United Arab Emirates University

Scholarworks@UAEU

Philosophy Dissertations Philosophy

11-2017

Design of Telescopic Beams Based On Parametric Studies Using
FEA and Statistical Optimization

Neha Arieckal Jacob

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/philosophy_dissertations

6‘ Part of the Engineering Commons

Recommended Citation

Jacob, Neha Arieckal, "Design of Telescopic Beams Based On Parametric Studies Using FEA and
Statistical Optimization" (2017). Philosophy Dissertations. 7.
https://scholarworks.uaeu.ac.ae/philosophy_dissertations/7

This Dissertation is brought to you for free and open access by the Philosophy at Scholarworks@UAEU. It has been
accepted for inclusion in Philosophy Dissertations by an authorized administrator of Scholarworks@UAEU. For
more information, please contact fadl.musa@uaeu.ac.ae.


https://scholarworks.uaeu.ac.ae/
https://scholarworks.uaeu.ac.ae/philosophy_dissertations
https://scholarworks.uaeu.ac.ae/philosophy
https://scholarworks.uaeu.ac.ae/philosophy_dissertations?utm_source=scholarworks.uaeu.ac.ae%2Fphilosophy_dissertations%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=scholarworks.uaeu.ac.ae%2Fphilosophy_dissertations%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uaeu.ac.ae/philosophy_dissertations/7?utm_source=scholarworks.uaeu.ac.ae%2Fphilosophy_dissertations%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:fadl.musa@uaeu.ac.ae

UAEU

United Arab Emirates University

College of Engineering

OPIC BEAMS BASED ON PARAMETRIC

DESIGN OF TELESC
A AND STATISTICAL OPTIMIZATION

STUDIES USING FE

Neha Arieckal Jacob

This dissertation is submitted in partial fulfilment of the requirements for the degree
of Doctor of Philosophy

Under the Supervision of Dr. Sangarappillai Sivaloganathan

November 2017



11

Declaration of Original Work

I, Neha Arieckal Jacob, the undersigned, a graduate student at the United Arab
Emirates University (UAEU), and the author of this dissertation entitled “Design of
Telescopic Beams Based on Parametric Studies using FEA and Statistical
Optimization”, hereby, solemnly declare that this dissertation is my own original
research work that has been done and prepared by me under the supervision of Dr.
Sangarappillai Sivaloganathan, in the College of Engineering at UAEU. This work
has not previously been presented or published, or formed the basis for the award of
any academic degree, diploma or a similar title at this or any other university. Any
materials borrowed from other sources (whether published or unpublished) and relied
upon or included in my dissertation have been properly cited and acknowledged in
accordance with appropriate academic conventions. I further declare that there is no
potential conflict of interest with respect to the research, data collection, authorship,

presentation and/or publication of this dissertation.

Student’s Signature: i Date: (8~ 12-20\%




Approval of the Doctorate Dissertation

This Doctorate Dissertation is approved by the following Examining
Committee Members:
1) Advisor (Committee Chair): Dr. Sangarappillai Sivaloganathan
Title: Associate Professor
Department of Mechanical Engineering

College of Engineering
Signature Lophrm—aall LXK Date ."4\‘ T } 2oi)

2) Member: Dr. Tariq Darabseh
Title: Associate Professor
Department of Mechanical Engineering
College of Engineering

Signature ’7’,;’—"’7 Oﬂﬂ/lM\ Date L ({/ // / 2oly

3) Member: Dr. Bilal El-Ariss

Title: Associate Professor
Department of Civil and Environmental Engineering
College of Engineering

Signature % Date oo v. /4 Zo/ >

4) Member (External Examiner): Prof. Shaker A. Meguid

Title: Professor
Department of Mechanical Engineering

Institution: University of Toronto

Signature S/u!\r Af) Date \ : ’%\




This Doctorate Dissertation is accepted by:

Dean of the College of Engineering: Professor Sabah Alkass

Signature ':~:W) Date _Z ?// 2/ Zo/ f7Z

Fn_ Dean of the College of Graduate Studies: Professor Nagi T. Wakim

Signature A/Q\: Hﬁr—w‘—g Date 27 / IH-/ 22|73

Copy i ofj_

Vi



Copyright © 2017 Neha Arieckal Jacob
All Rights Reserved



Advisory Committee

1) Advisor: Dr. Sangarappillai Sivaloganathan
Title: Associate Professor

Department of Mechanical Engineering
College of Engineering

2) Co-advisor: Dr. Kilani Ghoudi
Title: Professor
Department of Statistics

College of Business and Economics

3) Member: Dr. Mousa Hussein
Title: Associate Professor
Department of Electrical Engineering

College of Engineering



vii

Abstract

This dissertation describes an investigation on the behavior of the overlap area
in telescopic cantilevers under tip loads.

The main aim of this research is to address the question of ‘how the overlap
region of a telescopic beam behaves under a tip load’ and to develop a new generic
approach to the design of telescopic beams based on parametric studies using FEA and
statistical optimization.

Experimental investigations and exploratory analyses were carried out to study
the behavior of RHS (Rectangular Hollow Section) rings and RHS pieces. Based on
these observations, theoretical explanations were developed and a methodology for the
design of the inner beam assembly based on FEA and design of experiments was
recommended. The recommended methodology was also implemented on a case study.

Results showed that the overlap area can be treated as an assembly of RHS
rings and a middle section or an assembly of RHS pieces and a middle section. Further,
the region near the bottom wearpads of the overlap area of the inner beam is identified
as most vulnerable.

RHS rings are treated as an assemblage of horizontal beams and vertical
columns whereas RHS pieces are treated as an assemblage of vertical and horizontal
plates. When compressed transversely between platens, the constituent beams,
columns, and plates in both RHS rings and pieces, are subjected to corner moments.
Further, when compressed between wearpads, an additional corner moment is
introduced which in effect reduces the maximum load carrying capacity further.
Because of the nature of the assembly, the end conditions of the constituent members

of the RHS ring and pieces are unknown and hence complete theoretical solutions are



viii
not derived. Therefore, FEA and experimental designs were used to establish a design
methodology for telescopic beams.

Significant contributions from this study involve the explanation of the
behavior of RHS rings and RHS pieces when compressed transversely and the
development of a new generic approach to the design of telescopic beams based on

parametric studies using FEA and statistical optimization.

Keywords: Telescopic cantilevers, Overlap area, FEA, Design of Experiments, RHS

rings, RHS pieces, Inner beam assembly, Design Methodology.
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Chapter 1: Introduction

1.1 Overview

Telescopic Cantilevers are used in machinery including cranes, access
platforms, truck mounted cranes and loaders. They find multiple applications in the
MRO (Maintenance, Repair and Operations) industry where they are used to access
structures like aircrafts, in material handling equipment at harbors and infrastructure
building sites, and complex machinery including automated welding plants, aircrafts
and off-shore pipe-laying vessels. Published material to assist designing these thin and
complex structures is limited. Modern scientific trends in design and manufacturing of
complex components takes an integrated approach based on integrated parametric
multi-computational assessment that leads to simplified formulae, which can be
utilized by field engineers to optimize their designs. Engineering software developers
like Simulia have started linking FEA of specific engineering problems with
‘Statistical Analyses’ resulting in design formulas that can be utilized by practicing
engineers.

This research addresses the question of ‘how the overlap region in a telescopic
beam behaves under a tip load’ and establishes a new generic approach to the design
of telescopic beams based on parametric studies using FEA and statistical

optimization.

1.2 Background

This section briefly outlines the necessary background to understand the
problem and the approach taken towards finding a solution. It describes the structure,

the design parameters and the motivation for this study.



1.2.1 Telescopic Cantilever

A telescopic cantilever is a structural assembly consisting of two or more beam
sections with the outermost beam section fixed at one end, supporting the entire beam
assembly while one or more inner sections of beam are stacked inside. The inner beams
move outwards when a full or partial extension is needed. The main parts of a single

stage telescopic beam assembly are given in Figure 1.
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Figure 1: Single stage telescopic cantilever

The inner beams are pushed out and pulled in as and when required. In order
to reduce the contact area between the inner side of the outer beam and the outer side
of the inner beam, contact between the inner and outer beams are provided through
wearpads. The inner beam slides on the wearpads. At any given position, part of the
inner beam will be inside the outer beam. This portion is called the overlap.
Manufacturers see the overlap as wasted material and often try to reduce this overlap
to save material, reduce weight and make manufacturing easy. But reducing the
overlap increases the tip reactions at the wearpad areas and the inner beam is under

high compression in this region. This may lead to buckling in the overlap area.



In applications such as in the telescopic boom of a crane, an important
requirement is the minimum deflection at the innermost beam tip. Large tip-deflection
makes the user in the cage at the tip feel uncomfortable. In order to minimize the tip
deflection which requires high rigidity or second moment of area, designers tend to
increase the height of the beam. But this makes the beam vulnerable to buckling in the
overlap area. Structural members fail resisting tension, shear or torsion, when the stress
in the member reaches a certain limiting strength of the material. Buckling on the other
hand does not take place as a result of the resisting stress reaching a limiting strength
of the material. In general, the stress at which buckling occurs depends on a variety of
factors such as the dimensions of the member, boundary conditions and the properties

of the material of the member. In other words, buckling behavior is project-dependent.

1.2.2 Parameters Involved

The overlap area of the inner beam is minimal in the fully extended position.
It is the most vulnerable area of a telescopic beam assembly and therefore is the focus
of this study. Consider a two-section telescopic cantilever beam assembly. For
simplicity, neglect the self-weight of the structure. Assume that the interactions
between the inner beam and outer beam are through the wearpads that are located at
the corresponding tips of the beams. These interactions give rise to tip-reactions at
these tips. With this tip-reaction model, free body diagrams can be considered to
analyze the equilibrium of the inner beam. Figure 2 illustrates the beam and the free

body diagrams under the tip reaction model.
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Figure 2: Free-body diagram of the telescopic cantilever beam sections

Consider the inner beam CBD as shown in Figure 2.

Considering the equilibrium of the system, it can be said that R, =W

. i |
Taking moments about C for the beam CD gives Ry =g1W

Similarly taking moments about B gives R =

(I - a)W
a

Normally |, >>aand thus the overlap area is subjected to large multiples of

the tip load W. Since these large forces are compressive in nature they can cause
buckling. A combination of geometric factors of the inner beam, the wearpads, and the
overall assembly geometric factors affects the behavior of the beam in this overlap
area. The inner beam and the wearpads are considered as an assembly as shown in

Figure 3.
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Figure 3: Inner beam assembly of a telescopic cantilever

The geometric factors are listed in Table 1. Some of the geometric factors listed

in Table 1 is shown in Figure 3.

Table 1: Geometric factors of the inner beam assembly

Geometry of Inner Beam | Geometry of Wearpads | Geometry of assembly
Thickness WP Length WP-Web Distance
Height (web) WP Width Overlap Length

Width (flange) WP Height Top WP-End Distance
Length

Corner radius




1.2.3 The Motivation

This research was initially undertaken as an extension to my design project at
Brunel University, UK which involved the validation of a telescopic crane boom FE
model for one of the leading manufacturers of access platforms and boom lifts in
Europe.

To understand the criticality of the overlap area design, consider the analysis
of a telescopic beam shown in Figure 4 and consider the stresses at two points P1 and
P2 in the outside of the inner beam located 25 mm from the ends of the inner and outer
beams. This means that when the overlap ‘a’ changes, the point Py will also change its
location on the inner beam. An FE analysis carried out in ABAQUS for five different
overlaps; 1200 mm, 1100 mm, 1000 mm, 900 mm and 800 mm is executed and the
stresses (Mises) at points P1 and P» observed. Figure 5 shows them in the form of two

graphs.
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Figure 4: A telescopic beam
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Figure 5: Stress variation under the wearpads with varying overlap

The graph in Figure 5 shows that the stress varies substantially, from 15.72
MPa to 26.97 MPa at P1 with the reduction of 400 mm in overlap while the load at the
tip remains the same. Also, it shows that the magnitude of stress at P; is always greater
than that at P>. This highlights the fact that, chances of buckling are high in the vicinity
of P1.

Figure 6 shows the stress distribution in the entire assembly for an 800 mm
overlap. In general, the stresses are high near the overlap and were very minimal in all
other areas of the assembly. This observation together with the amplification of the tip
loads as explained in section 1.2.2 raised the curiosity to investigate the overlap area

in detail in connection with the telescopic beam design.
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Figure 6: Stress distribution in the entire telescope assembly

The research question therefore addresses the question of ‘how the overlap
region of the inner beam assembly in a telescopic beam behaves under a tip load’ and
establishes a new generic approach to the design of telescopic beams based on

parametric studies using FEA and statistical optimization.

1.3 Situation Analysis

In order to start the investigation, the following topics were visited and
reviewed:
e Beam theory
e Stresses and strains at a point
e Failure theories
e Buckling of columns

e Finite Element Analysis Using ABAQUS software



1.3.1 Beam Theory

Beam theory can be summarized under the eight headings namely assumptions,

implications of the assumptions on beam behavior, shear force and bending moment

diagrams, deflection curve, flexure equation, bending stress, shear stress and

governing set of differential equations.

Table 2 borrows from [1] and [2] and summarizes the beam theory.

Table 2: Beam theory highlights

Beam
Definition

A structural member designed to support transverse loads, having one
of its dimensions (the axis) much larger than the other two [3].

Assumption 1

The beam has a longitudinal plane of symmetry (x-z), with the cross
section symmetric about this plane. Load is applied in the plane x-z
and is transverse to the long axis (the x-axis) [1].

Implication of
Assumption 1

All loads in y —direction are zero. Therefore, all stresses in y-direction
are zero: 0, =0, =0, =0

The only significant stresses are in the x- direction: 0,0y,

Assumption 2

During deformation, plane sections remain plane and perpendicular
to the midplane after deformation.

Implication of
Assumption 2

The implication of this assumption on displacements are:
dw

u(x,y,z) =-z—
dx

v(x,y,2)=0

w(x, y,z) = w(X)

Flexure Stresses calculated from the flexure formula are called bending
Equation/ stresses or flexural stresses.
Bending _ Mc
Stress T =TT
Shear Stress VQ
’Z’ —_— —

b

For a specific cross section, the shear force V, moment of inertia I,
and width b are constants. However, the first moment Q varies with
the distance ¢ from the neutral axis

SFD and

BMD

Information relating to beam shear forces and bending moments is
provided by graphs in which the shear force and bending moment are
plotted as ordinates and the distance x along the axis of the beam is
plotted as the abscissa. These graphs are called shear force diagrams
and bending moment diagrams.
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Table 2: Beam Theory highlights (Continued)

Deflection When a beam with a straight longitudinal axis is loaded by lateral
Curve forces, the axis is deformed into a curve, called the deflection curve
of the beam. The basic differential equation of the deflection curve of
. d*w M
abeamis: —-=—
dx El
(where W/ is the slope)
Governing set | dw d2w
of Differential | 25, =Y El—=M 4
. dx dx d*w
equations dM 4 El o q(x)
—— =V  EI-wv
dx dx

1.3.2 Stress and Strain at a Point

In general, a body can be subjected to point and surface forces, body forces,

contact forces and constraints. Chadrupatla and Belgundu [4] represent this in a figure

which is adapted and reproduced here as Figure 7.

Surface forces
Acting on a small area

Point Force

Body forces acting
on a smallvolume

Boundary constraint
i.,e. No displacement

Figure 7: Forces and constraints in a body
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As a result of these forces, three dimensional stresses and strains are produced
in the body. There are fifteen such variables which are represented by the stress tensor
(six variables), strain tensor (six variables) and displacements (three variables) [5].

The components of the displacement vector in X, y, and z directions are denoted
respectively by (u, v, w).

Stress Tensor: Stresses acting on a plane, are typically decomposed into three
mutually orthogonal components — one normal and two shear [6]. As shown in Figure
8(a), the stress at a point needs nine components to be completely specified. Each
component is defined by the direction in which it acts and the orientation of the surface

upon which it is acting. Therefore, the i"" component of the force acting on a surface

whose outward normal points in the j direction is oy [6].

Y
YA G__ .
; Cu /Oy ]
l I
i —wO_ ' /
G:\'/ = |____FL -------------- '
i 1
] e} : / i /
i yz v b
G.\':: P I / '
I I / ] ,-
) Oy dvy | v
[ [
! 0.\'_\‘ G_r.\' v y
Ox A R ' / v/
e ' 1/
- i i
- :
[} ]

X (a) (b)

Figure 8: (a) Stresses on an infinitesimal cube whose surface are parallel to the

coordinate system (b) Shear strain [7]

These nine components can be organized into the matrix:
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Oy On Oy
Oij=|9x Oy Oy (1.1)
Oy O-zy 0,

where shear stresses on either side of the diagonal are identical
(i.e. oxy = Oyx, Oyz = Oz, and o2x = Oxz) as a result of static equilibrium (no net moment),
thereby effectively reducing the stress tensor to six components. This grouping of the
stress components is known as the stress tensor (or stress matrix) [8].

Strain Tensor: As in the case of stress tensors, there are a total of nine strain
measures. The non-diagonal components are the shear strains that are defined as the

change in an angle that was originally at a right angle before deformation occurred.
The shear strain €, is the average of the shear strain on the x face along the y direction,

and on the y face along the x direction [9]. The shear strain for the element in the x-y
plane is as shown in Figure 8(b). All nine measures can be organized into a matrix

(similar in form to the stress matrix), shown here:

o Ya, 1w, o
e o OX 2loy ox) 2\oz oX
AR I N TRV v 1(ov ow
=18 Gy & |T| Tl AT ~ PP 1.2)
e o 6 2\ 0y oX oy 2\ 0z oy
T e Yoo o
| 2\oz ox) 2\oz oy oz |

1.3.3 Failure Theories

Behavior of materials like steel when subjected to tensile load in only one
direction can be determined experimentally, and conforming failure theories can be,
and are formulated. However, when the material is loaded in three dimensions the

behavior cannot be experimentally determined. Failure theories have been developed
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to fill this gap and there are several of them. Table 3 gives a summary of the failure

theories.
Table 3: Failure theories [10]

Sr. | Theory Name Statement Limiting

No. Condition

1 Maximum Yield occurs when one of the principal | o, = o,
principal stress | stresses at a point in the structure 3
theory (Rankine | subjected to the combined stresses reaches 92 =0
theory) the yield strength in simple tension or

compression of the material.

2 Maximum Failure is predicted to occur in the multi- | o, —vo, > +o,
principal strain | axial state of stress when the maximum o —bo. >t
theory principal normal strain become equal to or | 2 teo
(St.  Venant’s | exceeds the maximum normal strain at the
theory) time of failure in a simple uniaxial stress

test using a specimen of the same material.
3 | Maximum shear | Failure is predicted to occur in the | o, -0, > to,
stress  theory | multiaxial state of stress when the
. . . 0,—0,210
(Tresca theory) | maximum shearing stress magnitude | 2 3 f
becomes equal to or exceeds the| o;—0,2%0;
maximum shearing stress magnitude at
the time of failure in a simple uniaxial
stress test using a specimen of the same
material.

4 Maximum Failure would occur when the total strain 2 2
strain  energy | energy absorbed at a point per unit volume [ﬂ] +(ﬂ]
theory exceeds the strain energy absorbed per | \ O¢ Oy
(Beltrami’s unit volume at the tensile yield point.
theory) _ 20(01_272} -1

Oy

5 | Distortion Failure is predicted to occur in the multi- (0,-0,)
energy theory | axial state of stress when the distortion
(Von Mises | energy per unit volume becomes equal to | + (Gz —03)
yield criterion) | or exceeds the distortion energy per unit +(a g )z > 25

volume at the time of failure in a simple *
uniaxial stress test using a specimen of the
same material

The five failure theories are compared graphically in Figure 9. When the third

principal stress o is zero, each yield criterion describes a closed boundary condition

in principal stress axes o;and o, [11].
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Figure 9: Comparison of different failure theories [10], [12]

Each of the boundaries predicted by the theory is called a yield locus. Elastic
conditions prevail within the interior region. Plastic behavior occurs to the external of
each locus [11]. The Tresca locus is mostly conservative and therefore safe. The Von
Mises ellipse is the most representative for ductile materials, and the Rankine the best

fit for brittle materials [13].

1.3.4 Buckling of Columns

Buckling is a physical phenomenon of a straight and slender member abruptly
bending laterally from its longitudinal position due to compressive loading [14].
Buckling study called Stability Analysis is explained using the stable, unstable and
marginally stable conditions of a ball. It demonstrates that there can be several
equilibrium positions in the marginally stable condition since there is no energy

change. This means there can be several equilibrium paths [15]. A column when
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subjected to a compressive load, shrinks due to the load. The load deflection curve
describes an equilibrium path for this behavior. As the load is increased there comes a
point where the column can also bend and maintain its equilibrium. This bending
behavior is described by another equilibrium path. At the point where the loads
corresponding to each equilibrium path are the same, the column can switch from one
equilibrium path to the other. The load deflection behavior can be estimated using any
one of these behaviors. This method is called the method of adjacency equilibrium and
the analysis of a column using the bent position makes use of this equality.

Using the method of adjacency equilibrium, a column can be analysed in the

following way [16]:

AX AX
Py
y .
y |P
I Arbitrary
i Plane A M:=Py
X
L . v »
— Y P Y

(a) (b)

Figure 10: (a) Column in bent position and (b) Free body diagram of an arbitrary

section

The free body diagram shown in Figure 10(b) shows the bending moment in a

section at a distance x from the y axis along the x axis.
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The governing differential equation is

d?y

El—2 4+ Py=0 1.3
oz T FY (1.3)

Substituting k* = gthe differential equation is

2

d
dxg’ +k2y =0 (1.4)

It is a second-order linear differential equation with constant coefficients. Its

boundary conditions are
y=0whenx=0and x =1
The general solution for this differential equation is

y = Acos kx+ Bsinkx (1.5)

The integration constants are found by substituting boundary conditions and
using which the critical load or buckling load is found. Table 4 gives a summary of the
buckling loads for some specific boundary conditions. It is sufficient to say here that

the buckling load,

P k 7z °El
cr L2
where the value of k, is dependent on the boundary conditions. This theory is

(1.6)

attributed Euler and is called the Euler buckling analysis.



Table 4: Summary of buckling loads for different boundary conditions [1]

Pinned-Pinned | Fixed-Free Fixed-Fixed Fixed-Pinned
Column Column Column Column
L, 1] l |
L,
L L L,

2 2 2 2
p - V3 2EI P - s EZI P — dr 2EI P - 2.046:2' El

L 41 L L
L =L L, =2L L, =05L L, =07L
k, =1 k, =0.25 k,=4 k, =2.046
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There are situations where the load is not axial but is away from the axis.

Mathematically, this is equivalent to having an additional moment Pe with the axial

load as shown in Figure 11. Columns under eccentric loading can be treated as columns

under axial loading with an additional external moment acting on the loading end [17]

as shown in Figure 11.
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A x Ax

L Arbitrary
Plane

(@) (b)

Figure 11: (a) Column under eccentric loading (b) FBD at an arbitrary plane

The governing differential equation is

2
89Y i piyre)=o0 (1.7)
dx
2
Substitutingk? = 5 , the differential equation is Z_Z +k2y =—k?2e
X

The solution to this equation is

y = Asinkx+ Bcoskx—e (1.8)
Substituting the initial condition when x =0, y =0 gives B=¢e

Substituting the initial condition whenx =1,y =0 gives A=e (1' COSklj

sinkl

The complete solution is

y = e(cos kx+1__c—03k|sin kx—l) (1.9)
sinkl
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izt

sinkl Zsin(k%) cos(k%) 2
Therefore,
kI .
y=e (cos kX + tan(Ejsm kx — 1) (1.10)

Equation (1.10) has two consequences:

a) y becomes infinity when% = % because tang becomes infinity. This leads

2
to finding the critical load P, which becomes equal to ”I—ZEI .

b) Bending moment found earlier is M, = P(e + y) . This means as y increases

M . also will increase. But for a bending beam the maximum bending stress at a
section g, = ¥ This means the bending stress will increase and reach the yield point
as 'y increases.

1.3.5 Finite Element Analysis

During the design of a product, it is quite often required to deal with field
variables such as displacements and stresses to
= Calculate the displacements at certain points
= Calculate the entire distribution of the displacement field
= Determine the stress distribution and hence predict the strength
= Determine the natural frequencies and associated modes of vibration
= Determine the critical buckling loads

= Predict the response for forced vibrations etc.
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Three methods are normally employed to perform these analyses. They are the
use of (a) analytical methods (b) experimental methods and (c) numerical methods.
Analytical methods use only simple geometries and idealized loading and support
conditions. Therefore, they are not well suited for the complex structures of modern
days. Experimental methods are expensive and time consuming and not possible for
complex objects. Numerical methods, require very few restrictive assumptions, can
treat complex geometries and realistic support and loading conditions, and are cost
effective. Finite Element Method is such a Numerical Method employed for
Engineering Analysis and can be described in the following way:

(@) In engineering problems, there are some basic unknowns. If they are found
the behavior of the entire structure can be predicted. These basic unknowns are called
the Field Variables [18]. The field variables encountered in solid mechanics are
displacements and stresses. Field variables in other areas of study are velocities in fluid
mechanics, electric and magnetic potentials in electrical engineering and temperatures
in heat flow problems.

(b) Ina continuum (a thing of continuous structure) these unknowns are infinite
(values at the infinite number of points). The finite element method reduces this
number of unknowns to a finite number by describing the variables at chosen points
called the ‘Nodes’ [19]. A portion of the continuum is defined by the connection of
these nodes and the region is called an ‘Element’ [19]. The field variables at points
within the element are found by interpolation using the values at the nodes and
interpolating function is called the ‘Shape Function’ [19].

Thus, the Finite Element Method can be described as a method where (a) the

Field Variables at the infinite number of points in a continuum is represented by those
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at a chosen finite number of points called nodes (b) their values are then calculated
using some engineering principles and other governing relationships and (c) finally the
values of the field variables at all intermediate points are calculated by interpolation
using the shape functions.

In ABAQUS for example this is achieved by following a set procedure as

shown in Figure 12.



