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Abstract 

As a key enabler for advanced wireless communication technologies, smart 

antennas have become an intense field of study. Smart antennas use adaptive 

beamforming algorithms which allow the antenna system to search for specific signals 

even in a background of noise and interference. Beamforming is a signal processing 

technique used to shape the antenna array pattern according to prescribed criteria.  

In this thesis, a comparative study is presented for various adaptive antenna 

beamforming algorithms. Least mean square (LMS), normalized least mean square 

(NLMS), recursive least square (RLS) and sample matrix inversion (SMI) algorithms 

are studied and analyzed. The study also considers some possible adaptive filters 

combinations and variations, such as: LMS with SMI weights initialization, and 

combined NLMS filters with a variable mixing parameter. Furthermore, a new 

adaptive variable step-size normalized least mean square (VSS-NLMS) algorithm is 

proposed. Sparse adaptive algorithms, are also studied and analyzed, and two channel 

estimations sparse algorithms are applied to an adaptive beamformer, namely: 

proportionate normalized least-mean-square (PNLMS), and lp norm PNLMS (LP-

PNLMS) algorithms. Moreover, a variable step size has been applied to both of these 

algorithms for improved performance. These algorithms are simulated for antenna 

arrays with different geometries and sizes, and results are discussed in terms of their 

convergence speed, max side lobe level (SLL), null depths, steady state error and 

sensitivity to noise.  

Simulation results confirm the superiority of the proposed VSS-NLMS 

algorithms over the standard NLMS without the need of using combined filters. 

Results also show an improved performance for the sparse algorithms after applying 

the proposed variable step size.  

Keywords: Adaptive beamforming, antenna array, adaptive filters algorithms, sparse 

signal processing. 
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Title and Abstract (in Arabic) 

التكيفي لتطبيقات الإتصالات   تطوير خوارزمية محسنة لتكوين شعاع الهوائي

الملخص 

أصبحت الهوائيات الذكية موضع اهتمام للبحث والدراسة بإعتبارها عامل تمكين مفتاحي 

لتكنولوجيا الإتصالات اللاسلكية المتقدمة، تستعمل الهوائيات الذكية خوارزميات تكوين الشعاع 

مح لأنظمة الهوائيات بالبحث عن إشارة معينة حتى في ظروف من تداخل الموجات التكيفّي ما يس

ويش. تكوين الشعاع التكيفّي هي  تقنية معالجة اشارات تستعمل لتشكيل الطيف الراديوي والتش

لمصفوفة الهوائيات وفقاً لمعايير ومقاييس محددة.  

ت تكوين الشعاع التكيفّي حيث في هذه الرسالة تم تقديم دراسة لمقارنة مختلف خوارزميا

  ، (NLMS)أقل مربع متوسط  المعيّر ، و(LMS)أقل مربع متوسط  تم دراسة وتحليل خوارزمية

. الدراسة تناولت (SMI)، وانعكاس المصفوفة النموذجي (RLS)والمربعات الصغرى المتكررة 

وابتداء   (LMS)ط مربع  أيضاً طرق لدمج أو تغيير المرشحات )الفلاتر( التكيفية، مثل: أقل متوس

شحات أقل مربع متوسط معيّر ، ودمج مر(SMI)الأوزان من خلال انعكاس المصفوفة النموذجي  

(NLMS)  باستخدام معامل دمج متغير. اضافة إلى تقديم خوارزمية جديدة هي أقل مربع متوسط

ة وتحليل أيضاً تم دراس .(VSS-NLMS)ذات حجم الخطوة المتغير الجديدة   (NLMS)المعيرّ 

تخمين القنوات التكيفية   وتم استخدام اثنتان من خوارزميات ، ارزميات التكيفية التناثريةالخو

التناثرية على مكون الشعاع التكيفي، هي خوارزمية أقل مربع متوسط  المعيرّ المتناسبة 

) PNLMS(وخوارزمية ، pl  أقل مربع متوسط  المعيرّ المتناسبة   -المعدل)PNLMS-LP(. 

بالاضافة إلى ذلك تم تطبيق حجم الخطوة المتغيرعلى كلتا الخوارزميتين لتحسين الأداء.  

تم محاكاة هذه الخوارزميات باستخدامها على مصفوفات هوائيات ذات أشكال وأحجام 

 ،مختلفة، وتم مناقشة النتائج تحت اعتبارات سرعة الاستجابة، وأقصى مستوى للفص الجانبي

خطأ الحالة المستقرة، ومقدار التأثر بالتشويش. وقد أظهرت نتائج المحاكاة  ةونسب ، وعمق القمع

الأساسية دون الحاجة لاستعمال  (NLMS)على  VSS-NLMS)تفوق الخوارزمية الجديدة )

مرشحات مدمجة. كذلك تظهرالنتائج تحسن أداء الخوارزميات التكيفية التناثرية عند استخدام  حجم  

الخطوة المتغير.
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تكوين الشعاع التكيفي، مصفوفة الهوائيات، خوارزميات المرشحات  :حث الرئيسيةم البمفاهي

 التكيفية، تحليل الاشارات التناثري.
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Chapter 1: Introduction 

 

1.1 Statement of the Problem 

Mobile operators around the world started investing in the deployment of 

the fifth generation (5G) solutions laying the foundation for smart city development, 

although it is still in the planning stages. This is leading to an explosive growing 

demand for high mobile data rates, reduced end-to-end latencies, and connectivity 

across a diversity of new applications such as the internet of things (IoT), massive 

machine type communication, etc. Massive multiple input multiple output (M-MIMO) 

antennas, beamforming, millimeter-wave communications, dense small cell 

deployment, device to device (D2D), and machine to machine (M2M) 

communications, are critical research areas which will have the greatest impact on 

progressing mobile networks [1]. 

5G mobile network would utilize the huge spectrum in the millimeter wave 

bands to which will reflect on systems capacity and performance. Recently, the 

frequency bands above 24 GHz has been discussed in the 3GPP as the carrier at (5G) 

mobile networks. However, using the millimeter Wave bands has many challenges 

compared to the existing systems, in terms of high propagation loss, directivity, and 

sensitivity to blockage [2,3]. In order to fulfil the requirements of involving much 

higher frequencies and higher order modulation schemes, the power utilization need 

to be maximized by focusing the radio frequency (RF) resources where they are most 

needed. At the same time, to eliminate any source of interference or improve the signal 

to interference noise ratio (SINR), higher gain antennas with narrower beam patterns 

pointing to the receiver are needed. 
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Adaptive beamforming is a key-enabling technology for exploiting the 

millimeter wave bands, by directing the narrow beam pattern towards the desired 

direction and forming nulls towards the interferer directions. Adaptive beamforming 

provides improved coverage and maintain continuous signal or user tracing. Another 

advantage of the beamforming, that smaller cells can be created more efficiently, 

where the power on the cell boundary can be managed, so there is less interference and 

spillover across cell edges. This leads to increase system capacity for the existing 

mobile communications systems by maximizing the reuse factor. This study will help 

to design an enhanced smart antenna system that can improve the performance of 

wireless communication systems and overcome the challenges of using higher 

frequency bands. This can be accomplished by developing an enhanced adaptive 

beamforming technique.    

