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Abstract 
 

The Automotive industry is going through a rapid transformation to adopt electrified 

technology. A major share of the electrified vehicles is going to be in the Battery 

electric vehicles (BEVs) and plug in hybrids segments that need to connect to the grid 

to recharge the batteries. For customer convenience, the time required for fully 

charging the battery need to be brought down significantly. EV charging stations are 

getting installed that could bring down the charging time to less than 30 minutes. 

However this pose a unique issue to the power quality of the utility grid. During 

charging, the EV charging unit injects harmonics to the grid. When a large number of 

EVs are getting charge simultaneously, which is a likely scenario in the future, the 

degradation in the power quality of the grid would be significant. This thesis discuss 

the modelling of an active filter to reduce the Total harmonic distortion (THD) 

generated by electric vehicle (EV) chargers. The main objective of this thesis is to 

determine the percentage of harmonic current injected by the EV chargers to the power 

grid and to model an active filter to mitigate the harmonic distortion generated by these 

chargers. The active filter is modelled as bidirectional three-phase pulse width 

modulation (PWM) rectifier. The EV in this proposed model is represented as an 

injected current harmonic source. Positive sequence synchronous reference frame 

controller (SRFC) is used to generate the reference current. The hysteresis controller 

is used to compare the load current and injected current, and its output is used to 

generate the switching pulses for Metal oxide semiconductor field effect transistor 

(MOSFET). The DC link voltage control is achieved by using conventional 

Proportional and integral controller (PI) and fuzzy logic control PI.  

MATLAB/Simulink simulation result shows that the proposed filter can be used to 

mitigate the THD of EV chargers without violating the limit set by IEEE Std. 519-

1992. 

Keywords: Total Harmonic Distortion, Electric vehicle, SRFC, Fuzzy PI, Hysteresis 

controller, MOSFET. 
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  Title and Abstract (in Arabic) 
 

  الكھربائية السيارات شواحن من الناشئ التوافقي التشوه لتخفيض نشط مرشح نمذجة

  صالملخ

مجال صناعة السيارات يمر بتحول متسارع نحو اعتماد تكنولوجيا الطاقة الكھربائية. 

 النصيب الأكبر في مجال السيارات الكھربائية سيكون للسيارات الكھربائية التي تستخدم البطارية

(BEV)  و ايضا من نصيب الاجزاء الھجينة في السيارة التي توصل بشبكة الكھرباء بغرض

شحن البطارية. من المناسب للمستخدمين ان يكون الزمن اللازم لشحن البطارية أقل ما يمكن . 

دقيقة، من  30طات اللازمة لشحن البطاريات يمكن أن تخفض زمن الشحن ليكون أقل من المح

جھة أخرى، ھذا يضفي مزيد من التحديات على جودة الطاقة الموجودة في الشبكة الكھربائية 

العامة . عندما يتم شحن عدد كبير من السيارات الكھربائية بصورة متزامنة و ھو سيناريو محتمل 

  ل سيؤثر ذلك على جودة الطاقة المقدمة من الشبكة بصورة كبيرة .في المستقب

بغرض تخفيض التشوه (Active Filter) في ھذا البحث نناقش نمذجة مرشح نشط  

الناشئ من شواحن السيارات الكھربائية . إن الھدف  (Total harmonic distortion) التوافقي

التوافقي الناشئ من شواحن السيارات الكھربائية الأساسي من ھذا البحث ھو تحديد نسبة التشوه 

مؤثرا على الشبكة العامة بالاضافة الى نمذجة مرشح نشط قادر على مجابھة ھذا التشوه . تم 

 .نمذجة المرشح النشط كمقوم لتعديل عرض النبضة الثلاثي ثنائي الإتجاه

إنَِّ السيارة الكھربائية في ھذا النموذج تمثل مصدرا للتيار التوافقي، و متحكم سلسلة 

 يستخدم لتوليد التيار المرجعي . متحكم التباطؤ(SRFC)  الحزمة المتوافقة المرجعية 

(Hysteresis Controller)   يستخدم لمقارنة تيار الحمل بالتيار المرجعي و ما ينتج عنه يستخدم

. التحكم في وصلة الجھد المستمر يتم تنفيذه  (MOSFET)نبضات تشغيل للترانزستور لتوليد 

 (Fuzzy logic control). و متحكم منطق ضبابي  (PI) عن طريق استخدام متحكم تكاملي

ظھرت أن المرشح المقترح (MATLAB/Simulink) نتائج المحاكاة في برنامج الماتلاب 

يمكن استخدامه لمجابھة التشوه التوافقي لشواحن السيارات الكھربائية دون أن يتم الإخلال بالحدود 

  .IEEE 519-1992الموضوعة في مواصفة 
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Chapter 1: Introduction 

1.1 Overview    

Over the last decade, an increasing number of car owners have been choosing 

electric vehicles (EVs) to replace gasoline vehicles. These EVs are expected to become 

considerably popular in the coming years. The popularity of EVs has increased due to 

their overall fuel efficiency, zero carbon emission, and low-cost maintenance. 

Moreover, the attractive incentives offered by government entities reduce the prices of 

EVs. A pure electric car with an onboard power storage unit does not produce 

greenhouse gas emissions. Hence, the importance of such type of vehicle continues to 

increase. These EVs require a large amount of power to charge their batteries (Shao, 

Pipattanasomporn, & Rahman, 2011). When fully charged, EVs provide a satisfactory 

range to their owners. However, during the charging process, EV chargers negatively 

affect the power system grid through harmonic distortion, overheating, and 

overloading of transformers. Therefore, maintaining power quality terms such as 

voltage fluctuations, total harmonic distortions (THDs), and changes in frequencies 

within the standard limits set is important. 

EV chargers are used to charge battery packs from the grid. An EV consists of 

several power electronic components, such as a battery and battery charger, an 

induction motor and its control, and a power train. Evidently, during EV charging, the 

voltage profile of the grid becomes distorted due to the injection of harmonic current. 

This harmonic current leads to increased line losses, overloading of cables, and 

overheating of transformers. These conditions cause a gradual decrease in the life span 

of motors, transformers, and generators. Thus, determining the percentage of harmonic 
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content injected by these chargers is highly important. In addition, installing harmonic 

mitigation techniques within charging stations is essential to maintain THDs within 

the allowable limit. 

EV chargers can be classified according to their power levels, namely, Levels 

1, 2, and 3 (Yilmaz & Krein, 2012). These charging power levels are shown in Table-

1. Level 1 (slow) charging is available at home; it requires a single-phase supply. Level 

2 charging is considered the main method for public and private facilities; it requires 

a 240 V outlet. Level 3 charging, as well as DC fast charging, requires a three-phase 

supply. Level 3 EV chargers are intended for commercial use, and they operate similar 

to gas station chargers. These chargers require 20–30 min to recharge EV battery 

packs. A brief description of EV charger power is presented in the following section. 

Table 1: EV charger specification 

 

Modern EV battery chargers contain boost converters for active power factor 

correction (PFC) (Lee, Jeong, Lee, & Hur, 2011). They are used to improve the power 

factor on the basis of harmonic current regulation limits, and the maximum power 

factor is 0.99. In the current study, the switching noise generated by the switch and 

diode is reduced. In addition, a resonant-type phase shift full bridge is used for power 
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conversion. A detailed study of various PFCs of EV chargers is explained at the end 

of this chapter. 

The author of (Deilami, 2018) explained the smart grid’s performance and 

power quality effects due to the uncoordinated charging of EV batteries. This study 

revealed unacceptable THDs. Hence, the author suggested that coordinated charging 

improves power quality problems. However, a well-coordinated approach and detailed 

power system studies remain necessary. 

In some instances, harmonic distortions decrease considerably when different 

types of EVs are connected to the grid for charging. As a result of the diversity of 

charging methods, the overall distortion produced is lower than the highest level of 

distortion produced by individual chargers (Kutt, Saarijarvi, Lehtonen, Molder, & 

Niitsoo, 2013; Guo et al., 2018). However, nowadays each car manufacturers has their 

own charging technology adopted in their charging stations. The simultaneous 

operation of several 1-phase chargers in the same Low voltage (LV) feeder, with 

maximum 3rd harmonic currents around 12% and THDi between 12% and 16%, can 

have a significant impact on distribution networks (Melo, Mira, de Almeida, & 

Delgado, 2011).  Due to this, it will distort current and voltage waveforms. So 

modeling of an active filter for an EV charger will be very useful to analyze the extent 

at which it distorted the current waveform. 