Figure 12: Finite element analysis using ABAQUS [20]

22
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1.4 Parametric Analysis

Consider a cuboid which has a length ‘a’, width ‘b’ and height ‘c’. Then the
cube can be represented by a vector [a b c]. Now the vector [a b c] can be used to
represent all cuboids by changing the values of the elements a, b and c. This
representation of cuboids as a vector of three elements is a parametric representation.
In general, an engineering design can have several such variables. For example, earlier
in Table 1, eleven parameters were identified to represent the inner beam assembly of
a telescopic cantilever. This means that an eleven-element vector can represent each
of the inner beam assemblies and in an eleven dimensional co-ordinate system, an
inner beam assembly can be represented by a vector, will be a single point. But each
of the parameters (like WP length for example) can take values within a given range
and all the designs would lie within an 11-dimensional hyperspace. An optimal design
would lie as a point within this hyperspace. Analysis that varies the parametric values
to find the optimal design is called Parametric Analysis.

Scientists conduct experiments, make observations and analyze the data to
draw conclusions. Consider the eleven-dimensional hyperspace where each of the
design variables are allowed to take just two values. These values are called levels.
Then there will be 2! designs to consider in the hyperspace. It is impossible to conduct
experiments with all these 2% designs, and the statistical method that systematically
chooses the design points (or parameter combinations) is called Experimental Design.
There are several methods for Experimental Design. Taguchi [21] provides a set of
orthogonal arrays using indicator variables 1 and 2 for this purpose. For example, the
array L, has eleven columns which can be assigned to eleven factors while the number

of experiments is limited to only 12. Table 5 gives Taguchi’s Li> array.
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Table 5: Taguchi L1 array [21]

Experiment Column
Number |1 2 | 3 | 4|5 |6 |7 |8]9 10|11
1 11 1 1 1 1 1 1 1 1 1
2 1/ 1 11122 |2]2]|2]2
3 1112 2|2 |1]|1]1]2]2]2
4 i/ 2 |1 |22 |1]2|2]1]1]2
5 112 | 2 112|212 ]1]2]1
6 112 |2 |2 |1 |2 ]|2]|1]2]1]1
7 2|1 | 2|2 |1]1]|2]|]2]|]1]|2]1
8 2| 1 | 2 1222|1112
9 2|1 |12 |2 ]2 |1]2]2|1]1
10 2| 2 | 2 1 /1] 1|12 ]2 |1]|2
11 2| 2 1 2 1 2 1 1 1 2 2
12 2/ 2|1 |12 ]1]2]1]2]|2]1

When the number of levels or the number of factors to be studied is increased
the number of experimental runs also increases. At the beginning of an experimental
investigation, to understand a phenomenon, one may find that there are too many
factors to study. This would result in a large experiment that would be difficult to
manage. In this situation, it would be better to conduct a small experiment with just
two levels that would identify the factors that have little or no effect on the chosen
response so that they can be eliminated from the main study. Such an initial experiment
is called a ‘Screening Experiment’. After identifying the sensitive parameters from the
screening experiment a second experiment with high number of levels is conducted to
fit a response surface and use the fitted surface to optimize the design.

Physical experiments are costly and cumbersome, and the current trend is to
conduct computer experiments. In a computer experiment, computer code is used in
lieu of a physical experiment to obtain the value of the response variable. In order to

obtain reliable results from experimentation, the computer model should be a true
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representation of the physical object and ensuring this truthfulness is called validation.

Normally, computer models are validated by physical experiments.

1.5 Problem Statement and Research Objectives

The broad aim of this research is to explain ‘how the overlap region of the inner
beam assembly in a telescopic beam behaves under a tip load’ and establishes a new
generic approach to the design of telescopic beams based on parametric studies using
FEA and statistical optimization.

The preceding sections highlighted that the critical area of concern is the
overlap area of the inner beam and its behavior depends on multiple factors. Further,
the behavior varies from case to case as it depends on the numeric values of the
geometric factors. The overlap section, when looked at separately, can be divided into
three sections, two sections under the wearpads and the connecting middle region as
shown in Figure 13. At the extreme ends, two RHS rings or RHS pieces (depending
on the length of the wearpad) receive the thrusting compressive forces from the outer
beam through the wearpads. These forces balance the tip load and the moment created
by it. The rings or pieces are connected by the middle portion and the magnitudes of

the forces increase as the length of the middle portion decreases.
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Load from

Load from
Outer Beam

Figure 13: Division of the overlap section

The research objectives drawn in this background therefore are as follows:
Establish the behavior of RHS rings, RHS pieces and telescopic beams under
transverse loading through qualitative investigations and experiments.
Establish the status of the current knowledge in this and the relevant areas
through a literature survey.

Establish validated FEA methods using ABAQUS software to analyze RHS
rings, RHS pieces and telescopic beams

Establish statistical optimization method using computer experiments and

validate with case study
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5. Establish a design methodology to design telescopic beams using computer

experiments.

Methods used to achieve these objectives include physical experimentation,

FEA and theoretical developments.

1.6 Research Methodology

The research methodology adopted can be described as shown in Table 6.

Table 6: Research methodology

Objective Method Description
Transverse loadin . . .
: g RHS rings of 3 mm thickness, with a
of RHS rings i i
height of 350mm, width of 150 mm and
between
length of 10 mm were compressed
. e Platens
Establish the between platens and wearpads
o Wearpads

behavior of RHS
rings, pieces and
under transverse
compressive
loading

Transverse loading
of RHS pieces
between

e Platens

e Wearpads

RHS pieces of 3mm thickness of the

following outer dimensions were
compressed between platens and
wearpads

e 350 mm height, 150 mm width and
150 mm length

e 150 mm height, 100 mm width and
100 mm length

Establish the status

Chapter 3 begins with explanation of

scientific method adopted.
of the current . o .
knowledge in Literature Survey Adglltlonally, four topics  were
reviewed; buckling, RHS, FEM and
relevant areas . .
experimental design
Establish Use experimental
theoretical P RHS Ring explained as an assemblage

development and

observations to

of columns and beams. RHS pieces

define methodology establls:h explained as an assemblage of plates.
. theoretical . .
to design telescope Analysis was done for RHS Rings and
. developments .
inner beam pieces between platens and wearpads
theory
assembly
. Validate FE models of RHS Rings and
Establish g

influencing factors
for RHS Rings,
RHS pieces
between wearpads

Use experimental
designs to acquire
influencing factors

RHS pieces against experimental data.
Used screening experiments and
response surface design to acquire
influencing factors
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Table 6: Research methodology (Continued)

Validate design Apply step by step

methodology for method to design | Using screening experiments, list the
inner beam and optimize the influencing factors. Conduct a Central
assembly, establish | inner beam Composite Design (CCD to establish
mathematical assembly of a the mathematical model. Use model to
model for case telescopic optimize design for the given
study and optimize | cantilever constraints.

design assembly

1.7 Summary of Results

The behavior of the overlap region of the inner beam was analysed as (i) two

RHS rings or RHS pieces and a middle connecting part and (ii) as a whole piece. The

following behavior was established for the RHS rings, RHS pieces and the Overlap

region as a whole.

Exploratory experimentation with RHS rings between platens suggested that
the flanges behaved as beams under end moments and the webs behaved as
columns under axial loads and end moments. Experiments with RHS rings
loaded through the wearpads suggested that the wearpads contributed an
additional end moment compared to the RHS Ring behavior under loading
between platens. Under both loading conditions, the flanges curved inside

while the webs curved outside and the webs formed hinges in the middle.

2
. . 7 El .
Theoretical model suggested that the critical load P, = — 2 with a value

fork, between 1 and 4 because of the degree of constraints at the corner joints.

Exploratory experimentation with RHS pieces between platens suggested that
the RHS piece behaved as assembly of four plates — two vertical (webs) and
two horizontal (flanges). In contrast to the RHS Rings, the flanges in the RHS

pieces acted as plates instead of beams under end moments and the webs
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behaved as plates under axial loads and end moments. Experiments with RHS
pieces loaded between the wearpads also suggested that the wearpads
contributed an additional moment compared to the RHS piece behavior under
loading between platens. In the specimens of both experiments the flanges
curved inside while the webs curved outside and the webs formed hinges in the

middle.

For a rectangular plate of height ‘b’ and thickness ‘t’, the critical stress

2
E
=k il with a value for k, between 4 and 6.97 because of
(Gx )cr 2 12(b/t)2 (1_02) 2

the degree of constraints at the edges.

Exploratory FEA suggested that the maximum stress occurs in the overlap
region of the inner beam in the vicinity of the bottom wearpad. In the bottom
flange of this region, high stresses occur due to the bending stress due to the
tip load and due to the bending stress due to the corner moments from the loads
through the wearpads. The webs in this region suffers the maximum
compressive stress near the bottom that may also lead to buckling. The
magnitudes and the buckling behavior are case dependent and a methodology

for the design is suggested as shown in Figure 14 below.



List the factors proven and assumed to be significant
in the Inner Beam Assembly for Maximum load

’

Design and conduct a screening experiment to identify
the influential factors for maximum load

'

Design and conduct a Response Surface Design to
identify the significant factors and fit a mathematical
model for maximum load

Conduct a validating
experiment

Establish the main factor and interaction plots and based
on them explain the behavior of a specific inner beam
assembly of a telescopic beam

Y

Use the knowledge of the behavior, sizes and ranges of
the available material and design parameters, and the
mathematical model to predict, to propose various
combinations (designs) and choose one

!

Conduct a validating analysis before finalizing the
chosen design

30

Include more factors which were
ignored based on analyses of Rings
and RHS pieces

Figure 14: Design methodology flowchart

1.8 Structure of Thesis

The thesis consists of eight chapters. Chapter 1 introduces the background and

the research question and establishes the objectives of the research.

Chapter 2 describes the literature survey segregated in five sections; Scientific

Method, Buckling, Rectangular hollow sections, FEM (Finite Element Method) and

Experimental Design.

Chapter 3 describes the exploratory Finite Element Analyses on telescopic

beams and experimental investigations on RHS rings and RHS pieces.
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Chapter 4 describes the theoretical developments based on the results of the
qualitative experiments in Chapter 3 and the literature survey in Chapter 2.

Chapter 5 is a case study on RHS rings. It determines the influencing geometric
factors affecting the maximum load carrying capacity of RHS rings using validated FE
Models and design of experiment methods.

Chapter 6 is a case study on RHS pieces. It determines the influencing
geometric factors affecting the maximum load carrying capacity of RHS pieces using
validated FE models and design of experiment methods.

Chapter 7 is a case study on the inner beam assembly of a telescopic cantilever
assembly. It implements the methodology established in Chapter 4 to establish a
mathematical model and optimize the design of the inner beam assembly of a
telescopic beam assembly.

Chapter 8 describes the discussion and conclusions drawn from the research.

Appendix | shows the material test report for the RHS ring sample.

Appendix Il lists the DOE tables for the case study of the RHS rings.

Appendix Il lists the DOE tables for the case study of the RHS pieces.

Appendix 1V lists the DOE tables for the case study of the inner beam assembly

of the telescopic beam.
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Chapter 2: Literature Survey

This chapter describes the summary of the current frontiers of knowledge, which
is needed to build the knowledge further. It categorizes them under seven groups for easy

comprehension and each category is described by each of the following subsections.

2.1 Scientific Method

Science is a determination of what is most likely to be correct at the current
time with the evidence at hand. Scientific explanations can be inferred from
confirmable data only, and observations and experiments leading to science must be
reproducible and verifiable by other individuals. Scientific method is a methodological
approach to the process of inquiry — in which empirically grounded theory of nature is
constructed and verified [22]. The origin of modern scientific method occurred in
Europe in the 1600s: involving a chain of research events from Copernicus to Newton
[22]. The scientific method may include some or all of the following “steps” in one
form or another: observation, defining a question or problem, research (planning,
evaluating current evidence), forming a hypothesis, prediction from the hypothesis
(deductive reasoning), experimentation (testing the hypothesis), evaluation and
analysis, peer review and evaluation, and publication [23], [24].

The trigger for this research was the observation of magnification of the tip
reactions (explained in section 1.2.2). The curiosity from this observation led to an
exploratory FEA and experimental investigations on RHS rings and RHS pieces as
described in Chapter 3. This chapter describes the literature survey carried out to know
the current frontiers of knowledge in relevant topics. This will assist to formulate the
hypothesis to establish knowledge that can help to explain or design the overlap areas

of telescopic cantilever beams.
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2.2 Buckling

Buckling is a physical phenomenon of a straight and slender member abruptly
bending laterally from its longitudinal position due to compressive loading [20].
Structural members fail resisting tension, shear or torsion when the stress in the
member reaches a certain limiting strength of the material. Buckling on the other hand
does not take place as a result of the resisting stress reaching a limiting strength of the
material. In thin-walled structures, because of the low thickness to width ratio, it is
likely that the structure will buckle under compressive, bearing, and shear bending
forces [25]. Therefore, for structural members consisting of thin-walled profiles, the
ultimate strength is greatly influenced by its buckling capacity [26].

As discussed in section 1.2.1, the stress at which buckling occurs depends on a
variety of factors such as the dimensions of the member, boundary conditions and the
properties of the material of the member. Determining it is complicated and is analysed

under the heading Stability Analysis.

2.2.1 Stability Analysis

The concept of the stability of various forms of equilibrium of a compressed
bar is frequently explained in literature [27] by considering the equilibrium of a ball
in various positions, as shown in Figure 15. Consider the equilibrium of the ball in
Figure 15(a). Any slight displacement of the ball from its position of equilibrium will
raise the center of gravity and work is required to produce such a displacement. In

other words energy input is required.
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22 2

(a) (b) (c)

Figure 15: Equilibrium positions of a ball (a) Stable (b) Unstable (c) Neutral [28]

Now consider the equilibrium of the ball in Figure 15(b). If it is disturbed
slightly from its equilibrium position it will continue to move down. The equilibrium
of the ball in Figure 15(b) is called unstable equilibrium. Any slight displacement from
the position of equilibrium will lower the center of gravity of the ball and consequently
will decrease the potential energy of the ball. Thus in the case of stable equilibrium,
the energy of the system is a minimum (local), and in the case of unstable equilibrium
it is a maximum (local).

Now consider the equilibrium of the ball in Figure 15(c). If displaced slightly,
it neither returns to its original equilibrium position nor continues to move away upon
removal of the disturbing force. It finds another equilibrium position. This type of
equilibrium is called neutral equilibrium. If the equilibrium is neutral, there is no
change in energy during a displacement in a conservative force system.

A column under axial compression responds in a very similar manner to that
of the ball in Figure 15. The straight configuration of the column is stable at small
loads, but it is unstable at large loads. A state of neutral equilibrium exists at the
transition from stable to unstable equilibrium in the column. Then the load at which
the straight configuration of the column ceases to be stable is the load at which neutral

equilibrium is possible. This load is usually referred to as the critical load.
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At critical load, the member can be in equilibrium, both in the straight and in a
slightly bent configuration. The method that bases this slightly bent configuration for
evaluating the critical loads is called the method of neutral equilibrium, neighboring
equilibrium, or adjacent equilibrium. At critical loads, the primary equilibrium path or
stable equilibrium, reaches a bifurcation point and branches into neutral equilibrium
paths.

The bifurcation-type buckling is a purely conceptual one that occurs in a
perfectly straight (geometry) homogeneous (material) member subjected to a
compressive loading of which the resultant must pass through the centroidal axis of
the member [14]. The importance attached to and the considerably large amounts of
research devoted to bifurcation-type loading is justified in that the bifurcation-type
buckling load or the critical buckling load gives the upper bound solution for practical
columns [29].

As explained in section 1.3.4, for an axially loaded pin-ended column, the

smallest buckling load for a pinned prismatic column corresponding to k, =1 is

Table 4 in Chapter 1 gives a summary of the buckling loads for some specific

boundary conditions and is repeated here again as Table 7. The value of k, is

dependent on the boundary conditions.



Table 7: (Repeated) Buckling loads for different boundary conditions

Pinned-Pinned | Fixed-Free Fixed-Fixed Fixed-Pinned
Column Column Column Column
L] l |
L,
L L L,

2 2 2 2
p - T 2EI - T EZI p - 4 2EI p - 2.046;: El

L 4Ll L L
L, =L L, =2L L, =05L L, =0.7L
k, =1 k, =0.25 k, =4 k, = 2.046

Considering F, for the pinned-pinned column gives

Where A is the slenderness ratio.

2.2.2 Eccentric Loading

3.1)
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Columns designed for axial load are discussed in section 2.2.1 above.

However, for situations where the load is eccentric, columns are analyzed differently.

When a column is eccentrically loaded, bending can be a severe problem and may be

more important than the compression stress or buckling.

Columns under eccentric loading can be treated as columns under axial loading

with an additional external moment acting on the loading end as shown in Figure 11

and repeated in Figure 16 below. As the load is increased, the moment will increase
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and cause the beam to bend further. Viewed this way, the problem of buckling is not a
question of determining how long the column can remain straight and stable under the
increasing load, but rather how much the column can be permitted to bend under the
increasing load, if the allowable stress is not to be exceeded and if the deflection ‘y’ is

not to be excessive.

A x Ax
Pl‘e_,

Y|P
L | | [|Arbitrary
3

Plane M=Py+Pe

Y
\J

y AL y
Pe 3

(a) (b)
Figure 16: (Repeated) (a) Column under eccentric loading (b) FBD at an arbitrary
plane
Consider bent column shown in Figure 17(a). At the midpoint of the beam the
deflection will be maximum. Hence the bending moment will also be at a maximum.

This follows that the bending stress also will be at a maximum.
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Figure 17: Combined axial and bending stresses

Axial stress % due to the compressive load P will be distributed uniformly

throughout the cross section. But the major addition is the bending stresses, which
reach very high values when the deflection increases. The stresses in the extreme fibers
are maximum within each section. The stress in the inner section is compressive and
IS maximum at the inner most fiber. This combined with the axial stress makes the

stress in the inner most fiber at mid-height of the beam to reach the maximum at

-0, — P first to trigger yielding. The outer most fiber will be under tensile stress and
A

the magnitude is o, —% :
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2.2.3 Load Deflection Behaviour of Steel under Compression

Steel being a ductile material has a stress — strain diagram in compression test
similar to its tensile test. It has an elastic region, proportional limit and a plastic region

that follows.

[

- .
-— plastic deformation
elastic — compression({or strain)
deformation

compressive load (or stress)
e
.r""-_-""‘-n,_
\,___,..-f‘_
7N
M

Figure 18: Compressive stress vs compressive strain diagram

In tension test, a specimen is being stretched, necking may occur, and
ultimately fracture takes place. On the other hand, when a small specimen of steel is
compressed, it begins to bulge on sides and becomes barrel shaped as shown in Figure
18 before it fails. The graph shows that the material’s strength to carry load still
increases in the plastic region even though it produces a higher increase in strain for a

small increase in stress.
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2.2.4 Collapse Load with Columns with Various Slenderness Ratios

PA| i
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Figure 19: Average stress in columns versus slenderness ratio[1]

Gere [1] explains the behavior of steel columns with various slenderness ratios
in the form of a graph as shown in Figure 19. The curve ABCD shows the collapse
load of the columns with small to large slenderness ratios. The short columns fail due
to the collapse of the material represented by the region AB in the curve. The

intermediate columns fail due to inelastic buckling. The long columns represented by

the region CD fails due to elastic buckling. He estimates/1Cr of steel as

7% x 210000

300 =83.07 by considering yield strength and Young’s modulus of steel.

For short steel columns, the slenderness ratio should be less than ten. The

columns, which have slenderness ratio in the range between 10 and 83 are classified
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as intermediate columns. They lose their stability by inelastic buckling. Inelastic

buckling is characterized by its occurrence after yielding has started and it occurs

between the yield strength o, and ultimate strength oy, ..

2.2.5 Buckling and Buckling Modes

As explained above, buckling can occur both elastically and inelastically.
Elastically, three kinds of buckling can occur in a member; local, distortional and
global [30]. In case of local or distortional buckling there exists a post-buckling reserve
capacity, which allows extra load to be applied. If the member buckles globally there is
no allowance for additional load and the member collapses [26]. Global buckling can

further be classified into flexural, torsional and flexural-torsional buckling.

The buckling phenomenon classified in terms of the buckling modes are as

shown in Table 8.

Table 8: Modes of buckling classification [7], [8]

MODE DESCRIPTION VISUALIZATION

Flexural It may involve  transverse
displacement of the member cross-

section and is resisted by the flexural

rigidity of the member. It occurs
when the second-order moment
caused by the product of the axial
compression  forces with  the
displacements are equal to the

A
SN R PR, S i S

internal bending resistance at any
point in the structure.
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Table 8: Modes of buckling classification (Continued)

MODE

DESCRIPTION

VISUALIZATION

Torsional

This involves twist of the member
cross-section, and is resisted by the
tensional rigidity and the warping
rigidity. It occurs when second-order
torque caused by the axial
compression force and the twist are
equal to the sum of the internal
torsion resistances at any point in the
structure.

Flexural-
Torsional

This involves the mixture of two
above phenomena and therefore
resisted by the combination of the
bending resistance and the torsional
resistance.

Local

This mode involves deflection of a
thin plate out of its original plane.
This mode occurs when the second-
order actions caused by the in-plane
compressions and the out of plane
deflections are equal to the internal
resistances of the plate elements to
bend and twist at any point in the
structure.

Distortional

This is an intermediate mode
between local and member buckling.
It often involves web flexure and
corresponding  rotations of the
flanges which vary slowly along the
member length.

It is worth noting that local buckling involves plate-like deformations alone,

without the translation of the intersection lines of adjacent plate elements, whereas
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distortional buckling is a mode with cross-sectional distortion that involves the

translation of some of the fold lines (intersection lines of adjacent plate elements) [31].

2.2.6 Plate Buckling

Plates are initially flat members bounded by two parallel planes called faces
and a cylindrical surface called an edge or boundary [32]. The generators of the
cylindrical surface are perpendicular to the plane faces. Distance between the faces is
the thickness h of the plate and for thin plates assumed it is small compared to other
dimensions. The thickness h is divided into two halves by a plane parallel to the faces
and this plane is called the midplane. When the plate bends, the midplane also bends
and the bent form is called the mid surface. Plates may be classified into three groups
according to the ratio a/h where a is a typical dimension and h is the thickness [32].

i.  Thick plates having an a/h ratio less than 8 to 10

Their analysis include all the components of stresses, strains, and
displacements as for solid bodies using the general equations of three-dimensional
elasticity.

ii.  Membranes having a/h greater than 80 to 100

They carry the lateral loads by axial tensile forces N (and shear forces) acting

in the plate middle surface. These forces are called the membrane forces.
iii.  Thin Plate with a/h between 8 to 10 and 80 to 100

Depending on the value of the ratio, maximum deflection to thickness w/h, the
part of flexural and membrane forces here may be different. Therefore they are
classified into two classes called stiff (w/h up to 0.2) and flexible (w/h = 0.3) plates.

Majority of the plates considered here falls in the membrane or thin category.
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In column buckling adjacency equilibrium method was used and the bent
column was analysed as a bent beam to derive the critical load for buckling. Ina similar
fashion a bent plate can be analysed to establish the buckling load for an axially loaded
plate. Bending of a plate, however, involves bending in two planes and from a
mathematical point of view, the quantities such as deflections and bending moments,
become functions of two independent variables [33]. As a consequence of this, the
behavior of plates is governed by partial differential equations, which increases the
complexity of the analysis. Plate buckling is usually referred to as local buckling [14].
Structural shapes composed of plate elements may not necessarily terminate their load-
carrying capacity at the instance of local buckling of individual plate elements and this

adds further difficulty [34].

2.2.7 Theory of Plates

The objective of thin-plate theory is to reduce a three-dimensional (complex)
problem to an approximate (practical) one based on the following simplifying
assumptions known as Kirchoff’s assumptions [35]:

i.  Normals to the undeformed middle plane are assumed to remain normal to the
deflected middle plane and in extensional during deformations, so that
transverse normal and shearing strains may be ignored in deriving the plate
kinematic relations.

ii.  Transverse normal stresses are assumed to be small compared with the other
normal stresses, so that they may be ignored.

The resulting forces and moments acting on a plate element according to these
assumptions are shown in Figure 20. With these the following three sets of equations

can be derived:
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i.  Kinematic Equations relating deflection and curvatures

ii.  Constitutive Equations relating curvatures and bending moments

Equilibrium Equations relating transverse load and bending moments

Q,

M,,

wr
Ny i

T,y

Figure 20: Forces and moments acting on a plate element

Internal forces (generalized) acting on the edges of a plate element dxdy are

related to the internal stresses by the equations in Table 9 [14].

Table 9:

Plate forces and moment equations
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2
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The barred quantitiesZx,O0x etc. are components at any point through

thickness. 7, , 0, are quantities in the mid-surface.

The kinematic equations relating the curvature of the mid-surface to deflection

are:
K = o°w
o ox?
K = o°w
" = oy (3.2)
K = O*w
Y oxoy

The constitutive equations relating curvature of the mid-surface and bending

moments are

M., = Dlk,, + vk, |
Dk, + vk,

= DE K, 1+ u)}

M
w (3.3)
MXY

Eh®
where D =~(—) the isotropic plate rigidity.
The equilibrium equation relating moments and the applied load is

2 o°M o°M
0 MZXX + L+—F=p (3.4)
OX OXoy oy
Combining these three sets of equations give the partial differential equation

of the deflection surface given by

o'w  o'w  o'w
D{ ox* ' oxioy? | oy } =P (3.5)
This equation is called the biharmonic equation. This is similar to the equation

d2
El Wﬁ’ =M in the beam.
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2.2.8 Plate under Axial Loading

Consider a plate simply supported on four edges and subjected to compressive
load N, per unit length uniformly distributed at the edges x=0, @ as shown in Figure

21.

ol

|

b

Y
[ 3

Figure 21: Simply supported plate in all four sides

The critical buckling load, (N, ), ,and the critical buckling stress, (GX)Cr for

the simply supported plated is calculated as shown [7], [27], [36]:

The harmonic equation for a plate in general is

(3.6)

4 4 4 2 2 2
8\2V+2 82Wz+a\f1v:l Nxﬁ_\lzv+Nya_\iv+2ny6W
OX ox-oy® oy D OX oy OXoy

When subjected to a uniform compressive force N, per unit length in the x

direction, the harmonic equation becomes

(3.7)

o*w o'w  o*w 1(N GZWJ

+2 + =—— —
ox*  oxPoy® oyt D Ox?