1.2 Overview  

As shown in Figure 1.1 [4], adaptive beamforming is a signal processing 

approach that spatially filters the antenna array input by steering the array main beam 

toward the desired signal and forming nulls at the directions of interference. Basically, 

the adaptive beamforming is based on adaptive filter techniques that multiply the 

received signal by a complex weight vector to adjust the magnitude and phase of the 

signal in order to iteratively drive the output to a desired value.  

There are several types of adaptive algorithms which are typically 

characterized in terms of their convergence properties, steady state error and 

computational complexity, such as the least mean squares algorithm (LMS) and its 

variances, sample matrix inversion (SMI) algorithm, recursive least squares (RLS) 

algorithm, and many other algorithms. These algorithms can be viewed as 
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approximations of the Wiener filter, which tries to minimize the mean square error of 

the output signal. In general, the adaptive filter consists of digital filter with adjustable 

tap coefficients or weights and adaptive algorithm. An antenna array with N elements 

is considered as an FIR filter with N tap coefficients represent the array weights, here 

the Weiner filter solves the Weiner-Hoff equation for the optimum weights that 

minimize the mean-square value of the estimation error.  

 

Figure 1.1: Adaptive array pattern [4]. 

 

1.3 Research Objectives 

This research aims to provide a comprehensive study for the adaptive 

algorithms, compare their feature characteristics by applying such algorithms and their 

possible combinations to different geometries antenna arrays with different number of 

elements, analyze and synthesize radiation patterns for each adaptive algorithm, and 

study characteristics of each adaptive algorithm in terms of convergence speed, steady 

state error, sensitivity to the noise and computational complexity.   

Also, it is the goal of this work to develop an enhanced adaptive beamforming 
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algorithm based on the analysis of characteristic features of the adaptive algorithms, 

and apply the enhanced algorithm to different antenna arrays, and study the impact of 

the developed algorithm on different wireless communication environments. 

1.4 Thesis Organization 

The thesis is organized as follows:  

Chapter 2 (Literature Review): It gives a brief background about beamforming 

and adaptive algorithms; it also goes through the previous researches related to the 

adaptive algorithms.  

Chapter 3 (Technologies and Methods): This chapter introduces the antenna 

arrays and the adaptive beamforming algorithms starting with the standard recursive 

parameter estimation algorithms, and its possible enhanced combinations and 

variations. Then, adaptive sparsity aware algorithms are introduced. Enhanced 

performance adaptive algorithms are also proposed.   

Chapter 4 (simulation results and discussions): In this chapter adaptive 

algorithms are applied to different geometries antenna arrays with different number of 

elements antenna arrays, the resulting  radiation patterns for each adaptive algorithm 

is compared, and characteristics of each adaptive algorithm is studied in terms of 

convergence speed, steady state error, sensitivity to the noise and computational 

complexity.   

Chapter 5 (Conclusion and Future Work): Chapter five concludes the thesis 

and proposes future work.  
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Chapter 2: Literature Review 

 

Antenna engineering plays a major role in our lives, and there are different 

types of antennas that serve different applications. Some of these applications require 

radiation characteristics such as high gain pattern that cannot be achieved using single 

antenna element. However, antenna arrays can provide the desired characteristics in 

more efficient way [5].  Another advantage of antenna array that its radiation pattern 

can be shaped and controlled easily using beamforming techniques.  

Antenna arrays and beamforming have been used in many applications such as 

radars, sonar imaging, communications, geophysical exploration, astrophysical 

exploration and biomedical applications [6].  

Adaptive beamforming is an array processing technique that specially filters 

the received signals by controlling the antenna array pattern using an adaptive 

algorithm. Among the various adaptive algorithms, the least mean squares (LMS) 

algorithm, the normalized least mean square (NLMS) algorithm, direct sample matrix 

inversion (SMI) algorithm, and recursive least squares (RLS) algorithm are very 

popular and widely used.  

2.1 Adaptive Algorithms   

With the recent exponential growth of the wireless communication demands 

and the extreme interest in the field of smart antennas, antenna arrays and 

beamforming have been studied extensively and many different algorithms have been 

proposed to implement adaptive beamforming [7]. In the last several years, there have 

been massive research efforts dealing with the different adaptive filtering algorithms 

such as LMS, NLMS, SMI and RLS algorithms [8-10]. Each of these algorithms has 
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advantages and drawbacks in terms of algorithm complexity, convergence speed and 

the resulting radiation pattern characteristics such as sidelobe level [4, 6-10]. However, 

the performance of these algorithms has been improved by proposing combined 

algorithms that overcome the weaknesses of original algorithms and achieve better 

performance.  

In [11] an enhanced adaptive beamforming using LMMN algorithm with SMI 

initialization was proposed, which shows more stability and improved steady state 

error.  In [12] a hybrid NLMS/RLS algorithm was developed, the performance of the 

new hybrid algorithm is compared with LMS, NLMS, RLS, SMI and SMI/LMS 

algorithms, and simulation results show that new hybrid algorithm achieved the best 

performance among these algorithms in terms of convergence speed, beamforming 

pattern stability, and sidelobe levels.  

Since the step size is a significant factor for the convergence speed and stability 

of the LMS filters, combinations of LMS based filters with different step sizes using 

adaptive mixing parameter is proposed in [13-15]. These combined filters are showing 

improved results in channel estimation and echo cancelation applications without a 

costly increase in the computation complexity.  

Variable step-size is another efficient way to speed up the convergence rates 

and ensure stable system performance, different variable step-size LMS algorithms 

was proposed and analyzed in [16,17]. Also, a novel variable step-size NLMS 

algorithm with improved convergence speed and steady state error was proposed in 

[18]. 
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2.2 Sparsity Aware Adaptive Algorithms 

Standard recursive parameter estimation algorithms such as LMS, RLS and 

SMI algorithms cannot exploit the sparsity characteristic, resulting in poor 

performance especially for cases dealing with sparse signals. Many studies have been 

performed on the design and analysis of sparsity aware adaptive algorithms. Multiple 

sparse LMS based algorithms were developed for channel estimation and system 

identification, by applying different zero attractor penalty terms to the original cost 

function in [19-21]. Constraint NLMS algorithms were proposed for sparse adaptive 

array beamforming control applications in [22,23]. Also, a proportionate normalized 

least mean square (PNLMS) algorithm was proposed as sparse algorithm. The PNLMS 

algorithm performance was enhanced using variable step size in [24], and using 

different zero-attractor penalty terms as in [25-27]. 
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Chapter 3: Technologies and Methods 

 

3.1 Introduction to Antenna Array 

The Antenna radiation pattern is a graphical representation of the antenna 

radiation characteristics, usually in the far-field region and commonly normalized to 

the maximum value, as a function of spherical coordinates. These radiation 

characteristics include power flux density, radiation intensity, field strength, 

directivity, and polarization [5,27]. In general, there are three types of radiation 

patterns [4]: 

• Isotropic: in which the antenna radiates equally in all directions. 

