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Abstract 

 

Companies, factories, and academic institutes often rely on planning and controlling 

scheduling of production lines or classrooms to ensure efficient utilization of 

resources. Task scheduling is a complex nonlinear process, due to numerous 

constraints, parameters and frequent, sudden changes in the requirements. The aim of 

this project is to explore the utilization of artificial intelligent neural networks in the 

preparation of classroom scheduling by utilizing their adaptive attributes and learning 

ability to establish a procedure for classroom timetable preparation. A set of input 

vectors comprising five constraints are introduced to a Self-Organizing Feature Map 

(SOM) neural network for classroom sections classification and separation, using 

some cluster centers equal to the available rooms. The SOM demonstrated strong 

capability in clustering the sections into groups comprising courses with conflicts 

based on the defined constraints, hence identifying classes to be sequentially scheduled 

in one room. A second stage SOM is used to further split oversized clusters. Moreover, 

to fit newly created classrooms into the SOM generated timetable, the output from 

SOM is used to train a Feedforward Back Propagation (FFBP) neural network to 

extract the implicit course-classroom mapping as formulated by the SOM. The trained 

FFBP is used to accommodate the new courses without the need to re-cluster with 

SOM. The trained FFBP managed to prepare a conflict-free schedule successfully. The 

outputs of the integrated neural networks show that the proposed model can create an 

initial guess of a valid classroom schedule. It is envisaged that the procedure can be 

extended and implemented in fields other than academia such as factories, healthcare, 

and transportations.  

 

Keywords: Classroom scheduling, artificial intelligent neural networks, Self-

Organizing Feature Map neural network, Feedforward Back Propagation neural 

network. 
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Title and Abstract (in Arabic) 

 

 استخدام الذكاء الاصطناعي في جدولة الصفوف الدراسية

 صالملخ

ُوأُالإنتاجُخطوطُجدولةُومراقبةُتخطيطُ ُعلىُالأكاديميةُوالمعاهدُوالمصانعُالشركاتُتعتمدُ 

عقدةُمُعمليةُهيُالمهامُجدولة.ُالمتاحةُللمواردُمثلالأُالاستخدامُلضمانُذلك؛ُوالدراسيةُالفصول

ُتعقيدهاُاضيا؛ًريُ(Non-linear)ُخطيةُغير ُسبب ُالكثيرُيعود ُوالعواملُالقيودُمنُإلى

ُفيُالمفاجئةُتغيراتموال ُالمتطلباتُوالمتكررة ُاستخدامالكشفُعنُُالمشروعُهذاُمنُالهدف.

ُفي (Artificial Intelligent Neural Networks) الاصطناعيةُالذكيةُالعصبيةُالشبكات

ُالتعلمُعلىُوالقدرةُالتكيفُسماتُمنُادةالاستفُخلالُمنُالدراسيةُالفصولُجدولةُإعداد

ُ ُلإعداد ُيالدراسُلالفصجدولُواستخدامها  Input)ُالإدخالُناقلاتُمنُمجموعةُإدخالُيتم.

vector)ُُُالتنظيمُذاتيةالعصبيةُُخريطةالُشبكةُإلىُقيودُخمسةُمنُتتألفوالتيُبدورها(Self-

Organizing Mapُ)ُددعُباستخدامُذلكيتمُوُ،وعاتالموادُالدراسيةُوفصلهاُإلىُمجمُلتصنيف

بيةُالعصُالخريطةُشبكةُأظهرتُ.المتاحةُالدراسيةُالفصولُلعددُمساويةُالعنقوديةُالمراكزُمن

ُالمساقاتإُالمساقاتُتصنيفُفيُعاليةالُقدرتهاُ(SOM)ُالتنظيمُذاتية ُتشمل ُمجموعات ُلى

ولةٍُالمساقاتُبطريقة ُجدُيدتحدُوبالتاليُ.خذُبعينُالاعتبارُالمحدداتُالمذكورةمعُالأالمتعارضةُ

 (SOM) التنظيمُُالعصبيةُذاتيةُالخريطةُوتستخدمُشبكة متسلسلةٍُفيُالفصلُالدراسيُالواحد.

ُذلك،ُعلىُوعلاوة.ُالمتكدسةُمساقاتالمزيدُمنُالتصنيفُفيُحالُوجودُتجمعاتُكبيرةُمنُالُفي

ُالخريطةُشبكةُوماتُالمعدةُفيعلىُالمعل وبناءُ.-إنشاؤهاُتمُغيرُالتي-ُمساقاتُجديدةُضافةيتمُا

علىُمخرجاُقبل؛منُُ(SOM)ُالتنظيمُالعصبيةُذاتية ُالخريطةُشبكةُ(Output vector)تُنعتمدُ

ُةُالعصبيةشبكالتخدامهاُكمدخلاتُلتدريبُاسيتمُالتيُبدورهاُ (SOM) التنظيمُالعصبيةُذاتية

 Feedforward Back Propagation (FFBP)) الارتداديرُماميةُوالانتشاذاتُالتغذيةُالأ

neural network)ُالدراسيُالمناسبُللمساقُالجديُلاستخراج ؛ ُشبكةُصاغتهاُكما دالفصل

ُذاتيةُالخريطة ُُيتموُ.(SOM)ُالتنظيمُالعصبية ُالأُالشبكةاستخدام ماميةُالعصبيةُذاتُالتغذية

ُإعادةُإلىُجةالحاُدونُالمساقاتُالجديدةُلاستيعابُمسبقاًُُلمدربةاFFBPُ)) والانتشارُالارتدادي

تُالشبكةُالعصبيةُتمكنقدُُو.ُ(SOM)ُالتنظيمُالعصبيةُذاتيةُالخريطةُشبكةُباستخدامُالتصنيف

للفصولُالدراسيةُُجدولُإعدادُمنُالمدربةFFBP) ) ماميةُوالانتشارُالارتداديذاتُالتغذيةُالأ

ُالمقترحُالنموذجُأنُالمتكاملةُالعصبيةُالشبكاتُمخرجاتُتظهرُ.بنجاحُالتعارضاتُمنُخال
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ُاءالإجرُهذاُيمتدُأنُالمتصورُومنُة.دراسيالُالفصولُةجدولُُُيخمنُبشكلُفعالٍُأوليُأنُيمكن

ُ.والنقلُالصحيةُوالرعايةُالمصانعُمثلُالأكاديميةُالأوساطُغيرُاخرىُميادينُفيُوينفذ

 

ُشبكةُية،الاصطناعُالذكيةُالعصبيةُجدولةُالفصولُالدراسية،ُالشبكاتُ:مفاهيم البحث الرئيسية

ُذاتيةُالخريطة ُ(SOM)التنظيمُالعصبية ُالأ، ُالتغذية ُذات ُالعصبية ُوالانتشارُالشبكة مامية

 .FFBP)) الارتدادي
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Chapter 1: Introduction 

 

1.1 Overview 

Scheduling problems have been the subject of research for decades. According 

to (Wren, 1995), scheduling is the constraint of resources to objects, being placed in 

space-time in such a way as to minimize the total cost of a set of the resources used. 

Scheduling activity is considered a fundamental and frequent action in many places 

such as hospitals, transportation, and academic institutions. This thesis is concerned 

with classroom scheduling using an Artificial Intelligence (AI) approach. The 

adaptability of this AI approach will open the doors to use it, not only in academic 

institutions, but also in hospitals, transportation, factories and other places or fields 

where efficient utilization of resources is needed. 

1.2 Problem Statement and Purpose  

Class scheduling for academic institutes is a fundamental educational 

management activity. With the number of students increasing, academic programs and 

other requirements upsurge the complexity of designing a conflict-free timetable. A 

class scheduling problem inherits the intricacy of both resources allocation and 

personal preferences. The manual timetabling process for larger academic 

organizations can be described as time-consuming, tedious and oftentimes 

challenging. This appears to make scheduling timetables an ideal candidate for the 

application of information technology. The aim of this project is to design an artificial 

neural network that can help in solving a complex university class scheduling problem. 

The proposed system uses a neural network-approach which has the competency to 
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adapt to unforeseen scenarios and problems, thus creating a conflict-free schedule for 

students while using optimal classroom space and associated teacher resources.      

1.3 Intended Outcomes and Deliverables  

The outcomes that would be achieved in this project are numerous. Designing 

an integrated model of neural networks will lead to the generation of a conflict-free 

classroom timetable, but most importantly this model introduces a new approach in 

creating classroom scheduling. Due to the use of artificial intelligence, this approach 

has the potential to generate conflict free schedules in complex scenarios and 

institutions with greater ease than exists within previous models (Teoh & Wibowo, 

2013) . An additional outcome of this project is the ability for it to be applied, not only 

to academic institutions, but also in hospitals, transportation, factories and other places 

or fields where efficient utilization of resources is needed. 

An unanticipated outcome comes from the experience of implementing neural 

networks to produce a functioning model; it is not like any other experience due to the 

fact that it is professionally following a world a wide trend these days. Moreover, 

gaining skills that contribute to realizing the machining learning for any type of 

knowledge base data that is encountered in professional careers is invaluable. 

In addition, this project meets the vision of United Arab Emirates in using 

artificial intelligence in its industry and sectors. Also, this project opens the doors 

widely for further questioning and research into ways the neural network can be used 

in different applications once we think of it in un-traditional way.   
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1.4 Relevant Literature 

Class scheduling for an academic institution has become time-consuming, 

redundant, and tedious. For example, classes have been double booked with no 

instructors, students have been looked over, the seemingly available time slots have 

proven to be unavailable or not able to support the entire class period. All these make 

the process of achieving an efficient class scheduling frustrating and very difficult. 

Many process constraints are encountered while preparing a working timetable 

those include scheduling classes, teachers, and rooms into a fixed number of conflict-

free time slots. Accordingly, no teacher, class or room is used more than once during 

a specific time slot.  

Traditionally, staff who scheduled classes utilized a trial-and-error approach 

which was to manually create a conflict-free timetable while optimizing the use of 

rooms and associated teaching resources. However, when put in practice, this approach 

has proven inefficient or unsuccessful.  

In addition, increasing the number of students, different programs of study, and 

teachers will increase the complexity of the process of class schedule. These 

challenges make using an information technology program a good candidate to solve 

these ever-present scheduling problems. 

Many research projects related to automated timetabling were reported in the 

literature (Gotlieb, 1963), where researchers have developed different approaches to 

solving the class schedule problem (Carrasco & Mizrach, 1986). At an early stage, the 

operation research optimization techniques were used extensively in solving the 

timetable problems (Aloul, 2007). 
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Some other papers have classified the basic scheduling approaches into two 

different approaches; the action-driven approach and the strategy-driven approach. 

The action-driven approach consists of heuristic algorithms and analytic methods. It is 

considered as commonly used approach for education institutions (Liebowitz, 1998). 

The strategy-driven approach aims to construct a flexible and easily adaptable 

timetabling system. This system takes into account the teaching staff preferences and 

un-availabilities according to information as obtained directly from staff.  This 

approach includes the optimization techniques (Dimopoulou, 2004) 

Recently, researchers have increasingly focused on the science of artificial 

intelligence to solve issues associated with scheduling. Since using the simulated 

annealing, tabu search, constraint satisfaction genetic algorithms and neural networks 

(Schaerf, 1999), which are techniques in artificial intelligence, there has been a 

significant improvement in the performance of solving timetable problems compared 

to the traditional operation research techniques and optimization. These AI methods 

attracted researchers due to their flexibility and adaptability for different scenarios 

(Abramson, 1992).  

Examples of those methods are “Genetic algorithms (GA) which mimic the 

process of natural selection and can be used as a technique for solving complex 

optimization problems that have very large search spaces. Although the GAs can solve 

a complex timetable problem and are considered quite powerful in finding the global 

minimum from an enormous search space, their convergence is very much dependent 

on the initial solution (Azimi, 2005). This is due to the ambiguity in deciding the fitness 

function of the GA. Many approaches which seek to find optimal solutions to 

constraint-satisfaction problems by genetic algorithms have been suggested, but the 
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majority of these methods are problem-dependent and consequently difficult to apply 

to the complexity posed by real-world situations (Deris, 1999).  

Further research was conducted using genetic algorithms to solve the timetable 

problems which considered the flexibility preferences. Accordingly, a new method 

was created by combining an Ant Colony Optimization (ACO) with the Genetic 

Algorithm Operators method. Hence the Ant Colony Optimization (ACO) is a 

population-based metaheuristic that seeks to solve difficult combinatorial optimization 

problems (Birattari, 2011). This combination resulted in flexible timetables (Mahmud, 

2014), however, the genetic algorithm could stop during some occasions which depend 

on the search area space. For example; in extremes situation where only one solution 

exists, the genetic algorithm will most likely fail since it does not work based on an 

event or action language (Ansari, 2014).  

Another artificial intelligence based approach is knowledge-based. This system 

which is called “Assistant for Class Scheduling” uses the knowledge of an expert 

human scheduler to generate a class schedule.  The system has a control strategy where 

it can prioritize the courses according to the preferred time of the corresponding 

teacher and the size of the classroom. Accordingly, courses with higher priority will 

be chosen first for scheduling. However, this approach has some limitations. For 

instance, it can adapt only for courses that are distributed with an even number of hours 

per week, courses with odd numbers of hours allocated per week have to be scheduled 

manually (Hwang, 1989). Also, courses requiring a special classroom are not 

considered in this method. In particular, this approach lacks the ability to adapt to 

scenarios that are variant of the norm (Qu, 2006). Also, in Hong Kong, an institution 

created an intelligent timetabling using a knowledge-based system built on a 

microchip. The knowledge, strategies, and heuristics of a small, centralized group of 
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schedulers were modeled and subsequently represented in a readily available expert 

system shell which runs on a standard IBM-type microcomputer (Martinsons & Kong, 

1993).  

Furthermore, the cultural algorithms (Reynolds, 1994) are a class of 

evolutionary algorithms that use domain knowledge extracted during the evolutionary 

process to improve the performance of the search engine adopted. It is a new approach 

that is showing to be effective to solve the timetabling problem. Another promising 

approach is the Population-based algorithms which are better at exploring a search 

space than local search algorithms. In other words, it has potential in optimizing the 

solution of the timetabling problem (Abuhamdah, Ayob, & Kendall, 2013). 

In addition, Simulated Annealing algorithm has a potential to create a 

classroom timetable (Teoh & Wibowo, 2013). The simulated annealing name comes 

from the principles of metallurgy, which boiled and cooled metals to achieve a stable 

crystal lattice structure with minimal energy state. The algorithm begins by generating 

an initial random solution. After that, an adjacent solution is generated and these two 

solutions are evaluated by an objective function (Gonzalez, 2007). As stated by Basir 

(2013) the use of simulated annealing will give an optimum solution to the problem. 

This makes simulated annealing an attractive option for the problem of optimization, 

(Basir, Ismail, & Norwawi, 2013).  

Another model that can be used to solve problems associated with curriculum-

based course timetabling that was introduced is the Adaptive Tabu Search algorithm 

(Zhipeng, 2010). Tabu search is a metaheuristic search method employing local 

search methods used for mathematical optimization (Glover, 2018). The proposed 

algorithm follows a general framework composed of three phases: initialization, 

intensification and diversification. The initialization phase creates a feasible initial 

https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Local_search_(optimization)
https://en.wikipedia.org/wiki/Local_search_(optimization)
https://en.wikipedia.org/wiki/Optimization_(mathematics)
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timetable using a fast heuristic. To reduce the number of soft constraint while still 

satisfying the hard constraints, an adaptively combined intensification and 

diversification is used. The proposed hybrid system showed that it has the potential to 

solve a course timetabling problem. Because the basic ideas are quite general, it would 

also be applicable to other similar problems (Zhipeng, 2010). 

Another technique used to suggest a solution for class scheduling is the graph 

partitioning algorithm combined with simulated annealing. A graph partitioning 

algorithm is a mathematical algorithm that is defined by data represented in the form 

of a graph G = (V,E), with V vertices and E edges. The graph partitioning algorithm 

was used to represent the relation between the constraints and the time-slots which can 

be represented by an edge-weighted graph. The simulated annealing was used as a 

“noise term” to update spin configuration in the graph partitioning algorithm (Yu, 

1990).  

Furthermore, neural networks models like: Interactive Activation and 

Competition, Potts Neural Network, and Modified Hopfield Neural Network were 

previously introduced to solve scheduling issues. The first model uses a hybrid form 

of neural network to create the Interactive Activation and Competition networks. The 

structure of the model organizes classes sequentially from the network in the region 

with the largest number of restrictions first. At the same time, the network configures 

the parallel combination of resources most appropriate for the class in question, under 

simultaneous interaction of complex restrictions. The restrictions then go through 

adjustments in synaptic weights before the next class is selected for scaling. It results 

with significantly slower network growth (linear) according to the size of the problem 

and is flexible to organize restrictions more realistically. The second network is the 

Potts Neural Network, which is a derivation of the Hopfield Neural Network discussed 

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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below. In the Potts network, a neuron multistate is used (in place of the usual two 

neuron stages), as well as a factorization, which provides a substantial reduction in the 

number of neurons (Carrasco & Pato, 2001). The third model is the Hopfield network 

with modifications. The main advantage of this tool lies in its potential for fast 

computational power when implemented in hardware, and also the parallel nature of 

the ANNs (Smith, Abramson, & Duke, 2003) .The results achieved using the modified 

Hopfield Neural Network proved it comparable to the best technical heuristics. Thus, 

the network was shown capable of producing solutions to complex problems of time 

allocation. One advantage of this method is its speed (Taborda, 2004).  

In a comparative study of simulated annealing, tabu search with local search 

and genetic algorithms in solving the school timetabling problems for two Italian high 

schools conducted by Colorni (1998), found that Tabu search produced the best results 

followed by genetic algorithms and simulated annealing (Colorni, 1998).  