Any function f(x) can be defined by a Fourier series
a, - n . N
f(x)=24+>(a, cos X +o, sin —m()
2 L L

For functions where the domain is 0 < X < L, only the sine series is used.
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LX) = %+an sin”T’ZX (3.8)
n=1

15 . nax 2
whereb, :Ejf(x)sdex_ L-[ f(x)sm—dx

-L 0

From (3.8), for L=a,

w(x,y) = Z A (y)sm—

m=1,2

w(x,y) = i [iwmn sin %)sin%
WX, Y) = ZZsinm?ﬂXsinnTﬂy (3.9)
Substituting (3.9) in (3.7)
4

o33 ™ s T35 | O s

a

iZsm—sm ﬂy ZZ(W[) sin gysin m7x

a

Therefore, LHS of (3.7) is
mz\* mz\’(nz\’ (nrz) nzy . mzax
— | +2— || —| +|— sin —=sin —— .
x| A% () (b)}wm Yo" @
o*'w  (mzx m X
Now, —- = w sm sm—
() s k
Therefore, RHS of (3.7) is

1 mz\’ . max . nay
—N — | W_, SsIn——-sin— 3.11
SN[ sin ™ sin ™ @)

Equating (3.10) and (3.11), we get

R RN R
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~(N,) _D(mz/a2+n2/b2)2_ 7’ Et? [m+ a T
T e m?/a’ 120-v?)la mb?
. ) (3.13)
_ rm°Et [m_b i}
“120%(-0?)L a  mb
2
m a
Letk, ={g+ mbz} and(N,), =(o,),t
2
E
(o)), = i (3.14)

k
212(b/t)(1-0?)
Where,

(N, ), is the critical buckling load

(O'X )Cr is the critical buckling stress

Figure 22 shows a segment of a long plate having thickness ‘t” and length ‘b’.
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Figure 22: Segment of a long plate with thickness t and width b [37]

The local plate buckling co-efficient, ko, for plate in compression at section A-

A shown in Figure 22 with varied boundary conditions is given in Table 10.
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Table 10: Local plate buckling co-efficient, ko, for plates in compression with varied

boundary conditions [37]

Case | Description of edge support | ko At Section A-A
1 | Both edges simply supported | 4.0 i ) b . i
4
D
2 | One edge simply supported, | 5.42 /} § |
the other fixed A =~ | _ x:f
3 | Both edges fixed 6.97 //.ll_ _ it _ |
I
4 | One edge simply supported, | 0.425 | | {t |
the other free T = |
5 | One edge fixed, the other 1.277 ;1| 'k |
f - —
ree A -1

2.3 Rectangular Hollow Sections

e Definition:

Square Hollow Sections (SHS) and rectangular hollow sections (RHS), are

types of hollow tubular sections that are widely used due to the recognition of the

inherent aesthetic and structural advantages [38]. It is now well recognized that for

thin-walled hollow section, the longitudinal residual stresses are in tension at outer

surface and in compression at inner surface, and the distribution is assumed to be linear

through the thickness [39]. These types of structural members are the fundamental

constituents of the telescopic cantilever beams and the literature therefore is analyzed

in detail in the following sub-sections.
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2.3.1 Hollow under Axial Compression and Bending

Four types of tests: (a) four point bending tests (b) three point bending tests (c)
axial compression tests and (d) combine loading tests are reported in this category.

Four Point Bending Tests: The papers involving the four point bending tests
involve experimental investigations carried out on flexural behavior of specimens
under pure bending brought about by four-point bending tests. Four-point bending tests
involve placing a simply supported specimen at a set distance apart. Loading is applied
at two loading points on the specimen at an equal distance around the center. The load
is applied at a constant rate until the failure of the sample. Hollow sections of different
shapes and sizes were investigated for their flexural behavior under four-point bending
tests: Chen et al. [40] tested concrete filled stainless steel SHS and RHS tubes. Zhao
and Bock [41]-[43], tested SHS and RHS stainless steel tubes under bending. Zhao
and Young [44], tested normal strength and high strength steel SHS and RHS tubes.
Zheng et al. [45] tested cold formed stainless steel CHS and RHS tubes. Huang and
Young [46] tested SHS and RHS tubes cold rolled from flat plates of lean duplex
stainless steel. In addition to SHS and RHS tubes, Theofanous et al. [47] also
conducted experiments on I-section tubes. Typical data from these experimental tests
showed ultimate moment, failure modes and bending moment-midspan deflection
curves. Chen et al. [40] also showed overall deflection curves, strain distribution
curves, and flexural stiffness obtained from the bending moment-midspan deflection
curves. Typical bending moment versus midspan deflection curves show elastic stage,
elasto-plastic stage, post-ultimate stage and unloading stage [40]. The failure mode in
all these papers was local buckling. Zheng and Huang et al. [48], [49] developed Finite

element models in ABAQUS and validated them using the experimental test data. In
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Zhao and Huang et al. [42], [46] assigned S4R elements to the tube in the FE model
and used a Riks analysis. Similarly, Zheng et al. [45], built an FE model using S9R5
elements and conducted an Eigen value analysis. Using the validated FE models,
parameter studies were conducted to expand test data with different material properties
and geometric parameters.

All these tests suggest appropriate design rules improvements for incorporation
in steel design standards.

Three Point Bending Tests: In this section, papers highlight experimental
investigations carried out on flexural behavior of specimens subjected to three-point
bending tests. A three-point bend test consists of the specimen simply supported
between rollers and the force applied to the top of the sample through a single point.

Theofanous and Bock et al. [50], [51] showed testing of lean duplex stainless
steel SHS and RHS tubes. For the experiments, Theofanous et al. [50] rolled the SHS
and RHS tubes into shape and welded them on the bottom flange. In addition to SHS
and RHS tubes, Theofanous [47] also tested I-section austenitic and stainless steel
tubes. Gardner et al. [52] also conducted tests on SHS, RHS and CHS cold formed
stainless steel tubes.

Typical data from these experimental tests showed ultimate moment, failure
modes and bending moment-rotation curves and bending moment-vertical
displacement at mid-span. The failure mode in all these papers was local buckling.

Theofanous et al. [50] developed FE models in ABAQUS and validated the
models using the test data. S4R elements were used in the model and analysis type was
Riks analysis. Using the validated FE models, parameter studies were conducted to

expand test data with different material properties and geometric parameters.
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All these tests were conducted to assess design guidelines and suggest
improvements or validate current codes.

Axial Compression Tests: In this section, long columns and stub columns were
compressed to obtain cross-sectional load carrying capacity under pure compression.

Specimens tested included SHS and RHS tubes [41]-[43], [53]-[55], CHS
tubes [52] and I-sections [47].

Typical test data acquired involved obtaining load-carrying capacity under
pure compression and Load-end shortening curves. All specimens tested by Zhao et
al. [41], failed by inelastic local buckling. Experimental tests conducted by Zhao,
Block and Theofanous et al. [42], [51], [47] showed local buckling. Wang et al. [56],
conducted experiments showing failure modes of local buckling, elephant-foot
buckling and global buckling triggered by initial local buckling. Gardner [52] tests on
columns with slender cross-sections first showed elastic buckling, then plastic
buckling and then reached ultimate load at relatively small lateral deflections, whereas
the columns with stocky cross-sections reached ultimate load at higher lateral
deflections. Failure modes observed included overall flexural buckling and global
local buckling interaction.

As explained for the four-point bending tests by Zhao et al. [42], FE models
using S4R elements with the Riks analysis in ABAQUS were validated against test
data and used further for parametric studies.

Again, load—deformation histories helped assess design guidelines.

Combined Loading: Combined loading involves testing specimens under
uniaxial bending plus compression. To provide the bending moment, loading

eccentricities were provided.
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Zhao et al. [41], [42] and Arrayago [57], tested SHS and RHS tubes under
combined loads. Failures modes involved in-plane bending and flexural buckling for
all. The more slender sections displayed an additional local buckling. Results included
load vs mid-height deflection curves [41] and load-end rotation curves [42].

Again, experimental data (deformation shape and load-mid height deflection
curve) was used to validate FE model and the validated FE model used further for
parametric studies [41].

Obtained results were used to prove improvements needed on existing
standards.

Zhao et. al [58], reviewed the current beam-column design methods and
established methodologies for overcoming the shortcomings by deriving new beam-
column design proposals involving the derivation of new beam-column interaction
factors resulting in improving capacity predictions. The reliability of the new proposals

was confirmed by statistical analyses.

2.3.2 Hollow Sections under Transverse Compressive Loading

Reddy and Reid [59] report large deformations of circular metal tubes
compressed between platens. Measured strain values and those predicted by the
plastica theory were compared and the difference attributed mainly to strain hardening.
An attempt to rectify the error was made unsuccessfully. They also introduce the
concept of plastic hinges to determine collapse load. Sinha and Chitkara [60] report
experiments on square rings to determined theoretically its plastic collapse load when
compressed between rigid plates. They made assumptions: (1) the vertical members of
the rings treated as columns subjected to axial loads (2) formation of plastic hinges at

mid-points of the member arms and (3) constant co-efficient of friction between the
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platens and rings. The accuracy of the developed theory diminished as the length of
the ring increased and this was attributed to the deformation of the ring changing with
the length. Gupta and Ray [61] analyzed the collapse of empty and filled square tubes
laterally compressed between platens. They presented experimentally obtained load-
compression curves and tube shape at various deformation stages. They considered
plastic hinges formation for obtaining peak load and frictional force between platen
and tube and equated slopes of webs and flanges for theoretical analysis. Gupta and
Khullar [62] describe an improved analysis for collapse load of square and rectangular
tubes, by considering the initial out of straightness of the arms and corner roundness
of the sections. The results obtained compared well with the theory. They identified
that eccentricities in loading caused by the corner radius and out-of-straightness
resulted in large bending stresses at mid-height of the vertical arms compared to a
direct compressive stress. Eccentricities caused the tubes to collapse at loads much
lower than the buckling loads.
Gupta and Sinha [63], [64] describe plastic collapse of square and rectangular tubes
laterally compressed between indenters experimentally. Gupta and Khullar [65], [66]
investigated lateral compression of rectangular tubes placed compressed between
orthogonally and non-orthogonally placed indenters. The load versus compression
obtained was analysed in both these sets of papers. They considered stationary and
rolling plastic hinges in their theoretical collapse load analysis the computed results
and experiments were in agreement. Although the placements of indenters vary, these
papers develop the theory to predict the collapse behavior based on experiments.
Gupta and Khullar [67] and Gupta and Sinha [68] describe experimental study

of compression of square section tubes placed orthogonally in two and multiple layers
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between platens. Load-compression curves were obtained and theoretical analysis
based on stationary and travelling plastic hinges were carried out. The results were
found to be in agreement.

Gupta et al [69] report an experimental and FE analysis study of SHS and RHS
subjected to lateral quasi-static loading. They experimentally obtained deformed
shapes, load-compression curves, energy-compression curves and compared FEA
results. Again, plastic hinge formation was explained.

Lateral compression of hollow tubes allow for efficient energy absorption, and
have hence been the subject of extensive research with respect to their plastic collapse
and energy absorption capacity. While this group of papers concentrate on the analysis
of tubes (square/ rectangular/ circular/ triangular) in the plastic area, the behavior of
the RHS tubes is not detailed before the maximum load. Therefore, the theoretical
developments shown in Chapter 4 concentrates on the behavior of the RHS tubes
before the maximum load capacity is reached. The recommended theoretical analysis
in this thesis is adapted from the ‘collapse load of empty tubes’ given by Gupta and

Ray in [61].

2.3.3 Hollow Sections under Impact and Crushing Loads

In this section, the investigation of the crushing behavior of hollow tubes is
studied. Tran and Ton [70] investigate the lateral crushing behavior of RHS and SHS
tubes through experimental testing and theoretical analysis. A comparison between the
two tube types show average crushing force of the RHS is smaller than that of the SHS.
However, the crushing mechanism is identical. Experimental data obtained involves
force—stroke curves and deformed shape of tubes. The average crushing force at each

stage was done by using plastic hinge formation and deformed shape experimentally
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obtained. Bambach, Liu and Jilin et al. [71]-[73] conducted experimental and
analytical investigations of SHS beams subjected to static and transverse impacts at
the beam mid-span. Here, elastic—plastic theoretical methods were developed to
establish force—displacement and energy absorption relationships for hollow and
concrete filled sections.

This section again highlights how experimental observations and data are used
to formulate theoretical explanations and models. This method of using experimental
observations to develop theoretical models is followed in this research and detailed in

Chapter 4 of this thesis.

2.4 Finite Element Method

2.4.1 Introduction

Finite Element Method is a Numerical Method employed for Engineering
Analysis and can be described in the following way [74], [75]:

Finite Element Method can be described as a method where (a) the Field
Variables at the infinite number of points in a continuum is represented by those at a
chosen finite number of points called nodes (b) their values are then calculated using
some engineering principles and other governing relationships and (c) finally the
values of the field variables at all intermediate points are calculated by interpolation

using the shape functions.

2.4.2 Steps in FEA

Logan [75] describes that a typical analysis is made up of the following eight

steps:
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e Discretize and select the element types

This involves dividing the body into a system of finite elements with associated
nodes and building the model based on choosing the most appropriate element type to
represent the actual physical behavior. The element size should be small enough to
give usable results yet large enough to reduce computational effort.

e Select a displacement function

This step involves choosing a displacement function within each element.
Within each element, the function is defined using the nodal values of the element.
Most often, linear, quadratic, and cubic polynomials are used and occasionally
trigonometric series can be used. The FEM is one in which a continuous quantity
(example: displacement), is approximated by a discrete model composed of piecewise-
continuous functions defined within each finite element.

o Define the strain/displacement and stress/strain relationships

Strain/displacement and stress/strain relationships are necessary for deriving
the equations for each finite element. The strain is derived from the displacements and
the stresses are related to the strains through the stress/strain law — generally called the
constitutive law.

e Derive the element stiffness matrix and equations

The following methods are used to derive the element stiffness matrix and
equations:

o Direct equilibrium Method:
Force equilibrium conditions for a basic element, along with force/deformation

relationships are used to obtain the stiffness matrix and element equations relating
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nodal forces to nodal displacements. This method is used for one-dimensional
elements.
o Work or Energy methods:

For two-and-three dimensional elements, it is much easier to apply a work or
energy method to develop the stiffness matrix. The principle of virtual work, the
principle of minimum potential energy, and Castigliano’s theorem are methods
frequently used for the derivation of element equations. All three principles yield
similar element equations for linear-elastic materials; thus the choice of method is a
matter of convenience.

o Methods of Weighted Residuals:

These methods allow the FEM to be applied directly to any differential
equation. Galerkin’s method is the most popular of these methods. The Galerkin
Method is useful for solving differential equations in solid mechanics, fluid mechanics,
heat flow and electrical engineering [76]. These methods yield equations to describe
the behaviour of an element which are written in a matrix form as

{f}=Iklid} (3.15)
where {f }is a vector of element nodal forces, [k] is the element stiffness

matrix and {d }is the vector of unknown element nodal degrees of freedom or
generalised displacements, n. Here, generalised displacements may include such
quantities as actual displacements, slopes or even curvatures.

e Assemble the element equations to obtain the global or total equations and

introduce the boundary conditions
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In this step, the individual element nodal equilibrium equation generated
previously are assembled the global nodal equilibrium equation written in the matrix
form as

{Fi=[<Kd} (3.16)
where {F } is a vector of global nodal forces, [K]is the structure global
stiffness matrix and {d }is the vector of known and unknown structure nodal degrees

of freedom or generalised displacements.

The global stiffness matrix [K ]is a singular matrix. To remove the singularity
problem, the boundary conditions are invoked so that the structure remains in place.

e Solve the unknown degrees of freedom

After modifying the global nodal equation for the boundary conditions, the
equations can now be solved for the d’s by using an elimination method such as
Gauss’s method.

e  Solve for the element strains and stresses

Typical relationships between strain and displacements can be used to
determine secondary quantities of strain and stress (or moment and shear force) in
terms of the displacements determined in the previous step.

e Interpret the results

The final goal is to interpret and analyze the results for use in the
design/analysis process. Postprocessor computer programs help the user to interpret

the results by displaying them in graphical form.
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2.4.3 Types of Analyses

e Static Stress Analysis

A static stress analysis does not depend on time and is used when inertia effects
can be neglected. It can be linear or nonlinear.

In a linear static analysis displacements, strains, stresses, and reaction forces
under the effect of applied loads are calculated. Here, the relationship between the load
applied to an object and the response of the object is linear.

Nonlinearities can arise from large-displacement effects, material nonlinearity,
and/or boundary nonlinearities such as contact and friction and must be accounted for.
These non-linearities are accounted for in a non-linear static stress analysis.

e Eigen Value Analysis for buckling

Eigenvalue buckling is generally used to estimate the critical buckling loads of
stiff structures (classical eigenvalue buckling) [77]. The response of stiff structures
usually involves very little deformation prior to buckling. A simple example of a stiff
structure is the Euler column, which responds very stiffly to a compressive axial load
until a critical load is reached, when it bends suddenly and exhibits a much lower
stiffness. Thus, for example, when minimizing weight of the telescopic beam structure
used as a lift and reach device, its stiffness and load carrying capacity are to be
preserved [78]. Even when the response of a structure is nonlinear before collapse, a
general eigenvalue buckling analysis can provide useful estimates of collapse mode
shapes.

An incremental loading pattern, QV, is defined in the eigenvalue buckling
prediction step. The magnitude of this loading is not important; it is scaled by the load

multipliers, A, found in the eigenvalue problem [77]:
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(K™ + 2K o =0 (3.17)
where,
K(;WI is the stiffness matrix corresponding to the base state, which

includes the effects of the preloads (if any)
K M is the differential initial stress and load stiffness matrix due to
A

the incremental loading pattern

yi are the eigenvalues
M are the buckling mode shapes (eigenvectors)

Mand N refer to degrees of freedom M and N of the whole model
I refers to the ith buckling mode
The critical buckling loads are then

P" + Q" (3.18)

Normally, the lowest value of 4; is of interest.

The buckling mode shapes, UiM , are normalized vectors and do not represent

actual magnitudes of deformation at critical load. The buckling mode shapes are often
the most useful outcome of the eigenvalue analysis, since they predict the likely failure
mode of the structure [77].

o Riks Analysis

Obtaining nonlinear static equilibrium solutions for unstable problems is often
necessary, where during periods of the load displacement response, the load and/or the
displacement may decrease as the solution evolves. The modified Riks method used
in ABAQUS is an algorithm that allows effective solution of such cases.

In this method, the solution is viewed as the discovery of a single equilibrium

path in a space defined by the nodal variables and the loading parameter. The basic
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algorithm is the Newton method; therefore, at any time there will be a finite radius of
convergence. Further, many of the materials (and possibly loadings) of interest will
have path-dependent response. For these reasons, it is essential to limit the increment
size.

In the modified Riks algorithm, as it is implemented in ABAQUS, the
increment size is limited by moving a given distance (determined by the automatic
incrementation algorithm) along the tangent line to the current solution point and then
searching for equilibrium in the plane that passes through the point thus obtained and
that is orthogonal to the same tangent line [77].

The Riks method uses the load magnitude as an additional unknown; it solves
simultaneously for loads and displacements. Therefore, another quantity must be used
to measure the progress of the solution; ABAQUS uses the “arc length,” 1, along the
static equilibrium path in load-displacement space.

If the Riks step is a continuation of a previous history, any loads that exist at
the beginning of the step and are not redefined are treated as “dead” loads with constant
magnitude. A load whose magnitude is defined in the Riks step is referred to as a
“reference” load. All prescribed loads are ramped from the initial (dead load) value to
the reference values specified.

The loading during a Riks step is always proportional. The current load

magnitude, Py, is defined by:

Pow =R + ﬂ“p(Pref - PO) (3.19)
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where PO is the “dead load”, Py is the reference load vector, and A o is the

“load proportionality factor.” The load proportionality factor is found as part of the

solution.
2.4.4 FEA Applications

The FEM can be used to analyse both structural and non-structural problems.
Typical structural areas include:
e Stress analysis
e Buckling
e Vibration Analysis
Non-structural problems include:
e Heat transfer
e Fluid flow
e Distribution of electric or magnetic potential
Biomechanical engineering problems typically include stress analyses of

human spine, skull, heart, eye etc.
2.4.5 Key Points in Preparing for an FEA

e Mesh Density and Partitioning
The mesh density should be small enough to give usable results yet large
enough to reduce computational effort.
Partitioning divides part instances into smaller regions. Partitioning gives
greater control over mesh generation — it allows for assigning different mesh sizes and

mesh elements on different areas on the same part instance.
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Without partitions, the mesh is aligned only along the exterior edges; with
partitions, the resulting mesh will have rows or grids of elements aligned along the
partitions i.e., the mesh “flows” along the partitions.

e Element Type

The wide range of elements in the ABAQUS element library provides
flexibility in modelling different geometries and structures. Each element is
characterized by the following:

o Family

A family of finite elements is the broadest category used to classify elements.
Elements in the same family share many basic features. There are many variations
within a family.

o Degree of freedom

An element’s number of nodes determines how the nodal degrees of freedom
will be interpolated over the domain of the element. ABAQUS includes elements with
both first and second-order interpolation

o Number of nodes

The primary variables that exist at the nodes of an element are the degrees of
freedom in the finite element analysis. Examples of degrees of freedom are
displacements, rotations, temperature, electrical potential

o Formulation

This describes the mathematical theory used to define the element’s behaviour.
o Integration

The stiffness and mass of an element are calculated numerically at sampling

points called “integration points” within the element. The numerical algorithm used to
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integrate these variables influences how an element behaves. ABAQUS includes
elements with both “full” and “reduced” integration.

Reduced integration uses a lesser number of Gaussian co-ordinates when
solving the integral. The more Gaussian co-ordinates for each element, the more
accurate the answer, but the higher the cost of computation time.

Using reduced integration reduces the time to run the analysis but it could have
a significant effect on the accuracy of the element for a given problem. The use of
fewer integration points produce a less stiff element. Therefore, in some cases,
particularly non-linear problems, it is advisable to use reduced integration instead of
full integration. The slight loss of accuracy is counteracted by the improvement in
approximation to real-life behavior [79]

e Boundary Conditions

Boundary conditions are applied to those regions of the model where the
displacements and/or rotations are known. Boundary conditions are step dependent;
the step or steps in which they become active must be specified.

e Load Application

In ABAQUS the term load refers to anything that induces a change in the
response of a structure from its initial state, including concentrated forces, pressures,
nonzero boundary conditions, body loads, and temperature.

e Interactions

Interactions are step-dependent objects. ABAQUS does not recognize
mechanical contact between part instances or regions of an assembly unless that
contact is specified in the Interaction module; the mere physical proximity of two

surfaces in an assembly is not enough to indicate any type of interaction between the
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surfaces. Interaction module defines contact interactions, tie constraints, coupling
constraints etc.
e Obtaining and Interpreting Results
Graphical postprocessing is important because of the great volume of data
created during a simulation. The Visualization module of ABAQUS/CAE allows the
viewer to view the results graphically using a variety of methods, including deformed

shape plots, contour plots, vector plots, animations, and X-Y plots.

2.4.6 Riks Analysis in ABAQUS — A Detailed Example

Consider the example of a rectangular hollow section (RHS) compressed
between wearpads as shown in Figure 23 below. A Riks analysis is carried out to
calculate the maximum load carrying capacity of the RHS. As an input, a displacement
is applied at the reference point RP-1. Since the displacement is compressive, its value

is negative.

Figure 23: RHS assembly and loading pattern



In the Riks step, the following inputs are to be given:

An initial increment in arc length, A|in

The total arc length scale factor, |pe,i0d

The minimum and maximum arc length increments, Al and Al

Maximum number of increments

Stopping criteria

Mame: Step-1
Type: Static, Riks

Incrementation | Other |

Description: |

Migeom: On 7

[Tinclude adiabatic heating effects
Stopping criteria

I Maximum load proportionality factor:|

Maximum displacement DOF:

MNaode Region: | m_Set-1 B‘

Figure 24: Riks step - basic tab
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F Edit Step

Mame: Step-1

Type: ® Automatic ©
Maximum number of increments: | 1000

Initial Finimum Maximum
Arc length increment | 0.001 1E-009 1
Estimated total arc length: | 0.1

Note: Used only to compute the intial load proportionality factor

Cancel

Figure 25: Riks step - incrementation tab

From the initial increment in arc length, A|in, provided, the initial load

proportionality factor, A, is computed as [80]:

Al
Adyy =+ (3.20)

Iperiod

where|peri0dis a user-specified total arc length scale factor (typically set equal

to 1). The value of Aiin is used during the first iteration of a Riks step. For subsequent

iterations and increments the value of 4 is computed automatically. The value of 4 is

part of the solution. Minimum and maximum arc length increments, Al _; and Al

can be used to control the automatic incrementation. Direct user control of the
increment size is also provided; in this case the incremental arc length, Al, is kept

constant. The increment tab in the Riks step is shown Figure 25.
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Since the loading magnitude is part of the solution, a method needs to be

specified when the step is completed. A maximum value of the load proportionality

factor, Agg, Or a maximum displacement value at a specified degree of freedom can

be used as a stopping critereon. The step will terminate when either value is crossed.
If neither of these finishing conditions is specified, the analysis will continue for the
number of increments specified in the step definition.

The stopping criteria shown in Figure 24 shows that the analysis will stop if a
displacement of -15 in the 2-DOF i.e Y-direction, is reached at the m-set-1 node

(defined as RP-1 in model assembly).

2.5 Experimental Design

Product design has the greatest impact on product quality. It is essential to
consider all aspects of design (including factors built into the product) that affect the
deviation of functional characteristics of the product from target values [81]. When the
goal is to design a product (or process) with high stability, parameter design is the most
important step [82]. Parameter Design helps ascertain the optimal levels for the
parameters of each element in the system so that the functional deviations of the
product are minimized [81]. The major usefulness of experimental design in finding
the optimal combination of parameter values [82].

Planning and implementation of experiments can be broken down into the
seven step procedure shown [83]:

o State Objective: The objective of the experiment needs to be clearly stated.