• Omni-directional: in which the radiation is non-directive in one plane while it 

is directive in another orthogonal plane, as shown in Figure 3.1 [5]. 

• Directional: in which the radiated power is concentrated in a specific direction. 

 

Figure 3.1: Omni directional antenna radiation pattern [5]. 
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Among the radiation parameters that characterize antennas, directivity and gain 

are the most effective parameter that expresses its directional properties and 

performance characteristics. Antenna directivity is defined as the ratio of the radiation 

intensity in a given direction from the antenna to the radiation intensity averaged over 

all directions [5]. The directivity can be defined as follows:  

                                            D(θ,ϕ) = 
U(θ,ϕ)

U0

 = 
4π U(θ,ϕ)

 Prad

                                      (1) 

where U is the radiation intensity, U0 is the radiation intensity of an isotropic source, 

and Prad is the total radiated power. 

Antenna gain is defined as the ability of antenna to direct energy in particular 

direction, taking into account the mismatch and polarization losses [5]. The gain is 

related to the directivity as follows:  

                                                                G = erad D                                                          (2) 

where erad is the radiation efficiency. 

Antenna gain also reflected on its beamwidth, where a high gain corresponds 

to a narrower beamwidth, hence improved power utilization and fewer opportunities 

to receive interference. Oppositely, the antenna with the low-gain has the a higher 

chance to receive interference due to its wide beamwidth.   

The design of high gain antennas became a critical aspect in the modern 

wireless communication systems, which tends to use higher frequency bands resulting 

in higher attenuation. To compensate the additional attenuation higher-gain antennas 

are required which can be achieved by increasing the electrical size of the antenna. 

However, there is another efficient way to achieve high gain characteristics without 
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increasing the antenna dimension by using antenna arrays, multiple antenna elements 

assembled in a geometrical and electrical configuration [4,5]. 

The antenna array pattern can be shaped by controlling the geometrical 

configuration, the excitation amplitude and phase of single element, distance between 

array elements and finally the pattern of single element; however, the geometry of the 

array and distance between elements is difficult to be changed [5].  

Total field of the antenna array can be represented as follows: 

                                                 Etotal = Esin gle element . Array Factor                               (3) 

Consider an N elements uniform linear antenna array with an elements spacing 

d and an excitation phase β, as shown in Figure 3.2 [5], then the array factor can be 

defined as: 

                                                 AF = ∑ ej(n-1)Ψ

N

n=1

                                                        (4) 

where Ψ = kd cos θ + β.  
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Figure 3.2: Uniform linear array [5]. 

 

3.2 Phased Array and Adaptive Beamforming 

The idea behind a phased array is to control the array pattern by applying 

complex weights to the input signal as shown in Figure 3.3. Consider a model of a 

linear antenna array composed of N uniformly distributed isotropic antenna elements. 

Assume the input to the array consists of one desired signal s(t) and M interference 

sources each having narrow band signal given by Ia(t), in additional to white additive 

noise N(t). The electric field of the plane wave can be expressed as:  

                                                                 E = e-jk.r                                                                   (5) 

where k is the wave vector, and r is the position vector of antenna elements.  
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Figure 3.3:  Adaptive antenna array system. 

 

Define v(t) the steering vector as: 

                                                             v(k)  = [

e-jk.r1

e-jk.r2

  ⋮
e-jk.rN

]                                                             (6) 

Now the received signal x(t) at each antenna element consists of the summation 

of the signal of interest and interference signals each multiplied by its steering vector 

in addition to the white additive noise and can be defined as follows:     

                           x(t) = s(t) v(ks) + N(t) + ∑  Ia(t) v(ka)                                      (7) 

The output of the array will be the summation of the input of each element multiplied 

by its weight [5], which can be given by the following equation: 
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                                                  y(k) = wH(k) x(k)                                                    (8) 

where w(k) is the array weight vector and x(t) is the received signal vector.  

The problem that adaptive beamforming addresses is how to adjust the array 

weights in order to drive the array output y(k) to the desired output d(k), accordingly 

an estimation error e(k) can be defined as: 

                                                   e(k) = d(k) - wH x(k)                                                (9) 

Adaptive algorithms are basically used to minimizes the resulting error statistically 

[29], which is to solve:  

                                                       MinE [e(k) e*(k)]                                                 (10) 

with E[.] representing the expectation operator.  

3.3 Adaptive Algorithms  

The linear adaptive filter basically consists of two processes, the filter process 

where the output is produces as a response to the input sequence, and the adaptive 

process or algorithm which adjusts the set of parameters used in the filtering process.   

3.3.1 Introduction to Adaptive Filtering and Weiner-Hopf Equations  

Consider the block diagram of Figure 3.4, assuming a random input process 

x(n), the goal behind the adaptive algorithms is to find the optimum filter weights w(n)  

that drives the output y(n) = ∑  w(j) x(n-k)∞
k=0   to a desired value d(n), resulting in an 

estimate error e(n) = d(n) -  y(n).  

Adaptive algorithms are basically approaches used to statically minimize the 

cost function or the performance index represented by the mean-square value of the 

estimation error, or the expectation of the absolute value of the expectation error [29]. 
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Figure 3.4: Adaptive filter block diagram. 

 

Now consider the below cost function: 

                                                      J(n) = E[e(n) e*(n)]                                          (11) 

To get the minimum value of the cost function as a function of the weight vector w(n), 

take the gradient vector ∇J and set it to zero, where the kth element of the weight vector 

is defined as wk(n) = ak + jbk [29]. Hence, the gradient of the cost function with respect 

to w(n) is defined as follows,  

∇J = E [
∂e(n)

∂ak

 e*(n) + 
∂e*(n)

∂ak

 e(n) +
∂e(n)

∂bk

 je*(n) + 
∂e*(n)

∂bk

 je(n)]       

                      = -2 E[e*(n) x(n-k)] 

                      = -2 E [(d
*
(n) - ∑ (w(j) x*(n-j))

∞

j=0

 x(n-k)]                                               (12) 

setting ∇J = 0 to find the wight vector value that minimizes of the cost function, 

                                  E[d*
(n) x(n-k)] - ∑ w(j) E[x*(n-j) x(n-k)] 

∞

j=0

= 0                       (13) 
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rearrange, to get the Weiner-Hopf Equations:  

                                  E[d*
(n) x(n-k)] = ∑ w(j) E[x*(n-j) x(n-k)] 

∞

j=0

                         (14) 

The left side of the equation E[d*
(n) x(n-k)] which represents the cross correlation 

between the filter input x(n-k) and the desired output d(n) can be defined as p(-k), while 

the right side E[x*(n-j) x(n-k)] the autocorrelation for the input vector for a lag j-k  is 

defined as r(j-k) [29].  