Another computational study was done by Smith et al. (2003) using Hopfield 

neural network to solve the school timetabling problem. It was used for nine high 

schools. The performance of the Hopfield neural network on this data set is compared 

to simulated annealing and tabu search. The neural network performed better than the 

other methods, followed by simulated annealing (Smith, Abramson, & Duke, 2003). 

The comparison above shows that neural networks are more useful to solve the 

problems associated with complex timetabling (Pillay, 2010) . 

It is clear that a fair amount of research has been conducted in the use of 

artificial intelligence to solve the problem of scheduling; however, few other studies 

were found to use neural networks to solve the issue of class scheduling. The (Smith, 

Abramson, & Duke, 2003)  using the Hopfield network. The research in this thesis 

proposes an alternative network application solution to this issue through the use of 
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SOM and FFBP. Additional investigation into new methods should continue to be 

conducted, as they may contribute further to the scheduling field.  

1.5 Report Structure 

This report is well organized to explain all concepts clearly by moving from 

the implementation of the neural networks, to the analysis, and finally to the results of 

the designed model. Chapter 1 focuses on problem statements, purposes, intended 

outcomes and deliverables and the background literature review. In Chapter 2 an 

overview of neural network is highlighted and the mathematical and architectural 

models of SOM NN and FFBP NN are discussed in detail. Creation of data sets, as 

well as methodology to solve the scheduling problems are proposed and discussed in 

Chapter 3. Chapter 4 illustrates the results and the discussion for each phase of this 

research. Finally, this thesis concludes in Chapter 5 with summarization of the work 

done; here it mentions the final results and future plans for further researches. 
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Chapter 2: Introduction to ANN 

 

The artificial neural network (ANN) is the proposed approach to be used in this 

thesis to find a new, alternative solution to the challenge posed by classroom 

scheduling by examining and utilizing the adaptation feature in ANN. In this chapter, 

the basic concept of ANN is introduced with its architecture. Then, the mathematical 

details of the selected ANN types that will be used in this thesis are explained. 

2.1 Basic Concept of ANN 

The artificial neural network theory was inspired by the structure of the human 

brain. The human brain is a highly complex and non-linear system. It can process a 

vast amount of information simultaneously. Hence, the human brain uses parallel 

interconnection neurons in processing the data, allowing the neurons to interact in 

parallel through multiple layers of neurons in the brain. A neuron sends output and 

receives input. Each neuron can receive values from all neurons in the previous layer, 

and it can send values to all neurons in the next layer. The continuity of sending and 

receiving values between neurons is called learning and memorizing. As a result, the 

brain will be able to make the proper decision. 

The ability of decision making in the brain is gained from memorizing and 

learning from previous cases that are similar to the situation the brain is trying to make 

a decision for. Scientists tried to mimic the brain’s neurons architecture to develop 

more effective and efficient engineering systems. They created the Artificial Neuron 

Networks which are commonly known as “neural networks.” An artificial neural 

network is made up of layers of artificial neurons or processing elements. The 

processing element has the natural tendency to store information, also known as 

experimental knowledge, and make it useful when we need it.  
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Neural networks resemble the brain via two aspects:  

1. Gaining knowledge: knowledge is built up in the network from its environment 

through the learning process.  

2. The functioning of connectivity: interneuron connection strengths are the 

synaptic weights which are used to store the learned or developed knowledge. 

In brief, the learning process is the process where the synaptic weights are modified to 

attain the desired design objective. 

 2.2 Benefits of Neural Network 

The aptitude to derive meaningful results from massive or distorted data is a 

remarkable feature in ANN. It gives reasonable outputs from inputs not encountered 

during the training (learning), which is referred to as generalization. As a result, the 

neural network can find good approximate solutions to complex large-scale problems. 

Other advantages are:  

Nonlinearity: Neural networks are made up of an interconnection of nonlinear 

neurons which makes an ANN able to approximate any nonlinear continuous function 

to the anticipated solution. This property is highly essential mainly if the underlying 

physical mechanism responsible for generating the input signal is inherently nonlinear.  

Input-Output Mapping: Supervised learning, or learning with a teacher, is a 

prevailing paradigm in neural networks. It is a system where the input and the desired 

output data are provided. When a set of paired data is trained to generate consistent 

output for the response to new data, this is called a supervised learning algorithm. 

Hence, it involves the modification of the synaptic weights of the trained network.  

Adaptivity: Neural networks have a built-in capability to adapt their synaptic weights 

to changes in the surrounding environment. In particular, a neural network trained in 
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a specific context can be retrained easily to handle changes in the conditions of the 

operating environment.     

2.3 Models of a Neuron  

A neuron, or the processing unit, is the fundamental element to the operation 

of a neural network. It consists of three main parts as shown in Figure 2.1:  

Synapses or connection links: each connector or synapse is characterized by weight 

or strength; the synapse 𝑖 connects the signal input 𝑥𝑖 with the neuron 𝑗. The 

relationship between the input signal 𝑥𝑖 and the neuron 𝑗 is presented by multiplication 

between the weight 𝑤𝑗𝑖 and the input signal 𝑥𝑖 .  

Summing junction: Adding all input signals weighted by the respected synaptic 

strength.    

Activation function: Limiting the amplitude to determine a neuron’s output in a 

neural network. It maps the resulting values between 0 to 1 or -1 to 1 etc. (depending 

upon the function). The most common activation functions are listed in the Table 1.  

Bias: is similar to the constant b of a linear function y = ax + b. It allows one to move 

the line up and down to better fit the prediction with the data. Two different kinds of 

parameters can be adjusted during the training of an ANN: the weights and the value 

in the activation functions. Due to the impracticality of adjusting both parameters, a 

bias neuron is invented. The bias neuron lies in one layer, and is connected to all the 

neurons in the next layer, but none in the previous layer and it always emits 1. Since 

the bias neuron emits 1 the weights, connected to the bias neuron, are added directly 

to the combined sum of the other weights Eq. 2.1 (Rojas, 1996). 

                                        𝑣𝑖 = ∑𝑤𝑗𝑖 𝑥𝑚                                                            𝐸𝑞. ( 2. 1) 
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Table 1: Different types of activation function 

Function name Formula Values range 

Exponential ∅(𝑥) = 𝑒−𝑎𝑥 (0,∞) 

Sigmoid 
∅(𝑥) =

1

1 + 𝑒−𝑎𝑥
 

(0,1) 

Hyperbolic Tangent 
∅(𝑥) =

2

1 + 𝑒−2𝑥
− 1 

(−1,1) 

Step 
∅(𝑥) = {

1, 𝑥 ≥ 0
0, 𝑥 < 0

 
[0,1] 

 

Thus, the operation performed by neuron 𝑗 can be mathematically expressed as  

𝑤𝑗3 

 

𝑤𝑗1 

𝑤𝑗10 

 

𝑤𝑗𝑚 

𝑤𝑗2 

 

𝑥1 

𝑥2 

𝑥3 

 

𝑥10 

 

𝑥𝑚 

𝑣𝑖 = 𝑤𝑗𝑖 𝑥𝑚 
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Figure 2.1: The basic structure of the neuron 
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                                      𝑦𝑗 = 𝑓(𝑤(𝑛)𝑇𝑥(𝑛))                                                        𝐸𝑞. ( 2. 2)                                        

       

Where 𝑓is the activation (transfer) function, 𝑦𝑗 is the output of neuron 𝑗, the superscript 

T represents the transpose of 𝑤(𝑛) which is the interconnection weight vector and 

𝑥(𝑛) is the input signal vector for iteration n.  

2.4 Self-Organizing Feature Map (SOM) 

Self-organizing feature map neural-network is a type of artificial intelligence 

that is trained using unsupervised-learning to produce lower dimensional clustered 

regions. The self-organizing feature map was initially proposed by Rosenblatt in 1958 

(Lek & Guégan, 1999). The idea of the self-organizing map is inspired from human 

brain: “The brain is organized in many places in such a way that different sensory 

inputs are represented by topologically ordered computational map” (Haykin, 2009).  

The self-organizing map network is based on competitive learning systems. 

The network output neurons compete among themselves to be activated or fired. Hence 

only one neuron per group will be the winning neuron. The way of persuading a winner 

output neuron among a group of outputs is to use lateral inhibitory connections. The 

lateral inhibitory connection is when the neuron dominates the field and inhabits 

neighboring neurons (Sayers, 1991). 

The neurons of the self- organizing map are sited in a frame called lattice. The 

lattice can be one, two or higher dimensional maps.  The neurons become selectively 

adjusted to various input patterns. Accordingly, the location of winning neurons 

become ordered in an expressive coordinate system for different input features, which 

are created over the lattice  (Haykin, 2009).  
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2.4.1 Self-Organizing Feature Map Structure 

The structure of the self-organizing feature map can be presented and 

understood with the use of an illustration such as in the Figure 2.2 shows a tiny 

Kohonen network of 3x3 output nodes/layer connected to two input nodes/layer. Each 

output node has a specific topological position which represented as unique x, y 

coordinates in the 2-D lattice (output layer).  

The mechanism behind Kohonen’s network is straightforward; when an input 

pattern embodies to the network, the response of each neuron is measured, and the one 

which produced the maximum response, as well as the adjacent neurons, are modified 

in such a way to generate a better response to that input pattern. After many iterations, 

the system should ideally reach a state where no more significant change in the neuron 

location appears.       

 

   

 

 

 

 

 

2.4.2 Self-Organizing Feature Map Algorithm 

The self-organizing feature map process can be divided into four main stages:  

Initialization: where all the connection weights are initialized with random values.   

Input Layer 

Interconnecting 

weights 

Computational Layer 

Figure 2.2: Self-organizing feature map 
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Competition:  where each input pattern and it’s corresponding weights compute their 

respective values of a discriminant function1. As a result, the neuron with the largest 

discriminant function is the winner.  

In the first step, let the input space dimension to be 𝑚 then the input pattern 

can be written as 𝑥⃗ = [𝑥1 𝑥2  … . 𝑥𝑚]
𝑇. And the connection weight between the input 

layer and the computational layer is  𝑤𝑗⃗⃗⃗⃗⃗ = [𝑤𝑗1 𝑤𝑗2 … .𝑤𝑗𝑚]
𝑇; 𝑗 = 1,2, … . , 𝑙 ,where 

𝑙 is the total number of output neurons in the network. The next step is to find the best 

match between 𝑥⃗ and 𝑤𝑗⃗⃗⃗⃗⃗. To find the best match we need to compute  𝑤𝑗⃗⃗⃗⃗⃗
𝑇
 𝑥  ⃗⃗⃗⃗  𝑓𝑜𝑟 𝑗 =

1,2, … . . , 𝑙 and select the largest value; hence, the maximum value of 𝑤𝑗⃗⃗⃗⃗⃗
𝑇
 𝑥⃗ is nothing 

but the minimum value of the Euclidian distance between  𝑥 ⃗⃗⃗ 𝑎𝑛𝑑 𝑤𝑗⃗⃗⃗⃗⃗. By using the 

index 𝑖 (𝑥⃗) , the formula below will give the value of the 𝑤𝑖𝑛𝑛𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛. Finally, 

acknowledge that the corresponding weights vector to 𝑖 (𝑥⃗) is the closest weight 

vector. 

                                             𝑖 (𝑥⃗) = arg𝑚𝑖𝑛𝑗 ‖𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗‖                                𝐸𝑞. (2. 3) 

In brief, a continuous input space of activation pattern is mapped into a 

discrete output space by process of competition.  

Cooperation: where the winning neuron can spot the spatial location of a topological 

neighborhood of excited neurons, or more specifically, winning neurons locate the 

center of a topological neighborhood of an excited/ cooperated neuron. 

In the beginning, assume that 𝑖 is the winning neuron and ℎ𝑗,𝑖 is the topological 

neighborhood centered around 𝑖 and encompassing neuron 𝑗. Naturally, the topological 

                                                           
1  A function of several variates used to assign items into one of two or more groups. The function for a particular set of items 

is obtained from measurements of the variates of items which belong to a known group 
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neighborhood function should decrease with the 𝑑𝑗,𝑖 which is the lateral distance 

between the winning neuron 𝑖 and the excited/ neighbors’ neurons 𝑗.  

Before implementing the topological neighborhood function it should satisfy three 

properties:  

 Symmetric about 𝑑𝑗,𝑖 = 0 

 Monotonically decaying function with distance 𝑑𝑗,𝑖  

 Decaying to zero at 𝑑𝑗,𝑖  ∞.  

The typical function which may fulfill the mentioned properties is the Gaussian 

function, accordingly,  ℎ𝑗,𝑖 can be expressed as the following:   

                                    ℎ𝑗,𝑖(𝑥⃗) = 𝑒𝑥𝑝 (− 
𝑑𝑗,𝑖

2

2 𝜎2
)                                         𝐸𝑞. (2. 4)   

Where σ is the width of the Gaussian function, Figure 2.3, also it is called the 

neighborhood radius (Guthikonda, 2005). Note that the Gaussian function does not 

depend on the winner neuron’s location; hence, it is translation invariant.  

 

 

 

 

 

 

 

 

 

Another unit property of the SOM is σ in the Gaussian function. This σ varies 

with time where time is the network iterations(𝑛). As the iteration {𝑛: 𝑛 =

Figure 2.3: Gaussian curve-neighborhood function  
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0,1,2, … . , ∞} progresses, the σ is going to decrease with time. Thus, as σ decreases, 

the neighborhood shrinks gradually. Figure 2.4 explains clearly the shape of the 

neighborhood after it shrinks during the cooperation process when the iteration 

progressively narrows down the neighborhood of the winner neuron. Mathematically 

σ can be presented as   

                                            𝜎(𝑛) =  𝜎𝑜 exp (− 
𝑛

Ʈ1
 )                                                 𝐸𝑞. (2. 5) 

Where 𝜎𝑜is the initial 𝜎 and Ʈ1 is the time constant. 

 

 

 

 

 

 

 

 

 As a result, the neighborhood function will be 

                            ℎ𝑗,𝑖(𝑥⃗)(𝑛) = exp (− 
𝑑𝑗,𝑖

2

2 𝜎2(𝑛)
) , 𝑛 = 0,1,2, …                                𝐸𝑞. (2. 6)  

In case of 1-D lattice, the distance is: 𝑑𝑗,𝑖 = |𝑗 − 𝑖|. For 2-D the distance, 

𝑑𝑗,𝑖
2 = ‖𝑟𝑗⃗⃗⃗ − 𝑟𝑖⃗⃗⃗ ‖

2
 , where 𝑟𝑗 is the position vector of the excited neuron 𝑗 and 𝑟𝑖 is the 

position vector of the winning neuron 𝑖. In fact, for higher dimensions the 2-D equation 

mentioned above is valid, but 𝑟𝑗 and 𝑟𝑖 will not consist of just two elements. It will 

consist of multiple elements depending upon the number of chosen dimensions for the 

lattice.  

Figure 2.4: SOM network during the process of cooperation (Juha, 1999) 
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Adaptation: where the excited neurons associated with the input pattern keep 

decreasing the differences in the values of the discriminant function for the connected 

weights, such that the winning neuron’s response to any subsequent application for 

similar input pattern will become enhanced. 

The learning mechanism behind the adaption process in SOM is the Hebbian 

learning. Hebbian learning is when the pre-synaptic and post-synaptic activities are 

correlated; when correlation occurs the synaptic connection will be strengthened. 

When correlation is absent, the synaptic connection is weakened. Hebbian learning is 

used to update the weights in SOM, yet it needs to be modified due to some limitations 

to suit the SOM. Therefore, the following term 𝑔(𝑦𝑗)𝑤𝑗⃗⃗⃗⃗⃗ is introduced to avoid the 

limitation, which is the saturation in the synaptic weight which it accrued during the 

continuity of feeding the same input pattern. So, 𝑔(𝑦𝑗)𝑤𝑗⃗⃗⃗⃗⃗ is called the forgetting term 

in Hebbian hypothesis, where 𝑦𝑗is a positive scaler function and for simplicity let 

𝑔(𝑦𝑗) =  𝜂𝑦𝑗 which is a linear function.  

The weight needs to be adjusted, not only for the winner neuron, but also for 

the neighbor neurons which are the excited neurons. Accordingly, 𝑦𝑗=ℎ𝑗,𝑖(𝑥⃗) , the 

topological neighborhood is maximum when the 𝑗 neuron is the winner and as the 

lateral distance from the winning neuron progressively increases then 𝑦𝑗 will 

progressively decrease.  

 

Heibbian Hypothesis for adaptation (weight update):  

                                                         ∆𝑤𝑗⃗⃗⃗⃗⃗ = 𝜂 𝑦𝑗𝑥⃗ − 𝑔(𝑦𝑗)𝑤𝑗⃗⃗⃗⃗⃗                                    𝐸𝑞. (2. 7) 
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Where 𝜂 is the learning rate parameter, since 𝑔(𝑦𝑗) =  𝜂𝑦𝑗, thus, Eq. (2.7) can be 

written as ∆𝑤𝑗⃗⃗⃗⃗⃗ = 𝜂 𝑦𝑗𝑥⃗ − 𝜂𝑦𝑗𝑤𝑗⃗⃗⃗⃗⃗. In order to include the winner neurons and the excited 

neurons, consider 𝑦𝑗=ℎ𝑗,𝑖(𝑥⃗) , then  

                                                          ∆𝑤𝑗⃗⃗⃗⃗⃗ = 𝜂 ℎ𝑗,𝑖(𝑥⃗)(𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗)                                   𝐸𝑞. (2. 8) 

Which proves that 𝑤𝑗 will be adjusted such that it should move closer to 𝑥⃗. Thus, 

during the learning phase 𝑤𝑗will align itself with 𝑥⃗, hence ∆𝑤𝑗⃗⃗⃗⃗⃗ = 0 

Using discrete-time formulation ∆𝑤𝑗⃗⃗⃗⃗⃗ can be written as 

                                𝑤𝑗⃗⃗⃗⃗⃗(𝑛 + 1) = 𝑤𝑗⃗⃗⃗⃗⃗(𝑛) + 𝜂(𝑛)ℎ𝑗,𝑖(𝑥⃗)(𝑛) (𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗)                  𝐸𝑞. (2. 9) 

                                                𝜂(𝑛) = 𝜂0 𝑒𝑥𝑝 (−
𝑛

𝜏2
) , 𝑛 = 0,1,2, …                    𝐸𝑞. (2. 10) 

𝜏2: Another time constant  

So, the ultimate tendency is to align 𝑤𝑗 ⃗⃗⃗⃗⃗⃗  with 𝑥⃗ for all winner neurons, yet all 

other neurons will also learn, but at a slower rate hence ℎ𝑗,𝑖(𝑥⃗)(𝑛) will be dropping 

down for the un-excited neurons. Ultimately, Eq. (2.10) is responsible for the 

topological ordering in SOM.        