In a work environment, all stakeholders should provide input.
e Choose Response: The response is the experimental outcome or

observation. There may be multiple responses in an experiment. The
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response should be chosen to increase the understanding of the mechanisms
and physical laws involved in the problem

e Choose Factors and Levels: A factor is a variable that is studied in the
experiment. In order to study the effect of a factor on the response, two or
more values of the factor are used. These values are referred to as levels or
settings. A treatment is a combination of factor levels. In choosing factors
and levels, cost and practical constraints must be considered.

e Choose experimental Plan: Use the fundamental principles to enable
suitable choice of the experimental plan.

e Perform Experiment: The use of a planning matrix is recommended. The
matrix describes the experimental plan in terms of actual values or settings
of the factors.

e Analyze data: An analysis appropriate for the design used to collect the data
needs to be carried out. This includes model fitting and assessment of the
model assumptions through an analysis of residuals.

e Draw conclusions and Make Recommendations: Based on the data analysis,
conclusions are presented which include the important factors and a model
for the response in terms of important factors. Recommended settings or
levels for the important factors may also be given. The conclusions should
refer back to the stated objectives of the experiment. A confirmation

experiment is worthwhile, to conform the recommended settings.

2.5.1 Screening Experiments

In any experimental investigation, one may find that there can be many factors

that can contribute to a specific structural phenomena/ behavior. To segregate the
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influencing from the less influencing factors, it would be better to conduct a small
experiment for a particular response/ output. Such designs/ experiments determine
which factors are essential for making improvements [84]. Such designs involve sifting
through a large number of potentially important factors to search, as economically and
effectively as possible, for the few active/ influencing factors [85]. When the objective
of the experiment is factor screening, the number of factor levels is kept low.

Generally, two levels work very well in factor screening studies [84],[85]. In
classical screening, knowledge gained from a main effects design can be improved by
investigating, in a second stage of experimentation, interaction between factors whose
main effects are identified as important at the first stage [86]. The main effect of a
certain factor, is the mean of the effect by that factor on the experimental values, taken
over the various levels of the other factors [87]. An interaction between factor A and
factor B exists, when the effect of A (on the response) differs according to the levels
of B, or in other words, when the effect of one factor (on the response) depends upon
the value of the other [87].

In a factor screening situation, it is more important not to exclude an active
factor than it is to conclude that inactive factors are important [84].

Taguchi’s orthogonal L1 array [88] is widely used for screening experiments
[89], [90]. Orthogonal array is only one way of planning for DOE, yet the most
flexible to conduct and easy for non-statistically oriented engineers to execute in
practice [21]. An orthogonal array provides a balanced set of experimentation runs
such that the conclusions are drawn in a balanced fashion [91]. In Table 11, the
numbers 1 to 12 are called experiment runs or numbers [92]. Each vertical column of

the array contains six 1s and six 2s. The 1s and 2s represent the coded levels for each
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factor. For a given experiment, in any two columns there are four possible
combinations: (1,1),(1,2),(2,1),(2,2) If each of these four combinations appears the
same number of times in a pair of columns, the columns are said to be balanced or
orthogonal [82]. The L12design is among a group of specially designed arrays in which
interactions are distributed more or less uniformly to all columns; making it possible
to focus on main effects and therefore increase the efficiency and reproducibility of
small scale experimentation [87]. Eleven main effects can be studied using this design.

The array is given in Table 11.

Table 11: Orthogonal L1z array

Run Factors

112|3|4|5|6|7(8|9]10]|11

1 j1j1(1)1j1j1j141|11)1]|1

2 |1j1j1(1)11|12|2|2|2|2 |2

10 (2122|1111 |2|2]|1]| 2

11 (2121|212 |1|1|1] 2|2

12 (212|112 |1|2|1|2]|2 |1

Experimental design according to Taguchi has one prerequisite: not all
interaction of factors need to be recognize and analysed. If complete relationships are

needed, a full factorial experiment is necessary [93].
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Once the active factors are identified from the analysis of the screening

experiment results, an in-depth investigation is carried out.

2.5.2 Response Surface Methodology

Response surface methodology, or RSM, is a collection of mathematical and
statistical techniques useful for the modeling and analysis of problems in which a
response of interest is influenced by several variables and the objective is to optimize
this response [94]. In a RSM, unlike in screening experiments, in order to assess
curvature (non-linear effects) for a particular factor, it is necessary to study more than
two levels of the factor [87].

According to Myers and Montgomery [95] Response Surface Methodology
(RSM) consists of the following:

e Experimental strategy for exploring the space of the process or independent
variables

e Empirical statistical modelling to develop an appropriate approximating
relationship between the yield and the process variables and

e Optimization methods for finding the levels or values of the process variables
that produce the desirable values of the response.

In simple terms, the response surface is an approximate mathematical model
of the response or yield in terms of the active factors identified in the screening
experiment. Thus, the response surface can be represented by the model:

N=F(X, X X,) (3.21)

where n isthe response and (X;, Xp...oovvieeneee %) are active or influencing factors

from the screening experiment.
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A second order model is widely used in RSM for several reasons [95]. A

general second order model takes the form

K K
n=po +Zﬂjxj +Zﬂjjsz +ZZﬂinin (3.22)
-1 -1

i<j
Finding the values for the Bs is called the building of the model. The model is
built using an experimental design and the response values obtained by carrying out
the experiment. Any prediction made from the polynomial about the response outside

the region should be verified by experiments before putting reliance on it [96].
Quadratic polynomials in n variables have (n +1)(n +2)/2 coefficients. To fit

quadratic response surfaces at least that many points are needed and each factor should
have at least three levels. For example, a quadratic polynomial in 6 variables has 24
coefficients. But a three level full factorial design would have 36 = 729 runs or trials
which is unaffordable. Central composite design is a popular compromise which
reduces the number of experiments to close to the 2-level full factorial design.

The central composite design is composed of the 2*n points of the full-factorial
two-level design, with all the variables at their extremes, plus a number of repetitions
of the nominal design (center point), plus the 2n axial points obtained by changing one
design variable at a time by an amount a. Thus, if two variables are considered, the
central composite design can be visualized as shown in the planar in Figure 26. The
vertices of the square show the runs in the factorial design (2°2=4). The center points
are repeated a certain number of times (in this case 2 times). The axial points are

generated by changing one factor in the center point along each axis.
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Figure 26: Standard central composite design for two variables

Let the two levels of the factorial design be coded with +1 and -1. Then the full

factorial design can be given in the following way:

[Factorl Factor 2|
-1 -1
-1 1
1 -1

L 1 1 _

The center point for this design is [_1;1 %} =[0 o]

The axial or star points are developed by changing one factor at a time in the
center point and thus the points are[(«,0),(- 2,0),(0,«),(0,—«)]. Putting it all together
the standard design is obtained in the following way where o is assumed to be 1.414.
The full design will look like the following:

[Factorl Factor 2]

-1 -1

-1 1

1 -1

1 1
1.414 0
-1.414 0

0 1.414

0 -1.414

0 0

0 0
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Chapter 3: Exploratory FEA and Experiments

This chapter describes the exploratory analyses carried out on a telescopic
cantilever beam and the experimental work carried out on RHS rings and RHS pieces.
The results obtained here and the findings from the literature survey formed the basis

for the theoretical developments explained in Chapter 4.

3.1 Exploratory FEA

In this section, a candidate telescope shown in Figure 27 was analyzed and the

results were compared with those obtained from theoretical calculations.

5000N

1
< 800mm_| 5000mm

A
A

3000mm

A
Y

Figure 27: Candidate telescopic beam assembly

The inner beam is made up of a 3 mm thick RHS beam with the outside cross
section of 350 mm height and 150 mm width. The two beams are separated by two sets
of two wearpads each with a dimension of 10 mm height, 25 mm width and 50 mm
length. The outer beam is also made up of a 3 mm thick RHS beam with an inside
cross section of 370 mm height and 170 mm width.

An FE model was built for a static analysis in ABAQUS to represent the
assembly shown in Figure 27. As the behavior of the inner beam is the area of interest,
only the inner beam was modelled and analyzed. The effect of the outer beam however

was accounted for by the boundary conditions applied on the inner beam assembly.
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Details of the study are described in the following three sub-sections for easy

comprehension.

3.1.1 Modelling and Analysis

The inner beam assembly, consisting of four wearpads and the inner beam, is
subjected to a linear static analysis using ABAQUS Standard Version 2017. The
assembly is shown in Figure 28.

e Assembly Details — The interactions are modelled in the following way:

o Top surface of top wearpads - Encastred, completely arresting any
movement of these surfaces of the wearpads.

o Bottom surface of top wearpads - Stuck to the inner beam thereby
warrantying a tie constraint between the bottom face of the top
wearpads and the top surface of the inner beam.

o Top of bottom wearpads - Frictional interaction is assigned between the
top of bottom wearpads and the bottom surface of the inner beam.

o Bottom surface of bottom wearpads - Encastred, completely arresting
any movement of these surfaces of the wearpads.

Figure 29 illustrates the above interactions.



79

Top Wearpads

Bottom Wearpads Inner Beam

Reference Point

Figure 28: Inner beam assembly

Q]

Figure 29: (a) Inner beam-top wearpad frictional interaction (b) Top wearpad
encastre (c) Inner beam-bottom wearpad frictional interaction (d) Bottom wearpad

encastre (e) reference point coupling with inner beam tip
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e For a finer analysis, three partitions have been created in the vicinity of the
wearpads.

o Overlap Partition — the overlap partition is aimed to make sure that the
bottom wearpads are located at a specific overlap distance and that a
mesh is present at the overlap distance.

o Distance partition — This is located at a distance of 30 mm from the top
flange of the inner beam so that a mesh is created at this distance
allowing for stresses to be extracted at this exact distance. By changing
the distance value, a partition and hence mesh can be created at any
particular distance.

o Mesh size partition — “Mesh Size partition’ is located at a distance of
200 mm from the overlap partition. As the overlap area is considered
critical, the inner beam in the overlap area and in its vicinity upto the
mesh partition is assigned a finer mesh of 5 mm. The remaining length
of the beam beyond this partition is deemed non-critical and a larger
mesh size of 10 mm is assigned.

Figure 30 shows an exploded view of the inner beam to illustrate the partitions.
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Top Wearpads

g

Distance partition

Mesh Size partition

Overlap partitio

Bottom Wearpads

Figure 30: Partitions in the inner beam

Reference point - The reference point RP-1 is located at the center of the free
end of the inner beam for load application. RP-1 was kinematically coupled with the
nodes of the outermost cross-section of the inner beam allowing for uniform
application of the load at the tip of the inner beam.

Figure 31 illustrates the reference point and the mesh sizes.
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Reference Point RP-1

Figure 31: Reference point on candidate inner beam assembly of telescope

e Mesh size and elements

The wearpads were assigned the solid element C3D8R and the beam was
assigned the shell element S4R. The S4R element is a general purpose element, with
reduced integration [97]. Due to the reduced integration, the locking phenomenon
observed in the S4R element does not show. However, due to the reduced integration,
the element tends not to be stiff enough in bending.

A mesh analysis was carried out to determine an acceptable mesh size. It
resulted in determining a size of 5 mm for the wearpads. For the inner beam, in the
overlap area upto the mesh partition, a 5 mm mesh size was found to be suitable,
whereas for the remaining length of the beam a 10 mm mesh size was assigned (Refer

Figure 31).
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e Material Properties
All the parts were assigned the same material, mild steel with a density of
7.89E-09 tonne/ mm?, Young’s Modulus E=210,000 N/mm?, and Poisson’s ratio 0.3.
To represent the elasto-plastic behavior of the material, yield stress values
along with the corresponding plastic strain values are given. The initial yield stress is
300 MPa, and the yield stress increases to 400 MPa at a plastic strain of 35%, after
which it is perfectly plastic. This defines an elastic-plastic material model.

The plastic properties entered in ABAQUS are given in Table 12.

Table 12: Elasto-plastic properties

True Stress (MPa) | True Plastic strain
300 0.0
350 0.025
375 0.1
394 0.2
400 0.35

e Loading
Tip load applied at RP-1. For the purpose of simplicity, self-weight is not
considered in the FE model.
Figure 32 represent the FBD, SFD and BMD for the inner beam assembly of
5000 mm length and 800 mm overlap. At B, the SFD shows that the reaction force Rg
= 33,166.6 N and the BMD shows moment Mg = 21,125,000 N-mm. Figure 32 shows
that the shear force and the moment are the highest at B (underneath the bottom

wearpads).
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Rc=28,166.6 N

P=5000 N
FBD Tosmm 750mm 0 4225mm
RB=33,166.6 N
5000N
ON
SFD ON
-28,166.6N
ON-mm ON-mm
BMD

-21,125,000N-mm
Figure 32: Inner beam without self-weight

The shear flow caused by the compressive force Rg is shown in Figure 36 and
highlights the maximum shear stress appears at the center of the web of the section.
However, the behavior of the web is also influenced by the bending stress caused by
the tip-load and the bending stresses caused by the corner moments. These additional
stresses will cause the web of the section to show non-uniform deformation as shown
in Figure 40(b).

The shear stress calculation of the inner beam under the bottom wearpads is
given below. The cross-section of the beam for which the shear stress is calculated is

shown in Figure 33.
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Figure 33: Cross-section of the telescopic beam

For a thin-walled section, the shear stress is given by:

vQ

Shear Stress 7 = ——
1(2t)

From Figure 32, for a tip load of 5000N, the shear force V = 33,166.6 N at the
section of the inner beam under the bottom wearpads.

For the inner beam,

| [bh® —b,n?]

_ 1

v 12
- é (150 % 350°) — (144 x 344%)]
— 47,446,492mm’

Shear stress distribution in the top flange:
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Figure 34: Symmetrical double cut to determine shear stresses in the flange

From Figure 34, the first moment of area ‘Q’ for the flange is calculated as:

Q=2xm, x3x173.5
=1041m, mm®

33166.6 x1041m,
47,44,492 x 2 x 3

At the top flange 71, riangs = =0.1213m; N / mm?

This is a linear distribution. All shear stresses act in the positive m direction.
A number of values:

M, = 0; Zropriangy = 0

M, = 73.5MM; 7 prrangs = 8-91IN /mm?

Shear stress distribution in the webs:

173.5mm

Figure 35: Symmetrical double-cut for determining shear stresses in the webs of the

section



87

From Figure 35, the first moment of area ‘Q’ for the webs are calculated as:

Q =(173.5x3x147)+(2x3xm, x(173.5—-m, /2))
=76513.5+1041m, —3m?

_ 33166.6 x (76513.5+1041m, — 3m;)
At the top flange * (TopFianss = 47,44,492 % 2 x 3

=-8.91-0.121m, + 0.00035m2N / mm?

This is a parabolic distribution. All shear stresses act in the positive m
direction.
A number of values:

M, = 0; Z(ropriangs = —8-91N /mm?
m, = 173.5MM; 7 (ropriange = —19-37N /mm?

m, = 347.0MM; 7 (rppange = —8-9IN /mm?

Combining the results from the shear stress distribution of the flanges and webs

gives the overall shear stress distribution across the section as shown in Figure 36.

801 Ham3 891 Hmm3

291 Hinm2 _ = F2lHmm

1937 Himm2 1937 Himm2

— — S W A

-

A— o — A N A A A— — — 4—
NL‘
(=

—— A i

201 Minm

— — — — 201 Himm3

491 Himm 2 491 Himm2

Figure 36: Shear stress diagram for the whole cross-section
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Although it is possible to calculate the shear stress due to the reaction forces
on the inner beam assembly, calculating the overall stress over the section due to the
combination of bending stresses caused by the corner moments and tip load are
complicated and hence, for this research FE models are relied upon for deductions on

the behavior of the inner beam assembly of the telescope.

3.1.2 Results from the Analysis

Consider the section under wearpads shown in Figure 13. The two sections under the
wearpads shown in Figure 37 are isolated for further understanding of the behavior of
the inner beam. Four lines - Line AA, Line BB, Line CC and Line DD are drawn along
the center of the two sections. All discussions in this section pertain to the behavior of

the inner beam along these four lines.

Line B-B

Line C-C

Line D-D

Figure 37: Center lines along areas of inner beam under (a) Bottom wearpads (b) Top

wearpads
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The following results were collected from the preliminary FEA
a) Stress values under the wearpads:

e Line A-A
Two direct bending stresses, O, and o, act along this line. 0, is due to the

bending moment caused by the tip load and &, is caused by the corner moment

caused by the load from the outer beam (refer Figure 13).
Figure 38 shows a plot of the stresses obtained along Line A-A ata 5000 N tip-
load. The Mises stress curve peaks in the distance corresponding to the wearpad width

and its vicinity (0-30 mm and 120-150 mm) indicating maximum stress concentration

in the area.
Line AA
400
300 © | N
\ Mises — | /
200 X- =~ = —I
100
[+
o
S
= o0
g 0 20 40 60 80 100 120 140
“ 100 XX
67z
-200 N\
-300 \}/

-400

Distance along A-A

Figure 38: Stresses along line A-A (from the FEA)
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e LineC-C

Stresses acting along line C-C is complicated to calculate as the load acting
along C-C is non-uniform. It is expected that the entire load acting from the outer beam
is taken up by the webs. Line C-C takes up half this load. Also, again the load through
the wearpads causes a corner moment to act on the web. In addition, the moment
caused by the tip load causes compression on the lower half of the web and tension on
the upper half.

As the vertical force acting on Line C-C is compressive in nature, and the
moment caused due to the tip load is also compressive at the bottom half of Line C-C,
it is expected that maximum stress is induced in the bottom half of the Line C-C as
compared to the rest of the Line.

e LineB-B
Unlike Line A-A, along Line B-B only &, acts, as the moment due to the tip-

load is zero at B-B (Refer the BMD in Figure 32). Here again, o, is caused by a

corner moment due to the load acting through the wearpads from the outer beam.
Because of this, the stress induced in this area is much lesser than in Line A-A and is
non-critical.
e Line D-D

Again, the vertical load from the outer beam acting on the top wearpad (lesser

than the vertical load acting on the bottom wearpad — refer the SFD in Figure 32) is

taken up entirely by the web (Line D-D). O, is zero as the moment due to the tip load

Is zero. Again o, acts along D-D because of the corner moment generated by the load
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acting from the outer beam on the wearpads. For these reasons, stress is expected to
be maximum at the top end of Line D-D.
b) Total reactions at the wearpads

At the bottom wearpad, for a tip load of 5000 N, the total reaction force from
the FE Model is 32,789.16 N as shown in Figure 39. From the theoretical calculation,
as shown in the FBD in Figure 32, the reaction force value is 33,166 N. This is
considered as in agreement and validates the inner beam assembly FE model.

FE Model: Reaction force vs Tip load
35000

30000

25000 I

20000 /
15000 /
10000 ~
5000 /
0 /

0 1000 2000 3000 4000 5000 6000
Tip Load (N)

Reaction Force RB (N)

Figure 39: Re from FE model for inner beam assembly

c¢) Physical shape (deflections) of the rings under the wearpads

For an inner beam subjected to a tip-load of 5000 N, Figure 40 represents
sections of the deformed FE model of the inner beam taken under the top and bottom
wearpads. Figure 40 shows the deflection in the section under the bottom wearpads is
much more than deflection under the top wearpads. Line A-A exhibits greater hogging

than the sagging exhibited by Line B-B. Also, major deflection is observed on the
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lower part of Line C-C which is much greater than the deflection observed along Line

D-D.

b 4,_‘___ Minor sagging on
Line BB

Minor Deflection on
Upper part of Line DD

Major Deflection on
Lower part of Line CC

Major Hogging on
Line AA

(@) (b)

Figure 40: Deflection of inner beam section under (a) Top wearpads (b) Bottom

wearpads
d) Deflection Curve:
Figure 40 shows that Line A-A experiences major hogging. Figure 41 shows
the displacement curve along the length of A-A which shows that a maximum
deflection (hogging) of 1.13 mm occurs at the middle of the bottom flange for a 5000

N tip load.
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Figure 41: Displacement curve at line AA
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Figure 42: Displacement curve at line CC
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Line C-C also exhibits a heavy deflection with the largest deflection equal to
1.43 mm corresponding to the lower part of C-C. The displacement curve for Line C-
C is shown in Figure 42.

Lines B-B and D-D exhibit maximum deflections of 0.04 mm and 0.34 mm

respectively and are hence considered less significant.

3.1.3 Analysis of the results

The following observations can be made from the above analysis.

e The section under the Top wearpads (Lines B-B and D-D) do not suffer major
deformation or stresses.

e The flange (Line A-A) of the section under the bottom wearpads suffers major
hogging because of the bending moment due to the tip load and the corner
moments from the loads through the wearpads.

e The flange (Line A-A) of the section under the bottom wearpads suffers from
bending stresses caused by the tip load (along the axis) and the bending stress
across the cross-section due to the corner moment. This region therefore is
expected to be the critical area with potential for buckling.

e The web (Line C-C) under the bottom wearpads also suffer major deformation
on its lower part due to the vertical load from the wearpads, moment due to the
tip load, and the corner moment due to load from the wearpads and can
therefore also be an area with potential for buckling.

The observations above suggest that the region of the inner beam under the
bottom wearpads induces the most stresses and deflections. This region is equivalent
to a RHS Ring if the wearpad is short and a RHS piece if the wearpad is long. This led

to the investigation of RHS rings under compressive transverse loading through
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experimentation described in sections 3.2 and 0 and the succeeding investigations on

the RHS pieces described in sections 3.4 and 0.

3.2 Experiment 1 — Compression of RHS Rings between Platens

A ring is made up of strips whose width and thickness are small compared to
their lengths.

e Description of the Machine:

An MTS machine (model: 20/H) was used for this experiment. The downward
head movement was maintained at a velocity of 0.5 mm/min to apply the load in all
the trials. The MTS machine had a capacity of 1000 kN and is equipped with various
load heads (Head capacity: 5 kN, 100 kN, 1000 kN) for different load capacities. The
load head was changed to a 5 kN capacity for more accurate readings as the maximum
load capacity of the Rings was expected to be 1.04 kN (from the initial FEA data). On
completion of each experiment, the output was obtained as load-displacement graphs
in excel format. The bottom platen of the machine had a 150 mm diameter while the
load was applied at the top through a 50 mm diameter cylinder (Refer Figure 45).

e The specimen:

RHS rings with cross sectional dimensions 350 mm x 150 mm with a length of
10 mm, corner radius of 5 mm and a uniform thickness of 3 mm were subjected to
compressive loads in these experiments. CRCA (Cold Rolled Cold Annealed) MS
strips with 3 mm thickness and 10 mm width were bent on a press brake to form the
RHS Ring sections. A single center weld on the top flange of each section closed the
ring section. The thickness measurement taken using a Vernier calipers at points A-J

shown in Figure 43 are listed for RHS rings compressed between platens in Table 13.



Figure 43: Thickness measurement points

Table 13: Thickness measurements of RHS rings between platens
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Specimen Thickness (mm)
A B C D E F G H | J
SR1 297 | 297 | 3.01 [ 294 299|297 |3.03|3.09|3.05]|3.02
SR2 294 | 296 | 290 | 2.83/1289|2.89|288|285|282|2.88
SR3 283 | 277 | 286 [ 281283 (275|281 282|274 |279

e Description of the process:

The assembly of the RHS ring loaded between platens is as shown in Figure

44. The assembly consists of a RHS ring placed between the top and bottom platens.

The top platen has a shallow groove on its upper surface to accommodate the load

distributor. The load distributor has a spherical upper surface (in contact with the

machine load-applying platen) and a flat lower surface (in contact with the platen on
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top of the RHS ring). This arrangement allows for a better, more uniform distribution

of load on the RHS ring.

Load Distributor

Top Platen

~——————RHSRIing

Bottom Platen

Figure 44: Assembly of RHS ring between platens

The assembly was placed on the MTS machine lower platen while the load was
applied by the machine top cylinder. The load was continuously applied till the
maximum load value was reached after which the load was released and the load-
displacement plot obtained as an output.

e Characteristics of Loading between platens

Platens are flat surfaces and they apply a uniformly distributed load on the flat,

top and bottom flanges of the RHS ring placed between them. But if the top flange

starts sagging and the bottom flange starts hogging, the load distribution will
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concentrate on the peripheral areas which are still in contact with the platens. In short,
the platens will transmit forces through the areas that maintain contact with them. This
point is explained further in the following way:
o Initial Stage — Uniform loading under the platen
The flanges and the webs at the beginning showed no deflection and were at
right angles to each other as shown in Figure 45. The platens were in full surface

contact with the RHS flanges at this stage.

Undeflected flange with platen
full surface contact

. : :
xVertical Undeflected Webs

Undeflected flange with platen
full surface cqntact

Figure 45: RHS ring between platens at the initial stage

o Progress into the process — Bending of the flange with no contact at the
center
Figure 46 shows that as the load is increased, the top flange begins to sag (like

a beam under transverse loading) and the bottom flange begins to hog causing the
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flanges to lose contact with the platens in the middle. The webs also begin to bulge

outwards.

Separation of flange from platen at center

k Slight bulge of webs

Separation of flange from platen at center

Figure 46: Loss of contact between RHS ring flange and platen

o Sufficient Progress into the process — Visible deformations of the
flanges and the webs with significant loss of contact area
This stage is marked by an obvious and exaggerated deformation on all four
strips of the RHS ring — the two flanges and the two webs. The shape of the RHS ring

is shown in Figure 47 below.
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Obvious flange Sagging and significant loss
of contact with platen

Obvious bulging of webs

Obvious flange hogging and significant loss
of contact with platen

Figure 47: Obvious deformation of webs and flanges of RHS ring between platens

At this stage, consider the right web. The bent shape is like the one showed in
Figure 48(a). If this is cut by an imaginary plane at the middle, the free body diagram
of the upper half will be as shown in Figure 48(b). The entire cross section will
experience the same compressive stress P/A. In addition, the outermost fiber on the
outer side will have maximum tensile stress while the outermost fiber on the inner side
will have the compressive stress caused due to the bending moment ‘Py’. This will
result in a bigger compressive stress at the outermost fiber on the inner side. Yielding
therefore can be expected to begin at the inner sides of the flanges at the mid-height

where ‘y’ is maximum.
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Compressive Tensile
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Figure 48: (a) Bent shape and (b) Difference in stresses in right web

o Final stage — Hinged webs and bent flanges
The outer fibers on the inside of the webs have started yielding at this stage
while the platens are still closing in and thus increasing the bending. This causes
increasing bending stresses and progressive yielding continues. This form two hinges
at the mid-height of the webs. The RHS ring now consists of webs hinged at mid-

height and bent flanges as shown in Figure 49.
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Sagging flange

'\ Hinged webs at
/  web-center

Hogging flange

Figure 49: Hinged webs and bent flanges of RHS ring between platens

e Load Displacement curve:

Each sample was loaded until the load-displacement curve begun to assume a
downward negative slope after the RHS ring reached its maximum load carrying
capacity. Throughout this process the load deflection behavior was recorded.