If a length M FIR filter is considered, the Weiner-Hopf equations become:  

                                                   ∑ w(j) r(j-k) = p(-k)

M-1

j=0

                                            (15) 

or in a matrix form: 

Rwopt = P 

                  [

r(0) r(1) … r(M-1)

r(1) r(0) … r(M-2)

⋮ ⋮ ⋱ ⋮
r(M-1) … … r(0)

] [

w(0)

w(1)

⋮
w(M-1)

]  = [

p(0)

p(-1)

⋮
p(-(M-1))

]                         (16) 

then the optimum weight vector can be described as the follows:  

                                                     wopt = R-1 P                                                       (17) 

Hence, the minimum square error can be defined as: 

                                                      Jopt = σd
2 - PH R-1 P                                                 (18) 

 where σd
2 = wopt

H  Rwopt, is the variance of the desired output.   
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3.3.2 Least Mean Square Algorithm  

The method of steepest decent is an optimization technique that can be used to 

find the weight vector of the Weiner solution given the correlation matrix R and the 

cross-correlation vector P [29], where the optimum weight vector can be calculated 

iteratively as follows:  

                                               w(k+1) = w(k) - 
1

2
 μ ∇J(k)                                           (19) 

where µ is the step size.  

However, in reality it is not possible to get the optimum gradient vector ∇J(k)  since it 

requires a prior knowledge of both the correlation matrix R and the cross-correlation 

vector P.  

The LMS algorithm is a stochastic gradient algorithm, that replaces the 

correlation matrix R and the cross-correlation vector P in the steepest decent algorithm 

by their date driven approximation [29,30]. 

Let ∇J(k) denotes the approximate gradient vector 

                                               ∇J
∧
(n) = -2 P

∧
(n) + 2 R

∧
(n) w(n)                                      (20) 

where R
∧

(n) = x(n) xH(n) and P
∧

(n) = x(n) d(n), are the instantaneous estimate based on 

the input vector x(n) for the correlation matrix R and the cross correlation vector P 

respectively [8,28].  

Hence, the LMS algorithm updates filter taps or array weights iteratively [8-11,28], 

using the following equation:  
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                                          w(k+1) = w(k) + μ x(k) e*(k)                                         (21)   

It turns out that convergence of the filter is related to the step size µ, that is the 

step size µ should satisfy the following condition, 0 < μ < 
2

λmax
  where λmax is the 

maximum eigenvalue of the input vector autocorrelation matrix [8,9,28].  

The LMS computational simplicity, easy coding and robustness, are significant 

features make it one of the most used adaptive filtering algorithms [8-11,28,29]. A 

summary of the LMS algorithm including initial values, algorithm parameters and 

update equations are summarized in Table 3.1 below.  

Table 3.1:  Summary of LMS algorithm. 

Initialization  w(0) = 0 

Parameters  µ, the LMS step size 

Update e(k) = d(k) - y(n) 

w(k+1) = w(k) + μ x(k) e*(k) 

 

3.3.3 Normalized Least Mean Square Algorithm 

The LMS algorithm weights update is driven by the input vector 𝑥(k), as 

shown is Table 3.1, which raises the probability of having a gradient noise 

amplification problem in case of large 𝑥(𝑘) values. Moreover, the convergence of the 

LMS algorithm is relatively slow, hence, the normalized least mean square (NLMS) 

algorithm is proposed to overcome the gradient noise amplification problem and more 

importantly significantly increase the convergence rates.  

Alternatively a modified update relation is given in equation (22). Compared 

to the LMS algorithm, the step size of the NLMS algorithm is time varying, since the 
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weights corrector term is normalized with respect to the norm of input vector weights 

update [12,29].  

                                     w(k+1) = w(k ) + 
μ

NLMS

‖x(k)‖2 + α
 x(k) e*(k)                             (22) 

where ‖x(k)‖2 is the Euclidean norm of the input vector,  μ
NLMS

 is the NLMS adaption 

constant with 1 < μ
NLMS

 < 2, and α is a small positive constant used to avoid division 

by zero [24]. NLMS algorithm is summarized in the below Table 3.2.  

Table 3.2:  Summary of NLMS algorithm. 

Initialization w(0) = 0 

Parameters  μ
NLMS , the NLMS step size 

α, a small positive constant 

Update e(k) = d(k) - y(n) 

𝑤(k+1) = w(k ) + 
μ

NLMS

‖x(k)‖2 + α
 x(k) e*(k) 

 

3.3.4 Recursive Least Square Algorithm 

In the method of least squares, the optimum weights that drives the filter output 

to the desired value and minimizes the estimated error ∑ |e(i)|2k2

i=k1  can be found by 

projecting the desired output vector on the column space of the input sequence matrix 

using the modified weighting vector [29]. 

Given an input vector x(k), and a desired output value d(k), error for M taps FIR filter 

is given by:  

                                                e(k )= d(k) - ∑ w(n) x(k-n) 

M-1

n=0

                                       (23) 
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Now assume a data window between k1= 0, and k2= N-1, (23) can be written as:  

[

e(0)

e(1)

⋮
e(N-1)

]  = [

d(0)

d(1)

⋮
d(N-1)

]  - [

x(0) x(-1) … r(M-1)

x(1) x(0) … ⋮
⋮ ⋮ ⋱ ⋮

x(N-1) … … r(N-M)

] [

w(0)

w(1)

⋮
w(M-1)

] 

                                                              e = d - Aw                                                        (24) 

where A is the input sequence matrix.  

Hence, the cost function that consists of the sum of the error squares is given by:  

∑|e(i)|2 = ‖e‖2
2 = ‖d - A w‖2

2

k2

i=k1

 

= (d - A w)
T (d - A h) 

                                                   = dT
d - wTA

T
d -dT

A w + wTA
T
A w                         (25) 

To obtain the value of 𝑤 that minimizes the cost function set ∇= 0, 

                                                      -2 AT
d + 2 AT

A w=0                                           (26) 

then obtain the optimum weight w*(k), 

w*(k) = (AT
A)

-1
A

T
d 

                                                                      =A
†
d(k)                                                    (27) 

where A
†
= (AT

A)
-1

A
T
 is the pseudoinverse of the input sequence matrix A. 

Look at ATA as a data driven estimate of the autocorrelation matrix, where  
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                                                      AT
A ≈ N R                                                          (28) 

similarly, AT d can be considered as an estimate of the cross correlation between the 

input vector and the desired output,  

                                                      AT
d ≈ N P                                                          (29) 

and by substituting in equation (26),  

                                                  N R w* = N P                                                         (30) 

The resulting equation looks similar to the Weiner-Hopf equation; thus, the least 

squares algorithm looks like an approximation to the Wiener filter.  

The RLS algorithm is developed from the method of least squares using the 

matrix inversion lemma, so the updated weights vector w(k) can be obtained from the 

old-squares estimate w(k-1) without performing any matrix inversion calculations by 

utilizing the input vector sequence [4,29]. The RLS algorithm is firstly initiated by 

setting the weights vector w(k) and the correlation matrix inverse P(k) as follows:  

w(k) = 0 and P(0) = δ -1 I, where δ is a small positive constant.  

