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Abstract 

 

This dissertation describes an investigation on the behavior of the overlap area 

in telescopic cantilevers under tip loads. 

 The main aim of this research is to address the question of ‘how the overlap 

region of a telescopic beam behaves under a tip load’ and to develop a new generic 

approach to the design of telescopic beams based on parametric studies using FEA and 

statistical optimization. 

Experimental investigations and exploratory analyses were carried out to study 

the behavior of RHS (Rectangular Hollow Section) rings and RHS pieces. Based on 

these observations, theoretical explanations were developed and a methodology for the 

design of the inner beam assembly based on FEA and design of experiments was 

recommended. The recommended methodology was also implemented on a case study. 

Results showed that the overlap area can be treated as an assembly of RHS 

rings and a middle section or an assembly of RHS pieces and a middle section. Further, 

the region near the bottom wearpads of the overlap area of the inner beam is identified 

as most vulnerable. 

 RHS rings are treated as an assemblage of horizontal beams and vertical 

columns whereas RHS pieces are treated as an assemblage of vertical and horizontal 

plates. When compressed transversely between platens, the constituent beams, 

columns, and plates in both RHS rings and pieces, are subjected to corner moments. 

Further, when compressed between wearpads, an additional corner moment is 

introduced which in effect reduces the maximum load carrying capacity further. 

Because of the nature of the assembly, the end conditions of the constituent members 

of the RHS ring and pieces are unknown and hence complete theoretical solutions are 
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not derived. Therefore, FEA and experimental designs were used to establish a design 

methodology for telescopic beams. 

Significant contributions from this study involve the explanation of the 

behavior of RHS rings and RHS pieces when compressed transversely and the 

development of a new generic approach to the design of telescopic beams based on 

parametric studies using FEA and statistical optimization.  

 

Keywords: Telescopic cantilevers, Overlap area, FEA, Design of Experiments, RHS 

rings, RHS pieces, Inner beam assembly, Design Methodology. 
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Title and Abstract (in Arabic) 

 

طريقة تحليل  باستخدام سيةقياتستند إلى دراسات  منظارية دعاماتصميم ت

 العناصر المنتهية و التحسين الإحصائي

 

 الملخص

 

نتيجة ثقل منظارية الدعامات السلوك منطقة التداخل في  م دراسةهذه الأطروحة تفي 

 طرفي. 

 الدعاماتمنطقة تداخل  صرفكيف تت الهدف الرئيسي من هذا البحث هو معالجة مسألة

ة استنادا إلى المنظاري دعاماتتطوير نهج عام جديد لتصميم الو طرفية، منظارية تحت حمولة ال

 .الإحصائية الطرقطريقة تحليل العناصر المنتهية و القياسية، باستخدامالدراسات 

مستطيلة الات حلقالالتجريبية والتحليلات الاستكشافية لدراسة سلوك لححوصات أجريت الا

واستنادا إلى هذه الملاحظات، وضعت  .مجوفةالقطع مستطيلة الشكل و المجوفة، الالشكل 

يل الداخلية على أساس طريقة تحل الدعامةع يمنهجية لتصميم تجم تم توصيةتحسيرات نظرية، و

 .ونحذت المنهجية الموصى بها أيضا في دراسة حالة .وتصميم التجارب ،العناصر المنتهية

 حلقات مستطيلةمن يع وأظهرت النتائج أن منطقة التداخل يمكن أن تعامل على أنها تجم

وعلاوة  .مجوفة وقسم أوسطالأو مجموعة من القطع مستطيلة الشكل  ،وسطأالشكل مجوفة وقسم 

الداخلية  امةالدعمن  ،منطقة التداخل في ،السحلي التبطينعلى ذلك، يتم تحديد المنطقة بالقرب من 

 .على أنها الأكثر ضعحا

 دةعمالأفقية والأ دعاماتوفة كتجميع من المجالحلقات مستطيلة الشكل اليتم التعامل مع 

 ةرأسيال لوا لأامجوفة كتجميع من المستطيلة الشكل  في حين يتم التعامل مع القطع ة،الرأسي

 ،والأعمدة ،المكونة دعامات، فإن السطواناتعندما يتم ضغطها بشكل عرضي بين الا  .يةوالأفق

 .زاويةال قوة عزم عندمجوفة، تتعرض لالل مستطيلة الشكو القطع حلقات الوالألوا  في كل من 

 ،الزاوية الإضافية قوة عزم ، يتم إدخال الاسطواناتوعلاوة على ذلك، عندما يتم ضغطها بين 

ع، فإن يونظرا لطبيعة التجم ،أكثر من ذلك. الحمولة القصوىسعة  في الواقع يقلل من  ذيال

يتم  مالي لوبالت .مجوفة غير معروفةالشكل مستطيلة الو القطع حلقات ال تكوينالشروط النهائية ل

ولذلك، استخدمت طريقة تحليل العناصر المنتهية والتصاميم التجريبية  .اشتقاق حلول نظرية كاملة

 .المنظارية دعاماتلوضع منهجية تصميم لل
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مستطيلة الشكل و القطع حلقات الوتشمل المساهمات الهامة من هذه الدراسة شر  سلوك 

تنادا اس المنظارية، دعاماتبشكل عرضي وتطوير نهج عام جديد لتصميم ال هاضغطمجوفة عند ال

 .الإحصائية الطرقباستخدام طريقة تحليل العناصر المنتهية و القياسيةإلى الدراسات 

 

صميم ، تتحليل العناصر المنتهيةدعامات منظارية، منطقة متداخلة،   مفاهيم البحث الرئيسية:

دعامة، ، التجميع الداخلي للمستطيلة الشكل مجوفة ، قطعجوفةمة الشكل حلقات مستطيلالتجارب، 

 .منهجية التصميم
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Chapter 1: Introduction 

 

1.1 Overview            

Telescopic Cantilevers are used in machinery including cranes, access 

platforms, truck mounted cranes and loaders. They find multiple applications in the 

MRO (Maintenance, Repair and Operations) industry where they are used to access 

structures like aircrafts, in material handling equipment at harbors and infrastructure 

building sites, and complex machinery including automated welding plants, aircrafts 

and off-shore pipe-laying vessels. Published material to assist designing these thin and 

complex structures is limited. Modern scientific trends in design and manufacturing of 

complex components takes an integrated approach based on integrated parametric 

multi-computational assessment that leads to simplified formulae, which can be 

utilized by field engineers to optimize their designs. Engineering software developers 

like Simulia have started linking FEA of specific engineering problems with 

‘Statistical Analyses’ resulting in design formulas that can be utilized by practicing 

engineers.  

This research addresses the question of ‘how the overlap region in a telescopic 

beam behaves under a tip load’ and establishes a new generic approach to the design 

of telescopic beams based on parametric studies using FEA and statistical 

optimization.  

1.2 Background 

This section briefly outlines the necessary background to understand the 

problem and the approach taken towards finding a solution. It describes the structure, 

the design parameters and the motivation for this study. 
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1.2.1 Telescopic Cantilever 

A telescopic cantilever is a structural assembly consisting of two or more beam 

sections with the outermost beam section fixed at one end, supporting the entire beam 

assembly while one or more inner sections of beam are stacked inside. The inner beams 

move outwards when a full or partial extension is needed. The main parts of a single 

stage telescopic beam assembly are given in Figure 1. 

 

 

Figure 1: Single stage telescopic cantilever 

The inner beams are pushed out and pulled in as and when required. In order 

to reduce the contact area between the inner side of the outer beam and the outer side 

of the inner beam, contact between the inner and outer beams are provided through 

wearpads. The inner beam slides on the wearpads. At any given position, part of the 

inner beam will be inside the outer beam. This portion is called the overlap. 

Manufacturers see the overlap as wasted material and often try to reduce this overlap 

to save material, reduce weight and make manufacturing easy. But reducing the 

overlap increases the tip reactions at the wearpad areas and the inner beam is under 

high compression in this region. This may lead to buckling in the overlap area.  
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In applications such as in the telescopic boom of a crane, an important 

requirement is the minimum deflection at the innermost beam tip. Large tip-deflection 

makes the user in the cage at the tip feel uncomfortable. In order to minimize the tip 

deflection which requires high rigidity or second moment of area, designers tend to 

increase the height of the beam. But this makes the beam vulnerable to buckling in the 

overlap area. Structural members fail resisting tension, shear or torsion, when the stress 

in the member reaches a certain limiting strength of the material. Buckling on the other 

hand does not take place as a result of the resisting stress reaching a limiting strength 

of the material. In general, the stress at which buckling occurs depends on a variety of 

factors such as the dimensions of the member, boundary conditions and the properties 

of the material of the member. In other words, buckling behavior is project-dependent. 

1.2.2 Parameters Involved 

The overlap area of the inner beam is minimal in the fully extended position. 

It is the most vulnerable area of a telescopic beam assembly and therefore is the focus 

of this study. Consider a two-section telescopic cantilever beam assembly. For 

simplicity, neglect the self-weight of the structure. Assume that the interactions 

between the inner beam and outer beam are through the wearpads that are located at 

the corresponding tips of the beams. These interactions give rise to tip-reactions at 

these tips. With this tip-reaction model, free body diagrams can be considered to 

analyze the equilibrium of the inner beam. Figure 2 illustrates the beam and the free 

body diagrams under the tip reaction model. 
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Figure 2: Free-body diagram of the telescopic cantilever beam sections 

 

Consider the inner beam CBD as shown in Figure 2.  

Considering the equilibrium of the system, it can be said that WRA   

Taking moments about C for the beam CD gives W
a

l
RB

1     

Similarly taking moments about B gives W
a

al
RC

)( 1   

Normally al 1 and thus the overlap area is subjected to large multiples of 

the tip load W. Since these large forces are compressive in nature they can cause 

buckling. A combination of geometric factors of the inner beam, the wearpads, and the 

overall assembly geometric factors affects the behavior of the beam in this overlap 

area. The inner beam and the wearpads are considered as an assembly as shown in 

Figure 3.  
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Figure 3: Inner beam assembly of a telescopic cantilever 

 

The geometric factors are listed in Table 1. Some of the geometric factors listed 

in Table 1 is shown in Figure 3. 

 

Table 1: Geometric factors of the inner beam assembly  

Geometry of Inner Beam Geometry of Wearpads Geometry of assembly 

Thickness WP Length WP-Web Distance 

Height (web) WP Width Overlap Length 

Width (flange) WP Height Top WP-End Distance 

Length     

Corner radius    
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1.2.3 The Motivation 

This research was initially undertaken as an extension to my design project at 

Brunel University, UK which involved the validation of a telescopic crane boom FE 

model for one of the leading manufacturers of access platforms and boom lifts in 

Europe.   

To understand the criticality of the overlap area design, consider the analysis 

of a telescopic beam shown in Figure 4 and consider the stresses at two points P1 and 

P2 in the outside of the inner beam located 25 mm from the ends of the inner and outer 

beams. This means that when the overlap ‘a’ changes, the point P1 will also change its 

location on the inner beam. An FE analysis carried out in ABAQUS for five different 

overlaps; 1200 mm, 1100 mm, 1000 mm, 900 mm and 800 mm is executed and the 

stresses (Mises) at points P1 and P2 observed. Figure 5 shows them in the form of two 

graphs. 

 

Figure 4: A telescopic beam 



7 

 

 

Figure 5: Stress variation under the wearpads with varying overlap 

 

The graph in Figure 5 shows that the stress varies substantially, from 15.72 

MPa to 26.97 MPa at P1 with the reduction of 400 mm in overlap while the load at the 

tip remains the same. Also, it shows that the magnitude of stress at P1 is always greater 

than that at P2. This highlights the fact that, chances of buckling are high in the vicinity 

of P1. 

Figure 6 shows the stress distribution in the entire assembly for an 800 mm 

overlap. In general, the stresses are high near the overlap and were very minimal in all 

other areas of the assembly. This observation together with the amplification of the tip 

loads as explained in section 1.2.2 raised the curiosity to investigate the overlap area 

in detail in connection with the telescopic beam design. 
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Figure 6: Stress distribution in the entire telescope assembly 

The research question therefore addresses the question of ‘how the overlap 

region of the inner beam assembly in a telescopic beam behaves under a tip load’ and 

establishes a new generic approach to the design of telescopic beams based on 

parametric studies using FEA and statistical optimization. 

1.3 Situation Analysis 

In order to start the investigation, the following topics were visited and 

reviewed: 

 Beam theory 

 Stresses and strains at a point 

 Failure theories 

 Buckling of columns 

 Finite Element Analysis Using ABAQUS software 

P2(18.59 MPa)

P1(26.97 MPa)
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1.3.1 Beam Theory 

Beam theory can be summarized under the eight headings namely assumptions, 

implications of the assumptions on beam behavior, shear force and bending moment 

diagrams, deflection curve, flexure equation, bending stress, shear stress and 

governing set of differential equations.  

Table 2 borrows from [1] and [2] and summarizes the beam theory. 

Table 2: Beam theory highlights 

Beam 

Definition 

A structural member designed to support transverse loads, having one 

of its dimensions (the axis) much larger than the other two [3]. 

Assumption 1 The beam has a longitudinal plane of symmetry (x-z), with the cross 

section symmetric about this plane. Load is applied in the plane x-z 

and is transverse to the long axis (the x-axis) [1]. 

Implication of 

Assumption 1 

All loads in y – direction are zero. Therefore, all stresses in y-direction 

are zero: 0 yzxyyy    

The only significant stresses are in the x- direction: xzxx  ,   

Assumption 2 During deformation, plane sections remain plane and perpendicular 

to the midplane after deformation. 

Implication of 

Assumption 2 

The implication of this assumption on displacements are: 

 )(),,(

0),,(

 ),,(

xwzyxw

zyxv

dx

dw
zzyxu







 

Flexure 

Equation/ 

Bending 

Stress 

Stresses calculated from the flexure formula are called bending 

stresses or flexural stresses.  

        
I

Mc
xx   

Shear Stress 

Ib

VQ
  

For a specific cross section, the shear force V, moment of inertia I, 

and width b are constants. However, the first moment Q varies with 

the distance c from the neutral axis 

SFD and 

BMD 

Information relating to beam shear forces and bending moments is 

provided by graphs in which the shear force and bending moment are 

plotted as ordinates and the distance x along the axis of the beam is 

plotted as the abscissa. These graphs are called shear force diagrams 

and bending moment diagrams. 
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Table 2: Beam Theory highlights (Continued) 

Deflection 

Curve 

When a beam with a straight longitudinal axis is loaded by lateral 

forces, the axis is deformed into a curve, called the deflection curve 

of the beam. The basic differential equation of the deflection curve of 

a beam is: 
EI

M

dx

wd


2

2

 

(where
dx

dw is the slope) 

Governing set 

of Differential 

equations 

V
dx

dM

u
dx

dw
z





      

V
dx

wd
EI

M
dx

wd
EI





3

3

2

2

      )(
4

4

xq
dx

wd
EI                    

 

1.3.2 Stress and Strain at a Point 

In general, a body can be subjected to point and surface forces, body forces, 

contact forces and constraints. Chadrupatla and Belgundu [4] represent this in a figure 

which is adapted and reproduced here as Figure 7. 

 

S urface
S urface  fo rces

A c ting  on  a  sm all a rea

P o int F orce

F

B ody  fo rces  ac ting  

on  a  sm a ll vo lum e

B oundary cons tra in t

i.e . N o  disp lacem en t  

 

Figure 7: Forces and constraints in a body 
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As a result of these forces, three dimensional stresses and strains are produced 

in the body. There are fifteen such variables which are represented by the stress tensor 

(six variables), strain tensor (six variables) and displacements (three variables) [5]. 

The components of the displacement vector in x, y, and z directions are denoted 

respectively by (u, v, w). 

Stress Tensor: Stresses acting on a plane, are typically decomposed into three 

mutually orthogonal components – one normal and two shear [6]. As shown in Figure 

8(a), the stress at a point needs nine components to be completely specified. Each 

component is defined by the direction in which it acts and the orientation of the surface 

upon which it is acting. Therefore, the ith component of the force acting on a surface 

whose outward normal points in the jth direction is ij  [6]. 

 

Figure 8: (a) Stresses on an infinitesimal cube whose surface are parallel to the 

coordinate system (b) Shear strain [7] 

 

These nine components can be organized into the matrix: 
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

















zzzyzx

yzyyyx

xzxyxx

ij









 

(1.1) 

 

where shear stresses on either side of the diagonal are identical 

(i.e. xy = yx, yz = zy, and zx = xz) as a result of static equilibrium (no net moment), 

thereby effectively reducing the stress tensor to six components. This grouping of the 

stress components is known as the stress tensor (or stress matrix) [8]. 

Strain Tensor: As in the case of stress tensors, there are a total of nine strain 

measures. The non-diagonal components are the shear strains that are defined as the 

change in an angle that was originally at a right angle before deformation occurred. 

The shear strain xye is the average of the shear strain on the x face along the y direction, 

and on the y face along the x direction [9]. The shear strain for the element in the x-y 

plane is as shown in Figure 8(b). All nine measures can be organized into a matrix 

(similar in form to the stress matrix), shown here: 

 


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
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
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
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
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
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
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1

 (1.2) 

1.3.3 Failure Theories 

Behavior of materials like steel when subjected to tensile load in only one 

direction can be determined experimentally, and conforming failure theories can be, 

and are formulated. However, when the material is loaded in three dimensions the 

behavior cannot be experimentally determined. Failure theories have been developed 



13 

 

to fill this gap and there are several of them. Table 3 gives a summary of the failure 

theories. 

Table 3: Failure theories [10] 

Sr. 

No. 

Theory Name Statement Limiting 

Condition 

1 Maximum 

principal stress 

theory (Rankine 

theory) 

Yield occurs when one of the principal 

stresses at a point in the structure 

subjected to the combined stresses reaches 

the yield strength in simple tension or 

compression of the material. 

f

f









2

1

 

2 Maximum 

principal strain 

theory  

(St. Venant’s 

theory) 

Failure is predicted to occur in the multi-

axial state of stress when the maximum 

principal normal strain become equal to or 

exceeds the maximum normal strain at the 

time of failure in a simple uniaxial stress 

test using a specimen of the same material. 

f

f









12

21
 

3 Maximum shear 

stress theory 

(Tresca theory) 

Failure is predicted to occur in the 

multiaxial state of stress when the 

maximum shearing stress magnitude 

becomes equal to or exceeds the 

maximum shearing stress magnitude at 

the time of failure in a simple uniaxial 

stress test using a specimen of the same 

material. 

f

f

f













13

32

21

 

4 Maximum 

strain energy 

theory 

(Beltrami’s 

theory) 

Failure would occur when the total strain 

energy absorbed at a point per unit volume 

exceeds the strain energy absorbed per 

unit volume at the tensile yield point. 

12
2

21

2

2

2

1














































f

ff














 

5 Distortion 

energy theory 

(Von Mises 

yield criterion) 

Failure is predicted to occur in the multi-

axial state of stress when the distortion 

energy per unit volume becomes equal to 

or exceeds the distortion energy per unit 

volume at the time of failure in a simple 

uniaxial stress test using a specimen of the 

same material 

 

 

  22

13

2

32

2

21

2 f











 

 

The five failure theories are compared graphically in Figure 9. When the third 

principal stress 3 is zero, each yield criterion describes a closed boundary condition 

in principal stress axes 1 and 2  [11].  
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Figure 9: Comparison of different failure theories [10], [12] 

 
Each of the boundaries predicted by the theory is called a yield locus. Elastic 

conditions prevail within the interior region. Plastic behavior occurs to the external of 

each locus [11]. The Tresca locus is mostly conservative and therefore safe. The Von 

Mises ellipse is the most representative for ductile materials, and the Rankine the best 

fit for brittle materials [13]. 

1.3.4 Buckling of Columns 

Buckling is a physical phenomenon of a straight and slender member abruptly 

bending laterally from its longitudinal position due to compressive loading [14]. 

Buckling study called Stability Analysis is explained using the stable, unstable and 

marginally stable conditions of a ball. It demonstrates that there can be several 

equilibrium positions in the marginally stable condition since there is no energy 

change. This means there can be several equilibrium paths [15]. A column when 
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subjected to a compressive load, shrinks due to the load. The load deflection curve 

describes an equilibrium path for this behavior. As the load is increased there comes a 

point where the column can also bend and maintain its equilibrium. This bending 

behavior is described by another equilibrium path.  At the point where the loads 

corresponding to each equilibrium path are the same, the column can switch from one 

equilibrium path to the other. The load deflection behavior can be estimated using any 

one of these behaviors. This method is called the method of adjacency equilibrium and 

the analysis of a column using the bent position makes use of this equality.  

Using the method of adjacency equilibrium, a column can be analysed in the 

following way [16]: 

 

Figure 10: (a) Column in bent position and (b) Free body diagram of an arbitrary 

section 

 
The free body diagram shown in Figure 10(b) shows the bending moment in a 

section at a distance x from the y axis along the x axis.  
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The governing differential equation is 

 
0

2

2

 Py
dx

yd
EI  (1.3) 

Substituting 
EI

P
k 2

the differential equation is 

 
02

2

2

 yk
dx

yd
 (1.4) 

It is a second-order linear differential equation with constant coefficients. Its 

boundary conditions are 

lxxy   and 0 when 0  

The general solution for this differential equation is 

 kxBkxAy sincos   (1.5) 

 

The integration constants are found by substituting boundary conditions and 

using which the critical load or buckling load is found. Table 4 gives a summary of the 

buckling loads for some specific boundary conditions. It is sufficient to say here that 

the buckling load, 

 

2

2

1

L

EIk
Pcr


  (1.6) 

where the value of 
1k is dependent on the boundary conditions. This theory is 

attributed Euler and is called the Euler buckling analysis. 
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Table 4: Summary of buckling loads for different boundary conditions [1] 

Pinned-Pinned 

Column 

Fixed-Free 

Column 

Fixed-Fixed 

Column 

Fixed-Pinned 

Column 

    

2

2

L

EI
Pcr


  

2

2

4L

EI
Pcr


  

2

24

L

EI
Pcr


  

2

2046.2

L

EI
Pcr


  

LLe   LLe 2  LLe 5.0  LLe 7.0  

11 k  25.01 k  41 k  046.21 k  

 

There are situations where the load is not axial but is away from the axis. 

Mathematically, this is equivalent to having an additional moment Pe with the axial 

load as shown in Figure 11. Columns under eccentric loading can be treated as columns 

under axial loading with an additional external moment acting on the loading end [17] 

as shown in Figure 11. 
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Figure 11: (a) Column under eccentric loading (b) FBD at an arbitrary plane 

 
The governing differential equation is 

 
0)(

2

2

 eyP
dx

yd
EI  (1.7) 

Substituting
EI

P
k 2 , the differential equation is ekyk

dx

yd 22

2

2

   

The solution to this equation is 

 ekxBkxAy  cossin  (1.8) 

Substituting the initial condition when eByx   gives  0 ,0   

Substituting the initial condition when 









sinkl

coskl-1
  e gives  0 , Aylx   

The complete solution is  

 











 1sin

sin

cos1
cos kx

kl

kl
kxey  (1.9) 
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But
  

    














2
tan

2
cos.

2
sin2

2
sin211

sin

cos1
2

kl

klkl

kl

kl

kl   

Therefore, 

 

















 1sin

2
tancos kx

kl
kxey  (1.10) 

Equation (1.10) has two consequences: 

a) y becomes infinity when
22




kl
 because

2
tan

kl
becomes infinity. This leads 

to finding the critical load
crP which becomes equal to

2

2

l

EI
. 

b) Bending moment found earlier is )( yePM x  . This means as y increases

xM  also will increase. But for a bending beam the maximum bending stress at a 

section
I

Mc
b  . This means the bending stress will increase and reach the yield point 

as y increases.  

1.3.5 Finite Element Analysis 

During the design of a product, it is quite often required to deal with field 

variables such as displacements and stresses to 

 Calculate the displacements at certain points 

 Calculate the entire distribution of the displacement field  

 Determine the stress distribution and hence predict the strength 

 Determine the natural frequencies and associated modes of vibration 

 Determine the critical buckling loads 

 Predict the response for forced vibrations etc. 
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Three methods are normally employed to perform these analyses. They are the 

use of (a) analytical methods (b) experimental methods and (c) numerical methods. 

Analytical methods use only simple geometries and idealized loading and support 

conditions. Therefore, they are not well suited for the complex structures of modern 

days. Experimental methods are expensive and time consuming and not possible for 

complex objects. Numerical methods, require very few restrictive assumptions, can 

treat complex geometries and realistic support and loading conditions, and are cost 

effective. Finite Element Method is such a Numerical Method employed for 

Engineering Analysis and can be described in the following way: 

(a) In engineering problems, there are some basic unknowns. If they are found 

the behavior of the entire structure can be predicted. These basic unknowns are called 

the Field Variables [18]. The field variables encountered in solid mechanics are 

displacements and stresses. Field variables in other areas of study are velocities in fluid 

mechanics, electric and magnetic potentials in electrical engineering and temperatures 

in heat flow problems. 

(b) In a continuum (a thing of continuous structure) these unknowns are infinite 

(values at the infinite number of points). The finite element method reduces this 

number of unknowns to a finite number by describing the variables at chosen points 

called the ‘Nodes’ [19]. A portion of the continuum is defined by the connection of 

these nodes and the region is called an ‘Element’ [19]. The field variables at points 

within the element are found by interpolation using the values at the nodes and 

interpolating function is called the ‘Shape Function’ [19]. 

Thus, the Finite Element Method can be described as a method where (a) the 

Field Variables at the infinite number of points in a continuum is represented by those 
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at a chosen finite number of points called nodes (b) their values are then calculated 

using some engineering principles and other governing relationships and (c) finally the 

values of the field variables at all intermediate points are calculated by interpolation 

using the shape functions. 

In ABAQUS for example this is achieved by following a set procedure as 

shown in Figure 12. 
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Figure 12: Finite element analysis using ABAQUS [20] 
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1.4 Parametric Analysis 

Consider a cuboid which has a length ‘a’, width ‘b’ and height ‘c’. Then the 

cube can be represented by a vector [a  b  c]. Now the vector [a  b  c] can be used to 

represent all cuboids by changing the values of the elements a, b and c. This 

representation of cuboids as a vector of three elements is a parametric representation. 