Harmonic problems in the power grid can be solved using suitable circuit 

topology or appropriate filters. A detailed study on commonly used circuit topologies 

and different types of filters is discussed in the following section of this chapter. A 

voltage source inverter (VSI) and its drive circuit are commonly used to mitigate the 
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harmonic currents in the grid. A recent study showed that this VSI based on an active 

power filter with constant frequency integration control can be used to compensate for 

harmonic currents (Wenjin Dai, Baofu Wang, & Hua Yang, 2009). 

Thus, the current work develops a MATLAB/Simulink simulation to 

demonstrate the THD-I mitigation of VSIs during simultaneous EV charging. A 

comparative study of VSIs is conducted with two different control methods, namely, 

using a positive sequence synchronous reference frame controller (SRFC) with normal 

proportional–integral (PI) control and using fuzzy PI controller. 

In the next section, charger power levels, standards, and terms related harmonic 

problems are explained in detail. 

1.2 EV charger power levels 

The abundance of charging infrastructure reduces the battery requirement, 

weight, and cost of an EV. We can broadly classify EV chargers into three types 

according to power levels, as described in the following section. 

1.2.1 Level 1 charging 

Level 1 charging is the slowest among all levels, and chargers of this type are 

best suited for overnight use at a garage or at home. The power level for this type is 

less than 2 kW, and it uses a standard 120 V/15 A single-phase earthed supply. Hence, 

this type of charger requires no additional installation. The approximate total 

investment cost on the charging station for a Level 1 charger is $500–$880 (Yilmaz & 

Krein, 2013). 
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Figure 1: Single phase unidirectional multilevel charger unit 

1.2.2 Level 2 charging 

This type of charging is applicable to public car parking stations and shopping 

malls. Chargers of this type work with 240 V AC supply. This charging method 

requires one dedicated equipment and a connection installation. Some EV 

manufacturers provide the required power electronics onboard. Hence, only a power 

outlet is required. The popularity of this type of charger among EV owners has 

increased because of its rapid charging time. The approximate investment cost for this 

type of charger is less than $3000. Figure 1 shows the common circuit topology used 

for single-phase unidirectional multilevel chargers for Levels 1 and 2 charging 

(Yilmaz & Krein, 2012) 

1.2.3 Level 3 charging 

Level 3 EV charging stations differs from level 1 and 2 chargers in that the 

rectification is takes place in the charger itself. This helps to supply high current to EV 

power pack in a short interval of time. Given the rapid charging at this level, EV battery 

charging can be completed in less than 1 hour. This type of charger requires a three-
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phase supply and an external charger to provide a regulated DC supply because of its 

high charging rate. The approximate investment cost for this type of charging station 

is in between $30K and $160K. Figure 2 shows a three-phase bidirectional DC to DC 

converter. In addition to high power levels, this converter can provide reduced THDs, 

high power factors, and ripple-free output DC supply. Hence, Level 3 chargers are 

most suitable for the fast charging of EVs. This type of charger requires pulse width 

modulation (PWM) inputs, which in turn increases the complexity and cost of circuits 

(Yilmaz & Krein, 2012). 

 

Figure 2: Three phase full bridge bidirectional charger 

1.3 Harmonic calculation  

IEEE Std. 519-1992 – IEEE Recommended Practices and Requirements for 

Harmonic Control in Electric Power systems provides a groundwork for harmonic 

limits (Blooming & Carnovale, 2006). Harmonic is “A sinusoidal component of a 

periodic wave or quantity having a frequency that is an integral multiple of the 

fundamental frequency” and it can be calculated as a square root of the sum of the 

squares of different frequency components. 
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For example, 10 A, 50 Hz current combined with 2 A 3rd (3x50=150 Hz) & 1 A 5th 

(250 Hz) harmonic current respectively, Harmonic current =√10ଶ  2ଶ  1ଶ , adds up 

to 10.246 ARMS.  

The non-linear load connected to a power system generates non – sinusoidal 

current, which causes distortion in voltage drop. This distorted current can be 

represented as a sum of different sinusoidal current components having multiples of 

fundamental frequencies.  

 

Figure 3: Distorted waveform 

Figure 3 shows the waveform of a typical non-linear load. Due to the presence 

of harmonics, the fundamental wave becomes distorted and its final shape denoted as 

function f(t). By using Fourier theory, we can extract fundamental current from it.  

Usually, the distortion level can be represented by the term called total harmonic 

distortion (THD). Total current and voltage harmonic distortion can be calculated as  

 THDi=
ට∑ ூ

మಹ
సమ

ூభ
. 100 %, (1.1) 
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 THDv = 
ට∑ 

మಹ
సమ

భ
. 100 % (1.2) 

 

Where h represents harmonic order, ‘h’ is the highest number of harmonic. 

1.3.1 Harmonic limits 

The harmonic voltage and current distortion on a power system are tabulated 

(Tables 2 and 3) on the basis of IEEE 519. As per this standard, the individual voltage 

distortion and THD allowed on power systems of 69 kV and below are 3% and 5%, 

respectively. Harmonic current distortion depends on the short circuit capacity of the 

system at the point of common coupling (PCC). Table 3 shows that if the ratio of Isc/IL 

at the PCC increases, then the power system can handle more harmonic currents; thus, 

a customer is allowed to inject more harmonic currents. 

Table 2: IEEE Std. 519-1992 harmonic voltage limits 

Voltage Distortion Limits 

Bus Voltage at PCC 
Individual Voltage 

Distortion (%) 

Total Voltage Distortion 

THD (%) 

Below 69 kV 3.0 5.0 

69 kV to 161 kV 1.5 2.5 

161 kV and above 1.0 1.5 
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Table 3: IEEE Std. 519-1992 harmonic current limits 

Maximum Harmonic Current Distortion in Percent of IL 

Individual Harmonic Order (Odd Harmonics) 

ISC/IL <11 11h<17 17h<23 23h<35  35 h  TDD 

<20* 4.0 2.0 1.5 0.6 0.3 5.0 

20<50 7.0 3.5 2.5 1.0 0.5 8.0  

50<100 10.0 4.5 4.0 1.5 0.7 12.0 

100<1000 12.0 5.5 5.0 2.0 1.0 15.0 

>1000 15.0 7.0 6.0 2.5 1.4 20.0 

Even harmonics are limited to 25% of the odd harmonic limits above. 

Current distortions that result in a dc offset, e.g. half-wave converters, are not 

allowed. 

* All power generation equipment is limited to these values of current distortion, 

regardless of actual Isc/IL. 

 

Where, 

Isc = maximum short-circuit current at PCC.    

IL = maximum demand load current (fundamental frequency component) at PCC 

TDD = Total demand distortion (RSS), harmonic current distortion in % of 

maximum demand load current (15 or 30 min demand). 
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1.3.2 Total demand distortion (TDD)  

As per IEEE 519 standard, the definition of TDD is harmonic distortion in % 

of maximum demand load current (15 or 30 min demand). It can be calculated as 

shown in the Equation 1.3. 

 TDDi = 
ටࡵ

ାࡵ
ାࡵ

ାࡵ
ା⋯

ࡸࡵ
                    (1.3) 

Where I1, I2, I3…. Are harmonic currents. I1 refers to current at the fundamental 

frequency (50 Hz), and I2 second harmonic current or twice the fundamental 

frequency, or 2 x 50 = 100 Hz. And so on. 

1.4 Non-linear load modeling  

The injection of harmonic currents in the power grid method is aimed at 

simulating the effects of EV chargers on the power grid. The harmonic current profile 

of a commercially available EV is used to model the harmonic current source. To 

simulate three EVs plugged into the power system, the harmonic current’s magnitude 

and phase angle are added geometrically and fed to the power system in each phase. 

Figure 4 shows the block diagram representation of EV load. 

 

Figure 4: EVs connected to the grid 
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For the voltage source modeling, line impedance z = .001+j1e-6 Ω is connected 

in the source side with 2 Ω internal resistance. The harmonic current is injected to the 

PCC using a controlled current source. A three-phase source is modeled with Vrms = 

415 V and the supply frequency = 50 Hz. The waveform of the load current is shown 

in Figure 5, showing that the load current is balanced. However, the waveforms are 

distorted due to the presence of harmonics. The THD due to this non-linearity is 

6.48%, as shown in Figure 6. 

 

Figure 5: Current waveform of the non - linear load 

 

Figure 6: THD at source side due to a non-linear load 
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1.5 Harmonic mitigation methods 

The presence of harmonic content in the power system also increases due to an 

increased usage of non-linear load. It can cause poor power transfer to the load, thereby 

reducing the overall system efficiency. Many other issues also arise when the harmonic 

content available in the system exceeds the prescribed limit. The commonly used 

methods for harmonic mitigation are discussed in the following section (Kaiwart & 

Raju, 2016). 