The weights vector and the correlation matrix inverse are updated as follows: 

                                              w(k) = w(k-1) + g(k) ξ*(k)                                       (31) 

                                      P(k) = λ-1
P(k-1) - λ-1

g(k) xH(k) P(k-1)                             (32) 

where ξ(k) = d(k) - wH(k-1) x(k) is the prior estimated error and g(k) is the gain vector 

which is defined as: 
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                                           g(k) = 
λ

-1 P(k-1) x(k)

1 + λ-1 xH(k) P(k-1) x(k)
                                 (33) 

where λ is the forgetting factor, a positive constant less than 1.  

Although the RLS rate of convergence is faster than the LMS algorithm, in 

terms of calculations complexity, the RLS algorithm is significantly costly, as shown 

in Table 3.3 the RLS needs many mathematical operations per iteration compared to 

the NLMS and LMS algorithms. 

Table 3.3:  Summary of RLS algorithm. 

Initialization w(k) = 0 and P(0) = δ -1 I 

Parameters  δ, a small positive constant 

λ, the forgetting factor 

Update 
g(k) = 

λ
-1 P(k-1) x(k)

1 + λ-1 xH(k) P(k-1) x(k)
 

P(k) = λ-1 P(k-1) - λ-1 g(k) xH(k) P(k-1) 

ξ(k) = d(k) - wH(k-1) x(k) 

w(k) = w(k-1) + g(k) ξ*
(k) 

 

3.3.5 Sample Matrix Inversion Algorithm 

 In the LMS algorithm, the system goes through many iterations to drive the 

output toward the desired signal, and in case of rapidly changing signal characteristics, 

the system may not approach an acceptable convergence. A solution to this is to 

calculate the time average estimate of the correlation matrix by using a K-length block 

of data. This approach is called sample matrix inversion (SMI) [8-11].  

By dividing the input data into k blocks, the array correlation matrix is defined as the 

following:  
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                                                    Rxx = XK(k) XK

H
(k)                                               (34) 

where XK(k) is the kth block of input vector ranging over K samples of data.  

                               XK(k)= [

x1(1+kK) x1(2+kK) … x1(K+kK)

x2(1+kK) x2(2+kK) … ⋮
⋮ ⋮ ⋱ ⋮

xM(1+kK) … … xM(K+kK)

]                   (35) 

The desired output vector can be also defined by: 

                   d(k) =  [d(1+kK) d(2+kK) … d(K+kK)]                          (36)      

and the estimate of correlation vector by: 

                                                       p(k) = 
1

K
 d*(k) XK(k)                                             (37) 

The weights vector update equation is given by: 

                                                  w(k)=Rxx

-1
(k)p(k)                                                  (38) 

One drawback of the SMI algorithm that it is not sufficient for large number of 

antenna elements, but it can be used for weights initialization when combined with 

other algorithms as in [11].  

Table 3.4 shows SMI algorithm parameters and update equations. 
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Table 3.4:  Summary of SMI algorithm. 

Parameters  k, the number of data blocks 

K, length of data block  

Update 
p(k) = 

1

K
 d *

(k) XK(k) 

w(k)=Rxx

-1
(k)p(k) 

 

3.3.6 Combination of Two NLMS Filters with Variable Mixing Parameter  

As noted for both LMS and NLMS algorithms, convergence rates depend on 

the step size.  On the other hand, there is a tradeoff between convergence speed and 

the ability of tracking the desired signal in a satisfactory manner. In order to increase 

convergence rate and ensure system robustness, several combined adaptive filters are 

proposed using an adaptive mixing parameter λ(k) [13-15].    

Consider a system of two combined NLMS filters with different adaption 

constants, μ
1
 and μ

2
 shown in Figure 3.5, then using the mixing parameter λ(k) the 

combined output y(k) is given by: 

                                         y(k) = λ(k) y
1
(k) - (1-λ(k)) y

2
(k)                                  (39) 

As proposed in [14], λ(k) is constrained to the interval [0,1] using an auxiliary variable 

α(k), where λ(k) = 
1

(1 + e-α(k))
 , and α(k) is updated as follows:   

          α(k+1) = α(k) + μ
α e(k) (y

1
(k) - y

2
(k))  λ(k) (1-λ(k))                     (40)     

where μ
α
 is the step size of updating the auxiliary variable α(k).  
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To ensure a continuous adaptation of the mixing parameter, α(k) is limited to the period 

between [-α+, α+] [13,14].  

The combined weight vector is defined as follows: 

                                               w(k) = λ(k) w1(k) - [1 - λ(k)] w2(k)                          (41) 

and each filter updates its weight vector using the NLMS algorithm:  

                                        wi(k+1) = wi(k) + 
μ

i

‖x(k)‖2 + α
 x(k) ei

*(k)                    (42) 

 

 
Figure 3.5: Combination of two NLMS filters with variable mixing parameter. 

 

Combined NLMS algorithm is described in details on Table 3.5.  
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Table 3.5:  Summary of combined NLMS filters with variable mixing parameter. 

Initialization w1(k)=0, w2(k)=0, λ(0)=0.5, α(0)=0 

Parameters μ
i
, the ith filter step size 

[-α+, α+], α constrains 

μ
α
, the mixing parameter auxiliary variable step size 

Update α(k+1) = α(k) + μ
α
 e(k) (y

1
(k) - y

2
(k)) λ(k) (1 - λ(k)) 

λ(k) = 
1

(1 + e-α(k))
 

ei(k) = d(k) - y
i
(k) 

wi(k+1) = wi(k) + 
μ

i

‖x(k)‖2 + α
 x(k)  ei

*(k) 

w(k) = λ(k) w1(k) - [1 - λ(k)] w2(k) 

 

3.3.7 New Variable Step-Size NLMS Algorithm  

As stated in the previous section, convergence rates for both LMS and NLMS 

algorithms is related to the step size, and this arises a contradictory problem between 

the convergence speed and steady state error which can be solved by using combined 

filters with different step sizes. Another way to achieve faster convergence rates and 

ensure the system robustness at the same time, is to adapt a variable step-size where 

the step size adjustment is controlled by the error [17].  

Many variable step-size algorithms have been built based on sigmoid function 

for LMS algorithm as proposed in [16], in which the step size is a function of error as 

shown below:  

                                            μ(k) = β
μ

(
1

1 + e-α|e(k)|
- 0.5)                                         (43) 

where β and α are constants greater than zero.   
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As can be seen in Figure 3.6, which illustrates the relation between the step 

size μ(k) and the absolute error |e(k)|, the resulting value of the step size is large when 

the error has large value, which represents the early iterations this leads to a faster 

convergence. Later on, as the value of error decreases the step size also decreases to 

achieve smaller steady state error.  

 

Figure 3.6: μ(k) for different α values. 

 

Both values of β and α are important to achieve the optimal tradeoff between 

convergence speed and system robustness. The step size μ(k) is directly proportional 

to β: large β values may lead to unstable system, whereas small β will cause slower 

convergence. α value controls how sharp is the variation of the step size which could 

result a steady state error misadjustment [18,21].  