In general, an engineering design can have several such variables. For example, earlier 

in Table 1, eleven parameters were identified to represent the inner beam assembly of 

a telescopic cantilever. This means that an eleven-element vector can represent each 

of the inner beam assemblies and in an eleven dimensional co-ordinate system, an 

inner beam assembly can be represented by a vector, will be a single point. But each 

of the parameters (like WP length for example) can take values within a given range 

and all the designs would lie within an 11-dimensional hyperspace. An optimal design 

would lie as a point within this hyperspace. Analysis that varies the parametric values 

to find the optimal design is called Parametric Analysis. 

Scientists conduct experiments, make observations and analyze the data to 

draw conclusions. Consider the eleven-dimensional hyperspace where each of the 

design variables are allowed to take just two values. These values are called levels. 

Then there will be 211 designs to consider in the hyperspace. It is impossible to conduct 

experiments with all these 211 designs, and the statistical method that systematically 

chooses the design points (or parameter combinations) is called Experimental Design. 

There are several methods for Experimental Design. Taguchi [21] provides a set of 

orthogonal arrays using indicator variables 1 and 2 for this purpose. For example, the 

array 𝐿12 has eleven columns which can be assigned to eleven factors while the number 

of experiments is limited to only 12. Table 5 gives Taguchi’s L12 array.   
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Table 5: Taguchi L12 array [21] 

Experiment 

Number 

Column 

1 2 3 4 5 6 7 8 9 10 11 

1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 2 2 2 2 2 2 

3 1 1 2 2 2 1 1 1 2 2 2 

4 1 2 1 2 2 1 2 2 1 1 2 

5 1 2 2 1 2 2 1 2 1 2 1 

6 1 2 2 2 1 2 2 1 2 1 1 

7 2 1 2 2 1 1 2 2 1 2 1 

8 2 1 2 1 2 2 2 1 1 1 2 

9 2 1 1 2 2 2 1 2 2 1 1 

10 2 2 2 1 1 1 1 2 2 1 2 

11 2 2 1 2 1 2 1 1 1 2 2 

12 2 2 1 1 2 1 2 1 2 2 1 

 

 When the number of levels or the number of factors to be studied is increased 

the number of experimental runs also increases. At the beginning of an experimental 

investigation, to understand a phenomenon, one may find that there are too many 

factors to study. This would result in a large experiment that would be difficult to 

manage. In this situation, it would be better to conduct a small experiment with just 

two levels that would identify the factors that have little or no effect on the chosen 

response so that they can be eliminated from the main study. Such an initial experiment 

is called a ‘Screening Experiment’. After identifying the sensitive parameters from the 

screening experiment a second experiment with high number of levels is conducted to 

fit a response surface and use the fitted surface to optimize the design. 

Physical experiments are costly and cumbersome, and the current trend is to 

conduct computer experiments. In a computer experiment, computer code is used in 

lieu of a physical experiment to obtain the value of the response variable. In order to 

obtain reliable results from experimentation, the computer model should be a true 
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representation of the physical object and ensuring this truthfulness is called validation. 

Normally, computer models are validated by physical experiments. 

1.5 Problem Statement and Research Objectives 

The broad aim of this research is to explain ‘how the overlap region of the inner 

beam assembly in a telescopic beam behaves under a tip load’ and establishes a new 

generic approach to the design of telescopic beams based on parametric studies using 

FEA and statistical optimization.  

The preceding sections highlighted that the critical area of concern is the 

overlap area of the inner beam and its behavior depends on multiple factors. Further, 

the behavior varies from case to case as it depends on the numeric values of the 

geometric factors. The overlap section, when looked at separately, can be divided into 

three sections, two sections under the wearpads and the connecting middle region as 

shown in Figure 13. At the extreme ends, two RHS rings or RHS pieces (depending 

on the length of the wearpad) receive the thrusting compressive forces from the outer 

beam through the wearpads. These forces balance the tip load and the moment created 

by it. The rings or pieces are connected by the middle portion and the magnitudes of 

the forces increase as the length of the middle portion decreases. 
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Figure 13: Division of the overlap section  

The research objectives drawn in this background therefore are as follows: 

1. Establish the behavior of RHS rings, RHS pieces and telescopic beams under 

transverse loading through qualitative investigations and experiments. 

2. Establish the status of the current knowledge in this and the relevant areas 

through a literature survey. 

3. Establish validated FEA methods using ABAQUS software to analyze RHS 

rings, RHS pieces and telescopic beams 

4. Establish statistical optimization method using computer experiments and 

validate with case study 
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5. Establish a design methodology to design telescopic beams using computer 

experiments. 

Methods used to achieve these objectives include physical experimentation, 

FEA and theoretical developments. 

1.6 Research Methodology 

The research methodology adopted can be described as shown in Table 6. 

Table 6: Research methodology 

Objective Method Description 

Establish the 

behavior of RHS 

rings, pieces and 

under transverse 

compressive 

loading  

Transverse loading 

of RHS rings 

between  

 Platens 

 Wearpads 

RHS rings of 3 mm thickness, with a 

height of 350mm, width of 150 mm and 

length of 10 mm were compressed 

between platens and wearpads 

Transverse loading 

of RHS pieces 

between 

 Platens 

 Wearpads 

RHS pieces of 3mm thickness of the 

following outer dimensions were 

compressed between platens and 

wearpads  

 350 mm height, 150 mm width and 

150 mm length 

 150 mm height, 100 mm width and 

100 mm length 

Establish the status 

of the current 

knowledge in 

relevant areas  

Literature Survey 

Chapter 3 begins with explanation of 

scientific method adopted. 

Additionally, four topics were 

reviewed; buckling, RHS, FEM and 

experimental design 

Establish 

theoretical 

development and 

define methodology 

to design telescope 

inner beam 

assembly 

Use experimental 

observations to 

establish 

theoretical 

developments 

theory 

RHS Ring explained as an assemblage 

of columns and beams. RHS pieces 

explained as an assemblage of plates. 

Analysis was done for RHS Rings and 

pieces between platens and wearpads 

Establish 

influencing factors 

for RHS Rings, 

RHS pieces 

between wearpads 

Use experimental 

designs to acquire 

influencing factors 

Validate FE models of RHS Rings and 

RHS pieces against experimental data. 

Used screening experiments and 

response surface design to acquire 

influencing factors 
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Table 6: Research methodology (Continued) 

 

Validate design 

methodology for 

inner beam 

assembly, establish 

mathematical 

model for case 

study and optimize 

design 

Apply step by step 

method to design 

and optimize the 

inner beam 

assembly of a 

telescopic 

cantilever 

assembly 

Using screening experiments, list the 

influencing factors. Conduct a Central 

Composite Design (CCD to establish 

the mathematical model. Use model to 

optimize design for the given 

constraints. 

 

1.7 Summary of Results  

The behavior of the overlap region of the inner beam was analysed as (i) two 

RHS rings or RHS pieces and a middle connecting part and (ii) as a whole piece. The 

following behavior was established for the RHS rings, RHS pieces and the Overlap 

region as a whole. 

 Exploratory experimentation with RHS rings between platens suggested that 

the flanges behaved as beams under end moments and the webs behaved as 

columns under axial loads and end moments. Experiments with RHS rings 

loaded through the wearpads suggested that the wearpads contributed an 

additional end moment compared to the RHS Ring behavior under loading 

between platens. Under both loading conditions, the flanges curved inside 

while the webs curved outside and the webs formed hinges in the middle. 

Theoretical model suggested that the critical load 2

2

1

L

EIk
Pcr


   with a value 

for 1k  between 1 and 4 because of the degree of constraints at the corner joints.  

 Exploratory experimentation with RHS pieces between platens suggested that 

the RHS piece behaved as assembly of four plates – two vertical (webs) and 

two horizontal (flanges). In contrast to the RHS Rings, the flanges in the RHS 

pieces acted as plates instead of beams under end moments and the webs 
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behaved as plates under axial loads and end moments. Experiments with RHS 

pieces loaded between the wearpads also suggested that the wearpads 

contributed an additional moment compared to the RHS piece behavior under 

loading between platens. In the specimens of both experiments the flanges 

curved inside while the webs curved outside and the webs formed hinges in the 

middle.  

For a rectangular plate of height ‘b’ and thickness ‘t’, the critical stress 

 
   22

2

2
1/12 







tb

E
k

crx  with a value for 2k between 4 and 6.97 because of 

the degree of constraints at the edges. 

 Exploratory FEA suggested that the maximum stress occurs in the overlap 

region of the inner beam in the vicinity of the bottom wearpad. In the bottom 

flange of this region, high stresses occur due to the bending stress due to the 

tip load and due to the bending stress due to the corner moments from the loads 

through the wearpads. The webs in this region suffers the maximum 

compressive stress near the bottom that may also lead to buckling. The 

magnitudes and the buckling behavior are case dependent and a methodology 

for the design is suggested as shown in Figure 14 below. 
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List the factors proven and assumed to be significant 
in the Inner Beam Assembly for Maximum load

Design and conduct a screening experiment  to identify 
the influential factors for maximum load

Design and conduct a Response Surface Design to 
identify the significant factors and fit a mathematical 
model for maximum load

Conduct a validating 
experiment

Establish the main factor and interaction plots and based 
on them explain the behavior of a specific inner beam 
assembly of a telescopic beam

Use the knowledge of the behavior, sizes and ranges of 
the available material and design parameters, and the 
mathematical model to predict, to propose various 
combinations (designs) and choose one

Conduct a validating analysis before finalizing the 
chosen design

YES

NO

Include more factors which were 
ignored based on analyses of Rings 
and RHS pieces

 

Figure 14: Design methodology flowchart 

1.8 Structure of Thesis 

The thesis consists of eight chapters. Chapter 1 introduces the background and 

the research question and establishes the objectives of the research. 

Chapter 2 describes the literature survey segregated in five sections; Scientific 

Method, Buckling, Rectangular hollow sections, FEM (Finite Element Method) and 

Experimental Design. 

Chapter 3 describes the exploratory Finite Element Analyses on telescopic 

beams and experimental investigations on RHS rings and RHS pieces. 
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Chapter 4 describes the theoretical developments based on the results of the 

qualitative experiments in Chapter 3 and the literature survey in Chapter 2. 

Chapter 5 is a case study on RHS rings. It determines the influencing geometric 

factors affecting the maximum load carrying capacity of RHS rings using validated FE 

Models and design of experiment methods. 

Chapter 6 is a case study on RHS pieces. It determines the influencing 

geometric factors affecting the maximum load carrying capacity of RHS pieces using 

validated FE models and design of experiment methods. 

Chapter 7 is a case study on the inner beam assembly of a telescopic cantilever 

assembly. It implements the methodology established in Chapter 4 to establish a 

mathematical model and optimize the design of the inner beam assembly of a 

telescopic beam assembly. 

Chapter 8 describes the discussion and conclusions drawn from the research. 

Appendix I shows the material test report for the RHS ring sample. 

Appendix II lists the DOE tables for the case study of the RHS rings. 

Appendix III lists the DOE tables for the case study of the RHS pieces. 

Appendix IV lists the DOE tables for the case study of the inner beam assembly 

of the telescopic beam. 
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Chapter 2: Literature Survey 

 

This chapter describes the summary of the current frontiers of knowledge, which 

is needed to build the knowledge further. It categorizes them under seven groups for easy 

comprehension and each category is described by each of the following subsections. 

2.1 Scientific Method 

Science is a determination of what is most likely to be correct at the current 

time with the evidence at hand. Scientific explanations can be inferred from 

confirmable data only, and observations and experiments leading to science must be 

reproducible and verifiable by other individuals. Scientific method is a methodological 

approach to the process of inquiry – in which empirically grounded theory of nature is 

constructed and verified [22]. The origin of modern scientific method occurred in 

Europe in the 1600s: involving a chain of research events from Copernicus to Newton 

[22]. The scientific method may include some or all of the following “steps” in one 

form or another: observation, defining a question or problem, research (planning, 

evaluating current evidence), forming a hypothesis, prediction from the hypothesis 

(deductive reasoning), experimentation (testing the hypothesis), evaluation and 

analysis, peer review and evaluation, and publication [23], [24]. 

The trigger for this research was the observation of magnification of the tip 

reactions (explained in section 1.2.2). The curiosity from this observation led to an 

exploratory FEA and experimental investigations on RHS rings and RHS pieces as 

described in Chapter 3. This chapter describes the literature survey carried out to know 

the current frontiers of knowledge in relevant topics. This will assist to formulate the 

hypothesis to establish knowledge that can help to explain or design the overlap areas 

of telescopic cantilever beams. 
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2.2 Buckling 

Buckling is a physical phenomenon of a straight and slender member abruptly 

bending laterally from its longitudinal position due to compressive loading [20]. 

Structural members fail resisting tension, shear or torsion when the stress in the 

member reaches a certain limiting strength of the material. Buckling on the other hand 

does not take place as a result of the resisting stress reaching a limiting strength of the 

material. In thin-walled structures, because of the low thickness to width ratio, it is 

likely that the structure will buckle under compressive, bearing, and shear bending 

forces [25]. Therefore, for structural members consisting of thin-walled profiles, the 

ultimate strength is greatly influenced by its buckling capacity [26].  

As discussed in section 1.2.1, the stress at which buckling occurs depends on a 

variety of factors such as the dimensions of the member, boundary conditions and the 

properties of the material of the member. Determining it is complicated and is analysed 

under the heading Stability Analysis. 

2.2.1 Stability Analysis 

The concept of the stability of various forms of equilibrium of a compressed 

bar is frequently explained in literature [27]  by considering the equilibrium of a ball 

in various positions, as shown in Figure 15. Consider the equilibrium of the ball in 

Figure 15(a). Any slight displacement of the ball from its position of equilibrium will 

raise the center of gravity and work is required to produce such a displacement. In 

other words energy input is required. 
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Figure 15: Equilibrium positions of a ball (a) Stable (b) Unstable (c) Neutral [28] 

 
Now consider the equilibrium of the ball in Figure 15(b). If it is disturbed 

slightly from its equilibrium position it will continue to move down. The equilibrium 

of the ball in Figure 15(b) is called unstable equilibrium. Any slight displacement from 

the position of equilibrium will lower the center of gravity of the ball and consequently 

will decrease the potential energy of the ball. Thus in the case of stable equilibrium, 

the energy of the system is a minimum (local), and in the case of unstable equilibrium 

it is a maximum (local). 

Now consider the equilibrium of the ball in Figure 15(c). If displaced slightly, 

it neither returns to its original equilibrium position nor continues to move away upon 

removal of the disturbing force. It finds another equilibrium position. This type of 

equilibrium is called neutral equilibrium. If the equilibrium is neutral, there is no 

change in energy during a displacement in a conservative force system. 

A column under axial compression responds in a very similar manner to that 

of the ball in Figure 15. The straight configuration of the column is stable at small 

loads, but it is unstable at large loads. A state of neutral equilibrium exists at the 

transition from stable to unstable equilibrium in the column. Then the load at which 

the straight configuration of the column ceases to be stable is the load at which neutral 

equilibrium is possible. This load is usually referred to as the critical load. 



35 

 

At critical load, the member can be in equilibrium, both in the straight and in a 

slightly bent configuration. The method that bases this slightly bent configuration for 

evaluating the critical loads is called the method of neutral equilibrium, neighboring 

equilibrium, or adjacent equilibrium. At critical loads, the primary equilibrium path or 

stable equilibrium, reaches a bifurcation point and branches into neutral equilibrium 

paths. 

The bifurcation-type buckling is a purely conceptual one that occurs in a 

perfectly straight (geometry) homogeneous (material) member subjected to a 

compressive loading of which the resultant must pass through the centroidal axis of 

the member [14]. The importance attached to and the considerably large amounts of 

research devoted to bifurcation-type loading is justified in that the bifurcation-type 

buckling load or the critical buckling load gives the upper bound solution for practical 

columns [29]. 

As explained in section 1.3.4, for an axially loaded pin-ended column, the 

smallest buckling load for a pinned prismatic column corresponding to 11 k  is

2

2

L

EI
Pcr


 .  

Table 4 in Chapter 1 gives a summary of the buckling loads for some specific 

boundary conditions and is repeated here again as Table 7. The value of 
1k  is 

dependent on the boundary conditions.  
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Table 7: (Repeated) Buckling loads for different boundary conditions 

Pinned-Pinned 

Column 

Fixed-Free 

Column 

Fixed-Fixed 

Column 

Fixed-Pinned 

Column 

    

2

2

L

EI
Pcr


  

2

2

4L

EI
Pcr


  

2

24

L

EI
Pcr


  

2

2046.2

L

EI
Pcr


  

LLe   LLe 2  LLe 5.0  LLe 7.0  

11 k  25.01 k  41 k  046.21 k  

 

Considering crP  for the pinned-pinned column gives 

 

2

2

2

2






E

AL

EI

A

Pcr
cr   (3.1) 

 

Where   is the slenderness ratio. 

2.2.2 Eccentric Loading 

Columns designed for axial load are discussed in section 2.2.1 above. 

However, for situations where the load is eccentric, columns are analyzed differently. 

When a column is eccentrically loaded, bending can be a severe problem and may be 

more important than the compression stress or buckling.  

Columns under eccentric loading can be treated as columns under axial loading 

with an additional external moment acting on the loading end as shown in Figure 11 

and repeated in Figure 16 below. As the load is increased, the moment will increase 
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and cause the beam to bend further. Viewed this way, the problem of buckling is not a 

question of determining how long the column can remain straight and stable under the 

increasing load, but rather how much the column can be permitted to bend under the 

increasing load, if the allowable stress is not to be exceeded and if the deflection ‘y’ is 

not to be excessive. 

 

Figure 16: (Repeated) (a) Column under eccentric loading (b) FBD at an arbitrary 

plane 

Consider bent column shown in Figure 17(a). At the midpoint of the beam the 

deflection will be maximum. Hence the bending moment will also be at a maximum. 

This follows that the bending stress also will be at a maximum.  
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Figure 17: Combined axial and bending stresses  

Axial stress 
A

P  due to the compressive load P will be distributed uniformly 

throughout the cross section. But the major addition is the bending stresses, which 

reach very high values when the deflection increases. The stresses in the extreme fibers 

are maximum within each section. The stress in the inner section is compressive and 

is maximum at the inner most fiber. This combined with the axial stress makes the 

stress in the inner most fiber at mid-height of the beam to reach the maximum at 

A

P
b   first to trigger yielding. The outer most fiber will be under tensile stress and 

the magnitude is
A

P
b  .   
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2.2.3 Load Deflection Behaviour of Steel under Compression 

Steel being a ductile material has a stress – strain diagram in compression test 

similar to its tensile test. It has an elastic region, proportional limit and a plastic region 

that follows. 

 

Figure 18: Compressive stress vs compressive strain diagram 

 
In tension test, a specimen is being stretched, necking may occur, and 

ultimately fracture takes place. On the other hand, when a small specimen of steel is 

compressed, it begins to bulge on sides and becomes barrel shaped as shown in Figure 

18 before it fails. The graph shows that the material’s strength to carry load still 

increases in the plastic region even though it produces a higher increase in strain for a 

small increase in stress.  
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2.2.4 Collapse Load with Columns with Various Slenderness Ratios 

 

Figure 19: Average stress in columns versus slenderness ratio[1] 

Gere [1] explains the behavior of steel columns with various slenderness ratios 

in the form of a graph as shown in Figure 19. The curve ABCD shows the collapse 

load of the columns with small to large slenderness ratios. The short columns fail due 

to the collapse of the material represented by the region AB in the curve. The 

intermediate columns fail due to inelastic buckling. The long columns represented by 

the region CD fails due to elastic buckling. He estimates cr  of steel as

07.83
300

2100002




 by considering yield strength and Young’s modulus of steel. 

For short steel columns, the slenderness ratio should be less than ten. The 

columns, which have slenderness ratio in the range between 10 and 83 are classified 
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as intermediate columns. They lose their stability by inelastic buckling. Inelastic 

buckling is characterized by its occurrence after yielding has started and it occurs 

between the yield strength and ultimate strength .. 

2.2.5 Buckling and Buckling Modes 

As explained above, buckling can occur both elastically and inelastically. 

Elastically, three kinds of buckling can occur in a member; local, distortional and 

global [30]. In case of local or distortional buckling there exists a post-buckling reserve 

capacity, which allows extra load to be applied. If the member buckles globally there is 

no allowance for additional load and the member collapses [26]. Global buckling can 

further be classified into flexural, torsional and flexural-torsional buckling. 

The buckling phenomenon classified in terms of the buckling modes are as 

shown in Table 8.  

Table 8: Modes of buckling classification [7], [8] 

MODE DESCRIPTION VISUALIZATION 

Flexural It may involve transverse 

displacement of the member cross-

section and is resisted by the flexural 

rigidity of the member. It occurs 

when the second-order moment 

caused by the product of the axial 

compression forces with the 

displacements are equal to the 

internal bending resistance at any 

point in the structure. 

 
 

 

 

 

y ult
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Table 8: Modes of buckling classification (Continued) 

MODE DESCRIPTION VISUALIZATION 

Torsional This involves twist of the member 

cross-section, and is resisted by the 

tensional rigidity and the warping 

rigidity. It occurs when second-order 

torque caused by the axial 

compression force and the twist are 

equal to the sum of the internal 

torsion resistances at any point in the 

structure. 

  

Flexural-

Torsional 

This involves the mixture of two 

above phenomena and therefore 

resisted by the combination of the 

bending resistance and the torsional 

resistance. 

 

 

 
Local This mode involves deflection of a 

thin plate out of its original plane. 

This mode occurs when the second-

order actions caused by the in-plane 

compressions and the out of plane 

deflections are equal to the internal 

resistances of the plate elements to 

bend and twist at any point in the 

structure. 

 
 

Distortional This is an intermediate mode 

between local and member buckling. 

It often involves web flexure and 

corresponding rotations of the 

flanges which vary slowly along the 

member length. 

 

 
 

 

It is worth noting that local buckling involves plate-like deformations alone, 

without the translation of the intersection lines of adjacent plate elements, whereas 
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distortional buckling is a mode with cross-sectional distortion that involves the 

translation of some of the fold lines (intersection lines of adjacent plate elements) [31]. 

2.2.6 Plate Buckling 

Plates are initially flat members bounded by two parallel planes called faces 

and a cylindrical surface called an edge or boundary [32]. The generators of the 

cylindrical surface are perpendicular to the plane faces. Distance between the faces is 

the thickness h of the plate and for thin plates assumed it is small compared to other 

dimensions. The thickness h is divided into two halves by a plane parallel to the faces 

and this plane is called the midplane. When the plate bends, the midplane also bends 

and the bent form is called the mid surface. Plates may be classified into three groups 

according to the ratio a/h where a is a typical dimension and h is the thickness [32].  

i. Thick plates having an a/h ratio less than 8 to 10  

Their analysis include all the components of stresses, strains, and 

displacements as for solid bodies using the general equations of three-dimensional 

elasticity. 

ii. Membranes having a/h greater than 80 to 100  

They carry the lateral loads by axial tensile forces N (and shear forces) acting 

in the plate middle surface. These forces are called the membrane forces. 

iii. Thin Plate with a/h between 8 to 10 and 80 to 100  

Depending on the value of the ratio, maximum deflection to thickness w/h, the 

part of flexural and membrane forces here may be different. Therefore they are 

classified into two classes called stiff (w/h up to 0.2) and flexible (𝑤/ℎ ≥ 0.3) plates. 

Majority of the plates considered here falls in the membrane or thin category. 
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In column buckling adjacency equilibrium method was used and the bent 

column was analysed as a bent beam to derive the critical load for buckling. In a similar 

fashion a bent plate can be analysed to establish the buckling load for an axially loaded 

plate.  Bending of a plate, however, involves bending in two planes and from a 

mathematical point of view, the quantities such as deflections and bending moments, 

become functions of two independent variables [33]. As a consequence of this, the 

behavior of plates is governed by partial differential equations, which increases the 

complexity of the analysis. Plate buckling is usually referred to as local buckling [14]. 

Structural shapes composed of plate elements may not necessarily terminate their load-

carrying capacity at the instance of local buckling of individual plate elements and this 

adds further difficulty [34]. 

2.2.7 Theory of Plates 

The objective of thin-plate theory is to reduce a three-dimensional (complex) 

problem to an approximate (practical) one based on the following simplifying 

assumptions known as Kirchoff’s assumptions [35]: 

i. Normals to the undeformed middle plane are assumed to remain normal to the 

deflected middle plane and in extensional during deformations, so that 

transverse normal and shearing strains may be ignored in deriving the plate 

kinematic relations. 

ii. Transverse normal stresses are assumed to be small compared with the other 

normal stresses, so that they may be ignored. 

The resulting forces and moments acting on a plate element according to these 

assumptions are shown in Figure 20. With these the following three sets of equations 

can be derived: 
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i. Kinematic Equations relating deflection and curvatures 

ii. Constitutive Equations relating curvatures and bending moments 

iii. Equilibrium Equations relating transverse load and bending moments 

 

Figure 20: Forces and moments acting on a plate element 

 
Internal forces (generalized) acting on the edges of a plate element dxdy are 

related to the internal stresses by the equations in Table 9  [14]. 

 

Table 9: Plate forces and moment equations 
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The barred quantities xxy  ,  etc. are components at any point through 

thickness. xxy  , are quantities in the mid-surface. 

The kinematic equations relating the curvature of the mid-surface to deflection 

are: 

 

yx

w
k

y

w
k

x

w
k

xy

yy

xx
















2

2

2

2

2

 (3.2) 

The constitutive equations relating curvature of the mid-surface and bending 

moments are  
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where  2

3

112 


Eh
D  the isotropic plate rigidity. 

The equilibrium equation relating moments and the applied load is 
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Combining these three sets of equations give the partial differential equation 

of the deflection surface given by  
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This equation is called the biharmonic equation. This is similar to the equation 

M
dx

yd
EI 

2

2

in the beam. 
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2.2.8 Plate under Axial Loading 

Consider a plate simply supported on four edges and subjected to compressive 

load xN  per unit length uniformly distributed at the edges ax   ,0  as shown in Figure 

21.  