Figure 50(a) shows a typical load-displacement curve as obtained from the
MTS machine for a RHS ring (sample SR1) compressed between platens.

Figure 50(b) shows the corrected load-displacement curve for the sample SR1.
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Figure 50: Typical RHS ring load displacement curve (a) As obtained (b) Corrected

The sample considered here is SR1 which was loaded for 292 seconds. The
load-displacement curve obtained from the MTS machine has an initial irregularity
marked by the region OA shown in Figure 50(a). In this region, the MTS machine top
platen has still not established contact with the RHS Ring top flange thereby displaying
anegative displacement. Since contact is established only when the displacement value
equals zero, the load value corresponding to zero displacement value is taken to be the
zero load. Therefore, this load value is subtracted from the remaining load values.

In Figure 50(a), the maximum load value equals 945.54 N but in Figure 50(b),

the corrected maximum load value is 934.79 N. This is because at the displacement
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value of 0 mm, the load value is 10.75 N and this value is then subtracted from the
succeeding load values.

In sections 2.3, 2.4 and 2.5, only the corrected load-displacement curves will
be shown and discussed. The load-displacement curve shown in

Figure 50(b) is now used to explain the behavior of RHS ring compressed
between platens. Initially, the curve shows a linear load deflection shape (AB in the
graph). This is the elastic region of the graph within which the RHS ring retains its
capacity to fully regain its original shape if the load is removed. At B, the slope of the
graph begins to reduce and gradually flattens out at C where it reaches its maximum
load carrying capacity. Region BC is the elasto-plastic region of the RHS ring where
yielding (plasticity) begins at the outermost fiber on the innermost side and progresses
in the thickness direction gradually as the load increases. After reaching a load value
at C, the load starts decreasing while the deflection continues to increase (CD in the

graph) before the loading was stopped. Region CD is the post-yield stage.

RHS Rings bfw platens
1 I
0.9 ER1
5R2
0.8 ——f SR
07
06 —
g
—05 —
8
o4 —
03
0.2 H
0.1
o]
o] 2 4 &
Displacement (mrm)

Figure 51: Load-displacement curve for RHS rings between platens
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Figure 51 shows the load-displacement curves for the three RHS rings SR1 -
SR3 compressed between platens. All three curves display the same trend explained

above. Table 14 below shows the maximum load values of each of the three samples.

Table 14: Maximum load of RHS rings between platens

RHS Ring # | Maximum Load (kN)
SR1 0.978
SR2 0.934
SR3 0.900

3.3 Experiment 2 — Compression of RHS Rings between Wearpads

e Description of the Machine
As explained in section 3.2
e The specimen:
Specimen specifications and method of manufacturing are the same as in
section 3.2. The thickness measurement taken using a Vernier calipers at points A-J
shown in Figure 43 are listed for RHS rings compressed between wearpads in Table

15.

Table 15: Thickness measurements of RHS rings between wearpads

Specimen Thickness (mm)

A B C D E F G H | J

SRwW1 | 3.03 | 3.08 | 3.07 |3.05|3.03|3.013.06|3.07]3.09]|3.00
SRW2 | 3.00 | 3.10 | 295 | 295|294 | 3.09 |3.02 | 297 |3.00| 3.00
SRW3 | 3.00 | 3.06 | 3.03 |3.00|2.99 | 296 | 3.05| 3.03 | 3.01 | 3.02

e Description of the process
The assembly of the RHS ring loaded between wearpads is as shown in Figure

52 below. The assembly shown is very similar to that explained in Section 3.2, except
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that the platens in section 3.2 are replaced by wearpads in this section. Here again, the
top wearpad has a shallow groove on its upper surface to accommodate the load

distributor for a better, more uniform distribution of load on the RHS ring.

Load Distributor

Top wearpads

RHS Ring

Bottom wearpads

Figure 52: Assembly of RHS ring between wearpads

The assembly is placed on the lower platen of the MTS machine while the load
is applied by the machine top cylinder. The load is continuously applied till the
maximum load value is reached after which the load is released and the load-
displacement plot is obtained as an output.

e Characteristics of Loading between wearpads
Wearpads are flat cut out surfaces that apply ‘patch loads’ on portions of the

flat, top and bottom flanges of the RHS rings in contact with them.
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Once the load application is started, the top flange starts sagging and the bottom
flange starts hogging causing the load distribution to move towards, and eventually
concentrate on the outer edges of the wearpads. In short, as the load increases, the
wearpads will transmit forces through the areas which maintain contact with the RHS
ring flanges.

o Initial Stage — Uniform loading under the wearpads

The flanges and the webs at the beginning showed no deflection and were at

right angles to each other as shown in Figure 53. The flanges maintained area contact

only with the regions of the wearpad.

Undeflected flange with wearpad
full surface contact

'&Vertical undeflected webs

Undeflected flange with wearpad
full surface contact

Figure 53: RHS ring between wearpads at the initial stage
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o Progress into the process — Bending of the flange with no contact at the
centre
Figure 54 shows that as the load is increased, the top flange begins to sag (like
a beam under transverse loading) and the bottom flange begins to hog causing the
flanges to lose contact with the wearpads in the middle. At this stage, the flanges still

maintain surface contact with the wearpads. The webs also begin to bulge outwards.

o R | |

Separation of flange from wearpad at center,
still maintaining surface contact

|

k~snght Web Bulging

Separation of flange from wearpad at center,
still maintaining surface contact

Figure 54: Initial flange separation from wearpads

o Sufficient Progress into the process — Visible deformations of the
flanges and the webs with significant loss of contact area
This stage is marked by an obvious and exaggerated deformation on all four
strips of the RHS ring — the two flanges and the two webs as shown in Figure 55 below.
Contact between the flanges and the wearpads is almost reduced to a line/ edge contact

at the outer edges of the wearpads.



109

Obvious outward bulging of webs

Line contact between flange and wearpad

Figure 55: Obvious deformation of webs and flanges of RHS ring between wearpads

At this stage, consider right web. The bent shape will be like the one showed
in Figure 56(a). If this is cut by an imaginary plane at the middle, the free body diagram
of the upper half will be as shown in Figure 56(b). The entire cross section will
experience the same compressive stress P/A. In addition, bending stresses are caused
by moment due to web deflection ‘Py’ and moment due to load eccentricity ‘Pe’. This
will result in a bigger compressive stress at the outer fiber on the inner side. Yielding
therefore can be expected to begin at the inner sides of the flanges at the mid-height at

lower load values compared to when loaded between platens.
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Figure 56: (a) Eccentric load acting of web (b) Resultant stresses on web

o Final stage — Hinged webs and bent flanges
The outer fibres in the inside of the webs have started yielding at this stage
while the wearpads are still closing in and thus increasing the bending. This causes
more bending stresses and progressive yielding continues. This form two hinges at the
mid-height of the webs. The RHS ring now consists of webs hinged at the mid-height

and bent flanges as shown in Figure 57.
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Sagging flange

Hinged webs at
web-center

| __Hogging flange

Figure 57: Hinged webs at web center and bent flanges due to compression between

wearpads
e Load Displacement curve:

As in section 2.2, each sample was loaded until the load-displacement curve
begun to assume a downward negative slope after the RHS ring reached its maximum
load carrying capacity. Throughout this process the load deflection behavior was
recorded.

Figure 58 shows a typical corrected load-displacement curve obtained for a
RHS ring (sample SRW1) compressed between wearpads. Like Figure 51(b) in section
2.2, the load-displacement curve is marked by points A, B, C, and D as shown in Figure
58. Again, the three main regions are the elastic area (OA), the elasto-plastic region of

the reduced slope BC and the post-yield region CD after the maximum load at C.
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On comparison with Figure 51(b), it is observed that the maximum load
carrying capacity of RHS rings between wearpads is smaller than that of RHS rings
compressed between platens. Also, at the maximum load, the displacement in the RHS
ring compressed between wearpads is higher than that observed in RHS rings
compressed between platens. The reasons for both these observations can be attributed
to the additional moment caused by the distance of the wearpads from the vertical webs

of the RHS rings.

SEW1: Load-Displacement Curve
1

0.8
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Figure 58: Typical load-displacement curve of RHS ring between wearpads

Figure 59 shows the load-displacement curves for the three RHS rings SRW1-
SRW3 compressed between wearpads. All three curves display the same trend

explained above.
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Figure 59: Load displacement curves of RHS rings between wearpads
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Table 16 below shows the maximum load values of each of the three samples.

Table 16: Maximum load of RHS rings between wearpads

RHS Ring # | Maximum Load (kN)
SRW1 0.731
SRW?2 0.716
SRW3 0.706

e Conclusions:

o Buckling is indicated by the rapid outward bulging of the webs

o The flanges of the RHS ring bend in a concave manner.

o Visually, the shape of the RHS ring when loaded between wearpads

follows a similar pattern as the RHS ring loaded between platens with

the outward bulging of the webs and inward bending of the flanges.
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o However, Table 14 and Table 16 show that for a given set of
geometrical factors, the maximum load value of a RHS ring
compressed between wearpads is lower than when compared to a RHS
ring compressed between platens.

o As the load increases, the flanges of the RHS ring separate from the
platen or the wearpads.

o Inthe limiting condition, contact between the RHS ring flanges and the
platen or wearpad reduces to a line contact.

o The load deflection curves are characterized by three distinct areas; the

elastic region, the elasto-plastic region and a post-yield stage.

3.4 Experiment 3 — Compression of RHS Pieces between Platens

In this experiment, RHS pieces are subjected to compressive loads between
platens. In the ‘rings’, the webs and flanges have cross sections with significantly small
dimensions compared to the third dimension. But the RHS pieces have webs and
flanges, which have only one dimension, the thickness, significantly smaller than the
other two. If the rings are constituted with strips, the RHS pieces are constituted with
plates. Consider the overlap region explained in and reproduced in Figure 60 here. If
the wearpad is long then the region taking up the load will be an RHS piece, while the

region taking up the load will be a ring if the wearpad is short.
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Load from

Load from
Outer Beam

Figure 60: (Repeated) Division of the overlap section

e Description of the Machine

Two machines were used for testing two sets of RHS pieces in sections 3.4 and
3.5. The shorter sections with the smaller height of 150 mm were tested on the MTS
machine (model 20/H) described in section 3.2.

The taller sections of 350 mm height were tested in an MTS machine (model:
SANS SHT 4106) with a capacity of 1000 kN. The machine was equipped with servo
valve for automatic load control and had a load measurement resolution of 1/300000
of its capacity. The test output was available as load-displacement graphs in excel
format and the load was applied at a speed of 1 mm/min. The samples were placed on

compression platens of 200 mm x 200 mm square.
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e The specimen
RHS pieces of the following dimensions were tested:
o 350 mm height, 150 mm width with a length of 150 mm and thickness
of 3.2 mm
o 150 mm height, 100 mm width, with a length of 100 mm and thickness
of 3mm
For the taller sections, CRCA (Cold Rolled Cold Annealed) MS plates with 3
mm thickness and 150 mm width were bent on a press brake to form the RHS pieces.
A single center weld on the top flange of each section closed the section.
For the shorter sections, two C-sections were bent from a 3 mm MS plate and
welded along the center line of the top and bottom flanges to form the section.
The thickness measurement taken using a Vernier calipers at points A-J shown
in Figure 43 are listed for RHS pieces compressed between platens in Table 17 and

Table 18.

Table 17: Thickness measurements of tall RHS pieces between platens

Specimen Thickness (mm)

A B C D E F G H | J

SL1 319 |1 321 | 319 |3.11|3.16|3.20|3.21 319319 3.18
SL2 317 | 318 | 318 |3.17(3.15|3.19|3.18 | 3.18 | 3.17 | 3.19
SL3 319 | 317 | 3.16 |3.18 |3.18|3.18|3.19|3.17 |3.16 | 3.16
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Table 18: Thickness measurements of short RHS pieces between platens

Specimen Thickness (mm)

A B C D E F G H | J

SL4 3.03 | 3.04 | 3.02 {3.01| 3.0 | 3.04|3.02|3.00|3.04]|3.03
SL5 3.01 | 3.01 | 3.02 |2993.01|3.03|299|3.02]|3.02|298
SL6 3.01 | 3.00 | 3.02 | 3.03 299 3.01|2983.00|3.01]|299

e Description of the process
The RHS piece is placed on bottom platens of the MTS machine while the load
is applied by the top platen at a speed of 1 mm/min. The load is continuously applied
till the maximum load value is reached after which the load is released and the load-
displacement curve is obtained as an output.
e Characteristics of Loading between platens
As explained in section 3.2, platens are flat surfaces and they apply a uniformly
distributed load on the flat, top and bottom flanges of the RHS piece placed between
them. But if the top flange starts sagging and the bottom flange starts hogging, the load
distribution will concentrate on the peripheral areas which still are in contact with the
platens. In short, the platens will transmit forces through the areas which maintain
contact with them.
o Initial Stage — Uniform loading under the platen
The flanges and the webs at the beginning showed no deflection and were at
right angles to each other as shown in Figure 61 below. The platens were in full surface

contact with the RHS piece flanges at this stage.
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Top Platen

RHS flange (no deflection) before contact
with machine platen

~.Vertical undeflected webs of the RHS

RHS flange (no deflection) showing complete|
surface contact with machine platen

Bottom Platen

Figure 61: Undeflected webs and flanges of RHS piece between platens

o Progress into the process — Bending of the flange with no contact at the
centre
Figure 62 shows that as the load is increased, the top flange begins to sag (like
a plate under transverse loading) and the bottom flange begins to hog causing the
flanges to lose contact with the platens in the middle. The webs also begin to bulge

outwards.
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Slight sagging of RHS Top flange

Slight bulging of webs

Slight sagging of RHS bottom flange

Figure 62: Initiation of bending of flanges and bulging of webs of RHS piece
between platens

o Sufficient Progress into the process — Visible deformations of the
flanges and the webs with significant loss of contact area
This stage is marked by an obvious and exaggerated deformation on all four
plates of the RHS piece — the two flanges and the two webs. The RHS piece at this

stage is shown in Figure 63.
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Exaggerated sagging of RHS Top flange

Exaggerated outward bulging of
RHS webs

Exaggerated sagging of RHS Bottom flange

Figure 63: Obvious deflected webs and flanges of RHS piece between platens

Again, as explained in section 3.2 and Figure 48, yielding can be expected to
begin at the inner sides of the flanges at the mid-height.
o Final stage — Hinged webs and bent flanges
The outer fibres on the inner side of the webs have started yielding at this stage
while the platens are still closing and thus increasing the bending. This causes more
bending stresses and progressive yielding continues. This form two hinges at the mid-
height of the webs. The RHS piece now consists of webs hinged at the mid-height and

bent flanges as shown in Figure 64.
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Sagging flange

Hinged webs at web center

Hogging flange

Figure 64: RHS piece with hinged webs and bent flanges between platens

e Load Displacement curve:

Each sample was loaded until the load-displacement curve begun to assume a
downward negative slope after the RHS reached its maximum load carrying capacity.
Throughout this process the load deflection behavior was recorded.

Figure 65(a) shows a typical load-displacement curve obtained for a RHS piece
of height 350 mm (sample SL1) compressed between platens. Figure 65(b) shows a
typical load-displacement curve obtained for the shorter RHS piece of height 150 mm
(sample SL4) compressed between platens.

Both the graphs display a similar trend. Figure 65(a) representing the taller
sections is marked by five regions and six points. Figure 65(b) representing the shorter

sections is marked by four regions and five points. The region OA in both graphs
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represents the part of the curve where the platens are still establishing complete surface
contact with the RHS piece. For the shorter RHS pieces between platens, the load-
displacement curve (Refer Figure 65(b)) is like that explained in sections 3.2 and 3.3.
AB marks the elastic region, BC the elasto-plastic region and CD the post-yield region.

However, for the taller RHS pieces between platens, the elasto-plastic region

is divided into two areas BC and CD.

SL1: Load-Displacement Curve SL4: Load-Displacement Curve
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Figure 65: Typical load displacement of (a) Tall (b) Short RHS piece between
platens

Figure 66 shows the load-displacement data acquired for the six RHS pieces
compressed between platens. Figure 66(a) represents the taller RHS pieces and Figure
66(b) represents the shorter RHS pieces.

The graphs for all six samples display similar load-displacement patterns.
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Figure 66: Load-displacement curves for (a) Tall (b) Short RHS pieces between

platens
Table 19 below summarizes the maximum load of the six RHS pieces
compressed between platens. The taller RHS pieces show significantly lower load-

carrying capacities than the shorter ones.

Table 19: Maximum load of RHS pieces between platens

RHS piece # | Maximum Load (kN)
SL1 15.48
SL2 15.28
SL3 15.02
SL4 34.39
SL5 32.58
SL6 32.24
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3.5 Experiment 4 — Compression of RHS Pieces between Wearpads

e Description of the Machine

As explained in section 2.4

e Description of the specimen
Specimen specifications and method of manufacturing are the same as in
section 3.4. The thickness measurements taken using a Vernier calipers at points A-J
shown in Figure 43 are listed for RHS pieces compressed between wearpads in Table

20 and Table 21.

Table 20: Thickness measurements of tall RHS pieces between wearpads

Specimen Thickness (mm)

A B C D E F G H | J

SLwil | 318 | 3.17 | 3.19 |3.15|3.18 |3.16|3.19|3.18 |3.19 | 3.19
SLw2 | 3.16 | 3.16 | 3.15 |3.15|3.19|3.16 | 3.17 | 3.15 | 3.18 | 3.17
SLw3 | 314 | 3116 | 3.16 |3.17 |3.16 | 3.15|3.15|3.16 | 3.17 | 3.15

Table 21: Thickness measurements of short RHS pieces between wearpads

Specimen Thickness (mm)

A B C D E F G H | J

SLw4 | 3.01 | 3.04 | 3.02 | 3.00 | 3.01 | 3.01|3.02 | 3.00 | 3.00 | 3.00
SLW5 300 | 3.01 | 3.01 |3.03|3.02|3.00|3.01|3.01]|3.02]3.02
SLwW6 | 3.00 | 3.01 | 3.02 |3.02 |3.01|3.00|3.003.023.01]3.02

e Description of the process
The assembly of RHS piece loaded between wearpads is very similar to the
assembly explained in section 3.3 where the RHS ring is placed between the top and

bottom wearpads.
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o For the taller RHS piece, the assembly is shown in Figure 67 and is
explained as follows:

The wearpads comprises of an assembly of four rectangular cubes welded onto
a square platen of 150 mm length and 150 mm width. Each rectangular cube has a c/s
of 25 mm x 15 mm. The wearpads are placed on the RHS piece such that the 25 mm
length is parallel to the length of the web. Also, the wearpads are welded at a distance

of 10 mm from the square platen edges.
The top wearpad has a shallow groove on its upper surface to accommodate
the load distributor. As explained in section 3.2, the load distributor allows for a better,

more uniform distribution of load on the tall RHS piece.

Load
Distributor

Long RHS

Bottom
Wearpads

Figure 67: Loading assembly of RHS piece (height = 350 mm) between wearpads
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o For the shorter RHS piece, the assembly is shown in Figure 68 and is

explained as follows:
The wearpads comprises of an assembly of four rectangular cubes welded onto
a square platen of 200 mm x 100 mm cross-section. Each rectangular cube has a c/s of
10 mm x 10 mm. Also, the wearpads are welded at a distance of 10 mm and 7.5 mm
from the square platen edges. The wearpads are placed on top of the RHS piece flange

such that the distance of the rectangular cubes from the RHS piece web is 7.5 mm.

Top Wearpads

Rectangular Hollow
Section (RHS)

Bottom Wearpads

Figure 68: Loading assembly of RHS piece (height = 150 mm) between wearpads

e Characteristics of Loading between wearpads
As explained in section 3.3, wearpads apply ‘patch loads’ on portions of the
flat, top and bottom flanges of the RHS pieces in contact with them.
Once the load application is started, the top flange starts sagging and the bottom

flange starts hogging causing the load distribution to move towards and eventually
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concentrate on the outer edges of the wearpads. In short, the wearpads transmit forces
through the four areas which maintain contact with the RHS piece flanges.
o Initial Stage — Uniform loading under the wearpads
Each flange of the RHS piece is in contact with four wearpads. In the initial
stage, contact between the flange and the wearpads show full surface contact.
Therefore, effectively on each flange, load acts on it in the form of patch loads at four
different locations. The RHS piece webs remain undeflected and at right angles to the

flanges as shown in Figure 69 below.

RHS flange (no deflection) with full
surface contact with wearpads

Vertical undeflected webs of the RHS

RHS flange (no deflection) showing
complete surface contact with
wearpads

Figure 69: Initial stage of RHS piece between wearpads

o Progress into the process — Bending of the flange with no contact at the
centre
On increasing the load, the top flange begins to sag and the bottom flange hog.

Contact between the wearpads and the flanges fast moves from full surface to part-
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surface due to the bending of the flanges. The webs too begin to bulge outwards in this

stage as shown in Figure 70.

Part loss of surface contact b/w wearpadq
and Top flange

Slight sagging of RHS Top flange

Outward bulging of webs

Slight sagging of RHS Bottom flange

Figure 70: Initiation of flange bending and web bulging of RHS piece between

wearpads
o Sufficient Progress into the process — Visible deformations of the
flanges and the webs with significant loss of contact area
This stage is marked by an obvious and exaggerated deformation on all four
plates of the RHS pieces — the two flanges and the two webs. Contact between the
flanges and the wearpads is almost reduced to a line/ edge contact at the outer edges

of the wearpads as shown in Figure 71.
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: . Exaggerated outward bulging of
RHS webs

Exaggerated sagging of RHS Bottom
flange

Figure 71: Exaggerated web and flange deflection RHS piece between wearpads

o Final stage — Hinged webs and bent flanges
The outer fibers on the inner side of the webs have started yielding at this stage
while the wearpads are still closing and thus increasing the bending. This causes more
bending stresses and progressive yielding continues. This form two hinges at the mid-
height of the webs. The RHS piece now consists of webs hinged at the mid-height and

bent flanges as shown in Figure 72.
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Sagging flange

Hinged webs at
web center

Hogging flange

Figure 72: Hinged webs and bent flanges of RHS piece between wearpads

e Load Displacement curve

Like the RHS piece loaded between platens, Figure 73(a) shows a typical load-
displacement curve obtained for a RHS piece of height 350 mm (sample SLW1)
compressed between wearpads. Figure 73(b) shows a typical load-displacement curve
obtained for the shorter RHS piece of height 150 mm (sample SLW4) compressed
between wearpads.

Both the graphs display a similar trend. Figure 73(a) representing the longer
sections is marked by five regions, the region OA where complete contact between the
wearpads and RHS piece is being established, the elastic region AB, the elasto-plastic

regions BC and CD, and the post-yield region DE. Figure 73(b) representing the



131

shorter sections is similar to Figure 73(a), except that the elasto-plastic area has only

one region BC.

SLW1: Load-Displacement Curve SLW4: Load-Displacement Curve
16 35
D

/|

12 c
/ = 25 S
10

Load M

e
] 4 10 OU 4 10
Displacement (mm) Displacement (rmrm)
(a) (b)

Figure 73: Typical load-displacement curve of (a) Tall (b) Short RHS piece between

wearpads
Figure 74(a) represents the load-displacement curves for the taller RHS pieces
and Figure 74(b) represents the load-displacement curves for the shorter RHS pieces.

The graphs for all six RHS pieces display similar load-displacement patterns.
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Figure 74: Load-Displacement curves for (a) Tall (b) Short RHS pieces between
wearpads

Table 22 below summarizes the maximum load of the six RHS pieces

compressed between wearpads.

Table 22: Maximum load of RHS pieces between wearpads

RHS piece # Maximum Load (kN)
SLW1 12.57
SLW2 12.50
SLW3 11.88
SLW4 25.84
SLW5 25.29
SLW6 25.26
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e Conclusions and Observations

©)

©)

Buckling is indicated by the rapid outward bulging of the webs

The flanges of the RHS piece bend in a concave manner.

Visually, the shape of the RHS piece when loaded between wearpads
follows a similar pattern as the RHS piece loaded between platens with
the outward bulging of the webs and inward bending of the flanges.
However, Table 19 and Table 22 show that for a given set of
geometrical parameters, the maximum load value of a RHS piece
compressed between wearpads is lower than when compared to a RHS
piece compressed between platens.

As the load increases, the flanges of the RHS piece separate from the
platen or the wearpads.

In the limiting condition, contact between the RHS piece flanges and
the platen or wearpad reduces to a line contact.

Similar to sections 3.2 and 3.3, the load-displacement curves for
loading between platens and wearpads is defined by an elastic region,
an elasto-plastic region and a post-yield region.

The load-displacement curves are slightly different for the taller and
shorter sections, with the taller section showing a longer elasto-plastic

region.
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Chapter 4: Theoretical Development

The main tasks of this research are to explain ‘how the overlap region of a
telescopic beam behaves under a tip load’ and ‘the development of a new generic
approach to the design of telescopic beams based on parametric studies using FEA
and statistical optimization’. The task was explored further with a finite element
analysis of a candidate telescopic beam and the evaluation of the results. The overlap
area was further investigated and subdivided into two RHS rings or longer RHS pieces
and a connecting middle part. Exploratory experiments were then carried out on RHS
rings and longer RHS pieces. These were described in Chapter 3. The literature on
relevant topics was reviewed and the salient points of the review are described in
Chapter 2. With the findings from (a) the exploratory studies and (b) literature review,
it is now possible to form a rough idea of the behavior of the overlap region and a
methodology for the telescopic cantilever design for verification and validation. This
chapter explains these two tasks. In order to do that, the behavior of the RHS rings,
behavior of the RHS pieces and the results of the telescopic beam, together with the

literature review were analyzed and evaluated as described in the sub sections.