Variable step-size sigmoid function can be generalized for the NLMS 

algorithm as proposed in [18]. The generalized sigmoid function is represented as: 

                                             αGS(k) = β (
1

1+ e-A (σe(k) - σn)
 - 0.5)                                  (44) 



27 

 

 

 

 

where σe
2 = E{e2(k)} is the power of the error signal and σn

2 = E{n2(k)} is the noise 

power.  

The variable NLMS step-size is described as: 

                                                    μ
GS

(k)=μ
NLMS

(k)αGS(k)                                            (45) 

Inspired by the Proportionate Normalized Least-Mean-Square Algorithm [16] 

an additional step-size adjustment for each individual tap is proposed, this adjustment 

is based on the absolute approximate error of the tap weights. The new Variable Step-

Size NLMS algorithm weights update will be calculated using the below equation:  

                                      w(k+1) = w(k) + 
μ

GS
(k) G(k)

‖x(k)‖2 + α
 x(k) e*(k)                             (46) 

where G(k) represents a diagonal matrix used to adjust individual tap step-size bases 

on the approximate error.  

                                               G(k) = diag(g
0
(k), g

1
(k),…, g

M-1
(k))                           (47) 

With gi(k) is represented as the following sigmoid function  

                                                  g
i
(k) = β

g
(1 - e-α|eai

(k)|
m

) + γ                                 (48) 

where eai
(k) is the approximate error for the ith tap  

                                                       eai
(k) = 

wi(k) - wi(k-1)

wi(k)
                                         (49) 

and β, γ, α and m are positive values chosen to constrain gi(k) between [0.8, 1.2]. 
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As can be seen in Figure 3.6, which shows how the value of g(k) changes with the 

local error ea(k) for different values of m and the values of and β, γ and α are selected 

to maintain the g(k) between [0.8, 1.2].  

 

 

Figure 3.7: g(k) for different values of m with (β = 0.4, γ = 0.8 and α = 5). 

 

A detailed summary of the new VSSNLMS algorithm is provided in Table 3.6.  

Table 3.6:  Summary of the new VSSNLMS algorithm. 

Initialization  w(0) = 0, μ(0) = μ, eai
(0) = 1 , g

i
(0)=1 

Parameters  μ the initial step-size 

β, γ, α and m are sigmoid function parameters.  

Update 
αGS(k) = β (

1

1+e-A(σe(k)-σn)
 - 0.5) 

μ
GS

(k)=μ
NLMS

(k)αGS(k) 

eai
(k)=

wi(k) - wi(k-1)

wi(k)
 

g
i
(k) = β

g
(1 - e-α|eai(k)|

m

) + γ  

G(k) = diag(g
0
(k), g

1
(k),…, g

M-1
(k)) 

 w(k+1)  = w(k) + 
μ

GS
(k) G(k)

‖x(k)‖2 + α
 x(k) e*(k) 
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3.4 Sparse Adaptive Signal Processing and Zero-Attracting Algorithms 

Large antenna arrays became a mandatory factor in order to realize the demand 

for higher capacity and improved performance. This attributes to the fact that big 

arrays are always restricted by the power consumption and processing complexity, and 

the adaptive algorithms such as LMS and cannot perform well in such systems.  

However, sparse signal processing techniques can fully utilize the sparse 

characteristics of the system, which enforces the filter weights towards sparsity by 

adding a penalty to the cost function to achieve better results in terms of performance 

and convergence especially for broadband systems. On the other hand, the 

development of sparse adaptive solutions will have a huge impact on energy 

conservation by reducing the ratio of active elements in the antenna array [19-23].  

3.4.1 Panelized LMS-Based Algorithms  

Recently, a lot of algorithms have been developed to exploit the sparse 

characteristics for various sparse systems. Among many sparse LMS based algorithms, 

the zero attracting LMS (ZA-LMS) algorithms which apply a penalty to the cost 

function show better steady-state performance than that of the standard LMS for sparse 

systems [20]. The ZA-LMS algorithms update taps weights with a zero-attractor on all 

filter taps that forces the inactive tap weights with values near to zero in to reach zero 

faster [19-21]. The standard LMS cost function can be represented as below:  

                                                        J(k) = 
1

2
 e2(k)                                                     (50) 

To develop a sparsity aware LMS algorithm, a penalty term is added to the 

original cost function. The modified cost function with l1 penalty term can be 

represented as:  
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                                           Jl1(k) = 
1

2
 e2(k) + γ

l1 
‖w(k)‖1                                     (51) 

The filter taps or array weights is updated iteratively based on steepest decent 

algorithm, using the following equation: 

w(k+1) = w(k) - μ 
∂J1(k)

∂w(k)
 

                                                                    = w(k) - ρ sgn w (k) + μ e(k) x(k)              (52) 

where ρ = μ γ and sgn ( .) is the sign function defined as the following: 

                                             sgn ( x)= {

x

|x| 
, x ≠ 0

   0   , x = 0
}                                                 (53) 

Similarly, lp penalty term can be also applied to the original cost function resulting an 

improved performance, where the modified cost function is shown below:  

                                           Jlp(k) = 
1

2
 e2(k) + γ

lp
 ‖w(k)‖p                                    (54) 

and the weights are updated as follows: 

                        w(k+1) = w(k) + μ e(k) x(k) - ρ
p 

(‖w(k)‖lp)
1-p

sgn w (k)

εp + |w(k)|1-p
             (55) 

where εp is a value which bounds the penalty term.  

3.4.2 Proportionate Normalized Least Mean Square Algorithm 

The proportionate normalized least mean square algorithm was proposed as 

sparsity aware algorithm. In this algorithm, each tap weight is updated by assigning an 
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individual step size that is proportional to the previous weight estimation [25,26] using 

a gain diagonal matrix, the PNLMS updates its weights according to the following 

equation:  

                        w(k+1) = w(k) + μ
PNLMS 

e*(k) G(k) x(k)

xT(k) G(k) x(k) + δPNLMS

                    (56) 

where μ
PNLMS

 is the global PNLMS step size and δPNLMS= 
δx

2

N
  is a regularization 

parameter used to avoid division by zero.  

The gain diagonal matrix G(k) is given by: 

                                        G= diag(g
0
(k), g

1
(k), …, g

M-1
(k))                                 (57) 

with 

                                               g
i
(k) = 

γ
i
(k)

∑ γ
i
(k)N-1

i=0

,      0 ≤ i ≤ N-1                                  (58) 

and γ
i
(k) is defined as the following: 

              γ
i
(k) = max [ρ

g
max[δP, |w0(k)|, |w1(k)|, ..., |wN-1(k)|] , |wi(k)|]            (59) 

where ρ
g
 and δP are positive constants used to ensure weights update continuity when 

the weights are initialized as zeros, with typical values ρ
g
=  

5

M
 , and δP = 0.01.  