Nx

 

Figure 21: Simply supported plate in all four sides 

 

The critical buckling load,  
crxN ,and the critical buckling stress,  

crx  for 

the simply supported plated is calculated as shown [7], [27], [36]: 

The harmonic equation for a plate in general is 
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When subjected to a uniform compressive force 𝑁𝑥 per unit length in the x 

direction, the harmonic equation becomes 
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Any function f(x) can be defined by a Fourier series 
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For functions where the domain is Lx 0 , only the sine series is used.  
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Substituting (3.9) in (3.7) 
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Therefore, LHS of (3.7) is 
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Therefore, RHS of (3.7) is 
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Equating (3.10) and (3.11), we get 
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Where, 

  
crxN is the critical buckling load 

 
crx  is the critical buckling stress 

Figure 22 shows a segment of a long plate having thickness ‘t’ and length ‘b’. 

A A

 

Figure 22: Segment of a long plate with thickness t and width b [37] 

 
The local plate buckling co-efficient, k2, for plate in compression at section A-

A shown in Figure 22 with varied boundary conditions is given in Table 10. 
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Table 10: Local plate buckling co-efficient, k2, for plates in compression with varied 

boundary conditions [37] 

Case Description of edge support k2 At Section A-A 

1 Both edges simply supported 4.0 

 
2 One edge simply supported, 

the other fixed 

5.42 

 
3 Both edges fixed 6.97 

 
4 One edge simply supported, 

the other free 

0.425 

 
5 One edge fixed, the other 

free 

1.277 

 
 

2.3 Rectangular Hollow Sections 

 Definition: 

Square Hollow Sections (SHS) and rectangular hollow sections (RHS), are 

types of hollow tubular sections that are widely used due to the recognition of the 

inherent aesthetic and structural advantages [38]. It is now well recognized that for 

thin-walled hollow section, the longitudinal residual stresses are in tension at outer 

surface and in compression at inner surface, and the distribution is assumed to be linear 

through the thickness [39]. These types of structural members are the fundamental 

constituents of the telescopic cantilever beams and the literature therefore is analyzed 

in detail in the following sub-sections. 
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2.3.1 Hollow under Axial Compression and Bending 

Four types of tests: (a) four point bending tests (b) three point bending tests (c) 

axial compression tests and (d) combine loading tests are reported in this category.  

Four Point Bending Tests: The papers involving the four point bending tests 

involve experimental investigations carried out on flexural behavior of specimens 

under pure bending brought about by four-point bending tests. Four-point bending tests 

involve placing a simply supported specimen at a set distance apart. Loading is applied 

at two loading points on the specimen at an equal distance around the center. The load 

is applied at a constant rate until the failure of the sample. Hollow sections of different 

shapes and sizes were investigated for their flexural behavior under four-point bending 

tests: Chen et al. [40] tested concrete filled stainless steel SHS and RHS tubes. Zhao 

and Bock [41]–[43], tested SHS and RHS stainless steel tubes under bending. Zhao 

and Young [44], tested normal strength and high strength steel SHS and RHS tubes. 

Zheng et al. [45] tested cold formed stainless steel CHS and RHS tubes. Huang  and 

Young [46] tested SHS and RHS tubes cold rolled from flat plates of lean duplex 

stainless steel. In addition to SHS and RHS tubes, Theofanous et al. [47] also 

conducted experiments on I-section tubes. Typical data from these experimental tests 

showed ultimate moment, failure modes and bending moment-midspan deflection 

curves. Chen et al. [40] also showed overall deflection curves, strain distribution 

curves, and flexural stiffness obtained from the bending moment-midspan deflection 

curves. Typical bending moment versus midspan deflection curves show elastic stage, 

elasto-plastic stage, post-ultimate stage and unloading stage [40]. The failure mode in 

all these papers was local buckling. Zheng and Huang et al. [48], [49] developed Finite 

element models in ABAQUS and validated them using the experimental test data. In 
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Zhao and Huang et al. [42], [46] assigned S4R elements to the tube in the FE model 

and used a Riks analysis. Similarly, Zheng et al. [45], built an FE model using S9R5 

elements and conducted an Eigen value analysis. Using the validated FE models, 

parameter studies were conducted to expand test data with different material properties 

and geometric parameters.  

All these tests suggest appropriate design rules improvements for incorporation 

in steel design standards. 

Three Point Bending Tests: In this section, papers highlight experimental 

investigations carried out on flexural behavior of specimens subjected to three-point 

bending tests. A three-point bend test consists of the specimen simply supported 

between rollers and the force applied to the top of the sample through a single point.  

Theofanous and Bock et al. [50], [51] showed testing of lean duplex stainless 

steel SHS and RHS tubes. For the experiments, Theofanous et al. [50] rolled the SHS 

and RHS tubes into shape and welded them on the bottom flange. In addition to SHS 

and RHS tubes, Theofanous [47] also tested I-section austenitic and stainless steel 

tubes. Gardner et al. [52] also conducted tests on SHS, RHS and CHS cold formed 

stainless steel tubes.  

Typical data from these experimental tests showed ultimate moment, failure 

modes and bending moment-rotation curves and bending moment-vertical 

displacement at mid-span. The failure mode in all these papers was local buckling. 

Theofanous et al. [50] developed FE models in ABAQUS and validated the 

models using the test data. S4R elements were used in the model and analysis type was 

Riks analysis. Using the validated FE models, parameter studies were conducted to 

expand test data with different material properties and geometric parameters.  
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All these tests were conducted to assess design guidelines and suggest 

improvements or validate current codes. 

Axial Compression Tests: In this section, long columns and stub columns were 

compressed to obtain cross-sectional load carrying capacity under pure compression. 

Specimens tested included SHS and RHS tubes [41]–[43], [53]–[55], CHS 

tubes [52] and I-sections [47]. 

Typical test data acquired involved obtaining load-carrying capacity under 

pure compression and Load-end shortening curves. All specimens tested by Zhao et 

al. [41], failed by inelastic local buckling. Experimental tests conducted by Zhao, 

Block and Theofanous et al. [42], [51], [47] showed local buckling. Wang et al. [56], 

conducted experiments showing failure modes of local buckling, elephant-foot 

buckling and global buckling triggered by initial local buckling. Gardner [52] tests on  

columns with slender cross-sections first showed elastic buckling, then plastic 

buckling and then reached ultimate load at relatively small lateral deflections, whereas 

the columns with stocky cross-sections reached ultimate load at higher lateral 

deflections. Failure modes observed included overall flexural buckling and global 

local buckling interaction. 

As explained for the four-point bending tests by Zhao et al. [42], FE models 

using S4R elements with the Riks analysis in ABAQUS were validated against test 

data and used further for parametric studies. 

Again, load–deformation histories helped assess design guidelines. 

Combined Loading: Combined loading involves testing specimens under 

uniaxial bending plus compression. To provide the bending moment, loading 

eccentricities were provided. 
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Zhao et al. [41], [42] and Arrayago [57],  tested SHS and RHS tubes under 

combined loads. Failures modes involved in-plane bending and flexural buckling for 

all. The more slender sections displayed an additional local buckling. Results included 

load vs mid-height deflection curves [41] and load-end rotation curves [42]. 

Again, experimental data (deformation shape and load-mid height deflection 

curve) was used to validate FE model  and the validated FE model used further for 

parametric studies [41]. 

Obtained results were used to prove improvements needed on existing 

standards. 

Zhao et. al [58], reviewed the current beam-column design methods and 

established methodologies for overcoming the shortcomings by deriving new beam-

column design proposals  involving the derivation of new beam-column interaction 

factors resulting in improving capacity predictions. The reliability of the new proposals 

was confirmed by statistical analyses. 

2.3.2 Hollow Sections under Transverse Compressive Loading 

Reddy and Reid [59] report large deformations of circular metal tubes 

compressed between platens. Measured strain values and those predicted by the 

plastica theory were compared and the difference attributed mainly to strain hardening.  

An attempt to rectify the error was made unsuccessfully. They also introduce the 

concept of plastic hinges to determine collapse load. Sinha and Chitkara [60] report 

experiments on square rings to determined theoretically its plastic collapse load when 

compressed between rigid plates. They made assumptions: (1) the vertical members of 

the rings treated as columns subjected to axial loads (2) formation of plastic hinges at 

mid-points of the member arms and (3) constant co-efficient of friction between the 
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platens and rings. The accuracy of the developed theory diminished as the length of 

the ring increased and this was attributed to the deformation of the ring changing with 

the length. Gupta and Ray [61] analyzed the collapse of empty and filled square tubes 

laterally compressed between platens. They presented experimentally obtained load-

compression curves and tube shape at various deformation stages.  They considered 

plastic hinges formation for obtaining peak load and frictional force between platen 

and tube and equated slopes of webs and flanges for theoretical analysis. Gupta and 

Khullar [62] describe an improved analysis for collapse load of square and rectangular 

tubes, by considering the initial out of straightness of the arms and corner roundness 

of the sections. The results obtained compared well with the theory. They identified 

that eccentricities in loading caused by the corner radius and out-of-straightness 

resulted in large bending stresses at mid-height of the vertical arms compared to a 

direct compressive stress. Eccentricities caused the tubes to collapse at loads much 

lower than the buckling loads. 

Gupta and Sinha [63], [64] describe plastic collapse of square and rectangular tubes 

laterally compressed between indenters experimentally. Gupta and Khullar [65], [66] 

investigated lateral compression of rectangular tubes placed compressed between 

orthogonally and non-orthogonally placed indenters. The load versus compression 

obtained was analysed in both these sets of papers. They considered stationary and 

rolling plastic hinges in their theoretical collapse load analysis the computed results 

and experiments were in agreement. Although the placements of indenters vary, these 

papers develop the theory to predict the collapse behavior based on experiments.  

Gupta and Khullar [67] and Gupta and Sinha [68] describe experimental study 

of compression of square section tubes placed orthogonally in two and  multiple layers 
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between platens. Load-compression curves were obtained and theoretical analysis 

based on stationary and travelling plastic hinges were carried out. The results were 

found to be in agreement. 

Gupta et al [69] report an experimental and FE analysis study of SHS and RHS 

subjected to lateral quasi-static loading. They experimentally obtained deformed 

shapes, load-compression curves, energy-compression curves and compared FEA 

results. Again, plastic hinge formation was explained. 

Lateral compression of hollow tubes allow for efficient energy absorption, and 

have hence been the subject of extensive research with respect to their plastic collapse 

and energy absorption capacity. While this group of papers concentrate on the analysis 

of tubes (square/ rectangular/ circular/ triangular) in the plastic area, the behavior of 

the RHS tubes is not detailed before the maximum load. Therefore, the theoretical 

developments shown in Chapter 4 concentrates on the behavior of the RHS tubes 

before the maximum load capacity is reached. The recommended theoretical analysis 

in this thesis is adapted from the ‘collapse load of empty tubes’ given by Gupta and 

Ray in [61]. 

2.3.3 Hollow Sections under Impact and Crushing Loads 

In this section, the investigation of the crushing behavior of hollow tubes is 

studied. Tran and Ton [70] investigate the lateral crushing behavior of RHS and SHS 

tubes through experimental testing and theoretical analysis. A comparison between the 

two tube types show average crushing force of the RHS is smaller than that of the SHS. 

However, the crushing mechanism is identical. Experimental data obtained involves 

force–stroke curves and deformed shape of tubes. The average crushing force at each 

stage was done by using plastic hinge formation and deformed shape experimentally 



57 

 

obtained. Bambach, Liu and Jilin et al. [71]–[73] conducted experimental and 

analytical investigations of SHS beams subjected to static and transverse impacts at 

the beam mid-span. Here, elastic–plastic theoretical methods were developed to 

establish force–displacement and energy absorption relationships for hollow and 

concrete filled sections. 

This section again highlights how experimental observations and data are used 

to formulate theoretical explanations and models.  This method of using experimental 

observations to develop theoretical models is followed in this research and detailed in 

Chapter 4 of this thesis. 

2.4 Finite Element Method 

2.4.1 Introduction 

Finite Element Method is a Numerical Method employed for Engineering 

Analysis and can be described in the following way [74], [75]: 

Finite Element Method can be described as a method where (a) the Field 

Variables at the infinite number of points in a continuum is represented by those at a 

chosen finite number of points called nodes (b) their values are then calculated using 

some engineering principles and other governing relationships and (c) finally the 

values of the field variables at all intermediate points are calculated by interpolation 

using the shape functions. 

2.4.2 Steps in FEA 

Logan [75] describes that a typical analysis is made up of the following eight 

steps: 
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 Discretize and select the element types 

This involves dividing the body into a system of finite elements with associated 

nodes and building the model based on choosing the most appropriate element type to 

represent the actual physical behavior. The element size should be small enough to 

give usable results yet large enough to reduce computational effort.  

 Select a displacement function 

This step involves choosing a displacement function within each element. 

Within each element, the function is defined using the nodal values of the element. 

Most often, linear, quadratic, and cubic polynomials are used and occasionally 

trigonometric series can be used. The FEM is one in which a continuous quantity 

(example: displacement), is approximated by a discrete model composed of piecewise-

continuous functions defined within each finite element. 

 Define the strain/displacement and stress/strain relationships 

Strain/displacement and stress/strain relationships are necessary for deriving 

the equations for each finite element. The strain is derived from the displacements and 

the stresses are related to the strains through the stress/strain law – generally called the 

constitutive law. 

 Derive the element stiffness matrix and equations 

The following methods are used to derive the element stiffness matrix and 

equations: 

o Direct equilibrium Method: 

Force equilibrium conditions for a basic element, along with force/deformation 

relationships are used to obtain the stiffness matrix and element equations relating 
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nodal forces to nodal displacements. This method is used for one-dimensional 

elements. 

o Work or Energy methods: 

For two-and-three dimensional elements, it is much easier to apply a work or 

energy method to develop the stiffness matrix. The principle of virtual work, the 

principle of minimum potential energy, and Castigliano’s theorem are methods 

frequently used for the derivation of element equations. All three principles yield 

similar element equations for linear-elastic materials; thus the choice of method is a 

matter of convenience. 

o Methods of Weighted Residuals: 

These methods allow the FEM to be applied directly to any differential 

equation. Galerkin’s method is the most popular of these methods. The Galerkin 

Method is useful for solving differential equations in solid mechanics, fluid mechanics, 

heat flow and electrical engineering [76]. These methods yield equations to describe 

the behaviour of an element which are written in a matrix form as 

     dkf   (3.15) 

   

where f is a vector of element nodal forces,  k  is the element stiffness 

matrix and d is the vector of unknown element nodal degrees of freedom or 

generalised displacements, n. Here, generalised displacements may include such 

quantities as actual displacements, slopes or even curvatures. 

 Assemble the element equations to obtain the global or total equations and 

introduce the boundary conditions 
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In this step, the individual element nodal equilibrium equation generated 

previously are assembled the global nodal equilibrium equation written in the matrix 

form as 

     dKF   (3.16) 

 

where F  is a vector of global nodal forces,  K is the structure global 

stiffness matrix and d is the vector of known and unknown structure nodal degrees 

of freedom or generalised displacements. 

The global stiffness matrix  K is a singular matrix. To remove the singularity 

problem, the boundary conditions are invoked so that the structure remains in place. 

 Solve the unknown degrees of freedom 

After modifying the global nodal equation for the boundary conditions, the 

equations can now be solved for the d’s by using an elimination method such as 

Gauss’s method. 

 Solve for the element strains and stresses 

Typical relationships between strain and displacements can be used to 

determine secondary quantities of strain and stress (or moment and shear force) in 

terms of the displacements determined in the previous step. 

 Interpret the results 

The final goal is to interpret and analyze the results for use in the 

design/analysis process. Postprocessor computer programs help the user to interpret 

the results by displaying them in graphical form. 
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2.4.3 Types of Analyses 

 Static Stress Analysis 

A static stress analysis does not depend on time and is used when inertia effects 

can be neglected. It can be linear or nonlinear. 

In a linear static analysis displacements, strains, stresses, and reaction forces 

under the effect of applied loads are calculated. Here, the relationship between the load 

applied to an object and the response of the object is linear. 

Nonlinearities can arise from large-displacement effects, material nonlinearity, 

and/or boundary nonlinearities such as contact and friction and must be accounted for. 

These non-linearities are accounted for in a non-linear static stress analysis. 

 Eigen Value Analysis for buckling 

Eigenvalue buckling is generally used to estimate the critical buckling loads of 

stiff structures (classical eigenvalue buckling) [77]. The response of stiff structures 

usually involves very little deformation prior to buckling. A simple example of a stiff 

structure is the Euler column, which responds very stiffly to a compressive axial load 

until a critical load is reached, when it bends suddenly and exhibits a much lower 

stiffness. Thus, for example, when minimizing weight of the telescopic beam structure 

used as a lift and reach device, its stiffness and load carrying capacity are to be 

preserved [78]. Even when the response of a structure is nonlinear before collapse, a 

general eigenvalue buckling analysis can provide useful estimates of collapse mode 

shapes. 

An incremental loading pattern, QN, is defined in the eigenvalue buckling 

prediction step. The magnitude of this loading is not important; it is scaled by the load 

multipliers, λi, found in the eigenvalue problem [77]: 
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NM KK   (3.17) 

where, 

NMK0  is the stiffness matrix corresponding to the base state, which 

includes the effects of the preloads (if any) 

NMK  
is the differential initial stress and load stiffness matrix due to 

the incremental loading pattern 

i  are the eigenvalues 

M

i  are the buckling mode shapes (eigenvectors) 

M and N refer to degrees of freedom M and N of the whole model 

i  refers to the ith buckling mode 

The critical buckling loads are then 

 N

i

N QP   (3.18) 

Normally, the lowest value of i   is of interest.  

The buckling mode shapes,
M

i , are normalized vectors and do not represent 

actual magnitudes of deformation at critical load. The buckling mode shapes are often 

the most useful outcome of the eigenvalue analysis, since they predict the likely failure 

mode of the structure [77]. 

 Riks Analysis 

Obtaining nonlinear static equilibrium solutions for unstable problems is often 

necessary, where during periods of the load displacement response, the load and/or the 

displacement may decrease as the solution evolves. The modified Riks method used 

in ABAQUS is an algorithm that allows effective solution of such cases. 

In this method, the solution is viewed as the discovery of a single equilibrium 

path in a space defined by the nodal variables and the loading parameter. The basic 
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algorithm is the Newton method; therefore, at any time there will be a finite radius of 

convergence. Further, many of the materials (and possibly loadings) of interest will 

have path-dependent response. For these reasons, it is essential to limit the increment 

size.  

In the modified Riks algorithm, as it is implemented in ABAQUS, the 

increment size is limited by moving a given distance (determined by the automatic 

incrementation algorithm) along the tangent line to the current solution point and then 

searching for equilibrium in the plane that passes through the point thus obtained and 

that is orthogonal to the same tangent line [77].  

The Riks method uses the load magnitude as an additional unknown; it solves 

simultaneously for loads and displacements. Therefore, another quantity must be used 

to measure the progress of the solution; ABAQUS uses the “arc length,” l, along the 

static equilibrium path in load-displacement space.  

If the Riks step is a continuation of a previous history, any loads that exist at 

the beginning of the step and are not redefined are treated as “dead” loads with constant 

magnitude. A load whose magnitude is defined in the Riks step is referred to as a 

“reference” load. All prescribed loads are ramped from the initial (dead load) value to 

the reference values specified. 

The loading during a Riks step is always proportional. The current load 

magnitude, totalP , is defined by: 

 )( 00 PPPP refptotal    (3.19) 
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where 0P  is the “dead load”, refP  is the reference load vector, and 
p is the 

“load proportionality factor.” The load proportionality factor is found as part of the 

solution.  

2.4.4 FEA Applications 

The FEM can be used to analyse both structural and non-structural problems. 

Typical structural areas include: 

 Stress analysis 

 Buckling 

 Vibration Analysis 

Non-structural problems include: 

 Heat transfer 

 Fluid flow 

 Distribution of electric or magnetic potential 

Biomechanical engineering problems typically include stress analyses of 

human spine, skull, heart, eye etc. 

2.4.5 Key Points in Preparing for an FEA 

 Mesh Density and Partitioning 

The mesh density should be small enough to give usable results yet large 

enough to reduce computational effort.  

Partitioning divides part instances into smaller regions. Partitioning gives 

greater control over mesh generation – it allows for assigning different mesh sizes and 

mesh elements on different areas on the same part instance.  
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Without partitions, the mesh is aligned only along the exterior edges; with 

partitions, the resulting mesh will have rows or grids of elements aligned along the 

partitions i.e., the mesh “flows” along the partitions. 

 Element Type 

The wide range of elements in the ABAQUS element library provides 

flexibility in modelling different geometries and structures. Each element is 

characterized by the following: 

o Family  

A family of finite elements is the broadest category used to classify elements. 

Elements in the same family share many basic features. There are many variations 

within a family. 

o Degree of freedom 

An element’s number of nodes determines how the nodal degrees of freedom 

will be interpolated over the domain of the element. ABAQUS includes elements with 

both first and second-order interpolation  

o Number of nodes 

The primary variables that exist at the nodes of an element are the degrees of 

freedom in the finite element analysis. Examples of degrees of freedom are 

displacements, rotations, temperature, electrical potential 

o Formulation 

This describes the mathematical theory used to define the element’s behaviour. 

o Integration 

The stiffness and mass of an element are calculated numerically at sampling 

points called “integration points” within the element. The numerical algorithm used to 
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integrate these variables influences how an element behaves. ABAQUS includes 

elements with both “full” and “reduced” integration. 

Reduced integration uses a lesser number of Gaussian co-ordinates when 

solving the integral. The more Gaussian co-ordinates for each element, the more 

accurate the answer, but the higher the cost of computation time. 

Using reduced integration reduces the time to run the analysis but it could have 

a significant effect on the accuracy of the element for a given problem. The use of 

fewer integration points produce a less stiff element. Therefore, in some cases, 

particularly non-linear problems, it is advisable to use reduced integration instead of 

full integration. The slight loss of accuracy is counteracted by the improvement in 

approximation to real-life behavior [79] 

 Boundary Conditions 

Boundary conditions are applied to those regions of the model where the 

displacements and/or rotations are known. Boundary conditions are step dependent; 

the step or steps in which they become active must be specified. 

 Load Application 

In ABAQUS the term load refers to anything that induces a change in the 

response of a structure from its initial state, including concentrated forces, pressures, 

nonzero boundary conditions, body loads, and temperature. 

 Interactions 

Interactions are step-dependent objects. ABAQUS does not recognize 

mechanical contact between part instances or regions of an assembly unless that 

contact is specified in the Interaction module; the mere physical proximity of two 

surfaces in an assembly is not enough to indicate any type of interaction between the 
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surfaces. Interaction module defines contact interactions, tie constraints, coupling 

constraints etc. 

 Obtaining and Interpreting Results 

Graphical postprocessing is important because of the great volume of data 

created during a simulation. The Visualization module of ABAQUS/CAE allows the 

viewer to view the results graphically using a variety of methods, including deformed 

shape plots, contour plots, vector plots, animations, and X–Y plots. 

2.4.6 Riks Analysis in ABAQUS – A Detailed Example 

Consider the example of a rectangular hollow section (RHS) compressed 

between wearpads as shown in Figure 23 below. A Riks analysis is carried out to 

calculate the maximum load carrying capacity of the RHS. As an input, a displacement 

is applied at the reference point RP-1. Since the displacement is compressive, its value 

is negative. 

 

Figure 23: RHS assembly and loading pattern 
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In the Riks step, the following inputs are to be given: 

 An initial increment in arc length, inl  

 The total arc length scale factor, periodl  

 The minimum and maximum arc length increments, 
minl and maxl  

 Maximum number of increments 

 Stopping criteria 

 

 

Figure 24: Riks step - basic tab  
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Figure 25: Riks step - incrementation tab 

From the initial increment in arc length, inl , provided, the initial load 

proportionality factor, in , is computed as [80]: 

 

period

in
in

l

l
  (3.20) 

where periodl is a user-specified total arc length scale factor (typically set equal 

to 1). The value of in is used during the first iteration of a Riks step. For subsequent 

iterations and increments the value of  is computed automatically. The value of is 

part of the solution. Minimum and maximum arc length increments, 
minl and maxl , 

can be used to control the automatic incrementation. Direct user control of the 

increment size is also provided; in this case the incremental arc length, l , is kept 

constant. The increment tab in the Riks step is shown Figure 25. 
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Since the loading magnitude is part of the solution, a method needs to be 

specified when the step is completed. A maximum value of the load proportionality 

factor, end , or a maximum displacement value at a specified degree of freedom can 

be used as a stopping critereon. The step will terminate when either value is crossed. 

If neither of these finishing conditions is specified, the analysis will continue for the 

number of increments specified in the step definition.  

The stopping criteria shown in Figure 24 shows that the analysis will stop if a 

displacement of -15 in the 2-DOF i.e Y-direction, is reached at the m-set-1 node 

(defined as RP-1 in model assembly). 

2.5 Experimental Design 

Product design has the greatest impact on product quality. It is essential to 

consider all aspects of design (including factors built into the product) that affect the 

deviation of functional characteristics of the product from target values [81]. When the 

goal is to design a product (or process) with high stability, parameter design is the most 

important step [82]. Parameter Design helps ascertain the optimal levels for the 

parameters of each element in the system so that the functional deviations of the 

product are minimized [81]. The major usefulness of experimental design in finding 

the optimal combination of parameter values [82]. 

Planning and implementation of experiments can be broken down into the 

seven step procedure shown [83]: 

 State Objective: The objective of the experiment needs to be clearly stated. 

In a work environment, all stakeholders should provide input. 

 Choose Response: The response is the experimental outcome or 

observation. There may be multiple responses in an experiment. The 
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response should be chosen to increase the understanding of the mechanisms 

and physical laws involved in the problem 

 Choose Factors and Levels: A factor is a variable that is studied in the 

experiment. In order to study the effect of a factor on the response, two or 

more values of the factor are used. These values are referred to as levels or 

settings. A treatment is a combination of factor levels. In choosing factors 

and levels, cost and practical constraints must be considered. 

 Choose experimental Plan: Use the fundamental principles to enable 

suitable choice of the experimental plan. 

