL INTELLIGENCE APPROACH FOR CLASSROOM

SCHEDULING SCHEDULING

Farah M. T. Aiash

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/mechan_theses

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
T. Aiash, Farah M., "ARTIFICIAL INTELLIGENCE APPROACH FOR CLASSROOM SCHEDULING" (2018).
Mechanical Engineering Theses. 10.
https://scholarworks.uaeu.ac.ae/mechan_theses/10

This Thesis is brought to you for free and open access by the Mechanical Engineering at Scholarworks@UAEU. It
has been accepted for inclusion in Mechanical Engineering Theses by an authorized administrator of
Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

https://scholarworks.uaeu.ac.ae/
https://scholarworks.uaeu.ac.ae/mechan_theses
https://scholarworks.uaeu.ac.ae/mechanical
https://scholarworks.uaeu.ac.ae/mechan_theses?utm_source=scholarworks.uaeu.ac.ae%2Fmechan_theses%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.uaeu.ac.ae%2Fmechan_theses%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/mechan_theses/10?utm_source=scholarworks.uaeu.ac.ae%2Fmechan_theses%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

iii

Copyright © 2018 Farah M. T. Aiash

 All Rights Reserved

iv

Advisory Committee

1) Advisor: Dr. Basem Fayez Yousef

Title: Associate Professor

Department of Mechanical Engineering

College of Engineering

2) Co-advisor: Dr. Khalifa Hamad Harib

Title: Associate Professor

Department of Mechanical Engineering

College of Engineering

vii

Abstract

Companies, factories, and academic institutes often rely on planning and controlling

scheduling of production lines or classrooms to ensure efficient utilization of

resources. Task scheduling is a complex nonlinear process, due to numerous

constraints, parameters and frequent, sudden changes in the requirements. The aim of

this project is to explore the utilization of artificial intelligent neural networks in the

preparation of classroom scheduling by utilizing their adaptive attributes and learning

ability to establish a procedure for classroom timetable preparation. A set of input

vectors comprising five constraints are introduced to a Self-Organizing Feature Map

(SOM) neural network for classroom sections classification and separation, using

some cluster centers equal to the available rooms. The SOM demonstrated strong

capability in clustering the sections into groups comprising courses with conflicts

based on the defined constraints, hence identifying classes to be sequentially scheduled

in one room. A second stage SOM is used to further split oversized clusters. Moreover,

to fit newly created classrooms into the SOM generated timetable, the output from

SOM is used to train a Feedforward Back Propagation (FFBP) neural network to

extract the implicit course-classroom mapping as formulated by the SOM. The trained

FFBP is used to accommodate the new courses without the need to re-cluster with

SOM. The trained FFBP managed to prepare a conflict-free schedule successfully. The

outputs of the integrated neural networks show that the proposed model can create an

initial guess of a valid classroom schedule. It is envisaged that the procedure can be

extended and implemented in fields other than academia such as factories, healthcare,

and transportations.

Keywords: Classroom scheduling, artificial intelligent neural networks, Self-

Organizing Feature Map neural network, Feedforward Back Propagation neural

network.

viii

Title and Abstract (in Arabic)

 استخدام الذكاء الاصطناعي في جدولة الصفوف الدراسية

 صالملخ

ُوأُالإنتاجُخطوطُجدولةُومراقبةُتخطيطُ ُعلىُالأكاديميةُوالمعاهدُوالمصانعُالشركاتُتعتمدُ

عقدةُمُعمليةُهيُالمهامُجدولة.ُالمتاحةُللمواردُمثلالأُالاستخدامُلضمانُذلك؛ُوالدراسيةُالفصول

ُتعقيدهاُاضيا؛ًريُ(Non-linear)ُخطيةُغير ُسبب ُالكثيرُيعود ُوالعواملُالقيودُمنُإلى

ُفيُالمفاجئةُتغيراتموال ُالمتطلباتُوالمتكررة ُاستخدامالكشفُعنُُالمشروعُهذاُمنُالهدف.

ُفي (Artificial Intelligent Neural Networks) الاصطناعيةُالذكيةُالعصبيةُالشبكات

ُالتعلمُعلىُوالقدرةُالتكيفُسماتُمنُادةالاستفُخلالُمنُالدراسيةُالفصولُجدولةُإعداد

ُ ُلإعداد ُيالدراسُلالفصجدولُواستخدامها Input)ُالإدخالُناقلاتُمنُمجموعةُإدخالُيتم.

vector)ُُُالتنظيمُذاتيةالعصبيةُُخريطةالُشبكةُإلىُقيودُخمسةُمنُتتألفوالتيُبدورها(Self-

Organizing Mapُ)ُددعُباستخدامُذلكيتمُوُ،وعاتالموادُالدراسيةُوفصلهاُإلىُمجمُلتصنيف

بيةُالعصُالخريطةُشبكةُأظهرتُ.المتاحةُالدراسيةُالفصولُلعددُمساويةُالعنقوديةُالمراكزُمن

ُالمساقاتإُالمساقاتُتصنيفُفيُعاليةالُقدرتهاُ(SOM)ُالتنظيمُذاتية ُتشمل ُمجموعات ُلى

ولةٍُالمساقاتُبطريقة ُجدُيدتحدُوبالتاليُ.خذُبعينُالاعتبارُالمحدداتُالمذكورةمعُالأالمتعارضةُ

 (SOM) التنظيمُُالعصبيةُذاتيةُالخريطةُوتستخدمُشبكة متسلسلةٍُفيُالفصلُالدراسيُالواحد.

ُذلك،ُعلىُوعلاوة.ُالمتكدسةُمساقاتالمزيدُمنُالتصنيفُفيُحالُوجودُتجمعاتُكبيرةُمنُالُفي

ُالخريطةُشبكةُوماتُالمعدةُفيعلىُالمعل وبناءُ.-إنشاؤهاُتمُغيرُالتي-ُمساقاتُجديدةُضافةيتمُا

علىُمخرجاُقبل؛منُُ(SOM)ُالتنظيمُالعصبيةُذاتية ُالخريطةُشبكةُ(Output vector)تُنعتمدُ

ُةُالعصبيةشبكالتخدامهاُكمدخلاتُلتدريبُاسيتمُالتيُبدورهاُ (SOM) التنظيمُالعصبيةُذاتية

 Feedforward Back Propagation (FFBP)) الارتداديرُماميةُوالانتشاذاتُالتغذيةُالأ

neural network)ُالدراسيُالمناسبُللمساقُالجديُلاستخراج ؛ ُشبكةُصاغتهاُكما دالفصل

ُذاتيةُالخريطة ُُيتموُ.(SOM)ُالتنظيمُالعصبية ُالأُالشبكةاستخدام ماميةُالعصبيةُذاتُالتغذية

ُإعادةُإلىُجةالحاُدونُالمساقاتُالجديدةُلاستيعابُمسبقاًُُلمدربةاFFBPُ)) والانتشارُالارتدادي

تُالشبكةُالعصبيةُتمكنقدُُو.ُ(SOM)ُالتنظيمُالعصبيةُذاتيةُالخريطةُشبكةُباستخدامُالتصنيف

للفصولُالدراسيةُُجدولُإعدادُمنُالمدربةFFBP)) ماميةُوالانتشارُالارتداديذاتُالتغذيةُالأ

ُالمقترحُالنموذجُأنُالمتكاملةُالعصبيةُالشبكاتُمخرجاتُتظهرُ.بنجاحُالتعارضاتُمنُخال

ix

ُاءالإجرُهذاُيمتدُأنُالمتصورُومنُة.دراسيالُالفصولُةجدولُُُيخمنُبشكلُفعالٍُأوليُأنُيمكن

ُ.والنقلُالصحيةُوالرعايةُالمصانعُمثلُالأكاديميةُالأوساطُغيرُاخرىُميادينُفيُوينفذ

ُشبكةُية،الاصطناعُالذكيةُالعصبيةُجدولةُالفصولُالدراسية،ُالشبكاتُ:مفاهيم البحث الرئيسية

ُذاتيةُالخريطة ُ(SOM)التنظيمُالعصبية ُالأ، ُالتغذية ُذات ُالعصبية ُوالانتشارُالشبكة مامية

 .FFBP)) الارتدادي

x

Acknowledgements

I am most grateful to my supervisor Dr. Basem Yousef for all his patience,

guidance and enthusiasm. The door to Dr. Basem’s office was always open whenever

I ran into a trouble spot or had a question about my research or writing. He

consistently allowed this thesis to be my work, but steered me in the right the

direction whenever he thought I needed it. It was an honor for me to work under his

exemplary supervision. I am also very grateful to Dr. Khalifa Harib for his support

and encouragement. I also would like to acknowledge Dr. Khalid Al Arebi for his

contributions in the early stages of this research.

Many thanks go to Dr. Tariq Darabseh, master program coordinator of the

Mechanical department, for his guidance and support. I would like to thank my

committee for their guidance and assistance throughout my preparation of this thesis.

Also, my special thanks are extended to the Library Research Desk for providing me

with the relevant reference material.

Finally, I must express my very profound gratitude to my parents, my spouse

and my friends for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process of researching

and writing this thesis. This accomplishment would not have been possible without

them. Thank you.

xi

Dedication

This thesis is dedicated to

my husband Ahmed

who’s love and encouragement made this thesis possible

and my parents and family

who have always supported me in everything I’ve attempted

xii

Table of Contents

Title ... i

Declaration of Original Work .. ii

Advisory Committee ... iv

Approval of the Master Thesis ... v

Abstract .. vii

Title and Abstract (in Arabic) ... viii

Acknowledgements .. x

Dedication ... xi

Table of Contents ... xii

List of Tables .. xiv

List of Figures .. xv

List of Abbreviations .. xvi

List of Symbols .. xvii

Chapter 1: Introduction .. 1

1.1 Overview .. 1

1.2 Problem Statement and Purpose .. 1

1.3 Intended Outcomes and Deliverables .. 2

1.4 Relevant Literature ... 3

1.5 Report Structure ... 9

Chapter 2: Introduction to ANN .. 10

2.1 Basic Concept of ANN .. 10

2.2 Benefits of Neural Network ... 11

2.3 Models of a Neuron ... 12

2.4 Self-Organizing Feature Map (SOM) .. 14

2.4.1 Self-Organizing Feature Map Structure ... 15

2.4.2 Self-Organizing Feature Map Algorithm ... 15

2.5 Multi-Layer Perceptron Neural Network (MLP) 22

2.6 Back-Propagation Neural Network (BP) ... 22

2.6.1 Back-Propagation Neural Network (BP) Structure 23

2.6.2 Back-Propagation Neural Network (BP) Algorithm 24

2.6.3 Summary of the Back-Propagation Algorithm 31

Chapter 3: Methodology .. 37

3.1 Overview of ANNs .. 37

3.2 Classroom Scheduling Problem ... 38

3.3 Creation of Data Point Samples ... 41

xiii

3.3.1 Data Normalization .. 44

3.4 ANN Formation ... 47

3.5 Implementing SOM Neural Network ... 47

3.6 Implementing FFBP Neural Network .. 51

Chapter 4: Tests Results and Discussion ... 56

4.1 Mathematical Modeling of SOM for Classroom Scheduling 56

4.2 SOM Neural Network Parameters for Tests in MATLAB 59

4.3 SOM Results and Discussion ... 61

4.3.1 Matlab Analysis Plots .. 61

4.3.2 Classroom Scheduling Constraints Analysis 67

4.4 Mathematical Modeling of FFBP NN for classroom scheduling 79

4.5 Back-Propagation Parameters for Tests in MATLAB 80

4.6 FFBP NN Results and Discussion ... 81

4.6.1 Learning Phase: .. 81

4.6.2 Testing and Validating Phase ... 82

4.6.3 Results and Discussion ... 83

4.7 Discussion in Summary ... 85

Chapter 5: Conclusion and Future Work ... 87

References .. 90

List of Publications .. 94

Appendix .. 95

xiv

List of Tables

Table 1: Different types of activation function .. 13

Table 2: Mapping constraints and input parameters .. 42

Table 3: Original data with constraints .. 43

Table 4: Data after normalization .. 46

Table 5: Cluster 1 (Classroom1) sections normalized ... 68

Table 6: Cluster 1 (Classroom 1) sections de-normalized ... 68

Table 7: Cluster 2 (Classroom 2) sections normalized .. 69

Table 8: Cluster 2 (Classroom 2) sections normalized .. 69

Table 9: Cluster 4 (Classroom # 4) Overloaded with 6 sections before

separation ... 69

Table 10: Cluster 4 (Classroom #4) part A after separation 70

Table 11: Cluster 4 (Classroom #4) part A de-normalized .. 70

Table 12: Cluster 4 (Classroom #4) part B after separation 70

Table 13: Cluster 4 (Classroom #4) part B de-normalized .. 70

Table 14: Cluster 6 (Classroom #6) normalized .. 71

Table 15: Cluster 6 (Classroom #6) de-normalized ... 71

Table 16: Cluster 12 (Classroom #12) normalized .. 72

Table 17: Cluster 12 (Classroom #12) de-normalized ... 72

Table 18: Cluster 18 (Classroom #18) normalized .. 72

Table 19: Cluster 18 (Classroom #18) de-normalized ... 72

Table 20: Cluster 10 (classroom #10) normalized ... 73

Table 21: Cluster 10 (Classroom #10) de-normalized ... 73

Table 22: Cluster 8 (Classroom #8) before second stage SOM (separation) 74

Table 23: Cluster 8 (Classroom #8) after second stage SOM normalized 74

Table 24: Cluster 8 (Classroom #8) after second stage SOM de-normalized 75

Table 25: Detailed time slots per classroom .. 76

Table 26: Professor ID #1 timetable .. 76

Table 27: First draft of Professor ID #1 timetable ... 77

Table 28: Professor ID #2 timetable .. 77

Table 29: First draft of Professor ID #2 timetable ... 77

Table 30: Professor ID #6 timetable .. 78

Table 31: First draft of Professor ID #6timetable .. 78

Table 32: Cluster 2 (Classroom #2) sections normalized .. 78

Table 33: Raw data with constraints (1) .. 95

Table 34: Raw data with constraints (2) .. 96

Table 35: Raw data with constraints (3) .. 96

Table 36: Raw data with constraints (4) .. 97

Table 37: Raw data with constraints (5) .. 97

Table 38: Input data after clustering by SOM - normalized 98

Table 39: Input data after clustering by SOM - de-normalized 100

xv

List of Figures

Figure 2.1: The basic structure of the neuron .. 13

Figure 2.2: Self-organizing feature map .. 15

Figure 2.3: Gaussian curve-neighborhood function ... 17

Figure 2.4: SOM network during the process of cooperation 18

Figure 2.5: Flowchart of self-organizing map neural network algorithm 21

Figure 2.6: Illustration of signal flow for (operating signal and error signal)

in multi-layer perceptron ... 23

Figure 2.7: Flowchart for a neural network in learning mode 35

Figure 2.8: Flowchart for a neural network in operation mode 36

Figure 3.1: Black box for the final product .. 40

Figure 3.2: Flowchart for ANN Creation ... 41

Figure 3.3: Graphical representation of first stage of sections (courses)

separation .. 50

Figure 3.4: Graphical representation of SOM separations ... 51

Figure 3.5: Learning mode in FFBP NN ... 53

Figure 3.6: Graphical representation of the operational mode in FFBP NN 53

Figure 3.7: Chart representation of AI approach for classroom scheduling 55

Figure 4.1: SOM NN-mathematical model .. 57

Figure 4.2:Three different types of topologies, HexTop, GridTop and

RandTop .. 60

Figure 4.3: SOM before training .. 62

Figure 4.4: SOM after training ... 63

Figure 4.5: (6X3) 2D-hexagonal topology ... 63

Figure 4.6: Clusters (Classrooms) distribution in (6X3) SOM topology 64

Figure 4.7: SOM neighbor weight distance for sections clustering 65

Figure 4.8: Weight input plane plot ... 66

Figure 4.9: SOM sample hits- input points (sections) after clustering 66

Figure 4.10: Weight input plane plot of cluster # 1 ... 67

Figure 4.11: Backpropagation neural network with two hidden layers 80

Figure 4.12: Predicted vs. target training sets .. 82

Figure 4.13: Predicted vs. target testing sets .. 83

Figure 4.14: Prediction results for training and test set by FFBP network 5-

30-20 ... 84

file:///E:/Final%20Draft-thesis.docx%23_Toc513136959
file:///E:/Final%20Draft-thesis.docx%23_Toc513136960
file:///E:/Final%20Draft-thesis.docx%23_Toc513136961
file:///E:/Final%20Draft-thesis.docx%23_Toc513136962
file:///E:/Final%20Draft-thesis.docx%23_Toc513136963
file:///E:/Final%20Draft-thesis.docx%23_Toc513136964
file:///E:/Final%20Draft-thesis.docx%23_Toc513136964
file:///E:/Final%20Draft-thesis.docx%23_Toc513136965
file:///E:/Final%20Draft-thesis.docx%23_Toc513136966
file:///E:/Final%20Draft-thesis.docx%23_Toc513136967
file:///E:/Final%20Draft-thesis.docx%23_Toc513136968
file:///E:/Final%20Draft-thesis.docx%23_Toc513136969
file:///E:/Final%20Draft-thesis.docx%23_Toc513136969
file:///E:/Final%20Draft-thesis.docx%23_Toc513136970
file:///E:/Final%20Draft-thesis.docx%23_Toc513136971
file:///E:/Final%20Draft-thesis.docx%23_Toc513136972
file:///E:/Final%20Draft-thesis.docx%23_Toc513136973
file:///E:/Final%20Draft-thesis.docx%23_Toc513136974
file:///E:/Final%20Draft-thesis.docx%23_Toc513136976
file:///E:/Final%20Draft-thesis.docx%23_Toc513136977
file:///E:/Final%20Draft-thesis.docx%23_Toc513136978
file:///E:/Final%20Draft-thesis.docx%23_Toc513136979
file:///E:/Final%20Draft-thesis.docx%23_Toc513136980
file:///E:/Final%20Draft-thesis.docx%23_Toc513136981
file:///E:/Final%20Draft-thesis.docx%23_Toc513136982
file:///E:/Final%20Draft-thesis.docx%23_Toc513136983
file:///E:/Final%20Draft-thesis.docx%23_Toc513136984

xvi

List of Abbreviations

AI

ANN

Artificial Intelligence

Artificial Neural Network

SOM Self-Organizing Map

FFBB Feed Forward Back-propagation

NN Neural Network

MLP Multi-Layer Perceptron

GUI Graphical User Interface

LMS Least Mean Squares

https://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_lms_algorithms/

xvii

List of Symbols

𝑖 Synapse

𝑥𝑖 Signal input

𝑗 Neuron

𝑤𝑗𝑖 Weight

𝑦𝑗 Output signal, actual output

∅(𝑥), 𝑓 Activation function

𝑥(𝑛) Input vector

𝑤(𝑛) Weight vector

x, y Cartesian-coordinates

𝑖 (𝑥⃗) Closest weight vector, (distance)

𝑙 The total number of output neurons in the network

𝑑𝑗,𝑖 The lateral distance

(𝑛) Iterations

σ The width of the Gaussian function, also it is called the

neighborhood radius

𝜎𝑜 The initial 𝜎

Ʈ1 The time constant

ℎ𝑗,𝑖(𝑥⃗)(𝑛) Neighborhood function

𝑟𝑗 The position vector of the excited neuron 𝑗

𝑟𝑖 The position vector of the winning neuron 𝑖

∆𝑤𝑗⃗⃗⃗⃗⃗ Updated weight

𝜂 The learning rate parameter

https://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_lms_algorithms/

xviii

𝜏2 Another time constant

𝑔(𝑦𝑗)𝑤𝑗⃗⃗⃗⃗⃗ The forgetting term

E (n) The error energy at iteration n

𝑒𝑗(𝑛) The error signal

𝑑𝑗 (𝑛) The desired response or target output for neuron 𝑗 at

iteration n

𝐸𝑎𝑣𝑔(𝑛) The average square energy

𝑣𝑗(𝑛) Induced local field of a neuron 𝑗 is the output of the

summation unit

𝜕 Partial differentiating

∅́ (𝑣𝑗(𝑛)) Differentiated activation function with respect to 𝑣𝑗(𝑛)

𝛿𝑗(𝑛) Local gradient

𝑘 new index to avoid any confusion between neuron 𝑗

𝑜𝑗 The function signal at the output neuron 𝑗

α Momentum constant

1

Chapter 1: Introduction

1.1 Overview

Scheduling problems have been the subject of research for decades. According

to (Wren, 1995), scheduling is the constraint of resources to objects, being placed in

space-time in such a way as to minimize the total cost of a set of the resources used.