4.1 Rectangular Ring between Platens

A rectangular ring is made up of two flanges and two webs as shown in Figure
75(a). The load is applied by the platens on the flanges. At the beginning, this can be
considered as a uniformly distributed load. This load has to be taken up by the webs.
This means that the top flange will have two upward reactions from the webs. If a
beam is supported at the ends and a distributed or pressure load is applied, the result
will be a bent beam as shown in Figure 75(b). This bending will increase as the load

applied increases. The platen is a flat surface and because of the bending the middle



135

of the platen will lose contact with the middle of the beam as shown in Figure 75(c).
In the limiting condition, the platen will have contacts at the extreme points only, i.e.
near the webs, and there will only be a line contact (represented by a point in the 2D
representation as shown in Figure 75(d). It is therefore safe to assume that the webs
directly take up the load and the flanges are free from the load. This explanation is in
agreement with the behavior of the rings compressed between platens in the

exploratory experiments in section 3.2.

Flange
web  web Load from Platen Load from Platen
A Pressure Load l B r'd N\ r'd
l Aﬁ**i Platen i***B Ai Platen *B
TRA Beam RBT Beam Beam
TRA RBT TRA RBT
Flange (b) © (@)

@

Figure 75: (a) RHS ring assembly (b) Pressure load on RHS ring top flange (c) Loss
of contact in platen loading (d) Line contact in limiting condition of platen loading

Further, the sagging of the top flange will try to rotate the flange at the ends.
But the webs will resist this rotation and create reaction moments at the joints. In the
limiting condition, the loading in the top flange can be assumed to be as shown in
Figure 76(a). Considering the webs, the reaction moments in the flanges have to be
balanced for equilibrium, in the corners where the flanges meet the webs. To meet this
requirement the webs will have reaction moments acting in the opposite directions to

those in the flange. The loadings in the right web are shown in Figure 76(b).
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Load from Platen

Moment Resisting

Rotation

Moment Balancing Moment Balancing

Rotation Resisting Moment Rotation Resisting Moment

l Moment Resisting
Rotation
Web Reaction Web Reaction
Load from Platen
(@ (b)

Figure 76: Loadings in the top flange and right web of a ring

In summary when a rectangular ring is loaded between platens, the flanges will
behave like beams subjected to end moments and forces. The webs will behave like
columns subjected to compressive loads and end moments. This is similar to a column
with eccentric loading. Figure 77 schematically represents the ring under loading

between platens.

Moment Balancing

{'\ QRotation Resisting Moment

Web T

Load from .
Reactions

Platens

Moments resisting
rotation

@ ®) t it
NN
©

Figure 77: (a) Unloaded RHS ring (b) Deformed RHS ring shape(c) Force diagram of
RHS ring under loading between platens
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4.1.1 Analysis of the Web of a Rectangular Ring

Now consider the left web in the slightly bent position as shown in Figure 78.
This web takes half of the load from the platens at both ends. Figure 78(a) represents

the left web.

pl*
Arbitrary
Plane L A

A
A

I p

(a) (b)

Figure 78: (a) Deformed left web (b) Forces and moments on section of left web

The free body diagram shown in Figure 78(b) shows the bending moment in a

section at a distance x from the y axis along the x axis. The bending moment is

The governing differential equation is

d?y
dx?

Substituting k2 = g in (4.2), the differential equation is

o) (4.2)

+Py=—-M,
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dy M, (4-3)
dx? El
Its boundary conditions are y =0when x =0and x =L

+k?’y=—

The general solution for this differential equation is

y = Acoskx + Bsinkx (4.4)
Its particular solution can be of the formy_=cC and the complete solution is
y = Acoskx+ Bsinkx+C

Substituting for y_and its derivatives in (4.3) gives

M
K2(C) = — 0
(®) £l

C:— MO =—% '.'k: i
El xk? P El

The full solution is

y = Acoskx+ Bsin kx—% (4.5)

Substituting the boundary conditions gives

A:%and 5= Mo (1_C05k|'j: M, tan(&]

P \ sinkL P 2
The full solution is
y = M, coskx+ tan(&]sin kx—1 (4.6)
P 2
Differentiating once gives

y':%(—ksin kx+ktan(%)cos kxj (4.7)

When x =0, y':% ktan[&)
P 2
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4.1.2 Analysis of the Bottom Flange of a Rectangular Ring

y A M.
P P P YA
M, Mo¢ Ve M,
7 X

Figure 79: Forces and moments in the bottom flange

Consider a beam with both ends simply supported.
The bending moment is
M, =M, — Px (4.8)

The governing differential equation is

2

El ZXZ — M, — Px (4.9)

Integrating once gives
2
B _mx-PX e (4.10)
dx
2 3
Integrating again gives Ely = M;X _ Pg +Cx+D
Therefore,
2 3
y:i Mox” _ PX +Cx+D (4.11)
El 2 6

Substitutingx =0, y=0in (4.11) gives

D=0 (4.12)

- L, dy . ,
Substitutingx =X , =~ =0in (4.10) gives
2 dx

C :%[Plf —am,L,] (4.13)

Substituting (4.12) and (4.13) in (4.11) gives
(4.14)

1| Mx* Px®
y —_—

: ; +%[Plf —4M0I1]x}

=)
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Deflections at mid-point, 0, = — > 6

1 {MO(II/Z)Z _ P(I1/2)3 +E[Plz _AM.I ]l_l
El gh o102

o1 1 415
51:ﬁ|:_M0|12+§P|f:| ( )

4.2 Rectangular Ring between Wearpads

The load in this setup is applied by the wearpads on the flanges. At the
beginning, this can be considered as uniformly distributed loads on two sections of a
beam as shown in Figure 80(a). As the load increases the bending will also increase
and separation between the wearpads and the flange will begin as shown in Figure

80(b).

Wearpad Wearpad

Beam

YHY Vi 2} 1 ! !
f f I

(@ (b) (©

Figure 80: Loading through wearpads

The bending will increase further as the load applied increases and in the
limiting condition the wearpads will have contacts at the extreme points only, i.e. near
the webs, and there will only be a line contact. The forces will be similar to those
shown in Figure 80(c). This explanation is in agreement with the behavior of the RHS

Rings compressed between wearpads in the exploratory experiments in section 3.3.
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Figure 81: Force acting at a point in a structure

Now consider the force system in Figure 81(a) where a single force P is acting
at point A at a distance a from point B in a body. If two forces of the same magnitude
as P and opposite in direction are acting on point B as shown in Figure 81(b) they
would not make any difference to the system. Now consider the force in A and the
force opposite in direction acting at point B they form a couple. The force system can
now be represented as a force in B and a moment as shown in Figure 81(c). Thus a
force acting at a point in a structure can be represented by a force of the same
magnitude and direction, and a moment acting at a different point in the structure.

Now consider the force system in Figure 82(a) where two forces P act at A and
B at a distance a from the flange ends C and D. If two forces of the same magnitude
as P, and opposite in direction act at each of the flange ends at C and D as shown in
Figure 82(b), they would not make any difference to the system. Now, the force at A
and the force opposite in direction at point C form a couple. Similarly, the force at B
and the force opposite in direction at point D form a couple. Therefore, the forces
acting at A and B in Figure 82(a) can be represented by forces and moments acting at
C and D in the direction shown in Figure 82 (c). The two vertical forces at C and D
shown in Figure 82(c) can be replaced by a single vertical force 2P acting at the flange
center shown in Figure 82(d). This force 2P is balanced by the reaction forces at C and

D shown in Figure 82(d). The moments caused by the wearpads shown in Figure 82
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(c) cause counter reaction moments of the same magnitude from the flange as shown

in Figure 82(d).

P P P e p| P P P
N Y PO o G I N e
CR——% © CT A 0 c—0w  —

P P

Figure 82: Load on the RHS ring top flange

Thus mathematically, loading through the wearpads is equivalent to creating
an additional moment to the system compared to when loading is through the platens.
These additional moments cause reaction moments that act in the same directions as
the moments created when loading is through platens. Since the webs and flanges are
connected, these reaction moments also have to come from the web and will be in the
opposite direction to the reaction moments at the flanges. Figure 83 schematically

represents the loading under wearpads.

{-\ Moments Balancing wearpad

moments
n q Moment Balancing
Web T Rotation Resisting Moment
Load from Reacti

Platens eactions Moments resisting

—_ ) rotation
Moments due to
wearpads

@ (b) t ¢/_T\LT
TR

©

Figure 83: Unloaded RHS ring (b) Deformed RHS ring shape(c) Force diagram of
RHS ring under loading between wearpads
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4.3 Concluding Remarks on the Behavior of Rectangular Rings

The preceding sections and sub-sections provide in-depth analyses that can be

used to hypothesize the behavior of a RHS ring under transverse loading in the

following way:

1.

The ring can be considered as an assemblage of two webs and two flanges. The
behavior of the ring can be studied by analyzing the individual webs or flanges.
The free body diagrams of RHS rings show end reaction forces and end reaction
moments as shown in Figure 77(c) and Figure 83(c).

The web in a ring can therefore be considered as a column under eccentric loading
(because of the end reaction moments). This means that the buckling of the web
will be due to yielding at the inner side (compressive side) of the webs at the mid-
height.

The boundary conditions for the web under axial compression is neither pinned

2
nor fixed. This means that the value for k, in the equation P, = 1 E is between

1 and 4.

Stresses at the mid-height of the web are due to (a) the axial compression and (b)
bending as a beam. Axial compressive stress is uniform throughout the cross
section. The bending stress is compressive maximum at the inner fiber and tensile

maximum at the outer fiber.

: P o : :
The magnitudes of the stresses are [_Z — ob) compressive in the innermost fiber

P ) . . - :
and (_K+ ab) tensile at the outer most fiber. This means that yielding will start

at the inner fibre and progress outwards.
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7. The flanges in a RHS ring can be considered as a beam under end moments. It will
have bending stresses and can yield at the mid span. This depends on the magnitude
of the load and the dimensions of the flange.

8. Loading through wearpads will cause similar behavior as loading through platen
except, with an additional end moment.

9. The ability of the material is used to accommodate the axial stress and the bending
stress as explained in 6 above. This means that the additional end moment due to
the wearpads would reduce the magnitude of load P before the RHS ring starts
yielding. This has been the behavior observed in the exploratory experiments.

10. For a given value of the applied load, an RHS ring compressed between platens
will show smaller lateral displacement at the web center as compared to when
loaded between wearpads. This is again because of the additional moment caused
by the wearpads. This has also been the behavior observed in the exploratory

experiments.

4.4 RHS Pieces under Compression between Platens and Wearpads

Experimental investigations with rings gave the clues for the 10 observations
explained in section 4.3. However, the load carrying capacity was reduced because of
the small length of the ring. Exploratory experimentation with short and tall RHS
pieces were carried out to find any difference in behavior.

In the exploratory investigation, an RHS piece was placed between platens and
the load was applied by the platens on the flanges. The behavior was found to be
similar to that of the ring excepting that the magnitude of the maximum load was much
higher. At the beginning, the applied load can be considered as a uniformly distributed

load. This load has to be taken up by the webs. This means that the top flange will have
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two upward reactions from the webs and the load that would make it bend. This
bending will increase as the load applied increases. The platen is a flat surface and as
in the ring, because of the bending the middle of the flange will lose contact with the
platen. In the limiting condition, the platen will have contacts at the extreme points
only, ie near the webs, and there will only be a line contact. As considered in the rings,
it is safe to assume that the webs directly take up the load and the flanges are free from
the load. This explanation is in agreement with the behavior of the RHS pieces of two
different sizes compressed between platens in the exploratory experiments.

Compression between wearpads also showed a similar behavior.

4.5 Theoretical Analyses of Rings and RHS Pieces

Theoretical analysis is based on the assumption that a ring can be represented
as an assemblage of two columns and beams and an RHS piece can be represented as
an assemblage of two plates under transverse and another two under axial loadings.

Analysis of the webs in the rings as columns reveal that ideally it would have a

2
7 El
buckling load as P, = - 2 as explained in section 1.3.4. The values of k, for some

known boundary conditions are given in Table 4. However, the condition of the web
of a rectangular ring has not been included in the table. The boundary condition here
is neither simply supported nor fixed-fixed. This means k; for the current condition
can lie within 1 and 4. However, it is not possible to find this value at present.

In the case of RHS piece, which is considered as an assemblage of plates the

°E
212(b/tf(1-0?)

critical stress, is found to be (Ux)cr =k in Chapter 2. Here again the
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value of k, for the boundary conditions has to be known. At present, it is not possible
to find this value.

In summary, the RHS ring can be represented as an assemblage of two columns
and beams, and an RHS piece can be represented as an assemblage of two plates under
transverse and another two under axial loadings. Although their analysis gave an
insight on their behavior, the findings cannot be used in real life applications. Because
of these reasons, a finite element method with statistical experimental design is

proposed in section 4.6 below.

4.6 Methodology for Designing Telescopic Beams

Exploratory analysis of a telescopic beam and the analysis of the preceding
sections, show that the overlap area of the inner beam of a telescopic cantilever is the
vulnerable area for buckling. The overlap area can be analysed as a combination of
two RHS rings or RHS pieces, and a connecting middle portion. The behavior of the
RHS rings and RHS pieces has been explained in section 4.5. Also, it is known that
buckling behavior is a case dependent occurrence. Considering all these, a seven
stepped methodology for the design of the inner beam of a telescopic cantilever was
derived. The steps are as follows:

i.  Consider the influencing factors for maximum load of a RHS ring and RHS
piece and the assembly of the inner beam of a telescopic cantilever.
ii.  Design and conduct a screening experiment to identify the influencing factors
for maximum load of the inner beam assembly
iii.  Design and conduct a CCD experiment and fit the response surface for
maximum load

iv.  Carry out a confirmation FE analysis to validate the response surface.
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v.  Consider significant factors and interactions in the fitted response surface

vi.  Propose various combinations of the significant parameters that are essentially

different conceptual designs and choose and optimize the design in terms of

manufacturability.

vii.  Conduct a validating analysis.

Figure 84 explains the methodology with a schematic diagram.

List the factors proven and assumed to be significant
in the Inner Beam Assembly for Maximum load

’

Design and conduct a screening experiment to identify
the influential factors for maximum load

!

Design and conduct a Response Surface Design to
identify the significant factors and fit a mathematical
model for maximum load

Conduct a validating
experiment

Establish the main factor and interaction plots and based
on them explain the behavior of a specific inner beam
assembly of a telescopic beam

4

Use the knowledge of the behavior, sizes and ranges of
the available material and design parameters, and the
mathematical model to predict, to propose various
combinations (designs) and choose one

!

Conduct a validating analysis before finalizing the
chosen design

Include more factors which were
ignored based on analyses of Rings
and RHS pieces

Figure 84: Methodology for designing telescopic cantilever beams
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Chapter 5: Parametric Studies on RHS Rings

The previous chapter highlighted that completer theoretical calculations could
not be made to calculate the behavior of the overlap region in telescopic beams because
of unknown boundary conditions of the constituent webs and flanges. Hence section
4.6 in Chapter 4 highlights the methodology for the design of the inner beam assembly
of the telescope using FEA and DOE. The design methodology includes the factors
influencing the maximum load capacity of RHS rings and pieces compressed between
wearpads. Therefore, this chapter aims to determine the geometric factors that affect
the behavior of RHS rings under compressive loads between wearpads with FE models
and experimental designs.

FE models for both RHS ring between (a) platens and (b) wearpads are built
and validated against the experiments on RHS rings shown in sections 3.2 and 3.3.
Validation is done against the RHS deformed shape, maximum load value of the RHS
rings, and load-displacement curves between experiments and FEA.

Experimental designs were conducted using Minitab software. In the
experimental design for the RHS rings between platens, only the Taguchi L1z screening
experiment is carried out and the influencing parameters obtained here are compared
to that obtained from the Taguchi Li> for RHS rings between wearpads to better
understand the RHS ring behavior between wearpads.

The procedure in this chapter involves (a) FE Model validation- use validated
model for further design of experiments (b) Taguchi Li» design — to identify
influencing factors (¢) CCD analysis — to confirm the factors influencing the maximum
load capacity of the RHS rings and to generate a mathematical model for the maximum

load (d) Confirmatory Experiment — to verify the mathematical model.
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5.1 RHS Rings between Platens

FE Model: The FE model comprising of three parts—the top platen, the bottom
platen, and the RHS ring is subjected to a Riks analysis using ABAQUS Standard
Version 2017. A typical FE model representing RHS ring compression between

platens is shown in Figure 85.

Reference Point
RP-1

Top Platen

RHS Ring

Bottom Platen

Figure 85: RHS ring between platens

e Assembly Details
The assembly consisting of the three parts were assigned the following

interactions:

o Bottom outer face of the RHS ring: assigned a frictional interaction
with the bottom platen (Refer Figure 86(e))
o Bottom Platen: encastred, thereby restricting all degrees of freedom

(Refer Figure 86(c))
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o Top outer face of the RHS ring: assigned a frictional interaction with
the underside of the top platen (Refer Figure 86(d)).

o Top Platen: All degrees of freedom of the top platen were restrained
apart from the vertical translation, thereby allowing for compression

(Refer Figure 86(a)).

e Reference point

A reference point RP-1 was created at the center of the top face of the top platen
and kinematically coupled with the top platen top surface for uniform application of
the load on the Top Platen (Refer Figure 86(b)).

A displacement of -15 was applied through a reference point, RP-1.

(®)
Figure 86: (a) Top platen constraints (b) Reference point coupling (c) Bottom platen
encastre (d) Top platen interaction (e) Bottom platen interaction

e Mesh size and elements

The platens were assigned the solid element C3D8R and the RHS ring was
assigned the shell element S4R where ‘R’ at the end of an element name in ABAQUS

indicates an element with reduced integration [97].
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A mesh analysis was carried out to determine an acceptable mesh size. A mesh

size of 5 mm was determined for all three parts of the assembly.
e Material Properties
A test coupon from the sheet used to fabricate the RHS rings gave the material
properties shown in Table 23. The test report is shown in Figure 121 of Appendix I.

The material of the RHS rings in the FE Model was assigned the properties

shown in Table 23.

Table 23: Material properties of rings

Property Value
Modulus of Elasticity | 125,946 N/mm?
Yield Stress 211.88 N/mm?
Ultimate Stress 317.35 N/mm?

e Dimensions

The FE model was built to the dimensions shown in Table 24.

Table 24: FE model part dimensions for RHS ring assembly

Part Dimensions
Height = 350 mm, Width = 150 mm, Corner Radius =5 mm,
Length = 10 mm, Thickness =3 mm

Platens 150 mm width with 10 mm length

RHS Ring

e Loading

Displacement of -15 applied at RP-1

e Validation of FE Model
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o Load Validation

Table 25 shows a comparison of the maximum load values obtained from the
experiments and the FE model. The load values are in agreement and hence the FE

model is considered validated.

Table 25: Maximum load values comparison for RHS rings between platens

sr. No Maximum Load (kN)
T Experiment FEA
Sample SR1 0.934
Sample SR2 0.900 0.905
Sample SR3 0.978

e Shape Validation

Shape Validation of the RHS ring is done by comparison and agreement of the

RHS ring shape obtained from experiments and FEA as shown in Figure 87.

Flange separation
from Platen

"~ Obvious web
bulging

Flange separation

from Platen \E

Figure 87: Deformed shape of RHS ring between platens in (a) Experiments (b) FEA
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e Load-Displacement curve

The comparison of the load-displacement curves between the three

experimental samples and the FE Model is shown in Figure 88.

Validation: RHS Ring b/w platens
1

08 4/\
L
s L

|

FE|Model

0.4 /
/

0 2 4 6
Displacement (mm)

Figure 88: Load-Displacement curve validation for RHS rings between platens

The red curve indicates the load-displacement curve for the FE Model, while
the three blue curves are the load-displacement curves experimentally obtained in
section 3.2. Agreement between plots from the two methods validates the FE model.

Design of Experiments:

e Taguchi L, design:
o Possible Parameters
For the RHS ring between platens, the factors with their given levels shown in

Table 26 were considered in the Taguchi Li> experiment.



Table 26: Factors and factor levels for Li> of RHS ring between platens

Factor Factor Level 1 | Level 2
No. (mm) (mm)
1 Corner Radius 2 4
2 RHS Thickness 3 4
3 RHS Height 350 450
4 RHS Width 200 250
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As the FE model is now validated, its material properties can now be modified

for the experimental design. The model properties were modified to that shown in

section 3.1.1 for the sake of uniformity. The validated RHS ring model compressed

between platens was modified to fit each run of the Li> matrix shown in Table 49 of

Appendix Il. Table 49 also includes the maximum load (response) corresponding to

each run.

o

Influencing Parameters

Figure 89 shows the factor plot obtained from the maximum load results in

Table 49.

RHS Ring between platens: L,, factor plot

RHS Thickness

RHS Corner
Radius

Figure 89: Factor plot for RHS rings between platens

Factor

RHS Height

RHS Width
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The factors with the most influence have the largest effect on the maximum
load. ‘RHS Thickness’ has the highest influence on the maximum load. Other
influencing factors are the ‘RHS Height” and ‘RHS Corner Radius’ determined from

Figure 89.

5.2 RHS Rings between Wearpads
FE Model: The platens in section 5.1 are replaced by the top and bottom

wearpads in this section. The top wearpads are built by extruding two rectangular
cubes from the wearpad platens as shown in Figure 90(b). The RHS ring assembly is
subjected to a Riks analysis using ABAQUS Standard Version 2017. A typical FE
model representing RHS ring compression between wearpads is as shown in Figure

90(a).

Top Wearpad

/Wearpad Platen
rlfj S .

NN Rectangular Cubes

RHS Ring

AN

Bottom Wearpad

Figure 90: (a) RHS ring between wearpads assembly (b) Wearpad parts



156

e Assembly Details

The assembly consisting of the three parts were assigned the following

interactions:

o Bottom face of the RHS ring: assigned a frictional interaction with the
two extrusions of the bottom wearpad (Refer Figure 91(e))

o Bottom Wearpad platen: is encastred, thereby restricting all degrees of
freedom (Refer Figure 91(c))

o Top outer face of the RHS ring: assigned a frictional interaction with
the two extrusions of the top wearpad (Refer Figure 91(d)).

o Top Wearpad platen: All degrees of freedom of the top wearpad platen
were restrained apart from the vertical translation, thereby allowing for

compression (Refer Figure 91(a)).

e Reference point

Similar to section 5.1, a reference point RP-1 was created at the center of the
top face of the top wearpad platen. RP-1 was kinematically coupled with the top platen
top surface for uniform application of the load on the top Platen.

Again, a displacement of -15 was applied through a reference point, RP-1.
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) (b)

Q)

(d)

Figure 91: (a) Top wearpad platen constraints (b) Reference point coupling (c)
Bottom wearpad platen encastre (d) Top wearpad interaction (e) Bottom wearpad

interaction

e Mesh size and elements

Same as in section 5.1

e Material Properties

Same as in Table 23 of section 5.1

e Dimensions

The FE model was built to the dimensions shown in Table 27.

Table 27: FE model part dimensions for RHS ring between wearpads

Part Dimensions
RHS Ring Height = 350 mm, Width = 150 mm, Corner Radius =5 mm,
Length = 10 mm, Thickness =3 mm
Wearpad platen: 150 mm width with 10 mm length
Wearpads | Rectangular pieces: Width = 55 mm, Length = 10 mm, WP
Distance from edge = 10 mm
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e Loading

Displacement of -15 applied at RP-1

e Validation of FE Model

o Load Validation

Table 28 shows a comparison of the maximum load values from the

experiments and FEA. Agreement between the values validates the FE models.

Table 28: Maximum load values comparison for RHS ring between wearpads

sr. No Maximum Load (kN)
T Experiment FEA
Sample SRW1 0.716
Sample SRW?2 0.706 0.738
Sample SRW3 0.731

e Shape Validation

Deformed shapes of the RHS Ring between wearpads is shown in Figure 92.

Identical deformed shapes from experiments and FEA validates the FE model.

Flange separation
from wearpad

Obvious outward
L — bulging of webs ~

Flange separation
from wearpad

Figure 92: Deformed shape of RHS ring between wearpads in (a) Experiments (b)
FEA
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e Load-Displacement Curve
The load-displacement comparison plot between the three experimental

samples and the FE Model is shown in Figure 93. Agreement between them validates

the FE model.

Validation: RHS Ring b/w wearpads
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Figure 93: Load-displacement curve validation for RHS ring between wearpads

Design of Experiment
e Taguchi L1 design:
o Possible Parameters
Table 29 shows the factors and levels considered for the Li2 experiment of the

RHS Rings between wearpads.



Table 29: Factors and factor levels for Li> of RHS ring between wearpads

Factor Factor Level 1 | Level 2
No. (mm) (mm)
1 WP-Web Distance 5 10
2 WP Width 50 70
3 RHS Corner Radius 2 4
4 RHS Thickness 3 4
5 RHS Height 350 450
6 RHS Width 200 250

Table 50 in Appendix Il shows the maximum load values corresponding to

each run of the Li» design matrix for RHS rings between wearpads.

o Influencing Parameters

Figure 94 shows the factor plot obtained from the data in Table 50. Again, like

in section 5.1, ‘RHS Thickness’ has the highest influence on the maximum load. Other

influencing factors from Figure 94 are ‘RHS Height” and ‘WP-Web Distance’.
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RHS Ring between wearpads: L,, factor plot

RHS Thickness

WP-Web

Distance RHS Height
RHS Corner
WP Width radius RHS Width
. l
1 2 3 4 5 6 7

Factors

Figure 94: Factor plot for RHS rings between wearpads
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e CCD

Minitab software was used to develop a CCD to conduct computer experiments
and fit a response surface for the maximum load with the main aim of verifying the
CCD model and hence validating the influencing factors obtained for the RHS rings
between wearpads to be considered further in Chapter 7. For this design, the value for
a was kept at 2. The values of the coded levels for the three most influencing factors

selected from Figure 94 are given in Table 30.

Table 30: Values for the coded factor level for RHS ring between wearpads

Coded value -2 -1 0 1 2
RHS Thickness 3 32535375 4
RHS Height 350 | 375 | 400 | 425 | 450
WP-Web Distance | 6 7 8 9 10

The validated RHS Ring model compressed between wearpads was modified
to fit each run shown in Table 51 of Appendix Il. Table 51 also includes the maximum

load (response) corresponding to each run.

e Statistical Analyses of the Results and Evaluations

The results from the CCD are given in the form of a mathematical model, main

effect plots and interaction plots.

o The Response Surface:

Let the following parameters to be named in the way expressed below.