The methods for addressing the harmonic problems in the grid can be classified 

into two. The first method uses appropriate circuit topology, and the second method 

uses suitable filters. The commonly used circuit topologies to solve harmonic pollution 

in the power grid are as follows: 

 Line Reactor 

 K factor Transformer 

 12 and 18 pulses rectifier 

 Phase shifting transformer 

The advantages and disadvantages of these circuit topologies are explained in (Kaiwart 

& Raju, n.d.) and summarized in Table 4. 
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Table 4: Harmonic mitigation circuit topologies 

 Advantage Disadvantage 

Line Reactor Low cost. 

Moderate harmonic mitigation. 

Different percent impedance is 

available. 

It causes a voltage drop. 

Cannot achieve THDi less 

than 35% 

 

K factor transformer It can handle heat associated 

with eddy current losses 

Higher cost 

12 and 18 pulse 

rectifier 

12 pulse: 10 - 20% THDi- 

reduction  

18Pulse: 5 – 10% THDi- 

reduction 

THDi increases with 

decrease in load. 

If the load is unbalanced, 

then harmonic mitigation 

increases. 

Phase shifting 

transformer 

5thand 7th harmonic are 

canceled approximately for 

equal loading condition. 

Additional impedance 

required to protect during 

short circuit condition. 

 

The filtering techniques for harmonic mitigation can be further classified into the 

following: 

 Passive filters 

 Active filters 

 Hybrid filters 
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1.5.1 Passive filters  

The idea behind passive filtering is to block harmonic currents flowing through 

the grid by either diverting them to a low impedance filter path, such as a parallel 

passive filter, or preventing them entirely via a high series impedance, such as a series 

passive filter. Passive filters are preferred to other harmonic mitigation methods due 

to their simplicity, low cost, and high efficiency. 

One of the commonly used passive filters is a passive tuned filter. It provides 

a low impedance path that diverts the harmonic current to the filters rather than power 

lines. The tuning of passive elements is a major task in designing passive filters. If 

many harmonic currents should be filtered, then extensive system studies, engineering 

effort, and cost are required. 

1.5.2 Active filters 

The working principle of an active filter is to precisely inject to the system 

voltage/current harmonics of nonlinear loads with the same magnitude and opposite 

sign to cancel each other and ensure clean waveforms in the power line. Active filters 

are smaller than passive filters. 

These active filters are normally limited to several MW levels, and their cost 

increases under high power levels due to operating losses and large VA ratings. 

However, active filters are considered as the best method for harmonic mitigation 

because of their great filtering performance and solutions to various power quality 

problems, such as reactive power compensation for PFC, voltage regulation, and load 

balancing. 
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1.5.3 Hybrid filters 

Hybrid filters that combine passive and active filters in various configurations 

are introduced to reduce the initial cost and increase the efficiency of the filter 

structure. The basic principle of hybrid filtering is to improve the filtering capacity of 

a passive filter and to damp series and parallel resonances with a small rated active 

filter. However, the functionalities of hybrid filters are more limited than those of pure 

active filters, and their design involves higher engineering effort than passive filter 

design (Peng, 2001). Therefore, active filters are the best option for solving harmonic 

problems. 

1.6 Active filter 

The harmonic pollution in the power system has increased gradually over the 

last two decades due to the increased usage of power electronic circuits. Thus, 

engineers should develop high-performance harmonic mitigation techniques to solve 

all power quality problems. The following three types of active filters are available 

depending on the function and type of non-linear loads: parallel type, series type, and 

a combination of both. 

 Series active filter. 

 Parallel (shunt) active filter. 

 Combination of parallel and series active filter 

1.6.1 Series active filter 

The basic SAF configuration is shown in Figure 7. It is connected to a utility 

grid through a coupling transformer to isolate harmonic voltages. It is also used to 

regulate and balance the terminal voltage of non-linear loads. 
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Figure 7: Series Active filter 

A SAF reduces the voltage sag, swell, and flicker by injecting a voltage to the grid 

(Nikoomanesh, Alizadehe, Naderi, & Soltani, 2014). Generally, a SAF is employed 

when the nonlinear load acts as a harmonic voltage generator. A non-linear load is 

illustrated in this work as a general purpose diode rectifier with DC link and terminal 

loads. 

1.6.2 Parallel (shunt) active filter (PAF) 

 

Figure 8: Parallel Active filter 
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A PAF is also called a shunt filter due to its parallel connection to the load. 

Figure 8 illustrates a PAF. In this configuration, the filter injects a compensating 

current into the system to cancel the harmonic current and to compensate for the 

reactive power current and the unbalanced current components on the AC side of a 

nonlinear load. If the PAF is connected to three-phase four-wire systems, then it is 

capable of compensating for the neutral current (zero sequence current) component. 

Therefore, using a PAF, the current drawn from the utility grid becomes free from 

harmonic content, balanced, and in phase with the utility voltage. A detailed 

description is provided in Chapter 2. 

1.6.3 Combination of PAF and SAF 

The combination of SAF and PAF is called a unified power quality conditioner 

(UPQC), as shown in Figure 9. In this configuration, the SAF suppresses the voltage 

harmonics, sags, swells, and flickers and balances and regulates the load terminal 

voltages. The PAF compensates for the harmonics current, reactive power current, and 

unbalanced current components of a nonlinear load (Fujita & Akagi, 1998). The UPQC 

provides clean power. Hence, it can be used for critical and power quality sensitive 

loads, such as computers and medical equipment. The main disadvantages of the 

UPQC are its high cost and complex control. 
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Figure 9: Combination of series and parallel active filter 

   1.7 PAF 

 

Figure 10: Block diagram of parallel active filter 

Parallel Active Filter (PAF) is used to produce the compensating harmonic 

current. The current drawn from the grid is distorted due to the presence of harmonic 

loads connected to the grid. The control strategy of the PAF system determines the 

instantaneous load current and removes the harmonic content by injecting 
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compensating current, to nullify the load harmonic effect. This methodology facilitates 

the transformation of the current drawn from the grid as a purely sinusoidal waveform 

Figure 10, illustrates the connection diagram of a three-phase non-linear load, 

connected to a three-phase three-wire supply. IF is the compensating filter current 

injected to the grid whereas IS is the source current. 

 

Figure 11: PWM current source inverter (CSI) 

Two circuit topologies are commonly used to realize the PAF circuit 

requirement. Figure 11 depicts a PWM current source inverter (CSI). This model has 

insulated-gate bipolar transistors (IGBTs) with series-connected diodes for reverse 

blocking. These IGBTs have higher conduction and switching losses than IGBTs with 

anti-parallel diodes. 

 

Figure 12: PWM voltage source inverter 
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Another circuit topology is the PWM VSI shown in Figure 12. In this 

configuration, the IGBTs have anti-parallel diodes. This circuit configuration is 

commonly available in the market because the DC link capacitors are low cost and are 

not as bulky as DC link inductors in CSIs. Moreover, the protection circuitry for CSIs 

is more complicated than that for VSIs. Therefore, VSIs are more efficient, more cost-

effective, and smaller in size than CSIs (Routimo, Salo, & Tuusa, 2005). 

1.7.1 Working principle of VSI 

Inverters are devices that can produce an AC output waveform from a DC 

power supply. For sinusoidal AC outputs, the magnitude, frequency, and phase should 

be controllable. If a DC input is a voltage source, then the inverter is called a VSI. 

Figure 13 shows the function of a VSI. In this circuit, an AC load is connected across 

the DC link by using two single pole double throw (SPDT) switches. The main 

requirement of an inverter is to connect positive voltage (Vdc), negative voltage 

(−Vdc), and zero voltage to the load. Therefore, SPDTs should be utilized in both 

directions and block the DC bus supply when not in conduction. To satisfy this 

requirement, this study uses MOSFET with an anti-parallel diode. 

 

Figure 13: Single phase voltage source inverter 
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The realization of the circuit requirement is shown in Figure 14, which shows 

the use of MOSFET switches with anti-parallel diodes. 

 

Figure 14: Single phase VSI circuit diagram 

When the M1 transistor is conducting in a positive direction and the diode 

conducts in a negative direction, the M4 diode blocks the +Vdc voltage. To achieve 

this operation, the gate pulses for M1 and M4 and those for M2 and M3 should 

complement each other. All switching states and output voltages are listed in Table 5. 

Table 5: Switching states and output voltage of single phase inverter 

State Switching state 
Output voltage 

VA0 VB0 VAB 

1 M1 and M3 are ON Vdc
2

 െ
Vdc
2

 
Vdc 

2 M4 and M2 are ON 
െ
Vdc
2

 
Vdc
2

 
-Vdc 

3 M1 and M2 are ON Vdc
2

 
Vdc
2

 
0 

4 M4 and M3 are ON 
െ
Vdc
2

 െ
Vdc
2

 
0 
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1.7.2 Three-phase VSI 

The power circuit diagram of a three-phase VSI is shown in Figure 15. In this 

circuit, six switches are connected in a particular manner. These switches are turned 

on and labeled as SW1, SW2, SW3, SW4, SW5, and SW6.  