Scheduling activity is considered a fundamental and frequent action in many places

such as hospitals, transportation, and academic institutions. This thesis is concerned

with classroom scheduling using an Artificial Intelligence (AI) approach. The

adaptability of this AI approach will open the doors to use it, not only in academic

institutions, but also in hospitals, transportation, factories and other places or fields

where efficient utilization of resources is needed.

1.2 Problem Statement and Purpose

Class scheduling for academic institutes is a fundamental educational

management activity. With the number of students increasing, academic programs and

other requirements upsurge the complexity of designing a conflict-free timetable. A

class scheduling problem inherits the intricacy of both resources allocation and

personal preferences. The manual timetabling process for larger academic

organizations can be described as time-consuming, tedious and oftentimes

challenging. This appears to make scheduling timetables an ideal candidate for the

application of information technology. The aim of this project is to design an artificial

neural network that can help in solving a complex university class scheduling problem.

The proposed system uses a neural network-approach which has the competency to

2

adapt to unforeseen scenarios and problems, thus creating a conflict-free schedule for

students while using optimal classroom space and associated teacher resources.

1.3 Intended Outcomes and Deliverables

The outcomes that would be achieved in this project are numerous. Designing

an integrated model of neural networks will lead to the generation of a conflict-free

classroom timetable, but most importantly this model introduces a new approach in

creating classroom scheduling. Due to the use of artificial intelligence, this approach

has the potential to generate conflict free schedules in complex scenarios and

institutions with greater ease than exists within previous models (Teoh & Wibowo,

2013) . An additional outcome of this project is the ability for it to be applied, not only

to academic institutions, but also in hospitals, transportation, factories and other places

or fields where efficient utilization of resources is needed.

An unanticipated outcome comes from the experience of implementing neural

networks to produce a functioning model; it is not like any other experience due to the

fact that it is professionally following a world a wide trend these days. Moreover,

gaining skills that contribute to realizing the machining learning for any type of

knowledge base data that is encountered in professional careers is invaluable.

In addition, this project meets the vision of United Arab Emirates in using

artificial intelligence in its industry and sectors. Also, this project opens the doors

widely for further questioning and research into ways the neural network can be used

in different applications once we think of it in un-traditional way.

3

1.4 Relevant Literature

Class scheduling for an academic institution has become time-consuming,

redundant, and tedious. For example, classes have been double booked with no

instructors, students have been looked over, the seemingly available time slots have

proven to be unavailable or not able to support the entire class period. All these make

the process of achieving an efficient class scheduling frustrating and very difficult.

Many process constraints are encountered while preparing a working timetable

those include scheduling classes, teachers, and rooms into a fixed number of conflict-

free time slots. Accordingly, no teacher, class or room is used more than once during

a specific time slot.

Traditionally, staff who scheduled classes utilized a trial-and-error approach

which was to manually create a conflict-free timetable while optimizing the use of

rooms and associated teaching resources. However, when put in practice, this approach

has proven inefficient or unsuccessful.

In addition, increasing the number of students, different programs of study, and

teachers will increase the complexity of the process of class schedule. These

challenges make using an information technology program a good candidate to solve

these ever-present scheduling problems.

Many research projects related to automated timetabling were reported in the

literature (Gotlieb, 1963), where researchers have developed different approaches to

solving the class schedule problem (Carrasco & Mizrach, 1986). At an early stage, the

operation research optimization techniques were used extensively in solving the

timetable problems (Aloul, 2007).

4

Some other papers have classified the basic scheduling approaches into two

different approaches; the action-driven approach and the strategy-driven approach.

The action-driven approach consists of heuristic algorithms and analytic methods. It is

considered as commonly used approach for education institutions (Liebowitz, 1998).

The strategy-driven approach aims to construct a flexible and easily adaptable

timetabling system. This system takes into account the teaching staff preferences and

un-availabilities according to information as obtained directly from staff. This

approach includes the optimization techniques (Dimopoulou, 2004)

Recently, researchers have increasingly focused on the science of artificial

intelligence to solve issues associated with scheduling. Since using the simulated

annealing, tabu search, constraint satisfaction genetic algorithms and neural networks

(Schaerf, 1999), which are techniques in artificial intelligence, there has been a

significant improvement in the performance of solving timetable problems compared

to the traditional operation research techniques and optimization. These AI methods

attracted researchers due to their flexibility and adaptability for different scenarios

(Abramson, 1992).

Examples of those methods are “Genetic algorithms (GA) which mimic the

process of natural selection and can be used as a technique for solving complex

optimization problems that have very large search spaces. Although the GAs can solve

a complex timetable problem and are considered quite powerful in finding the global

minimum from an enormous search space, their convergence is very much dependent

on the initial solution (Azimi, 2005). This is due to the ambiguity in deciding the fitness

function of the GA. Many approaches which seek to find optimal solutions to

constraint-satisfaction problems by genetic algorithms have been suggested, but the

5

majority of these methods are problem-dependent and consequently difficult to apply

to the complexity posed by real-world situations (Deris, 1999).

Further research was conducted using genetic algorithms to solve the timetable

problems which considered the flexibility preferences. Accordingly, a new method

was created by combining an Ant Colony Optimization (ACO) with the Genetic

Algorithm Operators method. Hence the Ant Colony Optimization (ACO) is a

population-based metaheuristic that seeks to solve difficult combinatorial optimization

problems (Birattari, 2011). This combination resulted in flexible timetables (Mahmud,

2014), however, the genetic algorithm could stop during some occasions which depend

on the search area space. For example; in extremes situation where only one solution

exists, the genetic algorithm will most likely fail since it does not work based on an

event or action language (Ansari, 2014).

Another artificial intelligence based approach is knowledge-based. This system

which is called “Assistant for Class Scheduling” uses the knowledge of an expert

human scheduler to generate a class schedule. The system has a control strategy where

it can prioritize the courses according to the preferred time of the corresponding

teacher and the size of the classroom. Accordingly, courses with higher priority will

be chosen first for scheduling. However, this approach has some limitations. For

instance, it can adapt only for courses that are distributed with an even number of hours

per week, courses with odd numbers of hours allocated per week have to be scheduled

manually (Hwang, 1989). Also, courses requiring a special classroom are not

considered in this method. In particular, this approach lacks the ability to adapt to

scenarios that are variant of the norm (Qu, 2006). Also, in Hong Kong, an institution

created an intelligent timetabling using a knowledge-based system built on a

microchip. The knowledge, strategies, and heuristics of a small, centralized group of

6

schedulers were modeled and subsequently represented in a readily available expert

system shell which runs on a standard IBM-type microcomputer (Martinsons & Kong,

1993).

Furthermore, the cultural algorithms (Reynolds, 1994) are a class of

evolutionary algorithms that use domain knowledge extracted during the evolutionary

process to improve the performance of the search engine adopted. It is a new approach

that is showing to be effective to solve the timetabling problem. Another promising

approach is the Population-based algorithms which are better at exploring a search

space than local search algorithms. In other words, it has potential in optimizing the

solution of the timetabling problem (Abuhamdah, Ayob, & Kendall, 2013).

In addition, Simulated Annealing algorithm has a potential to create a

classroom timetable (Teoh & Wibowo, 2013). The simulated annealing name comes

from the principles of metallurgy, which boiled and cooled metals to achieve a stable

crystal lattice structure with minimal energy state. The algorithm begins by generating

an initial random solution. After that, an adjacent solution is generated and these two

solutions are evaluated by an objective function (Gonzalez, 2007). As stated by Basir

(2013) the use of simulated annealing will give an optimum solution to the problem.

This makes simulated annealing an attractive option for the problem of optimization,

(Basir, Ismail, & Norwawi, 2013).

Another model that can be used to solve problems associated with curriculum-

based course timetabling that was introduced is the Adaptive Tabu Search algorithm

(Zhipeng, 2010). Tabu search is a metaheuristic search method employing local

search methods used for mathematical optimization (Glover, 2018). The proposed

algorithm follows a general framework composed of three phases: initialization,

intensification and diversification. The initialization phase creates a feasible initial

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Local_search_(optimization)
https://en.wikipedia.org/wiki/Local_search_(optimization)
https://en.wikipedia.org/wiki/Optimization_(mathematics)

7

timetable using a fast heuristic. To reduce the number of soft constraint while still

satisfying the hard constraints, an adaptively combined intensification and

diversification is used. The proposed hybrid system showed that it has the potential to

solve a course timetabling problem. Because the basic ideas are quite general, it would

also be applicable to other similar problems (Zhipeng, 2010).

Another technique used to suggest a solution for class scheduling is the graph

partitioning algorithm combined with simulated annealing. A graph partitioning

algorithm is a mathematical algorithm that is defined by data represented in the form

of a graph G = (V,E), with V vertices and E edges. The graph partitioning algorithm

was used to represent the relation between the constraints and the time-slots which can

be represented by an edge-weighted graph. The simulated annealing was used as a

“noise term” to update spin configuration in the graph partitioning algorithm (Yu,

1990).

Furthermore, neural networks models like: Interactive Activation and

Competition, Potts Neural Network, and Modified Hopfield Neural Network were

previously introduced to solve scheduling issues. The first model uses a hybrid form

of neural network to create the Interactive Activation and Competition networks. The

structure of the model organizes classes sequentially from the network in the region

with the largest number of restrictions first. At the same time, the network configures

the parallel combination of resources most appropriate for the class in question, under

simultaneous interaction of complex restrictions. The restrictions then go through

adjustments in synaptic weights before the next class is selected for scaling. It results

with significantly slower network growth (linear) according to the size of the problem

and is flexible to organize restrictions more realistically. The second network is the

Potts Neural Network, which is a derivation of the Hopfield Neural Network discussed

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

8

below. In the Potts network, a neuron multistate is used (in place of the usual two

neuron stages), as well as a factorization, which provides a substantial reduction in the

number of neurons (Carrasco & Pato, 2001). The third model is the Hopfield network

with modifications. The main advantage of this tool lies in its potential for fast

computational power when implemented in hardware, and also the parallel nature of

the ANNs (Smith, Abramson, & Duke, 2003) .The results achieved using the modified

Hopfield Neural Network proved it comparable to the best technical heuristics. Thus,

the network was shown capable of producing solutions to complex problems of time

allocation. One advantage of this method is its speed (Taborda, 2004).

In a comparative study of simulated annealing, tabu search with local search

and genetic algorithms in solving the school timetabling problems for two Italian high

schools conducted by Colorni (1998), found that Tabu search produced the best results

followed by genetic algorithms and simulated annealing (Colorni, 1998).

Another computational study was done by Smith et al. (2003) using Hopfield

neural network to solve the school timetabling problem. It was used for nine high

schools. The performance of the Hopfield neural network on this data set is compared

to simulated annealing and tabu search. The neural network performed better than the

other methods, followed by simulated annealing (Smith, Abramson, & Duke, 2003).

The comparison above shows that neural networks are more useful to solve the

problems associated with complex timetabling (Pillay, 2010) .

It is clear that a fair amount of research has been conducted in the use of

artificial intelligence to solve the problem of scheduling; however, few other studies

were found to use neural networks to solve the issue of class scheduling. The (Smith,

Abramson, & Duke, 2003) using the Hopfield network. The research in this thesis

proposes an alternative network application solution to this issue through the use of

9

SOM and FFBP. Additional investigation into new methods should continue to be

conducted, as they may contribute further to the scheduling field.

1.5 Report Structure

This report is well organized to explain all concepts clearly by moving from

the implementation of the neural networks, to the analysis, and finally to the results of

the designed model. Chapter 1 focuses on problem statements, purposes, intended

outcomes and deliverables and the background literature review. In Chapter 2 an

overview of neural network is highlighted and the mathematical and architectural

models of SOM NN and FFBP NN are discussed in detail. Creation of data sets, as

well as methodology to solve the scheduling problems are proposed and discussed in

Chapter 3. Chapter 4 illustrates the results and the discussion for each phase of this

research. Finally, this thesis concludes in Chapter 5 with summarization of the work

done; here it mentions the final results and future plans for further researches.

10

Chapter 2: Introduction to ANN

The artificial neural network (ANN) is the proposed approach to be used in this

thesis to find a new, alternative solution to the challenge posed by classroom

scheduling by examining and utilizing the adaptation feature in ANN. In this chapter,

the basic concept of ANN is introduced with its architecture. Then, the mathematical

details of the selected ANN types that will be used in this thesis are explained.

2.1 Basic Concept of ANN

The artificial neural network theory was inspired by the structure of the human

brain. The human brain is a highly complex and non-linear system. It can process a

vast amount of information simultaneously. Hence, the human brain uses parallel

interconnection neurons in processing the data, allowing the neurons to interact in

parallel through multiple layers of neurons in the brain. A neuron sends output and

receives input. Each neuron can receive values from all neurons in the previous layer,

and it can send values to all neurons in the next layer. The continuity of sending and

receiving values between neurons is called learning and memorizing. As a result, the

brain will be able to make the proper decision.

The ability of decision making in the brain is gained from memorizing and

learning from previous cases that are similar to the situation the brain is trying to make

a decision for. Scientists tried to mimic the brain’s neurons architecture to develop

more effective and efficient engineering systems. They created the Artificial Neuron

Networks which are commonly known as “neural networks.” An artificial neural

network is made up of layers of artificial neurons or processing elements. The

processing element has the natural tendency to store information, also known as

experimental knowledge, and make it useful when we need it.

11

Neural networks resemble the brain via two aspects:

1. Gaining knowledge: knowledge is built up in the network from its environment

through the learning process.

2. The functioning of connectivity: interneuron connection strengths are the

synaptic weights which are used to store the learned or developed knowledge.

In brief, the learning process is the process where the synaptic weights are modified to

attain the desired design objective.

 2.2 Benefits of Neural Network

The aptitude to derive meaningful results from massive or distorted data is a

remarkable feature in ANN. It gives reasonable outputs from inputs not encountered

during the training (learning), which is referred to as generalization. As a result, the

neural network can find good approximate solutions to complex large-scale problems.

Other advantages are:

Nonlinearity: Neural networks are made up of an interconnection of nonlinear

neurons which makes an ANN able to approximate any nonlinear continuous function

to the anticipated solution. This property is highly essential mainly if the underlying

physical mechanism responsible for generating the input signal is inherently nonlinear.

Input-Output Mapping: Supervised learning, or learning with a teacher, is a

prevailing paradigm in neural networks. It is a system where the input and the desired

output data are provided. When a set of paired data is trained to generate consistent

output for the response to new data, this is called a supervised learning algorithm.

Hence, it involves the modification of the synaptic weights of the trained network.

Adaptivity: Neural networks have a built-in capability to adapt their synaptic weights

to changes in the surrounding environment. In particular, a neural network trained in

12

a specific context can be retrained easily to handle changes in the conditions of the

operating environment.

2.3 Models of a Neuron

A neuron, or the processing unit, is the fundamental element to the operation

of a neural network. It consists of three main parts as shown in Figure 2.1:

Synapses or connection links: each connector or synapse is characterized by weight

or strength; the synapse 𝑖 connects the signal input 𝑥𝑖 with the neuron 𝑗. The

relationship between the input signal 𝑥𝑖 and the neuron 𝑗 is presented by multiplication

between the weight 𝑤𝑗𝑖 and the input signal 𝑥𝑖 .

Summing junction: Adding all input signals weighted by the respected synaptic

strength.

Activation function: Limiting the amplitude to determine a neuron’s output in a

neural network. It maps the resulting values between 0 to 1 or -1 to 1 etc. (depending

upon the function). The most common activation functions are listed in the Table 1.

Bias: is similar to the constant b of a linear function y = ax + b. It allows one to move

the line up and down to better fit the prediction with the data. Two different kinds of

parameters can be adjusted during the training of an ANN: the weights and the value

in the activation functions. Due to the impracticality of adjusting both parameters, a

bias neuron is invented. The bias neuron lies in one layer, and is connected to all the

neurons in the next layer, but none in the previous layer and it always emits 1. Since

the bias neuron emits 1 the weights, connected to the bias neuron, are added directly

to the combined sum of the other weights Eq. 2.1 (Rojas, 1996).

 𝑣𝑖 = ∑𝑤𝑗𝑖 𝑥𝑚 𝐸𝑞. (2. 1)

13

Table 1: Different types of activation function

Function name Formula Values range

Exponential ∅(𝑥) = 𝑒−𝑎𝑥 (0,∞)

Sigmoid
∅(𝑥) =

1

1 + 𝑒−𝑎𝑥

(0,1)

Hyperbolic Tangent
∅(𝑥) =

2

1 + 𝑒−2𝑥
− 1

(−1,1)

Step
∅(𝑥) = {

1, 𝑥 ≥ 0
0, 𝑥 < 0

[0,1]

Thus, the operation performed by neuron 𝑗 can be mathematically expressed as

𝑤𝑗3

𝑤𝑗1

𝑤𝑗10

𝑤𝑗𝑚

𝑤𝑗2

𝑥1

𝑥2

𝑥3

𝑥10

𝑥𝑚

𝑣𝑖 = 𝑤𝑗𝑖 𝑥𝑚
0

1
𝑦𝑗

𝑢𝑗

𝑤𝑗0

Bias

𝑦𝑗

OUTPUT

INPUT SIGNAL 𝑥(𝑛) WEIGHTS 𝑤(𝑛)

Figure 2.1: The basic structure of the neuron

0.1

14

 𝑦𝑗 = 𝑓(𝑤(𝑛)𝑇𝑥(𝑛)) 𝐸𝑞. (2. 2)

Where 𝑓is the activation (transfer) function, 𝑦𝑗 is the output of neuron 𝑗, the superscript

T represents the transpose of 𝑤(𝑛) which is the interconnection weight vector and

𝑥(𝑛) is the input signal vector for iteration n.

2.4 Self-Organizing Feature Map (SOM)

Self-organizing feature map neural-network is a type of artificial intelligence

that is trained using unsupervised-learning to produce lower dimensional clustered

regions. The self-organizing feature map was initially proposed by Rosenblatt in 1958

(Lek & Guégan, 1999). The idea of the self-organizing map is inspired from human

brain: “The brain is organized in many places in such a way that different sensory

inputs are represented by topologically ordered computational map” (Haykin, 2009).

The self-organizing map network is based on competitive learning systems.

The network output neurons compete among themselves to be activated or fired. Hence

only one neuron per group will be the winning neuron. The way of persuading a winner

output neuron among a group of outputs is to use lateral inhibitory connections. The

lateral inhibitory connection is when the neuron dominates the field and inhabits

neighboring neurons (Sayers, 1991).

The neurons of the self- organizing map are sited in a frame called lattice. The

lattice can be one, two or higher dimensional maps. The neurons become selectively

adjusted to various input patterns. Accordingly, the location of winning neurons

become ordered in an expressive coordinate system for different input features, which

are created over the lattice (Haykin, 2009).

15

2.4.1 Self-Organizing Feature Map Structure

The structure of the self-organizing feature map can be presented and

understood with the use of an illustration such as in the Figure 2.2 shows a tiny

Kohonen network of 3x3 output nodes/layer connected to two input nodes/layer. Each

output node has a specific topological position which represented as unique x, y

coordinates in the 2-D lattice (output layer).

The mechanism behind Kohonen’s network is straightforward; when an input

pattern embodies to the network, the response of each neuron is measured, and the one

which produced the maximum response, as well as the adjacent neurons, are modified

in such a way to generate a better response to that input pattern. After many iterations,

the system should ideally reach a state where no more significant change in the neuron

location appears.

2.4.2 Self-Organizing Feature Map Algorithm

The self-organizing feature map process can be divided into four main stages:

Initialization: where all the connection weights are initialized with random values.

Input Layer

Interconnecting

weights

Computational Layer

Figure 2.2: Self-organizing feature map

16

Competition: where each input pattern and it’s corresponding weights compute their

respective values of a discriminant function1. As a result, the neuron with the largest

discriminant function is the winner.