The two phases of the adaptive process (practical consideration) are:  

1- Self-organizing (ordering): for topology arrangement.  Learning rate should 

start with large value 𝜂(𝑛) ≈ 0.1 then it decreases to 0.01,𝜂0 = 0.1 ,𝜏2 =

1000: ,n=1000 iteration. Thus, topological neighborhood ℎ𝑗,𝑖(𝑥⃗) starts with a 

large number of neurons then it decreases gradually; thus, neighborhood will 

keep shrinking till it is restricted to a very small neighborhood (Singupta, 

2003). 

2- Convergence phase: all neurons obtained in the topological stage will keep 

converging (tuning) till it reduces the error as much as possible. To complete 

the convergence, the number of iterations must be at least 500 times the number 
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of neurons. For example, if we have 4X4 topological the number of iteration is 

500*16=8000 iterations (Singupta, 2003). 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Flowchart of self-organizing map neural network algorithm 
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2.5 Multi-Layer Perceptron Neural Network (MLP)  

Multi-layer perceptron is considered one of the first neural network’s type. 

Many neural networks depend on the structure of MLP. MLP is formed by cascading 

neurons (perceptrons) in several layers. The input vector is fed into each perceptron in 

the first layer, the output of the first layer’s perceptrons has formed the input to the 

second layer’s perceptrons, and so on, see Figure 2.1. Nodes of MLP are fully 

connected between layers. The arrangement and the type of neurons depend on the 

network type. The main parts of MLP network are:  

1. Input neurons are carrying some action or information about the external 

environment. Input neurons do not perform any computation, but only pass the 

input vector to subsequent neurons. 

2.  Output neurons receive signals from the preceding neurons and transform it 

using formulas 2.1 and 2.2. Those values represent the output of the whole 

neural network.  

3. Hidden neurons are the basis of the neural network. Those neurons receive 

the signal from the input neurons or preceding hidden neurons, process it by 

formulas 2.1 and 2.2 and then pass result signals to the subsequent (hidden or 

output) neurons.        

2.6 Back-Propagation Neural Network (BP) 

Back-propagation neural network is one of the most widely used neural 

networks. The back-propagation neural network is a multilayer feedforward network 

trained according to error back-propagation algorithm. The idea of the back-

propagation network is to adjust the synaptic weight values and threshold values to 
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achieve the minimum error sum of the square in the learning phase of the network. 

More details are shown in the sub-sections below (Borglin, 2011). 

2.6.1 Back-Propagation Neural Network (BP) Structure    

Back-propagation neural network is consist of two parts: First part is the 

Forward propagation of operating (function) signal: the input signal is propagated from 

the input layer, via the hidden layer, to the output layer. During the forward 

propagation of operating signal, the weight value and offset value of the network are 

maintained constant, and the status of each layer of the neuron will only exert an effect 

on that of next layer of the neuron. In case that the expected output cannot be achieved 

in the output layer; then it can be switched into the backpropagation of error signal. 

The second part is Backpropagation of error signal: the difference between the 

real output and expected output of the network is defined as the error signal; in the 

backpropagation of error signal, the error signal is propagated from the output end to 

the input layer in a layer-by-layer manner. During the backpropagation of error signal, 

the weight value of a network is regulated by the error feedback. The continuous 

modification of weight value and the offset value is applied to make the real output of 

network closer to the desired one (Li, Cheng, Shi, & Huang, 2012).     

 

 

 

 

 

Figure 2.6: Illustration of signal flow for (operating signal and error 

signal) in multi-layer perceptron 



24 
 

  
 
 

2.6.2 Back-Propagation Neural Network (BP) Algorithm    

Algorithm Formulas  

 

Back-propagation is a training method used for a multi-layer neural network. 

It is also called the generalized delta rule. It is a gradient descent method which 

minimizes the total squared error of the output computed by the net (Rojas, 1996).  

Thus, it measures the performance using the sum of error squares function also it called 

the instantaneous error energy. 

                                                         𝐸(𝑛) =  
1

2
 𝑒𝑗

2

𝑗∈𝑐

(𝑛)                                      𝐸𝑞. ( 2. 11) 

Where E (n) is the error energy at iteration n, c is the set of all neurons in the output 

layers and 𝑒𝑗(𝑛) is the error signal at each output neuron j at iteration n for all neurons 

in the output layer. If 𝑑𝑗 (𝑛) denotes the desired response or target output for neuron 𝑗 

at iteration n, and 𝑦𝑗(𝑛) is the actual output, then   

                                                  𝑒𝑗(𝑛) =  𝑑𝑗 (𝑛) − 𝑦𝑗(𝑛)                                        𝐸𝑞. (2. 12)  

Hence, the average square energy is    

                                            𝐸𝑎𝑣𝑔(𝑛) =  
1

𝑁
  𝐸(𝑛)

𝑁

𝑛=1

                                             𝐸𝑞. (2. 13) 

Where N is the total number of iterations of training patterns.   

The instantaneous error energy 𝐸(𝑛), and therefore the average error energy 

𝐸𝑎𝑣𝑔(𝑛), is a function of all the free parameters (i.e. synaptic weights and bias levels) 

of the network. For given training set, 𝐸𝑎𝑣𝑔(𝑛) represents the cost function as a 

measure of learning performance. The objective of the learning process is to adjust the 

free parameters of the network to minimize 𝐸𝑎𝑣𝑔(𝑛). To do this minimization, an 

approximation similar in rational to the derivation of the LMS algorithm is used. 

Specifically, we consider a simple method of training in which the weights are updated 
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on a pattern-by-pattern basis unit one epoch, that is, one complete presentation of the 

entire training set has been dealt with. The adjustments to the weights are made in 

accordance with the respective error computed each pattern presented to the network. 

(Haykin, 2009). In addition, the following equations are introduced to derive the BP 

neural network algorithm’s formulas. 

Induced local field of a neuron 𝑗 is the output of the summation unit. 

                                                  𝑣𝑗(𝑛) =    𝑤𝑗𝑖(𝑛)𝑦𝑖(𝑛)

𝑚

𝑖=0

                                    𝐸𝑞. (2. 14) 

Where m is the number of neurons in the previous layer.  

                                                      𝑦𝑗(𝑛) =   ∅𝑗 (𝑣𝑗(𝑛))                                           𝐸𝑞. (2. 15) 

Where ∅(𝑛) is the activation function.   

The back-propagation algorithm applies a correction ∆𝑤𝑗𝑖(𝑛) to the synaptic weight 

𝑤𝑗𝑖(𝑛) which is proportional to the partial derivative  
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
 . Form the equations 

above  
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
  can be calculated using the chain rule of calculus.  

                        
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
=
𝜕𝐸(𝑛)

𝜕𝑒𝑗(𝑛)
.
𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)
.
𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)
.
𝜕𝑣𝑗(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
                            𝐸𝑞. (2. 16) 

 

Differentiate both sides of Eq. (2.11) with respect to 𝑒𝑗(𝑛), then  

                                                              
𝜕𝐸(𝑛)

𝜕𝑒𝑗(𝑛)
= 𝑒𝑗(𝑛)                                            𝐸𝑞. (2. 17) 

Differentiate both sides of Eq. (2.12) with respect to 𝑦𝑗(𝑛), then  

                                                                     
𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)
=  −1                                        𝐸𝑞. (2. 18) 

Next, differentiating both sides with respect to 𝑣𝑗(𝑛), then 

                                                       
𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)
=  (∅)́ (𝑣𝑗(𝑛))                                      𝐸𝑞. (2. 19) 
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Finally, differentiating Eq. (2. 14) with respect to 𝑤𝑗𝑖(𝑛)  

                                                              
𝜕𝑣𝑗(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
=  𝑦𝑗(𝑛)                                      𝐸𝑞. (2. 20) 

 

The use of all equations between Eq. (2.17) and Eq. (2.20) in Eq. (2.16) yields  

                            
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
= −𝑒𝑗(𝑛)∅́ (𝑣𝑗(𝑛)) 𝑦𝑗(𝑛)                                         𝐸𝑞. (2. 21) 

 

The correction ∆𝑤𝑗𝑖(𝑛) applied to 𝑤𝑗𝑖(𝑛) is defining as the delta rule. 

                                                      ∆𝑤𝑗𝑖(𝑛) = − 𝜂
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑖(𝑛)
                                     𝐸𝑞. (2. 22) 

 

Where η is the learning-rate parameter of the back-propagation. The minus sign shown 

in the equation above is an indication for gradient descent, hence, the gradient descent 

is an optimization technique for minimizing multidimensional smooth convex 

objective functions (Vishwanathan, 2008) in weight space. Combining Eq. (2.21) and 

Eq. (2.22) will result.  

                                                 ∆𝑤𝑗𝑖(𝑛) = 𝜂 𝑒𝑗(𝑛)∅́ (𝑣𝑗(𝑛)) 𝑦𝑗(𝑛)                    𝐸𝑞. (2. 23)     

 

Hence, the local gradient term 𝛿𝑗(𝑛) is defined by the product of the corresponding 

error signal 𝜕𝑒𝑗(𝑛) for the output neuron 𝑗 and derivative ∅́ (𝑣𝑗(𝑛)) of the associated 

activation function.  

           
             𝛿𝑗

(𝑛) = −
𝜕𝐸(𝑛)

𝜕𝑣𝑗(𝑛)
= −

𝜕𝐸(𝑛)

𝜕𝑒𝑗(𝑛)
.
𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)
.
𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)
=  𝑒𝑗(𝑛)∅́ (𝑣𝑗(𝑛))     

 

𝐸𝑞. (2. 24) 
 

Then equation Eq. (2.23) can be re-written as 

                                                         ∆𝑤𝑗𝑖(𝑛) = 𝜂  𝛿𝑗(𝑛) 𝑦𝑗(𝑛)                             𝐸𝑞. (2. 25)     
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From equations Eq. (2.24) and Eq. (2.25) it was noted that a critical factor 

involved in the calculation of the weight adjustment ∆𝑤𝑗𝑖(𝑛) is the error signal 𝑒𝑗(𝑛) 

at the output neuron 𝑗. In this context, two distinct cases are identified. Case 1, when 

neuron j is an output node. Case 2, neuron 𝑗 is hidden node. Note that although hidden 

neurons are not directly accessible, they share responsibility for error made at the 

output of the network.  

Case 1 Neuron 𝒋 is an output node.  

Merely the neuron j is located in the output layer of the network. It is supplied 

with the desired response of its own, error signal 𝑒𝑗(𝑛) can be computed easily from 

Eq. (2.12) associated with this neuron. Accordingly, the local gradient 𝛿𝑗(𝑛) can be 

found using Eq. (2.24). 

Case 2 Neuron 𝒋 is a hidden node. 

When neuron 𝑗 is located in hidden layer, no specific desired response for that 

neuron. Consequently, the error information term for neuron 𝑗 is determined 

recursively in term of the error information term of all neurons to which that hidden 

neuron 𝑗 is directly connected as follows   

                              𝛿𝑗(𝑛) =  ∅́𝑗  (𝑣𝑗(𝑛))  𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)

𝑘

                             𝐸𝑞. (2. 26)     

The equation above introduced a new index 𝑘 to avoid any confusion between 

neuron 𝑗 which is used as hidden neuron in Case 2, hence neuron 𝑘 is an output node. 

𝛿𝑗(𝑛) for hidden layer is derived as follows. 

 Eq. (2.24) is re-written as 𝛿𝑗(𝑛) = −
𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)

𝜕𝑦𝑗(𝑛)

𝜕𝑣𝑗(𝑛)
 

                                                            𝛿𝑗(𝑛) = −
𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)
  ∅́𝑗  (𝑣𝑗(𝑛))                 𝐸𝑞. (2. 27) 
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Where neuron j is hidden as before mentioned. Hence Eq. (2.11) is re-written with 𝑘 

index 

                                                          𝐸(𝑛) =  
1

2
 𝑒𝑘

2

𝑘∈𝑐

(𝑛)                                      𝐸𝑞. (2. 28)  

Differentiating Eq. (2.28) with respect to the function signal 𝜕𝑦𝑗(𝑛).  

                                              
𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)
=   𝑒𝑘

𝑘

𝜕𝑒𝑘(𝑛)

𝜕𝑦𝑗(𝑛)
                                           𝐸𝑞. (2. 29) 

Then using the chain rule to solve the Eq. (2.29)   

                                              
𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)
=   𝑒𝑘(𝑛)

𝑘

𝜕𝑒𝑘(𝑛)

𝜕𝑣𝑘(𝑛)
 
𝜕𝑣𝑘(𝑛)

𝜕𝑦𝑗(𝑛)
                    𝐸𝑞. (2. 30) 

Recall Eq. (2,12) and change the index from 𝑗 to 𝑘 

                                                𝑒𝑘(𝑛) =  𝑑𝑘 (𝑛) − 𝑦𝑘(𝑛)                                       𝐸𝑞. (2. 31)  

                                                           =  𝑑𝑘 (𝑛) − ∅́𝑘 (𝑣𝑘(𝑛))                              𝐸𝑞. (2. 32)  

Hence   

                                                           
𝜕𝑒𝑘(𝑛)

𝜕𝑣𝑘(𝑛)
= −∅́𝑘 (𝑣𝑘(𝑛))                                𝐸𝑞. (2. 33) 

Also, recall Eq. (2.14) –induced local field-and change the index to 𝑘 

                                                  𝑣𝑘(𝑛) =    𝑤𝑘𝑗(𝑛)𝑦𝑗(𝑛)

𝑚

𝑗=0

                                   𝐸𝑞. (2. 34) 

Where m is the total number of inputs (excluding the bias) applied to neuron k. 

 Next, differentiating Eq. (2.34) with respect to 𝑦𝑗(𝑛) yields.  

   

                                                           
𝜕𝑣𝑘(𝑛)

𝜕𝑦𝑗(𝑛)
= 𝑤𝑘𝑗(𝑛)                                         𝐸𝑞. (2. 35) 

Thus, substituting Eq. (2.33) and Eq. (2.35) in Eq. (2.30) 
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𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)
= −  𝑒𝑘(𝑛)

𝑘

∅́𝑘 (𝑣𝑘(𝑛)) 𝑤𝑘𝑗(𝑛)                  𝐸𝑞. (2. 36) 

                                                     
𝜕𝐸(𝑛)

𝜕𝑦𝑗(𝑛)
= −  𝛿𝑘(𝑛)

𝑘

 𝑤𝑘𝑗(𝑛)                        𝐸𝑞. (2. 37) 

Hence Eq. (2.37) used the definition of the local gradient 𝛿𝑘(𝑛)with the index 

𝑘 From all the above we get the back-propagation formula Eq. (2.26) for the local 

gradient 𝛿𝑗(𝑛) for neuron 𝑗 in hidden layer.  

Activation Function  

The knowledge of the activation function and its derivative is required to 

compute 𝛿 for each neuron of the multi-layer perceptron. For this derivative to exist, 

the function  ∅(. ) Need to be continuous. In other words, the function ∅(. ) Need to be 

differentiable. In this study, the logistic function is used as activation function.  

        ∅𝑗 (𝑣𝑗(𝑛)) =
1

1 + exp (−𝑎𝑣𝑗(𝑛))
          𝑎 > 0 𝑎𝑛𝑑 − ∞ < 𝑣𝑗(𝑛) < ∞ 

                                                                                                                𝐸𝑞. (2. 38) 

Where 𝑣𝑗(𝑛) is the induced local field of neuron 𝑗. As a result, of the non-linearity in 

the Eq. (2.38) the amplitude of the output lies inside the range 0 ≤ 𝑦𝑗 ≤ 1. 

Differentiate Eq. (2.38) with respect to 𝑣𝑗(𝑛).  

