Date of Award

11-2020

Document Type

Thesis

Degree Name

Master of Science in Mechanical Engineering (MSME)

Department

Mechanical Engineering

First Advisor

Dr. Bobby Mathew

Second Advisor

Dr. Emad Eldeen Elnajjar

Third Advisor

Dr. Weihua Li

Abstract

This thesis conceptualizes the design of a planar electrode for employment in microfluidic devices to achieve dielectrophoretic focusing and separation of micro-scale entities. The planar electrode has corrugations with two such electrodes placed parallelly to form a pair and the electric field is generated between them; the presence of corrugations enhances the non-uniformity of the electric field. For purposes of 3D focusing, two pairs of electrodes are used with each pair on both sides of the microchannel. When the applied electric voltages are equal, the micro-scale entity is focused at the center of the microchannel and when the applied electric voltages are unequal, the micro-scale entity is focused at locations other than the center of the microchannel. For purposes of achieving size-based separation, four electrode pairs are used with each pair placed on one side the microchannel; the first two pairs of electrodes 3D focus the micro-scale entities next to one of the side walls while the other two pairs of electrodes subject the big micro-scale entity to negative dielectrophoresis while the small micro-scale entity experiences negligible dielectrophoresis and this pushes the big micro-scale entity inside the microchannel hence achieving separation of particles. The conceptualized microfluidic device is mathematically modelled with the model consisting of multiple governing equations; equations of motion, continuity equation, Navier-Stoke equations, and electric voltage and electric field equations make up the mathematical model. The model experiences phenomena’s such as inertia, drag, dielectrophoresis, gravity, buoyancy, and virtual mass. All equations of the model are solved numerically using Finite Difference Method. The model is validated using experimental results from literature. The model is subsequently used for evaluating the effect of operating and geometric parameters on the performance metrics of the focusing and separation device; the performance metrics of the focusing device are vertical and horizontal focusing parameter while that of the separation device include separation efficiency and separation purity. Parametric study is done using suspension of polystyrene microparticles in water. The several parameters studied include microchannel width/depth, electrode dimensions, volumetric flow rate, number of electrode pairs, and applied electric voltage. It is observed that the metrics of performance of both the devices degrade with increase in microchannel width/depth. Based on the model, a spike in the applied electric voltage and volumetric flow rate tends to an improvement and degradation of the performance metrics of both the devices respectively. Increase in the electrode dimensions lead to enhancement in the focusing of the micro-scale entities. The observed variation of performance metrics with regards to operating and geometric parameters can be attributed to the influence of these parameters on residence time and electric field magnitude and non-uniformity in the microchannel. This is the first work to conceptualize the above-detailed electrode as well as to mathematically model the focusing and separation devices employing the same. A flowchart is developed for designers to use for realizing the microfluidic device, employing the conceptualized electrode for purposes of focusing separation, with the adequate performance

Comments

تتناول الأطروحة تصميم قطب كهربائي مستوٍ لتركيز وفصل الجزئيات الدقيقة في أجهزة الموائع الدقيقة. الأقطاب الكهربائية لديها تموجات، وكل زوج من هذي الأقطاب متوازي وبتالي يتولد مجال كهربائي بينهما. وجود التموجات في الأقطاب يعزز المجال الكهربائي الغير منتظم. يتم استخدام زوجين من الأقطاب الكهربائية على كلا جوانب القناة الدقيقة في الجهاز لتحقيق تركيز ثلاثي ا لأبعاد. تتركز الجزئيات الدقيقة في وسط القناة عندما يكون الجهد الكهربائي متساوي بين زوجين الأقطاب الكهربائية، بينما تتركز الجزيئات بعيداً عن وسط القناة عندما يكون الجهد الكهربائي غير متساوي. تستخدم أربعة أزواج من الأقطاب الكهربائية لفصل الجزيئات الدقيق ة عن بعضها حسب حجمها. زوجين من الأقطاب الكهربائية يركز الجزيئات الدقيقة بثلاثة أبعاد إلى أحد جوانب القناة. الزوجين ا لخرين يعرضان الجزيئات الأكبر حجم اً لمجال كهربائ ي سالب، بينها الجزيئات ا لأصغر حجم اً تكاد لا تتأثر بالمجال الكهربائي. ويتسبب ذلك في إزاحة الجزيئا ت الأكبر حجم اً لمنتصف القناة وبذلك يتم انفصال الجزيئات عن بعضها حسب حجمها. تم تصميم جهاز الموائع الدقيقة بنموذج رياضي بمعادلات رياضية عدة، مثل: معادلات الحركة، معادلة الاستمرارية، معادلات نافيير-ستوكس، معادلات الجهد الكهربائ ي والمجال الكهربائي. أخذ النموذج بعين الاعتبار الظواهر التي قد تتعرض لها الجزيئات مثل : القصور الذاتي، السحب، الرحلان الكهربائي، الجاذبية، الطفو، والكتلة الافتراضية. جميع المعادلات تم حلها بواسطة التحليل العددي باستخدام طريقة الفروق المحدودة. تم التحقق من صحة النموذج الرياضي بالاستعادة بنتائج تجارب سابقة. ا ستخدم النموذج لدراسة تأثير العوامل التشغيلية والهندسية على أداء الجهاز في مرحلة تركيز الجزيئات ومرحلة فصلها. قيم أداء الجهاز في مرحلة تركيز الجزيئات من خلال عوامل التركيز الأفقية والرأسية، بينما قيم في مرحلة فصل الجزيئات من خلال حساب كفاءة ونقاء الفصل. د رست العوامل باستخدام جزيئات بولسترين مغمورة في الماء. العوامل التشغيلية والهندسية التي تم دراستها: عرض وعمق قناة الجهاز، أبعاد القطب، معدل التدفق الحجمي، عدد الأقطاب الكهربائية، قوة الجهد الكهربائي. لوحظ أن فعالية الجهاز تقل ع ن د زيادة عرض وعمق القناة. كما أن زيادة الجهد الكهربائي تحسن من أداء الجهاز، ومعدل التدفق الحجمي يقلل من فعالية الجهاز. زيادة أبعاد الأقطاب الكهربائية تؤدي إلى تعزيز تركيز الجزيئات. يعتبر هذا العمل الأول من حيث تصميم نموذج رياضي لتركيز وفصل الجزيئات بالتصميم المفصل أعلاه. صمم مخطط للمستخدمين لفهم جهاز الموائع الدقيق ة وتصميم القطب الكهربائي لأغراض التركيز والفصل باستخدام العوامل المرغوب بها.

Share

COinS