In the first step, let the input space dimension to be 𝑚 then the input pattern

can be written as 𝑥⃗ = [𝑥1 𝑥2 … . 𝑥𝑚]
𝑇. And the connection weight between the input

layer and the computational layer is 𝑤𝑗⃗⃗⃗⃗⃗ = [𝑤𝑗1 𝑤𝑗2 … .𝑤𝑗𝑚]
𝑇; 𝑗 = 1,2, … . , 𝑙 ,where

𝑙 is the total number of output neurons in the network. The next step is to find the best

match between 𝑥⃗ and 𝑤𝑗⃗⃗⃗⃗⃗. To find the best match we need to compute 𝑤𝑗⃗⃗⃗⃗⃗
𝑇
 𝑥 ⃗⃗⃗⃗ 𝑓𝑜𝑟 𝑗 =

1,2, … . . , 𝑙 and select the largest value; hence, the maximum value of 𝑤𝑗⃗⃗⃗⃗⃗
𝑇
 𝑥⃗ is nothing

but the minimum value of the Euclidian distance between 𝑥 ⃗⃗⃗ 𝑎𝑛𝑑 𝑤𝑗⃗⃗⃗⃗⃗. By using the

index 𝑖 (𝑥⃗) , the formula below will give the value of the 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛. Finally,

acknowledge that the corresponding weights vector to 𝑖 (𝑥⃗) is the closest weight

vector.

 𝑖 (𝑥⃗) = arg𝑚𝑖𝑛𝑗 ‖𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗‖ 𝐸𝑞. (2. 3)

In brief, a continuous input space of activation pattern is mapped into a

discrete output space by process of competition.

Cooperation: where the winning neuron can spot the spatial location of a topological

neighborhood of excited neurons, or more specifically, winning neurons locate the

center of a topological neighborhood of an excited/ cooperated neuron.

In the beginning, assume that 𝑖 is the winning neuron and ℎ𝑗,𝑖 is the topological

neighborhood centered around 𝑖 and encompassing neuron 𝑗. Naturally, the topological

1 A function of several variates used to assign items into one of two or more groups. The function for a particular set of items

is obtained from measurements of the variates of items which belong to a known group

17

neighborhood function should decrease with the 𝑑𝑗,𝑖 which is the lateral distance

between the winning neuron 𝑖 and the excited/ neighbors’ neurons 𝑗.

Before implementing the topological neighborhood function it should satisfy three

properties:

 Symmetric about 𝑑𝑗,𝑖 = 0

 Monotonically decaying function with distance 𝑑𝑗,𝑖

 Decaying to zero at 𝑑𝑗,𝑖  ∞.

The typical function which may fulfill the mentioned properties is the Gaussian

function, accordingly, ℎ𝑗,𝑖 can be expressed as the following:

 ℎ𝑗,𝑖(𝑥⃗) = 𝑒𝑥𝑝 (−
𝑑𝑗,𝑖

2

2 𝜎2
) 𝐸𝑞. (2. 4)

Where σ is the width of the Gaussian function, Figure 2.3, also it is called the

neighborhood radius (Guthikonda, 2005). Note that the Gaussian function does not

depend on the winner neuron’s location; hence, it is translation invariant.

Another unit property of the SOM is σ in the Gaussian function. This σ varies

with time where time is the network iterations(𝑛). As the iteration {𝑛: 𝑛 =

Figure 2.3: Gaussian curve-neighborhood function

0

0.2

0.4

0.6

0.8

1

1.2

-6 -4 -2 0 2 4 6

h
𝑗,
𝑖

d𝑗,𝑖

2σ

18

0,1,2, … . , ∞} progresses, the σ is going to decrease with time. Thus, as σ decreases,

the neighborhood shrinks gradually. Figure 2.4 explains clearly the shape of the

neighborhood after it shrinks during the cooperation process when the iteration

progressively narrows down the neighborhood of the winner neuron. Mathematically

σ can be presented as

 𝜎(𝑛) = 𝜎𝑜 exp (−
𝑛

Ʈ1
) 𝐸𝑞. (2. 5)

Where 𝜎𝑜is the initial 𝜎 and Ʈ1 is the time constant.

 As a result, the neighborhood function will be

 ℎ𝑗,𝑖(𝑥⃗)(𝑛) = exp (−
𝑑𝑗,𝑖

2

2 𝜎2(𝑛)
) , 𝑛 = 0,1,2, … 𝐸𝑞. (2. 6)

In case of 1-D lattice, the distance is: 𝑑𝑗,𝑖 = |𝑗 − 𝑖|. For 2-D the distance,

𝑑𝑗,𝑖
2 = ‖𝑟𝑗⃗⃗⃗ − 𝑟𝑖⃗⃗⃗ ‖

2
 , where 𝑟𝑗 is the position vector of the excited neuron 𝑗 and 𝑟𝑖 is the

position vector of the winning neuron 𝑖. In fact, for higher dimensions the 2-D equation

mentioned above is valid, but 𝑟𝑗 and 𝑟𝑖 will not consist of just two elements. It will

consist of multiple elements depending upon the number of chosen dimensions for the

lattice.

Figure 2.4: SOM network during the process of cooperation (Juha, 1999)

19

Adaptation: where the excited neurons associated with the input pattern keep

decreasing the differences in the values of the discriminant function for the connected

weights, such that the winning neuron’s response to any subsequent application for

similar input pattern will become enhanced.

The learning mechanism behind the adaption process in SOM is the Hebbian

learning. Hebbian learning is when the pre-synaptic and post-synaptic activities are

correlated; when correlation occurs the synaptic connection will be strengthened.

When correlation is absent, the synaptic connection is weakened. Hebbian learning is

used to update the weights in SOM, yet it needs to be modified due to some limitations

to suit the SOM. Therefore, the following term 𝑔(𝑦𝑗)𝑤𝑗⃗⃗⃗⃗⃗ is introduced to avoid the

limitation, which is the saturation in the synaptic weight which it accrued during the

continuity of feeding the same input pattern. So, 𝑔(𝑦𝑗)𝑤𝑗⃗⃗⃗⃗⃗ is called the forgetting term

in Hebbian hypothesis, where 𝑦𝑗is a positive scaler function and for simplicity let

𝑔(𝑦𝑗) = 𝜂𝑦𝑗 which is a linear function.

The weight needs to be adjusted, not only for the winner neuron, but also for

the neighbor neurons which are the excited neurons. Accordingly, 𝑦𝑗=ℎ𝑗,𝑖(𝑥⃗) , the

topological neighborhood is maximum when the 𝑗 neuron is the winner and as the

lateral distance from the winning neuron progressively increases then 𝑦𝑗 will

progressively decrease.

Heibbian Hypothesis for adaptation (weight update):

 ∆𝑤𝑗⃗⃗⃗⃗⃗ = 𝜂 𝑦𝑗𝑥⃗ − 𝑔(𝑦𝑗)𝑤𝑗⃗⃗⃗⃗⃗ 𝐸𝑞. (2. 7)

20

Where 𝜂 is the learning rate parameter, since 𝑔(𝑦𝑗) = 𝜂𝑦𝑗, thus, Eq. (2.7) can be

written as ∆𝑤𝑗⃗⃗⃗⃗⃗ = 𝜂 𝑦𝑗𝑥⃗ − 𝜂𝑦𝑗𝑤𝑗⃗⃗⃗⃗⃗. In order to include the winner neurons and the excited

neurons, consider 𝑦𝑗=ℎ𝑗,𝑖(𝑥⃗) , then

 ∆𝑤𝑗⃗⃗⃗⃗⃗ = 𝜂 ℎ𝑗,𝑖(𝑥⃗)(𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗) 𝐸𝑞. (2. 8)

Which proves that 𝑤𝑗 will be adjusted such that it should move closer to 𝑥⃗. Thus,

during the learning phase 𝑤𝑗will align itself with 𝑥⃗, hence ∆𝑤𝑗⃗⃗⃗⃗⃗ = 0

Using discrete-time formulation ∆𝑤𝑗⃗⃗⃗⃗⃗ can be written as

 𝑤𝑗⃗⃗⃗⃗⃗(𝑛 + 1) = 𝑤𝑗⃗⃗⃗⃗⃗(𝑛) + 𝜂(𝑛)ℎ𝑗,𝑖(𝑥⃗)(𝑛) (𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗) 𝐸𝑞. (2. 9)

 𝜂(𝑛) = 𝜂0 𝑒𝑥𝑝 (−
𝑛

𝜏2
) , 𝑛 = 0,1,2, … 𝐸𝑞. (2. 10)

𝜏2: Another time constant

So, the ultimate tendency is to align 𝑤𝑗 ⃗⃗⃗⃗⃗⃗ with 𝑥⃗ for all winner neurons, yet all

other neurons will also learn, but at a slower rate hence ℎ𝑗,𝑖(𝑥⃗)(𝑛) will be dropping

down for the un-excited neurons. Ultimately, Eq. (2.10) is responsible for the

topological ordering in SOM.

The two phases of the adaptive process (practical consideration) are:

1- Self-organizing (ordering): for topology arrangement. Learning rate should

start with large value 𝜂(𝑛) ≈ 0.1 then it decreases to 0.01,𝜂0 = 0.1 ,𝜏2 =

1000: ,n=1000 iteration. Thus, topological neighborhood ℎ𝑗,𝑖(𝑥⃗) starts with a

large number of neurons then it decreases gradually; thus, neighborhood will

keep shrinking till it is restricted to a very small neighborhood (Singupta,

2003).

2- Convergence phase: all neurons obtained in the topological stage will keep

converging (tuning) till it reduces the error as much as possible. To complete

the convergence, the number of iterations must be at least 500 times the number

21

of neurons. For example, if we have 4X4 topological the number of iteration is

500*16=8000 iterations (Singupta, 2003).

Figure 2.5: Flowchart of self-organizing map neural network algorithm

Start

Set the network

structure and

parameters

Initialize the

weight 𝑤𝑗(𝑛)

for all layers

with random
number

Calculate discriminant

function between the input

layer and the computational

layer; Euclidian distance

between 𝑥 ⃗⃗⃗ 𝑎𝑛𝑑 𝑤𝑗⃗⃗⃗⃗⃗

𝑖 (𝑥⃗) = arg𝑚𝑖𝑛𝑗 ‖𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗‖

If 𝑖 (𝑥⃗) =

minimum value

(distance)

𝑖 (𝑥⃗) is the

winner neuron

Calculate neighborhood

function (Clustering excited

neurons around the winner

neuron)

ℎ𝑗,𝑖(𝑥)(𝑛) = exp −
𝑑𝑗,𝑖

2

2 𝜎2(𝑛)

Update weights for the winning neurons and

excited neurons, and reduce 𝜂 the learning rate

 𝑤𝑗⃗⃗⃗⃗⃗(𝑛 + 1) = 𝑤𝑗⃗⃗⃗⃗⃗(𝑛) + 𝜂(𝑛)ℎ𝑗,𝑖(𝑥⃗)(𝑛) (𝑥⃗ −

 𝑤𝑗⃗⃗⃗⃗⃗)

If 𝜂 reduces to

negligible value

Stop

Yes

No

Yes

No

For each

input

pattern 𝑥 ⃗⃗⃗

22

2.5 Multi-Layer Perceptron Neural Network (MLP)

Multi-layer perceptron is considered one of the first neural network’s type.

Many neural networks depend on the structure of MLP. MLP is formed by cascading

neurons (perceptrons) in several layers. The input vector is fed into each perceptron in

the first layer, the output of the first layer’s perceptrons has formed the input to the

second layer’s perceptrons, and so on, see Figure 2.1. Nodes of MLP are fully

connected between layers. The arrangement and the type of neurons depend on the

network type. The main parts of MLP network are:

1. Input neurons are carrying some action or information about the external

environment. Input neurons do not perform any computation, but only pass the

input vector to subsequent neurons.

2. Output neurons receive signals from the preceding neurons and transform it

using formulas 2.1 and 2.2. Those values represent the output of the whole

neural network.

3. Hidden neurons are the basis of the neural network. Those neurons receive

the signal from the input neurons or preceding hidden neurons, process it by

formulas 2.1 and 2.2 and then pass result signals to the subsequent (hidden or

output) neurons.

2.6 Back-Propagation Neural Network (BP)

Back-propagation neural network is one of the most widely used neural

networks. The back-propagation neural network is a multilayer feedforward network

trained according to error back-propagation algorithm. The idea of the back-

propagation network is to adjust the synaptic weight values and threshold values to

23

achieve the minimum error sum of the square in the learning phase of the network.

More details are shown in the sub-sections below (Borglin, 2011).

2.6.1 Back-Propagation Neural Network (BP) Structure

Back-propagation neural network is consist of two parts: First part is the

Forward propagation of operating (function) signal: the input signal is propagated from

the input layer, via the hidden layer, to the output layer. During the forward

propagation of operating signal, the weight value and offset value of the network are

maintained constant, and the status of each layer of the neuron will only exert an effect

on that of next layer of the neuron. In case that the expected output cannot be achieved

in the output layer; then it can be switched into the backpropagation of error signal.

The second part is Backpropagation of error signal: the difference between the

real output and expected output of the network is defined as the error signal; in the

backpropagation of error signal, the error signal is propagated from the output end to

the input layer in a layer-by-layer manner. During the backpropagation of error signal,

the weight value of a network is regulated by the error feedback. The continuous

modification of weight value and the offset value is applied to make the real output of

network closer to the desired one (Li, Cheng, Shi, & Huang, 2012).

Figure 2.6: Illustration of signal flow for (operating signal and error

signal) in multi-layer perceptron

24

2.6.2 Back-Propagation Neural Network (BP) Algorithm

Algorithm Formulas

Back-propagation is a training method used for a multi-layer neural network.

It is also called the generalized delta rule. It is a gradient descent method which

minimizes the total squared error of the output computed by the net (Rojas, 1996).

Thus, it measures the performance using the sum of error squares function also it called

the instantaneous error energy.

 𝐸(𝑛) =
1

2
 𝑒𝑗

2

𝑗∈𝑐

(𝑛) 𝐸𝑞. (2. 11)

Where E (n) is the error energy at iteration n, c is the set of all neurons in the output

layers and 𝑒𝑗(𝑛) is the error signal at each output neuron j at iteration n for all neurons

in the output layer. If 𝑑𝑗 (𝑛) denotes the desired response or target output for neuron 𝑗

at iteration n, and 𝑦𝑗(𝑛) is the actual output, then

 𝑒𝑗(𝑛) = 𝑑𝑗 (𝑛) − 𝑦𝑗(𝑛) 𝐸𝑞. (2. 12)

Hence, the average square energy is

 𝐸𝑎𝑣𝑔(𝑛) =
1

𝑁
 𝐸(𝑛)

𝑁

𝑛=1

 𝐸𝑞. (2. 13)

Where N is the total number of iterations of training patterns.

The instantaneous error energy 𝐸(𝑛), and therefore the average error energy

𝐸𝑎𝑣𝑔(𝑛), is a function of all the free parameters (i.e. synaptic weights and bias levels)

of the network. For given training set, 𝐸𝑎𝑣𝑔(𝑛) represents the cost function as a

measure of learning performance. The objective of the learning process is to adjust the

free parameters of the network to minimize 𝐸𝑎𝑣𝑔(𝑛). To do this minimization, an

approximation similar in rational to the derivation of the LMS algorithm is used.

Specifically, we consider a simple method of training in which the weights are updated

25

on a pattern-by-pattern basis unit one epoch, that is, one complete presentation of the

entire training set has been dealt with. The adjustments to the weights are made in

accordance with the respective error computed each pattern presented to the network.

(Haykin, 2009). In addition, the following equations are introduced to derive the BP

neural network algorithm’s formulas.

Induced local field of a neuron 𝑗 is the output of the summation unit.

 𝑣𝑗(𝑛) = 𝑤𝑗𝑖(𝑛)𝑦𝑖(𝑛)

𝑚

𝑖=0

 𝐸𝑞. (2. 14)

Where m is the number of neurons in the previous layer.

 𝑦𝑗(𝑛) = ∅𝑗 (𝑣𝑗(𝑛)) 𝐸𝑞. (2. 15)

Where ∅(𝑛) is the activation function.

The back-propagation algorithm applies a correction ∆𝑤𝑗𝑖(𝑛) to the synaptic weight

𝑤𝑗𝑖(𝑛) which is proportional to the partial derivative
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 . Form the equations

above
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 can be calculated using the chain rule of calculus.

𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
=
𝜕𝐸(𝑛)

𝜕𝑒𝑗(𝑛)
.
𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)
.
𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)
.
𝜕𝑣𝑗(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 𝐸𝑞. (2. 16)

Differentiate both sides of Eq. (2.11) with respect to 𝑒𝑗(𝑛), then

𝜕𝐸(𝑛)

𝜕𝑒𝑗(𝑛)
= 𝑒𝑗(𝑛) 𝐸𝑞. (2. 17)

Differentiate both sides of Eq. (2.12) with respect to 𝑦𝑗(𝑛), then

𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)
= −1 𝐸𝑞. (2. 18)

Next, differentiating both sides with respect to 𝑣𝑗(𝑛), then

𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)
= (∅)́ (𝑣𝑗(𝑛)) 𝐸𝑞. (2. 19)

26

Finally, differentiating Eq. (2. 14) with respect to 𝑤𝑗𝑖(𝑛)

𝜕𝑣𝑗(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
= 𝑦𝑗(𝑛) 𝐸𝑞. (2. 20)

The use of all equations between Eq. (2.17) and Eq. (2.20) in Eq. (2.16) yields

𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
= −𝑒𝑗(𝑛)∅́ (𝑣𝑗(𝑛)) 𝑦𝑗(𝑛) 𝐸𝑞. (2. 21)

The correction ∆𝑤𝑗𝑖(𝑛) applied to 𝑤𝑗𝑖(𝑛) is defining as the delta rule.

 ∆𝑤𝑗𝑖(𝑛) = − 𝜂
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 𝐸𝑞. (2. 22)

Where η is the learning-rate parameter of the back-propagation. The minus sign shown

in the equation above is an indication for gradient descent, hence, the gradient descent

is an optimization technique for minimizing multidimensional smooth convex

objective functions (Vishwanathan, 2008) in weight space. Combining Eq. (2.21) and

Eq. (2.22) will result.

 ∆𝑤𝑗𝑖(𝑛) = 𝜂 𝑒𝑗(𝑛)∅́ (𝑣𝑗(𝑛)) 𝑦𝑗(𝑛) 𝐸𝑞. (2. 23)

Hence, the local gradient term 𝛿𝑗(𝑛) is defined by the product of the corresponding

error signal 𝜕𝑒𝑗(𝑛) for the output neuron 𝑗 and derivative ∅́ (𝑣𝑗(𝑛)) of the associated

activation function.

 𝛿𝑗

(𝑛) = −
𝜕𝐸(𝑛)

𝜕𝑣𝑗(𝑛)
= −

𝜕𝐸(𝑛)

𝜕𝑒𝑗(𝑛)
.
𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)
.
𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)
= 𝑒𝑗(𝑛)∅́ (𝑣𝑗(𝑛))

𝐸𝑞. (2. 24)

Then equation Eq. (2.23) can be re-written as

 ∆𝑤𝑗𝑖(𝑛) = 𝜂 𝛿𝑗(𝑛) 𝑦𝑗(𝑛) 𝐸𝑞. (2. 25)

27

From equations Eq. (2.24) and Eq. (2.25) it was noted that a critical factor

involved in the calculation of the weight adjustment ∆𝑤𝑗𝑖(𝑛) is the error signal 𝑒𝑗(𝑛)

at the output neuron 𝑗. In this context, two distinct cases are identified. Case 1, when

neuron j is an output node. Case 2, neuron 𝑗 is hidden node. Note that although hidden

neurons are not directly accessible, they share responsibility for error made at the

output of the network.

Case 1 Neuron 𝒋 is an output node.

Merely the neuron j is located in the output layer of the network. It is supplied

with the desired response of its own, error signal 𝑒𝑗(𝑛) can be computed easily from

Eq. (2.12) associated with this neuron. Accordingly, the local gradient 𝛿𝑗(𝑛) can be

found using Eq. (2.24).

Case 2 Neuron 𝒋 is a hidden node.

When neuron 𝑗 is located in hidden layer, no specific desired response for that

neuron. Consequently, the error information term for neuron 𝑗 is determined

recursively in term of the error information term of all neurons to which that hidden

neuron 𝑗 is directly connected as follows

 𝛿𝑗(𝑛) = ∅́𝑗 (𝑣𝑗(𝑛)) 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)

𝑘

 𝐸𝑞. (2. 26)

The equation above introduced a new index 𝑘 to avoid any confusion between

neuron 𝑗 which is used as hidden neuron in Case 2, hence neuron 𝑘 is an output node.

𝛿𝑗(𝑛) for hidden layer is derived as follows.