Maximum Load p
RHS thickness X1
RHS Height X2

WP-Web Distance X3
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From the CCD analysis, the model is represented by:

p =1276.65+257.56x, —90.31x, —56.51x, +18.10x’ +7.26X + 3.32x’

(5.1)
—25.89%,X, —10.59x%, X, +12.39X, X,

Equation (5.1) can be mathematically manipulated to get the value combination

of the parameters x,, x,, X, to obtain a target maximum load p.
For the three selected factors, the model has%(3+1)(3+ 2) =10terms. The

degree of contribution varies for each factor. The Pareto Chart shown in Figure 95

indicates the significant main factors and interactions from the CCD.

Pareto Chart of the Standardized Effects

Term

Factor Name

A RHS Thickness
A B RHS Height

C WP-Web Distance
B
C

AB

AC

0 10 20 30 40 50 60 70
Standardized Effect

Figure 95: Pareto chart for RHS ring between wearpads

The p-values for all the factors and interactions are shown in Table 31. For a
95% confidence interval, any factor with a p-value < 0.05 is considered significant.

Only the factors and interactions with p-value < 0.05 are shown in Figure 95.
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Table 31: P-value for CCD model of RHS ring between wearpads

Term P-value

Linear

RHS Thickness 0.000
RHS Height 0.000
WP-Web Distance 0.000
Square

RHS Thickness* RHS Thickness 0.000
RHS Height*RHS Height 0.000

WP-Web Distance * WP-Web Distance | 0.001
2-Way Interaction

RHS Thickness*RHS Height 0.000
RHS Thickness* WP-Web Distance 0.000
RHS Height* WP-Web Distance 0.000

o Validating mathematical model

For a target maximum load value p of 2000 N and restricting the ‘RHS Height’
at 350 mm, Minitab gave the following results:

Maximum load = 1998.36 N

RHS thickness = 3.89 mm

WP-web distance = 7.98 mm

An ABAQUS model built for the parameter values obtained from the Minitab
optimization study, gave a maximum load of 2029.2 N.

Agreement of the maximum load values from Minitab and the FE model

validates the mathematical model.

o Main Factor Effects

Figure 96 shows the effect of three factors considered in the CCD analysis. The
maximum load increases as the thickness of the RHS ring is increased. The RHS

thickness also has the highest effect on the maximum load.
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Main Effects Plot for Maximum Load

RHS Thickness RHS Height WP-Web Distance
2000 F5——-——---- s ; ; :

T
1
1
1
1
1
1
1
1
-
1
1
1
1
1
1
1
1
1
-4
1
T
4
1
1
1
1
1
1
1
1
1
a4
1
1
1
1
1
1
1
1
1
-4
1

- ——

1750FA---==---~-

1500 Fq---------

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
]
1
1
1

1250 Fa-====-===f- - oo oo

Maximum Load (N)

1000+

[ T L T T T T Iy S P
= SO ST NP SR (R AUy S P S [ S

I,

1

1

1

1

1

1

1

1
I

1

1

1

1

1

1

1

1

2

= Y S S,

|
| e e
[

1
!
-2

Figure 96: Main effects plot for maximum load of RHS ring between wearpads

The maximum load reduces as the RHS height or WP-web distance is
increased. From an engineering point of view, as the thickness increases or the height
reduces, the slenderness ratio reduces, thereby increasing the maximum load capacity
of the RHS ring.

When the WP-web distance is increased, it results in an increase in the moment
load acting on the webs of the RHS ring which results in reducing the maximum load
carrying capacity of the RHS ring. This is as observed by experiments in section 3.2

and 3.3.

o Interaction factors
Three interactions were identified as significant as shown in Figure 97 to
Figure 99. While interpreting interaction plots, if the curves are almost parallel, it does

not indicate a strong interaction.
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Consider Figure 97 showing the variation of maximum load when the RHS
Thickness is varied from level -2 (3 mm) to level 2 (4 mm). As the RHS thickness
increases, the distance between the RHS height curves increases. This means that the
difference in the RHS ring behaviour with height 375 mm and 425 mm increases as
the thickness increases.

Similar observations can be made for the interaction plots shown in Figure 97

to Figure 99.
Interaction Plot 1: RHS Ring between Wearpads
RHS Thicknes * RIS Height
2200
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Figure 97: Effect of interaction between RHS thickness and RHS height on

maximum load
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Interaction Plot 2: RHS Ring between wearpads
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Figure 98: Effect of interaction between RHS height and WP-web distance on

maximum load

Interaction Plot 3: RHS Ring between wearpads
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Figure 99: Effect of interaction between RHS thickness and WP-web distance on

maximum load
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e Conclusions:

o FE model for RHS rings between platens was validated

o FE model for RHS rings between wearpads was validated

o For the same factor ranges of the RHS ring, the Taguchi L2 for:

= RHS ring between platens suggests the influencing factors are:
‘RHS Thickness’, ‘RHS Height’, ‘RHS Corner Radius’

= RHS Ring between wearpads suggests the influencing factors are:
‘RHS Thickness’, ‘RHS Height’, ‘WP-Web distance’

The substitution of the RHS corner radius by the WP-web distance in

the influencing factors for RHS ring between wearpads indicates that

the effect of both these factors is the same i.e. to move the load away

from the web. When compressed between wearpads, the effect of the

RHS corner radius therefore becomes redundant.

o A mathematical model was obtained for the RHS ring between wearpads
from the CCD and hence the influencing factors obtained for the RHS rings
between wearpads were verified

o The mathematical model was validated by FEA

o Main factors and interactions were obtained and explained to better
understand the behavior of the RHS ring between wearpads.

o The lower maximum loads of the RHS ring compressed between wearpads
is attributed to the additional moment induced due to the position of the
wearpads causing the load to act away from the webs. This is confirmed by

the interaction between the ‘RHS Height’ and ‘WP-Web Distance’.
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Chapter 6: Parametric Studies on RHS pieces

Chapter 5 determined the factors influencing the maximum load capacity of
RHS rings between wearpads. This chapter aims to determine the geometric factors
that affect the maximum load of RHS pieces under compressive loads between
wearpads

Similar to Chapter 5, FE models of RHS pieces compressed between (a) platens
and (b) wearpads are validated against the experiments on RHS pieces shown in
sections 3.4 and 3.5. Validation is done against the RHS piece deformed shape,
maximum load carrying capacity, and load-displacement curves of the RHS pieces.

In this chapter, a detailed analysis of RHS pieces using experimental design is
shown. Like in Chapter 5, for the RHS pieces between platens, only the Taguchi L2
screening experiment is done and the influencing factors obtained are compared to that
obtained from the Taguchi L12 for RHS pieces between wearpads to better understand
the behavior of RHS pieces between wearpads. The RHS pieces are used further in a
CCD to confirm the factors most influencing the maximum load of RHS pieces
between wearpads. These factors are then considered in the L12 experiment of the inner
beam assembly of the telescope in Chapter 7.

The procedure in this chapter involves (a) FE model validation - use validated
model for further design of experiments (b) Taguchi Li» design — to identify
influencing factors (c) CCD analysis - to establish the optimal settings using a
mathematical model with the influencing factors (d) Confirmatory Experiment — to

verify mathematical model.
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6.1 RHS Pieces between Platens
FE Model:

The FE model comprising of three parts—the top platen, the bottom platen,
and the RHS piece is subjected to a Riks analysis using ABAQUS Standard Version
2017. A typical FE model representing RHS piece compression between platens is as
shown in Figure 100.

Two models were built for the two sets of RHS pieces tested. The assembly
shown in Figure 100 is true for both models. For the shorter sections with 150 mm
height, the RHS piece was built with solid elements whereas for the taller sections with
the 350 mm height, shell elements were assigned to the RHS piece. The material
properties for both models varied. All other features including interactions, mesh size,
load application, boundary conditions etc. remained the same for both models.

Reference Point RP-1

Top Platen

RHS Piece

Bottom Platen

Figure 100: RHS piece between platens
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e Assembly Details

The assembly consisting of the three parts were assigned the following

interactions:

o Bottom outer face of the RHS piece: assigned a frictional interaction
with the bottom platen (Refer Figure 101(d))

o Bottom Platen: is encastred, thereby restricting all degrees of freedom
(Refer Figure 101(b))

o Top outer face of the RHS piece: assigned a frictional interaction with
the underside of the top platen (Refer Figure 101(c)).

o Top Platen: All degrees of freedom of the top platen were restrained
apart from the vertical translation, thereby allowing for compression
(Refer Figure 101(a)).

e Reference point

A reference point RP-1 was created at the center of the top face of the top
platen. RP-1 was kinematically coupled with the top platen top surface for uniform
application of the load on the Top Platen.

A displacement of -15 was applied through a reference point.
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(@) (b)

(c) (d)

O

Figure 101: (a) Top platen constraints (b) Bottom platen encastre (c) Top platen
interaction (d) Bottom platen interaction (e) Reference point

e Mesh size and elements

For both models, the platens were assigned the solid element C3D8R.

For the taller RHS piece, the RHS piece was assigned the shell element S4R.
A mesh analysis resulted in determining a size of 5 mm for all three parts.

The shorter RHS piece was assigned the solid element C3D8R. The C3D8R
element is also a brick element, with reduced integration [15]. Due to the reduced
integration, the element tends not to be stiff enough in bending. Therefore, four
elements were assigned through the thickness of the RHS piece. A mesh analysis

resulted in determining a size of 5 mm x 5 mm for the RHS piece and platens.
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e Dimensions

The FE model for the tall and short RHS pieces was built to the dimensions

shown in Table 32 and Table 33 respectively.

Table 32: FE model part dimensions for tall RHS piece between platens

Part Dimensions
RHS piece | Height = 350 mm, Width = 150 mm, Corner Radius = 5 mm,
Length = 150 mm, Thickness = 3.2 mm

Platen 150 mm width and 150 mm length

Table 33: FE model part dimensions for short RHS pieces between platens

Part Dimensions
RHS piece | Height = 150 mm, Width = 100 mm, Corner Radius = 5 mm,
Length = 100 mm, Thickness =3 mm

Platen 100 mm width and 100 mm length

e Loading

Displacement of -15 applied at RP-1

e Validation of FE Model:

o Load Validation

Table 34 and Table 35 show the comparison of the maximum load values
between the experiments and the FEA. Agreement of maximum load values between

both methods validates the FE models.
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Table 34: Maximum load value validation for tall RHS pieces between platens

sr. No Maximum Load (kN)
T Experiment FEA
Sample SL1 15.02
Sample SL2 15.28 14.63
Sample SL3 15.48

Table 35: Maximum load value validation for short RHS pieces between platens

Sr. No. Maximum Load (kN)
Experiment FEA
Sample SL4 32.24
Sample SL5 34.39 34.64
Sample SL6 32.58

e Shape Validation:

Agreement between the deformed shape from experiments and FEA of a RHS

piece shown in Figure 102(a) and Figure 102(b) validates the FE model.

Flange separation
from Platen

Obvious wetyv

bulging

Flange separation
from Platen

Figure 102: Deformed shape of RHS piece between platens in (a) Experiments (b)
FEA
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e Load-Displacement Curve
The load-displacement curves for the experiments and FE models for the tall
and short RHS pieces between platens is shown in Figure 103(a) and Figure 103(b)
respectively. The blue curves indicate the load-displacement curves for the
experiments in section 3.4 and the red curve indicates the load-displacement curves
from the FE model. Agreement in the load-displacement curves from the experiments

and FE models validates the FE models.

Validation: Tall RHS pieces b/w Validation: Short RHS pieces b/w
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Design of experiments
e Taguchi L1 design:

o Possible Parameters

Using the validated FE model of the tall RHS piece, the Li> experiment was

executed with the listed five factors and their levels shown in Table 36.

Table 36: Factors and factor levels for Li2 of RHS piece between platens

Factor Level 1 | Level 2
Factor Name

No. (mm) (mm)
1 RHS Thickness 3 4
2 Corner radius 2 5
3 RHS Height 350 450
4 RHS Width 200 250
5 RHS Length 400 450

Like in the case of the RHS ring in Chapter 5, the material properties for the
FE models in the experimental design were modified to that shown in section 3.1.1 for
the sake of uniformity. The validated tall RHS piece model compressed between
platens was modified to fit each run shown in Table 52 in Appendix I1l. Table 52 also

includes the maximum load (response) corresponding to each run.
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¢ Influencing Parameters

RHS pieces between platens: L,, Factor Plot
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Figure 104: Factor plot for RHS pieces between platens

Figure 104 shows the Factor Plot from the results shown in Table 52. From
Figure 104, again the ‘RHS Thickness’ has the highest influence on the maximum
load. Other influencing factors include the ‘RHS Height’, ‘RHS Length’ and ‘Corner

Radius’.

6.2 RHS Pieces between Wearpads

FE Model: The FE model comprising of three parts—the top wearpad, the
bottom wearpad, and the RHS piece is subjected to a Riks analysis using ABAQUS
Standard Version 2017. A typical FE model representing RHS compression between
wearpads is as shown in Figure 105(a). For this section, the platens shown in section
6.1 are replaced by the top and bottom wearpads. The top wearpads are built by
extruding four rectangular cubes from a flat platen as shown in Figure 105(b). A typical
FE model representing RHS piece compression between wearpads is as shown in

Figure 105(a).
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Like in section 6.1, two models were built for the two sets of samples tested.
The assembly shown in Figure 105(a) is true for both models. Again, for the shorter
sections with 150 mm height, the RHS piece was built with solid elements whereas for
the taller sections with the 350 mm height, shell elements were assigned to the RHS
piece. The material properties for both models varied. All other features including
interactions, mesh size, load application, boundary conditions etc. remained the same

for both models.

Reference Point
RP-1
Wearpad

.\\\/\\P\Iaten

.

Rectanguﬁﬁ

extrusions

Top wearpad

RHS Piece

Bottom wearpad

@)

Figure 105: (a) RHS ring between wearpads assembly (b) Wearpad parts

e Assembly Details

The assembly consisting of the three parts were assigned the following

interactions:

o Bottom outer face of the RHS piece: assigned a frictional interaction
with the four extrusions of the bottom wearpad (Refer Figure 106(d))
o Bottom Wearpad platen: is encastred, thereby restricting all degrees of

freedom(Refer Figure 106(b))
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o Top outer face of the RHS piece: assigned a frictional interaction with
the four extrusions of the top wearpad (Refer Figure 106(c))

o Top Wearpad platen: All degrees of freedom of the top wearpad platen
were restrained apart from the vertical translation, thereby allowing for
compression (Refer Figure 106(a)).

e Reference point

As explained in section 5.2, a reference point RP-1 was created at the center of
the top face of the top wearpad. RP-1 was kinematically coupled with the top platen
top surface for uniform application of the load on the top platen (Refer Figure 106(e)).

Again, a displacement of -15 was applied through a reference point.

©

Figure 106: (a) Top wearpad platen constraints (b) Bottom wearpad platen encastre
(c) Top wearpad interaction (d) Bottom wearpad interaction (e) Reference point

coupling
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e Mesh size and elements

Same as section 5.1
e Dimensions
The FE model for the tall and short RHS pieces was built to the dimensions
shown in Table 37 and Table 38 respectively.

Table 37: FE model part dimensions for tall RHS piece between wearpads

Part Dimensions

Height = 350 mm, Width = 150 mm, Corner Radius =5 mm,
Length = 150 mm, Thickness = 3.2 mm

Wearpad Platen: 150mm length x 150 mm width

Wearpads | Rectangular pieces: Width = 15 mm, Length = 25 mm, WP
distance from both edges = 10 mm

RHS piece

Table 38: FE model part dimensions for short RHS pieces between wearpads

Part Dimensions

RHS piece Height = 150 mm, Wi_dth = 100 mm, Corner Radius =5 mm,
Length = 100 mm, Thickness =3 mm
Wearpad Platen: 100 mm length x 100 mm width

Wearpads Rectangular pieces: Width = 15 mm, Length = 25 mm, WP
Distance from web edge = 7.5 mm, WP Distance from front
edge =10 mm

e Loading

Displacement of -15 applied at RP-1

e Validation of FE Model:

o Load Validation

Table 39 and Table 40 show an agreement in the maximum load values

between the experiments and the FEA. This validates the FE model.
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Table 39: Maximum load validation for tall RHS pieces between wearpads

sr. No Maximum Load (kN)
T Experiment FEA

Sample SLW1 11.88

Sample SLW?2 12.57 12.42

Sample SLW3 12.50

Table 40: Maximum load validation for short RHS pieces between wearpads

Maximum Load (kKN)

Sr. No. Experiment FEA
Sample SLW4 25.285
Sample SLW5 25.263 27.03
Sample SLW6 25.840

Shape Validation

Agreement between the deformed shape of RHS piece compressed

experimentally and in the FE model between wearpads as shown in Figure 107(a) and

Figure 107(b) validates the FE model.

Flange separation
from wearpads

Obvious flange
bulging —

Flange separation
from wearpads

Figure 107: Deformed shape of RHS piece between wearpads in (a) Experiments (b)

FEA
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e Load-Displacement Curve:
Figure 108 shows the load-displacement curves for the two sets of RHS pieces

between wearpads. Agreement between the curves from both methods validates the

model.
Validation: Tall RHS pieces b/w Validation: Short RHS pieces b/w
wearpads wearpads
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Figure 108: Load-displacement curve for (a) Tall RHS piece (b) Short RHS piece
between wearpads
Design of Experiments
e Taguchi L1 design:
o Possible Parameters

Table 41 lists the nine factors and their levels considered for the L. design of

RHS pieces between wearpads.
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Table 41: Factors and factor levels for L1> of RHS piece between wearpads

Factor No. Factor Level 1 | Level 2

(mm) | (mm)

1 RHS Thickness 3 4

2 RHS Corner Radius 2 4

3 RHS Height 350 450

4 RHS Width 200 250

5 RHS Length 400 450

6 WP Length 150 175

7 WP Width 50 75

8 WP-Web Distance 5 10

9 WP-End Distance 5 10

Again, the material properties for the FE models in the experimental design
were modified to that shown in section 3.1.1 for the sake of uniformity. The validated
tall RHS piece model compressed between wearpads was modified to fit each run
shown in Table 53. Table 53 also includes the maximum load (response)

corresponding to each run.
o Influencing Parameters

Figure 109 shows the factor plot for the maximum load obtained from the data
shown in Table 53. The most influencing factors are the ‘RHS Thickness’, ‘RHS

Height’, “WP-Web Distance’ and ‘RHS Length’.
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Figure 109: Factor plot for RHS pieces between wearpads

e CCD

10
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In Minitab, for this design, the value for a was kept at 2. The values of the

coded levels are given in Table 42. The values of the coded levels for the four most

influencing factors selected from Figure 109 are given in Table 42.

Table 42: Values for the coded factor levels for RHS pieces between wearpads

Coded Value -2 -1 0 1 2
RHS Thickness 3 3.25 35 3.75 4
RHS Height 350 | 375 400 425 | 450
RHS Length 400 | 410 420 430 | 440
WP-Web Distance 5 6 7 8 9

The validated tall RHS piece model compressed between wearpads was

modified to fit each run shown in Table 54 of Appendix I1l. Table 54 also includes the

maximum load (response) corresponding to each run.
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o Statistical Analyses of the Results and Evaluations:

The results from the CCD are given in the form of a mathematical model, main
effect plots and interaction plots. The main aim of the CCD is to validate the
mathematical model and hence the influential factors of the RHS pieces between
wearpads.

o The Response Surface:

Let the following parameters to be named in the way expressed below:

Maximum Load p
RHS thickness X1
RHS Height X2
RHS Length X3
WP-Web Distance X4

The response surface is a mathematical model using these parameters. From

the analysis the model is given by:

p = 64760 +12837x, — 4690x, +1592x, — 2026X, +899x’ +
395x2 +118x2 — 487x; —911x,X, +399x, X, — 385X, X, (6.1)
—158x, X, +691x,X, +16X,X,

This model given by equation (6.1) can be mathematically manipulated to get
the value combination for the geometric factors to get a target value of the maximum

load p.
1 .
The model hasE(4+1)(4+2)=15terms. Some of these have marginal

contributions while some have major contributions. The Pareto Chart in Figure 110

shows the significant main factor effects and interactions.



185

Pareto Chart of the Standardized Effects

Term
Factor Name
A RHS Thickness
A B RHS Height
C RHS Length
D Wp-Web Distance
B
D
C
AB
BD

20 30 40
Standardized Effect

0 10

Figure 110: Pareto chart for RHS pieces between wearpads

The p-values for all the factors and interactions are shown in Table 43. Again,
only factors with a p-values < 0.05 are considered significant. The pareto chart in

Figure 110 shows only the significant factors and interactions.
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Table 43: P-value for all factors/ interactions of RHS pieces between wearpads

Source P-Value

Linear

RHS Thickness 0.000
RHS Height 0.000
RHS Length 0.000
Wp-Web Distance 0.000
Square

RHS Thickness*RHS Thickness 0.000
RHS Height*RHS Height 0.025
RHS Length*RHS Length 0.473

Wp-Web Distance*Wp-Web Distance | 0.008
2-Way Interaction

RHS Thickness*RHS Height 0.001
RHS Thickness*RHS Length 0.081
RHS Thickness*Wp-Web Distance 0.090
RHS Height*RHS Length 0.470
RHS Height*Wp-Web Distance 0.005
RHS Length*Wp-Web Distance 0.942

o Validating mathematical model

For a target maximum load value p of 55,000 N, with a fixed RHS Height of
350 mm, the multiple response prediction is given in Table 44. The maximum load

obtained from Minitab was 55,002 N.

Table 44: Multiple response prediction for RHS piece between wearpads

Variable Setting Value
RHS Thickness -1.6803 3.08
RHS Height -2 350
RHS Length 1.9023 439.023
Wp-Web Distance | -1.6768 5.3232

With parameter values in Table 44, an ABAQUS model was built and run and

a maximum load of 58933.3 N was obtained. The higher value of maximum load from
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ABAQUS can be attributed to the fact that the thickness value was rounded up to a
higher value of 3.1 mm.
Agreement of the maximum load values from both Minitab and the FE model

validates the mathematical model.

o Main Factor Effects:

Figure 111 and Figure 112 shows the effect of the four factors considered in
the CCD analysis. The maximum load increases as the thickness and length of the RHS
piece is increased. The RHS thickness also has the highest effect on the maximum
load.

RHS between wearpads: Main Effects Plot 1
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Figure 111: Main effects plot 1 for RHS piece between wearpads
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RHS between wearpads: Main Effects Plot 2
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Figure 112: Main effects plot 2 for RHS piece between wearpads

The maximum load reduces as the RHS height or WP-Web distance is
increased. From an engineering point of view, for a given thickness value, if the RHS
height increases, the slenderness ratio increases making the RHS more prone to failure.
When the WP-web distance is increased, it results in an increase in the moment load
acting at the web of the structure which results in lower maximum load capacity of the

RHS piece.

o Interaction factors

Two interactions have been identified as significant and they are shown in
Figure 113 and Figure 114. As explained in section 5.2, while interpreting interaction
plots, if the curves are almost parallel, it does not indicate a strong interaction.

Consider Figure 113 showing the variation of maximum load when the RHS

height is varied from level -2 (350 mm) to level 2 (450 mm). As the RHS height
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increases, the distance between the WP-web distance curves decreases. This means

that the difference in the RHS piece behaviour with WP-web distance 7 mm and 10

mm increases as the RHS height reduces.

A similar explanation can be given for the interaction plot shown in Figure 114.

RHS between wearpads: Interaction Plot 1
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Figure 113: Effect of interaction between RHS height and WP-Web distance on

maximum load of RHS piece between wearpads
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RHS between wearpads: Interaction Plot 2
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Figure 114: Effect of interaction between RHS thickness and RHS height on

maximum load of RHS piece between wearpads
Conclusions:
o FE model for RHS pieces between platens was validated
o FE model for RHS pieces between wearpads was validated
o For the same parameter range of the RHS piece, the Taguchi L1 for:
= RHS piece between platens suggests the influencing factors are —
‘RHS Thickness’, ‘RHS Height’, ‘RHS Length’, ‘RHS corner
Radius’
= RHS piece between wearpads suggests the influencing factors are —
‘RHS Thickness’, ‘RHS Height’, ‘RHS Length’, ‘WP-Web
distance’
Similar to the conclusions drawn in Chapter 5, the

substitution of the RHS corner radius with the WP-Web
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distance in the influencing factors for RHS piece between
wearpads indicates that the purpose of both these factors is to
move the load away from the web. When compressed between
wearpads, the RHS corner radius therefore becomes redundant.
A mathematical model was obtained from the CCD of the RHS piece
between wearpads
The mathematical model was validated by FEA
The validated mathematical model confirmed the influencing factors of the
RHS pieces between wearpads
Main factors and interactions were obtained and explained to better
understand the behavior of the RHS piece between wearpads.
The lower maximum loads of the RHS piece compressed between
wearpads is attributed to the additional corner moment induced due to the
position of the wearpads causing the load to act away from the webs. This
is confirmed by the interaction between the ‘RHS Height” and ‘WP-Web

Distance’.
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Chapter 7: Parametric Studies on Inner Beam Assembly of Telescope

Chapter 7 entails the implementation of the design methodology of the inner
beam assembly in section 4.6 on a case study. It aims to generate a response surface
or mathematical model for the maximum load capacity of an inner beam assembly in
order to be able to optimize the design for a given set of constraints valid for a given
factor range.

In this chapter, the FE model explained and validated in chapter 3 is used here
for further experimental designs. Validation of the FE model in chapter 3 was done
against the reaction force obtained at the bottom wearpads from theory and analysis.

Section 1.5 in Chapter 1 highlighted that in the overlap area of a telescope, the
inner beam sections under the wearpads (Refer Figure 13) act as either RHS rings or
RHS pieces, depending on the length of the wearpads. With this in mind, and the
design methodology established in section 4.6, the factors considered in this Chapter
include the influencing factors obtained from chapters 5 and 6 for the RHS rings and
RHS pieces between wearpads. In addition, overall assembly factors were also
considered.

The procedure in this chapter involves (a) Taguchi L1, design — to identify
influencing factors (b) CCD analysis - to establish the optimal settings using a
mathematical model with the influencing factors (c¢) Confirmatory Experiment — to
verify mathematical model.