 

Figure 15: 3phase VSI 

Figure 16 depicts the switching pattern of the three-phase VSI. In this 

configuration, each switch is turned on for 180° (Π radian). At any instance, three 

switches are in conduction mode, that is, either two switches from the upper group 

(connected to the positive terminal) and one switch from the bottom group (connected 

to the negative DC bus) or one switch from the upper group and two switches from the 

lower group. At any output cycle, six combinations of turned-on switches are 

available: (SW1, SW5, and SW6), (SW1, SW2, and SW6), (SW3, SW2, and SW1), 

(SW4, SW3, and SW2), (SW3, SW4, and SW5), and (SW6, SW5, and SW4). These 

combinations of switches conduct for a period of 60 degrees in the sequence to produce 

the output of three-phase waveforms. 
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Figure 16: Switching patterns of 3-phase VSI 

 

Figure 17: Phase and line voltage output of 3phase VSI 

Relevant phase voltages are shown in Figure 17, presenting the output of the 

line voltage of AB. The figure shows that the phase voltages of Van and Vbn are 
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exactly 120° apart. The maximum output voltage at any instance is two-thirds of the 

DC link voltage. 

1.8 Power factor correction (PFC) converters 

Modern EV chargers are equipped with PFC converters for power factor 

improvement. The power quality at AC mains can be improved using PFC converters. 

Single-phase AC–DC PFC converters with high-frequency isolation comprehensively 

were studied by Singh, Singh, Chandra, & Al-Haddad (2011). The input and output 

voltages are classified as buck, boost, and buck–boost topologies. Buck and boost 

converters are further classified into forward, push–pull, half bridge, and full bridge 

with HF transformer isolation. The buck–boost type converter is subcategorized into 

flyback, Cuk, Sepic, and Zeta converters with MOSFETs with high-frequency 

isolation. These classifications are shown in Figure 18. 

 

Figure 18: Power factor correction with HF isolation 
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1.8.1 Comparison of PFC converter topologies 

The cost of a PFC converter controller increases with the power rating, and 

such effect equates to an increase of passive and active components. Flyback and zeta 

(single switch topologies) converter configurations are preferred over Zeta and Sepic 

converters because of their additional protection against overcurrent and inrush 

current. In addition, Cuk converters require a small cores, which reduce core and 

copper loss. Moreover, flyback converters require only a capacitor as an output filter. 

Push–pull and half bridge (two switches) configurations use one switch at a time, 

leading to equal switching losses in comparison with those for a single switch 

converter. However, with the cost of additional switches and circuitry, they can be 

used for high power applications. 

In hardware implementation, many configurations are used to improve the 

power factor to 0.99 (Routimo et al., 2005, Lee et al., 2011). Some of the research 

findings include line and load regulations depending on the gain of the PFC controller 

and the turn ratio of the HF transformer. The control and protection circuits 

configuration are the major factors in electromagnetic interference and noise 

suppression. In addition to PFC, many other parameters, such as voltage ripple, 

transient response, device rating, and cost of the circuit, are involved in the selection 

of converter topologies for particular applications. 

Although EV chargers are designed to satisfy all power quality standards, they 

have evident harmonic injections to the grid in actual practice (Aljanad & Mohamed, 

2016), (Aiqiang Pan et al., 2016). Hence, an active filter is modeled with normal PI 

and fuzzy PI controllers to mitigate the THDs generated by EV chargers. An issue with 

normal PI controllers in active filters is that the voltage regulation of the DC link is 
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slow to reach its reference value. This performance can be improved by replacing the 

normal PI in the DC link control with a fuzzy logic controller (FLC). 

The utility grid will produce only the fundamental current for the EV charger 

and remaining harmonic as well as Reactive component of the charger is supplied from 

the VSI by controlling the switching pulses of MOSFETs. This operation mode helps 

to make the grid current to become pure sinusoidal wave. So one of the biggest 

challenge is to identify the accurate reference current to compensate the harmonics and 

reactive component. Various techniques already available that are capable of 

generating accurate reference current, they are explained in the next section. 

1.9 Control strategies for shunt active filter 

1.9.1 Constant instantaneous power technique 

In this technique Clarke transformation is used to transform ABC to alpha beta 

values. And inverse Clarke’s transformation is used to convert the alpha beta values to 

ABC three phase axis values. Instantaneous power before and after the transformation 

remains same, hence these matrices are power invariant matrix. Instantaneous power 

on alpha beta axis is given by the Equation 1.4.  

        S = (VαIα+VαIβ)+(VβIα - VαIβ)                    (1.4) 

Reference current can be calculated by the equation 1.5 

  
݅∗

݅ஒ
∗ ൨ ൌ

1
ଶݒ  ஒݒ

ଶ 
Vα Vβ
Vβ െVα൨ 

െ  pത loss
െݍ ൨ (1.5) 
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Figure 19: Block diagram of constant instantaneous power method 

Here, Instantaneous active power P = VαIα+VαIβ and whereas Instantaneous 

reactive power q = VβIα - VαIβ.  Now this Active part is separated to average part	pത, 

q	ഥand oscillating part p  & q  by using second order Butterworth low pass filter with cut 

off frequency 50 Hz. In this technique p  and the entire Instantaneous reactive power q 

(q  q	ഥ ) is utilize to calculate the reference current. Inverse Clarke’s transformation is 

used to convert this reference current into ABC frame as shown in Figure 19. This 

method is applicable only in the balanced case. In unbalanced case this will give bad 

result.  

1.9.2 Generalized fryze currents minimization technique 

One of the biggest advantage of this method it does not require Clarke’s 

transformation to find the reference current. In this method it directly calculate the 

instantaneous voltage and current for each phase. Generalized fryze current is geven 

by the Equation 1.6. The block diagram is shown in Figure 20.  
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 iwk = Ge Vk                 k = (a, b, c) (1.6) 

Ge = Equivalent conductance 

Ge = 
ଵ
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்
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Figure 20: Fryze current control block diagram 

This current and current related to the switching losses of VSI is also added. 

This reference current fed to the PWM block to generate the gate pulses. Fryze current 

method draws less RMS current than previous method but it has higher THD in the 

source current. 

1.9.3 Synchronous reference frame controller (SRFC) 

This method involves ABC to dq frame and vice versa transformation to find 

the reference current. This method is useful when there is a distortion and / or 

unbalance from supply side. A detailed explanation of this method is given in the 

Chapter 2.   
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1.10 Fuzzy logic controller (FLC) 

The concept of the FLC was first presented by Professor Zadeh Lotfi in 1965. 

He proposed a method for solving a process involving imprecise data with complex 

inputs. The FLC is simple to use in designing the control system of a process because 

it does not require an exact mathematical model of the plant or process. Researchers 

(Usman, Hizam, & Mohd Radzi, 2013. Colak, Bayindir, Kaplan, & Tas, 2010) used 

FLCs in active filters. Fuzzy logic uses membership function (MF), and its value 

ranges between 0 and 1. Figure 21 shows the block diagram of a fuzzy controller. 

 

Figure 21: Block diagram of fuzzy logic controller 

1.10.1 Fuzzification 
 

It helps to convert crisp numbers into fuzzy sets. The fuzzification involves 

expressing the system inputs and outputs in linguistic terms so that it can be easily 

applied to a complex system. In this process, the system input decomposes into one or 

more fuzzy sets. Triangular membership function (MF) is used in this study because it 

is easy to represent. The degree of MF of any input can be easily interpreted from 

fuzzy sets.  
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1.10.2 Knowledgebase 
 

In fuzzy logic systems, the fuzzy knowledge base represents the facts of the 

rules and linguistic variables based on the fuzzy set theory so that the knowledge base 

systems will allow approximate reasoning. 

1.10.3 Fuzzy inference engine 

In this process mapping the input vector to output vector using fuzzy logic. The 

mapping carried out based on some set rules on the fuzzy sets, i.e membership 

function, if-then rules, and fuzzy logic operator. Mamadani and Sugeno type are the 

main types of fuzzy inference systems. In the current study Mamdani type fuzzy 

inference system is used. It involves fuzzify the input, apply fuzzy operator, apply 

implication method, apply aggregation method and finally defuzzification. 

1.10.4 De-Fuzzification 
 

In this process transfer fuzzy inference engine’s results into a crisp output. 