 Eq. (2.24) is re-written as 𝛿𝑗(𝑛) = −
𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)

𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)

 𝛿𝑗(𝑛) = −
𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)
 ∅́𝑗 (𝑣𝑗(𝑛)) 𝐸𝑞. (2. 27)

28

Where neuron j is hidden as before mentioned. Hence Eq. (2.11) is re-written with 𝑘

index

 𝐸(𝑛) =
1

2
 𝑒𝑘

2

𝑘∈𝑐

(𝑛) 𝐸𝑞. (2. 28)

Differentiating Eq. (2.28) with respect to the function signal 𝜕𝑦𝑗(𝑛).

𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)
= 𝑒𝑘

𝑘

𝜕𝑒𝑘(𝑛)

𝜕𝑦𝑗(𝑛)
 𝐸𝑞. (2. 29)

Then using the chain rule to solve the Eq. (2.29)

𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)
= 𝑒𝑘(𝑛)

𝑘

𝜕𝑒𝑘(𝑛)

𝜕𝑣𝑘(𝑛)

𝜕𝑣𝑘(𝑛)

𝜕𝑦𝑗(𝑛)
 𝐸𝑞. (2. 30)

Recall Eq. (2,12) and change the index from 𝑗 to 𝑘

 𝑒𝑘(𝑛) = 𝑑𝑘 (𝑛) − 𝑦𝑘(𝑛) 𝐸𝑞. (2. 31)

 = 𝑑𝑘 (𝑛) − ∅́𝑘 (𝑣𝑘(𝑛)) 𝐸𝑞. (2. 32)

Hence

𝜕𝑒𝑘(𝑛)

𝜕𝑣𝑘(𝑛)
= −∅́𝑘 (𝑣𝑘(𝑛)) 𝐸𝑞. (2. 33)

Also, recall Eq. (2.14) –induced local field-and change the index to 𝑘

 𝑣𝑘(𝑛) = 𝑤𝑘𝑗(𝑛)𝑦𝑗(𝑛)

𝑚

𝑗=0

 𝐸𝑞. (2. 34)

Where m is the total number of inputs (excluding the bias) applied to neuron k.

 Next, differentiating Eq. (2.34) with respect to 𝑦𝑗(𝑛) yields.

𝜕𝑣𝑘(𝑛)

𝜕𝑦𝑗(𝑛)
= 𝑤𝑘𝑗(𝑛) 𝐸𝑞. (2. 35)

Thus, substituting Eq. (2.33) and Eq. (2.35) in Eq. (2.30)

29

𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)
= − 𝑒𝑘(𝑛)

𝑘

∅́𝑘 (𝑣𝑘(𝑛)) 𝑤𝑘𝑗(𝑛) 𝐸𝑞. (2. 36)

𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)
= − 𝛿𝑘(𝑛)

𝑘

 𝑤𝑘𝑗(𝑛) 𝐸𝑞. (2. 37)

Hence Eq. (2.37) used the definition of the local gradient 𝛿𝑘(𝑛)with the index

𝑘 From all the above we get the back-propagation formula Eq. (2.26) for the local

gradient 𝛿𝑗(𝑛) for neuron 𝑗 in hidden layer.

Activation Function

The knowledge of the activation function and its derivative is required to

compute 𝛿 for each neuron of the multi-layer perceptron. For this derivative to exist,

the function ∅(.) Need to be continuous. In other words, the function ∅(.) Need to be

differentiable. In this study, the logistic function is used as activation function.

 ∅𝑗 (𝑣𝑗(𝑛)) =
1

1 + exp (−𝑎𝑣𝑗(𝑛))
 𝑎 > 0 𝑎𝑛𝑑 − ∞ < 𝑣𝑗(𝑛) < ∞

 𝐸𝑞. (2. 38)

Where 𝑣𝑗(𝑛) is the induced local field of neuron 𝑗. As a result, of the non-linearity in

the Eq. (2.38) the amplitude of the output lies inside the range 0 ≤ 𝑦𝑗 ≤ 1.

Differentiate Eq. (2.38) with respect to 𝑣𝑗(𝑛).

 ∅𝑗́ (𝑣𝑗(𝑛)) =
𝑎 exp (−𝑎𝑣𝑗(𝑛))

[1 + exp (−𝑎𝑣𝑗(𝑛))]2
 𝐸𝑞. (2. 39)

Re-write Eq. (2.39) using 𝑦𝑗(𝑛) = ∅𝑗 (𝑣𝑗(𝑛)) to eliminate some terms. So

 ∅𝑗́ (𝑣𝑗(𝑛)) is expressed as

 ∅𝑗́ (𝑣𝑗(𝑛)) =
1 + 𝑎 exp (−𝑎𝑣𝑗(𝑛)) − 1

[1 + exp (−𝑎𝑣𝑗(𝑛))]2
 𝐸𝑞. (2. 40)

30

 =
1 + 𝑎 exp (−𝑎𝑣𝑗(𝑛))

[1 + exp (−𝑎𝑣𝑗(𝑛))]2
−

1

[1 + exp (−𝑎𝑣𝑗(𝑛))]
2

 ∅𝑗́ (𝑣𝑗(𝑛)) = 𝑎𝑦𝑗(𝑛)[1 − 𝑦𝑗(𝑛)] 𝐸𝑞. (2. 41)

For neuron 𝑗 located in the output layer, 𝑦𝑗(𝑛) = 𝑜𝑗(𝑛). Hence, local gradient for

neuron j can be expressed as

 𝛿𝑗(𝑛) = 𝑒𝑗(𝑛) ∅́𝑗 (𝑣𝑗(𝑛)) 𝐸𝑞. (2. 42)

 = 𝑎[𝑑𝑗(𝑛) − 𝑜𝑗(𝑛)] 𝑜𝑗(𝑛) [1 − 𝑜𝑗(𝑛)] , Neuron 𝑗 is an output node

Where 𝑜𝑗 is the function signal at the output neuron 𝑗, and 𝑑𝑗 is the desired response

for it. On the other hand, for an arbitrary hidden neuron 𝑗. we may express the local

gradient as

 𝛿𝑗(𝑛) = ∅́𝑗 (𝑣𝑗(𝑛)) ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)𝑘 𝐸𝑞. (2. 43)

 = 𝑎𝑦𝑗(𝑛) [1 − 𝑦𝑗(𝑛)] ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)𝑘 , Neuron j is hidden

For a sigmoid activation function, the synaptic weights are changed the most

for those neurons in the network where the function signals are in their midrange. Thus,

it is the feature of back-propagation learning that contributes to its stability as a

learning algorithm.

Rate of Learning 𝜼 and Momentum Constant α

A new parameter is introduced to BP-algorithm which is momentum term α.

The purpose behind the addition of the momentum constant term α is to control the

feedback loop acting around ∆𝑤𝑗𝑖(𝑛). As explained earlier, Eq. (2.23) provides an

approximation to the trajectory in weight space computed by the steepest descent. The

smaller η is the learning rate, the smoother the trajectory and slower the convergence

of the network to the optimum solution. On the other hand, increasing the learning rate

31

η will lead to instability in the learning process hence the network will become

oscillatory about the optimum weight due to the large steps in modifying the weights.

As a result, the scientists modified the delta rule by adding the new term α momentum

constant. Thus, the generalized delta rule is

 ∆𝑤𝑗𝑖(𝑛) = 𝛼∆𝑤𝑗𝑖(𝑛 − 1) + 𝜂 𝛿𝑗(𝑛) 𝑦𝑗(𝑛) 𝐸𝑞. (2. 44)

2.6.3 Summary of the Back-Propagation Algorithm

The feedforward and back-propagation stages are shown in the following

overview of the back-propagation algorithm.

 Step 0. Set the learning parameters η to 0.1 and the momentum constant α to

small values from 0.1 to 0.5

Determine the number of hidden layers as well as the number of

neurons per layer.

Determine the maximum number of iteration

Set the minimum system error 𝐸𝑎𝑣𝑔(𝑛)

 Step 1. Initialize the weights and biases for all layers to small random values

between±1 or [0, +1] depends on the activation function.

 Step 2. While stopping condition is false, do steps 3- 10, described below.

 Step 3. For each training pair (𝑥(𝑛), 𝑑(𝑛)) do steps 4- 10, where 𝑥(𝑛) is the

input signal vector at iteration and 𝑑(𝑛) desired response vector at

iteration 𝑛.

32

Feedforward:

 Step 4. Determine the response vector for all the neurons in the first layer

 𝑣𝑗(𝑛) = 𝑤𝑗𝑖(𝑛)𝑥𝑖(𝑛)

𝑚

𝑖=0

 𝐸𝑞. (2. 45)

 𝑦𝑗
(𝑙)(𝑛) = ∅𝑗 (𝑣𝑗(𝑛)) 𝐸𝑞. (2. 46)

Where 𝑤𝑗𝑖(𝑛) is the interconnection weight vector for first hidden layer

neurons ∅𝑗 is the activation function as given by Eq. (2.38) which is

used by the first layer.

 Step 5. Determine the response of the neurons in each of the following hidden

layers, as well as output layer, using

 𝑣𝑗
(𝑙)(𝑛) = (𝑤𝑗𝑖

(𝑙)(𝑛)𝑦𝑖
(𝑙−1)(𝑛))

𝑚0

𝑖=0

 𝐸𝑞. (2. 47)

Where 𝑦𝑖
(𝑙−1)(𝑛) is the output function signal of neuron 𝑖 in the

previous layer 𝑙 − 1 at iteration 𝑛 and 𝑤𝑗𝑖
(𝑙) is the synaptic weight of

neuron 𝑗 in layer 𝑙 that is fed from neuron 𝑖 in layer 𝑙 − 1.

 𝑦𝑗
(𝑙)(𝑛) = ∅𝑗 (𝑣𝑗(𝑛)) 𝐸𝑞. (2. 48)

Where ∅𝑗 is the activation function in layer 𝑙.

 Step 6. Determine the mean squared error associated with pattern n using

 𝐸(𝑛) =
1

2
 (𝑑𝑗 (𝑛) − 𝑦𝑗(𝑛))

2 𝐸𝑞. (2. 49)

 Step 7. Determine the average (normalized) system error using

33

Where N is the total number of training patterns

 𝐸𝑎𝑣𝑔(𝑛) =
1

𝑁
 𝐸(𝑛)

𝑁

𝑛=1

 𝐸𝑞. (2. 50)

Back-propagation of error:

 Step 8. Compute the error information terms and calculate the weight correction

term for all neurons included in the output layer and layer.

𝛿𝑗
(𝑙)(𝑛) =

{

 𝑒𝑗

(𝐿)(𝑛) ∅́𝑗 (𝑣𝑗
(𝐿)(𝑛)) for neuron 𝑗 in output layer L

∅́𝑗 (𝑣𝑗
(𝐿)(𝑛)) 𝛿𝑘

(𝑙+1)(𝑛)𝑤𝑘𝑗
(𝑙+1)(𝑛)

𝑘

for neuron 𝑗 in hidden layer 𝑙

 𝐸𝑞. (2. 51)

Where the prime in ∅́𝑗 denotes differentiation with respect to the

argument.

Update weights:

 Step 9. Adjust the synaptic weight of the network 𝑙 accordigng to the

generalized delta rule:

 𝑤𝑗𝑖
(𝑙)(𝑛 + 1) = 𝑤𝑗𝑖

(𝑙)(𝑛) + 𝛼[𝑤𝑗𝑖
(𝑙)(𝑛 − 1)] + 𝜂𝛿𝑗

(𝑙)(𝑛)𝑦𝑖
(𝑙−1)(𝑛)

𝐸𝑞. (2.52)

 Step 10. Testing for stopping condition:

If the chosen maximum number of iteration 𝑛 is reached or if the

normalized system error calculated in step 7 is smaller than the pre-set

value in step 0, then STOP; otherwise continue.

34

Flowcharts for the feedforward back-propagation neural network in learning

and operation mode are given in Figures 2.4 and 2.5 respectively.

35

Figure 2.7: Flowchart for a neural network in learning mode (Yousef, 2001)

Calculate the response

 𝑦𝑗
(𝑙)(𝑛) = ∅𝑗 (𝑣𝑗(𝑛))

Star

t

Calculate the induced local

field for the first layer

𝑣𝑗(𝑛) = 𝑤𝑗𝑖(𝑛)𝑥𝑖(𝑛)

𝑚

𝑖=0

Calculate the induced local

field for the hidden layers

𝑣𝑗
(𝑙)(𝑛) =

 ∑ (𝑤𝑗𝑖
(𝑙)(𝑛)𝑦𝑖

(𝑙−1)(𝑛))
𝑚0
𝑖=0

Calculate the response for all layers

 𝑦𝑗
(𝑙)(𝑛) = ∅𝑗 (𝑣𝑗(𝑛))

Set the network

structure and

parameters

Initialize the weights

𝑤𝑗𝑖(𝑛)

Input training

patterns

𝑋(𝑛), 𝑑(𝑥)

Calculate error information terms and the weight

correction term for all neurons in the output

layer

 𝛿𝑗(𝑛) = 𝑒𝑗
(𝐿)(𝑛) ∅́𝑗 (𝑣𝑗

(𝐿)(𝑛))

∆𝑤𝑗𝑖(𝑛) = 𝛼∆𝑤𝑗𝑖(𝑛 − 1) + 𝜂 𝛿𝑗(𝑛) 𝑦𝑗(𝑛)

Calculate error information terms and the weight

correction term for all neurons in the output

layer

 𝛿𝑗(𝑛) = ∅́𝑗 (𝑣𝑗
(𝐿)(𝑛))∑ 𝛿𝑘

(𝑙+1)(𝑛)𝑤𝑘𝑗
(𝑙+1)(𝑛)𝑘

∆𝑤𝑗𝑖(𝑛) = 𝛼∆𝑤𝑗𝑖(𝑛 − 1) + 𝜂 𝛿𝑗(𝑛) 𝑦𝑗(𝑛)

Update weights and biases for all layers

 𝑤𝑗𝑖
(𝑙)(𝑛 + 1) = 𝑤𝑗𝑖

(𝑙)(𝑛) + 𝛼[𝑤𝑗𝑖
(𝑙)(𝑛 − 1)]

+ 𝜂𝛿𝑗
(𝑙)(𝑛)𝑦𝑖

(𝑙−1)(𝑛)

Feedforward

Calculate the system

normalized error 𝐸𝑎𝑣𝑔

If 𝐸𝑎𝑣𝑔 ≤ 𝑝𝑟𝑒 −

𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 Or
Iteration=Max.

Stop

Save network parameters, structure

and calculated weights for all layers

Yes

No

Feed
fo

rw
ard

B
ack-p

ro
p

agatio
n

36

Calculate the response

 𝑦𝑗
(𝑙)(𝑛) = ∅𝑗 (𝑣𝑗(𝑛))

Start

Calculate the induced local field

for the first layer

 𝑣𝑗(𝑛) = ∑ 𝑤𝑗𝑖(𝑛)𝑥𝑖(𝑛)
𝑚
𝑖=0

Stop

Restore trained

network structure

and parameters

Restore trained

network weights

Calculate the induced local

field for the hidden layers

𝑣𝑗
(𝑙)(𝑛) =

 ∑ (𝑤𝑗𝑖
(𝑙)(𝑛)𝑦𝑖

(𝑙−1)(𝑛))
𝑚0
𝑖=0

Calculate the response for all layers

 𝑦𝑗
(𝑙)(𝑛) = ∅𝑗 (𝑣𝑗(𝑛))

Write the network outputs

 𝑦𝑗
(𝑙)(𝑛)

Input patterns

𝑋(𝑛) for output

recreation

Figure 2.8: Flowchart for a neural network in operation mode (Yousef, 2001)

37

Chapter 3: Methodology

This chapter explains the methodology of modeling neural networks to solve the

classroom scheduling problem. Data generation is initiated given five constraints.

Furthermore, two neural networks are proposed to solve the classroom scheduling,

which are: (1) the self-organizing feature map (SOM) neural network and (2) the

feedforward back-propagation (FFBP) neural network. Detailed problems formulation

and networks modeling are explained in this chapter.

3.1 Overview of ANNs

Making machines that can mimic the abilities of the human brain has been a

dream for centuries. The idea came true with the computer revolution and demanding

on data processing machines. Therefore, engineers created what is called ‘Machine

Learning,’ which is the science of designing intelligent machines. The tools used to

make Machine Learning are called neural networks (Rojas, 1996). A Neural Network

can be thought of as a black-box which can correlate process inputs to its outputs based

on a mapping relationship that is captured by the Neural Network during its training

phase. According to Philip, training is a process where the machine parameters are

modified in such a way that it will correlate with the needed output values. If the user

defines the desired output values, the training is called supervised training. Otherwise,

if the network picks the output values automatically from the data itself, the process is

called unsupervised training (Philip, 2001).

One of the key benefits of neural networks is that they have the ability to

process a large number of data with the same accuracy regardless of some factors like

time and place. Furthermore, neural networks can find patterns from events which may

appear as random; for instance, weather prediction. A neural network can predict the

38

unseen scenarios relationships by mapping in some data that humans cannot capture.

Consequently, using the Artificial Intelligence-based approach to solve the complexity

of classroom scheduling is well worth investigating. Especially, because classroom

scheduling holds so many parameters and variables.

3.2 Classroom Scheduling Problem

Classroom scheduling is a process whereby classrooms are allocated to a set of

courses within the school hours so that it will meet specific constraints. The constraints

in classrooms can be divided into two types: hard constraints, e.g. instructor cannot

teach more than one course at the same time, and soft constraints, e.g. the instructor is

able to submit a time preference (morning or evening) for class timing (Mahmud,

2014). In other words, designing a valid schedule should at least fulfill the hard

constraints, adding soft constraints will add more flexibility in schedule but it won’t

cause a major issue if it was not exist in the schedule. Although a classroom

timetable/schedule that meets both the hard and soft constraints can serve the

objectives effectively, however meeting only the hard constraints can result in

preparing a feasible classroom schedule (Edmund, 2006).

Also, partially meeting the hard constraints can produce a feasible initial guess

for a sufficiently working schedule. In this research, a neural network- based approach

will be adopted to prepare an initial guess for a preliminary classroom schedule that

can meet specific hard constraints. To establish a feasible schedule a user needs to

define/formulate a set of constraints that may depend on the circumstances of the

workplace. For the purpose of conducting this research, the following constraints will

be considered:

39

1) Teacher Conflict: Teacher can have more than one course to teach.

However, a teacher cannot teach more than one course at the same time.

2) Course Conflict: A set of courses from the same level that must all be taken

in the same year. For example, third level students in mechanical engineering

in UAEU need to take Mechanics of Material (MECH305) and Geometric

Modeling (MECH315) in the same semester to avoid any delay in their study

plan). Hence for some groups of courses, no two courses from the same group

can be scheduled at the same time. For details see Appendix.

3) Time Restriction: Some courses need a specific time; for example, a

laboratory course needs to be scheduled for three consecutive hours to

prevent the interruption of laboratory work. Due to this, such courses are

often conducted at late times during the day.

4) Classroom Requirements: Classrooms cannot be assigned to more than one

course within a specific time interval. Also, the classroom capacity and

equipment needed for the class should be considered.

The goal of this project is to develop a methodology for solving a complex

scheduling problem considering as many scheduling parameters/ constraints as

possible. An Artificial-Intelligence based approach will be adopted to enable

intelligent class scheduling. Thus, the black-box below shows the functional structure

of the final product. At this point, executes of the product are not yet specified; this

will allow a flexible selection of different networks to run the inputs. Also, when a

new technology becomes available, the input can be substituted efficiently while

keeping the same function of the product to achieve the desired output.

40

Typically, a neural network can be constructed using systematic steps, which

are defining the input and the output, training ANN models and validating and testing

ANN models.

Step 1: Defining the input and the output. In this research designing / creating

data is required, thus a set of input, 𝑥𝑛, will be defined and prepared to enter the ANN.

The input data point vector will include all the constraints mentioned above. The

creation of input vectors will be discussed in the following section.

Step 2: Training ANN model. Defining the data samples will play a crucial rule

in choosing a proper neural network to train the data points. More details will be shown

in the sections below.

Step 3: Validation and testing ANN model. This step is to verify the accuracy

of the trained ANN by comparing the output against a set of the new data sample,

noting that this step is needed for a supervised network. In contrast, the unsupervised

network cannot be validated since the user does not know what to expect. Below is

Figure 3.2 which is a flowchart simplifying the creation of ANN.

Neural Networks

Input Output

Classroom scheduling

parameters/constraints.

Desired feasible schedule

free of conflict

Figure 3.1: Black box for the final product

41

.

3.3 Creation of Data Point Samples

 The datasets of a classroom schedule have been created by coding the input

parameters. For example, the alphabetic letters [A: Z] in the course code are mapped

into numbers [1:26], hence, the course code is transferred into numbers. Table 2 shows

the mapping between the constraints and the input parameters, and between the input

parameters and the numbers.