 Perform Experiment: The use of a planning matrix is recommended. The 

matrix describes the experimental plan in terms of actual values or settings 

of the factors. 

 Analyze data: An analysis appropriate for the design used to collect the data 

needs to be carried out. This includes model fitting and assessment of the 

model assumptions through an analysis of residuals. 

 Draw conclusions and Make Recommendations: Based on the data analysis, 

conclusions are presented which include the important factors and a model 

for the response in terms of important factors. Recommended settings or 

levels for the important factors may also be given. The conclusions should 

refer back to the stated objectives of the experiment. A confirmation 

experiment is worthwhile, to conform the recommended settings.  

2.5.1 Screening Experiments 

In any experimental investigation, one may find that there can be many factors 

that can contribute to a specific structural phenomena/ behavior. To segregate the 
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influencing from the less influencing factors, it would be better to conduct a small 

experiment for a particular response/ output. Such designs/ experiments determine 

which factors are essential for making improvements [84]. Such designs involve sifting 

through a large number of potentially important factors to search, as economically and 

effectively as possible, for the few active/ influencing factors [85]. When the objective 

of the experiment is factor screening, the number of factor levels is kept low.  

Generally, two levels work very well in factor screening studies [84],[85]. In 

classical screening, knowledge gained from a main effects design can be improved by 

investigating, in a second stage of experimentation, interaction between factors whose 

main effects are identified as important at the first stage [86]. The main effect of a 

certain factor, is the mean of the effect by that factor on the experimental values, taken 

over the various levels of the other factors [87]. An interaction between factor A and 

factor B exists, when the effect of A (on the response) differs according to the levels 

of B, or in other words, when the effect of one factor (on the response) depends upon 

the value of the other [87]. 

In a factor screening situation, it is more important not to exclude an active 

factor than it is to conclude that inactive factors are important [84]. 

Taguchi’s orthogonal L12 array [88] is widely used for screening experiments 

[89], [90].  Orthogonal  array  is  only one  way  of  planning  for  DOE,  yet the  most  

flexible  to  conduct  and easy  for  non-statistically oriented engineers to execute in 

practice [21]. An orthogonal array provides a balanced set of experimentation runs 

such that the conclusions are drawn in a balanced fashion [91]. In Table 11, the 

numbers 1 to 12 are called experiment runs or numbers [92]. Each vertical column of 

the array contains six 1s and six 2s. The 1s and 2s represent the coded levels for each 
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factor. For a given experiment, in any two columns there are four possible 

combinations: (1,1),(1,2),(2,1),(2,2) If each of these four combinations appears the 

same number of times in a pair of columns, the columns are said to be balanced or 

orthogonal [82]. The L12 design is among a group of specially designed arrays in which 

interactions are distributed more or less uniformly to all columns; making it possible 

to focus on main effects and therefore increase the efficiency and reproducibility of 

small scale experimentation [87]. Eleven main effects can be studied using this design. 

The array is given in Table 11.  

Table 11: Orthogonal L12 array 

Run Factors 

1 2 3 4 5 6 7 8 9 10 11 

1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 2 2 2 2 2 2 

3 1 1 2 2 2 1 1 1 2 2 2 

4 1 2 1 2 2 1 2 2 1 1 2 

5 1 2 2 1 2 2 1 2 1 2 1 

6 1 2 2 2 1 2 2 1 2 1 1 

7 2 1 2 2 1 1 2 2 1 2 1 

8 2 1 2 1 2 2 2 1 1 1 2 

9 2 1 1 2 2 2 1 2 2 1 1 

10 2 2 2 1 1 1 1 2 2 1 2 

11 2 2 1 2 1 2 1 1 1 2 2 

12 2 2 1 1 2 1 2 1 2 2 1 

 

Experimental design according to Taguchi has one prerequisite: not all 

interaction of factors need to be recognize and analysed. If complete relationships are 

needed, a full factorial experiment is necessary [93]. 
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Once the active factors are identified from the analysis of the screening 

experiment results, an in-depth investigation is carried out.  

2.5.2 Response Surface Methodology 

Response surface methodology, or RSM, is a collection of mathematical and 

statistical techniques useful for the modeling and analysis of problems in which a 

response of interest is influenced by several variables and the objective is to optimize 

this response [94]. In a RSM, unlike in screening experiments, in order to assess 

curvature (non-linear effects) for a particular factor, it is necessary to study more than 

two levels of the factor [87]. 

According to Myers and Montgomery [95] Response Surface Methodology 

(RSM) consists of the following: 

 Experimental strategy for exploring the space of the process or independent 

variables 

 Empirical statistical modelling to develop an appropriate approximating 

relationship between the yield and the process variables and 

 Optimization methods for finding the levels or values of the process variables 

that produce the desirable values of the response. 

In simple terms, the response surface is an approximate mathematical model 

of the response or yield in terms of the active factors identified in the screening 

experiment. Thus, the response surface can be represented by the model: 

 ).......x..........x,f(x=η n21  (3.21) 

   

where η  is the response and ).......x..........x,(x n21 are active or influencing factors 

from the screening experiment.  
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A second order model is widely used in RSM for several reasons [95]. A 

general second order model takes the form 
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(3.22) 

   

Finding the values for the βs is called the building of the model. The model is 

built using an experimental design and the response values obtained by carrying out 

the experiment. Any prediction made from the polynomial about the response outside 

the region should be verified by experiments before putting reliance on it [96]. 

Quadratic polynomials in n variables have  coefficients. To fit 

quadratic response surfaces at least that many points are needed and each factor should 

have at least three levels. For example, a quadratic polynomial in 6 variables has 24 

coefficients. But a three level full factorial design would have 3^6 = 729 runs or trials 

which is unaffordable. Central composite design is a popular compromise which 

reduces the number of experiments to close to the 2-level full factorial design.   

The central composite design is composed of the 2^n points of the full-factorial 

two-level design, with all the variables at their extremes, plus a number of repetitions 

of the nominal design (center point), plus the 2n axial points obtained by changing one 

design variable at a time by an amount α.  Thus, if two variables are considered, the 

central composite design can be visualized as shown in the planar in Figure 26. The 

vertices of the square show the runs in the factorial design (2^2=4). The center points 

are repeated a certain number of times (in this case 2 times). The axial points are 

generated by changing one factor in the center point along each axis. 

2)/21)(n(n 
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Figure 26: Standard central composite design for two variables 

 
Let the two levels of the factorial design be coded with +1 and -1. Then the full 

factorial design can be given in the following way: 

 

The center point for this design is  

The axial or star points are developed by changing one factor at a time in the 

center point and thus the points are           ,0,,0,0,,0, . Putting it all together 

the standard design is obtained in the following way where α is assumed to be 1.414. 

The full design will look like the following: 
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Chapter 3: Exploratory FEA and Experiments 

 

This chapter describes the exploratory analyses carried out on a telescopic 

cantilever beam and the experimental work carried out on RHS rings and RHS pieces. 

The results obtained here and the findings from the literature survey formed the basis 

for the theoretical developments explained in Chapter 4. 

3.1 Exploratory FEA 

In this section, a candidate telescope shown in Figure 27 was analyzed and the 

results were compared with those obtained from theoretical calculations. 

 

 

Figure 27: Candidate telescopic beam assembly 

 
The inner beam is made up of a 3 mm thick RHS beam with the outside cross 

section of 350 mm height and 150 mm width. The two beams are separated by two sets 

of two wearpads each with a dimension of 10 mm height, 25 mm width and 50 mm 

length. The outer beam is also made up of a 3 mm thick RHS beam with an inside 

cross section of 370 mm height and 170 mm width. 

An FE model was built for a static analysis in ABAQUS to represent the 

assembly shown in Figure 27. As the behavior of the inner beam is the area of interest, 

only the inner beam was modelled and analyzed. The effect of the outer beam however 

was accounted for by the boundary conditions applied on the inner beam assembly. 
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Details of the study are described in the following three sub-sections for easy 

comprehension.  

3.1.1 Modelling and Analysis 

The inner beam assembly, consisting of four wearpads and the inner beam, is 

subjected to a linear static analysis using ABAQUS Standard Version 2017. The 

assembly is shown in Figure 28. 

 Assembly Details – The interactions are modelled in the following way: 

o Top surface of top wearpads - Encastred, completely arresting any 

movement of these surfaces of the wearpads. 

o Bottom surface of top wearpads - Stuck to the inner beam thereby 

warrantying a tie constraint between the bottom face of the top 

wearpads and the top surface of the inner beam. 

o Top of bottom wearpads - Frictional interaction is assigned between the 

top of bottom wearpads and the bottom surface of the inner beam. 

o Bottom surface of bottom wearpads - Encastred, completely arresting 

any movement of these surfaces of the wearpads. 

Figure 29 illustrates the above interactions. 
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Top Wearpads

Bottom Wearpads Inner Beam

Reference Point

 

Figure 28: Inner beam assembly 

(a) (b)

( c) (d)

(e)  

Figure 29: (a) Inner beam-top wearpad frictional interaction (b) Top wearpad 

encastre (c) Inner beam-bottom wearpad frictional interaction (d) Bottom wearpad 

encastre (e) reference point coupling with inner beam tip 
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 For a finer analysis, three partitions have been created in the vicinity of the 

wearpads. 

o Overlap Partition – the overlap partition is aimed to make sure that the 

bottom wearpads are located at a specific overlap distance and that a 

mesh is present at the overlap distance. 

o Distance partition – This is located at a distance of 30 mm from the top  

flange of the inner beam so that a mesh is created at this distance 

allowing for stresses to be extracted at this exact distance. By changing 

the distance value, a partition and hence mesh can be created at any 

particular distance. 

o Mesh size partition – “Mesh Size partition’ is located at a distance of 

200 mm from the overlap partition. As the overlap area is considered 

critical, the inner beam in the overlap area and in its vicinity upto the 

mesh partition is assigned a finer mesh of 5 mm. The remaining length 

of the beam beyond this partition is deemed non-critical and a larger 

mesh size of 10 mm is assigned.  

Figure 30 shows an exploded view of the inner beam to illustrate the partitions. 
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Figure 30: Partitions in the inner beam 

 
Reference point - The reference point RP-1 is located at the center of the free 

end of the inner beam for load application. RP-1 was kinematically coupled with the 

nodes of the outermost cross-section of the inner beam allowing for uniform 

application of the load at the tip of the inner beam.  

Figure 31 illustrates the reference point and the mesh sizes. 

Distance partition

Top Wearpads

Mesh Size partition

Bottom Wearpads

Overlap partition



82 

 

 

Figure 31: Reference point on candidate inner beam assembly of telescope 

 
 Mesh size and elements 

The wearpads were assigned the solid element C3D8R and the beam was 

assigned the shell element S4R. The S4R element is a general purpose element, with 

reduced integration [97]. Due to the reduced integration, the locking phenomenon 

observed in the S4R element does not show. However, due to the reduced integration, 

the element tends not to be stiff enough in bending.  

A mesh analysis was carried out to determine an acceptable mesh size. It 

resulted in determining a size of 5 mm for the wearpads. For the inner beam, in the 

overlap area upto the mesh partition, a 5 mm mesh size was found to be suitable, 

whereas for the remaining length of the beam a 10 mm mesh size was assigned (Refer 

Figure 31). 
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 Material Properties 

All the parts were assigned the same material, mild steel with a density of 

7.89E-09 tonne/ mm3, Young’s Modulus E=210,000 N/mm2, and Poisson’s ratio 0.3.  

To represent the elasto-plastic behavior of the material, yield stress values 

along with the corresponding plastic strain values are given. The initial yield stress is 

300 MPa, and the yield stress increases to 400 MPa at a plastic strain of 35%, after 

which it is perfectly plastic. This defines an elastic-plastic material model. 

The plastic properties entered in ABAQUS are given in Table 12. 

Table 12: Elasto-plastic properties 

True Stress (MPa) True Plastic strain 

300 0.0 

350 0.025 

375 0.1 

394 0.2 

400 0.35 

 

 Loading  

Tip load applied at RP-1. For the purpose of simplicity, self-weight is not 

considered in the FE model.  

Figure 32 represent the FBD, SFD and BMD for the inner beam assembly of 

5000 mm length and 800 mm overlap. At B, the SFD shows that the reaction force RB 

= 33,166.6 N and the BMD shows moment MB = 21,125,000 N-mm. Figure 32 shows 

that the shear force and the moment are the highest at B (underneath the bottom 

wearpads). 
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Figure 32: Inner beam without self-weight 

The shear flow caused by the compressive force RB is shown in Figure 36 and 

highlights the maximum shear stress appears at the center of the web of the section. 

However, the behavior of the web is also influenced by the bending stress caused by 

the tip-load and the bending stresses caused by the corner moments. These additional 

stresses will cause the web of the section to show non-uniform deformation as shown 

in Figure 40(b). 

The shear stress calculation of the inner beam under the bottom wearpads is 

given below. The cross-section of the beam for which the shear stress is calculated is 

shown in Figure 33. 
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Figure 33: Cross-section of the telescopic beam 

For a thin-walled section, the shear stress is given by: 

Shear Stress
)2( tI

VQ
  

From Figure 32, for a tip load of 5000N, the shear force V = 33,166.6 N at the 

section of the inner beam under the bottom wearpads. 
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Shear stress distribution in the top flange: 
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Figure 34: Symmetrical double cut to determine shear stresses in the flange 

From Figure 34, the first moment of area ‘Q’ for the flange is calculated as: 
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Shear stress distribution in the webs: 
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Figure 35: Symmetrical double-cut for determining shear stresses in the webs of the 

section 
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From Figure 35, the first moment of area ‘Q’ for the webs are calculated as: 
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This is a parabolic distribution. All shear stresses act in the positive m 

direction. 
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Combining the results from the shear stress distribution of the flanges and webs 

gives the overall shear stress distribution across the section as shown in Figure 36. 

 

Figure 36: Shear stress diagram for the whole cross-section 
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Although it is possible to calculate the shear stress due to the reaction forces 

on the inner beam assembly, calculating the overall stress over the section due to the 

combination of bending stresses caused by the corner moments and tip load are 

complicated and hence, for this research FE models are relied upon for deductions on 

the behavior of the inner beam assembly of the telescope. 

3.1.2 Results from the Analysis 

Consider the section under wearpads shown in Figure 13. The two sections under the 

wearpads shown in Figure 37 are isolated for further understanding of the behavior of 

the inner beam. Four lines - Line AA, Line BB, Line CC and Line DD are drawn along 

the center of the two sections. All discussions in this section pertain to the behavior of 

the inner beam along these four lines. 

 

Figure 37: Center lines along areas of inner beam under (a) Bottom wearpads (b) Top 

wearpads 

Line D-D

Line B-B

Line A-A

Line C-C
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The following results were collected from the preliminary FEA 

a) Stress values under the wearpads: 

 Line A-A 

Two direct bending stresses, xx and
zz act along this line. xx is due to the 

bending moment caused by the tip load and 
zz is caused by the corner moment 

caused by the load from the outer beam (refer Figure 13).  

Figure 38 shows a plot of the stresses obtained along Line A-A at a 5000 N tip-

load. The Mises stress curve peaks in the distance corresponding to the wearpad width 

and its vicinity (0-30 mm and 120-150 mm) indicating maximum stress concentration 

in the area.  

 

Figure 38: Stresses along line A-A (from the FEA) 
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 Line C-C 

Stresses acting along line C-C is complicated to calculate as the load acting 

along C-C is non-uniform. It is expected that the entire load acting from the outer beam 

is taken up by the webs. Line C-C takes up half this load. Also, again the load through 

the wearpads causes a corner moment to act on the web. In addition, the moment 

caused by the tip load causes compression on the lower half of the web and tension on 

the upper half. 

As the vertical force acting on Line C-C is compressive in nature, and the 

moment caused due to the tip load is also compressive at the bottom half of Line C-C, 

it is expected that maximum stress is induced in the bottom half of the Line C-C as 

compared to the rest of the Line. 

 Line B-B  

Unlike Line A-A, along Line B-B only
zz acts, as the moment due to the tip-

load is zero at B-B (Refer the BMD in Figure 32). Here again, 
zz is caused by a 

corner moment due to the load acting through the wearpads from the outer beam. 

Because of this, the stress induced in this area is much lesser than in Line A-A and is 

non-critical. 

 Line D-D  

Again, the vertical load from the outer beam acting on the top wearpad (lesser 

than the vertical load acting on the bottom wearpad – refer the SFD in Figure 32) is 

taken up entirely by the web (Line D-D). xx is zero as the moment due to the tip load 

is zero. Again
zz acts along D-D because of the corner moment generated by the load 
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acting from the outer beam on the wearpads. For these reasons, stress is expected to 

be maximum at the top end of Line D-D.  

b) Total reactions at the wearpads 

At the bottom wearpad, for a tip load of 5000 N, the total reaction force from 

the FE Model is 32,789.16 N as shown in Figure 39. From the theoretical calculation, 

as shown in the FBD in Figure 32, the reaction force value is 33,166 N. This is 

considered as in agreement and validates the inner beam assembly FE model. 

 

Figure 39: RB from FE model for inner beam assembly 

c) Physical shape (deflections) of the rings under the wearpads 

For an inner beam subjected to a tip-load of 5000 N, Figure 40 represents 

sections of the deformed FE model of the inner beam taken under the top and bottom 

wearpads.  Figure 40 shows the deflection in the section under the bottom wearpads is 

much more than deflection under the top wearpads. Line A-A exhibits greater hogging 

than the sagging exhibited by Line B-B. Also, major deflection is observed on the 
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lower part of Line C-C which is much greater than the deflection observed along Line 

D-D. 

 

Figure 40: Deflection of inner beam section under (a) Top wearpads (b) Bottom 

wearpads 

d) Deflection Curve:  

Figure 40 shows that Line A-A experiences major hogging. Figure 41 shows 

the displacement curve along the length of A-A which shows that a maximum 

deflection (hogging) of 1.13 mm occurs at the middle of the bottom flange for a 5000 

N tip load.  
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Figure 41: Displacement curve at line AA 

 

Figure 42: Displacement curve at line CC 
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Line C-C also exhibits a heavy deflection with the largest deflection equal to 

1.43 mm corresponding to the lower part of C-C. The displacement curve for Line C-

C is shown in Figure 42. 

Lines B-B and D-D exhibit maximum deflections of 0.04 mm and 0.34 mm 

respectively and are hence considered less significant. 

3.1.3 Analysis of the results 

The following observations can be made from the above analysis. 

 The section under the Top wearpads (Lines B-B and D-D) do not suffer major 

deformation or stresses. 

 The flange (Line A-A) of the section under the bottom wearpads suffers major 

hogging because of the bending moment due to the tip load and the corner 

moments from the loads through the wearpads. 

 The flange (Line A-A) of the section under the bottom wearpads suffers from 

bending stresses caused by the tip load (along the axis) and the bending stress 

across the cross-section due to the corner moment. This region therefore is 

expected to be the critical area with potential for buckling. 

 The web (Line C-C) under the bottom wearpads also suffer major deformation 

on its lower part due to the vertical load from the wearpads, moment due to the 

tip load, and the corner moment due to load from the wearpads and can 

therefore also be an area with potential for buckling. 

The observations above suggest that the region of the inner beam under the 

bottom wearpads induces the most stresses and deflections. This region is equivalent 

to a RHS Ring if the wearpad is short and a RHS piece if the wearpad is long. This led 

to the investigation of RHS rings under compressive transverse loading through 
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experimentation described in sections 3.2 and 0 and the succeeding investigations on 

the RHS pieces described in sections 3.4 and 0.  

3.2 Experiment 1 – Compression of RHS Rings between Platens 

A ring is made up of strips whose width and thickness are small compared to 

their lengths.  

 Description of the Machine:  

An MTS machine (model: 20/H) was used for this experiment. The downward 

head movement was maintained at a velocity of 0.5 mm/min to apply the load in all 

the trials. The MTS machine had a capacity of 1000 kN and is equipped with various 

load heads (Head capacity: 5 kN, 100 kN, 1000 kN) for different load capacities. The 

load head was changed to a 5 kN capacity for more accurate readings as the maximum 

load capacity of the Rings was expected to be 1.04 kN (from the initial FEA data). On 

completion of each experiment, the output was obtained as load-displacement graphs 

in excel format. The bottom platen of the machine had a 150 mm diameter while the 

load was applied at the top through a 50 mm diameter cylinder (Refer Figure 45). 

 The specimen:  

RHS rings with cross sectional dimensions 350 mm x 150 mm with a length of 

10 mm, corner radius of 5 mm and a uniform thickness of 3 mm were subjected to 

compressive loads in these experiments. CRCA (Cold Rolled Cold Annealed) MS 

strips with 3 mm thickness and 10 mm width were bent on a press brake to form the 

RHS Ring sections. A single center weld on the top flange of each section closed the 

ring section. The thickness measurement taken using a Vernier calipers at points A-J 

shown in Figure 43 are listed for RHS rings compressed between platens in Table 13. 



96 

 

B

A

C

G

H

F

I J

DE  

Figure 43: Thickness measurement points 

Table 13: Thickness measurements of RHS rings between platens 

Specimen Thickness (mm) 

 A B C D E F G H I J 

SR1 2.97 2.97 3.01 2.94 2.99 2.97 3.03 3.09 3.05 3.02 

SR2 2.94 2.96 2.90 2.83 2.89 2.89 2.88 2.85 2.82 2.88 

SR3 2.83 2.77 2.86 2.81 2.83 2.75 2.81 2.82 2.74 2.79 

 

 Description of the process:  

The assembly of the RHS ring loaded between platens is as shown in Figure 

44. The assembly consists of a RHS ring placed between the top and bottom platens. 

The top platen has a shallow groove on its upper surface to accommodate the load 

distributor. The load distributor has a spherical upper surface (in contact with the 

machine load-applying platen) and a flat lower surface (in contact with the platen on 
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top of the RHS ring). This arrangement allows for a better, more uniform distribution 

of load on the RHS ring. 

 

Figure 44: Assembly of RHS ring between platens 

The assembly was placed on the MTS machine lower platen while the load was 

applied by the machine top cylinder. The load was continuously applied till the 

maximum load value was reached after which the load was released and the load-

displacement plot obtained as an output. 

 Characteristics of Loading between platens 

Platens are flat surfaces and they apply a uniformly distributed load on the flat, 

top and bottom flanges of the RHS ring placed between them. But if the top flange 

starts sagging and the bottom flange starts hogging, the load distribution will 

Load Distributor

Top Platen

Bottom Platen

RHS Ring
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concentrate on the peripheral areas which are still in contact with the platens. In short, 

the platens will transmit forces through the areas that maintain contact with them. This 

point is explained further in the following way: 

o Initial Stage – Uniform loading under the platen 

The flanges and the webs at the beginning showed no deflection and were at 

right angles to each other as shown in Figure 45. The platens were in full surface 

contact with the RHS flanges at this stage. 

 

 

Figure 45: RHS ring between platens at the initial stage 

o Progress into the process – Bending of the flange with no contact at the 

center  

Figure 46 shows that as the load is increased, the top flange begins to sag (like 

a beam under transverse loading) and the bottom flange begins to hog causing the 

Undeflected flange with platen 
full surface contact 

Vertical Undeflected Webs

Undeflected flange with platen 
full surface contact 
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flanges to lose contact with the platens in the middle. The webs also begin to bulge 

outwards.  

 

Figure 46: Loss of contact between RHS ring flange and platen 

o Sufficient Progress into the process – Visible deformations of the 

flanges and the webs with significant loss of contact area 

This stage is marked by an obvious and exaggerated deformation on all four 

strips of the RHS ring – the two flanges and the two webs. The shape of the RHS ring 

is shown in Figure 47 below. 

Separation of flange from platen at center

Separation of flange from platen at center 

Slight bulge of webs
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Figure 47: Obvious deformation of webs and flanges of RHS ring between platens 

At this stage, consider the right web. The bent shape is like the one showed in 

Figure 48(a). If this is cut by an imaginary plane at the middle, the free body diagram 

of the upper half will be as shown in Figure 48(b). The entire cross section will 

experience the same compressive stress P/A. In addition, the outermost fiber on the 

outer side will have maximum tensile stress while the outermost fiber on the inner side 

will have the compressive stress caused due to the bending moment ‘Py’. This will 

result in a bigger compressive stress at the outermost fiber on the inner side. Yielding 

therefore can be expected to begin at the inner sides of the flanges at the mid-height 

where ‘y’ is maximum. 

Obvious flange Sagging and significant loss 
of contact with platen

Obvious flange hogging and significant loss 
of contact with platen

Obvious bulging of webs
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Figure 48: (a) Bent shape and (b) Difference in stresses in right web 

o Final stage – Hinged webs and bent flanges  

The outer fibers on the inside of the webs have started yielding at this stage 

while the platens are still closing in and thus increasing the bending. This causes 

increasing bending stresses and progressive yielding continues. This form two hinges 

at the mid-height of the webs. The RHS ring now consists of webs hinged at mid-

height and bent flanges as shown in Figure 49. 
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Figure 49: Hinged webs and bent flanges of RHS ring between platens 

 Load Displacement curve:  

Each sample was loaded until the load-displacement curve begun to assume a 

downward negative slope after the RHS ring reached its maximum load carrying 

capacity. Throughout this process the load deflection behavior was recorded.  

Figure 50(a) shows a typical load-displacement curve as obtained from the 

MTS machine for a RHS ring (sample SR1) compressed between platens.  

Figure 50(b) shows the corrected load-displacement curve for the sample SR1. 

Sagging flange

Hinged webs at 
web-center

Hogging flange
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(a) (b)

 

Figure 50: Typical RHS ring load displacement curve (a) As obtained (b) Corrected  

 

The sample considered here is SR1 which was loaded for 292 seconds. The 

load-displacement curve obtained from the MTS machine has an initial irregularity 

marked by the region OA shown in Figure 50(a). In this region, the MTS machine top 

platen has still not established contact with the RHS Ring top flange thereby displaying 

a negative displacement. Since contact is established only when the displacement value 

equals zero, the load value corresponding to zero displacement value is taken to be the 

zero load. Therefore, this load value is subtracted from the remaining load values.  

In Figure 50(a), the maximum load value equals 945.54 N but in Figure 50(b), 

the corrected maximum load value is 934.79 N. This is because at the displacement 
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value of 0 mm, the load value is 10.75 N and this value is then subtracted from the 

succeeding load values. 