Decision-making algorithm to select best crisp value based on the fuzzy set. 

Commonly used defuzzification methods are center of gravity (COG), center average 

method and mean of maximum (MOM). COG method is used in this thesis. This 

method returns value of the center of the area under the curve.   

The inputs to the FLC are errors and changes of errors between the DC link voltage 

and a reference voltage. The output from the FLC includes proportional gain (Kp) and 

integral gain (Ki). The P and I values are calculated using fuzzy control techniques to 

regulate the DC link voltage. A detailed explanation of input MF, output MF, and 

Mamdani’s technique is presented in Chapter 2. 
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1.11 Problem Statement  

The major concerns of electric car owners are mileage and the time required to 

recharge batteries. However, due to the tremendous technological development in EV 

technology, the mileage of EVs has increase, and the time required to recharge the 

battery packs of EVs is significantly reduced. Many off-board chargers are available, 

and the number of EV charging stations is expected to increase in charging networks. 

These off-board high-speed chargers significantly reduce EVs’ charging times 

(Yilmaz & Krein, 2012). However, during the charging process, the EV charger load 

injects harmonics to the grid (Guo et al., 2018; Aiqiang Pan et al., 2016; Ul-Haq, 

Perwaiz, Azhar & Ullah Awan, 2018). The power demand of an EV is dependent upon 

the state of charge (SOC) of the battery. Hence, power consumption varies from zero 

SOC to full SOC. During charging process harmonics injected to the grid due to the 

power electronic converter in the EV charger. 

EV charging station loads comprise EV loads and non-EV loads. During the 

charging period, these loads inject harmonic currents to the grid. If this harmonic 

content injected to the grid exceeds the limits set by the standards, then it should be 

controlled; otherwise, it will lead to the overheating of cables, overloading of 

transformers, and poor power transfer. Ultimately, the overall system efficiency is 

reduced. Although these chargers are designed to satisfy all power quality standards, 

such as IEEE 519-1992, SAE-J2894, IEC1000-3-2, and (NEC) 690, they often seem 

to inject more harmonic currents to the grid due to many circumstances. 

An EV charger should maintain an acceptable power quality waveform at the 

PCC. These standards limit the allowable harmonic and DC current injection into the 

grid; thus, modeling an EV charger is expected to help determine the rates of harmonic 
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distortions. A charger model with a filter is developed in MATLAB/Simulink 

software. The charger is modeled as an injected current harmonic source, and the filter 

is used as a VSI. Neutral current compensation is also achieved by using two IGBTs, 

This helped to inject required compensating current to the neutral conductor during 

any unbalanced loading. The fuzzy logic controller is used for self-tuning the PI 

controller used in the DC link voltage control. The circuit diagram and simulation 

results in various operating conditions are explained in Chapters 2 and 3, respectively. 

1.12 Objective 

• To model an active filter to mitigate the harmonics generated by EV chargers.  

• To analyze the performance of the filter in various operating conditions. 

1.13 Scope of the work 

• A charger model is developed to determine the THD generated by an EV 

charger. A harmonic current profile from a commercially available EV is used 

to model the charger. The power rating of the charger, voltage distortion and 

power factor improvement, and state of charge of the battery pack are excluded 

from the scope. 

• The performance of the VSI is compared with that of a conventional and fuzzy 

PI. 
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Chapter 2: Development of Active Filter for Harmonic Elimination 

2.1 Proposed EV charger model 

Power electronic converters are used for conversion from AC to DC supply, 

which is required to charge EV batteries. The power delivered to the battery varies 

continuously from low to full SOC. Therefore, the charging current varies throughout 

the charging period. Given the power of EV chargers and the features of EV charging 

loads, a detailed study is necessary to ensure that the power grid network standards are 

still satisfied even when many EVs are charged simultaneously. EV battery chargers 

draw a distorted current from the utility because the diode rectifier in the EV charger 

draws non-sinusoidal current from the grid, thereby increasing the THD of the current 

waveform. If the injected current’s THD is greater than the allowable limit, then it 

needs to be controlled. 

Currently, EV chargers exhibit features that support the power grid, such as 

current waveform shaping and PFC techniques. The effect of the simultaneous 

charging of EVs on THDi is studied. The harmonic current profile of a commercially 

available EV is used to model the charger. In this model, the dominant harmonic 

currents and their phase angle values from the EV harmonic spectrum are used. 

For the analysis purpose, Harmonic currents of a Fast charger is considered in 

this study. Both magnitude and phase angle values are used to model the harmonic 

current source. Figure 22 represents the block diagram of the connection of an EV 

charger to the power system grid. Three similar EV chargers are plugged into the 

power grid on each phase respectively. The amplitude and phase angle values of the 

fundamental, third, fifth, and seventh harmonic currents are injected into the power 
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grid using a controlled current source block in MATLAB/Simulink. This block 

generates a current on the basis of the input signal of the block. 

 

Figure 22: EV harmonic model 

The harmonic current profile of the Nissan Leaf charger is used to model the 

EV charger (Aiqiang Pan et al., 2016). Table 6 shows both the magnitude and phase 

angle of different harmonic orders. 
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Table 6: Line current harmonic content of an EV charger 

 

Each harmonic current is added geometrically and injected to the power grid using 

the Mux and summation block in Simulink. 

The harmonic current in the R-phase is injected in exactly the same manner. 

However, in the Y and B phases, these currents are injected −120 degrees and −240 

degrees, respectively, to obtain a balanced waveform. Figure 23 shows the waveform 

of the three-phase line current. The figure shows that the current in each phase is 

balanced. Figure 24 represents the circuit diagram model of the EV charger plugged 

into each phase. 

 

Figure 23: Three phase load current of an EV charger 
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Figure 24: Circuit diagram model of an EV charger 

 

For the sake of simplicity, among the harmonic current spectra, only the 

following dominant currents are used: third, fifth, and seventh harmonic currents. 

Similarly, all other harmonic currents can be injected to the grid to analyze the total 

harmonic current distortion. For the simulation, the grid and line parameters listed in 

Table 7 are selected. 
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Table 7: Grid modeling parameters 

 Parameter Value 

AC Grid Line Voltage (Vs)  415 V 

Frequency(fe) 50 Hz 

Line inductance(Ls) 100 μH 

Line Resistance 0.01 Ω 

Source resistance (Rs) 2 Ω 

Sample Time  1 µS 

 

In calculating the THDi, the fundamental load current (IL1) and short circuit current 

(Isc) should be determined. The fundamental load current can be calculated from 

computer simulation, whereas the short circuit current can be calculated using the 

following formula: 

 
Isc = 

ୱ

√ଷ ∗ටோ
మା 

మ
 

(2.1) 

Where, RT = Total resistance of the system (Source resistance+ line resistance). 

             XT=Total inductive reactance of the system (internal reactance of the source + 

line reactance). 

After substituting all the listed values in Table 7 in Equation 2.1, Isc is found to be 

119.2 A, and the fundamental component of the load current is 36.36 A. By plugging 

the calculated value on Isc/IL1 is found to be 3.27. As per IEEE 519-1992, the THD 

allowed for this range is 4. Figure 25 shows that the THD current is 6.48%, which 
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exceeds the limit set by the IEEE Std. 519-1992. Therefore, the EVs plugged into the 

grid injects harmonics that exceed the allowable limit. Thus, a PAF is used to mitigate 

these harmonics and thereby obtain a less harmful harmonic injection from the 

charging station. Fast Fourier transform (FFT) analysis method in MATLAB/Simulink 

is used to determine the THD generated by these EV chargers. The screengrab of the 

FFT analysis results from MATLAB/Simulink is shown in the following section. 

 

Figure 25: THD at the source side 

2.2 Features of the parallel active filter 

2.2.1 Harmonic producing nonlinear loads 

Nonlinear loads can be classified into two. The first is the harmonic current 

source-type nonlinear load, and the second is harmonic voltage source-type nonlinear 

load. The harmonic current source type is a three-phase thyristor rectifier with a DC 

side inductance and a resistor. In this configuration, due to the sufficient inductance 

value at its DC side, it produces a nearly constant DC current. The harmonic current 

content of the rectifier’s input current (load current) is not greatly dependent on the 

AC side. Therefore, this type is considered a harmonic current source-type nonlinear 



39 
 
 

load. However, a diode rectifier with a sufficient smoothing DC capacitor is considered 

harmonic voltage source-type nonlinear loads because the voltage at the input 

terminals of the rectifier is less dependent on the AC side. 

The EV charger is modeled as the source of injected current harmonics. A 

detailed study of the harmonic current source-type nonlinear load is conducted. The 

per-phase equivalent circuit of a harmonic current source-type nonlinear load can be 

represented as Norton’s equivalent circuit, as shown in Figure 26. 