Cost function/ If

Threshold value met

Define the problem

Start

Specify the constraints /

create a meaningful

 vector

ANN Forming

Train ANN

Test

ANN

ANN Model is ready

for Classroom

scheduling

End

Yes

No

Reforming the

input data sets

Change the

Training Algorithm

Figure 3.2: Flowchart for ANN Creation

42

Table 2: Mapping constraints and input parameters

Moreover, the created datasets will form the shape of an input vector; see the

input matrix Eq. (3.3) below. Note that the raw data used in this report is from a study

plan of Mechanical and Electrical Department of Engineering College at UAE

University. See Appendix for more details. Creating data points is essential in the

selection of the proper neural network “training stage”. Some assumptions were made

to ease the training procedure, guarantee accurate output values and alleviate testing

and debugging the datasets if anything goes wrong during the training stage. Hence,

78 data points were made. The table below illustrates the raw input points used to

create the needed data. Thus, it forms the classroom schedule’s requirement.

Table 3 demonstrates the number of involved professors which are 20 and that

each professor will teach four subjects/courses. Also, it shows the course level, course

type, and timing. In addition, the course name in letters is displayed to relate the

courses to the professor easily. Note that the rest of the data is shown in Appendix.

Constraint Input parameter Code

Teacher Conflict Prof. ID Numbers from 1 to 20

Time Restriction Class time (AM/ PM) Number 1 for AM

Number 0 for PM

Course conflict Course level Number 3 for Third year

Number 4 for Fourth year

Number 5 for Fifth year

Number 6 for sixth year

Course name For example, MECH348 represents Fluid

Mechanics lab. The first digit represents the

course level and the second and third digits

the course name.

Classroom

requirements

Course type (Theory /

Laboratory)

Theory is 1

Laboratory is 0

4
3

Table 3: Original data with constraints

 Four lectures each Prof. Four lectures each Prof. Four lectures each Prof. Four lectures each Prof.
 Original data

Prof ID 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
Course

Level
3 4 4 3 3 4 5 5 3 4 6 4 3 4 5 5

Course (

Theory/

Lab)

0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

course

name
48 29 30 11 6 33 40 42 10 50 15 17 11 29 31 30

Time

(AM/PM)
0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1

Course

Name

(letters)

Fluid
Mech

lab

Thermo.
System

Thermal
Eng. lab

Applied
Thermo

Manuf.
process

Intro
to

CAM

Sel.topics
in

Manufact.

Intro
to

Comp

Dynamic System
Dynamic

lab

Adv.
Dynamic

and

Control

Kinematic Applied
Thermo

Thermo.
System

Intro. to
Robotics

SEL
Topics

in Mech.

44

3.3.1 Data Normalization

Formulating data points and converting it into the input vector is the primary

step to start the training. However, normalizing the input vector must take place before

introducing the input vector to the network. The normalization removes geometrical

biases towards some of the dimensions of the data vectors which will be inputted into

the SOM neural network. This is done to insure that every bit of data gets treated in a

"fair" manner. Also, this needs to be done to the data before it is entered into the

backpropagation neural network. The reason for this normalization in the BP neural

networks is that activation functions (e.g. sigmoid, hyperbolic tangent and Gaussian),

produce a result that lies in ranges of [0,1] or [-1,1]. Thus, it is a must to normalize the

input values, to insure it will be within the domain of [0,1] or [-1,1]. In addition,

another way of posing this is to realize that all learning algorithms depend on

numerical properties, so one should try to avoid small numbers, large numbers, and

large differences (Nicholas, 2012).

As with all functions, if the input values are not in the domain, the result is not

guaranteed to be appropriate (Nicholas, 2012). There are some ways to normalize data,

for example, Z-score, the coefficient of variation or feature scaling. The most

straightforward method for our data is feature scaling. If all input variable belong to

some interval 𝜒 𝜖 [𝑀_𝑚𝑖𝑛,𝑀_𝑚𝑎𝑥], then the normalization formula (Mendelssohn,

1993) is:

 𝑥𝑛𝑒𝑤 =
𝑥 − 𝑀𝑚𝑖𝑛

𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛

 𝐸𝑞. (3. 1)

Pre-processing the data and training it in the neural network will result in an

output vector. Consequently, the output vector needs post-processing or de-

45

normalizing in order to interpret and present the output data in the understandable

matter. The following formula is used for de-normalizing:

 𝑥 = 𝑥𝑛𝑒𝑤(𝑀𝑚𝑎𝑥
− 𝑀𝑚𝑖𝑛) + 𝑀𝑚𝑖𝑛 𝐸𝑞. (3. 2)

Table 4 specifies sample of data points after normalization- the rest of

normalized data is presented in Appendix. Now, the data is ready for training, each

row in the matrix below shows the five input parameters. Each column represents one

set of an input vector. In this report, we are using 78 input vectors with each vector

comprising professor ID, course level, course type, course name and class timing.

4
6

Table 4: Data after normalization

 Four lectures each Prof. Four lectures each Prof. Four lectures each Prof. Four lectures each Prof.

Prof ID 0 0 0 0 0.0526 0.052 0.052 0.052 0.105 0.105 0.105 0.10 0.1579 0.157 0.157 0.157

Course Level 0 0.333 0.3333 0 0 0.333 0.666 0.666 0 0.333 1 0.33 0 0.333 0.666 0.666

Course (

Theo./ Lab)
0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

Course Name 0.510 0.308 0.3191 0.117 0.0638 0.351 0.425 0.446 0.106 0.531 0.159 0.18 0.117 0.308 0.329 0.319

Time

(AM/PM)
0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1

47

Input Matrix =





























00012000000900870000

010001001001010010

180901596053190106404468042550351100638011700319103085051060

01010010101010101010

3330013330066670666703330003330333300

10530105301053010530052600526005260052600000

....

......

............

........

........

.........

Eq. (3.3)

3.4 ANN Formation

The most challenging and critical phase of this thesis is the building of the

neural network models. Mainly, there are two significant challenges of this project.

The first is how to interpret the multidimensional nonlinear data in the first draft of

the schedule. Thus, the data needs to be directed to form groups that have a common

mien. Each formed group is considered a classroom and each classroom will hold five

unique, unpredictable features (or constraints). The second challenge faced is how to

handle the unseen scenarios. For example, when dynamic changes happen at the

beginning of any academic semester, such as opening a new section, closing an

existing section and overlapping between some classes within the first draft.

3.5 Implementing SOM Neural Network

The solution starts with defining and understanding the behavior of input data

to the neural network. Thus, analyzing the data, to be distributed in distinct regions or

zones, may reveal a reasonable solution for the first challenge. Therefore, introducing

Self-Organizing Feature Map neural network to define those regions is an appropriate

solution for the following reasons:

 The presented data in this report has a clear non-linear relationship due

48

to the different types of constraints.

 SOM can reduce the size of the problem from a five-dimensional

(multidimensional) map to a two-dimensional map, while maintaining

all the information about the features (or constraints) valued. Hence,

each input vector consists of five different constraints.

 SOM neural network uses unsupervised learning, so the training

samples contain only input patterns. As a result, the system does not

need to be well defined, which is the case with our data.

SOM NN comprises two layers. The first layer is the input which consists of

the data points (sections) and neurons and the second is an output layer in the form of

a two-dimensional map that locates classrooms according to their degree of similarity

after clustering. The dimension of the output layer depends on the amount of data

being analyzed. The higher the volume of data, the larger the output layer.

As for the architecture of SOM neural networks, input data is propagated

within the system through forward connections, where connections originate in the

input layer and implant in the subsequent layer (output layer). Furthermore, the lateral

connections which appear between neurons of the same layer, can be seen in the output

layer, as introduced by Kohonen. Thus, it represents the cooperation stage in SOM

training.

After the learning process is completed, the output layer results in clusters

(groups). Each cluster has a centroid, which is the neuron around which the data points

are grouped; see the Figure 3.3. It is worth mentioning that the position of the centroid

neuron of the cluster is represented as a located in the X-Y plane of the network map,

which is also the weight vector of the centroid neuron itself. Hence, the number of

49

neurons designate the number of suggested classrooms, which in our research is 18

classrooms.

 Furthermore, each ball in Figure 3.3 represents one section, each of which is

comprised of professor ID, course level, course type, course name and class timing.

The colors of the data points cloud in the input layer are a representation of the courses

based on its constraints or features. As a result, the data points with the same color

signify the sections with similarities in their features. These data points, which have

the same color, are clustered to form the classrooms in the output layer by SOM NN.

A related point to consider is that the neurons in the input layer had no defined color;

they are shown in gray color in Figure 3.3. However, after clustering in the output

layer, the neurons (center of clusters) are converted to match the color of their group;

which is simply the function “clustering” of SOM NN.

A further splitting is done for large clusters if the classroom is assigned to

more than four courses.

Note that the information in Figures 3.3 and 3.4 below is simply a graphical

representation which serves as a model for the neural network our research endeavors

to create. In real mathematical modeling of SOM, the neurons migrate between the

similar features. In contrast, the data points remain fixed.

50

Figure 3.3: Graphical representation of first stage of sections (courses) separation

by SOM Neural Network

Classrooms

Center of

clusters

Input of SOM before

clustering

Output of SOM after

clustering

51

3.6 Implementing FFBP Neural Network

To preserve the produced classroom timetable done by SOM neural network

and to allow for new sections or updates to the classroom schedule to be made with

minimal changes, the feedforward back-propagation neural network is introduced.

The clustered output data done in SOM network is now the input data for FFBP neural

network.

 As previously explained in Chapter 2, feedforward neural network consists of

at least three layers: an input layer, hidden layer, and output layer. The network of all

three layers is fully connected. Neurons in the input layer are linked to neurons in the

Figure 3.4: Graphical representation of SOM separations

First stage of separation

by SOM NN

Second stage of

separation by SOM NN

52

hidden layer, and in-return the hidden layer’s neurons are fully connected to the output

layer’s neurons; this is why it is called the feedforward part of FFBP network.

Concerning back-propagation of an error signal, which is a training method for

neurons to adapt their weights to attain new knowledge, all neurons are fully

connected through all layers and propagate from the output layer to the input layers.

This insures the input data passes through all layers, including the hidden layers. In

general there is no particular technique to determine the number of the hidden layer.

Thus, from experiments researchers advise to use two rules to launch the FFBP model:

(i) number of hidden layers equals one; and (ii) the number of neurons in that layer is

the mean of the neurons in the input and output layers.

As the Figure 3.5 illustrates, learning mode is when the FFBP neural network

takes the input data (courses) and propagates it in a forwarding fashion. The patterns

resulting from the hidden layers arriving at the output layer are then compared with

the desired (associated) output pattern (classrooms numbers) to calculate an error

signal. Then the error signal for each target output pattern is propagated from the

output layer to the input layer, to update the weights in each layer of the network.

After the training phase, the network can be tested on a new set of samples to see how

well it classifies new patterns (new course).

Operation mode, which is the trained FFBP neural network, classifies new

data. Thus, the network will be able to identify whether a particular data point (i.e.,

new course) belongs to classroom 1, 2, or 3, etc.

53

In summary, Figure 3.6 illustrates a set of input vectors comprising five

constraints are introduced to a Self-Organizing Feature Map (SOM) neural network

for classroom section classification and separation, using some cluster centers equal

to the available rooms. The SOM demonstrated robust capability in clustering the

Figure 3.5: Learning mode in FFBP NN

Figure 3.6: Graphical representation of the operational mode in FFBP NN

Feedforward function signal

Back-propagation error signal

In
p

u
t

d
at

a
[

X
i]

 ;
[

Se
ct

io
n

s]

…

…

…

…

…

…

Hidden Layers Input Layer Output Layer

O
u

tp
u

t
[

Y
j]

;
[c

la
ss

ro
o

m
s

n
u

m
b

er
s

]

Input vector of a new

section

Trained network Output vector of the

assigned classroom

New section [prof.ID,

Course name, course

type, course level, time]

Classroom assigned

for the new section

54

sections into groups, comprising courses with conflicts based on the defined

constraints, hence it identified classes to be sequentially scheduled in one room. A

second stage SOM is used to further split the big clusters. Moreover, to fit newly

created classrooms into the SOM generated timetable, the output from SOM is used

to train a Feedforward Back Propagation (FFBP) neural network which then shows

where the new section can be allocated without disrupting the already existing

schedule created by the SOM. The trained FFBP is used to accommodate the new

sections without the need to re-cluster with SOM. In combination, the SOM and the

trained FFBP managed to prepare a conflict-free schedule successfully. Figure 3.7

represents the suggested artificial intelligence approach for classroom scheduling

graphically.

5
5

Classroom1

Classroom 2

Classroom 3/4

Classroom 3

Classroom 3

 Classroom 4

Modify pre-existed
Schedule

SOM Stage 1

Back-

Propagation

Learning

Mode

SOM

Stage 2

Back-

Propagation

Operation

Mode

Classroom #

Professor

Course code

Course level

Time

Classroom
req.

Phase 1 Self-Organizing Feature Map Phase 2 FeedForward Back-Propagation

Extra course

Prof. ID Cour. name Cour. level Cour. type Cour. time

Figure 3.7: Chart representation of AI approach for classroom scheduling

C
la

ss
ro

o
m

s
Sc

h
ed

u
le

56

Chapter 4: Tests Results and Discussion

The neural networks algorithms implemented in this research are written in

Matlab. In this chapter, mathematical models and tests are described, and the results

of implementing SOM NN and FFBP NN are presented and discussed.

4.1 Mathematical Modeling of SOM for Classroom Scheduling

The SOM NN takes the set of input vectors (sections) and maps it with the

neurons of a two-dimensional hexagonal grid. Each neuron in the 2D grid is assigned

a weight vector 𝑤𝑗𝐷 = (𝑤𝑗1, 𝑤𝑗2, … , 𝑤𝑗𝐷) which has similar dimensionality as the

input vector, where 𝑗 = (1, 2, …, 𝑙) and 𝑙 is the total number of neurons in the network

and 𝐷 is dimension of the input vector. Hence, the input pattern of our model has five

dimensions (constraints), 𝐷 = 5. According to (Fisher, 2006), the weights represent

the centers of clusters in the 2-D map. Additionally, the number of neurons, 𝑗, is

determined as the following: “𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ≤ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚𝑠”.

Thus, the number of classrooms must be sufficient to satisfy the given number of

sections; moreover, the minimum number of neurons should be at least equal to the

number of rooms to accommodate the given courses. According to the generated data,

the number of data points (input vectors) is 72. Thus, each professor will teach four

courses. However, for the sake of making the network more realistic, some scenarios

is added which is: two professors are assigned to teach only three sections. Hence 6

additional input data are added so that the total number of input vectors is 78.

Accordingly, the number of neurons 𝑗 can be determine as the following:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑛𝑒𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑚𝑒𝑠𝑡𝑒𝑟

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛 𝑜𝑐𝑐𝑢𝑝𝑦 𝑜𝑛𝑒 𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚

 =
72

4
 = 18 𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚𝑠

57

As the above formula reveals (i.e., the number of classrooms needed to house

all courses and sections), the total number of neurons 𝑙 = 18. As the number of

constraints = 5, the weight matrix number will be 18 𝑋 5 = 90.

𝑤𝑗𝐷 =

[

𝑤1 1 𝑤1 2 𝑤1 3 𝑤1 4 𝑤1 5

𝑤2 1 𝑤2 2 𝑤2 3 𝑤2 4 𝑤2 5

𝑤3 1 𝑤3 2 𝑤3 3 𝑤3 4 𝑤3 5

𝑤4 1 𝑤4 2 𝑤4 3 𝑤4 4 𝑤4 5

𝑤5 1 𝑤5 2 𝑤5 3 𝑤5 4 𝑤5 5

𝑤6 1 𝑤6 2 𝑤6 3 𝑤6 4 𝑤6 5

⋮
 𝑤18 1 𝑤18 2 𝑤18 3 𝑤18 4 𝑤18 5]

 𝐸𝑞. (4. 1)

Where 𝑤𝑗𝐷 is the weight matrix, 𝑗 represents the classrooms [𝑗 = 1, 2,3, … 18], and 𝐷

represents the constraints [𝐷 = 1,2, … ,5].

Figure 4.1, clearly exemplifies the interconnection between the input vector (input

layer) and the computational layer (output layer).

𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 1 ∶
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 2 ∶
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 3 ∶
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 4 ∶
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 5 ∶
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 6 ∶

⋮
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 18 ∶ [

𝑤1 1 𝑤1 2 𝑤1 3 𝑤1 4 𝑤1 5

𝑤2 1 𝑤2 2 𝑤2 3 𝑤2 4 𝑤2 5

𝑤3 1 𝑤3 2 𝑤3 3 𝑤3 4 𝑤3 5

𝑤4 1 𝑤4 2 𝑤4 3 𝑤4 4 𝑤4 5

𝑤5 1 𝑤5 2 𝑤5 3 𝑤5 4 𝑤5 5

𝑤6 1 𝑤6 2 𝑤6 3 𝑤6 4 𝑤6 5

⋮
 𝑤18 1 𝑤18 2 𝑤18 3 𝑤18 4 𝑤18 5]

Figure 4.1: SOM NN-mathematical model

Classroom

1

Classroom

2

Classroom

3

Classroo

m 4

Classroom

5

Classroom

6

Classroom

18

…

 Prof.ID Cr.type Cr.name Cr.level Time Connection from input to SOM neurons

1-D array of SOM neurons

58

Competition Phase: By using the Euclidian distance Eq. (2.46), the winning input

vector can be found by calculating the distances between the input vectors and the

weight of the neurons (classrooms) such that 𝑑 (𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 𝑗) is minimum.

𝑑(𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚1)2

= [(𝑝𝑟𝑜𝑓. 𝐼𝐷 − 𝑤11)
2 + (𝐶𝑟. 𝑡𝑦𝑝𝑒 − 𝑤21)

2 + (𝐶𝑟. 𝑛𝑎𝑚𝑒 − 𝑤31)
2

+ (𝐶𝑟. 𝑙𝑒𝑣𝑒𝑙 − 𝑤41)
2 + (𝑇𝑖𝑚𝑒 − 𝑤51)

2]

 𝑑(𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚2)2

= [(𝑝𝑟𝑜𝑓. 𝐼𝐷 − 𝑤12)
2 + (𝐶𝑟. 𝑡𝑦𝑝𝑒 − 𝑤22)

2 + (𝐶𝑟. 𝑛𝑎𝑚𝑒 − 𝑤32)
2

+ (𝐶𝑟. 𝑙𝑒𝑣𝑒𝑙 − 𝑤42)
2 + (𝑇𝑖𝑚𝑒 − 𝑤52)

2]

𝑑(𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚3)2

= [(𝑝𝑟𝑜𝑓. 𝐼𝐷 − 𝑤13)
2 + (𝐶𝑟. 𝑡𝑦𝑝𝑒 − 𝑤23)

2 + (𝐶𝑟. 𝑛𝑎𝑚𝑒 − 𝑤33)
2

+ (𝐶𝑟. 𝑙𝑒𝑣𝑒𝑙 − 𝑤43)
2 + (𝑇𝑖𝑚𝑒 − 𝑤53)

2]

⋮

 𝑑(𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 18)2 = [(𝑝𝑟𝑜𝑓. 𝐼𝐷 − 𝑤1 18)
2 + (𝐶𝑟. 𝑡𝑦𝑝𝑒 − 𝑤2 18)

2

 +(𝐶𝑟. 𝑛𝑎𝑚𝑒 − 𝑤3 18)
2 + (𝐶𝑟. 𝑙𝑒𝑣𝑒𝑙 − 𝑤4 18)

2 + (𝑇𝑖𝑚𝑒 − 𝑤5 18)
2]

Cooperation Phase: After the competition phase, the cooperation phase is determined

by calculating the neighborhood function (distance between the excited neurons and

the winner neuron). The neighborhood function should satisfy two requirements: it

must be symmetric, and decreases monotonically with the increase of the distance.

 ℎ𝑗,𝑖(𝑥)(𝑛) = exp −
𝑑𝑗,𝑖

2

2 𝜎2(𝑛)
 , 𝑛 = 0,1,2,… 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

Hence, 𝑑𝑗,𝑖
2 is the 2-D distance, 𝑑𝑗,𝑖

2 = ‖𝑟𝑗⃗⃗⃗ − 𝑟𝑖⃗⃗⃗ ‖
2

 , where, 𝑟𝑗 is the position vector of

the excited neuron 𝑗 and 𝑟𝑖 is the position vector of the winning neuron 𝑖.