        ∅𝑗́ (𝑣𝑗(𝑛)) =
𝑎 exp (−𝑎𝑣𝑗(𝑛))

[1 + exp (−𝑎𝑣𝑗(𝑛))]2
                                             𝐸𝑞. (2. 39) 

Re-write Eq. (2.39) using 𝑦𝑗(𝑛) =  ∅𝑗 (𝑣𝑗(𝑛)) to eliminate some terms. So 

  ∅𝑗́ (𝑣𝑗(𝑛)) is expressed as 

                       ∅𝑗́ (𝑣𝑗(𝑛)) =
1 + 𝑎 exp (−𝑎𝑣𝑗(𝑛)) − 1

[1 + exp (−𝑎𝑣𝑗(𝑛))]2
                               𝐸𝑞. (2. 40) 
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                                        =
1 + 𝑎 exp (−𝑎𝑣𝑗(𝑛))

[1 + exp (−𝑎𝑣𝑗(𝑛))]2
−

1

[1 + exp (−𝑎𝑣𝑗(𝑛))]
2  

                                                ∅𝑗́ (𝑣𝑗(𝑛)) = 𝑎𝑦𝑗(𝑛)[1 − 𝑦𝑗(𝑛)]                       𝐸𝑞. (2. 41) 

For neuron 𝑗 located in the output layer, 𝑦𝑗(𝑛) = 𝑜𝑗(𝑛). Hence, local gradient for 

neuron j can be expressed as 

                   𝛿𝑗(𝑛) = 𝑒𝑗(𝑛) ∅́𝑗  (𝑣𝑗(𝑛))                                                               𝐸𝑞. (2. 42) 

                             = 𝑎[𝑑𝑗(𝑛) − 𝑜𝑗(𝑛)] 𝑜𝑗(𝑛) [1 − 𝑜𝑗(𝑛)] , Neuron 𝑗 is an output node 

Where 𝑜𝑗 is the function signal at the output neuron 𝑗, and 𝑑𝑗 is the desired response 

for it. On the other hand, for an arbitrary hidden neuron 𝑗. we may express the local 

gradient as   

                   𝛿𝑗(𝑛) =  ∅́𝑗  (𝑣𝑗(𝑛)) ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)𝑘                                       𝐸𝑞. (2. 43)     

                             =  𝑎𝑦𝑗(𝑛) [1 − 𝑦𝑗(𝑛)] ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)𝑘 , Neuron j is hidden 

For a sigmoid activation function, the synaptic weights are changed the most 

for those neurons in the network where the function signals are in their midrange. Thus, 

it is the feature of back-propagation learning that contributes to its stability as a 

learning algorithm.  

Rate of Learning 𝜼 and Momentum Constant α 

A new parameter is introduced to BP-algorithm which is momentum term α. 

The purpose behind the addition of the momentum constant term α is to control the 

feedback loop acting around ∆𝑤𝑗𝑖(𝑛). As explained earlier, Eq. (2.23) provides an 

approximation to the trajectory in weight space computed by the steepest descent. The 

smaller η is the learning rate, the smoother the trajectory and slower the convergence 

of the network to the optimum solution. On the other hand, increasing the learning rate 
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η will lead to instability in the learning process hence the network will become 

oscillatory about the optimum weight due to the large steps in modifying the weights. 

As a result, the scientists modified the delta rule by adding the new term α momentum 

constant. Thus, the generalized delta rule is           

 

                 ∆𝑤𝑗𝑖(𝑛) = 𝛼∆𝑤𝑗𝑖(𝑛 − 1) + 𝜂 𝛿𝑗(𝑛) 𝑦𝑗(𝑛)                        𝐸𝑞. (2. 44)     

 

2.6.3 Summary of the Back-Propagation Algorithm  

The feedforward and back-propagation stages are shown in the following 

overview of the back-propagation algorithm.  

       Step 0. Set the learning parameters η to 0.1 and the momentum constant α to 

small   values from 0.1 to 0.5 

Determine the number of hidden layers as well as the number of 

neurons per layer.  

Determine the maximum number of iteration  

Set the minimum system error  𝐸𝑎𝑣𝑔(𝑛) 

        Step 1.  Initialize the weights and biases for all layers to small random values 

between±1 or [0, +1] depends on the activation function.  

        Step 2.  While stopping condition is false, do steps 3- 10, described below.  

        Step 3.  For each training pair (𝑥(𝑛), 𝑑(𝑛)) do steps 4- 10, where 𝑥(𝑛) is the 

input signal vector at iteration and 𝑑(𝑛) desired response vector at 

iteration 𝑛. 
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Feedforward:  

        Step 4.  Determine the response vector for all the neurons in the first layer       

                                       𝑣𝑗(𝑛) =    𝑤𝑗𝑖(𝑛)𝑥𝑖(𝑛)

𝑚

𝑖=0

                                                   𝐸𝑞. (2. 45) 

                                           𝑦𝑗
(𝑙)(𝑛) =   ∅𝑗 (𝑣𝑗(𝑛))                                             𝐸𝑞. (2. 46) 

Where 𝑤𝑗𝑖(𝑛) is the interconnection weight vector for first hidden layer 

neurons ∅𝑗 is the activation function as given by Eq. (2.38) which is 

used by the first layer.  

        Step 5.  Determine the response of the neurons in each of the following hidden 

layers, as well as output layer, using   

                                       𝑣𝑗
(𝑙)(𝑛) =    (𝑤𝑗𝑖

(𝑙)(𝑛)𝑦𝑖
(𝑙−1)(𝑛))

𝑚0

𝑖=0

                  𝐸𝑞. (2. 47) 

Where 𝑦𝑖
(𝑙−1)(𝑛) is the output function signal of neuron 𝑖 in the 

previous layer 𝑙 − 1 at iteration 𝑛 and 𝑤𝑗𝑖
(𝑙) is the synaptic weight of 

neuron 𝑗 in layer 𝑙 that is fed from neuron 𝑖 in layer 𝑙 − 1.  

  

                                                 𝑦𝑗  
(𝑙)(𝑛) =   ∅𝑗 (𝑣𝑗(𝑛))                                 𝐸𝑞. (2. 48) 

Where ∅𝑗 is the activation function in layer 𝑙.  

        Step 6.  Determine the mean squared error associated with pattern n using   

                                                  𝐸(𝑛) =  
1

2
  (𝑑𝑗 (𝑛) − 𝑦𝑗(𝑛))

2                 𝐸𝑞. (2. 49)      

 

        Step 7.  Determine the average (normalized) system error using  



33 
 

  
 
 

Where N is the total number of training patterns  

                                     𝐸𝑎𝑣𝑔(𝑛) =  
1

𝑁
  𝐸(𝑛)

𝑁

𝑛=1

                                𝐸𝑞. (2. 50) 

Back-propagation of error:  

        Step 8.  Compute the error information terms and calculate the weight correction 

term for all neurons included in the output layer and layer.  

𝛿𝑗
(𝑙)(𝑛) =   

{
 
 

 
 𝑒𝑗

(𝐿)(𝑛) ∅́𝑗  (𝑣𝑗
(𝐿)(𝑛))                               for neuron 𝑗 in output layer L   

∅́𝑗  (𝑣𝑗
(𝐿)(𝑛)) 𝛿𝑘

(𝑙+1)(𝑛)𝑤𝑘𝑗
(𝑙+1)(𝑛)

𝑘

for neuron 𝑗 in hidden layer 𝑙       

 

 
 

 𝐸𝑞. (2. 51) 

Where the prime in ∅́𝑗 denotes differentiation with respect to the    

argument. 

Update weights: 

        Step 9.  Adjust the synaptic weight of the network 𝑙 accordigng to the 

generalized delta rule:  

                  𝑤𝑗𝑖
(𝑙)(𝑛 + 1) =  𝑤𝑗𝑖

(𝑙)(𝑛) + 𝛼[𝑤𝑗𝑖
(𝑙)(𝑛 − 1)] + 𝜂𝛿𝑗

(𝑙)(𝑛)𝑦𝑖
(𝑙−1)(𝑛)  

𝐸𝑞. (2.52) 

 

         Step 10.  Testing for stopping condition:  

If the chosen maximum number of iteration 𝑛 is reached or if the 

normalized system error calculated in step 7 is smaller than the pre-set 

value in step 0, then STOP; otherwise continue.   
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Flowcharts for the feedforward back-propagation neural network in learning 

and operation mode are given in Figures 2.4 and 2.5 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Flowchart for a neural network in learning mode (Yousef, 2001)  
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Figure 2.8: Flowchart for a neural network in operation mode (Yousef, 2001) 
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Chapter 3: Methodology 

 

This chapter explains the methodology of modeling neural networks to solve the 

classroom scheduling problem. Data generation is initiated given five constraints. 

Furthermore, two neural networks are proposed to solve the classroom scheduling, 

which are: (1) the self-organizing feature map (SOM) neural network and (2) the 

feedforward back-propagation (FFBP) neural network. Detailed problems formulation 

and networks modeling are explained in this chapter.        

3.1 Overview of ANNs  

Making machines that can mimic the abilities of the human brain has been a 

dream for centuries. The idea came true with the computer revolution and demanding 

on data processing machines. Therefore, engineers created what is called ‘Machine 

Learning,’ which is the science of designing intelligent machines. The tools used to 

make Machine Learning are called neural networks (Rojas, 1996). A Neural Network 

can be thought of as a black-box which can correlate process inputs to its outputs based 

on a mapping relationship that is captured by the Neural Network during its training 

phase. According to Philip, training is a process where the machine parameters are 

modified in such a way that it will correlate with the needed output values. If the user 

defines the desired output values, the training is called supervised training. Otherwise, 

if the network picks the output values automatically from the data itself, the process is 

called unsupervised training (Philip, 2001).   

One of the key benefits of neural networks is that they have the ability to 

process a large number of data with the same accuracy regardless of some factors like 

time and place. Furthermore, neural networks can find patterns from events which may 

appear as random; for instance, weather prediction. A neural network can predict the 
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unseen scenarios relationships by mapping in some data that humans cannot capture. 

Consequently, using the Artificial Intelligence-based approach to solve the complexity 

of classroom scheduling is well worth investigating. Especially, because classroom 

scheduling holds so many parameters and variables. 

3.2 Classroom Scheduling Problem 

Classroom scheduling is a process whereby classrooms are allocated to a set of 

courses within the school hours so that it will meet specific constraints. The constraints 

in classrooms can be divided into two types: hard constraints, e.g. instructor cannot 

teach more than one course at the same time, and soft constraints, e.g. the instructor is 

able to submit a time preference (morning or evening) for class timing (Mahmud, 

2014). In other words, designing a valid schedule should at least fulfill the hard 

constraints, adding soft constraints will add more flexibility in schedule but it won’t 

cause a major issue if it was not exist in the schedule.  Although a classroom 

timetable/schedule that meets both the hard and soft constraints can serve the 

objectives effectively, however meeting only the hard constraints can result in 

preparing a feasible classroom schedule (Edmund, 2006). 

Also, partially meeting the hard constraints can produce a feasible initial guess 

for a sufficiently working schedule. In this research, a neural network- based approach 

will be adopted to prepare an initial guess for a preliminary classroom schedule that 

can meet specific hard constraints. To establish a feasible schedule a user needs to 

define/formulate a set of constraints that may depend on the circumstances of the 

workplace. For the purpose of conducting this research, the following constraints will 

be considered:  
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1) Teacher Conflict: Teacher can have more than one course to teach.          

However, a teacher cannot teach more than one course at the same time.  

2) Course Conflict:  A set of courses from the same level that must all be taken 

in the same year. For example, third level students in mechanical engineering 

in UAEU need to take Mechanics of Material (MECH305) and Geometric 

Modeling (MECH315) in the same semester to avoid any delay in their study 

plan). Hence for some groups of courses, no two courses from the same group 

can be scheduled at the same time. For details see Appendix. 

3) Time Restriction: Some courses need a specific time; for example, a 

laboratory course needs to be scheduled for three consecutive hours to 

prevent the interruption of laboratory work. Due to this, such courses are 

often conducted at late times during the day.   

4) Classroom Requirements: Classrooms cannot be assigned to more than one 

course within a specific time interval. Also, the classroom capacity and 

equipment needed for the class should be considered. 

The goal of this project is to develop a methodology for solving a complex 

scheduling problem considering as many scheduling parameters/ constraints as 

possible. An Artificial-Intelligence based approach will be adopted to enable 

intelligent class scheduling. Thus, the black-box below shows the functional structure 

of the final product. At this point, executes of the product are not yet specified; this 

will allow a flexible selection of different networks to run the inputs. Also, when a 

new technology becomes available, the input can be substituted efficiently while 

keeping the same function of the product to achieve the desired output.     
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Typically, a neural network can be constructed using systematic steps, which 

are defining the input and the output, training ANN models and validating and testing 

ANN models.  

Step 1: Defining the input and the output. In this research designing / creating 

data is required, thus a set of input, 𝑥𝑛, will be defined and prepared to enter the ANN. 

The input data point vector will include all the constraints mentioned above. The 

creation of input vectors will be discussed in the following section.  

Step 2: Training ANN model. Defining the data samples will play a crucial rule 

in choosing a proper neural network to train the data points. More details will be shown 

in the sections below.  

Step 3: Validation and testing ANN model. This step is to verify the accuracy 

of the trained ANN by comparing the output against a set of the new data sample, 

noting that this step is needed for a supervised network. In contrast, the unsupervised 

network cannot be validated since the user does not know what to expect. Below is 

Figure 3.2 which is a flowchart simplifying the creation of ANN.    

 

 

 

 

Neural Networks 

Input Output 

Classroom scheduling 

parameters/constraints. 

Desired feasible schedule 

free of conflict  

Figure 3.1: Black box for the final product 
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3.3 Creation of Data Point Samples  

 The datasets of a classroom schedule have been created by coding the input 

parameters. For example, the alphabetic letters [A: Z] in the course code are mapped 

into numbers [1:26], hence, the course code is transferred into numbers. Table 2 shows 

the mapping between the constraints and the input parameters, and between the input 

parameters and the numbers.  

 

 

Cost function/  If 

Threshold value met 

Define the problem 

Start 

Specify the constraints / 

create a meaningful 

 vector 

ANN Forming  

Train ANN 

Test 

ANN 

ANN Model is ready 

for Classroom 

scheduling  

End 

Yes 

No 

Reforming the 

input data sets  

Change the 

Training Algorithm  

Figure 3.2: Flowchart for ANN Creation 
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Table 2: Mapping constraints and input parameters 

 

Moreover, the created datasets will form the shape of an input vector; see the 

input matrix Eq. (3.3) below. Note that the raw data used in this report is from a study 

plan of Mechanical and Electrical Department of Engineering College at UAE 

University. See Appendix for more details. Creating data points is essential in the 

selection of the proper neural network “training stage”. Some assumptions were made 

to ease the training procedure, guarantee accurate output values and alleviate testing 

and debugging the datasets if anything goes wrong during the training stage. Hence, 

78 data points were made. The table below illustrates the raw input points used to 

create the needed data. Thus, it forms the classroom schedule’s requirement.  

Table 3 demonstrates the number of involved professors which are 20 and that 

each professor will teach four subjects/courses. Also, it shows the course level, course 

type, and timing. In addition, the course name in letters is displayed to relate the 

courses to the professor easily. Note that the rest of the data is shown in Appendix. 

Constraint Input parameter Code 

Teacher Conflict  Prof. ID Numbers from 1 to 20 

Time Restriction Class time (AM/ PM) Number 1 for AM  

Number 0 for PM  

Course conflict Course level Number 3 for Third year  

Number 4 for Fourth year 

Number 5 for Fifth year 

Number 6 for sixth year 

Course name For example, MECH348 represents Fluid 

Mechanics lab. The first digit represents the 

course level and the second and third digits 

the course name.   

Classroom 

requirements  

Course type (Theory / 

Laboratory)  

Theory is 1 

Laboratory is 0 



 
 

  
 
 

4
3 

 

Table 3: Original data with constraints 

  Four lectures each Prof. Four lectures each Prof. Four lectures each Prof. Four lectures each Prof. 
  Original data 

Prof ID 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 
Course 

Level 
3 4 4 3 3 4 5 5 3 4 6 4 3 4 5 5 

Course ( 

Theory/ 

Lab) 

0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 

course 

name 
48 29 30 11 6 33 40 42 10 50 15 17 11 29 31 30 

Time 

(AM/PM) 
0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1 

Course 

Name 

(letters) 

Fluid 
Mech 

lab 

Thermo. 
System 

Thermal 
Eng. lab 

Applied 
Thermo 

Manuf. 
process 

Intro 
to 

CAM 

Sel.topics 
in 

Manufact. 

Intro 
to 

Comp 

Dynamic System 
Dynamic 

lab 

Adv. 
Dynamic

and 

Control 

Kinematic Applied 
Thermo 

Thermo. 
System 

Intro. to 
Robotics 

SEL 
Topics 

in Mech. 
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3.3.1 Data Normalization 

Formulating data points and converting it into the input vector is the primary 

step to start the training. However, normalizing the input vector must take place before 

introducing the input vector to the network.  The normalization removes geometrical 

biases towards some of the dimensions of the data vectors which will be inputted into 

the SOM neural network. This is done to insure that every bit of data gets treated in a 

"fair" manner. Also, this needs to be done to the data before it is entered into the 

backpropagation neural network. The reason for this normalization in the BP neural 

networks is that activation functions (e.g. sigmoid, hyperbolic tangent and Gaussian), 

produce a result that lies in ranges of [0,1] or [-1,1]. Thus, it is a must to normalize the 

input values, to insure it will be within the domain of [0,1] or [-1,1]. In addition, 

another way of posing this is to realize that all learning algorithms depend on 

numerical properties, so one should try to avoid small numbers, large numbers, and 

large differences (Nicholas, 2012).  

As with all functions, if the input values are not in the domain, the result is not 

guaranteed to be appropriate (Nicholas, 2012). There are some ways to normalize data, 

for example, Z-score, the coefficient of variation or feature scaling. The most 

straightforward method for our data is feature scaling. If all input variable belong to 

some interval 𝜒 𝜖  [𝑀_𝑚𝑖𝑛,𝑀_𝑚𝑎𝑥], then the normalization formula (Mendelssohn, 

1993) is:  

                                      𝑥𝑛𝑒𝑤 =
𝑥 − 𝑀𝑚𝑖𝑛

𝑀𝑚𝑎𝑥 − 𝑀𝑚𝑖𝑛

                                      𝐸𝑞. (3. 1) 

Pre-processing the data and training it in the neural network will result in an 

output vector. Consequently, the output vector needs post-processing or de-
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normalizing in order to interpret and present the output data in the understandable 

matter.  The following formula is used for de-normalizing:   

                                  𝑥 =  𝑥𝑛𝑒𝑤(𝑀𝑚𝑎𝑥
− 𝑀𝑚𝑖𝑛) +  𝑀𝑚𝑖𝑛                       𝐸𝑞. (3. 2) 

Table 4 specifies sample of data points after normalization- the rest of 

normalized data is presented in Appendix. Now, the data is ready for training, each 

row in the matrix below shows the five input parameters. Each column represents one 

set of an input vector. In this report, we are using 78 input vectors with each vector 

comprising professor ID, course level, course type, course name and class timing.   