In sections 2.3, 2.4 and 2.5, only the corrected load-displacement curves will 

be shown and discussed. The load-displacement curve shown in  

Figure 50(b) is now used to explain the behavior of RHS ring compressed 

between platens. Initially, the curve shows a linear load deflection shape (AB in the 

graph). This is the elastic region of the graph within which the RHS ring retains its 

capacity to fully regain its original shape if the load is removed. At B, the slope of the 

graph begins to reduce and gradually flattens out at C where it reaches its maximum 

load carrying capacity. Region BC is the elasto-plastic region of the RHS ring where 

yielding (plasticity) begins at the outermost fiber on the innermost side and progresses 

in the thickness direction gradually as the load increases. After reaching a load value 

at C, the load starts decreasing while the deflection continues to increase (CD in the 

graph) before the loading was stopped. Region CD is the post-yield stage. 

 

Figure 51: Load-displacement curve for RHS rings between platens 
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Figure 51 shows the load-displacement curves for the three RHS rings SR1 -

SR3 compressed between platens. All three curves display the same trend explained 

above. Table 14 below shows the maximum load values of each of the three samples. 

Table 14: Maximum load of RHS rings between platens 

RHS Ring # Maximum Load (kN) 

SR1 0.978 

SR2 0.934 

SR3 0.900 

 

3.3 Experiment 2 – Compression of RHS Rings between Wearpads 

 Description of the Machine 

As explained in section 3.2 

 The specimen:  

Specimen specifications and method of manufacturing are the same as in 

section 3.2. The thickness measurement taken using a Vernier calipers at points A-J 

shown in Figure 43 are listed for RHS rings compressed between wearpads in Table 

15. 

Table 15: Thickness measurements of RHS rings between wearpads 

Specimen Thickness (mm) 

 A B C D E F G H I J 

SRW1 3.03 3.08 3.07 3.05 3.03 3.01 3.06 3.07 3.09 3.00 

SRW2 3.00 3.10 2.95 2.95 2.94 3.09 3.02 2.97 3.00 3.00 

SRW3 3.00 3.06 3.03 3.00 2.99 296 3.05 3.03 3.01 3.02 

 

 Description of the process 

The assembly of the RHS ring loaded between wearpads is as shown in Figure 

52 below. The assembly shown is very similar to that explained in Section 3.2, except 
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that the platens in section 3.2 are replaced by wearpads in this section. Here again, the 

top wearpad has a shallow groove on its upper surface to accommodate the load 

distributor for a better, more uniform distribution of load on the RHS ring. 

 

Figure 52: Assembly of RHS ring between wearpads 

The assembly is placed on the lower platen of the MTS machine while the load 

is applied by the machine top cylinder. The load is continuously applied till the 

maximum load value is reached after which the load is released and the load-

displacement plot is obtained as an output. 

 Characteristics of Loading between wearpads 

Wearpads are flat cut out surfaces that apply ‘patch loads’ on portions of the 

flat, top and bottom flanges of the RHS rings in contact with them.  

RHS Ring

Load Distributor

Top wearpads

Bottom wearpads
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Once the load application is started, the top flange starts sagging and the bottom 

flange starts hogging causing the load distribution to move towards, and eventually 

concentrate on the outer edges of the wearpads. In short, as the load increases, the 

wearpads will transmit forces through the areas which maintain contact with the RHS 

ring flanges.  

o Initial Stage – Uniform loading under the wearpads 

The flanges and the webs at the beginning showed no deflection and were at 

right angles to each other as shown in Figure 53. The flanges maintained area contact 

only with the regions of the wearpad. 

 

Figure 53: RHS ring between wearpads at the initial stage 

 

Undeflected flange with wearpad 

full surface contact 

Undeflected flange with wearpad 
full surface contact 

Vertical undeflected webs 
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o Progress into the process – Bending of the flange with no contact at the 

centre  

Figure 54 shows that as the load is increased, the top flange begins to sag (like 

a beam under transverse loading) and the bottom flange begins to hog causing the 

flanges to lose contact with the wearpads in the middle. At this stage, the flanges still 

maintain surface contact with the wearpads. The webs also begin to bulge outwards.  

 

Figure 54: Initial flange separation from wearpads 

o Sufficient Progress into the process – Visible deformations of the 

flanges and the webs with significant loss of contact area   

This stage is marked by an obvious and exaggerated deformation on all four 

strips of the RHS ring – the two flanges and the two webs as shown in Figure 55 below. 

Contact between the flanges and the wearpads is almost reduced to a line/ edge contact 

at the outer edges of the wearpads. 

 

Separation of flange from wearpad at center, 
still maintaining surface contact 

Separation of flange from wearpad at center, 
still maintaining surface contact 

Slight Web Bulging 



109 

 

 

Figure 55: Obvious deformation of webs and flanges of RHS ring between wearpads 

At this stage, consider right web. The bent shape will be like the one showed 

in Figure 56(a). If this is cut by an imaginary plane at the middle, the free body diagram 

of the upper half will be as shown in Figure 56(b). The entire cross section will 

experience the same compressive stress P/A. In addition, bending stresses are caused 

by moment due to web deflection ‘Py’ and moment due to load eccentricity ‘Pe’. This 

will result in a bigger compressive stress at the outer fiber on the inner side. Yielding 

therefore can be expected to begin at the inner sides of the flanges at the mid-height at 

lower load values compared to when loaded between platens. 

Line contact between flange and wearpad

Obvious outward bulging of webs

Line contact between flange and wearpad



110 

 

P

P
y

x

Arbitary 

Plane

P

Outer Side
Inner Side

y

(a)

(b)

e

Additional 

Compressive stress 
due to moment Pe

Additional 
tensile stress 
due to moment Pe

 

Figure 56: (a) Eccentric load acting of web (b) Resultant stresses on web 

o Final stage – Hinged webs and bent flanges 

The outer fibres in the inside of the webs have started yielding at this stage 

while the wearpads are still closing in and thus increasing the bending. This causes 

more bending stresses and progressive yielding continues. This form two hinges at the 

mid-height of the webs. The RHS ring now consists of webs hinged at the mid-height 

and bent flanges as shown in Figure 57. 
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Figure 57: Hinged webs at web center and bent flanges due to compression between 

wearpads 

 Load Displacement curve:  

As in section 2.2, each sample was loaded until the load-displacement curve 

begun to assume a downward negative slope after the RHS ring reached its maximum 

load carrying capacity. Throughout this process the load deflection behavior was 

recorded.  

Figure 58 shows a typical corrected load-displacement curve obtained for a 

RHS ring (sample SRW1) compressed between wearpads. Like Figure 51(b) in section 

2.2, the load-displacement curve is marked by points A, B, C, and D as shown in Figure 

58. Again, the three main regions are the elastic area (OA), the elasto-plastic region of 

the reduced slope BC and the post-yield region CD after the maximum load at C.  

Hinged webs at 
web-center

Sagging flange

Hogging flange
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On comparison with Figure 51(b), it is observed that the maximum load 

carrying capacity of RHS rings between wearpads is smaller than that of RHS rings 

compressed between platens. Also, at the maximum load, the displacement in the RHS 

ring compressed between wearpads is higher than that observed in RHS rings 

compressed between platens. The reasons for both these observations can be attributed 

to the additional moment caused by the distance of the wearpads from the vertical webs 

of the RHS rings. 

 

Figure 58: Typical load-displacement curve of RHS ring between wearpads 

Figure 59 shows the load-displacement curves for the three RHS rings SRW1-

SRW3 compressed between wearpads. All three curves display the same trend 

explained above. 
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Figure 59: Load displacement curves of RHS rings between wearpads 

 
Table 16 below shows the maximum load values of each of the three samples. 

 

Table 16: Maximum load of RHS rings between wearpads 

RHS Ring # Maximum Load (kN) 

SRW1 0.731 

SRW2 0.716 

SRW3 0.706 

 

 Conclusions: 

o Buckling is indicated by the rapid outward bulging of the webs  

o The flanges of the RHS ring bend in a concave manner. 

o Visually, the shape of the RHS ring when loaded between wearpads 

follows a similar pattern as the RHS ring loaded between platens with 

the outward bulging of the webs and inward bending of the flanges.  
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o However, Table 14 and Table 16 show that for a given set of 

geometrical factors, the maximum load value of a RHS ring 

compressed between wearpads is lower than when compared to a RHS 

ring compressed between platens. 

o As the load increases, the flanges of the RHS ring separate from the 

platen or the wearpads.  

o In the limiting condition, contact between the RHS ring flanges and the 

platen or wearpad reduces to a line contact. 

o The load deflection curves are characterized by three distinct areas; the 

elastic region, the elasto-plastic region and a post-yield stage. 

3.4 Experiment 3 – Compression of RHS Pieces between Platens 

In this experiment, RHS pieces are subjected to compressive loads between 

platens. In the ‘rings’, the webs and flanges have cross sections with significantly small 

dimensions compared to the third dimension. But the RHS pieces have webs and 

flanges, which have only one dimension, the thickness, significantly smaller than the 

other two. If the rings are constituted with strips, the RHS pieces are constituted with 

plates. Consider the overlap region explained in and reproduced in Figure 60 here. If 

the wearpad is long then the region taking up the load will be an RHS piece, while the 

region taking up the load will be a ring if the wearpad is short. 
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Figure 60: (Repeated) Division of the overlap section  

 Description of the Machine 

Two machines were used for testing two sets of RHS pieces in sections 3.4 and 

3.5. The shorter sections with the smaller height of 150 mm were tested on the MTS 

machine (model 20/H) described in section 3.2. 

The taller sections of 350 mm height were tested in an MTS machine (model: 

SANS SHT 4106) with a capacity of 1000 kN. The machine was equipped with servo 

valve for automatic load control and had a load measurement resolution of 1/300000 

of its capacity. The test output was available as load-displacement graphs in excel 

format and the load was applied at a speed of 1 mm/min. The samples were placed on 

compression platens of 200 mm x 200 mm square.  
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 The specimen 

RHS pieces of the following dimensions were tested: 

o 350 mm height, 150 mm width with a length of 150 mm and thickness 

of 3.2 mm 

o 150 mm height, 100 mm width, with a length of 100 mm and thickness 

of 3 mm 

For the taller sections, CRCA (Cold Rolled Cold Annealed) MS plates with 3 

mm thickness and 150 mm width were bent on a press brake to form the RHS pieces. 

A single center weld on the top flange of each section closed the section. 

For the shorter sections, two C-sections were bent from a 3 mm MS plate and 

welded along the center line of the top and bottom flanges to form the section. 

The thickness measurement taken using a Vernier calipers at points A-J shown 

in Figure 43 are listed for RHS pieces compressed between platens in Table 17 and 

Table 18. 

Table 17: Thickness measurements of tall RHS pieces between platens 

Specimen Thickness (mm) 

 A B C D E F G H I J 

SL1 3.19 3.21 3.19 3.11 3.16 3.20 3.21 3.19 3.19 3.18 

SL2 3.17 3.18 3.18 3.17 3.15 3.19 3.18 3.18 3.17 3.19 

SL3 3.19 3.17 3.16 3.18 3.18 3.18 3.19 3.17 3.16 3.16 
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Table 18: Thickness measurements of short RHS pieces between platens 

Specimen Thickness (mm) 

 A B C D E F G H I J 

SL4 3.03 3.04 3.02 3.01 3.0 3.04 3.02 3.00 3.04 3.03 

SL5 3.01 3.01 3.02 2.99 3.01 3.03 2.99 3.02 3.02 2.98 

SL6 3.01 3.00 3.02 3.03 2.99 3.01 2.98 3.00 3.01 2.99 

 

 Description of the process 

The RHS piece is placed on bottom platens of the MTS machine while the load 

is applied by the top platen at a speed of 1 mm/min. The load is continuously applied 

till the maximum load value is reached after which the load is released and the load-

displacement curve is obtained as an output. 

 Characteristics of Loading between platens 

As explained in section 3.2, platens are flat surfaces and they apply a uniformly 

distributed load on the flat, top and bottom flanges of the RHS piece placed between 

them. But if the top flange starts sagging and the bottom flange starts hogging, the load 

distribution will concentrate on the peripheral areas which still are in contact with the 

platens. In short, the platens will transmit forces through the areas which maintain 

contact with them. 

o Initial Stage – Uniform loading under the platen 

The flanges and the webs at the beginning showed no deflection and were at 

right angles to each other as shown in Figure 61 below. The platens were in full surface 

contact with the RHS piece flanges at this stage. 
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Figure 61: Undeflected webs and flanges of RHS piece between platens 

o Progress into the process – Bending of the flange with no contact at the 

centre 

Figure 62 shows that as the load is increased, the top flange begins to sag (like 

a plate under transverse loading) and the bottom flange begins to hog causing the 

flanges to lose contact with the platens in the middle. The webs also begin to bulge 

outwards.  

RHS flange (no deflection) showing complete 
surface contact with machine platen

RHS flange (no deflection) before contact 
with machine platen

Vertical undeflected webs of the RHS

Top Platen

Bottom Platen
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Figure 62: Initiation of bending of flanges and bulging of webs of RHS piece 

between platens 

o Sufficient Progress into the process – Visible deformations of the 

flanges and the webs with significant loss of contact area   

This stage is marked by an obvious and exaggerated deformation on all four 

plates of the RHS piece – the two flanges and the two webs. The RHS piece at this 

stage is shown in Figure 63. 

Slight sagging of RHS Top flange

Slight bulging of webs

Slight sagging of RHS bottom flange 
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Figure 63: Obvious deflected webs and flanges of RHS piece between platens 

Again, as explained in section 3.2 and Figure 48, yielding can be expected to 

begin at the inner sides of the flanges at the mid-height. 

o Final stage – Hinged webs and bent flanges 

The outer fibres on the inner side of the webs have started yielding at this stage 

while the platens are still closing and thus increasing the bending. This causes more 

bending stresses and progressive yielding continues. This form two hinges at the mid-

height of the webs. The RHS piece now consists of webs hinged at the mid-height and 

bent flanges as shown in Figure 64. 

Exaggerated sagging of RHS Top flange 

Exaggerated outward bulging of 
RHS webs

Exaggerated sagging of RHS Bottom flange 



121 

 

 

Figure 64: RHS piece with hinged webs and bent flanges between platens 

 Load Displacement curve: 

 Each sample was loaded until the load-displacement curve begun to assume a 

downward negative slope after the RHS reached its maximum load carrying capacity. 

Throughout this process the load deflection behavior was recorded.  

Figure 65(a) shows a typical load-displacement curve obtained for a RHS piece 

of height 350 mm (sample SL1) compressed between platens. Figure 65(b) shows a 

typical load-displacement curve obtained for the shorter RHS piece of height 150 mm 

(sample SL4) compressed between platens. 

Both the graphs display a similar trend. Figure 65(a) representing the taller 

sections is marked by five regions and six points. Figure 65(b) representing the shorter 

sections is marked by four regions and five points. The region OA in both graphs 

Hinged webs at web center

Hogging flange

Sagging flange
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represents the part of the curve where the platens are still establishing complete surface 

contact with the RHS piece. For the shorter RHS pieces between platens, the load-

displacement curve (Refer Figure 65(b)) is like that explained in sections 3.2 and 3.3. 

AB marks the elastic region, BC the elasto-plastic region and CD the post-yield region. 

However, for the taller RHS pieces between platens, the elasto-plastic region 

is divided into two areas BC and CD.  

(a) (b)
 

Figure 65: Typical load displacement of (a) Tall (b) Short RHS piece between 

platens 

 
Figure 66 shows the load-displacement data acquired for the six RHS pieces 

compressed between platens. Figure 66(a) represents the taller RHS pieces and Figure 

66(b) represents the shorter RHS pieces. 

The graphs for all six samples display similar load-displacement patterns. 
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(a) (b)
 

Figure 66: Load-displacement curves for (a) Tall (b) Short RHS pieces between 

platens 

Table 19 below summarizes the maximum load of the six RHS pieces 

compressed between platens. The taller RHS pieces show significantly lower load-

carrying capacities than the shorter ones. 

Table 19: Maximum load of RHS pieces between platens  

RHS piece # Maximum Load (kN) 

SL1 15.48 

SL2 15.28 

SL3 15.02 

SL4 34.39 

SL5 32.58 

SL6 32.24 
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3.5 Experiment 4 – Compression of RHS Pieces between Wearpads 

 Description of the Machine 

As explained in section 2.4 

 Description of the specimen 

Specimen specifications and method of manufacturing are the same as in 

section 3.4. The thickness measurements taken using a Vernier calipers at points A-J 

shown in Figure 43 are listed for RHS pieces compressed between wearpads in Table 

20 and Table 21. 

Table 20: Thickness measurements of tall RHS pieces between wearpads 

Specimen Thickness (mm) 

 A B C D E F G H I J 

SLW1 3.18 3.17 3.19 3.15 3.18 3.16 3.19 3.18 3.19 3.19 

SLW2 3.16 3.16 3.15 3.15 3.19 3.16 3.17 3.15 3.18 3.17 

SLW3 3.14 3.16 3.16 3.17 3.16 3.15 3.15 3.16 3.17 3.15 

 

Table 21: Thickness measurements of short RHS pieces between wearpads 

Specimen Thickness (mm) 

 A B C D E F G H I J 

SLW4 3.01 3.04 3.02 3.00 3.01 3.01 3.02 3.00 3.00 3.00 

SLW5 300 3.01 3.01 3.03 3.02 3.00 3.01 3.01 3.02 3.02 

SLW6 3.00 3.01 3.02 3.02 3.01 3.00 3.00 3.02 3.01 3.02 

 

 Description of the process 

The assembly of RHS piece loaded between wearpads is very similar to the 

assembly explained in section 3.3 where the RHS ring is placed between the top and 

bottom wearpads.  
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o For the taller RHS piece, the assembly is shown in Figure 67 and is 

explained as follows: 

The wearpads comprises of an assembly of four rectangular cubes welded onto 

a square platen of 150 mm length and 150 mm width. Each rectangular cube has a c/s 

of 25 mm x 15 mm. The wearpads are placed on the RHS piece such that the 25 mm 

length is parallel to the length of the web. Also, the wearpads are welded at a distance 

of 10 mm from the square platen edges.  

The top wearpad has a shallow groove on its upper surface to accommodate 

the load distributor. As explained in section 3.2, the load distributor allows for a better, 

more uniform distribution of load on the tall RHS piece.  

 

Figure 67: Loading assembly of RHS piece (height = 350 mm) between wearpads 
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o For the shorter RHS piece, the assembly is shown in Figure 68 and is 

explained as follows: 

The wearpads comprises of an assembly of four rectangular cubes welded onto 

a square platen of 100 mm x 100 mm cross-section. Each rectangular cube has a c/s of 

10 mm x 10 mm. Also, the wearpads are welded at a distance of 10 mm and 7.5 mm 

from the square platen edges. The wearpads are placed on top of the RHS piece flange 

such that the distance of the rectangular cubes from the RHS piece web is 7.5 mm. 

 

Figure 68: Loading assembly of RHS piece (height = 150 mm) between wearpads 

 Characteristics of Loading between wearpads 

As explained in section 3.3, wearpads apply ‘patch loads’ on portions of the 

flat, top and bottom flanges of the RHS pieces in contact with them.  

Once the load application is started, the top flange starts sagging and the bottom 

flange starts hogging causing the load distribution to move towards and eventually 

Rectangular Hollow 
Section (RHS)

Top Wearpads

Bottom Wearpads
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concentrate on the outer edges of the wearpads. In short, the wearpads transmit forces 

through the four areas which maintain contact with the RHS piece flanges.  

o Initial Stage – Uniform loading under the wearpads 

Each flange of the RHS piece is in contact with four wearpads. In the initial 

stage, contact between the flange and the wearpads show full surface contact. 

Therefore, effectively on each flange, load acts on it in the form of patch loads at four 

different locations. The RHS piece webs remain undeflected and at right angles to the 

flanges as shown in Figure 69 below. 

 

Figure 69: Initial stage of RHS piece between wearpads 

o Progress into the process – Bending of the flange with no contact at the 

centre 

On increasing the load, the top flange begins to sag and the bottom flange hog. 

Contact between the wearpads and the flanges fast moves from full surface to part-

Vertical undeflected webs of the RHS

RHS flange (no deflection) showing 
complete surface contact with 
wearpads

RHS flange (no deflection) with full 
surface contact with wearpads



128 

 

surface due to the bending of the flanges. The webs too begin to bulge outwards in this 

stage as shown in Figure 70.  

 

Figure 70: Initiation of flange bending and web bulging of RHS piece between 

wearpads 

o Sufficient Progress into the process – Visible deformations of the 

flanges and the webs with significant loss of contact area 

This stage is marked by an obvious and exaggerated deformation on all four 

plates of the RHS pieces – the two flanges and the two webs. Contact between the 

flanges and the wearpads is almost reduced to a line/ edge contact at the outer edges 

of the wearpads as shown in Figure 71. 

Outward bulging of webs

Slight sagging of RHS Top flange

Slight sagging of RHS Bottom flange

Part loss of surface contact b/w wearpads 
and Top flange
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Figure 71: Exaggerated web and flange deflection RHS piece between wearpads 

o Final stage – Hinged webs and bent flanges 

The outer fibers on the inner side of the webs have started yielding at this stage 

while the wearpads are still closing and thus increasing the bending. This causes more 

bending stresses and progressive yielding continues. This form two hinges at the mid-

height of the webs. The RHS piece now consists of webs hinged at the mid-height and 

bent flanges as shown in Figure 72. 

 

Exaggerated sagging of RHS Top flange

Exaggerated outward bulging of 

RHS webs

Exaggerated sagging of RHS Bottom 
flange

Line contact at wearpads
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Figure 72: Hinged webs and bent flanges of RHS piece between wearpads 

 Load Displacement curve 

Like the RHS piece loaded between platens, Figure 73(a) shows a typical load-

displacement curve obtained for a RHS piece of height 350 mm (sample SLW1) 

compressed between wearpads. Figure 73(b) shows a typical load-displacement curve 

obtained for the shorter RHS piece of height 150 mm (sample SLW4) compressed 

between wearpads. 

Both the graphs display a similar trend. Figure 73(a) representing the longer 

sections is marked by five regions, the region OA where complete contact between the 

wearpads and RHS piece is being established, the elastic region AB, the elasto-plastic 

regions BC and CD, and the post-yield region DE. Figure 73(b) representing the 

Hinged webs at 
web center

Sagging flange

Hogging flange
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shorter sections is similar to Figure 73(a), except that the elasto-plastic area has only 

one region BC. 

(a) (b)
 

Figure 73: Typical load-displacement curve of (a) Tall (b) Short RHS piece between 

wearpads 

Figure 74(a) represents the load-displacement curves for the taller RHS pieces 

and Figure 74(b) represents the load-displacement curves for the shorter RHS pieces. 

The graphs for all six RHS pieces display similar load-displacement patterns. 
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(a) (b)
 

Figure 74: Load-Displacement curves for (a) Tall (b) Short RHS pieces between 

wearpads 

 
Table 22 below summarizes the maximum load of the six RHS pieces 

compressed between wearpads. 

 

Table 22: Maximum load of RHS pieces between wearpads 

RHS piece # Maximum Load (kN) 

SLW1 12.57 

SLW2 12.50 

SLW3 11.88 

SLW4 25.84 

SLW5 25.29 

SLW6 25.26 
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 Conclusions and Observations 

o Buckling is indicated by the rapid outward bulging of the webs  

o The flanges of the RHS piece bend in a concave manner. 

o Visually, the shape of the RHS piece when loaded between wearpads 

follows a similar pattern as the RHS piece loaded between platens with 

the outward bulging of the webs and inward bending of the flanges.  

o However, Table 19 and Table 22 show that for a given set of 

geometrical parameters, the maximum load value of a RHS piece 

compressed between wearpads is lower than when compared to a RHS 

piece compressed between platens. 

o As the load increases, the flanges of the RHS piece separate from the 

platen or the wearpads.  

o In the limiting condition, contact between the RHS piece flanges and 

the platen or wearpad reduces to a line contact. 

o Similar to sections 3.2 and 3.3, the load-displacement curves for 

loading between platens and wearpads is defined by an elastic region, 

an elasto-plastic region and a post-yield region. 

o The load-displacement curves are slightly different for the taller and 

shorter sections, with the taller section showing a longer elasto-plastic 

region. 
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Chapter 4: Theoretical Development 

 

The main tasks of this research are to explain ‘how the overlap region of a 

telescopic beam behaves under a tip load’ and ‘the development of a new generic 

approach to the design of telescopic beams based on parametric studies using FEA 

and statistical optimization’. The task was explored further with a finite element 

analysis of a candidate telescopic beam and the evaluation of the results. The overlap 

area was further investigated and subdivided into two RHS rings or longer RHS pieces 

and a connecting middle part. Exploratory experiments were then carried out on RHS 

rings and longer RHS pieces. These were described in Chapter 3. The literature on 

relevant topics was reviewed and the salient points of the review are described in 

Chapter 2. With the findings from (a) the exploratory studies and (b) literature review, 

it is now possible to form a rough idea of the behavior of the overlap region and a 

methodology for the telescopic cantilever design for verification and validation. This 

chapter explains these two tasks. In order to do that, the behavior of the RHS rings, 

behavior of the RHS pieces and the results of the telescopic beam, together with the 

literature review were analyzed and evaluated as described in the sub sections.   

4.1 Rectangular Ring between Platens 

A rectangular ring is made up of two flanges and two webs as shown in Figure 

75(a). The load is applied by the platens on the flanges. At the beginning, this can be 

considered as a uniformly distributed load. This load has to be taken up by the webs. 

This means that the top flange will have two upward reactions from the webs. If a 

beam is supported at the ends and a distributed or pressure load is applied, the result 

will be a bent beam as shown in Figure 75(b). This bending will increase as the load 

applied increases. The platen is a flat surface and because of the bending the middle 
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of the platen will lose contact with the middle of the beam as shown in Figure 75(c). 