59

Adaptation phase: Next the weights must be updated for the winning neurons and

excited neurons, and reduce the learning rate, 𝜂. Let the learning rate start from

𝜂(𝑡=0) = 0.6 and decrease till 𝜂(𝑡=𝑡(𝑛)) = 0.01 until the changes become less than the

predefined threshold. This is then the cost function:

 𝑤𝑗⃗⃗⃗⃗⃗(𝑛 + 1) = 𝑤𝑗⃗⃗⃗⃗⃗(𝑛) + 𝜂(𝑛)ℎ𝑗,𝑖(𝑥⃗)(𝑛) (𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗) 𝐸𝑞. (4. 2)

Which is simply

 𝑤𝑗⃗⃗⃗⃗⃗(𝑛𝑒𝑤) = 𝑤𝑗⃗⃗⃗⃗⃗(𝑜𝑙𝑑) + 𝜂ℎ𝑗,𝑖(𝑥⃗) (𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗(𝑜𝑙𝑑)) 𝐸𝑞. (4. 3)

4.2 SOM Neural Network Parameters for Tests in MATLAB

The behavior of SOM was explained earlier in Chapter 2. However,

understanding and selecting the proper parameters will ensure a better performance

and faster convergence of the neural network. Unfortunately, there is no definite and

explicit method to select optimal parameters for the used SOM NN model.

Accordingly, general trends from previous research, as well as trial and error methods

were followed to find the best parameters values.

MATLAB Software: Matlab is an open source tool with high-performance language

for technical computing. It has built-in functions for different types of neural networks,

hence, it uses Graphical User Interface (GUI) and/or Lines commands (Mathworks,

1994-2018). However, using the command lines allows the luxury to fine tune the

network parameters easily. Therefore, in this research the command lines in Matlab

are used to run the SOM tests using the generated data above. Hence, the line

commands are shown in Appendix.

60

Topology in SOM: Picking a suitable topology will result in a 2-D map with well-

clustered data. To this end, different tests were done using 11 input vectors from the

generalized data sets on three different topologies (grid topology, hexagonal topology,

and random topology; see Fig. 4.2). Sometimes the shape of the chosen topology can

be justified, sometimes it cannot. For example, in our case, the use of hexagonal

topology was a more natural fit based on the already consisting shape of our data

points. Furthermore, hexagonal topology has the highest number of adjacent neurons

per neuron (López, 2014), which gives more flexibility in tuning the clusters as

compared to the grid topology. Hence, the preferred use of hexagonal topology was

confirmed after several tests, as compared with the random and the grid topologies.

Figure 4.2:Three different types of topologies, HexTop, GridTop and RandTop

No. of Epochs: The number of iteration must be at least 500 times the number of

neurons. In our case 500 X 18=9000 iterations, hence, the iteration should start from

9000. Recall that an epoch in learning means using all the training samples once. So,

after trial and error method, the approximate number of needed epochs to converge

was 100,000 epochs. Hence, the suggested parameters are taken from two resources

either from different researchers or found by try and error experimentally.

61

Learning Rate 𝜼: The learning rate 𝜂 started with 0.6 and decreased till it reached a

steady state in term of the changes in the neurons convergence. No significant changes

were noticed in the clustering map when 𝜂 reached 0.1.

Initial neighborhood radius σ: The radius should start out as the radius of the

network, and approach zero, at which time the radius is simply the winner node. Any

nodes found within the radius of the winner are adjusted to make them more like the

input vector. The value of σ decreases with the number of iterations (for full discussion

see Chapter 2). Hence, σ started with 6 and gave the best results at 4. Thus, the result

is that the neighboring neurons tend to have similar weight vectors and to be responsive

to similar input vectors. This result was found experimentally via Matlab.

4.3 SOM Results and Discussion

The purpose of using SOM in this thesis is to cluster the data points. Thus, the

SOM distributed the data points (sections) over the neurons (clusters), to guarantee a

conflict-free schedule for each cluster. Hence, each cloud point (or cluster of data) has

shared features which reveal the points of potential conflict and highlight sections that

need to be scheduled in the same classroom. It is worth mentioning that the suggested

solution is considered an initial estimate for the classroom schedule.

4.3.1 Matlab Analysis Plots

After tens of runs and tests, Figures 4.3 and 4.4 show the data points before

and after clustering distributed over 6X3 hexagonal topology in SOM. The weight

position plot below shows the data points (sections) as green dots in terms of two first

features: professors IDs and course type. The neurons’ weight vectors are plotted in

dark-blue dots according to their first two weights only. The red lines indicate which

62

neurons are neighbors. Note how the neurons spread out with neighboring neurons

representing the adjacent arrows of the sections’ features in space. The 2-dimensional

map appears folded in some places in the plot because it is spread over five dimensions

of the sections features. Nonetheless, the neurons distribution in the map is expected

to be well organized; since the input data, or first two features, are well distributed

from the beginning. However, the main target from clustering the data is to extract

features from each cluster (classroom) separately.

Figure 4.3: SOM before training

63

Additionally, the SOM Topology, the Distribution of clusters (classrooms), the

SOM neighbor weight distance plot, and the weight input planes shown below are

Matlab visualization tools which help in interpreting the data points after clustering.

Figure 4.5: (6X3) 2D-hexagonal topology

Figure 4.4: SOM after training

64

Firstly, the two figures (Figure 4.5 and Figure 4.6) above are self-explanatory.

In contrast, in Figure 4.7 the SOM neighbor weight distances requires more

interpretation. So, to interpret Figure 4.7 the following colors and description should

be defined: 1. Neurons are represented by blue hexagons; 2. Red lines connect

neighboring neurons; 3. Dark-colored regions represent larger distances between

neurons; and 4. Light-colored regions represent smaller distances between neurons. It

is clear according to the plot below, that the clusters, which are indicated as lighter

colors, are distributed more consistently in most of the map. Yet, one or two clusters

are presented with relatively large distances between the neighbors’ weights, as

indicated by the darker colors. Note that the neighbor weight distances plot is

consistent with the position weight plot in Figure 4.4.

Figure 4.6: Clusters (Classrooms) distribution in (6X3) SOM topology

65

Moreover, the SOM weight plane plots in Fig. 4.8 are used to visualize the

strength of weights that connect each input to each of the neurons (Robertson, 2014).

For our experiment, five inputs were used; therefore, five subplots were generated for

each input. The five input features included: the professors ID #, course level, course

type, course name and course timing. This figure was generated after 100,000

iterations.

Lighter colors in the plots represent larger weights, whereas darker colors

represent smaller weights. Similar connection patterns of the inputs indicate a high

correlation. Inputs 3 and 5 appeared to be similar in some locations and were

interpreted as highly correlated. Input from variables 1, 2, and 4 appeared to contribute

the smallest amount of cluster separation in the data sets, as they appear to be the least

similar and are less correlated. Although the SOM weight plane plot suggests a

possible relationship might exist between the inputs, this concept does not pertain to

our thesis, since it was pre-defined that the relationship between the inputs is

independent.

Figure 4.7: SOM neighbor weight distance for sections clustering

66

 In this thesis the analysis was done on each cluster independently, in order to

extract the dominant features; this point will be elucidated at the next stage of analysis.

An additional useful visual plot provided by the MATLAB SOM function is

the SOM sample hits plot seen in Figure 4.9. The sample hits plot counts the number

of data points associated with each neuron. In an ideal situation, a relatively even

distribution across the neurons is desired. However, the distribution was clustered

Figure 4.9: SOM sample hits- input points (sections) after clustering

Figure 4.8: Weight input plane plot

67

unevenly throughout the map, which indicates that similar data were separated over

different regions.

4.3.2 Classroom Scheduling Constraints Analysis

SOM First Stage

At this stage a deeper analysis is required to disclose the output of each cluster.

Starting with cluster 1, which will be considered as classroom 1, the hits figure above

indicates that cluster 1 consists of three sections and, according to the weight input

plane plot below, input 3 and input 5 exert the most control on the data cloud points of

classroom 1, with input 1 (Professor ID) also exerting a lesser degree of control. Hence,

input 3, which is the course type, and input 5, which is the course timing, have the

main effect on cluster 1 (Classroom 1), making them the dominant features.

\

 Figure 4.10: Weight input plane plot of cluster # 1

68

Furthermore, Table 5 and Table 6 illustrate the data before and after

normalization for cluster 1 (Classroom 1), making it very easy to extract the dominant

features. It is obvious that course level, course type and timing all have similarities

across the three sections. Note that the existence of those three courses in the same

group course level gaurantees a conflict-free schedule for third year students. Also, it

appears that professor 11 is teaching two courses in classroom 1, which guarantees

that there will not be a clash in timeslots for classroom 1 for these two sections.

Table 5: Cluster 1 (Classroom1) sections normalized

.Neuron #

(Cluster #)

Prof ID Course Level Course

(Theory/ Lab)

Course

Name

Time (AM/PM)

1 0.473684211 0 1 0.224719101 1

1 0.526315789 0 1 0.292134831 1

1 0.526315789 0 1 0.337078652 1

Table 6: Cluster 1 (Classroom 1) sections de-normalized

Neuron #

(Cluster

#)

Prof ID Course

Level

Course

 (Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name (Letter)

1 10 3 1 25 1 Engineering

Electromagnetics

1 11 3 1 31 1 Computer Programming

1 11 3 1 35 1 Digital Logic Design

A similar case is evident in cluster 2, as evidenced in Tables 7 and 8. These

tables show that fourth year students will be able to take three courses in the same

classroom at different times. Similar cases are repetitve in most of the clusters, so this

observation can be considred as a point of strength in SOM, revealing that this is a

good initial estimation for classroom scheduling.

69

Table 7: Cluster 2 (Classroom 2) sections normalized

Neuron #

(Cluster #)

Prof ID Course Level Course

 (Theory/ Lab)

Course

Name

Time

(AM/PM)

2 0.263157895 0.333333333 1 0.078651685 1

2 0 0.333333333 1 0.235955056 1

2 0.052631579 0.333333333 1 0.314606742 1

Table 8: Cluster 2 (Classroom 2) sections normalized

Neuron #

(Cluster #)

Prof ID Course

Level

Course

(Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name

(Letter)

2 1 4 1 26 1 Thermo-fluid

System

2 2 4 1 33 1 Intro to CAM

2 6 4 1 12 1 Machine

Design II

Also, it was noticed that the co-requisite sections were grouped in the same

cluster, which is cluster 4 (classroom 4), thus it guarantees that students are able to

register for two courses-- the co-requisite --with minimum conflict. For example, the

table below shows the case of co-requisite courses MECH 409 (Dynamics System and

Control) and MECH 417 (Kinematics), which are co-requisite courses for MECH 450

(System Dynamics Lab). Note, cluster 4 went through the second stage of SOM

because it was overloaded with 6 sections; find the results of this in Table 9 below.

Tables 10-13 show classroom #4 before and after separation and de-normalization.

Table 9: Cluster 4 (Classroom # 4) Overloaded with 6 sections before separation

Neuron #

(Cluster #)

Prof ID Course Level Course

 (Theory/ Lab)

Course Name Time

(AM/PM)

4 0.10526316 0.3333333 1 0.04494382 0

4 0.10526316 0.3333333 1 0.134831461 0

4 0.2631579 0.3333333 1 0.02247191 0

4 0.31578947 0.3333333 1 0.134831461 0

4 0.36842105 0.3333333 1 0.235955056 0

4 0.21052632 0.3333333 1 0.314606742 0

70

Table 10: Cluster 4 (Classroom #4) part A after separation

Neuron #

(Cluster #)

Prof ID Course Level Course

(Theory/ Lab)

Course Name Time

(AM/PM)

4 0.10526316 0.3333333 1 0.04494382 0

4 0.10526316 0.3333333 1 0.134831461 0

4 0.2631579 0.3333333 1 0.02247191 0

Table 11: Cluster 4 (Classroom #4) part A de-normalized

Neuron #

(Cluster #)

Prof ID Course

Level

Course

(Theory/ Lab)

Course

Name

Time

(AM/PM)

Course

Name

(Letter)

4 3 4 1 9 0 Dynamics

system &

control

4 3 4 1 17 0 Kinematics

4 6 4 1 7 0 Machine

Design I

Table 12: Cluster 4 (Classroom #4) part B after separation

Neuron #

(Cluster #)

Prof ID Course Level Course

(Theory/ Lab)

Course Name Time

(AM/PM)

4 0.315789474 0.333333333 1 0.134831461 0

4 0.368421053 0.333333333 1 0.235955056 0

4 0.210526316 0.333333333 1 0.314606742 0

Table 13: Cluster 4 (Classroom #4) part B de-normalized

Neuron #

(Cluster #)

Prof ID Course

Level

Course

(Theory/ Lab)

Course

Name

Time

(AM/PM)

Course

Name

(Letter)

4 5 4 1 33 0 Intro to CAM

4 8 4 1 26 0 Thermo-fluid

System

4 7 4 1 17 0 Kinematics

Another case that should be highlighted is found in clusters 6 and 12. Cluster

6 (classroom 6) and Cluster 12 (classroom 12) are distinct, as their course types are

lab, not lecture. Tables 14, 15, 16 and 17 demonstrate the sections before and after

normalization. The SOM could classify the labs and separate them from the lectures

completely. Hence, laboratory rooms can be thought of as specialized equipment

71

rooms with three consecutive hours sections; to prevent the interruption of laboratory

work. Due to this, such sections are often conducted at late times during the day. Thus,

this case helps alleviate the challenge often posed by the scheduling of laboratories

with other academic classrooms. In addition, the two clusters 6 and 12 representing

the labs in Mechanical Engineering and Electrical Engineering respectively, were

distinguished by the SOM, allowing successful scheduling of the Mechanical labs and

the Electrical labs.

Table 14: Cluster 6 (Classroom #6) normalized

Neuron #

(Cluster #)

Prof ID Course Level Course

(Theory/ Lab)

Course Name Time

(AM/PM)

6 0 0.333333333 0 0.280898876 0

6 0.157894737 0 0 0.483146067 0

6 0.157894737 0 0 0.483146067 0

6 0.263157895 0.333333333 0 0.393258427 0

6 0.315789474 0.333333333 0 0.101123596 0

Table 15: Cluster 6 (Classroom #6) de-normalized

Neuron #

(Cluster #)

Prof ID Course

Level

Course

(Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name (Letter)

6 1 4 0 30 0 Thermal Engineering

lab

6 4 3 0 48 0 Fluid Mechanics lab

6 4 3 0 48 0 Fluid Mechanics lab

6 6 4 0 40 0 Design and

Manufacturing Lab

6 7 4 0 50 0 System Dynamics lab

72

Table 16: Cluster 12 (Classroom #12) normalized

Neuron #

(Cluster #)

Prof ID Course Level Course

(Theory/ Lab)

Course Name Time (AM/PM)

12 0.473684211 0 0 0.056179775 0

12 0.578947368 0 0 0.449438202 0

12 0.578947368 0.333333333 0 0.314606742 0

12 0.631578947 0 0 0.786516854 0

12 0.684210526 0.333333333 0 0.629213483 0

Table 17: Cluster 12 (Classroom #12) de-normalized

Neuron #

(Cluster #)

Prof ID Course

Level

Course

(Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name

(Letter)

12 10 3 0 10 0 Electric Circuits I lab

12 12 3 0 45 0 Digital Logic Design

Lab

12 12 4 0 33 0 Instrument and control

lab

12 13 3 0 75 0 Electronic Circuits Lab

12 14 4 0 61 0 Microprocessors Lab

Moreover, an additional section--a lecture type course, but located in a lab--

was added to measure the SOM clustering aptitude. In this case, the SOM succeeds in

separating this point in one cluster only, cluster 18 (classroom 18). This is confirmation

that SOM can differentiate easily between lectures and labs sections. See Tables 18

and 19.

Table 18: Cluster 18 (Classroom #18) normalized

Neuron #

(Cluster #)

Prof ID Course Level Course

 (Theory/ Lab)

Course Name Time (AM/PM)

18 0.421052632 0.666666667 0 0.898876404 0

Table 19: Cluster 18 (Classroom #18) de-normalized

Neuron #

(Cluster #)

Prof ID Course

Level

Course

(Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name

(Letter)

18 9 5 0 85 0 graduation

project I

73

To increase the flexibility of classroom scheduling and allow students to have

more options to create their own schedules, multiple open sections of the same courses

and different professors are created as a common scenario in university scheduling.

This will give students more options to register in a course, thus it helps the student

who has a conflicting morning session to register for an evening session or register for

a specific course on a different day. Tables 20 and 21 show identical courses clustered

in same classroom with two different professors, which guarantees that there will be

no conflict between the two sections because logically two sections cannot be given at

the same time in the same place. As a result, students will get the opportunity to select

between the two timeslots. This case can be found also in clusters 14, 15, 16 and 17.

See Appendix for more details.

Table 20: Cluster 10 (classroom #10) normalized

Neuron #

(Cluster #)

Prof ID Course Level Course (

Theory/ Lab)

Course Name Time (AM/PM)

10 0.6315789 0 1 0.752808989 0

10 0.6315789 0.3333333 1 0.516853933 0

10 0.6842105 0.3333333 1 0.516853933 0

Table 21: Cluster 10 (Classroom #10) de-normalized

Neuron #

(Cluster #)

Prof ID Course

Level

Course (

Theory/

Lab)

Course

Name

Time

(AM/PM)

Course Name

(Letter)

10 13 3 1 72 0 Electro-

Mechanical

Devices

10 13 4 1 51 0 Microprocessors

10 14 4 1 51 0 Microprocessors

74

SOM Second Stage

Designing conflict-free scheduling is a challenging task, due to many variables

and scenarios. The sections distribution over the class map (SOM) provides a partial

solution. Although the section distribution is satisfying, some classrooms are

overloaded with 6 sections and sometimes 7 sections in one day. This can be solved

by a second stage of SOM clustering (refer to Chapter 3). For example, Tables 22, 23

and 24 show classroom 8 overloaded with 7 sections and the dominant features vary

between course type, course level, course timing and professors’ IDs.

Table 22: Cluster 8 (Classroom #8) before second stage SOM (separation)

Neuron #

(Cluster #)

Prof ID Course Level Course

 (Theory/ Lab)

Course Name Time (AM/PM)

8 0 0.666666667 1 0.101123596 1

8 0 0.666666667 1 0.078651685 1

8 0.0526316 0.6666667 1 0.4044944 1

8 0.0526316 0.6666667 1 0.4157303 1

8 0.3157895 0.6666667 1 0.505618 1

8 0.4210526 0.6666667 1 0.1685393 1

8 0.4210526 0.6666667 1 0.1797753 1

Table 23: Cluster 8 (Classroom #8) after second stage SOM normalized

Neuron #

(Cluster #)

Prof ID Course Level Course

(Theory/ Lab)

Course

Name

Time (AM/PM)

8 0 0.666666667 1 0.101123596 1

8 0 0.666666667 1 0.078651685 1

8 0.0526316 0.6666667 1 0.4044944 1

8 0.0526316 0.6666667 1 0.4157303 1

Neuron #

(Cluster #)

Prof ID Course Level Course

(Theory/ Lab)

Course

Name

Time (AM/PM)

8 0.3157895 0.6666667 1 0.505618 1

8 0.4210526 0.6666667 1 0.1685393 1

8 0.4210526 0.6666667 1 0.1797753 1

75

Table 24: Cluster 8 (Classroom #8) after second stage SOM de-normalized

Neuron #

(Cluster #)

Prof ID Course

Level

Course

(Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name

(Letter)

8 1 5 1 14 1 Heat Engine

8 1 5 1 12 1 Intermediate heat

Transfer

8 2 5 1 41 1 Non-Conventional

Manufact.

8 2 5 1 42 1 Intro to Composites

Design

Neuron #

(Cluster #)

Prof ID Course

Level

Course

(Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name

(Letter)

8 7 5 1 31 1 Introduction to

Robotics

8 9 5 1 20 1 Selected Topic in

Bio.

8 9 5 1 21 1 Biomechanics

To provide further explanation, the overloaded classrooms cannot fit the given

timeframe for each classroom in one day. Therefore, the suggested solution is to re-

cluster the same section (going through second stage in SOM), which will then be split

across two days. For example, the first new cluster will be on Sunday, and the second

new cluster will be on Monday, and so forth. [Find all the overloaded clusters after

second stage of SOM in Appendix] After splitting the overloaded cluster into two days,

the professors IDs then become the dominant feature organizing the new clusters. This

separation by professors IDs is useful as it avoids having the same professor teaching

two sections in the same classroom at the same time. Consequently, the SOM was able

to show a significant effect of Professor IDs feature through the second stage of

separation.