By assigning an individual step size to each element, the PNLMS algorithm 

achieves a very fast convergence rate at initial stages in case of highly sparse systems, 

but this rapid convergence is not maintained at later iterations [26].  The PNLMS 
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performance can be also improved by using a variable step size [24] or using a zero-

attractor algorithm as in [25-27]. 

Table 3.7 provides a detailed summery for the PNLMS algorithm.  

Table 3.7:  Summary of the PNLMS algorithm. 

Initialization  w(0) = 0  

Parameters  μ
PNLMS

 the global PNLMS step-size 

δPNLMS is a regularization parameter 

ρ
g
 and δP are positive constants   

Update e(k) = d(k) - y(k) 

γ
i
(k) = max [ρ

g
max[δP, |w0(k)|, |w1(k)|, ..., |wN-1(k)|] , |wi(k)|] 

g
i
(k) = 

γ
i
(k)

∑ γ
i
(k)N-1

i=0

 

G(k) = diag(g
0
(k), g

1
(k), ..., gM-1

(k)) 

w(k+1) = w(k) + μ
PNLMS

e*(k) G(k) x(k)

xT(k) G(k) x(k) + δPNLMS

 

 

3.4.3 LP-PNLMS Algorithm  

The LP-PNLMS Algorithm was developed by applying a lp penalty term to the 

PNLMS cost function, in order to utilize the sparsity awareness of the PNLMS and at 

the same time the benefits of ZA algorithms [27].  

Now consider the following constrained optimization problem: 

                                     min
w(k+1)

 ‖w(k+1) - w(k)‖
G

-1
2  + γ

lp
 ‖G

-1 w(k+1)‖
p
                       (60) 

subject to  

                                                          d(k) - w(k+1) x(k) = 0                                           (61) 
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Minimizing the above cost function using Lagrange multiplier to find the optimal 

weight resulting the below weights update equation: 

                                     w(k+1) = w(k) + μ
lp 

e*(k )G(k )x(k)

xT G(k) x(k) + εlp

 - ρ
lp 

T(k)                 (62) 

with ρ
lp

=μ
lp

γ
lp

 and T(k) = ‖w(k)‖p
1-p

sgn ( w(k)) {|w(k)|1-p + εp}
-1

  

where, εlp=
δx

2

N
 . 

Table 3.8 provides a detailed summery for the LP-PNLMS algorithm.  

Table 3.8:  Summary of the LP-PNLMS algorithm. 

Initialization w(0) = 0 

Parameters μ
lp

 the LP-NLMS step-size 

εlp is a positive constant to avoid division by zero 

γ
lp

, εp are zero attractor term factors 

ρ
g
 and δP are PNLMS algorithm positive constants 

Update 
g

i
(k) = 

γ
i
(k)

∑ γ
i
(k)N-1

i=0

 

G(k) = diag(g
0
(k), g

1
(k), ..., gM-1

(k)) 

T(k) = ‖w(k)‖p
1-p

sgn ( w(k)) {|w(k)|1-p + εp}
-1

 

w(k+1) = w(k) + μ
lp

 
e*(k) G(k) x(k)

xT G(k) x(k) + εlp

 - ρ
lp

 T(k) 

 

3.4.4 Variable Step-Size PNLMS/LP-PNLMS Algorithms  

In order to achieve improved convergence rates and more stable steady state 

error, the sigmoid function variable step-size proposed in section 3.3.6 is also applied 
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to both PNLMS and LP-NLMS. Similar to the VSS-NLMS the variable step-size is 

applied for both VSSPNLMS and VSSLP-PNLMS respectively as follows:  

                                     μ(k) = μ
PNLMS

 β (
1

1 + e-A (σe(k) - σn)
 - 0.5)                                (63) 

                                      μ(k) = μ
LP

 β (
1

1 + e-A (σe(k) - σn)
 - 0.5)                                    (64) 
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Chapter 4: Results and Discussions 

 

In this chapter adaptive algorithms are applied to antenna arrays with different 

geometries and number of elements antenna arrays, antenna arrays patterns for each 

algorithm are simulated and compared with each other. Characteristics of each 

adaptive algorithm have been compared in terms of convergence speed, steady state 

error, sensitivity to the noise and computational complexity.   

4.1 Linear Array for Non-Sparse Algorithms    

In this section, a linear array is used to evaluate non sparsity aware algorithms 

with different number of elements. The array receives five narrowband signals, a 

desired signal and four interference signals from the azimuth of 35, 50, 10, -30 and -

45 respectively, and the spacing between array elements is set to be λ/2.  

The parameters of the adaptive algorithms are set as the following, the step size 

for both LMS and NLMS are 3×10
-3

 and 1.2 respectively, and the RLS forgetting 

factor is 0.9 and δ is 0.01, and the combined NLMS parameters are set as μ
1
 = 0.9, 

μ
2
 = 1.7 and μ

α
 = 1, where the parameters of the VSS-NLMS are selected as follows, 

μ = 1.9,  β
g
 = 0.4, α = 5, γ = 0.8 and m = 3.  

For an excellent signal to interference noise ratio (SINR) of 30 dB, Figures 4.1 

to 4.3 show the normalized array gain for the LMS, NLMS, RLS, SMI, LMS with SMI 

weights initialization, combined NLMS and the proposed VSS-NLMS, using 8, 16 and 

21 elements respectively.  

It can be observed that the RLS, SMI and LMS with SMI weights initialization 

show the deepest nulls, on the other hand, they have the highest side lobe levels 
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(SSL’s). The LMS, NLMS, combined NLMS and VSS-NLMS introduce lower SLL’s, 

where the VSS-NLMS shows the lowest SSL’s. Both NLMS and combined NLMS 

have deeper nulls than LMS and VSS-NLMS. However, the LMS and VSS-NLMS 

show an improved performance when using higher number of elements as in Figure 

4.3. 

 

Figure 4.1: Linear array Normalized gain for 8 elements antenna array (SINR=30).  

 

 

Figure 4.2: Linear array Normalized gain for 16 elements antenna array (SINR=30). 
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Figure 4.3: Linear array Normalized gain for 21 elements antenna array (SINR=30). 
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weights initialization, whereas in the combined NLMS algorithm and VSS-NLMS, an 

improved convergence rates are achieved compared to the NLMS algorithm.  

 

Figure 4.4: MSE versus iterations for LMS with 8, 16 and 21 elements linear arrays 

(SINR=30). 

 

 

Figure 4.5: MSE versus iterations for NLMS with 8, 16 and 21 elements linear arrays 

(SINR=30). 
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Figure 4.6: MSE versus iterations for RLS with 8, 16 and 21 elements linear arrays 

(SINR=30). 

 

 

Figure 4.7: MSE versus iterations for LMS/SMI with 8, 16 and 21 elements linear 

arrays (SINR=30). 
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Figure 4.8: MSE versus iterations for Combined NLMS with 8, 16 and 21 elements 

linear arrays (SINR=30). 