 

Figure 26: Norton equivalent harmonic current source 

where the three-phase AC supply is represented as a voltage source with source voltage 

(Vs) and Zs is the source impedance. Il is the current source, and the parallel 

impedance ZL represents the equivalent current source. IL is the total current drawn by 

the load. 
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Figure 27: Norton equivalent circuit with PAF 

The PAF is modeled as a harmonic current generator to compensate for the 

load current harmonics. Thus, the PAF in Figure 27 is represented as a current source 

of IF. The filter current is defined by the following equation: 

 

 IF = G(s) x IL (2.2) 

where G(s) is the transfer function of the PAF. The following equation is 

derived by analyzing the circuit: 

ݏܫ  ൌ


ୱା ౖై
భషಸሺೞሻ

 Il + 
ଵ

ୱା ౖై
భషಸሺೞሻ

Vs (2.3)
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ଵ
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ቃ
Vs (2.4) 

The transfer function G(s) of an ideal PAF is zero at the fundamental frequency 

and approximately equal to unity at all harmonic frequencies, |G(s)|݄ =1. If the 
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condition given by (ZL/|1-G(s)|h) >> |Zs|h is satisfied for the harmonic frequencies, 

then Equation 2.3 and 2.4 can be respectively written as follows: 

 IF ≅ ILH (2.5) 

 Ish ≅ ሺ1 െ  + ሻሻ Ilhݏሺܩ
ଵିீሺ௦ሻ


 Vsh (2.6) 

Equation 2.5 indicates that the active filter current is approximately equal to the load 

harmonic currents and that the line current becomes harmonic-free due to |1-G(s)|h ≈ 

1 if the condition (ZL/|1-G(s)|h) >> |Zs|h is satisfied. Hence, this condition must satisfy 

the PAF to compensate for the load current harmonics and to provide sinusoidal line 

currents. 

 ILh ≅ Ilh + 
ଵ


 Vsh (2.7) 

Equation 2.7 implies that the active filter current does not flow through ZL. To satisfy 

this condition, the load impedance should be larger than the source impedance and |1-

G(s)|h << 1. 

Equation 2.3 can be rewritten as (2.8) using the above condition as follows: 

 
୍ୱ

୍୪
 = 1 – G(s) (2.8) 

 |1-G(s)|h << 1. (2.9) 

Equation 2.9 shows that if the condition | ZL | >> | ZS| is satisfied, then the PAF’s 

performance depends on the transfer function only and not on supply impedance. 
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2.3 Voltage source inverter connected to EV charger 

 

Figure 28: EVs with VSI 

Figure 28 shows that three EVs are connected to the grid. The VSI is used to 

mitigate the harmonics injected by the EV chargers. The harmonic content in a power 

system network should be maintained at less than the limits set by the IEEE to reduce 

the negative effects of harmonic currents. The finding shows that the THD injected to 

the grid exceeds the allowable limit. Thus, some methods to mitigate the harmonics 

should be introduced. An active filter is used to mitigate THD. In this system, the VSI 

is used as an active filter, the fundamental harmonic current is filtered, and the phase 

and amplitude of the remaining current are analyzed. Once the filter understands the 

harmonic current, the filter injects inverse current to the power system to cancel all the 

harmonic currents. Moreover, the neutral current compensation is carried out in a 

similar approach. 

In carrying out the above task, bi-directional semiconductor switches are used 

in the Simulink model. Additional circuitry and controls are required to produce gate 

signals. These gate signals are used to control the phase and neutral semiconductor 

switches. A detailed block diagram is shown in the following section. 
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2.4 Filter control 

2.4.1 Phase locked loop (PLL) 

PLL is used in this system to obtain the phase of the input signal. The grid is 

modeled as a voltage source, and the current to the voltage is controlled; hence, voltage 

PLL is used. The input voltage from the load side measurement block is fed to the PLL 

through the gain to obtain the phase of the voltage. This phase angle is required for 

ABC to DQ transformation. Figure 29 shows the block diagram of the PLL. 

 

Figure 29: PLL block diagram 

The reference signal is the voltage from the load side measurement block, 

which is compared with the voltage from the VCO connected to the phase detector. 

The phase of both signals were compared, and an error voltage is produced. This error 

signal corresponds to the phase difference between the two signals. The loop filter is 

used to remove any high-frequency elements on the signal. This process continues 

until the error cannot be reduced any further, indicating that the phase difference 

between the two signals is reduced along with their frequencies. 
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2.4.2 ABC to dq0 transform 

The ABC to dq0 transformation block in Simulink is used to convert the three-

phase ABC current waveform into direct, quadrature, and zero axis components. The 

block requires the phase of the input signal. Thus, the PLL output and current signal 

are connected. After the conversion, Demux is used to separate the block output into 

d, q, and 0 axis components. An active power component is obtained from the d axis, 

a reactive power component is obtained from the q axis, and a zero sequence current 

is obtained in the 0 axis. A detailed control strategy of the circuit configuration is 

explained in the following sections. 

ABC to DQ transform 

 

 

 V = Va – VcCos60 – VbCos60      (2.10)

 

 V = Vb cos30 –Vc cos30                (2.11)

 

 
V
V൨ ൌ ቂ1 െܿ60ݏ െܿ60ݏ

0 30ݏܿ െܿ30ݏ
ቃ 
ܸܽ
ܸܾ
ܸܿ
൩    (2.12)
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2.5 Synchronous reference frame controller (SRFC) 

The basic working principle of the SRFC was established in [24]. The SRFC is 

used to calculate the reference current. In this method, the three-phase load current 

ABC is transformed into two axes, namely, d–q frame. The q axis leads the d axis by 

90°. This reference frame rotates at the same speed as the system frequency. Figure 30 

shows that the phasor rotates at speed “w”. Thus, the d–q frame rotates with the same 

speed as “w”. 

 

Figure 30: ABC to DQ transformation 

Therefore, the relative speed between the d–q frame and the reference vector is 

zero. Hence, we observe a fundamental current as a DC quantity and all other harmonic 

currents as AC quantities. We can easily identify the DC and AC quantities by using 

appropriate filtering methods. Then, DQ to ABC transformation is used to obtain the 

three-phase reference current. 
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2.5.1 VSI with positive sequence SRFC 

The main purpose of a VSI is to convert DC power back to AC power with the 

required frequency and voltage. Figure 31 shows that the MOSFET with the anti-

parallel diode is used as a switching device. These switches turn on and off at regular 

intervals to provide the rectangular pulse of voltage to each phase. A bi-directional 

rectifier is selected because it can transfer power from the source to the load side and 

vice versa. Thus, the rectifier works in two modes, namely, rectifier mode and inverter 

mode. 

 

Figure 31: Voltage source inverter circuit model 

The switching pulses for these power electronic switches are generated by 

using hysteresis controllers. The three-phase input current iabc is transformed into idq 

using Park transform. The active current id is passed through a low pass filter to obtain 

the harmonic content. Park’s transformation from the Dq0 reference frame to the ABC 

reference frame is used. After this transformation, the harmonic current is compared 

with the filter current using a hysteresis controller to produce the switching pulses of 
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the semiconductor switches (Purwadi et al., 2013). Figure 32 shows the block diagram 

of the filter control. 

 

Figure 32: Filter control 

After ABC transformation to dq0, the d axis contains an active power 

component of the load current, and the q axis contains a reactive power component. 

Using a low pass filter in the d axis extracts harmonic current content from the load 

current. A low pass filter is used to remove the fundamental current. The other q axis 

contains the reactive power component and negative sequence component of the load 

current. The detailed block diagram of this circuit configuration is shown in Figure 33 

(Bhattacharya, Frank, Divan, & Banerjee, 1998). 
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Figure 33: Connection diagram of positive sequence SRFC 

The reference current includes the harmonic current, negative sequence 

current, and reactive power component of the load current. Inverse (dq0 to ABC) 

transformation is used to revert back to the three-phase quantities9Thus, this 

configuration successfully generates the reference current for the PAF. This circuit 

configuration results in harmonic-free phase and balanced current. 

A similar operation is applied to the neutral conductor. During unbalanced 

condtion the  distorted currents pass through the common neutral, most of these higher 

frequency harmonics wave cancel out just like what we expect from the fundamental 

wave. Some harmonics, however, can not be cancelled. In fact, they add in the neutral. 

These harmonics are called zero sequence harmonics, and they are the reason for high 

neutral currents. This large current level can easily damage the neutral conductor, 

creating an open neutral environment with very serious consequences. To make up for 

this impact, the  neutral current compensation is also introduced. Figure 34 shows the 
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circuit diagram of the neutral current compensation. The indcutor connected to the 

load neutral point. 