So far, the SOM network was able to overcome the restrictions of course

conflicts and classroom requirements. Additionally, it was noted that sections with

same course level were clustered all together in the same groups, and the classrooms

76

were separated to form rooms for lab sections and classrooms for regular lectures. This

may form an initial estimation for classroom schedule.

In order to introduce the first draft of the schedule, a new constraint is added

which are the detailed timeslots shown in Table 25. This will result in the Tables 26-

32 below, which are considered an initial draft of randomly selected professors’

timetables. Professor ID #1 was found in classroom2, classroom 6 and classroom 8

and professor ID # 4 was found in rooms 3 and 6. Table 22 and Table 24 display the

first draft of the timetables and shows that there is no conflict in the common

classroom 2.

Table 25: Detailed time slots per classroom

Classroom # Timing

Slot #1 8- 10 AM

Slot # 2 10-12 AM

Slot #3 12-2 PM

Slot # 4 2-4 PM

Table 26: Professor ID #1 timetable

Neuron #

(Cluster #)

Prof ID Course

Level

Course

 (Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name

(Letter)

2 1 4 1 26 1 Thermo-fluid

System

6 1 4 0 30 0 Thermal

Engineering

lab

8 1 5 1 14 1 Heat Engine

8 1 5 1 12 1 Intermediate

heat Transfer

77

Table 27: First draft of Professor ID #1 timetable

Professor ID # 1

Day/Time .8-10 .10-12 .12-2 .2-4

Sunday Thermo-fluid

System

(classroom # 2)

 Thermal

Engineering lab

(Classroom # 6)

Monday Heat Engine

(Classroom #8)

Intermediate heat

Transfer

(Classroom #8)

Tuesday Thermo-fluid

System

(classroom # 2)

Wednesday Heat Engine

(Classroom #8)

Intermediate heat

Transfer

(Classroom #8)

Table 28: Professor ID #2 timetable

Neuron #

(Cluster #)

Prof ID Course

Level

Course

 (Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name

(Letter)

2 2 4 1 33 1 Intro to CAM

8 2 5 1 41 1 Non-

Conventional

Mnaufact

8 2 5 1 42 1 Intro to

Composites

Design

9 2 5 1 40 0 Selected topics

in Manufact.

Table 29: First draft of Professor ID #2 timetable

Professor ID # 2

Day/Time .8-10 .10-12 .12-2 .2-4

Sunday Non-

Conventional

Mnaufact

(classroom # 8)

Intro to CAM

(classroom#2)
Selected topics in

Manufact.
(Classroom # 9)

Monday Intro to Composites

Design

(Classroom #8)

Tuesday Non-

Conventional

Mnaufact

(classroom # 8)

Intro to CAM

(classroom#2)
Selected topics in

Manufact.

(Classroom # 9)

Wednesday Intro to Composites

Design

(Classroom #8)

78

Table 30: Professor ID #6 timetable

Neuron #

(Cluster #)

Prof ID Course

Level

Course

(Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name

(Letter)

0.058824 0.631579 0 1 0.752809 1 Intro to CAM

0.176471 0.631579 0.333333 1 0.516854 1 Machine

Design I

0.176471 0.684211 0.333333 1 0.516854 0 Machine

Design I

9 6 5 1 45 1 Maintenance

Engineering

Table 31: First draft of Professor ID #6timetable

Professor ID # 6

Day/Time .8-10 .10-12 .12-2 .2-4

Sunday Machine Design I

(classroom # 4)

Maintenance

Engineering

(Classroom # 9)

Monday Machine Design

II

(classroom#2)

 Design and

Manufacturing Lab
(Classroom #6)

Tuesday Machine Design I

(classroom # 4)

Maintenance

Engineering

(Classroom # 9)

Wednesday Machine Design

II

(classroom#2)

Table 32: Cluster 2 (Classroom #2) sections normalized

Neuron #

(Cluster #)

Prof ID Course

Level

Course

 (Theory/ Lab)

Course

Name

Time

(AM/PM)

Course Name

(Letter)

2 1 4 4 26 1 Thermo-Fluid

System

2 2 4 1 33 1 Intro to CAM

2 6 4 1 12 1 Machine

Design II

As the tables above reveal, it is possible to generate via SOM first draft

schedules for each classroom, though finalization of individual professor timetables

are still best adjusted manually proceeding the first SOM draft. Periodically, the SOM

first draft places the same professor within the same classroom for all of his or her

sections, however at other times, this must be adjusted for manually. Not all professors

79

are able to have all of their courses in the same classroom though due to variation in

SOM prioritization. The SOM may at times prioritize other variables over professors

ID, such as course type, course level, and timing. This shows that the SOM is able to

accommodate an additional variable, which in this case are the time slots.

At this stage, a conflict-free schedule has been constructed by the SOM.

However, to fit newly created classrooms into the SOM generated timetable, the output

from SOM is used to train a Feedforward Back Propagation (FFBP) neural network to

extract the implicit course-classroom mapping as formulated by the SOM.

4.4 Mathematical Modeling of FFBP NN for classroom scheduling

The output of the SOM NN which is the classroom number for each section is

considered as the input for FFBP NN. Each input vector has 5 elements (constraints)

assigned to a specific room as previously discussed. The structure below shows the

back-propagation neural network model for our data. The weight vectors are randomly

initiated at the beginning. Note that two hidden layers were used; the first hidden layer

carries 20 neurons and the second hidden layer carries 30 neurons. The structure below

shows the details FFBP NN map as well as and the weight matrix size for the first

hidden layer is (5 X 30) and the second size is (30X20)

80

4.5 Back-Propagation Parameters for Tests in MATLAB

BPFF NN codes were developed by using two hidden layers. Regardless of the

number of hidden layers, the same structure and assumptions can be used to construct

any code. The description of the main coding points is as follows:

Initiating Weights: The weights for each hidden layer were generated by assigning a

random number between -0.5 and 0.5. The size of the weight’s matrix is flexible based

on the total number of the used input data and the number of neurons in the hidden

layers. A bias layer of value 1 is included automatically to the weight matrix.

Initiating learning rate: The learning rate is responsible for the rate at which each

single weight is modified after one learning cycle. The learning rate is usually between

0 and 1, and the closer it is to 0, the smaller the steps needed to modify each weight.

The best learning rate for the used network was determined through trial and error

which is 0.1, this results was found experimentally.

Output

layer

k k

Figure 4.11: Backpropagation neural network with two hidden layers

In
p

u
t d

ata [X
i] ; [Sectio

n
s]

…

…

…

First

hidden

layers

O
u

tp
u

t [Y
j] ; [classro

o
m

s n
u

m
b

ers]

Xi
Professor ID X1

Course level X2

Course type X3

Course name X4

Course timing

X5

Second

hidden

layers

Input

layer

y

1

Bias

1

Bias

30

1

2

3

4

5

3

2

1

wki wji

20

81

Modifying the input parameters: As previously mentioned, the output of SOM is

the input to FFBPNN. Hence, the classroom numbers need to be normalized before

entering the FFBPNN to avoid big differences between numbers as explained

previously in Chapter 2.

Log-sigmoid transfer function: As the input vectors (sections) have non-linear

relationship between its inputs, a non-linear log-sigmoid transfer function was used in

this code. In this function the resulting values from multiplication of the inputs and

weights fall between 0 and 1. The result of this function is processed as an input to the

next layer, or as a final result in the case of the final layer.

No. of Epochs: For the set of 64 data points (70% of the total number of the data sets)

with a batch size of 5, each iteration processes 5 input vectors for a total of 16 such

iterations to create an entire set. Each set is called one epoch, which helps to direct the

convergence. However, there is also a premature termination criterion depending on

the mean squared error, which was set as 0.01. Based on this, the number of epochs in

this test is 746626 after the convergence.

4.6 FFBP NN Results and Discussion

4.6.1 Learning Phase:

In this phase the neural network is carried out using the 64 data sets. As described

earlier, the training parameters that were set continue running until it reaches below

0.1. Various network configurations were tested during the training phase with two

different values of learning rates, 0.05 and 0.1. The back propagation learning activity

is time consuming, due to the fact that after each learning cycle the network sends back

82

the weight changes to every single weight in the system for the two hidden layers.

Additionally, because the used learning rate is relatively small, the modifications to

the weights will be small and thus it will take more learning cycles and more time to

change all the weights to reach to the optimal solution. The average time required for

the two hidden layers to be trained is 1:30 hours. Figure 4.12 illustrates the training

results for two hidden layer networks.

Figure 4.12: Predicted vs. target training sets

4.6.2 Testing and Validating Phase

The testing and validation phase must be done by using an independent test set.

Hence, the independent test set is a set similar to the input set, but not a part of the

training set. In our case 20% of the data set was used for testing and validating the

network (15 untrained data points). The testing was done by using the acquired weights

from the trained network in calculating the classrooms numbers for the 15 remaining

untrained data sets. In the calculations of the classrooms numbers, the inputs were

R² = 0.9965

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

P
re

d
ic

te
d

 (
C

la
ss

ro
o

m
s

n
u
m

b
er

s)

Target Traning sets (classrooms numbers)

Predicted vs. Target Training sets for 5-20-30

83

multiplied by the weights resulting from the training sets, and the results were then

activated through the log-sigmoid function and proceeded to the next layer. The final

results were compared to the tested sets. The accuracy of the predicted results was

measured through the coefficient of determination R2, where the maximum R2 reached

was 0.9814 for different sets of neurons each layer. See Figure 4.13.

Figure 4.13: Predicted vs. target testing sets

4.6.3 Results and Discussion

Different types of network architectures were tested to find the optimal

convergence. It was shown that the two layer configuration system with 30 neurons in

the first layer and 20 neurons in the second layer with a learning rate of 0.1 gives the

best convergence with R2 of 0.94. The results showed that the optimal case required a

total of 663 weights with a 0.1 learning rate to have a higher convergence. Decreasing

the learning rate to 0.05 caused a negative impact on the accuracy, which is referred

to as over-fitting. The increase of the network size also causes a reduction in the

accuracy of the prediction due to the increase of the total weights that need to be

R² = 0.9814

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

d
ic

te
d

 (
cl

a
ss

ro
o
m

 n
u

m
b

e
r)

Target Testing set (classroom number)

Predicted vs. Target Testing sets

84

modified. As a result, a number of modeling parameters were selected depending on

the forecast horizon and degree of accuracy. Figure 4.14 shows high accuracy in the

prediction results for training and test sets by FFBP network 5-30-20.

Figure 4.14: Prediction results for training and test set by FFBP network 5-30-20

The tests reveal that for accommodating a new section, FFBP NN is capable of

fitting the new section into an existing classroom. The scenario of opening a new

section after all the professors’ timetables have been set or after one or two weeks have

elapsed from the beginning of the semester is very common situation, occurring often

in many institute for innumerable reasons. Therefore, re-clustering the whole set of

data to fit the newly created classroom is not a practical solution because each SOM

run can propose a new set of clusters, which will completely change the schedule for

each classroom. As a result, the FFBP network will help to solve the problem by

allocating the new section to fit in a suitable classroom without causing any conflict in

the schedule.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

C
la

ss
ro

o
m

s
n

u
m

b
e
rs

Actual data Trained data

85

4.7 Discussion in Summary

Based on the results of this thesis research, it can be concluded that the SOM

is able to cluster the given sections and provide a good initial estimation for classroom

scheduling. At first examination, the clusters show that the dominant features are

course type and course timing. This is a benefit of the SOM, as grouping course levels

in the same classroom provides the opportunity for students of the same year level to

register in the needed sections without facing any conflicts (i.e., in the case of co-

requisite courses).

However, each cluster presents an individual case, as seen in the example of

the labs. Due to this common feature, the network was able to clearly distinguish these

sections and group them into one region. To measure the accuracy of the network, an

anomaly was added. The anomaly was a lecture class MECH 585 (Graduation Project-

I) that, on this occasion, needed to be taught in a laboratory. The result was that the

network separated the section into a different cluster, placing it into a completely

unique section. Furthermore, a second stage of SOM was used to separate the

overloaded clusters, resulting in two new clusters which are split into two days.

To further test the efficacy of this system, a new constraint--detailed timeslots-

-was added to create a first draft of a timetable for random professors. This was done

to prove that it is possible to generate first draft classroom schedules via the SOM.

Although the timetables were finalized manually, the first draft SOM results still were

able to create clustered sections for each professor that revealed a conflict free

timetable.

86

Lastly, a new scenario was put forward, which was fitting a newly opened

section into an existing classroom without the need of re-cluster all the sections, which

would result in a completely new classroom schedule. After trial, it was found that the

FFBP NN was able to allocate the new section in the proper classroom that carries

same features as the new section without changing the rest of the pre-existing room

allocations.

87

Chapter 5: Conclusion and Future Work

This thesis has examined a new approach to solve university classroom

scheduling problems using an artificial intelligence technique. Classroom scheduling

is a very complex task due to many parameters and frequent changes in requirements.

The proposed methodology is divided into two main phases. The first phase uses a

Self-Organizing Feature Map (SOM) to cluster the generated input patterns, which

consists of five different constraints. This set of data points were generated from

United Arab Emirates University (UAEU) study plans for Mechanical and Electrical

Engineering courses. The second phase uses a back-propagation algorithm to modify

the SOM-generated timetable in order to accommodate newly created sections without

requiring a complete change of the existing schedule.

In the first phase of this research, 78 data points (sections) were used as input

vectors to SOM network. The output results with clustered sections assigned to each

neuron (classroom) carry similar features, which are considered as a mark for conflict.

In the case of the SOM producing an overloaded classroom, additional clustering was

done to remove the overloaded sections and separate them to two days or two different

classrooms. The second phase of scheduling occurs when the first draft schedule needs

to be modified. For example, if a new section is opened after the initial schedule is

created. In these cases, the Back-propagation neural network is used to fit the new

section into the created timetable.

 The Matlab software was used to write and run the networks. All code was

written using the command lines in Matlab. Although Matlab has a Neural Network

tool box (nntool), it was not easy to manipulate and test with the parameters of the

network. That is why the command lines were used.

88

After several runs and fine-tunings of the networks, the results reveal that the

proposed model can create an initial guess of a valid classroom schedule. The SOM

NN was able to cluster the sections according to their similarities, which revealed the

areas of conflict. For example, the SOM NN split the lab sections and the lecture

sections, demonstrating that it was able to identify that the lab sections needed to be

treated carefully when it comes to scheduling. A similar case found in this

investigation is that the SOM also separated the course levels into groups, which

highlights the SOM’s recognition of similarities within these sections. The benefit of

this distinction is that this grouping of sections by level prevents students from

experiencing delays in their study plans. Further, it was noticed that the SOM grouped

the professors who teach the same sections together, which also emphasized the fact

that SOM was able to show the regions where scheduling may have conflicts. Also, in

many cases the SOM was able to prioritize the features in such a way that the strongest

(dominant) feature took the lead and had the most significant effect on a specific group

of sections, i.e. in the case of scheduling lab sections. Additionally, when a classroom

became overloaded, a further splitting was done to overcome this issue. After this, the

resultant from the splitting separates the scheduled sections into two different days in

the week, thus alleviating the overload in the particular classroom.

To further test the efficacy of this system, a new constraint--detailed timeslots-

-was added to create a first draft of a timetable for random professors. This was done

manually to prove that it is possible to generate conflict-free first draft classroom

schedules.

Another neuron network was used to modify the produced classroom

scheduling without the need to change the whole content of the already existing

89

schedule. This neural network is FFBP NN. As the FFBP does not stop learning, but

instead continues to adapt to changing inputs, this allows the network to adjust to unexpected

environmental changes, such as fitting a newly opened section into a pre-existing schedule.

The findings above show that when a proposed conflict occurred in professor ID, time

restrictions, course conflict and classroom requirements, the system was capable of finding a

solution. The proposed model enables the easy generation of conflict-free classroom

timetables and it is predicted that the procedure can be extended and implemented in

fields other than academia such as factories, healthcare, and transportation. The

successes of using the artificial intelligence approach for classroom scheduling proves

that the concepts in this research are valid.

Recommendations for further study: A comparative study is recommended to

justify the superiority of this approach to other heuristic-based or mathematical-based

models available in the literature. Additional features and analysis are recommended

to investigate the differences in the SOM and to perform better clustering. Also, more

tests and applications of this model need to be implemented to further prove its

efficacy. . This model (artificial intelligence approach) has particular application for

UAE, as it has potential to benefit the growing number of industries within the UAE,

such as the healthcare field and transportation industry, along with many others.

90

References

Abramson, J. A. (1992). A Paralle Genetic Algorithm for Solving The School

Timetabling Problem. Australian Computer Science Conference, (pp. 1-11).

Hobart.

Abuhamdah, A., Ayob, M., & Kendall, G. (2013). Population based Local Search for

university course timetabling. Springer Science+Business Media, Vol. 40,

44-53.

Aloul, A. W. (2007). Solving the University Class Scheduling Problem Using

Advanced ILP Techniques. Department of Computer Engineering, American

University of Sharjah (AUS), 87-93.

Ansari, A. (2014). Genetic Algorithm to Generate the Automatic Time-Table – An

Over View. International Journal on Recent and Innovation Trends in

Computing Communication, Vol 2, 3480-3483.

Azimi, Z. N. (2005). Hybrid heuristics for Examination Timetabling problem.

Applied Mathematics and Computation, Vol. 163, 705–733.

Basir, N., Ismail, W., & Norwawi, N. M. (2013). A Simulated Annealing for

Tahmidi Course Timetabling. The 4th International Conference on Electrical

Engineering and Informatics (ICEEI 2013) (pp. 437 – 445). Negeri Sembilan,

Malaysia: Elsevier.

Birattari, M. D. (2011, May 16). Encyclopedia of Machine Learning. Retrieved from

Springer: https://link.springer.com/referenceworkentry/10.1007%2F978-0-

387-30164-8_22

Borglin, J. (2011). Classification of hand movments uring multi-channel EMG.

Gothenburg, Sweden: Chalmers University of Technology.

Carrasco, M. P. & Pato, M. (2001). A Pott Neural Network Heuristic for the

class/Teacher Timetabling Problem. 4th Metaheuristics International

Conference, (pp. 139-142). Portugal.

Colorni, D. M. (1998). Metaheuristics for High School Timetabling. Computational

Optimization and Applications, Kluwer Academic, Vol. 9, 275-298,.

Deris, S. S. (1999). Incorporating constraint propagation in genetic algorithm for

university timetable planning. Engineering Applications of Artificial

Intelligence, Volume 12, 241-253.

91

Dimopoulou, P. M. (2004). An automated university course timetabling system

developed in a distributed environment: A case study. European Journal of

Operational Research, Vol. 153, 136-147.

Edmund, K. B. (2006). Case-based heuristic selection for timetabling problems.

Springer Science + Business Media, LLC 2006.

Fisher, A. F. (2006). Chapter 12 – Towards Automatic Risk Analysis for Hereditary

Non-Polyposis Colorectal Cancer Based on Pedigree Data. In A. F. Fisher,

Outcome Prediction in Cancer (pp. 319–337). Liverpool: Elsevier.

Glassey, C. R., & Mizrach, M. (1986). A decision support system for assigning

classes to rooms. Informs, Vol.10, 92-100.

Glover, F. (2018, February 18). Tabu search. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Tabu_search

Gonzalez, T. F. (2007). Handbook of approximation algorithms and metaheuristics.

Taylor & Francis.

Gotlieb, C. (1963). The construction of class-teacher timetables. IFIP congress 62 (p.

73). Popplewell editor.

Guthikonda, S. M. (2005). Kohonen Self-Organizing Maps. Wittenberg University.

Haykin, S. (2009). Neural Network and Learning Machines . Ontario, Canada:

PEARSON.

Hwang, C. K. (1989). A Knowledge Base Approach to class scheduling problem

with a developed system ACS. Computer Society Press, 658-663.

Juha, V. J. (1999). Self-organizing map in Matlab: the SOM Toolbox. Proceeding of

Matlab (pp. 35-40). Finland: Laboratory of Computer and Information

Science, Helsinki University of Technology,.

Khader, A. T. (1994). A knowledge based approach to class based school

timetabling. UMI .

Lek, S., & Guégan, J. F. (1999). Artificial neural networks as a tool in ecological

modelling, an introduction. El Sevier , Vol. 120, 65-73.

Li, J., Cheng, J., Shi, J.-y., & Huang, F. (2012). Brief Introduction of Back

Propagation (BP) Neural Network Algorithm and Its Improvement.