 

 

Figure 4.9: MSE versus iterations for VSS-NLMS with 8, 16 and 21 elements linear 

arrays (SINR=30). 
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Figure 4.10: MSE versus iterations for SMI with 8, 16 and 21 elements linear arrays 

(SINR=30). 
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Figure 4.11: Linear array Normalized gain for 8 elements antenna array (SINR=10). 

 

 

Figure 4.12: Linear array Normalized gain for 16 elements antenna array (SINR=10). 
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Figure 4.13: Linear array Normalized gain for 21 elements antenna array (SINR=10). 
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Figure 4.14: MSE versus iterations for LMS with 8, 16 and 21 elements linear arrays 

(SINR=10). 
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Figure 4.15: MSE versus iterations for NLMS with 8, 16 and 21 elements linear 

arrays (SINR=10). 

 

 

Figure 4.16: MSE versus iterations for RLS with 8, 16 and 21 elements linear arrays 

(SINR=10). 
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Figure 4.17: MSE versus iterations for SMI with 8, 16 and 21 elements linear arrays 

(SINR=10). 

 

 

Figure 4.18: MSE versus iterations for LMS/SMI with 8, 16 and 21 elements linear 

arrays (SINR=10). 
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Figure 4.19: MSE versus iterations for combined NLMS with 8, 16 and 21 elements 

linear arrays (SINR=10). 

 

 

Figure 4.20: MSE versus iterations for VSS-NLMS with 8, 16 and 21 elements linear 

arrays (SINR=10). 
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used in the previous section. The array receives five narrowband signals, a desired 

signal and four interference signals from the azimuth of 35, 50, 10, -30 and -45 

respectively, with SINR of 30 dB and the spacing between array elements is set to be 

λ/2. 

The normalized array gain for the LMS, NLMS, RLS, SMI, LMS with SMI 

weights initialization, combined NLMS and the proposed VSS-NLMS, using N×N 

rectangular array with N = 8 and 16 are shown in Figures 4.21 and 4.22 respectively. 

Algorithms resulting array patterns show similar characteristics compared to the linear 

array patterns discussed in the previous section, with slightly deeper nulls in the 

rectangular array pattern. However, the convergence speed and the mean square error 

are significantly improved as illustrated in Figures 4.23 to 4.29.  

 

Figure 4.21: Normalized gain for 8×8 rectangular antenna array. 
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Figure 4.22: Normalized gain for 16×16 rectangular antenna array. 

 

 

Figure 4.23: MSE versus iterations for LMS for different sizes rectangular arrays. 
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Figure 4.24: MSE versus iterations for NLMS for different sizes rectangular arrays. 

 

 

Figure 4.25: MSE versus iterations for RLS for different sizes rectangular arrays. 
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Figure 4.26: MSE versus iterations for SMI for different sizes rectangular arrays. 

 

 

Figure 4.27: MSE versus iterations for LMS/SMI for different sizes rectangular 

arrays. 
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Figure 4.28: MSE versus iterations for combined NLMS for different sizes 

rectangular arrays. 

 

 

Figure 4.29: MSE versus iterations for VSS-NLMS for different sizes rectangular 

arrays. 
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array receives five narrowband signals, a desired signal and four interference signals 

from the azimuth of 35, 50, 10, -30 and -45 respectively, and the spacing between array 

elements is set to be λ/2.  

Parameters for the PNLMS are selected as follows μ
PNLMS

 = 1.2,  δPNLMS = 
σs

N
,  

δP = 0.01,  and ρ
g
 = 

5

N
 , where the  LP-PNLMS parameters are set as p = 0.85, εlp = 

δx
2

N
, 

μ
lp

 = 1.2 and γ
lp 

= 3×10
-7

.  

The normalized array gain for 8, 16 and 21 elements are shown in Figures 4.30 

to 4.32 respectively, and Figures 3.33 to 3.36 show the resulting MSE for each 

algorithm with different array sizes. Each of PNLMS, LP-PNLMS, VSS-PNLMS and 

VSSLP-PNLMS show very close results in terms of array pattern characteristics. On 

the other hand, the MSE behavior show faster convergence for both LP-PNLMS and 

VSSLP-PNLMS. Moreover, no significant improvement over the of PNLMS, LP-

PNLMS is noticed when using variable step sizes. However, in general sparse 

algorithms are showing improved performance in terms of convergence rates over the 

non-sparsity aware algorithms. 

 

Figure 4.30: Sparse algorithms normalized gain for 8 elements antenna array. 
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Figure 4.31: Sparse algorithms normalized gain for 16 elements antenna array. 

 

 

Figure 4.32: Sparse algorithms normalized gain for 21 elements antenna array. 
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Figure 4.33: MSE versus iterations for PNLMS with 8, 16 and 21 elements. 

 

 

Figure 4.34: MSE versus iterations for VSS-PNLMS with 8, 16 and 21 elements. 
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Figure 4.35: MSE versus iterations for Lp-PNLMS with 8, 16 and 21 elements. 

 

 

Figure 4.36: MSE versus iterations for VSS-Lp-PNLMS with 8, 16 and 21 elements. 
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Chapter 5: Conclusion and Future Work 

 

In this thesis, various beam forming algorithms such as: LMS, NLMS, RLS, 

SMI, LMS with SMI weights initialization, and combined NLMS filter with a variable 

mixing parameter have been presented and analyzed. Moreover, VSS-NLMS 

algorithm is also proposed to achieve an improved convergence and maintain system 

robustness. Simulation results for linear and rectangular arrays, show that each 

algorithm can achieve the desired performance, to steer the beam towards and signal 

of interest and forming nulls towards the interference sources. However, each 

algorithm has advantages and weaknesses. In the terms of convergence speed and nulls 

depth RLS and SMI show better performance, whereas LMS, NLMS are simpler and 

give lower SSL.  However, it can be observed that some of these weaknesses can be 

reduced by using combined algorithms, where LMS/SMI and combined NLMS filters 

have an improved convergence speed compared to the LMS and NLMS algorithms 

with an acceptable increase in the computation complexity. It can be noticed the 

proposed VSS_NLMS achieves a similar performance to the combined NLMS filters. 

In addition, to fully utilize the sparse characteristics of the system and overcome 

restriction related consumption and processing complexity of the large arrays, sparsity 

aware algorithms such as the PNLMS and LP-PNLMS are also studied and analyzed. 

Further, to increase system robustness and achieved an improved convergence, a 

variable step-size is also proposed for both of these algorithms. As expected, sparse 

algorithms achieve an improved performance over the non-sparsity aware algorithms 

in terms of convergence speed and the steady state mean square error.  

Many of the methods and algorithms introduced in this thesis have potential 

applications in other systems outside the scope of this thesis, and as a future work, 
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different ideas can be extended from this work for the autonomous network, where the 

network uses AI-based algorithm for audit, self-healing and even for predicting any 

possible degradation in the performance. Smart antennas can automatically recognize 

scenarios and configure beams through AI-based operations and maintenance. The 

antennas change beams with various widths and directions based on the beam 

configurations, improving the user experience. 
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