In the limiting condition, the platen will have contacts at the extreme points only, i.e. 

near the webs, and there will only be a line contact (represented by a point in the 2D 

representation as shown in Figure 75(d). It is therefore safe to assume that the webs 

directly take up the load and the flanges are free from the load. This explanation is in 

agreement with the behavior of the rings compressed between platens in the 

exploratory experiments in section 3.2.  

 

web

Flange

Flange

web

A B

RA RBBeam

Pressure Load

Platen

Beam
RA RB

Load from Platen

A B
Platen

BeamRA RB

Load from Platen

A B

(a)

(b) (c) (d)

 

Figure 75: (a) RHS ring assembly (b) Pressure load on RHS ring top flange (c) Loss 

of contact in platen loading (d) Line contact in limiting condition of platen loading 

 

Further, the sagging of the top flange will try to rotate the flange at the ends. 

But the webs will resist this rotation and create reaction moments at the joints. In the 

limiting condition, the loading in the top flange can be assumed to be as shown in 

Figure 76(a). Considering the webs, the reaction moments in the flanges have to be 

balanced for equilibrium, in the corners where the flanges meet the webs. To meet this 

requirement the webs will have reaction moments acting in the opposite directions to 

those in the flange. The loadings in the right web are shown in Figure 76(b).        
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Web Reaction Web Reaction 

Moment Resisting
        Rotation

Moment Resisting
        Rotation

Load from Platen
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Moment Balancing
Rotation Resisting Moment

Moment Balancing
Rotation Resisting Moment

(a) (b)  

Figure 76: Loadings in the top flange and right web of a ring 

 
In summary when a rectangular ring is loaded between platens, the flanges will 

behave like beams subjected to end moments and forces. The webs will behave like 

columns subjected to compressive loads and end moments. This is similar to a column 

with eccentric loading. Figure 77 schematically represents the ring under loading 

between platens.  

Moments resisting
rotation

Web 
Reactions

Load from
Platens

Moment Balancing
Rotation Resisting Moment

(a) (b)

(c)  

Figure 77: (a) Unloaded RHS ring (b) Deformed RHS ring shape(c) Force diagram of 

RHS ring under loading between platens 
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4.1.1 Analysis of the Web of a Rectangular Ring 

Now consider the left web in the slightly bent position as shown in Figure 78. 

This web takes half of the load from the platens at both ends. Figure 78(a) represents 

the left web.  

 

Figure 78:  (a) Deformed left web (b) Forces and moments on section of left web 

 

 The free body diagram shown in Figure 78(b) shows the bending moment in a 

section at a distance x from the y axis along the x axis. The bending moment is  

 PyMM x  0
 (4.1) 

The governing differential equation is 

 
02

2

MPy
dx

yd
EI   

(4.2) 

Substituting 
EI

P
k 2 in (4.2), the differential equation is  
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  
(4.3) 

Its boundary conditions are Lxxy   and 0  when0    

The general solution for this differential equation is 

 kxBkxAy sincos   (4.4) 

Its particular solution can be of the form Cy p   and the complete solution is

CkxBkxAy  sincos   

Substituting for 
py and its derivatives in (4.3) gives 
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The full solution is 

 

P

M
kxBkxAy 0sincos   

(4.5) 

Substituting the boundary conditions gives
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The full solution is 
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
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(4.6) 

Differentiating once gives 

 
















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kkxk

P

M
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2
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(4.7) 

When 0 x , 



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
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tan' 0 kL
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4.1.2 Analysis of the Bottom Flange of a Rectangular Ring 

P

M0M0

Mx

P P

x

y

x

M0

 

Figure 79: Forces and moments in the bottom flange 

Consider a beam with both ends simply supported. 

The bending moment is 

 PxMM x  0
 (4.8) 

The governing differential equation is 

 
PxM

dx

yd
EI  02

2

 
(4.9) 

Integrating once gives  

 
C

Px
xM

dx

dy
EI 

2
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0
 

(4.10) 

Integrating again gives DCx
PxxM

EIy 
62

32

0   

Therefore,  

 









 DCx

PxxM

EI
y

62

1 32

0  (4.11) 

Substituting 0x  , 0y in (4.11) gives 

 0D  (4.12) 

Substituting
2

1lx   , 0
dx

dy
in (4.10) gives 

  10

2

1 4
8

1
lMPlC   

(4.13) 

Substituting (4.12) and (4.13) in (4.11) gives  
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0  (4.14) 
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Deflections at mid-point,
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8

1
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EI
  

(4.15) 

   

4.2 Rectangular Ring between Wearpads 

The load in this setup is applied by the wearpads on the flanges. At the 

beginning, this can be considered as uniformly distributed loads on two sections of a 

beam as shown in Figure 80(a). As the load increases the bending will also increase 

and separation between the wearpads and the flange will begin as shown in Figure 

80(b). 

Wearpad Wearpad

(a) (b) (c)

Beam

 

Figure 80: Loading through wearpads 

The bending will increase further as the load applied increases and in the 

limiting condition the wearpads will have contacts at the extreme points only, i.e. near 

the webs, and there will only be a line contact. The forces will be similar to those 

shown in Figure 80(c). This explanation is in agreement with the behavior of the RHS 

Rings compressed between wearpads in the exploratory experiments in section 3.3.  
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Figure 81: Force acting at a point in a structure 

Now consider the force system in Figure 81(a) where a single force P is acting 

at point A at a distance a from point B in a body. If two forces of the same magnitude 

as P and opposite in direction are acting on point B as shown in Figure 81(b) they 

would not make any difference to the system. Now consider the force in A and the 

force opposite in direction acting at point B they form a couple. The force system can 

now be represented as a force in B and a moment as shown in Figure 81(c). Thus a 

force acting at a point in a structure can be represented by a force of the same 

magnitude and direction, and a moment acting at a different point in the structure.  

Now consider the force system in Figure 82(a) where two forces P act at A and 

B at a distance a from the flange ends C and D. If two forces of the same magnitude 

as P, and opposite in direction act at each of the flange ends at C and D as shown in 

Figure 82(b), they would not make any difference to the system. Now, the force at A 

and the force opposite in direction at point C form a couple. Similarly, the force at B 

and the force opposite in direction at point D form a couple. Therefore, the forces 

acting at A and B in Figure 82(a) can be represented by forces and moments acting at 

C and D in the direction shown in Figure 82 (c). The two vertical forces at C and D 

shown in Figure 82(c) can be replaced by a single vertical force 2P acting at the flange 

center shown in Figure 82(d). This force 2P is balanced by the reaction forces at C and 

D shown in Figure 82(d). The moments caused by the wearpads shown in Figure 82 
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(c) cause counter reaction moments of the same magnitude from the flange as shown 

in Figure 82(d).  

(a) (b) (c)

(d)

P P

2P

P P

P P
P

P P

P P P

M = PaM = Pa
a a

A B
C D A B

C D C D

C D

 

Figure 82: Load on the RHS ring top flange 

Thus mathematically, loading through the wearpads is equivalent to creating 

an additional moment to the system compared to when loading is through the platens. 

These additional moments cause reaction moments that act in the same directions as 

the moments created when loading is through platens. Since the webs and flanges are 

connected, these reaction moments also have to come from the web and will be in the 

opposite direction to the reaction moments at the flanges. Figure 83 schematically 

represents the loading under wearpads. 

Moments resisting
rotation

Web 
Reactions

Load from
Platens

Moment Balancing
Rotation Resisting Moment

(a) (b)

(c)

Moments due to 
wearpads

Moments Balancing wearpad 
moments

 

Figure 83: Unloaded RHS ring (b) Deformed RHS ring shape(c) Force diagram of 

RHS ring under loading between wearpads 
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4.3 Concluding Remarks on the Behavior of Rectangular Rings 

The preceding sections and sub-sections provide in-depth analyses that can be 

used to hypothesize the behavior of a RHS ring under transverse loading in the 

following way: 

1. The ring can be considered as an assemblage of two webs and two flanges. The 

behavior of the ring can be studied by analyzing the individual webs or flanges. 

2. The free body diagrams of RHS rings show end reaction forces and end reaction 

moments as shown in Figure 77(c) and Figure 83(c). 

3. The web in a ring can therefore be considered as a column under eccentric loading 

(because of the end reaction moments). This means that the buckling of the web 

will be due to yielding at the inner side (compressive side) of the webs at the mid-

height. 

4. The boundary conditions for the web under axial compression is neither pinned 

nor fixed. This means that the value for 
1k  in the equation 2

2

1

L

EIk
Pcr


 is between 

1 and 4. 

5. Stresses at the mid-height of the web are due to (a) the axial compression and (b) 

bending as a beam. Axial compressive stress is uniform throughout the cross 

section. The bending stress is compressive maximum at the inner fiber and tensile 

maximum at the outer fiber. 

6. The magnitudes of the stresses are 







 b

A

P
  compressive in the innermost fiber 

and 







 b

A

P
  tensile at the outer most fiber. This means that yielding will start 

at the inner fibre and progress outwards. 
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7. The flanges in a RHS ring can be considered as a beam under end moments. It will 

have bending stresses and can yield at the mid span. This depends on the magnitude 

of the load and the dimensions of the flange. 

8. Loading through wearpads will cause similar behavior as loading through platen 

except, with an additional end moment.  

9. The ability of the material is used to accommodate the axial stress and the bending 

stress as explained in 6 above. This means that the additional end moment due to 

the wearpads would reduce the magnitude of load P before the RHS ring starts 

yielding. This has been the behavior observed in the exploratory experiments.  

10. For a given value of the applied load, an RHS ring compressed between platens 

will show smaller lateral displacement at the web center as compared to when 

loaded between wearpads. This is again because of the additional moment caused 

by the wearpads. This has also been the behavior observed in the exploratory 

experiments.  

4.4  RHS Pieces under Compression between Platens and Wearpads 

Experimental investigations with rings gave the clues for the 10 observations 

explained in section 4.3. However, the load carrying capacity was reduced because of 

the small length of the ring. Exploratory experimentation with short and tall RHS 

pieces were carried out to find any difference in behavior. 

In the exploratory investigation, an RHS piece was placed between platens and 

the load was applied by the platens on the flanges. The behavior was found to be 

similar to that of the ring excepting that the magnitude of the maximum load was much 

higher. At the beginning, the applied load can be considered as a uniformly distributed 

load. This load has to be taken up by the webs. This means that the top flange will have 
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two upward reactions from the webs and the load that would make it bend. This 

bending will increase as the load applied increases. The platen is a flat surface and as 

in the ring, because of the bending the middle of the flange will lose contact with the 

platen. In the limiting condition, the platen will have contacts at the extreme points 

only, ie near the webs, and there will only be a line contact. As considered in the rings, 

it is safe to assume that the webs directly take up the load and the flanges are free from 

the load. This explanation is in agreement with the behavior of the RHS pieces of two 

different sizes compressed between platens in the exploratory experiments. 

Compression between wearpads also showed a similar behavior. 

4.5 Theoretical Analyses of Rings and RHS Pieces 

Theoretical analysis is based on the assumption that a ring can be represented 

as an assemblage of two columns and beams and an RHS piece can be represented as 

an assemblage of two plates under transverse and another two under axial loadings. 

Analysis of the webs in the rings as columns reveal that ideally it would have a 

buckling load as 2

2

1

L

EIk
Pcr


 as explained in section 1.3.4. The values of 

1k for some 

known boundary conditions are given in Table 4. However, the condition of the web 

of a rectangular ring has not been included in the table. The boundary condition here 

is neither simply supported nor fixed-fixed.  This means 𝑘1 for the current condition 

can lie within 1 and 4. However, it is not possible to find this value at present.  

In the case of RHS piece, which is considered as an assemblage of plates the 

critical stress, is found to be  
   22

2

2
1/12 







tb

E
k

crx in Chapter 2. Here again the 
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value of 
2k for the boundary conditions has to be known. At present, it is not possible 

to find this value.  

In summary, the RHS ring can be represented as an assemblage of two columns 

and beams, and an RHS piece can be represented as an assemblage of two plates under 

transverse and another two under axial loadings. Although their analysis gave an 

insight on their behavior, the findings cannot be used in real life applications. Because 

of these reasons, a finite element method with statistical experimental design is 

proposed in section 4.6 below. 

4.6 Methodology for Designing Telescopic Beams 

Exploratory analysis of a telescopic beam and the analysis of the preceding 

sections, show that the overlap area of the inner beam of a telescopic cantilever is the 

vulnerable area for buckling. The overlap area can be analysed as a combination of 

two RHS rings or RHS pieces, and a connecting middle portion. The behavior of the 

RHS rings and RHS pieces has been explained in section 4.5. Also, it is known that 

buckling behavior is a case dependent occurrence. Considering all these, a seven 

stepped methodology for the design of the inner beam of a telescopic cantilever was 

derived. The steps are as follows: 

i. Consider the influencing factors for maximum load of a RHS ring and RHS 

piece and the assembly of the inner beam of a telescopic cantilever. 

ii. Design and conduct a screening experiment to identify the influencing factors 

for maximum load of the inner beam assembly 

iii. Design and conduct a CCD experiment and fit the response surface for 

maximum load 

iv. Carry out a confirmation FE analysis to validate the response surface. 
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v. Consider significant factors and interactions in the fitted response surface 

vi. Propose various combinations of the significant parameters that are essentially 

different conceptual designs and choose and optimize the design in terms of 

manufacturability. 

vii. Conduct a validating analysis. 

 Figure 84 explains the methodology with a schematic diagram. 

 

List the factors proven and assumed to be significant 
in the Inner Beam Assembly for Maximum load

Design and conduct a screening experiment  to identify 
the influential factors for maximum load

Design and conduct a Response Surface Design to 
identify the significant factors and fit a mathematical 
model for maximum load

Conduct a validating 
experiment

Establish the main factor and interaction plots and based 
on them explain the behavior of a specific inner beam 
assembly of a telescopic beam

Use the knowledge of the behavior, sizes and ranges of 
the available material and design parameters, and the 
mathematical model to predict, to propose various 
combinations (designs) and choose one

Conduct a validating analysis before finalizing the 
chosen design

YES

NO

Include more factors which were 
ignored based on analyses of Rings 
and RHS pieces

 

Figure 84: Methodology for designing telescopic cantilever beams 
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Chapter 5: Parametric Studies on RHS Rings 

 

The previous chapter highlighted that completer theoretical calculations could 

not be made to calculate the behavior of the overlap region in telescopic beams because 

of unknown boundary conditions of the constituent webs and flanges. Hence section 

4.6 in Chapter 4 highlights the methodology for the design of the inner beam assembly 

of the telescope using FEA and DOE. The design methodology includes the factors 

influencing the maximum load capacity of RHS rings and pieces compressed between 

wearpads. Therefore, this chapter aims to determine the geometric factors that affect 

the behavior of RHS rings under compressive loads between wearpads with FE models 

and experimental designs.  

FE models for both RHS ring between (a) platens and (b) wearpads are built 

and validated against the experiments on RHS rings shown in sections 3.2 and 3.3. 

Validation is done against the RHS deformed shape, maximum load value of the RHS 

rings, and load-displacement curves between experiments and FEA. 

Experimental designs were conducted using Minitab software. In the 

experimental design for the RHS rings between platens, only the Taguchi L12 screening 

experiment is carried out and the influencing parameters obtained here are compared 

to that obtained from the Taguchi L12 for RHS rings between wearpads to better 

understand the RHS ring behavior between wearpads. 

The procedure in this chapter involves (a) FE Model validation- use validated 

model for further design of experiments (b) Taguchi L12 design – to identify 

influencing factors (c) CCD analysis – to confirm the factors influencing the maximum 

load capacity of the RHS rings and to generate a mathematical model for the maximum 

load (d) Confirmatory Experiment – to verify the mathematical model.  
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5.1 RHS Rings between Platens 

FE Model: The FE model comprising of three parts—the top platen, the bottom 

platen, and the RHS ring is subjected to a Riks analysis using ABAQUS Standard 

Version 2017. A typical FE model representing RHS ring compression between 

platens is shown in Figure 85. 

 

Figure 85: RHS ring between platens 

 Assembly Details 

The assembly consisting of the three parts were assigned the following 

interactions: 

o Bottom outer face of the RHS ring: assigned a frictional interaction 

with the bottom platen (Refer Figure 86(e)) 

o Bottom Platen: encastred, thereby restricting all degrees of freedom 

(Refer Figure 86(c)) 

Top Platen

Reference Point 
RP-1

Bottom Platen

RHS Ring
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o Top outer face of the RHS ring: assigned a frictional interaction with 

the underside of the top platen (Refer Figure 86(d)).  

o Top Platen: All degrees of freedom of the top platen were restrained 

apart from the vertical translation, thereby allowing for compression 

(Refer Figure 86(a)).  

 

 Reference point 

A reference point RP-1 was created at the center of the top face of the top platen 

and kinematically coupled with the top platen top surface for uniform application of 

the load on the Top Platen (Refer Figure 86(b)).  

A displacement of -15 was applied through a reference point, RP-1. 

 

Figure 86: (a) Top platen constraints (b) Reference point coupling (c) Bottom platen 

encastre (d) Top platen interaction (e) Bottom platen interaction 

 Mesh size and elements 

The platens were assigned the solid element C3D8R and the RHS ring was 

assigned the shell element S4R where ‘R’ at the end of an element name in ABAQUS 

indicates an element with reduced integration [97].  

( c ) (a) (b) 

(d) (e) 
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A mesh analysis was carried out to determine an acceptable mesh size. A mesh 

size of 5 mm was determined for all three parts of the assembly. 

 Material Properties 

A test coupon from the sheet used to fabricate the RHS rings gave the material 

properties shown in Table 23. The test report is shown in Figure 121 of Appendix I.  

The material of the RHS rings in the FE Model was assigned the properties 

shown in Table 23. 

Table 23: Material properties of rings 

Property Value 

Modulus of Elasticity 125,946 N/mm2 

Yield Stress 211.88 N/mm2 

Ultimate Stress 317.35 N/mm2 

 

 Dimensions 

 

The FE model was built to the dimensions shown in Table 24. 

Table 24: FE model part dimensions for RHS ring assembly 

Part Dimensions 

RHS Ring 
Height = 350 mm, Width = 150 mm, Corner Radius = 5 mm, 

Length = 10 mm, Thickness = 3 mm 

Platens  150 mm width with 10 mm length 

 

 Loading  

Displacement of -15 applied at RP-1  

 Validation of FE Model 
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o Load Validation 

Table 25 shows a comparison of the maximum load values obtained from the 

experiments and the FE model. The load values are in agreement and hence the FE 

model is considered validated. 

Table 25: Maximum load values comparison for RHS rings between platens 

Sr. No. 
Maximum Load (kN) 

Experiment FEA 

Sample SR1 0.934 

0.905 Sample SR2 0.900 

Sample SR3 0.978 

 

 Shape Validation 

Shape Validation of the RHS ring is done by comparison and agreement of the 

RHS ring shape obtained from experiments and FEA as shown in Figure 87.   

 

 

Figure 87: Deformed shape of RHS ring between platens in (a) Experiments (b) FEA 

 

Flange separation 
from Platen

Flange separation 
from Platen

Obvious web 
bulging
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 Load-Displacement curve 

The comparison of the load-displacement curves between the three 

experimental samples and the FE Model is shown in Figure 88.  

 

Figure 88: Load-Displacement curve validation for RHS rings between platens 

The red curve indicates the load-displacement curve for the FE Model, while 

the three blue curves are the load-displacement curves experimentally obtained in 

section 3.2. Agreement between plots from the two methods validates the FE model. 

Design of Experiments: 

 Taguchi L12 design: 

o Possible Parameters 

For the RHS ring between platens, the factors with their given levels shown in 

Table 26 were considered in the Taguchi L12 experiment.  

 

 



154 

 

Table 26: Factors and factor levels for L12 of RHS ring between platens 

 

 

As the FE model is now validated, its material properties can now be modified 

for the experimental design. The model properties were modified to that shown in 

section 3.1.1 for the sake of uniformity. The validated RHS ring model compressed 

between platens was modified to fit each run of the L12 matrix shown in Table 49 of 

Appendix II. Table 49 also includes the maximum load (response) corresponding to 

each run.  

o Influencing Parameters  

Figure 89 shows the factor plot obtained from the maximum load results in 

Table 49.  

 

Figure 89: Factor plot for RHS rings between platens 
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No. 
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1 Corner Radius 2 4 

2 RHS Thickness 3 4 

3 RHS Height 350 450 

4 RHS Width 200 250 
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The factors with the most influence have the largest effect on the maximum 

load. ‘RHS Thickness’ has the highest influence on the maximum load. Other 

influencing factors are the ‘RHS Height’ and ‘RHS Corner Radius’ determined from 

Figure 89. 

5.2 RHS Rings between Wearpads 

FE Model: The platens in section 5.1 are replaced by the top and bottom 

wearpads in this section. The top wearpads are built by extruding two rectangular 

cubes from the wearpad platens as shown in Figure 90(b). The RHS ring assembly is 

subjected to a Riks analysis using ABAQUS Standard Version 2017. A typical FE 

model representing RHS ring compression between wearpads is as shown in Figure 

90(a). 

 

Figure 90: (a) RHS ring between wearpads assembly (b) Wearpad parts 

 

(a) 

(b) 

Wearpad Platen

Rectangular Cubes 

RHS Ring

Bottom Wearpad

Top Wearpad
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 Assembly Details 

The assembly consisting of the three parts were assigned the following 

interactions: 

o Bottom face of the RHS ring: assigned a frictional interaction with the 

two extrusions of the bottom wearpad (Refer Figure 91(e)) 

o Bottom Wearpad platen: is encastred, thereby restricting all degrees of 

freedom (Refer Figure 91(c)) 

o Top outer face of the RHS ring: assigned a frictional interaction with 

the two extrusions of the top wearpad (Refer Figure 91(d)). 

o Top Wearpad platen: All degrees of freedom of the top wearpad platen 

were restrained apart from the vertical translation, thereby allowing for 

compression (Refer Figure 91(a)).  

 

 Reference point 

Similar to section 5.1, a reference point RP-1 was created at the center of the 

top face of the top wearpad platen. RP-1 was kinematically coupled with the top platen 

top surface for uniform application of the load on the top Platen.  

Again, a displacement of -15 was applied through a reference point, RP-1. 
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Figure 91: (a) Top wearpad platen constraints (b) Reference point coupling (c) 

Bottom wearpad platen encastre (d) Top wearpad interaction (e) Bottom wearpad 

interaction 

 Mesh size and elements 

Same as in section 5.1 

 Material Properties 

Same as in Table 23 of section 5.1 

 Dimensions 

The FE model was built to the dimensions shown in Table 27. 

Table 27: FE model part dimensions for RHS ring between wearpads 

Part Dimensions 

RHS Ring 
Height = 350 mm, Width = 150 mm, Corner Radius = 5 mm, 

Length = 10 mm, Thickness = 3 mm 

Wearpads 

Wearpad platen: 150 mm width with 10 mm length 

Rectangular pieces: Width = 55 mm, Length = 10 mm, WP 

Distance from edge = 10 mm 

 

(a) (b) ( c ) 

(d) (e)
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 Loading  

Displacement of -15 applied at RP-1  

 Validation of FE Model 

o Load Validation 

Table 28 shows a comparison of the maximum load values from the 

experiments and FEA. Agreement between the values validates the FE models. 

Table 28: Maximum load values comparison for RHS ring between wearpads 

Sr. No. 
Maximum Load (kN) 

Experiment FEA 

Sample SRW1 0.716 

0.738 Sample SRW2 0.706 

Sample SRW3 0.731 

 

 Shape Validation 

Deformed shapes of the RHS Ring between wearpads is shown in Figure 92. 

Identical deformed shapes from experiments and FEA validates the FE model.  

 

Figure 92: Deformed shape of RHS ring between wearpads in (a) Experiments (b) 

FEA 

Obvious outward 
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Flange separation 
from wearpad
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 Load-Displacement Curve 

The load-displacement comparison plot between the three experimental 

samples and the FE Model is shown in Figure 93. Agreement between them validates 

the FE model. 

 

Figure 93: Load-displacement curve validation for RHS ring between wearpads 

 
Design of Experiment 

 Taguchi L12 design: 

o Possible Parameters 

Table 29 shows the factors and levels considered for the L12 experiment of the 

RHS Rings between wearpads. 
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Table 29: Factors and factor levels for L12 of RHS ring between wearpads 

 

 

 

 

 

Table 50 in Appendix II shows the maximum load values corresponding to 

each run of the L12 design matrix for RHS rings between wearpads. 

o Influencing Parameters  

Figure 94 shows the factor plot obtained from the data in Table 50. Again, like 

in section 5.1, ‘RHS Thickness’ has the highest influence on the maximum load. Other 

influencing factors from Figure 94 are ‘RHS Height’ and ‘WP-Web Distance’. 

 

Figure 94: Factor plot for RHS rings between wearpads 
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(mm) 

1 WP-Web Distance 5 10 

2 WP Width 50 70 

3 RHS Corner Radius 2 4 

4 RHS Thickness 3 4 

5 RHS Height 350 450 

6 RHS Width 200 250 
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 CCD 

Minitab software was used to develop a CCD to conduct computer experiments 

and fit a response surface for the maximum load with the main aim of verifying the 

CCD model and hence validating the influencing factors obtained for the RHS rings 

between wearpads to be considered further in Chapter 7. For this design, the value for 

𝛼 was kept at 2. The values of the coded levels for the three most influencing factors 

selected from Figure 94 are given in Table 30. 

Table 30: Values for the coded factor level for RHS ring between wearpads 

Coded value -2 -1 0 1 2 

RHS Thickness 3 3.25 3.5 3.75 4 

RHS Height 350 375 400 425 450 

WP-Web Distance 6 7 8 9 10 

 

The validated RHS Ring model compressed between wearpads was modified 

to fit each run shown in Table 51 of Appendix II. Table 51 also includes the maximum 

load (response) corresponding to each run.  

 Statistical Analyses of the Results and Evaluations 

The results from the CCD are given in the form of a mathematical model, main 

effect plots and interaction plots.  

o The Response Surface:  

Let the following parameters to be named in the way expressed below.  

 

 

 

 

Maximum Load p 

RHS thickness x1 

RHS Height x2 

WP-Web Distance x3 
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From the CCD analysis, the model is represented by: 

 

323121

2

3

2

2

2

1321

39.1259.1089.25

32.326.710.1851.5631.90x56.57265.2761p

xxxxxx

xxxxx




 (5.1) 

 

Equation (5.1) can be mathematically manipulated to get the value combination 

of the parameters 321 ,, xxx  to obtain a target maximum load p. 