 

Figure 34: Connection diagram of neutral current compensation 

2.6 DC link voltage control 

The control algorithm of the PAF should also produce a reference current to 

regulate the DC link voltage to the DC bus reference voltage. Figure 35 shows the 

block diagram of the capacitor voltage control. A PI regulator is used to generate a 

reference current IFdc for the DC link voltage regulation. In deriving the mathematical 

model of the system, an experimental method via trial and error is used to obtain the 

gain of the PI controller. 

 

Figure 35: Capacitor voltage control 
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The bi-directional power flow of the MOSFET facilitates the harmonic current 

injection from the DC bus to the power grid. At the same time, the current flows to 

charge the capacitor from the grid side to the DC link. The reference voltage of the DC 

link for a three-phase bi-directional converter can be obtained by using √2Vs. Any 

value above √2Vs can be selected as the DC link reference voltage. Hence, the supply 

voltage is 415 V. Moreover, the √2Vs becomes 586 V. Furthermore, 700 V is selected 

as a reference voltage. This reference value is compared with a capacitor voltage. The 

obtained current reference from the DC bus voltage regulator is added to the d-axis 

current reference component of the harmonic current reference generator because the 

regulation of the DC bus voltage and compensation of the VSI losses require actual 

power transfer from the utility grid at the fundamental frequency. 

In this model, the PI controller is used to control the DC link voltage. The THD 

of the system in the load side is 7.71%, as shown in Figure 36, and the THD decreases 

significantly to 3.5%, as shown in Figure 37, due to the effect of the VSI. 

 

Figure 36: Load side THD 
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Figure 37: Source side THD 

However, the tuning of the PI controller identifies the most suitable P and I 

values for the system. Thus, fuzzy logic is used for the self-tuning of the PI controller. 

A detailed explanation of the fuzzy logic and its implementation is provided in the 

following section. 

2.7 Fuzzy PI controller 

FLC is utilized to eliminate the reliance on PI controller and possible to tune 

the Kp and Ki values without knowing the exact mathematical model of the system.  

The self-tuning of the PI controller is realized in this work by using Fuzzy PI with two 

inputs and two outputs. The error and change of error between the DC link voltage and 

the reference voltage are used as the input to the fuzzy controller, and the values of 

kp1 and Ki1 are the output. The author of (Ismail, 2012) Proposed a fuzzy self-tuning 

PID. However, in our model, only PI is used. Hence, the derivative section is excluded 

in the model. 
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2.7.1 Mamdani’s method 

One of the most common fuzzy inference techniques is called Mamdani’s 

method. This method is widely applied to many fuzzy logic control systems given the 

use of min-max operations. The main idea of a Mamdani fuzzy inference system is to 

use fuzzy set theory to map an input to the output. In this technique, min is used as a 

conjunction operator, and max is used as an aggregation operator. Four steps are 

involved in these techniques, and they are explained as follows. 

Step 1. Fuzzification - The first step determines the degree at which the crisp inputs 

belong to each of the fuzzy sets. 

Step 2. Evaluation of fuzzy rules - Fuzzy operators, such as AND and OR, are used to 

obtain a single value that shows the results of antecedent evaluation. AND is used to 

evaluate the conjunction rule of the antecedent fuzzy operator, whereas fuzzy operator 

OR is used in the case of a disjunction of rule antecedents. The next step is to identify 

the combination of the rule strength and output MF to obtain the consequence of the 

rule. 

Step 3. Aggregation - In this step, the consequences are combined to obtain a single 

fuzzy set. 

Step 4. Defuzzification - To obtain the output as a single number and not as a fuzzy 

set, the obtained result from the previous step should be transformed into a single 

number. Many methods for defuzzification are available, and they include the centroid 

method for finding a point marking the center of gravity of an aggregated fuzzy set 

and the mean of maxima, in which the mean value of the maximum MFs is the output 

crisp value. 
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Figure 38: Block diagram of fuzzy PI 

Block diagram of fuzzy PI is shown in Figure 38. Connection diagram of FLC to the 

filter model is also shown in Figure 39. 

 

Figure 39: Fuzzy PI for DC link voltage control 

  Knew = Kp1*Kp                                               (2.15)

 Kinew = Ki1*Ki                                                  (2.16)

Where Knew and Kinew are the new gains of Fuzzy PI controller and kp1 and ki1 are 

the outputs of the gain of fuzzy controls, Kp and Ki are the initial PI values.  

 

 
Upi = Kpnew*e(t) + Kinew (2.14) ݐ݀݁
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Tables 8 and 9 show the rule base used for the self-tuning of the fuzzy PI 

controller. The fuzzy control rule involves defining the relationship between the input 

error and the change of error in the output variables kp1 and ki1. The rules are normally 

expressed by the if–then rule. If error e is “x” and the change of error Δe is “y”, then 

the output is “z”. For enhanced performance and control, the input variable is modeled 

with seven triangular MFs, as shown in Figure 40. Figure 41 shows the MFs of Kp1 

and Ki1. The acronyms used are NB = negative Big, NM = negative medium, NS = 

negative small, ZE = zero error, PS = positive small, PM = positive medium, and PB 

= positive big. The output is also modeled using the triangular MF (VB, MB, B, M, S, 

MS, and ZE). 

 

Figure 40: Membership function of inputs (error & change of error) 

 

Figure 41: Membership function of outputs (Kp1 and Ki1) 
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Table 8: Rule base for determining Kp1 

                 e 
Δe NB NS ZE PS PB 

NB VB VB VB VB VB 
NS B B B MB VB 
ZE ZE ZE MS S S 
PS B B B MB VB 
PB VB VB VB VB VB 

 

Table 9: Table base for determining KI1 

                 e 

Δe 
NB NS ZE PS PB 

NB M M M M M 

NS S S S S S 

ZE MS MS ZE MS MS 

PS S S S S S 

PB M M M M M 

 

The fuzzy PI output is then fed to the d axis of the ABC to DQ transformation to obtain 

the reference current. This reference current is then fed to the hysteresis controller to 

produce the switching pulses. A detailed description of the hysteresis controller is 

presented in the following section. 

2.8 Hysteresis controller  

The performance of the current controller is important in obtaining a perfect 

compensation of harmonic currents. The switching pulses generated by the hysteresis 

controller are used to switch the MOSFETs. These switching circuits in the VSI reduce 

the DC link voltage to the required AC voltage at its output. One of the main 
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requirements of a hysteresis controller is that it should track high di/dt current 

references and distorted current waveforms. The hysteresis controller is proven as a 

current controller because of its high performance in tracking multiple frequencies and 

high di/dt currents. 

The hysteresis band current control method is widely used for PWM due to the 

simplicity of implementation (Buso, Fasolo, Malesani, & Mattavelli, 2000). The main 

advantage of this controller is that it does not require any information about system 

parameters. It has rapid response and inherent peak current limiting capability. 

However, the switching frequency changes within the band due to the control of the 

peak-to-peak current ripple of the fundamental wave (Rodrigues, Schettino, Ferreira, 

Barbosa, & Braga, 2012). 

Reference current

Filer output 
current

Δi Switching pulses

 

Figure 42: Hysteresis band controller 

Figure 42 shows the operation of the hysteresis controller. The reference 

current, in this case, is the harmonic current, which should be injected to the grid for 

the harmonic current compensation. This current is compared with the filter output 

current, and the error current is Δi =ir – if. If this value is greater than the tolerance, 
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then the current control of the active filter is initiated. If the error is between tolerances, 

then the position of the switch is preserved; otherwise, the switch on or off command 

is sent to the MOSFETS on the basis of the direction of the current error. 

 

Figure 43: Hysteresis current control 

 T = t1 + t2 = 
ଵ


                                      (2.17)

From Figure 43, Where t1, t2 are switching intervals and f is the switching frequency.  

 The principle of hysteresis control is that when the output current of a VSI is 

greater than the hysteresis upper limit is + HB, the controller output becomes zero, the 

VSI output voltage is changed to= −Vdc/2, and the output current of the VSI decreases. 

Similarly, when the output current of the VSI is lesser than the hysteresis upper limit 

ir - HB, the controller output becomes zero, the VSI output voltage becomes = Vdc /2, 

and the output current of the VSI increases. Hence, the VSI output current can be 

controlled within the hysteresis band. 

 ௗೌ
శ

ௗ௧
 = 

ଵ


ሺ0.5ܸ݀ܿ െ ܷሻ (2.18)
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From the geometry, we can say that   

 ௗೌ
శ

ௗ௧
1ݐ െ ௗೌ∗

ௗ௧
2HB (2.20) = 1ݐ

 
ௗೌష
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A pair of hysteresis controllers is utilized in each phase to calculate the phase 

current error. The circuit implementation of the hysteresis controller in each phase is 

shown in Figure 44. The figure shows that one pair of the controller is used in each 

phase. The corresponding switching pulses (g) in the circuit are fed to the gate terminal 

of the MOSFETs.  