 



 
 

  
 
 

4
6 

 

Table 4: Data after normalization 

  Four lectures each Prof. Four lectures each Prof. Four lectures each Prof. Four lectures each Prof. 

Prof ID 0 0 0 0 0.0526 0.052 0.052 0.052 0.105 0.105 0.105 0.10 0.1579 0.157 0.157 0.157 

Course Level 0 0.333 0.3333 0 0 0.333 0.666 0.666 0 0.333 1 0.33 0 0.333 0.666 0.666 

Course ( 

Theo./ Lab) 
0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 

Course Name 0.510 0.308 0.3191 0.117 0.0638 0.351 0.425 0.446 0.106 0.531 0.159 0.18 0.117 0.308 0.329 0.319 

Time 

(AM/PM) 
0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 1 
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Input Matrix =
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Eq. (3.3) 
 

3.4 ANN Formation    

The most challenging and critical phase of this thesis is the building of the 

neural network models. Mainly, there are two significant challenges of this project. 

The first is how to interpret the multidimensional nonlinear data in the first draft of 

the schedule. Thus, the data needs to be directed to form groups that have a common 

mien. Each formed group is considered a classroom and each classroom will hold five 

unique, unpredictable features (or constraints). The second challenge faced is how to 

handle the unseen scenarios. For example, when dynamic changes happen at the 

beginning of any academic semester, such as opening a new section, closing an 

existing section and overlapping between some classes within the first draft. 

 

3.5 Implementing SOM Neural Network  

The solution starts with defining and understanding the behavior of input data 

to the neural network. Thus, analyzing the data, to be distributed in distinct regions or 

zones, may reveal a reasonable solution for the first challenge. Therefore, introducing 

Self-Organizing Feature Map neural network to define those regions is an appropriate 

solution for the following reasons:  

 The presented data in this report has a clear non-linear relationship due   
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to the different types of constraints. 

 SOM can reduce the size of the problem from a five-dimensional 

(multidimensional) map to a two-dimensional map, while maintaining 

all the information about the features (or constraints) valued. Hence, 

each input vector consists of five different constraints. 

 SOM neural network uses unsupervised learning, so the training 

samples contain only input patterns. As a result, the system does not 

need to be well defined, which is the case with our data.  

 

SOM NN comprises two layers. The first layer is the input which consists of 

the data points (sections) and neurons and the second is an output layer in the form of 

a two-dimensional map that locates classrooms according to their degree of similarity 

after clustering. The dimension of the output layer depends on the amount of data 

being analyzed. The higher the volume of data, the larger the output layer. 

As for the architecture of SOM neural networks, input data is propagated 

within the system through forward connections, where connections originate in the 

input layer and implant in the subsequent layer (output layer). Furthermore, the lateral 

connections which appear between neurons of the same layer, can be seen in the output 

layer, as introduced by Kohonen. Thus, it represents the cooperation stage in SOM 

training.  

After the learning process is completed, the output layer results in clusters 

(groups). Each cluster has a centroid, which is the neuron around which the data points 

are grouped; see the Figure 3.3. It is worth mentioning that the position of the centroid 

neuron of the cluster is represented as a located in the X-Y plane of the network map, 

which is also the weight vector of the centroid neuron itself. Hence, the number of 
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neurons designate the number of suggested classrooms, which in our research is 18 

classrooms. 

 Furthermore, each ball in Figure 3.3 represents one section, each of which is 

comprised of professor ID, course level, course type, course name and class timing. 

The colors of the data points cloud in the input layer are a representation of the courses 

based on its constraints or features. As a result, the data points with the same color 

signify the sections with similarities in their features. These data points, which have 

the same color, are clustered to form the classrooms in the output layer by SOM NN. 

A related point to consider is that the neurons in the input layer had no defined color; 

they are shown in gray color in Figure 3.3. However, after clustering in the output 

layer, the neurons (center of clusters) are converted to match the color of their group; 

which is simply the function “clustering” of SOM NN.   

A further splitting is done for large clusters if the classroom is assigned to 

more than four courses.    

Note that the information in Figures 3.3 and 3.4 below is simply a graphical 

representation which serves as a model for the neural network our research endeavors 

to create. In real mathematical modeling of SOM, the neurons migrate between the 

similar features. In contrast, the data points remain fixed. 
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Figure 3.3: Graphical representation of first stage of sections (courses) separation  

by SOM Neural Network 

Classrooms  

Center of 

clusters  

Input of SOM before 

clustering 

Output of SOM after 

clustering 
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3.6 Implementing FFBP Neural Network   

To preserve the produced classroom timetable done by SOM neural network 

and to allow for new sections or updates to the classroom schedule to be made with 

minimal changes, the feedforward back-propagation neural network is introduced. 

The clustered output data done in SOM network is now the input data for FFBP neural 

network. 

 As previously explained in Chapter 2, feedforward neural network consists of 

at least three layers: an input layer, hidden layer, and output layer. The network of all 

three layers is fully connected. Neurons in the input layer are linked to neurons in the 

Figure 3.4: Graphical representation of SOM separations  

First stage of separation 

by SOM NN 

Second stage of 

separation by SOM NN 
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hidden layer, and in-return the hidden layer’s neurons are fully connected to the output 

layer’s neurons; this is why it is called the feedforward part of FFBP network. 

Concerning back-propagation of an error signal, which is a training method for 

neurons to adapt their weights to attain new knowledge, all neurons are fully 

connected through all layers and propagate from the output layer to the input layers. 

This insures the input data passes through all layers, including the hidden layers. In 

general there is no particular technique to determine the number of the hidden layer. 

Thus, from experiments researchers advise to use two rules to launch the FFBP model: 

(i) number of hidden layers equals one; and (ii) the number of neurons in that layer is 

the mean of the neurons in the input and output layers. 

As the Figure 3.5 illustrates, learning mode is when the FFBP neural network 

takes the input data (courses) and propagates it in a forwarding fashion. The patterns 

resulting from the hidden layers arriving at the output layer are then compared with 

the desired (associated) output pattern (classrooms numbers) to calculate an error 

signal. Then the error signal for each target output pattern is propagated from the 

output layer to the input layer, to update the weights in each layer of the network. 

After the training phase, the network can be tested on a new set of samples to see how 

well it classifies new patterns (new course).  

Operation mode, which is the trained FFBP neural network, classifies new 

data. Thus, the network will be able to identify whether a particular data point (i.e., 

new course) belongs to classroom 1, 2, or 3, etc. 
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In summary, Figure 3.6 illustrates a set of input vectors comprising five 

constraints are introduced to a Self-Organizing Feature Map (SOM) neural network 

for classroom section classification and separation, using some cluster centers equal 

to the available rooms. The SOM demonstrated robust capability in clustering the 

Figure 3.5: Learning mode in FFBP NN 

Figure 3.6: Graphical representation of the operational mode in FFBP NN 
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sections into groups, comprising courses with conflicts based on the defined 

constraints, hence it identified classes to be sequentially scheduled in one room. A 

second stage SOM is used to further split the big clusters. Moreover, to fit newly 

created classrooms into the SOM generated timetable, the output from SOM is used 

to train a Feedforward Back Propagation (FFBP) neural network which then shows 

where the new section can be allocated without disrupting the already existing 

schedule created by the SOM. The trained FFBP is used to accommodate the new 

sections without the need to re-cluster with SOM. In combination, the SOM and the 

trained FFBP managed to prepare a conflict-free schedule successfully. Figure 3.7 

represents the suggested artificial intelligence approach for classroom scheduling 

graphically. 
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Chapter 4: Tests Results and Discussion  

 

The neural networks algorithms implemented in this research are written in 

Matlab. In this chapter, mathematical models and tests are described, and the results 

of implementing SOM NN and FFBP NN are presented and discussed.  

4.1 Mathematical Modeling of SOM for Classroom Scheduling 

The SOM NN takes the set of input vectors (sections) and maps it with the 

neurons of a two-dimensional hexagonal grid. Each neuron in the 2D grid is assigned 

a weight vector 𝑤𝑗𝐷 =  (𝑤𝑗1,  𝑤𝑗2, … ,  𝑤𝑗𝐷) which has similar dimensionality as the 

input vector, where 𝑗 = (1, 2, …, 𝑙) and 𝑙 is the total number of neurons in the network 

and 𝐷 is dimension of the input vector. Hence, the input pattern of our model has five 

dimensions (constraints), 𝐷 = 5. According to (Fisher, 2006), the weights represent 

the centers of clusters in the 2-D map. Additionally, the number of neurons, 𝑗, is 

determined as the following: “𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ≤  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚𝑠”. 

Thus, the number of classrooms must be sufficient to satisfy the given number of 

sections; moreover, the minimum number of neurons should be at least equal to the 

number of rooms to accommodate the given courses.  According to the generated data, 

the number of data points (input vectors) is 72. Thus, each professor will teach four 

courses. However, for the sake of making the network more realistic, some scenarios 

is added which is: two professors are assigned to teach only three sections. Hence 6 

additional input data are added so that the total number of input vectors is 78. 

Accordingly, the number of neurons 𝑗 can be determine as the following: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑛𝑒𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑚𝑒𝑠𝑡𝑒𝑟

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛 𝑜𝑐𝑐𝑢𝑝𝑦 𝑜𝑛𝑒 𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚
        

                                             =
72

4
 = 18 𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚𝑠 
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As the above formula reveals (i.e., the number of classrooms needed to house 

all courses and sections), the total number of neurons 𝑙 = 18. As the number of 

constraints = 5, the weight matrix number will be 18 𝑋 5 = 90. 

𝑤𝑗𝐷 =

[
 
 
 
 
 
 
 

𝑤1 1 𝑤1 2 𝑤1 3 𝑤1 4 𝑤1 5

𝑤2 1 𝑤2 2 𝑤2 3 𝑤2 4 𝑤2 5

𝑤3 1 𝑤3 2 𝑤3 3 𝑤3 4 𝑤3 5

𝑤4 1 𝑤4 2 𝑤4 3 𝑤4 4 𝑤4 5

𝑤5 1 𝑤5 2 𝑤5 3 𝑤5 4 𝑤5 5

𝑤6 1 𝑤6 2 𝑤6 3 𝑤6 4 𝑤6 5

 

⋮
 𝑤18 1 𝑤18 2 𝑤18 3 𝑤18 4 𝑤18 5]

 
 
 
 
 
 
 

 𝐸𝑞. (4. 1) 

 

Where 𝑤𝑗𝐷 is the weight matrix, 𝑗 represents the classrooms [𝑗 = 1, 2,3, … 18], and 𝐷 

represents the constraints [𝐷 = 1,2, … ,5].  

Figure 4.1, clearly exemplifies the interconnection between the input vector (input 

layer) and the computational layer (output layer).  

𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 1 ∶
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 2 ∶
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 3 ∶
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 4 ∶
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 5 ∶
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 6 ∶

⋮
𝐶𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 18 ∶ [

 
 
 
 
 
 
 

𝑤1 1 𝑤1 2 𝑤1 3 𝑤1 4 𝑤1 5

𝑤2 1 𝑤2 2 𝑤2 3 𝑤2 4 𝑤2 5

𝑤3 1 𝑤3 2 𝑤3 3 𝑤3 4 𝑤3 5

𝑤4 1 𝑤4 2 𝑤4 3 𝑤4 4 𝑤4 5

𝑤5 1 𝑤5 2 𝑤5 3 𝑤5 4 𝑤5 5

𝑤6 1 𝑤6 2 𝑤6 3 𝑤6 4 𝑤6 5

 

⋮
 𝑤18 1 𝑤18 2 𝑤18 3 𝑤18 4 𝑤18 5]

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 4.1: SOM NN-mathematical model 
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Competition Phase: By using the Euclidian distance Eq. (2.46), the winning input 

vector can be found by calculating the distances between the input vectors and the 

weight of the neurons (classrooms) such that 𝑑 (𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 𝑗) is minimum. 

𝑑(𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚1)2

= [(𝑝𝑟𝑜𝑓. 𝐼𝐷 − 𝑤11)
2 + (𝐶𝑟. 𝑡𝑦𝑝𝑒 − 𝑤21)

2 + (𝐶𝑟. 𝑛𝑎𝑚𝑒 − 𝑤31)
2

+ (𝐶𝑟. 𝑙𝑒𝑣𝑒𝑙 − 𝑤41)
2 + (𝑇𝑖𝑚𝑒 − 𝑤51)

2] 

 𝑑(𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚2)2

= [(𝑝𝑟𝑜𝑓. 𝐼𝐷 − 𝑤12)
2 + (𝐶𝑟. 𝑡𝑦𝑝𝑒 − 𝑤22)

2 + (𝐶𝑟. 𝑛𝑎𝑚𝑒 − 𝑤32)
2

+ (𝐶𝑟. 𝑙𝑒𝑣𝑒𝑙 − 𝑤42)
2 + (𝑇𝑖𝑚𝑒 − 𝑤52)

2] 

𝑑(𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚3)2

= [(𝑝𝑟𝑜𝑓. 𝐼𝐷 − 𝑤13)
2 + (𝐶𝑟. 𝑡𝑦𝑝𝑒 − 𝑤23)

2 + (𝐶𝑟. 𝑛𝑎𝑚𝑒 − 𝑤33)
2

+ (𝐶𝑟. 𝑙𝑒𝑣𝑒𝑙 − 𝑤43)
2 + (𝑇𝑖𝑚𝑒 − 𝑤53)

2] 

⋮ 

 𝑑(𝑐𝑙𝑎𝑠𝑠𝑟𝑜𝑜𝑚 18)2 = [(𝑝𝑟𝑜𝑓. 𝐼𝐷 − 𝑤1 18)
2 + (𝐶𝑟. 𝑡𝑦𝑝𝑒 − 𝑤2 18)

2 

                                 +(𝐶𝑟. 𝑛𝑎𝑚𝑒 − 𝑤3 18)
2 + (𝐶𝑟. 𝑙𝑒𝑣𝑒𝑙 − 𝑤4 18)

2 + (𝑇𝑖𝑚𝑒 − 𝑤5 18)
2] 

Cooperation Phase: After the competition phase, the cooperation phase is determined 

by calculating the neighborhood function (distance between the excited neurons and 

the winner neuron). The neighborhood function should satisfy two requirements: it 

must be symmetric, and decreases monotonically with the increase of the distance.  

                 ℎ𝑗,𝑖(𝑥)(𝑛) = exp − 
𝑑𝑗,𝑖

2

2 𝜎2(𝑛)
 , 𝑛 = 0,1,2,…  𝑖𝑠 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠                         

Hence, 𝑑𝑗,𝑖
2 is the 2-D distance, 𝑑𝑗,𝑖

2 = ‖𝑟𝑗⃗⃗⃗ − 𝑟𝑖⃗⃗⃗ ‖
2

 , where, 𝑟𝑗 is the position vector of 

the excited neuron 𝑗 and 𝑟𝑖 is the position vector of the winning neuron 𝑖. 
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Adaptation phase: Next the weights must be updated for the winning neurons and 

excited neurons, and reduce the learning rate, 𝜂. Let the learning rate start from 

𝜂(𝑡=0) = 0.6 and decrease till 𝜂(𝑡=𝑡(𝑛)) = 0.01 until the changes become less than the 

predefined threshold. This is then the cost function:   

                          𝑤𝑗⃗⃗⃗⃗⃗(𝑛 + 1) = 𝑤𝑗⃗⃗⃗⃗⃗(𝑛) + 𝜂(𝑛)ℎ𝑗,𝑖(𝑥⃗)(𝑛) (𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗)          𝐸𝑞. (4. 2) 

Which is simply  
 

                               𝑤𝑗⃗⃗⃗⃗⃗(𝑛𝑒𝑤) = 𝑤𝑗⃗⃗⃗⃗⃗(𝑜𝑙𝑑) + 𝜂ℎ𝑗,𝑖(𝑥⃗) (𝑥⃗ − 𝑤𝑗⃗⃗⃗⃗⃗(𝑜𝑙𝑑))      𝐸𝑞. (4. 3) 

 

4.2 SOM Neural Network Parameters for Tests in MATLAB   

The behavior of SOM was explained earlier in Chapter 2. However, 

understanding and selecting the proper parameters will ensure a better performance 

and faster convergence of the neural network. Unfortunately, there is no definite and 

explicit method to select optimal parameters for the used SOM NN model. 

Accordingly, general trends from previous research, as well as trial and error methods 

were followed to find the best parameters values. 

MATLAB Software: Matlab is an open source tool with high-performance language 

for technical computing. It has built-in functions for different types of neural networks, 

hence, it uses Graphical User Interface (GUI) and/or Lines commands (Mathworks, 

1994-2018). However, using the command lines allows the luxury to fine tune the 

network parameters easily. Therefore, in this research the command lines in Matlab 

are used to run the SOM tests using the generated data above. Hence, the line 

commands are shown in Appendix.   
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Topology in SOM: Picking a suitable topology will result in a 2-D map with well-

clustered data. To this end, different tests were done using 11 input vectors from the 

generalized data sets on three different topologies (grid topology, hexagonal topology, 

and random topology; see Fig. 4.2). Sometimes the shape of the chosen topology can 

be justified, sometimes it cannot. For example, in our case, the use of hexagonal 

topology was a more natural fit based on the already consisting shape of our data 

points. Furthermore, hexagonal topology has the highest number of adjacent neurons 

per neuron (López, 2014), which gives more flexibility in tuning the clusters as 

compared to the grid topology. Hence, the preferred use of hexagonal topology was 

confirmed after several tests, as compared with the random and the grid topologies.  