For the three selected factors, the model has 10)23)(13(
2

1
 terms. The 

degree of contribution varies for each factor. The Pareto Chart shown in Figure 95 

indicates the significant main factors and interactions from the CCD. 

 

Figure 95: Pareto chart for RHS ring between wearpads 

The p-values for all the factors and interactions are shown in Table 31. For a 

95% confidence interval, any factor with a p-value ≤ 0.05 is considered significant. 

Only the factors and interactions with p-value ≤ 0.05 are shown in Figure 95. 

Term

BC

AC

AB

C

B

A

706050403020100

A RHS Thickness

B RHS Height

C WP-Web Distance

Factor Name

Standardized Effect

Pareto Chart of the Standardized Effects
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Table 31: P-value for CCD model of RHS ring between wearpads 

Term P-value 

Linear  

RHS Thickness 0.000 

RHS Height 0.000 

WP-Web Distance 0.000 

Square  

RHS Thickness* RHS Thickness 0.000 

RHS Height*RHS Height 0.000 

WP-Web Distance * WP-Web Distance 0.001 

2-Way Interaction  

RHS Thickness*RHS Height 0.000 

RHS Thickness* WP-Web Distance 0.000 

RHS Height* WP-Web Distance 0.000 

 

o Validating mathematical model 

For a target maximum load value p of 2000 N and restricting the ‘RHS Height’ 

at 350 mm, Minitab gave the following results: 

Maximum load = 1998.36 N 

RHS thickness = 3.89 mm 

WP-web distance = 7.98 mm  

An ABAQUS model built for the parameter values obtained from the Minitab 

optimization study, gave a maximum load of 2029.2 N. 

Agreement of the maximum load values from Minitab and the FE model 

validates the mathematical model. 

o Main Factor Effects 

Figure 96 shows the effect of three factors considered in the CCD analysis. The 

maximum load increases as the thickness of the RHS ring is increased. The RHS 

thickness also has the highest effect on the maximum load. 
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Figure 96: Main effects plot for maximum load of RHS ring between wearpads 

The maximum load reduces as the RHS height or WP-web distance is 

increased. From an engineering point of view, as the thickness increases or the height 

reduces, the slenderness ratio reduces, thereby increasing the maximum load capacity 

of the RHS ring.  

When the WP-web distance is increased, it results in an increase in the moment 

load acting on the webs of the RHS ring which results in reducing the maximum load 

carrying capacity of the RHS ring. This is as observed by experiments in section 3.2 

and 3.3. 

o Interaction factors 

Three interactions were identified as significant as shown in Figure 97 to 

Figure 99. While interpreting interaction plots, if the curves are almost parallel, it does 

not indicate a strong interaction. 
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Consider Figure 97 showing the variation of maximum load when the RHS 

Thickness is varied from level -2 (3 mm) to level 2 (4 mm). As the RHS thickness 

increases, the distance between the RHS height curves increases. This means that the 

difference in the RHS ring behaviour with height 375 mm and 425 mm increases as 

the thickness increases.  

Similar observations can be made for the interaction plots shown in Figure 97 

to Figure 99.  

 

Figure 97: Effect of interaction between RHS thickness and RHS height on 

maximum load 
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Figure 98: Effect of interaction between RHS height and WP-web distance on 

maximum load 

 

Figure 99: Effect of interaction between RHS thickness and WP-web distance on 

maximum load 
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 Conclusions: 

o FE model for RHS rings between platens was validated 

o FE model for RHS rings between wearpads was validated 

o For the same factor ranges of the RHS ring, the Taguchi L12 for: 

 RHS ring between platens suggests the influencing factors are: 

‘RHS Thickness’, ‘RHS Height’, ‘RHS Corner Radius’ 

 RHS Ring between wearpads suggests the influencing factors are: 

‘RHS Thickness’, ‘RHS Height’, ‘WP-Web distance’ 

The substitution of the RHS corner radius by the WP-web distance in 

the influencing factors for RHS ring between wearpads indicates that 

the effect of both these factors is the same i.e. to move the load away 

from the web. When compressed between wearpads, the effect of the 

RHS corner radius therefore becomes redundant. 

o A mathematical model was obtained for the RHS ring between wearpads 

from the CCD and hence the influencing factors obtained for the RHS rings 

between wearpads were verified 

o The mathematical model was validated by FEA 

o Main factors and interactions were obtained and explained to better 

understand the behavior of the RHS ring between wearpads. 

o The lower maximum loads of the RHS ring compressed between wearpads 

is attributed to the additional moment induced due to the position of the 

wearpads causing the load to act away from the webs. This is confirmed by 

the interaction between the ‘RHS Height’ and ‘WP-Web Distance’. 
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Chapter 6: Parametric Studies on RHS pieces 

 

Chapter 5 determined the factors influencing the maximum load capacity of 

RHS rings between wearpads. This chapter aims to determine the geometric factors 

that affect the maximum load of RHS pieces under compressive loads between 

wearpads  

Similar to Chapter 5, FE models of RHS pieces compressed between (a) platens 

and (b) wearpads are validated against the experiments on RHS pieces shown in 

sections 3.4 and 3.5. Validation is done against the RHS piece deformed shape, 

maximum load carrying capacity, and load-displacement curves of the RHS pieces.  

In this chapter, a detailed analysis of RHS pieces using experimental design is 

shown. Like in Chapter 5, for the RHS pieces between platens, only the Taguchi L12 

screening experiment is done and the influencing factors obtained are compared to that 

obtained from the Taguchi L12 for RHS pieces between wearpads to better understand 

the behavior of RHS pieces between wearpads. The RHS pieces are used further in a 

CCD to confirm the factors most influencing the maximum load of RHS pieces 

between wearpads. These factors are then considered in the L12 experiment of the inner 

beam assembly of the telescope in Chapter 7.  

The procedure in this chapter involves (a) FE model validation - use validated 

model for further design of experiments (b) Taguchi L12 design – to identify 

influencing factors (c) CCD analysis - to establish the optimal settings using a 

mathematical model with the influencing factors (d) Confirmatory Experiment – to 

verify mathematical model.  
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6.1 RHS Pieces between Platens 

FE Model:  

The FE model comprising of three parts—the top platen, the bottom platen, 

and the RHS piece is subjected to a Riks analysis using ABAQUS Standard Version 

2017. A typical FE model representing RHS piece compression between platens is as 

shown in Figure 100. 

Two models were built for the two sets of RHS pieces tested. The assembly 

shown in Figure 100 is true for both models. For the shorter sections with 150 mm 

height, the RHS piece was built with solid elements whereas for the taller sections with 

the 350 mm height, shell elements were assigned to the RHS piece. The material 

properties for both models varied. All other features including interactions, mesh size, 

load application, boundary conditions etc. remained the same for both models. 

Reference Point RP-1

Top Platen

Bottom Platen

RHS Piece

 

Figure 100: RHS piece between platens 
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 Assembly Details 

The assembly consisting of the three parts were assigned the following 

interactions: 

o Bottom outer face of the RHS piece: assigned a frictional interaction 

with the bottom platen (Refer Figure 101(d)) 

o Bottom Platen: is encastred, thereby restricting all degrees of freedom 

(Refer Figure 101(b))  

o Top outer face of the RHS piece: assigned a frictional interaction with 

the underside of the top platen (Refer Figure 101(c)).  

o Top Platen: All degrees of freedom of the top platen were restrained 

apart from the vertical translation, thereby allowing for compression 

(Refer Figure 101(a)).  

 Reference point 

A reference point RP-1 was created at the center of the top face of the top 

platen. RP-1 was kinematically coupled with the top platen top surface for uniform 

application of the load on the Top Platen.  

A displacement of -15 was applied through a reference point. 
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(a) (b)

( c) (d)

(e)  

Figure 101: (a) Top platen constraints (b) Bottom platen encastre (c) Top platen 

interaction (d) Bottom platen interaction (e) Reference point  

 Mesh size and elements 

For both models, the platens were assigned the solid element C3D8R.  

For the taller RHS piece, the RHS piece was assigned the shell element S4R. 

A mesh analysis resulted in determining a size of 5 mm for all three parts. 

The shorter RHS piece was assigned the solid element C3D8R. The C3D8R 

element is also a brick element, with reduced integration [15]. Due to the reduced 

integration, the element tends not to be stiff enough in bending. Therefore, four 

elements were assigned through the thickness of the RHS piece. A mesh analysis 

resulted in determining a size of 5 mm × 5 mm for the RHS piece and platens. 
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 Dimensions 

The FE model for the tall and short RHS pieces was built to the dimensions 

shown in Table 32 and Table 33 respectively. 

Table 32: FE model part dimensions for tall RHS piece between platens 

Part Dimensions 

RHS piece Height = 350 mm, Width = 150 mm, Corner Radius = 5 mm, 

Length = 150 mm, Thickness = 3.2 mm 

Platen 150 mm width and 150 mm length 

 

Table 33: FE model part dimensions for short RHS pieces between platens 

Part Dimensions 

RHS piece Height = 150 mm, Width = 100 mm, Corner Radius = 5 mm, 

Length = 100 mm, Thickness = 3 mm 

Platen 100 mm width and 100 mm length 

 

 Loading  

Displacement of -15 applied at RP-1  

 Validation of FE Model: 

o Load Validation 

Table 34 and Table 35 show the comparison of the maximum load values 

between the experiments and the FEA. Agreement of maximum load values between 

both methods validates the FE models. 
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Table 34: Maximum load value validation for tall RHS pieces between platens 

Sr. No. 
Maximum Load (kN) 

Experiment FEA 

Sample SL1 15.02 

14.63 Sample SL2 15.28 

Sample SL3 15.48 

 

Table 35: Maximum load value validation for short RHS pieces between platens 

Sr. No. 
Maximum Load (kN) 

Experiment FEA 

Sample SL4 32.24 

34.64 Sample SL5 34.39 

Sample SL6 32.58 

 

 Shape Validation: 

Agreement between the deformed shape from experiments and FEA of a RHS 

piece shown in Figure 102(a) and Figure 102(b) validates the FE model. 

 

Flange separation 
from Platen

Obvious web 

bulging

Flange separation 
from Platen

 

Figure 102: Deformed shape of RHS piece between platens in (a) Experiments (b) 

FEA 
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 Load-Displacement Curve 

The load-displacement curves for the experiments and FE models for the tall 

and short RHS pieces between platens is shown in Figure 103(a) and Figure 103(b) 

respectively. The blue curves indicate the load-displacement curves for the 

experiments in section 3.4 and the red curve indicates the load-displacement curves 

from the FE model. Agreement in the load-displacement curves from the experiments 

and FE models validates the FE models. 

(a) (b)  

Figure 103: Load-displacement graph for (a) Tall RHS piece (b) Short RHS piece 
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Design of experiments 

 Taguchi L12 design: 

o Possible Parameters 

Using the validated FE model of the tall RHS piece, the L12 experiment was 

executed with the listed five factors and their levels shown in Table 36. 

 

Table 36: Factors and factor levels for L12 of RHS piece between platens 

Factor 

No. 
Factor Name 

Level 1 

(mm) 

Level 2 

(mm) 

1 RHS Thickness 3 4 

2 Corner radius 2 5 

3 RHS Height 350 450 

4 RHS Width 200 250 

5 RHS Length 400 450 

 

Like in the case of the RHS ring in Chapter 5, the material properties for the 

FE models in the experimental design were modified to that shown in section 3.1.1 for 

the sake of uniformity. The validated tall RHS piece model compressed between 

platens was modified to fit each run shown in Table 52 in Appendix III. Table 52 also 

includes the maximum load (response) corresponding to each run.  
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 Influencing Parameters 

 

Figure 104: Factor plot for RHS pieces between platens 

Figure 104 shows the Factor Plot from the results shown in Table 52. From 

Figure 104, again the ‘RHS Thickness’ has the highest influence on the maximum 

load. Other influencing factors include the ‘RHS Height’, ‘RHS Length’ and ‘Corner 

Radius’. 

6.2 RHS Pieces between Wearpads 

FE Model: The FE model comprising of three parts—the top wearpad, the 

bottom wearpad, and the RHS piece is subjected to a Riks analysis using ABAQUS 

Standard Version 2017. A typical FE model representing RHS compression between 

wearpads is as shown in Figure 105(a). For this section, the platens shown in section 

6.1 are replaced by the top and bottom wearpads. The top wearpads are built by 

extruding four rectangular cubes from a flat platen as shown in Figure 105(b). A typical 

FE model representing RHS piece compression between wearpads is as shown in 

Figure 105(a). 
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Like in section 6.1, two models were built for the two sets of samples tested. 

The assembly shown in Figure 105(a) is true for both models. Again, for the shorter 

sections with 150 mm height, the RHS piece was built with solid elements whereas for 

the taller sections with the 350 mm height, shell elements were assigned to the RHS 

piece. The material properties for both models varied. All other features including 

interactions, mesh size, load application, boundary conditions etc. remained the same 

for both models. 

RHS Piece

Reference Point 
RP-1

Wearpad
Platen

Bottom wearpad

Rectanguler
extrusions

Top wearpad

(a)

(b)

 

Figure 105: (a) RHS ring between wearpads assembly (b) Wearpad parts 

 Assembly Details 

The assembly consisting of the three parts were assigned the following 

interactions: 

o Bottom outer face of the RHS piece: assigned a frictional interaction 

with the four extrusions of the bottom wearpad (Refer Figure 106(d)) 

o Bottom Wearpad platen: is encastred, thereby restricting all degrees of 

freedom(Refer Figure 106(b)) 
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o Top outer face of the RHS piece: assigned a frictional interaction with 

the four extrusions of the top wearpad (Refer Figure 106(c)) 

o Top Wearpad platen: All degrees of freedom of the top wearpad platen 

were restrained apart from the vertical translation, thereby allowing for 

compression (Refer Figure 106(a)).  

 Reference point 

As explained in section 5.2, a reference point RP-1 was created at the center of 

the top face of the top wearpad. RP-1 was kinematically coupled with the top platen 

top surface for uniform application of the load on the top platen (Refer Figure 106(e)).  

Again, a displacement of -15 was applied through a reference point. 

(a) (b)

( c)
(d)

(e)  

Figure 106: (a) Top wearpad platen constraints (b) Bottom wearpad platen encastre 

(c) Top wearpad interaction (d) Bottom wearpad interaction (e) Reference point 

coupling 
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 Mesh size and elements 

Same as section 5.1 

 Dimensions 

The FE model for the tall and short RHS pieces was built to the dimensions 

shown in Table 37 and Table 38 respectively. 

Table 37: FE model part dimensions for tall RHS piece between wearpads 

Part Dimensions 

RHS piece 
Height = 350 mm, Width = 150 mm, Corner Radius = 5 mm, 

Length = 150 mm, Thickness = 3.2 mm 

Wearpads 

Wearpad Platen: 150mm length x 150 mm width 

Rectangular pieces: Width = 15 mm, Length = 25 mm, WP 

distance from both edges = 10 mm 

 

Table 38: FE model part dimensions for short RHS pieces between wearpads 

Part Dimensions 

RHS piece 
Height = 150 mm, Width = 100 mm, Corner Radius = 5 mm, 

Length = 100 mm, Thickness = 3 mm 

Wearpads 

Wearpad Platen: 100 mm length x 100 mm width 

Rectangular pieces: Width = 15 mm, Length = 25 mm, WP 

Distance from web edge = 7.5 mm, WP Distance from front 

edge = 10 mm 

 

 Loading  

Displacement of -15 applied at RP-1  

 Validation of FE Model: 

o Load Validation 

Table 39 and Table 40 show an agreement in the maximum load values 

between the experiments and the FEA. This validates the FE model. 
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Table 39: Maximum load validation for tall RHS pieces between wearpads 

Sr. No. 
Maximum Load (kN) 

Experiment FEA 

Sample SLW1 11.88 

12.42 Sample SLW2 12.57 

Sample SLW3 12.50 

 

Table 40: Maximum load validation for short RHS pieces between wearpads 

Sr. No. 
Maximum Load (kN) 

Experiment FEA 

Sample SLW4 25.285 

27.03 Sample SLW5 25.263 

Sample SLW6 25.840 

 

 Shape Validation 

Agreement between the deformed shape of RHS piece compressed 

experimentally and in the FE model between wearpads as shown in Figure 107(a) and 

Figure 107(b) validates the FE model. 

Flange separation 
from wearpads

Flange separation 
from wearpads

Obvious flange 
bulging

 

Figure 107: Deformed shape of RHS piece between wearpads in (a) Experiments (b) 

FEA 
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 Load-Displacement Curve: 

Figure 108 shows the load-displacement curves for the two sets of RHS pieces 

between wearpads. Agreement between the curves from both methods validates the 

model. 

(a) (b)  

Figure 108: Load-displacement curve for (a) Tall RHS piece (b) Short RHS piece 

between wearpads 

Design of Experiments 

 Taguchi L12 design: 

o Possible Parameters 

Table 41 lists the nine factors and their levels considered for the L12 design of 

RHS pieces between wearpads.  
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Table 41: Factors and factor levels for L12 of RHS piece between wearpads 

 

 

 

 

 

 

 

Again, the material properties for the FE models in the experimental design 

were modified to that shown in section 3.1.1 for the sake of uniformity. The validated 

tall RHS piece model compressed between wearpads was modified to fit each run 

shown in Table 53. Table 53 also includes the maximum load (response) 

corresponding to each run. 

o Influencing Parameters 

Figure 109 shows the factor plot for the maximum load obtained from the data 

shown in Table 53. The most influencing factors are the ‘RHS Thickness’, ‘RHS 

Height’, ‘WP-Web Distance’ and ‘RHS Length’. 

Factor No. Factor Level  1 

(mm) 

Level 2 

(mm) 

1 RHS Thickness 3 4 

2 RHS Corner Radius 2 4 

3 RHS Height 350 450 

4 RHS Width 200 250 

5 RHS Length 400 450 

6 WP Length 150 175 

7 WP Width 50 75 

8 WP-Web Distance 5 10 

9 WP-End Distance 5 10 
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Figure 109: Factor plot for RHS pieces between wearpads 

 CCD  

In Minitab, for this design, the value for 𝛼 was kept at 2. The values of the 

coded levels are given in Table 42. The values of the coded levels for the four most 

influencing factors selected from Figure 109 are given in Table 42. 

Table 42: Values for the coded factor levels for RHS pieces between wearpads 

Coded Value -2 -1 0 1 2 

RHS Thickness 3 3.25 3.5 3.75 4 

RHS Height 350 375 400 425 450 

RHS Length 400 410 420 430 440 

WP-Web Distance 5 6 7 8 9 

 

The validated tall RHS piece model compressed between wearpads was 

modified to fit each run shown in Table 54 of Appendix III. Table 54 also includes the 

maximum load (response) corresponding to each run.  
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 Statistical Analyses of the Results and Evaluations:  

The results from the CCD are given in the form of a mathematical model, main 

effect plots and interaction plots. The main aim of the CCD is to validate the 

mathematical model and hence the influential factors of the RHS pieces between 

wearpads. 

o The Response Surface:  

Let the following parameters to be named in the way expressed below: 

 

 

 

 

 

 

The response surface is a mathematical model using these parameters. From 

the analysis the model is given by: 
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

 (6.1) 

 

This model given by equation (6.1) can be mathematically manipulated to get 

the value combination for the geometric factors to get a target value of the maximum 

load p. 

The model has 15)24)(14(
2

1
 terms. Some of these have marginal 

contributions while some have major contributions. The Pareto Chart in Figure 110 

shows the significant main factor effects and interactions.  

Maximum Load p 

RHS thickness x1 

RHS Height x2 

RHS Length x3 

WP-Web Distance x4 
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Figure 110: Pareto chart for RHS pieces between wearpads 

The p-values for all the factors and interactions are shown in Table 43. Again, 

only factors with a p-values ≤ 0.05 are considered significant. The pareto chart in 

Figure 110 shows only the significant factors and interactions. 
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Table 43: P-value for all factors/ interactions of RHS pieces between wearpads 

Source P-Value 

Linear  

RHS Thickness 0.000 

RHS Height 0.000 

RHS Length 0.000 

Wp-Web Distance 0.000 

Square  

RHS Thickness*RHS Thickness 0.000 

RHS Height*RHS Height 0.025 

RHS Length*RHS Length 0.473 

Wp-Web Distance*Wp-Web Distance 0.008 

2-Way Interaction  

RHS Thickness*RHS Height 0.001 

RHS Thickness*RHS Length 0.081 

RHS Thickness*Wp-Web Distance 0.090 

RHS Height*RHS Length 0.470 

RHS Height*Wp-Web Distance 0.005 

RHS Length*Wp-Web Distance 0.942 
 

o Validating mathematical model 

For a target maximum load value p of 55,000 N, with a fixed RHS Height of 

350 mm, the multiple response prediction is given in Table 44. The maximum load 

obtained from Minitab was 55,002 N. 

Table 44: Multiple response prediction for RHS piece between wearpads 

Variable Setting Value 

RHS Thickness -1.6803 3.08 

RHS Height -2 350 

RHS Length 1.9023 439.023 

Wp-Web Distance -1.6768 5.3232 

 

With parameter values in Table 44, an ABAQUS model was built and run and 

a maximum load of 58933.3 N was obtained. The higher value of maximum load from 



187 

 

ABAQUS can be attributed to the fact that the thickness value was rounded up to a 

higher value of 3.1 mm. 

Agreement of the maximum load values from both Minitab and the FE model 

validates the mathematical model. 

o Main Factor Effects:  

Figure 111 and Figure 112 shows the effect of the four factors considered in 

the CCD analysis. The maximum load increases as the thickness and length of the RHS 

piece is increased. The RHS thickness also has the highest effect on the maximum 

load. 

 

Figure 111: Main effects plot 1 for RHS piece between wearpads 
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Figure 112: Main effects plot 2 for RHS piece between wearpads 

The maximum load reduces as the RHS height or WP-Web distance is 

increased. From an engineering point of view, for a given thickness value, if the RHS 

height increases, the slenderness ratio increases making the RHS more prone to failure. 

When the WP-web distance is increased, it results in an increase in the moment load 

acting at the web of the structure which results in lower maximum load capacity of the 

RHS piece.  

o Interaction factors 

Two interactions have been identified as significant and they are shown in 

Figure 113 and Figure 114. As explained in section 5.2, while interpreting interaction 

plots, if the curves are almost parallel, it does not indicate a strong interaction. 

Consider Figure 113 showing the variation of maximum load when the RHS 

height is varied from level -2 (350 mm) to level 2 (450 mm). As the RHS height 
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increases, the distance between the WP-web distance curves decreases. This means 

that the difference in the RHS piece behaviour with WP-web distance 7 mm and 10 

mm increases as the RHS height reduces.  

A similar explanation can be given for the interaction plot shown in Figure 114. 

 

Figure 113: Effect of interaction between RHS height and WP-Web distance on 

maximum load of RHS piece between wearpads 
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Figure 114: Effect of interaction between RHS thickness and RHS height on 

maximum load of RHS piece between wearpads 

 Conclusions: 

o FE model for RHS pieces between platens was validated 

o FE model for RHS pieces between wearpads was validated 

o For the same parameter range of the RHS piece, the Taguchi L12 for: 

 RHS piece between platens suggests the influencing factors are – 

‘RHS Thickness’, ‘RHS Height’, ‘RHS Length’, ‘RHS corner 

Radius’ 

 RHS piece between wearpads suggests the influencing factors are – 

‘RHS Thickness’, ‘RHS Height’, ‘RHS Length’, ‘WP-Web 

distance’ 

Similar to the conclusions drawn in Chapter 5, the 

substitution of the RHS corner radius with the WP-Web 
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distance in the influencing factors for RHS piece between 

wearpads indicates that the purpose of both these factors is to 

move the load away from the web. When compressed between 

wearpads, the RHS corner radius therefore becomes redundant.  

o A mathematical model was obtained from the CCD of the RHS piece 

between wearpads 

o The mathematical model was validated by FEA 

o The validated mathematical model confirmed the influencing factors of the 

RHS pieces between wearpads 

o Main factors and interactions were obtained and explained to better 

understand the behavior of the RHS piece between wearpads. 

o The lower maximum loads of the RHS piece compressed between 

wearpads is attributed to the additional corner moment induced due to the 

position of the wearpads causing the load to act away from the webs. This 

is confirmed by the interaction between the ‘RHS Height’ and ‘WP-Web 

Distance’. 
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Chapter 7: Parametric Studies on Inner Beam Assembly of Telescope 

 

Chapter 7 entails the implementation of the design methodology of the inner 

beam assembly in section 4.6 on a case study. It aims to generate a response surface 

or mathematical model for the maximum load capacity of an inner beam assembly in 

order to be able to optimize the design for a given set of constraints valid for a given 

factor range. 

In this chapter, the FE model explained and validated in chapter 3 is used here 

for further experimental designs. Validation of the FE model in chapter 3 was done 

against the reaction force obtained at the bottom wearpads from theory and analysis.  

Section 1.5 in Chapter 1 highlighted that in the overlap area of a telescope, the 

inner beam sections under the wearpads (Refer Figure 13) act as either RHS rings or 

RHS pieces, depending on the length of the wearpads. With this in mind, and the 

design methodology established in section 4.6, the factors considered in this Chapter 

include the influencing factors obtained from chapters 5 and 6 for the RHS rings and 

RHS pieces between wearpads. In addition, overall assembly factors were also 

considered. 

The procedure in this chapter involves (a) Taguchi L12 design – to identify 

influencing factors (b) CCD analysis - to establish the optimal settings using a 

mathematical model with the influencing factors (c) Confirmatory Experiment – to 

verify mathematical model.  

FE Model 

 Modelling and analysis 

As explained in section 3.1 
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 Validation of FE Model 

Reaction force agreement between theory and analysis (Refer section 3.12) 

Design of Experiments 

 Taguchi L12 design 

o Possible Parameters  

The listed factors and their levels shown in Table 45 were used to carry out the 

L12 experiment. The factors considered are a combination of influencing factors 

borrowed from chapters 5 and 6, and overall assembly factors of the inner beam 

assembly. 