Changchun China: Aviation University of Air Force.

Liebowitz, J. K. (1998). Classroom scheduling: An application and tools. The

Journal of Computer Information Systems, Vol. 38, Iss. 3.

92

López, R. E. (2014). Grid topologies for the self-organizing map. Elsevier, Vol. 56,

35-48.

Mahmud, A. (2014). ACO with GA Operators for Solving University. 3rd

International conference on informatics, electronics & vision 2014 (pp. 1-

16). Dhaka: IEEE.

Martinsons, M. G., & Kong, C. K. (1993). Intelligent timetabling using a

microcomputer. The International Journal of Educational Management, Vol.

7, 1-12.

Mathworks. (1994-2018, January Sunday). Matlab. Retrieved from

www.mathworks.com: https://www.mathworks.com/products/matlab.html

Mendelsohn, L. (2018, January 16). Preprocessing Data for Neural Networks.

Retrieved from Vantagepointsoftware:

https://www.vantagepointsoftware.com/mendelsohn/preprocessing-data-

neural-networ

Nicholas, N. K. (2012). Forecasting of wind speeds and directions with artificial

neural networks. Lappeenranta, Fenland: Lappeenranta University of

Technology .

Philip, S. N. (2001). Studies in Artificial Neural Network Modeling. Kochi- India:

Cochin University of Science and Technology.

Pillay, N. (2010). An Overview of School Timetabling Research. KwaZulu-Natal:

School of Computer Science, University of KwaZulu-Natal.

Qu, E. K. (2006). Case-based heuristic selection for timetabling problems. Springer

Science + Business Media, Vol. 9, 115-132.

Reynolds, R. (1994). An introduction to cultural algorithms. Michigan.

Robertson, K. B. (2014). Knowledge Discovery and Information Extraction on the

Open Internet Using MATLAB and Amazon Web Services. INTECH.

Rojas, R. (1996). Neural Networks. Berlin: Springer.

Sayers, C. (1991). Self Organizing Feature Maps and Their Applications to Robotics.

Pennsylvan: University of Pennsylvan Scholarly Commons.

Schaerf, A. (1999). A Survey of Automated Timetabling. Kluwer Academic

Publishers, Vol. 13, 87–127.

Singupta, I. I. (2009,September 22). Neural Network and Applications . Retrieved

from www.youtube.com:

93

https://www.youtube.com/watch?v=xbYgKoG4x2g&list=PL3EA65335EAC

29EE8

Smith, A. K., Abramson, D., & Duke, D. (2003). Hopfield neuralnetwork for

timetabling: formulations methods and compatitive results. Computer and

Industrial Engineering, Vol. 44, 283-305.

Sprain, L., Endres, D., & Rai-Peterson, T. (2010). Research as a transdisciplinary

network process. Communication Monograph, 77(4), Vol.77, 441- 444 .

Stattrek, L.M. (2017, October 10). stat trek. Retrieved from www.stattrek.com:

http://stattrek.com/statistics/dictionary.aspx?definition=z_score

Taborda, A. W. (2004). Neural Networks Applied on Educational Timetabling

Problems: an Overview. Porto Velho: Federal University of Rondônia.

Teoh, C. K., & Wibowo, A. (2013). Review of state of the art for metaheuristic

techniques. Springer Science+Business Media Dordrecht, Vol 44, 1-21.

Vishwanathan, A. S. (2008). Introduction to machine learning. Cambridge, United

Kingdom: the press syndicate of the university of cambridge.

Wren, A. (1995). A genetic algorithm for public transport driver scheduling. In A.

Wren, Computers & Operations Research (pp. 101-110). Berlin: Springer.

Yousef, B. F. (2001). Neural network approach to modeling the laser material-

removal process. London, Ontario, Canada.: University of Western Ontario, .

Yu, T. (1990). Time-table scheduling using Neural Ketwork Algorithms. California :

California State University at San Bernardino,.

Zhipeng, J. K. (2010). Adaptive Tabu Search for course timetabling. European

Journal of Operational Research, Vol. 200, 235–244.

94

List of Publications

Basem F. Yousef and Farah Aiash “Mechanism for surgical Tool Manipulation”, 9th

IEEE Asian Control Conference, (ASCC 2013) Istanbul-Turkey, pp.2713-2718, June

2013.

9
5

Appendix

Table 33: Raw data with constraints (1)

 Four lectures each room Four lectures each room Four lectures each room Four lectures each room

 Original data

Prof ID 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Course

Level

3 4 4 3 3 4 5 5 3 4 6 4 3 4 5 5

Course

(Theory/

Lab)

0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

course

name

48 29 30 11 6 33 40 42 10 50 15 17 11 29 31 30

Time

(AM/PM)

0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1

Co-course 0 8.7 9 0 0 0 0 0 2 10 0 0 0 0 0 0

Course

Name

(letters)

Fluid

Mechanic

lab

Thermo-

fluid

System

Thermal

Eng. lab

Applied

Thermo.

Manuf.

process

Intro.

to

CAM

Selected

topics in

Manufact.

Intro to

Com.

Design

Dynamic System

Dynamic

lab

Adv.

Dynamic

and
Control

Kinematic Applied

Thermo

Thermo.

System

Introd. to

Robotics

SEL Topics

in

Mechatronic

9
6

Table 34: Raw data with constraints (2)

Table 35: Raw data with constraints (3)

Four lectures each room Four lectures each room Four lectures each room Four lectures each room

Original data

9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12

5 5 5 3 5 3 3 3 3 3 3 3 3 3 3 3

1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1

20 23 42 6 23 5 10 20 25 30 35 20 45 36 35 70

0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Selected

Topic in

Bio.

Biomaterials Intro to

Composites

Design

Manuf.

process

Biomaterials Electric

Circuits

I

Electric

Circuits

I lab

Electric

Circuits

II

Engineering

Electromagnetics

Computer

Programming

Digital

Logic

Design

Electric

Circuits

II

Digital

Logic

Design
Lab

Signals

&

Systems

Digital

Logic

Design

Electronic

Circuits

Four lectures each room Four lectures each room Four lectures each room Four lectures each room

Original data

5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8

4 5 3 3 4 3 4 4 4 4 3 4 4 3 4 3

1 1 1 390 1 1 1 1 1 0 1 1 1 1 0 0

33 42 6 90 7 6 12 40 17 50 10 7 29 11 30 48

0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 10 0 0 8.7 0 9 0

Intro
to

CAM

Intro to
Composites

Design

Manuf.
process

Engineering
Materials

Machine
Design I

Manuf.
process

Machine
Design

II

Design and
Manufacturing

Lab

Kinematics System
Dynamics

lab

Dynamics Machine
Design I

Thermo.
System

Applied
Thermo

Thermal
Engineering

lab

Fluid
Mechanics

lab

9
7

Table 36: Raw data with constraints (4)

Four lectures each room Four lectures each room Four lectures each room Four lectures each room

Original data

13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16

3 3 4 4 4 4 4 4 5 5 5 6 5 5 6 6

1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1

72 75 51 61 51 61 62 72 62 82 85 0 82 85 18 25

1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Electro-
Mechanica

l Devices

Electro.
Circuits

Lab

Microproces Microproces
Lab

Microproces Microproces
Lab

Comp.
Arch. &

Organizat

Power
System

Embed
System

Design

Ang.
Integ.

Cir.

Grad.
Project I

Numerica
Methods

in Eng.

Ang.
Integ.

Cir.

Grad.
Project I

Microwave
Eng.

Power
System

Quality

Table 37: Raw data with constraints (5)

Four lectures each room Four lectures each room Four lectures each room Four lectures each room

Original data

17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20

6 6 6 6 5 6 5 5 6 6 5 6 6 4 4 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

37 41 18 25 85 0 82 85 18 25 85 18 94 62 72 62

1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sensors

Design and
App.

Contemp.

Digital
Systems

Microwave

Eng.

Power

Sys.
Qu.

Grad.

Project I

Numerica

l Methods
in Eng.

Analog

Integ.
Circuit

Dg.

Grad.

Project I

Microwave

Eng.

Power

System
Quality

Grad.

Project I

Microwave

Eng.

Research/Design

paper

Comp.

Arch. &
Organizat

Power

System

Embed

System
Dg.

98

Table 38: Input data after clustering by SOM - normalized

Neuron

Number

Professor

ID

Course

level

Course

Type

Course

name Timing

1 0.473684 0 1 0.224719 1

1 0.526316 0 1 0.292135 1

1 0.526316 0 1 0.337079 1

2 0 0.333333 1 0.235955 1

2 0.052632 0.333333 1 0.314607 1

2 0.263158 0.333333 1 0.078652 1

3 0.105263 0 1 0.05618 1

3 0.157895 0 1 0.067416 1

3 0.157895 0 1 0.393258 1

3 0.210526 0 1 0.011236 1

3 0.210526 0 1 0 1

4 0.105263 0.333333 1 0.044944 0

4 0.105263 0.333333 1 0.134831 0

4 0.210526 0.333333 1 0.314607 0

4 0.263158 0.333333 1 0.022472 0

4 0.315789 0.333333 1 0.134831 0

4 0.368421 0.333333 1 0.235955 0

5 0.315789 0 1 0.044944 0

5 0.368421 0 1 0.067416 0

5 0.473684 0 1 0.168539 0

5 0.473684 0 1 0.168539 0

5 0.526316 0 1 0.157303 0

5 0.526316 0 1 0.348315 0

6 0 0.333333 0 0.280899 0

6 0.157895 0 0 0.483146 0

6 0.157895 0 0 0.483146 0

6 0.263158 0.333333 0 0.393258 0

6 0.315789 0.333333 0 0.101124 0

7 0.368421 0 1 0.88764 1

7 0.578947 0 1 0.730337 1

8 0 0.666667 1 0.101124 1

8 0 0.666667 1 0.078652 1

8 0.052632 0.666667 1 0.404494 1

8 0.052632 0.666667 1 0.41573 1

8 0.315789 0.666667 1 0.505618 1

8 0.421053 0.666667 1 0.168539 1

8 0.421053 0.666667 1 0.179775 1

9 0.052632 0.666667 1 0.393258 0

9 0.105263 0.666667 1 0.011236 0

9 0.210526 0.666667 1 0.41573 0

99

Table 38: Input data after clustering by SOM – normalized (Continued)

Neuron

Number
Professor

ID
Course

level
Course

Type
Course

name Timing

9 0.263158 0.666667 1 0.449438 0

9 0.421053 0.666667 1 0.202247 0

10 0.631579 0 1 0.752809 0

10 0.631579 0.333333 1 0.516854 0

10 0.684211 0.333333 1 0.516854 0

12 0.473684 0 0 0.05618 0

12 0.578947 0 0 0.449438 0

12 0.578947 0.333333 0 0.314607 0

12 0.631579 0 0 0.786517 0

12 0.684211 0.333333 0 0.629213 0

13 0.842105 1 1 0.359551 1

13 0.842105 1 1 0.404494 1

13 0.894737 1 1 0.224719 1

13 0.894737 0.666667 1 0.292135 1

13 0.947368 0.666667 1 0.191011 1

13 0.947368 0.666667 1 0.078652 1

14 0.578947 0.333333 1 0.640449 1

14 0.684211 0.333333 1 0.640449 1

14 0.684211 0.333333 1 0.752809 1

14 1 0.333333 1 0.640449 1

15 0.736842 0.666667 1 0.865169 1

15 0.736842 0.666667 1 0.898876 1

15 0.789474 0.666667 1 0.865169 1

15 0.789474 0.666667 1 0.898876 1

15 1 0.666667 1 0.640449 1

16 0.736842 0.666667 1 0.640449 0

16 0.736842 1 1 0.876404 0

16 0.894737 1 1 1 0

16 0.894737 0.666667 1 0.898876 0

16 1 0.666667 1 0.898876 0

16 1 0.666667 1 0.52809 0

17 0.789474 1 1 0.146067 0

17 0.789474 1 1 0.224719 0

17 0.842105 1 1 0.146067 0

17 0.842105 1 1 0.224719 0

17 0.947368 0.666667 1 0.179775 0

17 0.947368 0.666667 1 0.179775 0

18 0.421053 0.666667 0 0.898876 0

100

Table 39: Input data after clustering by SOM - de-normalized

Neuron

Number

Professor

ID

Course

level

Course

Type

Course

name Timing

1 10 3 1 25 1

1 11 3 1 31 1

1 11 3 1 35 1

2 1 4 1 26 1

2 2 4 1 33 1

2 6 4 1 12 1

3 3 3 1 10 1

3 4 3 1 11 1

3 4 3 1 40 1

3 5 3 1 6 1

3 5 3 1 5 1

4 3 4 1 9 0

4 3 4 1 17 0

4 5 4 1 33 0

4 6 4 1 7 0

4 7 4 1 17 0

4 8 4 1 26 0

5 7 3 1 9 0

5 8 3 1 11 0

5 10 3 1 20 0

5 10 3 1 20 0

5 11 3 1 19 0

5 11 3 1 36 0

6 1 4 0 30 0

6 4 3 0 48 0

6 4 3 0 48 0

6 6 4 0 40 0

6 7 4 0 14 0

7 8 3 1 84 1

7 12 3 1 70 1

8 1 5 1 14 1

8 1 5 1 12 1

8 2 5 1 41 1

8 2 5 1 42 1

8 7 5 1 50 1

8 9 5 1 20 1

8 9 5 1 21 1

9 2 5 1 40 0

9 3 5 1 6 0

9 5 5 1 42 0

101

Table 39: Input data after clustering by SOM - de-normalized (Continued)

Neuron

Number

Professor

ID

Course

level

Course

Type

Course

name Timing

9 6 5 1 45 0

9 9 5 1 23 0

10 13 3 1 72 0

10 13 4 1 51 0

10 14 4 1 51 0

12 10 3 0 10 0

12 12 3 0 45 0

12 12 4 0 33 0

12 13 3 0 75 0

12 14 4 0 61 0

13 17 6 1 37 1

13 17 6 1 41 1

13 18 6 1 25 1

13 18 5 1 31 1

13 19 5 1 22 1

13 19 5 1 12 1

14 12 4 1 62 1

14 14 4 1 62 1

14 14 4 1 72 1

14 20 4 1 62 1

15 15 5 1 82 1

15 15 5 1 85 1

15 16 5 1 82 1

15 16 5 1 85 1

15 20 5 1 62 1

16 15 5 1 62 0

16 15 6 1 83 0

16 18 6 1 94 0

16 18 5 1 85 0

16 20 5 1 85 0

16 20 5 1 52 0

17 16 6 1 18 0

17 16 6 1 25 0

17 17 6 1 18 0

17 17 6 1 25 0

17 19 5 1 21 0

17 19 5 1 21 0

18 9 5 0 85 0

102

Matlab codes:

Self-organizing feature map neural network code in Matlab:

clear; % delete all memory
clc; % clear windows screen
clf; % clear figure screen

net = selforgmap([2,1],100,4,'topologyFcn','hextop','distanceFcn',

'linkdist');

% Input data "P"
P = xlsread('Book1.xlsx');
% Configure inputs & outputs
net = configure (net,P);

%net = setwb(net,k);

% Figure network before training
plotsompos(net,P);

% Set the SOM Traning parameters stage
net.trainParam.epochs =10000;
%lp = learnsomb('pdefaults');
%lp.order_lr = 0.1;

%net.trainParam.LP = [];
%w = rand(6,2);
%[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)

% Traning stage
net= train(net,P);

% Figure network after training
plotsompos (net,P);

% Results in matrix
outputs = net(P);

%plotsompos (net,outputs);

%for each input in inputs, op_som will have a numbering between 1 to

n based on which cluster it belongs to.
 op_som=vec2ind(sim (net,(P)))';

 % convert a sparse matrix to full
outputs = full(outputs);

 output this to a file (excel)
xlswrite('test0.csv',outputs);
xlswrite('test1.csv',op_som);

103

%view(net)
centers = net.IW;

%nntraintool close

color coding Code = som_colorcode(outputs);

Feedforward Back-propagation neural network code in Matlab:

clear; %Cleaning previous DATA
clc;
data= xlsread('Book1.xlsx'); %Training data Input
Input= ((data([1:64], [1:5]))); %Defining the input range
out= (data([1:64], [6])); %Defining the output range
In=[Input ones(size (Input,1),1)]; %Adding Bias column to the

input data
NN=30; %neurons for the first

hidden layer
NN2=20; %neurons for the second

hidden layer
[m,n]=size(In);
Nout=size(out,2);
A=-0.5; B=0.5; %initial weights range
W1= A+(B-A)*rand(n,NN-1); %First weights layer

definition
[e,r]=size(W1);
W2= A+(B-A)*rand(r+1,NN2-1); %second weights layer

definition
W3= A+(B-A)*rad(NN2,Nout); %thired weights layer

definition
eta=0.1; alfa=0.1; %Learning rate definition
W1n=zeros(size(W1));
E=10;
epoch=0;
EW1=zeros(m,r);
EW2=zeros(m,NN2);
DW1f=zeros (size(W1));
DW2f=zeros (size(W2));
DW3f=zeros (size(W3));

H1= In*W1; %first layer calculation
 H1f= 1./(1+exp(- H1));
 H1f= [H1f ones(size(H1f,1),1)];
while E>0.01 %definig loop condition
 H2= H1f*W2; %second layer calculation
 H2f= 1./(1+exp(- H2));
 H2f= [H2f ones(size(H2f,1),1)];
 O1= H2f*W3; %third layer calculation
 Of= 1/(1+exp(- O1));
 error= out - O1f;
 D=error.*O1f .* (1-O1f); %error calculation
 DW3=eta*(D')*H2f;
 Iw3=W3';
 %
 %
 for i=1:size(D,1) %

104

 EW2(i,:)=D(i,1)*Iw3; % APPlying Wight changes to the
 i=i+1; % second Hidden Layer
 end %
 s=EW2(:,(1:size(EW2,2)-1));
 o=H2f.*(1-H2f); %last layer wights changes
 o=o(:,(1:size(o,2)-1));
 s=s.*o;%
 DW2=eta*H1f*s; %

 W2=W2+DW2; %new weights
 W3=W3+DW3';
 DW1f=W1;
 DW2f=W2;
 DW3f=W3;
 E=round(0.5*(sum(((error.*error)))),3);
 epoch = epoch + 1;
 if rem(epoch,50)==0 % Every 50 epochs, show how training

is doing
 disp([' Epoch ' num2str(epoch) ' SSE '

num2str(E)]);
 end
end

check= xlsread('Book1test.xlsx'); %Testing Results inputs and

calculations
x= (check([1:15], [1:5]));
x=[x ones(size (x,1),1)];
x1=x*W1;
x1f=1./(1+exp(- x1));
x1f= [x1f ones(size(x1f,1),1)];
x2=x1f*W2;
x2f=1./(1+exp(- x2));
x2f= [x2f ones(size(x2f,1),1)];
y1= x2f*W3;
y1f=(1./(1+exp(- y1)))

cout=O1f;
 beep, pause(0.5), beep,pause(0.5), beep,pause(0.5),

beep,pause(0.5), beep

Centers (weight of the neurons after cluster) in matrix size (18X5)

[0.508771929666667 0 1 0.284644194666667 1

0.122807017666667 0.166666666500000 1 0.191011235833333 1

0.151315789625000 0.500000000000 1 0.2380617978125 0.375

0.157894737000000 0.333333333000000 1 0.224719101500000 0

0.463157894800000 0 1 0.177528090000000 0

105

0.144736842250000 0.166666666500000 0 0.410112359250000 0

0.473684210500000 0 1 0.808988764000000 1

0.201754386166667 0.666666667000000 1. 0.241573033833333 1

0.210526316000000 0.666666667000000 1 0.294382022400000 0

0.649122806666667 0.222222222000000 1 0.595505618333333 0

0.589473684000000 0.133333333200000 0 0.447191011200000 0

0.894736842000000 0.833333333500000 1 0.258426966166667 1

0.736842105000000 0.333333333000000 1 0.668539325750000 1

0.810526315600000 0.666666667000000 1 0.833707864800000 1

0.873684210400000 0.800000000200000 1 0.788764044800000 0

0.881578947250000 0.833333333500000 1 0.202247191000000 0

0.421052632000000 0.666666667000000 0 0.898876404000000 0];

	ARTIFICIAL INTELLIGENCE APPROACH FOR CLASSROOM SCHEDULING
	Recommended Citation

	tmp.1603614652.pdf.zH2GY

		2020-10-25T12:30:12+0400
	Shrieen