 

Figure 4.2:Three different types of topologies, HexTop, GridTop and RandTop 

 

No. of Epochs: The number of iteration must be at least 500 times the number of 

neurons. In our case 500 X 18=9000 iterations, hence, the iteration should start from 

9000. Recall that an epoch in learning means using all the training samples once. So, 

after trial and error method, the approximate number of needed epochs to converge 

was 100,000 epochs. Hence, the suggested parameters are taken from two resources 

either from different researchers or found by try and error experimentally.    
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Learning Rate 𝜼: The learning rate 𝜂 started with 0.6 and decreased till it reached a 

steady state in term of the changes in the neurons convergence. No significant changes 

were noticed in the clustering map when 𝜂 reached 0.1.  

Initial neighborhood radius σ: The radius should start out as the radius of the 

network, and approach zero, at which time the radius is simply the winner node. Any 

nodes found within the radius of the winner are adjusted to make them more like the 

input vector. The value of σ decreases with the number of iterations (for full discussion 

see Chapter 2).  Hence, σ started with 6 and gave the best results at 4. Thus, the result 

is that the neighboring neurons tend to have similar weight vectors and to be responsive 

to similar input vectors. This result was found experimentally via Matlab.  

4.3 SOM Results and Discussion  

The purpose of using SOM in this thesis is to cluster the data points. Thus, the 

SOM distributed the data points (sections) over the neurons (clusters), to guarantee a 

conflict-free schedule for each cluster. Hence, each cloud point (or cluster of data) has 

shared features which reveal the points of potential conflict and highlight sections that 

need to be scheduled in the same classroom. It is worth mentioning that the suggested 

solution is considered an initial estimate for the classroom schedule.   

4.3.1 Matlab Analysis Plots 

After tens of runs and tests, Figures 4.3 and 4.4 show the data points before 

and after clustering distributed over 6X3 hexagonal topology in SOM. The weight 

position plot below shows the data points (sections) as green dots in terms of two first 

features: professors IDs and course type. The neurons’ weight vectors are plotted in 

dark-blue dots according to their first two weights only. The red lines indicate which 
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neurons are neighbors. Note how the neurons spread out with neighboring neurons 

representing the adjacent arrows of the sections’ features in space. The 2-dimensional 

map appears folded in some places in the plot because it is spread over five dimensions 

of the sections features.  Nonetheless, the neurons distribution in the map is expected 

to be well organized; since the input data, or first two features, are well distributed 

from the beginning. However, the main target from clustering the data is to extract 

features from each cluster (classroom) separately.  

 

 

 

 

 

 

 

 

Figure 4.3: SOM before training  
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Additionally, the SOM Topology, the Distribution of clusters (classrooms), the 

SOM neighbor weight distance plot, and the weight input planes shown below are 

Matlab visualization tools which help in interpreting the data points after clustering.  

 

 

Figure 4.5: (6X3) 2D-hexagonal topology 

Figure 4.4: SOM after training 
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Firstly, the two figures (Figure 4.5 and Figure 4.6) above are self-explanatory. 

In contrast, in Figure 4.7 the SOM neighbor weight distances requires more 

interpretation. So, to interpret Figure 4.7 the following colors and description should 

be defined: 1. Neurons are represented by blue hexagons; 2. Red lines connect 

neighboring neurons; 3. Dark-colored regions represent larger distances between 

neurons; and 4. Light-colored regions represent smaller distances between neurons. It 

is clear according to the plot below, that the clusters, which are indicated as lighter 

colors, are distributed more consistently in most of the map. Yet, one or two clusters 

are presented with relatively large distances between the neighbors’ weights, as 

indicated by the darker colors. Note that the neighbor weight distances plot is 

consistent with the position weight plot in Figure 4.4.  

Figure 4.6: Clusters (Classrooms) distribution in (6X3) SOM topology 
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Moreover, the SOM weight plane plots in Fig. 4.8 are used to visualize the 

strength of weights that connect each input to each of the neurons (Robertson, 2014). 

For our experiment, five inputs were used; therefore, five subplots were generated for 

each input. The five input features included: the professors ID #, course level, course 

type, course name and course timing. This figure was generated after 100,000 

iterations. 

Lighter colors in the plots represent larger weights, whereas darker colors 

represent smaller weights. Similar connection patterns of the inputs indicate a high 

correlation. Inputs 3 and 5 appeared to be similar in some locations and were 

interpreted as highly correlated. Input from variables 1, 2, and 4 appeared to contribute 

the smallest amount of cluster separation in the data sets, as they appear to be the least 

similar and are less correlated. Although the SOM weight plane plot suggests a 

possible relationship might exist between the inputs, this concept does not pertain to 

our thesis, since it was pre-defined that the relationship between the inputs is 

independent. 

Figure 4.7: SOM neighbor weight distance for sections clustering 
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 In this thesis the analysis was done on each cluster independently, in order to 

extract the dominant features; this point will be elucidated at the next stage of analysis.       

An additional useful visual plot provided by the MATLAB SOM function is 

the SOM sample hits plot seen in Figure 4.9. The sample hits plot counts the number 

of data points associated with each neuron. In an ideal situation, a relatively even 

distribution across the neurons is desired. However, the distribution was clustered 

Figure 4.9: SOM sample hits- input points (sections) after clustering 

Figure 4.8: Weight input plane plot 
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unevenly throughout the map, which indicates that similar data were separated over 

different regions.  

4.3.2 Classroom Scheduling Constraints Analysis 

SOM First Stage 

At this stage a deeper analysis is required to disclose the output of each cluster. 

Starting with cluster 1, which will be considered as classroom 1, the hits figure above 

indicates that cluster 1 consists of three sections and, according to the weight input 

plane plot below, input 3 and input 5 exert the most control on the data cloud points of 

classroom 1, with input 1 (Professor ID) also exerting a lesser degree of control. Hence, 

input 3, which is the course type, and input 5, which is the course timing, have the 

main effect on cluster 1 (Classroom 1), making them the dominant features.  

 

 

 

 

 

 

 

\ 

 Figure 4.10: Weight input plane plot of cluster # 1 
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Furthermore, Table 5 and Table 6 illustrate the data before and after 

normalization for cluster 1 (Classroom 1), making it very easy to extract the dominant 

features. It is obvious that course level, course type and timing all have similarities 

across the three sections. Note that the existence of those three courses in the same 

group course level gaurantees a conflict-free schedule for third year students. Also, it 

appears that professor 11 is teaching two courses in classroom 1, which guarantees 

that there will not be a clash in timeslots for classroom 1 for these two sections. 

Table 5: Cluster 1 (Classroom1) sections normalized 

.Neuron # 

(Cluster #) 

Prof ID Course Level Course 

(Theory/ Lab) 

Course 

Name 

Time (AM/PM) 

1 0.473684211 0 1 0.224719101 1 

1 0.526315789 0 1 0.292134831 1 

1 0.526315789 0 1 0.337078652 1 

 

 

Table 6: Cluster 1 (Classroom 1) sections de-normalized 

Neuron # 

(Cluster 

#) 

Prof ID Course 

Level 

Course 

 ( Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name (Letter)   

1 10 3 1 25 1 Engineering 

Electromagnetics 

1 11 3 1 31 1 Computer Programming 

1 11 3 1 35 1 Digital Logic Design 

 

A similar case is evident in cluster 2, as evidenced in Tables 7 and 8. These 

tables show that fourth year students will be able to take three courses in the same 

classroom at different times. Similar cases are repetitve in most of the clusters, so this 

observation can be considred as a point of strength in SOM, revealing that this is a 

good initial estimation for classroom scheduling.  
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Table 7: Cluster 2 (Classroom 2) sections normalized 

Neuron # 

(Cluster #) 

Prof ID Course Level Course 

 (Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

2 0.263157895 0.333333333 1 0.078651685 1 

2 0 0.333333333 1 0.235955056 1 

2 0.052631579 0.333333333 1 0.314606742 1 

 

 

Table 8: Cluster 2 (Classroom 2) sections normalized 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course  

(Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name 

(Letter)   

2 1 4 1 26 1 Thermo-fluid 

System 

2 2 4 1 33 1 Intro to CAM 

2 6 4 1 12 1 Machine 

Design II 

 

Also, it was noticed that the co-requisite sections were grouped in the same 

cluster, which is cluster 4 (classroom 4), thus it guarantees that students are able to 

register for two courses-- the co-requisite --with minimum conflict. For example, the 

table below shows the case of co-requisite courses MECH 409 (Dynamics System and 

Control) and MECH 417 (Kinematics), which are co-requisite courses for MECH 450 

(System Dynamics Lab). Note, cluster 4 went through the second stage of SOM 

because it was overloaded with 6 sections; find the results of this in Table 9 below. 

Tables 10-13 show classroom #4 before and after separation and de-normalization. 

Table 9: Cluster 4 (Classroom # 4) Overloaded with 6 sections before separation 

Neuron # 

(Cluster #) 

Prof ID Course Level Course 

 (Theory/ Lab) 

Course Name Time 

(AM/PM) 

4 0.10526316 0.3333333 1 0.04494382 0 

4 0.10526316 0.3333333 1 0.134831461 0 

4 0.2631579 0.3333333 1 0.02247191 0 

4 0.31578947 0.3333333 1 0.134831461 0 

4 0.36842105 0.3333333 1 0.235955056 0 

4 0.21052632 0.3333333 1 0.314606742 0 

 



70 
 

  
 
 

Table 10: Cluster 4 (Classroom #4) part A after separation 

Neuron # 

(Cluster #) 

Prof ID Course Level Course  

(Theory/ Lab) 

Course Name Time 

(AM/PM) 

4 0.10526316 0.3333333 1 0.04494382 0 

4 0.10526316 0.3333333 1 0.134831461 0 

4 0.2631579 0.3333333 1 0.02247191 0 

 

Table 11: Cluster 4 (Classroom #4) part A de-normalized 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course  

(Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course 

Name 

(Letter)   

4 3 4 1 9 0 Dynamics 

system & 

control 

4 3 4 1 17 0 Kinematics 

4 6 4 1 7 0 Machine 

Design I 

 

Table 12: Cluster 4 (Classroom #4) part B after separation 

Neuron # 

(Cluster #) 

Prof ID Course Level Course  

(Theory/ Lab) 

Course Name Time 

(AM/PM) 

4 0.315789474 0.333333333 1 0.134831461 0 

4 0.368421053 0.333333333 1 0.235955056 0 

4 0.210526316 0.333333333 1 0.314606742 0 

 

Table 13: Cluster 4 (Classroom #4) part B de-normalized 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course  

(Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course 

Name 

(Letter)   

4 5 4 1 33 0 Intro to CAM 

4 8 4 1 26 0 Thermo-fluid 

System 

4 7 4 1 17 0 Kinematics 

 

Another case that should be highlighted is found in clusters 6 and 12. Cluster 

6 (classroom 6) and Cluster 12 (classroom 12) are distinct, as their course types are 

lab, not lecture. Tables 14, 15, 16 and 17 demonstrate the sections before and after 

normalization. The SOM could classify the labs and separate them from the lectures 

completely. Hence, laboratory rooms can be thought of as specialized equipment 
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rooms with three consecutive hours sections; to prevent the interruption of laboratory 

work. Due to this, such sections are often conducted at late times during the day. Thus, 

this case helps alleviate the challenge often posed by the scheduling of laboratories 

with other academic classrooms. In addition, the two clusters 6 and 12 representing 

the labs in Mechanical Engineering and Electrical Engineering respectively, were 

distinguished by the SOM, allowing successful scheduling of the Mechanical labs and 

the Electrical labs.  

Table 14: Cluster 6 (Classroom #6) normalized 

Neuron # 

(Cluster #) 

Prof ID Course Level Course  

(Theory/ Lab) 

Course Name Time 

(AM/PM) 

6 0 0.333333333 0 0.280898876 0 

6 0.157894737 0 0 0.483146067 0 

6 0.157894737 0 0 0.483146067 0 

6 0.263157895 0.333333333 0 0.393258427 0 

6 0.315789474 0.333333333 0 0.101123596 0 

 

Table 15: Cluster 6 (Classroom #6) de-normalized 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course  

(Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name (Letter)   

6 1 4 0 30 0 Thermal Engineering 

lab 

6 4 3 0 48 0 Fluid Mechanics lab 

6 4 3 0 48 0 Fluid Mechanics lab 

6 6 4 0 40 0 Design and 

Manufacturing Lab 

6 7 4 0 50 0 System Dynamics lab 
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Table 16: Cluster 12 (Classroom #12) normalized 

Neuron # 

(Cluster #) 

Prof ID Course Level Course  

(Theory/ Lab) 

Course Name Time (AM/PM) 

12 0.473684211 0 0 0.056179775 0 

12 0.578947368 0 0 0.449438202 0 

12 0.578947368 0.333333333 0 0.314606742 0 

12 0.631578947 0 0 0.786516854 0 

12 0.684210526 0.333333333 0 0.629213483 0 

 

Table 17: Cluster 12 (Classroom #12) de-normalized 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course  

(Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name 

(Letter)   

12 10 3 0 10 0 Electric Circuits I lab 

12 12 3 0 45 0 Digital Logic Design 

Lab 

12 12 4 0 33 0 Instrument and control 

lab 

12 13 3 0 75 0 Electronic Circuits Lab 

12 14 4 0 61 0 Microprocessors Lab 

 

Moreover, an additional section--a lecture type course, but located in a lab--

was added to measure the SOM clustering aptitude. In this case, the SOM succeeds in 

separating this point in one cluster only, cluster 18 (classroom 18). This is confirmation 

that SOM can differentiate easily between lectures and labs sections. See Tables 18 

and 19.  

Table 18: Cluster 18 (Classroom #18) normalized 

Neuron # 

(Cluster #) 

Prof ID Course Level Course 

 (Theory/ Lab) 

Course Name Time (AM/PM) 

18 0.421052632 0.666666667 0 0.898876404 0 

 

Table 19: Cluster 18 (Classroom #18) de-normalized 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course  

(Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name 

(Letter) 

18 9 5 0 85 0 graduation 

project I 
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To increase the flexibility of classroom scheduling and allow students to have 

more options to create their own schedules, multiple open sections of the same courses 

and different professors are created as a common scenario in university scheduling. 

This will give students more options to register in a course, thus it helps the student 

who has a conflicting morning session to register for an evening session or register for 

a specific course on a different day. Tables 20 and 21 show identical courses clustered 

in same classroom with two different professors, which guarantees that there will be 

no conflict between the two sections because logically two sections cannot be given at 

the same time in the same place. As a result, students will get the opportunity to select 

between the two timeslots. This case can be found also in clusters 14, 15, 16 and 17. 

See Appendix for more details.   

Table 20: Cluster 10 (classroom #10) normalized 

Neuron # 

(Cluster #) 

Prof ID Course Level Course ( 

Theory/ Lab) 

Course Name Time (AM/PM) 

10 0.6315789 0 1 0.752808989 0 

10 0.6315789 0.3333333 1 0.516853933 0 

10 0.6842105 0.3333333 1 0.516853933 0 

 

 

Table 21: Cluster 10 (Classroom #10) de-normalized 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course ( 

Theory/ 

Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name 

(Letter)   

10 13 3 1 72 0 Electro-

Mechanical 

Devices 

10 13 4 1 51 0 Microprocessors 

10 14 4 1 51 0 Microprocessors 
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SOM Second Stage  

Designing conflict-free scheduling is a challenging task, due to many variables 

and scenarios. The sections distribution over the class map (SOM) provides a partial 

solution. Although the section distribution is satisfying, some classrooms are 

overloaded with 6 sections and sometimes 7 sections in one day. This can be solved 

by a second stage of SOM clustering (refer to Chapter 3). For example, Tables 22, 23 

and 24 show classroom 8 overloaded with 7 sections and the dominant features vary 

between course type, course level, course timing and professors’ IDs. 

Table 22: Cluster 8 (Classroom #8) before second stage SOM (separation) 

Neuron # 

(Cluster #) 

Prof ID Course Level Course 

 (Theory/ Lab) 

Course Name Time (AM/PM) 

8 0 0.666666667 1 0.101123596 1 

8 0 0.666666667 1 0.078651685 1 

8 0.0526316 0.6666667 1 0.4044944 1 

8 0.0526316 0.6666667 1 0.4157303 1 

8 0.3157895 0.6666667 1 0.505618 1 

8 0.4210526 0.6666667 1 0.1685393 1 

8 0.4210526 0.6666667 1 0.1797753 1 

 

Table 23: Cluster 8 (Classroom #8) after second stage SOM normalized 

Neuron # 

(Cluster #) 

Prof ID Course Level Course  

(Theory/ Lab) 

Course 

Name 

Time (AM/PM) 

8 0 0.666666667 1 0.101123596 1 

8 0 0.666666667 1 0.078651685 1 

8 0.0526316 0.6666667 1 0.4044944 1 

8 0.0526316 0.6666667 1 0.4157303 1 

Neuron # 

(Cluster #) 

Prof ID Course Level Course  

(Theory/ Lab) 

Course 

Name 

Time (AM/PM) 

8 0.3157895 0.6666667 1 0.505618 1 

8 0.4210526 0.6666667 1 0.1685393 1 

8 0.4210526 0.6666667 1 0.1797753 1 
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Table 24: Cluster 8 (Classroom #8) after second stage SOM de-normalized 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course  

(Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name 

(Letter)   

8 1 5 1 14 1 Heat Engine 

8 1 5 1 12 1 Intermediate heat 

Transfer 

8 2 5 1 41 1 Non-Conventional 

Manufact. 