Table 45: Factors and factor levels for L12 of inner beam assembly 

Factor No. Factor Name Level 1 Level 2 

1 IB Length 3000 4000 

2 IB Overlap 600 700 

3 IB Height 350 450 

4 IB Width 200 250 

5 IB Thickness 3 4 

6 WP Length 75 250 

7 WP Width 50 75 

8 WP-Web Distance 5 10 

9 Corner radius 2 5 

 

The maximum load (response) corresponding to the L12 runs are given in Table 

55 in appendix IV. The validated inner beam assembly model was modified to fit each 

run shown in Table 55. 

o Influencing Parameters 

Figure 115 below shows the Factor Plot for the maximum load for the factors 

shown in Table 45. The six most influencing factors are: ‘IB Thickness’, ‘IB Length’, 

‘IB Overlap’, ‘IB Height’, ‘WP Length’, ‘WP- Web distance’.  
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Figure 115: Factor plot for inner beam assembly of telescope 

Of the six influencing factors, three influencing factors (‘IB Thickness’, ‘IB 

Height’, ‘WP-Web Distance’) were common to RHS rings and RHS pieces between 

wearpads from chapters 5 and 6. The wearpad length in Figure 115 represents the RHS 

piece length shown in Figure 109 in Chapter 6. In addition, overall inner beam (IB) 

dimensions; ‘IB Length’ and ‘IB Overlap’ also showed relevance. 

 CCD 

Using the CCD in Minitab, a response surface was fitted for the maximum load 

of the telescope. For the design, the value for 𝛼 was kept at 2. The values of the coded 

levels of the six influencing factors selected from Figure 115 are shown in Table 46. 

The main of the CCD is to generate a mathematical model or response surface to 

optimize the inner beam assembly for a given set of constraints within a set factor 

range. 
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Table 46: Values for the coded factor level for inner beam assembly 

  
-2 -1 0 1 2 

IB Length 3000 3250 3500 3750 4000 

IB Overlap 600 625 650 675 700 

IB Height 350 375 400 425 450 

IB Thickness 3 3.25 3.5 3.75 4 

WP Length 200 210 220 230 240 

WP-Web Distance 5 6 7 8 9 

 

The validated inner beam assembly model was modified to fit each run shown 

in Table 54 of Appendix IV. Table 54 also includes the maximum load (response) 

corresponding to each run.  

 Statistical Analyses of the Results and Evaluations 

The results from the response surface methodology are given in the form of a 

mathematical model and factor plots.  

o The Response Surface 

 

Let the following parameters to be named in the way expressed below: 

 

 

 

 

 

 

 

The response surface is a mathematical model using these parameters. From 

the CCD analysis, the model is given by: 

Maximum Load p 

IB Length x1 

IB Overlap x2 

IB Height x3 

IB Thickness x4 

WP Length x5 

WP-Web Distance x6 
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 (7.1) 

 

The model has 28)26)(16(
2

1
 terms. Some of these have marginal 

contributions while some have major contributions. Pareto Chart shown in Figure 116 

shows all the factors and interactions. Factor D (IB thickness) has the highest influence 

with a standardized effect of around 160. Considering this, only factors and 

interactions with a standardized effect of more than 5 are considered as important. 

These factors and interactions and discussed in the main effect and interaction plots. 

 

Figure 116: Pareto chart for all factors and interactions 
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The p-values for all the factors and interactions are shown in Table 47 below. 

For a 95% confidence interval, any factor with a p-value ≤ 0.05 is considered 

statistically significant.  

Table 47: P-value for the whole model 

Source P-Value 

 IB Length 0.000 

 IB Overlap 0.000 

    IB Height 0.000 

    IB Thickness 0.000 

    WP Length 0.000 

    WP-Web Distance 0.000 

  Square  

    IB Length*IB Length 0.000 

    IB Overlap*IB Overlap 0.143 

    IB Height*IB Height 0.000 

    IB Thickness*IB Thickness 0.000 

    WP Length*WP Length 0.028 

    WP-Web Distance*WP-Web Distance 0.000 

  2-Way Interaction  

    IB Length*IB Overlap 0.000 

    IB Length*IB Height 0.083 

    IB Length*IB Thickness 0.000 

    IB Length*WP Length 0.040 

    IB Length*WP-Web Distance 0.000 

    IB Overlap*IB Height 0.000 

    IB Overlap*IB Thickness 0.000 

    IB Overlap*WP Length 0.000 

    IB Overlap*WP-Web Distance 0.000 

    IB Height*IB Thickness 0.000 

    IB Height*WP Length 0.009 

    IB Height*WP-Web Distance 0.035 

    IB Thickness*WP Length 0.000 

    IB Thickness*WP-Web Distance 0.000 

    WP Length*WP-Web Distance 0.040 

 

 

 



198 

 

o Validating mathematical model 

For a target maximum load value p of 20,000 N and for the variable range 

given, the multiple response prediction is as given in Table 48 below: 

Table 48: Multiple response prediction for inner beam assembly 

 

 

 

 

 

 

Using the factor values obtained in Table 48 from the Minitab optimization 

study, the ABAQUS model was run and a maximum load of 21,223 N was obtained. 

Agreement of the maximum load values from both Minitab and the FE model 

validates the mathematical model.  

The validated mathematical model can be used further to explore various 

combinations of factors for a desired maximum load value. The best design, keeping 

in mind manufacturing or facility constraints, can be chosen. The chosen design can 

be confirmed again with an FE model. 

o Main Factor Effects 

Figure 117 and Figure 118 shows the effect of six parameters considered in the 

CCD analysis.  

Variable Setting Value 

IB Length -1.90674 3023.315 

IB Overlap 0.128002 353.2 

IB Height 2 450 

IB Thickness -0.227464 3.443 

WP Length 2 240 

WP-Web Distance 0.802204 7.802 
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Figure 117: Main effects plot 1 for telescope 

 

Figure 118: Main effects plot 2 for telescope 
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The maximum load increases as the thickness of the inner beam is increased. 

The ‘IB Thickness’ also has the highest effect on the maximum load. Increasing the 

‘IB overlap’ also increases the maximum load. However, increasing the IB Length and 

the ‘WP-Web distance’ reduces the maximum load. The ‘IB Height’ and the ‘WP 

Length’ has almost no impact on the maximum load. 

From an engineering point of view, the main factor effects can be explained as 

follows: 

o As the thickness value increases, the slenderness ratio decreases, increasing 

the maximum load capacity of the inner beam. 

o As the WP-web distance is increased, it results in an increase in the moment 

load acting at the web of the structure which reduces the maximum load of 

the inner beam 

o Increasing the IB length or reducing the overlap length has the effect of 

increasing the moment at the bottom wearpad, thereby reducing the 

maximum load capacity of the inner beam.  

o The greater the wearpad length, the greater the contact length and therefore 

the larger the area on which the force is distributed. This increases the 

maximum load of the inner beam. 

o The IB Height has a very small effect on the maximum load. It can be said 

that for the current factor ranges, the overall assembly factors have a greater 

influence on the maximum load than part geometric factors. 

o Interaction factors 

Two interactions have been identified as significant and they are shown in 

Figure 119 and Figure 120.  
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Consider Figure 119 showing the variation of maximum load when the IB 

Thickness is varied from level -2 (3 mm) to level 2 (4 mm).  As the IB Thickness 

increases, the distance between the WP-Web Distance curves increase i.e. the 

difference between what happens to the inner beam with WP-Web Distance 6 mm and 

8 mm increases as the IB thickness increases.  

A similar explanation can be given for the interaction shown in Figure 120. 

 

 

Figure 119: Effect of interaction between IB thickness and WP-web distance on 

maximum load 
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Figure 120: Effect of interaction between IB length and IB thickness on maximum 

load 

 Conclusions: 

o The factors considered for the Taguchi L12 design included the influencing 

factors obtained from chapters 5 and chapter 6. Other factors considered 

included overall inner beam assembly factors 

o The influencing factors obtained for the inner beam assembly included all 

the influencing factors obtained for RHS rings and RHS pieces. 

o From the factor plot, the six influencing factors from the Taguchi L12 were: 

‘IB Length’, ‘IB Overlap’, ‘IB Height’, ‘IB Thickness’, ‘WP-Web 

Distance’, ‘WP Length’. 

o As IB Heighttelescope = RHS ring height = RHS piece height, and WP 

LengthTelescope = RHS ring length = RHS piece length, the hypothesis that 

the portion of the inner beam beneath the wearpads can be studied as RHS 

rings or RHS pieces is correct 
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o From the CCD, the mathematical equation of the model was obtained and 

validated and optimized. 

o The main effect plot showed the contribution of the RHS height was 

minimal. This maybe because for this factor range combination, the overall 

assembly factors had a greater influence than the part geometric factors. 
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Chapter 8: Conclusions 

8.1 Summary 

In telescopic cantilevers, the overlap area is identified as crucial based on the 

findings from the tip-reaction model and exploratory analysis which motivated the 

investigation of the overlap area in detail. 

Analysis indicated that it was easier to divide the overlap area into an 

assemblage of two sections made of RHS rings or pieces and a connecting middle 

section. RHS rings and RHS pieces were analyzed as assemblages of beams and 

columns, and horizontal and vertical plates respectively. Theoretical analyses of the 

webs of the RHS rings showed that the webs behave like a column with eccentric 

loading which leads to the formation of the hinges at the middle of the webs. The RHS 

rings when compressed between wearpads behaved in a similar manner to the loading 

between platens except that they had an additional corner moment because of the 

eccentric nature of the loading. This resulted in a reduction in the maximum load that 

the ring could carry. Similar observations were made for the vertical plates of the RHS 

pieces. Experiments and FEA conducted on RHS rings and RHS pieces confirmed this. 

Screening computer experiments with RHS rings between wearpads in the case 

study identified ‘RHS Thickness’, ‘RHS Height’ and ‘WP-Web Distance’ as the 

influencing factors. However, because of the buckling behaviors dependence on the 

dimensions of the individual case, in general, all factors should be included for 

screening experiments. 

For the RHS pieces between wearpads, screening computer experiments in the 

case study identified ‘RHS Length’ in addition to the three factors listed above for the 

RHS rings between wearpads. Again, because of the buckling behaviors dependence 
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on the dimensions of the individual case, in general, it is recommended that all factors 

be included in the screening experiments. 

For the inner beam assembly of the telescope, the factors included the ‘IB 

Length’, ‘IB overlap’, ‘IB Height’, ‘IB Width’, ‘IB Thickness’, ‘IB corner radius’, 

‘WP Length’, ‘WP Width’, ‘WP-Web Distance’. Of these factors, four factors were 

borrowed from the influencing factors of the RHS rings and pieces. As the overlap 

area was considered as an assembly of RHS rings or pieces and a middle section, the 

‘RHS Length’ in the screening experiment for the RHS pieces is equivalent to the ‘WP 

Length’ in the inner beam assembly of the telescope. The findings from the case study 

conducted on the inner beam assembly identified the ‘IB Length’, ‘IB overlap’, ‘IB 

Height’, ‘IB Thickness’, ‘WP Length’ and ‘WP-Web Distance’ as the influencing 

factors. 

A mathematical model generated from a CCD with the identified influencing 

factors was then used to generate an optimal factor combination for a specific target 

maximum load.  

In reality, manufacturers often face multiple constraints on the geometric 

factors. For instance, a manufacturer may only be able to manufacture beam sections 

with 3 mm thickness and with a maximum height constraint of 350 mm. The 

mathematical model generated can therefore by used to acquire the best possible factor 

value combinations, given the mentioned constraints. 

Based on this a methodology was developed as explained in Figure 84 in 

Chapter 4. 

8.2 Contribution to knowledge 

The key contribution of this work to knowledge are summarized below:  



206 

 

 Identifying the area of the inner beam in the vicinity of the bottom wearpads 

as the area most susceptible to buckling. 

 Understanding the behavior of the overlap area by looking at it as an assembly 

of RHS rings and a middle section or RHS pieces and a middle section. 

 Explanation of the RHS ring behavior by treating it as an assemblage of 

horizontal beams and vertical columns which when subjected to transverse 

compressive loads result in the beams and columns experiencing corner 

moments 

 Explanation of the RHS piece behavior by treating it as an assemblage of 

horizontal and vertical plates which when subjected to transverse compressive 

loads result in each of the plates experiencing corner moments 

 Establishing that RHS pieces and rings experience additional corner moments 

when compressed between wearpads as compared to when compressed 

between platens 

 Establishing a design methodology of an inner beam assembly that can be 

applied to any range of geometric parameters to obtain an optimal model with 

specific geometric constraints (if necessary) 

8.3 Recommendation for future developments  

The following areas of interest could offer opportunities for further development: 

 Extensive experimental investigation of RHS rings and RHS pieces subjected 

to transverse compressive loading to obtain k1 and k2. 

 Experimental investigation of RHS pieces subjected to a combined loading of 

transverse compression and bending 
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 Introduction of errors into the FE models used in DOE studies to better 

represent real-life situations 

8.4 Conclusion  

This research enhances the understanding of the telescopic cantilevers. It also 

helps relate structural analysis and experimental design as tools to accurately design 

telescopic booms. Therefore, this research investigates the question of:  

‘How the overlap region of a telescopic cantilever behaves under tip load’ and 

establishes a new generic approach to the design of telescopic beams based on 

parametric studies using FEA and statistical optimization.  
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Appendix I: Material Test Report 

 

 

Figure 121: Material test report for RHS Ring 
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Figure 122: Typical Mild Steel Stress-Strain Curve 

A typical stress-strain curve for a mild steel sample is shown in Figure 122. 

The curve shows a yield stress value of 397.6 N/mm2 and an ultimate stress of 640.2 

N/mm2. 
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Appendix II: DOE Tables for the RHS Rings 

 

 Table 49: L12 matrix for RHS ring between platens 

Run # 
RHS Corner 

radius 
Thickness Height Width 

Maximum 

Load (N) 

1 1 1 1 1 1437.76 

2 1 1 1 1 1437.76 

3 1 1 2 2 904.5 

4 1 2 1 2 3248.85 

5 1 2 2 1 2362.28 

6 1 2 2 2 2198.51 

7 2 1 2 2 804.79 

8 2 1 2 1 860.342 

9 2 1 1 2 1115.66 

10 2 2 2 1 2008.63 

11 2 2 1 2 2522.54 

12 2 2 1 1 2769.2 

 

Table 50: L12 matrix for RHS ring between wearpads 

Run# 
WP Web 

Distance 

WP 

width 

RHS Corner 

Radius 

RHS 

Thickness 

RHS 

Height 

RHS 

Width 

Maximum 

Load (N) 

1 1 1 1 1 1 1 1184.13 

2 1 1 1 1 2 2 798.02 

3 1 1 2 2 1 1 2697.56 

4 1 2 1 2 1 2 2548.03 

5 1 2 2 1 2 1 862.39 

6 1 2 2 2 2 2 1856.31 

7 2 1 2 2 1 2 1918.64 

8 2 1 2 1 2 2 678.14 

9 2 1 1 2 2 1 1582.45 

10 2 2 2 1 1 1 940.04 

11 2 2 1 2 2 1 1577.62 

12 2 2 1 1 1 2 895.16 
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Table 51: CCD matrix for RHS ring between wearpads 

Run # RHS 

Thickness 

RHS 

Height 

WP-Web 

Distance 

Maximum 

Load (N) 

1 -1 -1 -1 1180.54 

2 1 -1 -1 1756.27 

3 -1 1 -1 1017.38 

4 1 1 -1 1500.89 

5 -1 -1 1 1082.24 

6 1 -1 1 1594.63 

7 -1 1 1 942.06 

8 1 1 1 1393.89 

9 -2 0 0 840.50 

10 2 0 0 1867.69 

11 0 -2 0 1495.70 

12 0 2 0 1125.74 

13 0 0 -2 1407.85 

14 0 0 2 1185.69 

15 0 0 0 1278.33 

16 0 0 0 1278.33 

17 0 0 0 1278.33 

18 0 0 0 1278.33 

19 0 0 0 1278.33 

20 0 0 0 1278.33 



222 

 

Appendix III: DOE Tables for the RHS Pieces 

 

Table 52: L12 matrix data for RHS piece between platens 

Run # 
Corner 

Radius 

RHS 

Thickness 

RHS 

Height 

RHS 

Length 

RHS 

Width 

Maximum 

Load (N) 

1 1 1 1 1 1 62129.3 

2 1 1 1 1 1 62129.3 

3 1 1 2 2 2 44520.8 

4 1 2 1 2 2 157968 

5 1 2 2 1 2 94661.8 

6 1 2 2 2 1 114343 

7 2 1 2 2 1 42895.9 

8 2 1 2 1 2 34900.8 

9 2 1 1 2 2 54848.8 

10 2 2 2 1 1 87741 

11 2 2 1 2 1 134354 

12 2 2 1 1 2 111216 



 

 

 

 

2
2
3
 

Table 53: L12 matrix for RHS piece between wearpads 

 

 

Run 

# 

RHS 

Thickness 

Corner 

radius 

RHS 

Height 

RHS 

Width  

RHS 

Length 

WP 

Length 

WP 

Width 

WP-Web 

Distance 

WP-End 

Distance 

Maximum 

Load (N) 

1 1 1 1 1 1 1 1 1 1 51825 

2 1 1 1 1 1 2 2 2 2 41398 

3 1 1 2 2 2 1 1 1 2 39590.5 

4 1 2 1 2 2 1 2 2 1 44733.5 

5 1 2 2 1 2 2 1 2 1 35588 

6 1 2 2 2 1 2 2 1 2 34813.6 

7 2 1 2 2 1 1 2 2 1 65665 

8 2 1 2 1 2 2 2 1 1 96928.8 

9 2 1 1 2 2 2 1 2 2 92343.9 

10 2 2 2 1 1 1 1 2 2 69460 

11 2 2 1 2 1 2 1 1 1 110043 

12 2 2 1 1 2 1 2 1 2 132611 
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Table 54: CCD matrix for RHS piece between wearpads 

Run 

# 

RHS 

Thickness 

RHS 

Height 

RHS 

Length 

WP-Web 

Distance 

Maximum 

Load (N) 

1 -1 -1 -1 -1 57195.9 

2 1 -1 -1 -1 85062.8 

3 -1 1 -1 -1 49083.1 

4 1 1 -1 -1 72036.0 

5 -1 -1 1 -1 59978.0 

6 1 -1 1 -1 89187.3 

7 -1 1 1 -1 50939.3 

8 1 1 1 -1 75999.1 

9 -1 -1 -1 1 53874.5 

10 1 -1 -1 1 79106.8 

11 -1 1 -1 1 47390.6 

12 1 1 -1 1 70156.4 

13 -1 -1 1 1 56602.3 

14 1 -1 1 1 83590.5 

15 -1 1 1 1 49688.6 

16 1 1 1 1 73625.2 

17 -2 0 0 0 42011.6 

18 2 0 0 0 94054.4 

19 0 -2 0 0 75240.5 

20 0 2 0 0 56801.0 

21 0 0 -2 0 61782.8 

22 0 0 2 0 68036.0 

23 0 0 0 -2 68283.5 

24 0 0 0 2 56697.4 

25 0 0 0 0 64759.9 

26 0 0 0 0 64759.9 

27 0 0 0 0 64759.9 

28 0 0 0 0 64759.9 

29 0 0 0 0 64759.9 

30 0 0 0 0 64759.9 

31 0 0 0 0 64759.9 
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Appendix IV: DOE Tables for the Inner Beam Assembly of the Telescope 

 

Table 55: L12 matrix for inner beam assembly of the telescope 

Run 

# 
IB 

Length 

IB 

Overlap 

IB 

Height 

IB 

Width 

IB 

Thickness 

WP 

Length 

WP 

Width 

WP-Web 

Distance 

Corner 

radius 

Maximum 

Load (N) 

1 1 1 1 1 1 1 1 1 1 12693.5 

2 1 1 1 1 1 2 2 2 2 11359.9 

3 1 1 2 2 2 1 1 1 2 24719.7 

4 1 2 1 2 2 1 2 2 2 19125.4 

5 1 2 2 1 2 2 1 2 1 26845.3 

6 1 2 2 2 1 2 2 1 1 19144 

7 2 1 2 2 1 1 2 2 1 6399.38 

8 2 1 2 1 2 2 2 1 2 21943.1 

9 2 1 1 2 2 2 1 2 1 15692.5 

10 2 2 2 1 1 1 1 2 2 7613.19 

11 2 2 1 2 1 2 1 1 2 13936.1 

12 2 2 1 1 2 1 2 1 1 20166.2 
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Table 56: CCD matrix for inner beam assembly of the telescope 

Run 

# 

IB 

Length 

IB 

Overlap 

IB 

Height 

IB 

Thickness 

WP 

Length 

WP-Web 

Distance 

Maximum 

Load (N)         

1 -1 -1 -1 -1 -1 -1 17154.9         

2 1 -1 -1 -1 -1 -1 14627.4         

3 -1 1 -1 -1 -1 -1 18736.1         

4 1 1 -1 -1 -1 -1 15950.0         

5 -1 -1 1 -1 -1 -1 17025.6         

6 1 -1 1 -1 -1 -1 14395.8         

7 -1 1 1 -1 -1 -1 18744.0         

8 1 1 1 -1 -1 -1 15932.2         

9 -1 -1 -1 1 -1 -1 23780.3         

10 1 -1 -1 1 -1 -1 20309.8         

11 -1 1 -1 1 -1 -1 25846.5         

12 1 1 -1 1 -1 -1 22059.8         

13 -1 -1 1 1 -1 -1 23921.3         

14 1 -1 1 1 -1 -1 20397.9         

15 -1 1 1 1 -1 -1 26157         

16 1 1 1 1 -1 -1 22258.1         

17 -1 -1 -1 -1 1 -1 17340.4         

18 1 -1 -1 -1 1 -1 14746.2         

19 -1 1 -1 -1 1 -1 18903.2         

20 1 1 -1 -1 1 -1 16203.4         

21 -1 -1 1 -1 1 -1 17119.0         

22 1 -1 1 -1 1 -1 14529.8         

23 -1 1 1 -1 1 -1 18930.6         

24 1 1 1 -1 1 -1 16080.3         

25 -1 -1 -1 1 1 -1 24090.2         

26 1 -1 -1 1 1 -1 20546.3         

27 -1 1 -1 1 1 -1 26306.0         

28 1 1 -1 1 1 -1 22325.1         

29 -1 -1 1 1 1 -1 24100.1         

30 1 -1 1 1 1 -1 20562.0         

31 -1 1 1 1 1 -1 26516.1         

32 1 1 1 1 1 -1 22561.5         

33 -1 -1 -1 -1 -1 1 14957.3         

34 1 -1 -1 -1 -1 1 12772.2         

35 -1 1 -1 -1 -1 1 16323.7         

36 1 1 -1 -1 -1 1 13927.6         

37 -1 -1 1 -1 -1 1 14944.3         
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Table 56: CCD matrix for inner beam assembly of the telescope (Continued) 

Run 

# 

IB 

Length 

IB 

Overlap 

IB 

Height 

IB 

Thickness 

WP 

Length 

WP-Web 

Distance 

Maximum 

Load (N)         

38 1 -1 1 -1 -1 1 12726.7         

39 -1 1 1 -1 -1 1 16416.0         

40 1 1 1 -1 -1 1 13973.5         

41 -1 -1 -1 1 -1 1 20598.6         

42 1 -1 -1 1 -1 1 17613.5         

43 -1 1 -1 1 -1 1 22391.1         

44 1 1 -1 1 -1 1 19166.1         

45 -1 -1 1 1 -1 1 20746.9         

46 1 -1 1 1 -1 1 17755.0         

47 -1 1 1 1 -1 1 22637.1         

48 1 1 1 1 -1 1 19346.4         

49 -1 -1 -1 -1 1 1 15163.1         

50 1 -1 -1 -1 1 1 12914.5         

51 -1 1 -1 -1 1 1 16604.5         

52 1 1 -1 -1 1 1 14197.3         

53 -1 -1 1 -1 1 1 15084.4         

54 1 -1 1 -1 1 1 12843.3         

55 -1 1 1 -1 1 1 16654.2         

56 1 1 1 -1 1 1 14165.9         

57 -1 -1 -1 1 1 1 20942.4         

58 1 -1 -1 1 1 1 17880.0         

59 -1 1 -1 1 1 1 22895.3         

60 1 1 -1 1 1 1 19567.1         

61 -1 -1 1 1 1 1 21016.1         

62 1 -1 1 1 1 1 17957.6         

63 -1 1 1 1 1 1 23019.4         

64 1 1 1 1 1 1 19696.2         

65 0 0 0 0 0 0 18401.0         

66 0 0 0 0 0 0 18401.0         

67 0 0 0 0 0 0 18401.0         

68 0 0 0 0 0 0 18401.0         

69 0 0 0 0 0 0 18401.0         

70 0 0 0 0 0 0 18401.0         

71 0 0 0 0 0 0 18401.0         

72 0 0 0 0 0 0 18401.0         

73 -2 0 0 0 0 0 21847.0         
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Table 56: CCD matrix for inner beam assembly of the telescope (Continued) 

Run 

# 

IB 

Length 

IB 

Overlap 

IB 

Height 

IB 

Thickness 

WP 

Length 

WP-Web 

Distance 

Maximum 

Load (N)         

74 2 0 0 0 0 0 15898.1         

75 0 -2 0 0 0 0 16710.0         

76 0 2 0 0 0 0 20036.6         

77 0 0 -2 0 0 0 18242.2         

78 0 0 2 0 0 0 18297.0         

79 0 0 0 -2 0 0 12881.0         

80 0 0 0 2 0 0 24956.2         

81 0 0 0 0 -2 0 18098.4         

82 0 0 0 0 2 0 18602.1         

83 0 0 0 0 0 -2 21371.7         

84 0 0 0 0 0 2 16226.5         

85 0 0 0 0 0 0 18401.0         

86 0 0 0 0 0 0 18401.0         

87 0 0 0 0 0 0 18401.0         

88 0 0 0 0 0 0 18401.0         

89 0 0 0 0 0 0 18401.0         

90 0 0 0 0 0 0 18401.0         
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