 

Figure 44: Hysteresis current regulator 
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Chapter 3: Results and Discussion  

A three-phase voltage source is used (415 V/50 Hz) to determine the 

performance of system operation. The loads in each phase are linear and nonlinear 

loads. A simulation is carried out in MATLAB/Simulink. Figure 45 shows the 

simulation result for the current waveform. The load comprising three equal resistors 

(R=5 Ω) and a nonlinear load injected as the current harmonic source are connected to 

each phase. 

 

Figure 45: Load current waveform 

Figure 46 shows the grid current waveform of the PAF connected to an EV 

charger. After active filtering with the conventional PI, the THD of the grid current 

waveform drops from 8.5% to 3.5% (Figure47). This THD value is less than the 

allowable limit. Hence, these results show that the THDs generated by EV chargers 

can be successful eliminated by using the PAF. 
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Figure 46: Grid current waveform of PAF with normal PI 

 

Figure 47: Grid current THD 

Figure 48 shows the connection diagram of an active filter with a fuzzy PI 

connected parallel to the load circuit. Vpcc and Vload are the three-phase measurement 

block connected to the grid and load side respectively. The active filter is connected 

between these measurement block. The EV load is connected to the Vload measurement 

block through line impedance, R = 1Ω and L =0.001H. The harmonic content of this 

EV load is determined by using filter control shown in Figure 47. The output of filter 
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control is connected to the gate terminal of MOSFET in the filter converter.    As 

shown in Figure 49, the gate pulse for neutral current and line current are pulse_N and 

pulse_M respectively.  The inductor used in the active filter is used to reduce the ripple 

of VSI fed converters. 
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Figure 48: Connection diagram of EV load with VSI 
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Figure 49: Filter control 
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Figure 50: Filter converter 
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An active filter with a fuzzy PI is also simulated. A Mamdani min operator is 

used in the FLC. The error and change of error between the reference voltage and the 

DC link voltage are the input variables. Seven triangular MFs are used to obtain 

superior performance. The outputs of the FLC are kp1 and ki1, which are further 

multiplied with the initial PI gain to obtain the fuzzy Kp2 and Ki2 values. These 

updated PI gains are used to control the DC link voltage. This method mitigates the 

harmonic distortion significantly in comparison with an active filter with a normal PI. 

Figure 51 depicts the current drawn from the grid at THDi = 1.40%. 

 

Figure 51: THDi of EV charger connected to VSI with fuzzy PI 

If, for some reason, the DC link capacitor is discharged given that the EV 

charger is modeled using a bidirectional conduction mode, then smoothly recharging 

from the grid to the capacitor is possible. This charging process stops when the 

capacitor voltage reaches its reference value. Figure 52 shows the DC link voltage 

waveform during the startup. 
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Figure 52: DC link voltage control 

 

Figure 53: Reference current tracking 

The reference current and filter current are shown in Figure 53. The figure 

evidently shows that the harmonic current is successfully tracked. The blue line 

indicates the reference current, and the varying signal across the reference current is 

the filter current. 
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Figure 54: Load current waveform of PAF with fuzzy PI 

 

Figure 55: Grid current waveform of PAF with fuzzy PI 

Figure 54 depicts the distorted waveform of the load current of the linear and 

nonlinear loads. The waveform clearly shows a distortion due to the presence of 

nonlinear loads. Figure 55 shows the grid current waveform. Evidently, the grid 

current is harmonic free. Most of the harmonic currents are compensated by the PAF. 

3.1 Performance of VSI in various condition 

The performance of the VSI when similar types of EVs are connected to the 

grid is discussed. The varying VSI performance during various operating conditions is 

important. These conditions include an additional EV connected to the R phase, two 

additional EVs connected to the R and Y phases, and the performance of the active 
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filter determined when a diode rectifier load is connected. Line current waveform, 

harmonic mitigation of active filter, and DC link voltage regulation during this 

condition are described in the following section. 

Case 1 – One additional EV plugged into R phase 

The current obtained by an EV charging station from the grid increases if an 

additional EV is plugged into the R phase. Hence, identifying the current harmonics 

generated by EVs, the THD mitigation of the modeled active filter, and DC link 

voltage control is highly important. 

 

Figure 56: THDi at load side when an additional EV connected to R phase 

 

Figure 57: THDi at source side when an additional EV connected to R phase 
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Figure 58: DC link voltage control when an additional EV plugged into R phase 

Figure 56 and 57 show the THDi at the load side and source side, respectively. 

An additional EV is plugged to the grid after 0.4 s. As shown in the figure, the DC link 

voltage (Figure 58) regulation is also achieved after a short decay from the reference 

voltage. The neutral current is also tracked and well compensated to the circuit as 

shown in the Figure 59. 

 

Figure 59: Neutral current compensation 
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Case 2 – Two additional EVs plugged into R & Y phase 

      Two additional EVs are plugged into the R and Y phases, respectively, after 0.45 

second. Figure 62 shows that the DC link voltage drops by approximately 695 V due 

to the sudden load increase. However, due to the action of the FLC, the DC link voltage 

reverts back to the reference voltage after a short duration. Figure 60 and 61 shows the 

THDi at load side and source side respectively. 

 

Figure 60: THDi at load side when two additional EVs are plugged into the system 

 

Figure 61: THDi at source side when two additional EVs are plugged into the system 
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Figure 62: DC link voltage when two additional EVs are plugged at 0.45s 

As shown in the figure, due to the addition of EVs, the DC bus voltage drops 

to approximately 5 V. However, due to the action of the FLC used in DC link voltage 

control, the DC link voltage to its reference voltage increases to approximately 0.5 s.  

Case 3 – Active filter connected to Diode rectifier  

 

Figure 63: Diode rectifier connected to active filter 

Another case study uses a diode rectifier as a nonlinear load Figure 63. In this 

case, the diode rectifier is connected instead of EVs. The DC link voltage, line current, 

and THDi at the load and source sides are analyzed. As expected, the THDi of the 
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diode filter is successfully reduced by the use of an active filter. The distorted grid 

current on the R phase is shown in Figure 64. 

 

Figure 64: Current waveform on the R phase 

The graph shows the DC link voltage. Figure 65 shows that the DC link voltage reaches 

its reference voltage of 0.7 s after start up. The THD drops from 7.98% (Figure 66) to 

0.51% (Figure 67). 

 

Figure 65: DC link voltage when diode rectifier connected 
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Figure 66: THDi at load side 

 

Figure 67: THDi at the grid side when diode rectifier connected 

The performance of the VSI is as expected. The performance of harmonic 

mitigation in various scenarios is excellent. In addition to the FLC-based DC link, 

voltage control provides excellent control of DC link voltage regulation whenever the 

nonlinear load increases. Therefore, the modeled active filter is excellent in mitigating 

the harmonics in an EV charging station. Table 10 summarizes the performance of the 

EV charger in various scenarios. 
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Table 10: Comparison of the control strategy 

Model Description 
Current THD (%) 

Load Side Grid side 

EV charger without any control 6.48 % 6.48 % 

Active filter integrated to EV 

charger model with conventional 

PI 

7.71 % 3.5 % 

Active filter integrated to EV 

charger model with fuzzy PI 
8.4 % 1.4 % 

Case1  – One additional EV 

connected to R phase   
13.66 % 1.60 % 

Case1  – Two additional EVs 

connected to R, Y phase.  
13.83 % 3.82 % 

Case3 – Active filter connected 

to diode rectifier  
23.7 % 1.11 % 
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Chapter 4: Conclusion 

A three-phase shunt active filter is developed using fuzzy logic and hysteresis 

controller to mitigate the current harmonics generated by EV chargers. An EV charger 

is modeled as an injected current harmonic source. The harmonic current content of 

the EV load is estimated using a positive sequence SRFC. The hysteresis band control 

technique is used to generate the switching pulses of MOSFETs. The conventional PI 

regulator is replaced with a fuzzy logic controller to provide excellent dynamic control 

of the DC link capacitor voltage at different operating conditions. The EV charger and 

active filter are developed and simulated using MATLAB/Simulink. The simulation 

results show that the performance of the active filter improves using fuzzy PI relative 

to the conventional PI controller. The active filter reduces the THDi of three similar 

EVs from 8.4% to 1.4%. Moreover, the THDi at the source side in various operating 

conditions is below the limits set by the IEEE 519-1992 harmonic standard.  
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