8 2 5 1 42 1 Intro to Composites 

Design 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course  

(Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name 

(Letter)   

8 7 5 1 31 1 Introduction to 

Robotics 

8 9 5 1 20 1 Selected Topic in 

Bio. 

8 9 5 1 21 1 Biomechanics 

 

To provide further explanation, the overloaded classrooms cannot fit the given 

timeframe for each classroom in one day. Therefore, the suggested solution is to re-

cluster the same section (going through second stage in SOM), which will then be split 

across two days. For example, the first new cluster will be on Sunday, and the second 

new cluster will be on Monday, and so forth. [Find all the overloaded clusters after 

second stage of SOM in Appendix] After splitting the overloaded cluster into two days, 

the professors IDs then become the dominant feature organizing the new clusters. This 

separation by professors IDs is useful as it avoids having the same professor teaching 

two sections in the same classroom at the same time. Consequently, the SOM was able 

to show a significant effect of Professor IDs feature through the second stage of 

separation. 

So far, the SOM network was able to overcome the restrictions of course 

conflicts and classroom requirements. Additionally, it was noted that sections with 

same course level were clustered all together in the same groups, and the classrooms 
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were separated to form rooms for lab sections and classrooms for regular lectures. This 

may form an initial estimation for classroom schedule.  

In order to introduce the first draft of the schedule, a new constraint is added 

which are the detailed timeslots shown in Table 25. This will result in the Tables 26-

32 below, which are considered an initial draft of randomly selected professors’ 

timetables. Professor ID #1 was found in classroom2, classroom 6 and classroom 8 

and professor ID # 4 was found in rooms 3 and 6. Table 22 and Table 24 display the 

first draft of the timetables and shows that there is no conflict in the common 

classroom 2.  

Table 25: Detailed time slots per classroom 

Classroom # Timing  

Slot #1  8- 10  AM 

Slot # 2 10-12 AM 

Slot #3 12-2   PM 

Slot # 4 2-4     PM 

 

 

Table 26: Professor ID #1 timetable 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course 

 (Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name 

(Letter)   

2 1 4 1 26 1 Thermo-fluid 

System 

6 1 4 0 30 0 Thermal 

Engineering 

lab 

8 1 5 1 14 1 Heat Engine 

8 1 5 1 12 1 Intermediate 

heat Transfer 
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Table 27: First draft of Professor ID #1 timetable 

Professor ID # 1 

Day/Time .8-10 .10-12 .12-2 .2-4 

Sunday Thermo-fluid 

System 

(classroom # 2) 

 Thermal 

Engineering lab  

(Classroom # 6) 

 

Monday Heat Engine 

(Classroom #8) 

Intermediate heat 

Transfer 

(Classroom #8) 

  

Tuesday Thermo-fluid 

System 

(classroom # 2) 

   

Wednesday  Heat Engine 

(Classroom #8) 

Intermediate heat 

Transfer 

(Classroom #8) 

  

 

Table 28: Professor ID #2 timetable 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course 

 (Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name 

(Letter)   

2 2 4 1 33 1 Intro to CAM 

8 2 5 1 41 1 Non-

Conventional 

Mnaufact 

8 2 5 1 42 1 Intro to 

Composites 

Design 

9 2 5 1 40 0 Selected topics 

in Manufact. 

 

 

Table 29: First draft of Professor ID #2 timetable 

Professor ID # 2 

Day/Time .8-10 .10-12 .12-2 .2-4 

Sunday Non-

Conventional 

Mnaufact 

(classroom # 8) 

Intro to CAM 

(classroom#2) 
Selected topics in 

Manufact. 
(Classroom # 9) 

 

Monday   Intro to Composites 

Design 

(Classroom #8) 

 

Tuesday Non-

Conventional 

Mnaufact 

(classroom # 8) 

Intro to CAM 

(classroom#2) 
Selected topics in 

Manufact. 

(Classroom # 9) 

 

Wednesday    Intro to Composites 

Design 

(Classroom #8) 
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Table 30: Professor ID #6 timetable 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course  

(Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name 

(Letter)   

0.058824 0.631579 0 1 0.752809 1 Intro to CAM 

0.176471 0.631579 0.333333 1 0.516854 1 Machine 

Design I 

0.176471 0.684211 0.333333 1 0.516854 0 Machine 

Design I 

9 6 5 1 45 1 Maintenance 

Engineering 

 

Table 31: First draft of Professor ID #6timetable 

Professor ID # 6 

Day/Time .8-10 .10-12 .12-2 .2-4 

Sunday Machine Design I 

(classroom # 4) 

Maintenance 

Engineering 

(Classroom # 9) 

  

Monday Machine Design 

II 

(classroom#2) 

 Design and 

Manufacturing Lab 
(Classroom #6) 

 

Tuesday Machine Design I 

(classroom # 4) 

Maintenance 

Engineering 

(Classroom # 9) 

  

Wednesday  Machine Design 

II 

(classroom#2) 

   

 

 

Table 32: Cluster 2 (Classroom #2) sections normalized 

Neuron # 

(Cluster #) 

Prof ID Course 

Level 

Course 

 (Theory/ Lab) 

Course 

Name 

Time 

(AM/PM) 

Course Name 

(Letter)   

2 1 4 4 26 1 Thermo-Fluid 

System 

2 2 4 1 33 1 Intro to CAM 

2 6 4 1 12 1 Machine   

Design II   
 

As the tables above reveal, it is possible to generate via SOM first draft 

schedules for each classroom, though finalization of individual professor timetables 

are still best adjusted manually proceeding the first SOM draft. Periodically, the SOM 

first draft places the same professor within the same classroom for all of his or her 

sections, however at other times, this must be adjusted for manually. Not all professors 
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are able to have all of their courses in the same classroom though due to variation in 

SOM prioritization. The SOM may at times prioritize other variables over professors 

ID, such as course type, course level, and timing. This shows that the SOM is able to 

accommodate an additional variable, which in this case are the time slots. 

At this stage, a conflict-free schedule has been constructed by the SOM. 

However, to fit newly created classrooms into the SOM generated timetable, the output 

from SOM is used to train a Feedforward Back Propagation (FFBP) neural network to 

extract the implicit course-classroom mapping as formulated by the SOM.  

4.4 Mathematical Modeling of FFBP NN for classroom scheduling  

The output of the SOM NN which is the classroom number for each section is 

considered as the input for FFBP NN. Each input vector has 5 elements (constraints) 

assigned to a specific room as previously discussed. The structure below shows the 

back-propagation neural network model for our data. The weight vectors are randomly 

initiated at the beginning. Note that two hidden layers were used; the first hidden layer 

carries 20 neurons and the second hidden layer carries 30 neurons. The structure below 

shows the details FFBP NN map as well as and the weight matrix size for the first 

hidden layer is (5 X 30) and the second size is (30X20) 
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4.5 Back-Propagation Parameters for Tests in MATLAB   

BPFF NN codes were developed by using two hidden layers. Regardless of the 

number of hidden layers, the same structure and assumptions can be used to construct 

any code. The description of the main coding points is as follows:  

Initiating Weights: The weights for each hidden layer were generated by assigning a 

random number between -0.5 and 0.5. The size of the weight’s matrix is flexible based 

on the total number of the used input data and the number of neurons in the hidden 

layers. A bias layer of value 1 is included automatically to the weight matrix.  

Initiating learning rate: The learning rate is responsible for the rate at which each 

single weight is modified after one learning cycle. The learning rate is usually between 

0 and 1, and the closer it is to 0, the smaller the steps needed to modify each weight. 

The best learning rate for the used network was determined through trial and error 

which is 0.1, this results was found experimentally.  

Output 

layer 

k k 

Figure 4.11: Backpropagation neural network with two hidden layers 
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Modifying the input parameters:  As previously mentioned, the output of SOM is 

the input to FFBPNN. Hence, the classroom numbers need to be normalized before 

entering the FFBPNN to avoid big differences between numbers as explained 

previously in Chapter 2.    

Log-sigmoid transfer function: As the input vectors (sections) have non-linear 

relationship between its inputs, a non-linear log-sigmoid transfer function was used in 

this code. In this function the resulting values from multiplication of the inputs and 

weights fall between 0 and 1. The result of this function is processed as an input to the 

next layer, or as a final result in the case of the final layer.  

No. of Epochs: For the set of 64 data points (70% of the total number of the data sets) 

with a batch size of 5, each iteration processes 5 input vectors for a total of 16 such 

iterations to create an entire set. Each set is called one epoch, which helps to direct the 

convergence. However, there is also a premature termination criterion depending on 

the mean squared error, which was set as 0.01. Based on this, the number of epochs in 

this test is 746626 after the convergence. 

4.6 FFBP NN Results and Discussion  

4.6.1 Learning Phase:  

In this phase the neural network is carried out using the 64 data sets. As described 

earlier, the training parameters that were set continue running until it reaches below 

0.1. Various network configurations were tested during the training phase with two 

different values of learning rates, 0.05 and 0.1. The back propagation learning activity 

is time consuming, due to the fact that after each learning cycle the network sends back 
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the weight changes to every single weight in the system for the two hidden layers. 

Additionally, because the used learning rate is relatively small, the modifications to 

the weights will be small and thus it will take more learning cycles and more time to 

change all the weights to reach to the optimal solution. The average time required for 

the two hidden layers to be trained is 1:30 hours. Figure 4.12 illustrates the training 

results for two hidden layer networks. 

 

Figure 4.12: Predicted vs. target training sets 

 

4.6.2 Testing and Validating Phase 

The testing and validation phase must be done by using an independent test set. 

Hence, the independent test set is a set similar to the input set, but not a part of the 

training set.  In our case 20% of the data set was used for testing and validating the 

network (15 untrained data points). The testing was done by using the acquired weights 

from the trained network in calculating the classrooms numbers for the 15 remaining 

untrained data sets. In the calculations of the classrooms numbers, the inputs were 
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multiplied by the weights resulting from the training sets, and the results were then 

activated through the log-sigmoid function and proceeded to the next layer. The final 

results were compared to the tested sets. The accuracy of the predicted results was 

measured through the coefficient of determination R2, where the maximum R2 reached 

was 0.9814 for different sets of neurons each layer. See Figure 4.13.  

 

Figure 4.13: Predicted vs. target testing sets 

 

4.6.3 Results and Discussion  

Different types of network architectures were tested to find the optimal 

convergence. It was shown that the two layer configuration system with 30 neurons in 

the first layer and 20 neurons in the second layer with a learning rate of 0.1 gives the 

best convergence with R2 of 0.94. The results showed that the optimal case required a 

total of 663 weights with a 0.1 learning rate to have a higher convergence. Decreasing 

the learning rate to 0.05 caused a negative impact on the accuracy, which is referred 

to as over-fitting. The increase of the network size also causes a reduction in the 

accuracy of the prediction due to the increase of the total weights that need to be 
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modified. As a result, a number of modeling parameters were selected depending on 

the forecast horizon and degree of accuracy. Figure 4.14 shows high accuracy in the 

prediction results for training and test sets by FFBP network 5-30-20.  

 

Figure 4.14: Prediction results for training and test set by FFBP network 5-30-20 

The tests reveal that for accommodating a new section, FFBP NN is capable of 

fitting the new section into an existing classroom. The scenario of opening a new 

section after all the professors’ timetables have been set or after one or two weeks have 

elapsed from the beginning of the semester is very common situation, occurring often 

in many institute for innumerable reasons. Therefore, re-clustering the whole set of 

data to fit the newly created classroom is not a practical solution because each SOM 

run can propose a new set of clusters, which will completely change the schedule for 

each classroom. As a result, the FFBP network will help to solve the problem by 

allocating the new section to fit in a suitable classroom without causing any conflict in 

the schedule.      
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4.7 Discussion in Summary 

Based on the results of this thesis research, it can be concluded that the SOM 

is able to cluster the given sections and provide a good initial estimation for classroom 

scheduling. At first examination, the clusters show that the dominant features are 

course type and course timing. This is a benefit of the SOM, as grouping course levels 

in the same classroom provides the opportunity for students of the same year level to 

register in the needed sections without facing any conflicts (i.e., in the case of co-

requisite courses).  

However, each cluster presents an individual case, as seen in the example of 

the labs. Due to this common feature, the network was able to clearly distinguish these 

sections and group them into one region. To measure the accuracy of the network, an 

anomaly was added. The anomaly was a lecture class MECH 585 (Graduation Project-

I) that, on this occasion, needed to be taught in a laboratory. The result was that the 

network separated the section into a different cluster, placing it into a completely 

unique section. Furthermore, a second stage of SOM was used to separate the 

overloaded clusters, resulting in two new clusters which are split into two days.  

To further test the efficacy of this system, a new constraint--detailed timeslots-

-was added to create a first draft of a timetable for random professors. This was done 

to prove that it is possible to generate first draft classroom schedules via the SOM. 

Although the timetables were finalized manually, the first draft SOM results still were 

able to create clustered sections for each professor that revealed a conflict free 

timetable.  
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Lastly, a new scenario was put forward, which was fitting a newly opened 

section into an existing classroom without the need of re-cluster all the sections, which 

would result in a completely new classroom schedule. After trial, it was found that the 

FFBP NN was able to allocate the new section in the proper classroom that carries 

same features as the new section without changing the rest of the pre-existing room 

allocations.  
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Chapter 5: Conclusion and Future Work 

 

This thesis has examined a new approach to solve university classroom 

scheduling problems using an artificial intelligence technique. Classroom scheduling 

is a very complex task due to many parameters and frequent changes in requirements.  

The proposed methodology is divided into two main phases. The first phase uses a 

Self-Organizing Feature Map (SOM) to cluster the generated input patterns, which 

consists of five different constraints. This set of data points were generated from 

United Arab Emirates University (UAEU) study plans for Mechanical and Electrical 

Engineering courses. The second phase uses a back-propagation algorithm to modify 

the SOM-generated timetable in order to accommodate newly created sections without 

requiring a complete change of the existing schedule. 

In the first phase of this research, 78 data points (sections) were used as input 

vectors to SOM network. The output results with clustered sections assigned to each 

neuron (classroom) carry similar features, which are considered as a mark for conflict. 

In the case of the SOM producing an overloaded classroom, additional clustering was 

done to remove the overloaded sections and separate them to two days or two different 

classrooms. The second phase of scheduling occurs when the first draft schedule needs 

to be modified. For example, if a new section is opened after the initial schedule is 

created. In these cases, the Back-propagation neural network is used to fit the new 

section into the created timetable.  

 The Matlab software was used to write and run the networks. All code was 

written using the command lines in Matlab. Although Matlab has a Neural Network 

tool box (nntool), it was not easy to manipulate and test with the parameters of the 

network. That is why the command lines were used.  
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After several runs and fine-tunings of the networks, the results reveal that the 

proposed model can create an initial guess of a valid classroom schedule. The SOM 

NN was able to cluster the sections according to their similarities, which revealed the 

areas of conflict. For example, the SOM NN split the lab sections and the lecture 

sections, demonstrating that it was able to identify that the lab sections needed to be 

treated carefully when it comes to scheduling. A similar case found in this 

investigation is that the SOM also separated the course levels into groups, which 

highlights the SOM’s recognition of similarities within these sections. The benefit of 

this distinction is that this grouping of sections by level prevents students from 

experiencing delays in their study plans. Further, it was noticed that the SOM grouped 

the professors who teach the same sections together, which also emphasized the fact 

that SOM was able to show the regions where scheduling may have conflicts. Also, in 

many cases the SOM was able to prioritize the features in such a way that the strongest 

(dominant) feature took the lead and had the most significant effect on a specific group 

of sections, i.e. in the case of scheduling lab sections. Additionally, when a classroom 

became overloaded, a further splitting was done to overcome this issue. After this, the 

resultant from the splitting separates the scheduled sections into two different days in 

the week, thus alleviating the overload in the particular classroom.  

To further test the efficacy of this system, a new constraint--detailed timeslots-

-was added to create a first draft of a timetable for random professors. This was done 

manually to prove that it is possible to generate conflict-free first draft classroom 

schedules. 

Another neuron network was used to modify the produced classroom 

scheduling without the need to change the whole content of the already existing 
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schedule. This neural network is FFBP NN. As the FFBP does not stop learning, but 

instead continues to adapt to changing inputs, this allows the network to adjust to unexpected 

environmental changes, such as fitting a newly opened section into a pre-existing schedule. 

The findings above show that when a proposed conflict occurred in professor ID, time 

restrictions, course conflict and classroom requirements, the system was capable of finding a 

solution. The proposed model enables the easy generation of conflict-free classroom 

timetables and it is predicted that the procedure can be extended and implemented in 

fields other than academia such as factories, healthcare, and transportation. The 

successes of using the artificial intelligence approach for classroom scheduling proves 

that the concepts in this research are valid. 

Recommendations for further study: A comparative study is recommended to 

justify the superiority of this approach to other heuristic-based or mathematical-based 

models available in the literature.  Additional features and analysis are recommended 

to investigate the differences in the SOM and to perform better clustering. Also, more 

tests and applications of this model need to be implemented to further prove its 

efficacy. . This model (artificial intelligence approach) has particular application for 

UAE, as it has potential to benefit the growing number of industries within the UAE, 

such as the healthcare field and transportation industry, along with many others.  
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Appendix  

 

Table 33: Raw data with constraints (1) 

  Four lectures each room  Four lectures each room  Four lectures each room  Four lectures each room  

  Original data 

Prof ID 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 

Course 

Level 

3 4 4 3 3 4 5 5 3 4 6 4 3 4 5 5 

Course 

(Theory/ 

Lab) 

0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 

course 

name 

48 29 30 11 6 33 40 42 10 50 15 17 11 29 31 30 

Time 

(AM/PM) 

0 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1 

Co-course 0 8.7 9 0 0 0 0 0 2 10 0 0 0 0 0 0 

Course 

Name 

(letters) 

Fluid 

Mechanic 

lab 

Thermo- 

fluid 

System 

Thermal 

Eng. lab 

Applied 

Thermo. 