FE Model
e Modelling and analysis

As explained in section 3.1
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e Validation of FE Model

Reaction force agreement between theory and analysis (Refer section 3.12)

Design of Experiments

e Taguchi Li2 design

o Possible Parameters

The listed factors and their levels shown in Table 45 were used to carry out the
Li> experiment. The factors considered are a combination of influencing factors
borrowed from chapters 5 and 6, and overall assembly factors of the inner beam

assembly.

Table 45: Factors and factor levels for L1z of inner beam assembly

Factor No. Factor Name Level1 | Level 2
1 IB Length 3000 4000
2 IB Overlap 600 700
3 IB Height 350 450
4 IB Width 200 250
5 IB Thickness 3 4
6 WP Length 75 250
7 WP Width 50 75
8 WP-Web Distance 5 10
9 Corner radius 2 5

The maximum load (response) corresponding to the L1 runs are given in Table
55 in appendix IV. The validated inner beam assembly model was modified to fit each

run shown in Table 55.

o Influencing Parameters
Figure 115 below shows the Factor Plot for the maximum load for the factors
shown in Table 45. The six most influencing factors are: ‘IB Thickness’, ‘IB Length’,

‘IB Overlap’, ‘1B Height’, “WP Length’, “WP- Web distance’.
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Inner Beam Assembly: L, factor plot
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Figure 115: Factor plot for inner beam assembly of telescope

Of the six influencing factors, three influencing factors (‘1B Thickness’, ‘IB
Height’, “‘WP-Web Distance’) were common to RHS rings and RHS pieces between
wearpads from chapters 5 and 6. The wearpad length in Figure 115 represents the RHS
piece length shown in Figure 109 in Chapter 6. In addition, overall inner beam (IB)

dimensions; ‘IB Length’ and ‘IB Overlap’ also showed relevance.

e CCD

Using the CCD in Minitab, a response surface was fitted for the maximum load
of the telescope. For the design, the value for @ was kept at 2. The values of the coded
levels of the six influencing factors selected from Figure 115 are shown in Table 46.
The main of the CCD is to generate a mathematical model or response surface to
optimize the inner beam assembly for a given set of constraints within a set factor

range.



Table 46: Values for the coded factor level for inner beam assembly

-2 -1 0 1 2
IB Length 3000 | 3250 3500 3750 4000
IB Overlap 600 625 650 675 700
IB Height 350 375 400 425 450
IB Thickness 3 3.25 3.5 3.75 4
WP Length 200 210 220 230 240
WP-Web Distance 5 6 7 8 9
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The validated inner beam assembly model was modified to fit each run shown

in Table 54 of Appendix IV. Table 54 also includes the maximum load (response)

corresponding to each run.

o Statistical Analyses of the Results and Evaluations

The results from the response surface methodology are given in the form of a

mathematical model and factor plots.

o The Response Surface

Let the following parameters to be named in the way expressed below:

Maximum Load
IB Length

IB Overlap

IB Height

IB Thickness

WP Length
WP-Web Distance

p

X1
X2
X3
X4
X5

X6

The response surface is a mathematical model using these parameters. From

the CCD analysis, the model is given by:



p =18404.7 —1485.76x, +841.41x, + 20.61x, + 3042.08x,
+123.28x, —1271.53x, +113.77x7 —11.04x? —39.96x’

+125.29%2 —16.80x’ +95.41x2 — 66.62,X, — 9.73X, X,

—231.98x,X, —11.56X, X5 +113.97X,Xs +31.20X,X, +111.46X,X,

196

(7.1)

+ 25.83X, X5 —59.33X, X +51.36X;X, —14.87X;Xs +11.92X, X,

+33.17X, X5 — 246.23X,Xg +11.59X. X,

The model has%(6+1)(6+2)=28terms. Some of these have marginal

contributions while some have major contributions. Pareto Chart shown in Figure 116

shows all the factors and interactions. Factor D (IB thickness) has the highest influence

with a standardized effect of around 160. Considering this, only factors and

interactions with a standardized effect of more than 5 are considered as important.

These factors and interactions and discussed in the main effect and interaction plots.

Pareto Chart of the Standardized Effects

D | Factor Name
A | A IB Length
F | B IB Overlap
B C 1B Height
DF D IB Thickness
AD E WP Length
E F WP-Web Distance
AF
BD
AB
BF
CD
DE
BC
BE
C
CE
CF
EF
AE
AC

0 20 40 60 80 100 120 140 160
Standardized Effect

Figure 116: Pareto chart for all factors and interactions
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The p-values for all the factors and interactions are shown in Table 47 below.
For a 95% confidence interval, any factor with a p-value < 0.05 is considered

statistically significant.

Table 47: P-value for the whole model

Source P-Value
IB Length 0.000
IB Overlap 0.000
IB Height 0.000
IB Thickness 0.000
WP Length 0.000
WP-Web Distance 0.000
Square
IB Length*IB Length 0.000
IB Overlap*IB Overlap 0.143
IB Height*IB Height 0.000
IB Thickness*IB Thickness 0.000
WP Length*WP Length 0.028

WP-Web Distance*WP-Web Distance | 0.000
2-Way Interaction

IB Length*IB Overlap 0.000
IB Length*IB Height 0.083
IB Length*IB Thickness 0.000
IB Length*WP Length 0.040
IB Length*WP-Web Distance 0.000
IB Overlap*IB Height 0.000
IB Overlap*IB Thickness 0.000
IB Overlap*WP Length 0.000
IB Overlap*WP-Web Distance 0.000
IB Height*IB Thickness 0.000
IB Height*WP Length 0.009
IB Height*WP-Web Distance 0.035
IB Thickness*WP Length 0.000
IB Thickness*WP-Web Distance 0.000

WP Length*WP-Web Distance 0.040
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o Validating mathematical model

For a target maximum load value p of 20,000 N and for the variable range

given, the multiple response prediction is as given in Table 48 below:

Table 48: Multiple response prediction for inner beam assembly

Variable Setting Value
IB Length -1.90674 | 3023.315
IB Overlap 0.128002 353.2
IB Height 2 450
IB Thickness -0.227464 3.443
WP Length 2 240
WP-Web Distance | 0.802204 7.802

Using the factor values obtained in Table 48 from the Minitab optimization
study, the ABAQUS model was run and a maximum load of 21,223 N was obtained.

Agreement of the maximum load values from both Minitab and the FE model
validates the mathematical model.

The validated mathematical model can be used further to explore various
combinations of factors for a desired maximum load value. The best design, keeping
in mind manufacturing or facility constraints, can be chosen. The chosen design can
be confirmed again with an FE model.

o Main Factor Effects

Figure 117 and Figure 118 shows the effect of six parameters considered in the

CCD analysis.
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Telescope: Main Effects Plot 1
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Figure 117: Main effects plot 1 for telescope

Telescope: Main Effects Plot 2
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Figure 118: Main effects plot 2 for telescope
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The maximum load increases as the thickness of the inner beam is increased.
The ‘IB Thickness’ also has the highest effect on the maximum load. Increasing the
‘IB overlap’ also increases the maximum load. However, increasing the IB Length and
the ‘WP-Web distance’ reduces the maximum load. The ‘IB Height’ and the ‘WP
Length’ has almost no impact on the maximum load.

From an engineering point of view, the main factor effects can be explained as

follows:

o Asthe thickness value increases, the slenderness ratio decreases, increasing
the maximum load capacity of the inner beam.

o Asthe WP-web distance is increased, it results in an increase in the moment
load acting at the web of the structure which reduces the maximum load of
the inner beam

o Increasing the 1B length or reducing the overlap length has the effect of
increasing the moment at the bottom wearpad, thereby reducing the
maximum load capacity of the inner beam.

o The greater the wearpad length, the greater the contact length and therefore
the larger the area on which the force is distributed. This increases the
maximum load of the inner beam.

o The IB Height has a very small effect on the maximum load. It can be said
that for the current factor ranges, the overall assembly factors have a greater
influence on the maximum load than part geometric factors.

o Interaction factors

Two interactions have been identified as significant and they are shown in

Figure 119 and Figure 120.
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Consider Figure 119 showing the variation of maximum load when the IB
Thickness is varied from level -2 (3 mm) to level 2 (4 mm). As the IB Thickness
increases, the distance between the WP-Web Distance curves increase i.e. the
difference between what happens to the inner beam with WP-Web Distance 6 mm and
8 mm increases as the IB thickness increases.

A similar explanation can be given for the interaction shown in Figure 120.

Telescope: Interaction Plot 1
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Figure 119: Effect of interaction between IB thickness and WP-web distance on

maximum load
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Telescope: Interaction Plot 2
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Figure 120: Effect of interaction between IB length and IB thickness on maximum

load
e Conclusions:

o The factors considered for the Taguchi Li2 design included the influencing
factors obtained from chapters 5 and chapter 6. Other factors considered
included overall inner beam assembly factors

o The influencing factors obtained for the inner beam assembly included all
the influencing factors obtained for RHS rings and RHS pieces.

o From the factor plot, the six influencing factors from the Taguchi L1> were:
‘IB Length’, ‘IB Overlap’, ‘IB Height’, ‘IB Thickness’, ‘WP-Web
Distance’, ‘WP Length’.

o As IB Heighttelescope = RHS ring height = RHS piece height, and WP
Lengthrelescope = RHS ring length = RHS piece length, the hypothesis that
the portion of the inner beam beneath the wearpads can be studied as RHS

rings or RHS pieces is correct
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o From the CCD, the mathematical equation of the model was obtained and
validated and optimized.

o The main effect plot showed the contribution of the RHS height was
minimal. This maybe because for this factor range combination, the overall

assembly factors had a greater influence than the part geometric factors.
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Chapter 8: Conclusions
8.1 Summary

In telescopic cantilevers, the overlap area is identified as crucial based on the
findings from the tip-reaction model and exploratory analysis which motivated the
investigation of the overlap area in detail.

Analysis indicated that it was easier to divide the overlap area into an
assemblage of two sections made of RHS rings or pieces and a connecting middle
section. RHS rings and RHS pieces were analyzed as assemblages of beams and
columns, and horizontal and vertical plates respectively. Theoretical analyses of the
webs of the RHS rings showed that the webs behave like a column with eccentric
loading which leads to the formation of the hinges at the middle of the webs. The RHS
rings when compressed between wearpads behaved in a similar manner to the loading
between platens except that they had an additional corner moment because of the
eccentric nature of the loading. This resulted in a reduction in the maximum load that
the ring could carry. Similar observations were made for the vertical plates of the RHS
pieces. Experiments and FEA conducted on RHS rings and RHS pieces confirmed this.

Screening computer experiments with RHS rings between wearpads in the case
study identified ‘RHS Thickness’, ‘RHS Height’ and ‘WP-Web Distance’ as the
influencing factors. However, because of the buckling behaviors dependence on the
dimensions of the individual case, in general, all factors should be included for
screening experiments.

For the RHS pieces between wearpads, screening computer experiments in the
case study identified ‘RHS Length’ in addition to the three factors listed above for the

RHS rings between wearpads. Again, because of the buckling behaviors dependence



205

on the dimensions of the individual case, in general, it is recommended that all factors
be included in the screening experiments.

For the inner beam assembly of the telescope, the factors included the ‘IB
Length’, “IB overlap’, ‘IB Height’, ‘IB Width’, ‘IB Thickness’, ‘IB corner radius’,
‘WP Length’, ‘WP Width’, “WP-Web Distance’. Of these factors, four factors were
borrowed from the influencing factors of the RHS rings and pieces. As the overlap
area was considered as an assembly of RHS rings or pieces and a middle section, the
‘RHS Length’ in the screening experiment for the RHS pieces is equivalent to the ‘WP
Length’ in the inner beam assembly of the telescope. The findings from the case study
conducted on the inner beam assembly identified the ‘IB Length’, ‘IB overlap’, ‘IB
Height’, ‘IB Thickness’, ‘WP Length’ and ‘WP-Web Distance’ as the influencing
factors.

A mathematical model generated from a CCD with the identified influencing
factors was then used to generate an optimal factor combination for a specific target
maximum load.

In reality, manufacturers often face multiple constraints on the geometric
factors. For instance, a manufacturer may only be able to manufacture beam sections
with 3 mm thickness and with a maximum height constraint of 350 mm. The
mathematical model generated can therefore by used to acquire the best possible factor
value combinations, given the mentioned constraints.

Based on this a methodology was developed as explained in Figure 84 in

Chapter 4.

8.2 Contribution to knowledge

The key contribution of this work to knowledge are summarized below:
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e Identifying the area of the inner beam in the vicinity of the bottom wearpads
as the area most susceptible to buckling.

e Understanding the behavior of the overlap area by looking at it as an assembly
of RHS rings and a middle section or RHS pieces and a middle section.

e Explanation of the RHS ring behavior by treating it as an assemblage of
horizontal beams and vertical columns which when subjected to transverse
compressive loads result in the beams and columns experiencing corner
moments

e Explanation of the RHS piece behavior by treating it as an assemblage of
horizontal and vertical plates which when subjected to transverse compressive
loads result in each of the plates experiencing corner moments

e Establishing that RHS pieces and rings experience additional corner moments
when compressed between wearpads as compared to when compressed
between platens

e Establishing a design methodology of an inner beam assembly that can be
applied to any range of geometric parameters to obtain an optimal model with

specific geometric constraints (if necessary)

8.3 Recommendation for future developments

The following areas of interest could offer opportunities for further development:
e Extensive experimental investigation of RHS rings and RHS pieces subjected
to transverse compressive loading to obtain ki and k.
e Experimental investigation of RHS pieces subjected to a combined loading of

transverse compression and bending
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e Introduction of errors into the FE models used in DOE studies to better

represent real-life situations

8.4 Conclusion

This research enhances the understanding of the telescopic cantilevers. It also
helps relate structural analysis and experimental design as tools to accurately design
telescopic booms. Therefore, this research investigates the question of:

‘How the overlap region of a telescopic cantilever behaves under tip load’ and
establishes a new generic approach to the design of telescopic beams based on

parametric studies using FEA and statistical optimization.
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ST/QF/2301

(7 0\ ) E
Certificat No. T-0629.7-0630 Subodh Technologists
NABL Accredited Laboratory
As per ISO / IEC - 17025 (2005) MATERIAL SCIENCE CENTER
TEST REPORT Page 10f1
Report No. 19498 Date: 09-08-2017
Party’s Name & Add. M/s ARIECKAL INDUSTRIES

Plot No. 1, Panvel! Industrial Co-operative Industrial Estate
Panvel-410206

Reference Ch. No. Al-08/17-25 Date: 03-08-2017
Sample Received on 03-08-2017
Specification 1S 513:2008 Gr.CR2
Sample Described As 3mm Thk x 150mm Long x 73mm Width CRCA Sheet
1D Mark Al-08/17-25-01
Tensile Test
Test Method : IS 1608:2005 (RA 2010)
Result
Width (mm) 12.50
Thk. (mm) 3.02
Area (mm?) 37.75
Gauge Length (mm) 50.00
0.2% Proof Load (kN) 7.998
Ultimate Load (kN) 11.98
Final Gauge Length (mm) 72.20
0.2% Proof Strength (N/mm?) 211.88
U.T.S (N/mm?) 317.351
Elongation (%) 44,40
Youngs Modulus (N/mm?) 125.946
Fracture W.G.L

Chemical Analysis
Test Method : ASTM E 415:2014/1S 8811:1998

Result R/V
Carbon (C)% 0.045 0.12 max.
Manganese (Mn)% 0.20 0.50 max.
*Silicon(Si)% 0.013
Sulphur (S)% 0.011 0.035 max.
Phosphorus (P)% 0.015 0.040 max.
Remarks Satisfactory

Remark: The Test Result(s) are within specified limits of IS 513:2008 Gr.CR2.

In absence of specified values / criteria in the specification, test result(s) are for information.

e End of Report:
For SUBODH TECHNOLOGISTS
o
. Q\\mg
V.D. Bhaskar / Ankush Pratapure / Anita Goilkar
QAM / GM / Senior Chemist

Figure 121: Material test report for RHS Ring
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Stress Vs. Strain Stress Vs. Strain

Figure 122: Typical Mild Steel Stress-Strain Curve

A typical stress-strain curve for a mild steel sample is shown in Figure 122.
The curve shows a yield stress value of 397.6 N/mm? and an ultimate stress of 640.2

N/mm?2,



Appendix Il: DOE Tables for the RHS Rings

Table 49: Li2 matrix for RHS ring between platens

Run #

RHS Corner
radius

Thickness

Height

Width

Maximum
Load (N)

1437.76

1437.76

904.5

3248.85

2362.28

2198.51

804.79

860.342

O N OB~ W NP

1115.66

[EEN
o

2008.63

[EEN
[EEN
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[EEN
N

NININNDNDNDNDNDNNPFP PR PP
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RPINEPINDNEINDNEPDNDNDREPPRE

2769.2
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Table 50: Li» matrix for RHS ring between wearpads

Run#

WP Web
Distance

WP
width

RHS Corner
Radius

RHS
Thickness

RHS
Height

RHS
Width

Maximum
Load (N)

1184.13

798.02

2697.56

2548.03

862.39

1856.31

1918.64

678.14

O N O B~ W N

1582.45

[EN
o

940.04

[EEN
[EEN

1577.62

[EEN
N

NINNNDNDNDNDDNPFPRP PP

NININRFPRPIFRPIDNDNDNDRPRPE

RPIFRPINEFEPINDNDNDNRERPDNRFEP P

RPINEPINEPINDNPEPDNDNDREPPE

RPINEFPINNDNEFPINDNRERPPRPRPDNPRE

NIFRPIRFRPEPDNDDNDNPREPDNERPIDNPE

895.16




Table 51: CCD matrix for RHS ring between wearpads

Run # RHS RHS | WP-Web | Maximum
Thickness | Height | Distance | Load (N)

1 -1 -1 -1 1180.54
2 1 -1 -1 1756.27
3 -1 1 -1 1017.38
4 1 1 -1 1500.89
5 -1 -1 1 1082.24
6 1 -1 1 1594.63
7 -1 1 1 942.06
8 1 1 1 1393.89
9 -2 0 0 840.50
10 2 0 0 1867.69
11 0 2 0 1495.70
12 0 2 0 1125.74
13 0 0 -2 1407.85
14 0 0 2 1185.69
15 0 0 0 1278.33
16 0 0 0 1278.33
17 0 0 0 1278.33
18 0 0 0 1278.33
19 0 0 0 1278.33
20 0 0 0 1278.33
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Appendix I11: DOE Tables for the RHS Pieces

Table 52: Li> matrix data for RHS piece between platens

222

Run #

Corner
Radius

RHS
Thickness

RHS
Height

RHS
Length

RHS
Width

Maximum
Load (N)

62129.3

62129.3

44520.8

157968

94661.8

114343

42895.9

34900.8

OO N0 B WIN -

54848.8

[ERY
o

87741

[
[

134354

=
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Table 53: Li2 matrix for RHS piece between wearpads

Run

RHS
Thickness

Corner
radius

RHS
Height

RHS
Width

RHS
Length

WP
Length

WP
Width

WP-Web
Distance

WP-End
Distance

Maximum
Load (N)

51825

41398

39590.5

44733.5

35588

34813.6

65665

96928.8

O | N0 B WIN -

92343.9

[ERY
o

69460

-
-
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=
N
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RPIERINEFEINDNDNDNDEPRDN PP -

FRPINNEFPINEFPINDNEPINDN PP

NIFRPIFRPINDNREFPPRFPRPINDNDNREPPE

RPINEINDNEPNDNDRERP RPN PE

NIRFRP R EPINIDNNEPIDNEPDNPE
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Table 54: CCD matrix for RHS piece between wearpads

Run RHS RHS RHS | WP-Web | Maximum
# | Thickness | Height | Length | Distance | Load (N)
1 -1 -1 -1 -1 57195.9
2 1 -1 -1 -1 85062.8
3 -1 1 -1 -1 49083.1
4 1 1 -1 -1 72036.0
5 -1 -1 1 -1 59978.0
6 1 -1 1 -1 89187.3
7 -1 1 1 -1 50939.3
8 1 1 1 -1 75999.1
9 -1 -1 -1 1 53874.5
10 1 -1 -1 1 79106.8
11 -1 1 -1 1 47390.6
12 1 1 -1 1 70156.4
13 -1 -1 1 1 56602.3
14 1 -1 1 1 83590.5
15 -1 1 1 1 49688.6
16 1 1 1 1 73625.2
17 -2 0 0 0 42011.6
18 2 0 0 0 94054.4
19 0 -2 0 0 75240.5
20 0 2 0 0 56801.0
21 0 0 -2 0 61782.8
22 0 0 2 0 68036.0
23 0 0 0 -2 68283.5
24 0 0 0 2 56697.4
25 0 0 0 0 64759.9
26 0 0 0 0 64759.9
27 0 0 0 0 64759.9
28 0 0 0 0 64759.9
29 0 0 0 0 64759.9
30 0 0 0 0 64759.9
31 0 0 0 0 64759.9
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Appendix IV: DOE Tables for the Inner Beam Assembly of the Telescope

Table 55: Li> matrix for inner beam assembly of the telescope
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Table 56: CCD matrix for inner beam assembly of the telescope
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Run | 1B 1B 1B 1B WP | WP-Web | Maximum
# Length | Overlap | Height | Thickness | Length | Distance | Load (N)
1 -1 -1 -1 -1 -1 -1 17154.9
2 1 -1 -1 -1 -1 -1 14627.4
3 -1 1 -1 -1 -1 -1 18736.1
4 1 1 -1 -1 -1 -1 15950.0
5 -1 -1 1 -1 -1 -1 17025.6
6 1 -1 1 -1 -1 -1 14395.8
7 -1 1 1 -1 -1 -1 18744.0
8 1 1 1 -1 -1 -1 15932.2
9 -1 -1 -1 1 -1 -1 23780.3
10 1 -1 -1 1 -1 -1 20309.8
11 -1 1 -1 1 -1 -1 25846.5
12 1 1 -1 1 -1 -1 22059.8
13 -1 -1 1 1 -1 -1 23921.3
14 1 -1 1 1 -1 -1 20397.9
15 -1 1 1 1 -1 -1 26157
16 1 1 1 1 -1 -1 22258.1
17 -1 -1 -1 -1 1 -1 17340.4
18 1 -1 -1 -1 1 -1 14746.2
19 -1 1 -1 -1 1 -1 18903.2
20 1 1 -1 -1 1 -1 16203.4
21 -1 -1 1 -1 1 -1 17119.0
22 1 -1 1 -1 1 -1 14529.8
23 -1 1 1 -1 1 -1 18930.6
24 1 1 1 -1 1 -1 16080.3
25 -1 -1 -1 1 1 -1 24090.2
26 1 -1 -1 1 1 -1 20546.3
27 -1 1 -1 1 1 -1 26306.0
28 1 1 -1 1 1 -1 22325.1
29 -1 -1 1 1 1 -1 24100.1
30 1 -1 1 1 1 -1 20562.0
31 -1 1 1 1 1 -1 26516.1
32 1 1 1 1 1 -1 22561.5
33 -1 -1 -1 -1 -1 1 14957.3
34 1 -1 -1 -1 -1 1 12772.2
35 -1 1 -1 -1 -1 1 16323.7
36 1 1 -1 -1 -1 1 13927.6
37 -1 -1 1 -1 -1 1 14944.3
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Table 56: CCD matrix for inner beam assembly of the telescope (Continued)

Run | 1B 1B 1B 1B WP | WP-Web | Maximum
# Length | Overlap | Height | Thickness | Length | Distance | Load (N)
38 1 -1 1 -1 -1 1 12726.7
39 -1 1 1 -1 -1 1 16416.0
40 1 1 1 -1 -1 1 13973.5
41 -1 -1 -1 1 -1 1 20598.6
42 1 -1 -1 1 -1 1 17613.5
43 -1 1 -1 1 -1 1 22391.1
44 1 1 -1 1 -1 1 19166.1
45 -1 -1 1 1 -1 1 20746.9
46 1 -1 1 1 -1 1 17755.0
47 -1 1 1 1 -1 1 22637.1
48 1 1 1 1 -1 1 19346.4
49 -1 -1 -1 -1 1 1 15163.1
50 1 -1 -1 -1 1 1 12914.5
51 -1 1 -1 -1 1 1 16604.5
52 1 1 -1 -1 1 1 14197.3
53 -1 -1 1 -1 1 1 15084.4
54 1 -1 1 -1 1 1 12843.3
55 -1 1 1 -1 1 1 16654.2
56 1 1 1 -1 1 1 14165.9
57 -1 -1 -1 1 1 1 20942.4
58 1 -1 -1 1 1 1 17880.0
59 -1 1 -1 1 1 1 22895.3
60 1 1 -1 1 1 1 19567.1
61 -1 -1 1 1 1 1 21016.1
62 1 -1 1 1 1 1 17957.6
63 -1 1 1 1 1 1 23019.4
64 1 1 1 1 1 1 19696.2
65 0 0 0 0 0 0 18401.0
66 0 0 0 0 0 0 18401.0
67 0 0 0 0 0 0 18401.0
68 0 0 0 0 0 0 18401.0
69 0 0 0 0 0 0 18401.0
70 0 0 0 0 0 0 18401.0
71 0 0 0 0 0 0 18401.0
72 0 0 0 0 0 0 18401.0
73 -2 0 0 0 0 0 21847.0
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Table 56: CCD matrix for inner beam assembly of the telescope (Continued)

Run | 1B 1B 1B 1B WP | WP-Web | Maximum
# Length | Overlap | Height | Thickness | Length | Distance | Load (N)
74 2 0 0 0 0 0 15898.1
75 0 -2 0 0 0 0 16710.0
76 0 2 0 0 0 0 20036.6
77 0 0 -2 0 0 0 18242.2
78 0 0 2 0 0 0 18297.0
79 0 0 0 -2 0 0 12881.0
80 0 0 0 2 0 0 24956.2
81 0 0 0 0 -2 0 18098.4
82 0 0 0 0 2 0 18602.1
83 0 0 0 0 0 -2 21371.7
84 0 0 0 0 0 2 16226.5
85 0 0 0 0 0 0 18401.0
86 0 0 0 0 0 0 18401.0
87 0 0 0 0 0 0 18401.0
88 0 0 0 0 0 0 18401.0
89 0 0 0 0 0 0 18401.0
90 0 0 0 0 0 0 18401.0
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