Manuf. 

process 

Intro. 

to 

CAM 

Selected 

topics in 

Manufact. 

Intro to 

Com. 

Design 

Dynamic System 

Dynamic 

lab 

Adv. 

Dynamic 

and 
Control 

Kinematic Applied 

Thermo 

Thermo. 

System 

Introd. to 

Robotics 

SEL Topics 

in 

Mechatronic 
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Table 34: Raw data with constraints (2) 

 

 

Table 35: Raw data with constraints (3) 

Four lectures each room  Four lectures each room  Four lectures each room  Four lectures each room  

Original data 

9 9 9 9 10 10 10 10 11 11 11 11 12 12 12 12 

5 5 5 3 5 3 3 3 3 3 3 3 3 3 3 3 

1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 

20 23 42 6 23 5 10 20 25 30 35 20 45 36 35 70 

0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Selected 

Topic in 

Bio. 

Biomaterials Intro to 

Composites 

Design 

Manuf. 

process 

Biomaterials Electric 

Circuits 

I 

Electric 

Circuits 

I lab 

Electric 

Circuits 

II 

Engineering 

Electromagnetics 

Computer 

Programming 

Digital 

Logic 

Design 

Electric 

Circuits 

II 

Digital 

Logic 

Design 
Lab 

Signals 

& 

Systems 

Digital 

Logic 

Design 

Electronic 

Circuits 

 

Four lectures each room  Four lectures each room  Four lectures each room  Four lectures each room  

Original data 

5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 

4 5 3 3 4 3 4 4 4 4 3 4 4 3 4 3 

1 1 1 390 1 1 1 1 1 0 1 1 1 1 0 0 

33 42 6 90 7 6 12 40 17 50 10 7 29 11 30 48 

0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 10 0 0 8.7 0 9 0 

Intro 
to 

CAM 

Intro to 
Composites 

Design 

Manuf. 
process 

Engineering 
Materials 

Machine 
Design I 

Manuf. 
process 

Machine 
Design 

II 

Design and 
Manufacturing 

Lab 

Kinematics System 
Dynamics 

lab 

Dynamics Machine 
Design I 

Thermo. 
System 

Applied 
Thermo 

Thermal 
Engineering 

lab 

Fluid 
Mechanics 

lab 
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Table 36: Raw data with constraints (4) 

Four lectures each room  Four lectures each room  Four lectures each room  Four lectures each room  

Original data 

13 13 13 13 14 14 14 14 15 15 15 15 16 16 16 16 

3 3 4 4 4 4 4 4 5 5 5 6 5 5 6 6 

1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 

72 75 51 61 51 61 62 72 62 82 85 0 82 85 18 25 

1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Electro-
Mechanica

l Devices 

Electro. 
Circuits 

Lab 

Microproces Microproces 
Lab 

Microproces Microproces 
Lab 

Comp. 
Arch. & 

Organizat 

Power 
System 

Embed 
System 

Design 

Ang. 
Integ. 

Cir.  

Grad. 
Project I 

Numerica
Methods 

in Eng. 

Ang. 
Integ. 

Cir.  

Grad. 
Project I 

Microwave 
Eng. 

Power 
System

Quality 

 

Table 37: Raw data with constraints (5) 

Four lectures each room  Four lectures each room  Four lectures each room  Four lectures each room  

Original data 

17 17 17 17 18 18 18 18 19 19 19 19 20 20 20 20 

6 6 6 6 5 6 5 5 6 6 5 6 6 4 4 5 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

37 41 18 25 85 0 82 85 18 25 85 18 94 62 72 62 

1 1 0 0 1 0 1 1 0 0 1 0 0 1 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sensors 

Design and 
App. 

Contemp. 

Digital 
Systems 

Microwave 

Eng. 

Power 

Sys. 
Qu. 

Grad. 

Project I 

Numerica

l Methods 
in Eng. 

Analog 

Integ. 
Circuit 

Dg. 

Grad. 

Project I 

Microwave 

Eng. 

Power 

System 
Quality 

Grad. 

Project I 

Microwave 

Eng. 

Research/Design 

paper 

Comp. 

Arch. & 
Organizat 

Power 

System 

Embed 

System 
Dg. 



98 
 

 
 

Table 38: Input data after clustering by SOM - normalized 

Neuron 

Number  

Professor 

ID 

Course 

level 

Course 

Type 

Course 

name Timing  

1 0.473684 0 1 0.224719 1 

1 0.526316 0 1 0.292135 1 

1 0.526316 0 1 0.337079 1 

2 0 0.333333 1 0.235955 1 

2 0.052632 0.333333 1 0.314607 1 

2 0.263158 0.333333 1 0.078652 1 

3 0.105263 0 1 0.05618 1 

3 0.157895 0 1 0.067416 1 

3 0.157895 0 1 0.393258 1 

3 0.210526 0 1 0.011236 1 

3 0.210526 0 1 0 1 

4 0.105263 0.333333 1 0.044944 0 

4 0.105263 0.333333 1 0.134831 0 

4 0.210526 0.333333 1 0.314607 0 

4 0.263158 0.333333 1 0.022472 0 

4 0.315789 0.333333 1 0.134831 0 

4 0.368421 0.333333 1 0.235955 0 

5 0.315789 0 1 0.044944 0 

5 0.368421 0 1 0.067416 0 

5 0.473684 0 1 0.168539 0 

5 0.473684 0 1 0.168539 0 

5 0.526316 0 1 0.157303 0 

5 0.526316 0 1 0.348315 0 

6 0 0.333333 0 0.280899 0 

6 0.157895 0 0 0.483146 0 

6 0.157895 0 0 0.483146 0 

6 0.263158 0.333333 0 0.393258 0 

6 0.315789 0.333333 0 0.101124 0 

7 0.368421 0 1 0.88764 1 

7 0.578947 0 1 0.730337 1 

8 0 0.666667 1 0.101124 1 

8 0 0.666667 1 0.078652 1 

8 0.052632 0.666667 1 0.404494 1 

8 0.052632 0.666667 1 0.41573 1 

8 0.315789 0.666667 1 0.505618 1 

8 0.421053 0.666667 1 0.168539 1 

8 0.421053 0.666667 1 0.179775 1 

9 0.052632 0.666667 1 0.393258 0 

9 0.105263 0.666667 1 0.011236 0 

9 0.210526 0.666667 1 0.41573 0 
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Table 38: Input data after clustering by SOM – normalized (Continued) 

Neuron 

Number  
Professor 

ID 
Course 

level 
Course 

Type 
Course 

name Timing  

9 0.263158 0.666667 1 0.449438 0 

9 0.421053 0.666667 1 0.202247 0 

10 0.631579 0 1 0.752809 0 

10 0.631579 0.333333 1 0.516854 0 

10 0.684211 0.333333 1 0.516854 0 

12 0.473684 0 0 0.05618 0 

12 0.578947 0 0 0.449438 0 

12 0.578947 0.333333 0 0.314607 0 

12 0.631579 0 0 0.786517 0 

12 0.684211 0.333333 0 0.629213 0 

13 0.842105 1 1 0.359551 1 

13 0.842105 1 1 0.404494 1 

13 0.894737 1 1 0.224719 1 

13 0.894737 0.666667 1 0.292135 1 

13 0.947368 0.666667 1 0.191011 1 

13 0.947368 0.666667 1 0.078652 1 

14 0.578947 0.333333 1 0.640449 1 

14 0.684211 0.333333 1 0.640449 1 

14 0.684211 0.333333 1 0.752809 1 

14 1 0.333333 1 0.640449 1 

15 0.736842 0.666667 1 0.865169 1 

15 0.736842 0.666667 1 0.898876 1 

15 0.789474 0.666667 1 0.865169 1 

15 0.789474 0.666667 1 0.898876 1 

15 1 0.666667 1 0.640449 1 

16 0.736842 0.666667 1 0.640449 0 

16 0.736842 1 1 0.876404 0 

16 0.894737 1 1 1 0 

16 0.894737 0.666667 1 0.898876 0 

16 1 0.666667 1 0.898876 0 

16 1 0.666667 1 0.52809 0 

17 0.789474 1 1 0.146067 0 

17 0.789474 1 1 0.224719 0 

17 0.842105 1 1 0.146067 0 

17 0.842105 1 1 0.224719 0 

17 0.947368 0.666667 1 0.179775 0 

17 0.947368 0.666667 1 0.179775 0 

18 0.421053 0.666667 0 0.898876 0 
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Table 39: Input data after clustering by SOM - de-normalized 

Neuron 

Number  

Professor 

ID 

Course 

level 

Course 

Type 

Course 

name Timing  

1 10 3 1 25 1 

1 11 3 1 31 1 

1 11 3 1 35 1 

2 1 4 1 26 1 

2 2 4 1 33 1 

2 6 4 1 12 1 

3 3 3 1 10 1 

3 4 3 1 11 1 

3 4 3 1 40 1 

3 5 3 1 6 1 

3 5 3 1 5 1 

4 3 4 1 9 0 

4 3 4 1 17 0 

4 5 4 1 33 0 

4 6 4 1 7 0 

4 7 4 1 17 0 

4 8 4 1 26 0 

5 7 3 1 9 0 

5 8 3 1 11 0 

5 10 3 1 20 0 

5 10 3 1 20 0 

5 11 3 1 19 0 

5 11 3 1 36 0 

6 1 4 0 30 0 

6 4 3 0 48 0 

6 4 3 0 48 0 

6 6 4 0 40 0 

6 7 4 0 14 0 

7 8 3 1 84 1 

7 12 3 1 70 1 

8 1 5 1 14 1 

8 1 5 1 12 1 

8 2 5 1 41 1 

8 2 5 1 42 1 

8 7 5 1 50 1 

8 9 5 1 20 1 

8 9 5 1 21 1 

9 2 5 1 40 0 

9 3 5 1 6 0 

9 5 5 1 42 0 
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Table 39: Input data after clustering by SOM - de-normalized (Continued) 

Neuron 

Number  

Professor 

ID 

Course 

level 

Course 

Type 

Course 

name Timing  

9 6 5 1 45 0 

9 9 5 1 23 0 

10 13 3 1 72 0 

10 13 4 1 51 0 

10 14 4 1 51 0 

12 10 3 0 10 0 

12 12 3 0 45 0 

12 12 4 0 33 0 

12 13 3 0 75 0 

12 14 4 0 61 0 

13 17 6 1 37 1 

13 17 6 1 41 1 

13 18 6 1 25 1 

13 18 5 1 31 1 

13 19 5 1 22 1 

13 19 5 1 12 1 

14 12 4 1 62 1 

14 14 4 1 62 1 

14 14 4 1 72 1 

14 20 4 1 62 1 

15 15 5 1 82 1 

15 15 5 1 85 1 

15 16 5 1 82 1 

15 16 5 1 85 1 

15 20 5 1 62 1 

16 15 5 1 62 0 

16 15 6 1 83 0 

16 18 6 1 94 0 

16 18 5 1 85 0 

16 20 5 1 85 0 

16 20 5 1 52 0 

17 16 6 1 18 0 

17 16 6 1 25 0 

17 17 6 1 18 0 

17 17 6 1 25 0 

17 19 5 1 21 0 

17 19 5 1 21 0 

18 9 5 0 85 0 
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Matlab codes:  

Self-organizing feature map neural network code in Matlab:  

clear;  % delete all memory 
clc;    % clear windows screen 
clf;    % clear figure screen 

  
net = selforgmap([2,1],100,4,'topologyFcn','hextop','distanceFcn', 

'linkdist'); 

  

  
% Input data "P" 
P = xlsread('Book1.xlsx');             
% Configure inputs & outputs 
net = configure (net,P); 

  
%net = setwb(net,k); 

  
% Figure network before training  
plotsompos(net,P); 

  
% Set the SOM Traning parameters stage  
net.trainParam.epochs =10000;  
%lp = learnsomb('pdefaults'); 
%lp.order_lr = 0.1; 

 
%net.trainParam.LP = []; 
%w = rand(6,2); 
%[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls) 

  
% Traning stage  
net= train(net,P); 

  
% Figure network after training  
plotsompos (net,P); 

  
% Results in matrix  
outputs = net(P); 

  
%plotsompos (net,outputs); 

  
%for each input in inputs, op_som will have a numbering between 1 to 

n based on which cluster it belongs to. 
 op_som=vec2ind(sim (net,(P)))'; 

  

  
 % convert a sparse matrix to full 
outputs = full(outputs); 

  
 output this to a file (excel) 
xlswrite('test0.csv',outputs); 
xlswrite('test1.csv',op_som);   
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%view(net) 
centers = net.IW; 

  
%nntraintool close 

  
color coding Code = som_colorcode(outputs); 

 

Feedforward Back-propagation neural network code in Matlab:  

clear;                                  %Cleaning previous DATA 
clc; 
data= xlsread('Book1.xlsx');           %Training data Input 
Input= ((data([1:64], [1:5])));   %Defining the input range 
out= (data([1:64], [6]));         %Defining the output range 
In=[Input ones(size (Input,1),1)];      %Adding Bias column to the 

input data 
NN=30;                                  %neurons for the first 

hidden layer 
NN2=20;                                 %neurons for the second 

hidden layer 
[m,n]=size(In); 
Nout=size(out,2); 
A=-0.5; B=0.5;                          %initial weights range 
W1= A+(B-A)*rand(n,NN-1);               %First weights layer 

definition 
[e,r]=size(W1); 
W2= A+(B-A)*rand(r+1,NN2-1);            %second weights layer 

definition 
W3= A+(B-A)*rad(NN2,Nout);             %thired weights layer 

definition 
eta=0.1; alfa=0.1;                     %Learning rate definition 
W1n=zeros(size(W1)); 
E=10; 
epoch=0; 
EW1=zeros(m,r);  
EW2=zeros(m,NN2);  
DW1f=zeros (size(W1)); 
DW2f=zeros (size(W2)); 
DW3f=zeros (size(W3)); 

  
H1= In*W1;                          %first layer calculation 
    H1f= 1./(1+exp( - H1)); 
    H1f= [H1f ones(size(H1f,1),1)]; 
while E>0.01                         %definig loop condition 
    H2= H1f*W2;                     %second layer calculation 
    H2f= 1./(1+exp( - H2)); 
    H2f= [H2f ones(size(H2f,1),1)]; 
    O1= H2f*W3;                     %third layer calculation 
    Of= 1/(1+exp( - O1)); 
    error= out - O1f; 
    D=error.*O1f .* (1-O1f);        %error calculation 
    DW3=eta*(D')*H2f; 
    Iw3=W3'; 
    % 
                               % 
    for i=1:size(D,1)          % 
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        EW2(i,:)=D(i,1)*Iw3;   %  APPlying Wight changes to the 
        i=i+1;                 %    second Hidden Layer 
    end                        % 
 s=EW2(:,(1:size(EW2,2)-1)); 
 o=H2f.*(1-H2f);                %last layer wights changes 
 o=o(:,(1:size(o,2)-1)); 
 s=s.*o;% 
 DW2=eta*H1f*s;             % 

  
     W2=W2+DW2;                 %new weights 
    W3=W3+DW3'; 
    DW1f=W1; 
    DW2f=W2; 
    DW3f=W3; 
    E=round(0.5*(sum(((error.*error)))),3); 
    epoch = epoch + 1; 
        if rem(epoch,50)==0     % Every 50 epochs, show how training 

is doing 
                 disp([' Epoch ' num2str(epoch) '  SSE ' 

num2str(E)]); 
        end 
end 

  
check= xlsread('Book1test.xlsx'); %Testing Results inputs and 

calculations 
x= (check([1:15], [1:5])); 
x=[x ones(size (x,1),1)]; 
x1=x*W1; 
x1f=1./(1+exp( - x1)); 
x1f= [x1f ones(size(x1f,1),1)]; 
x2=x1f*W2; 
x2f=1./(1+exp( - x2)); 
x2f= [x2f ones(size(x2f,1),1)]; 
y1= x2f*W3; 
y1f=( 1./(1+exp( - y1))) 

  
cout=O1f; 
 beep, pause(0.5), beep,pause(0.5), beep,pause(0.5), 

beep,pause(0.5), beep 

 

Centers (weight of the neurons after cluster) in matrix size (18X5) 

[ 0.508771929666667 0   1 0.284644194666667 1 

0.122807017666667 0.166666666500000 1 0.191011235833333 1 

0.151315789625000 0.500000000000               1            0.2380617978125        0.375 

0.157894737000000 0.333333333000000 1 0.224719101500000 0 

0.463157894800000 0   1 0.177528090000000 0 
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0.144736842250000 0.166666666500000 0 0.410112359250000 0 

0.473684210500000 0   1 0.808988764000000 1 

0.201754386166667 0.666666667000000 1. 0.241573033833333 1 

0.210526316000000 0.666666667000000 1 0.294382022400000 0 

0.649122806666667 0.222222222000000 1 0.595505618333333 0 

0.589473684000000 0.133333333200000 0 0.447191011200000 0 

0.894736842000000 0.833333333500000 1 0.258426966166667 1 

0.736842105000000 0.333333333000000 1 0.668539325750000 1 

0.810526315600000 0.666666667000000 1 0.833707864800000 1 

0.873684210400000 0.800000000200000 1 0.788764044800000 0 

0.881578947250000 0.833333333500000 1 0.202247191000000 0 

0.421052632000000 0.666666667000000 0 0.898876404000000 0];   
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